WO2016011775A1 - 分布式传感光纤多目标多自由度静动态测试装置及方法 - Google Patents

分布式传感光纤多目标多自由度静动态测试装置及方法 Download PDF

Info

Publication number
WO2016011775A1
WO2016011775A1 PCT/CN2014/095071 CN2014095071W WO2016011775A1 WO 2016011775 A1 WO2016011775 A1 WO 2016011775A1 CN 2014095071 W CN2014095071 W CN 2014095071W WO 2016011775 A1 WO2016011775 A1 WO 2016011775A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical fiber
degree
freedom
test
Prior art date
Application number
PCT/CN2014/095071
Other languages
English (en)
French (fr)
Inventor
苏怀智
杨孟
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to US14/888,708 priority Critical patent/US9581522B2/en
Priority to CA2910468A priority patent/CA2910468C/en
Priority to EP14886668.4A priority patent/EP3015840A4/en
Priority to JP2017524076A priority patent/JP6393421B2/ja
Priority to AU2014388970A priority patent/AU2014388970B2/en
Publication of WO2016011775A1 publication Critical patent/WO2016011775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/088Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering

Definitions

  • the invention relates to a multi-objective multi-degree-of-freedom static and dynamic test integration platform and a test method for distributed sensing optical fiber performance.
  • the health monitoring of structures is more important and urgent.
  • the application of fiber-optic smart materials as a functional sensor in the field of structural health monitoring is increasing.
  • the distributed optical fiber monitoring system has great advantages in terms of technical difficulty, monitoring content, indicators, monitoring occasions and scope.
  • the distributed optical fiber sensor parameters used by the users are basically the parameters normally calibrated when the optical fiber is shipped.
  • the reliability of monitoring results especially the mechanical properties of distributed optical fiber sensors and the significant impact of sensing performance. Actual application accuracy.
  • optical fibers manufactured by different optical fiber raw materials or different optical fiber production processes There are big differences in the specifications of optical fibers manufactured by different optical fiber raw materials or different optical fiber production processes. For different optical fiber manufacturers, different fiber types, different jacket materials, and different production batches of the same fiber type, the optical fiber is different. There are also differences in basic parameters, so whether it is scientific research or production applications, testing of distributed fiber mechanical properties and sensing performance has become the primary prerequisite work.
  • the tensile strength of the fiber is relatively small.
  • the object of the present invention is to address the deficiencies of the prior art in order to solve the mechanical properties of distributed sensing fibers in practical engineering.
  • testing problems such as sensing performance
  • a more effective and accurate static and dynamic multi-degree-of-freedom optical fiber performance testing platform and test method are proposed.
  • the performance of tight-fitting optical fiber is changed from a qualitative index to a quantitative index, which is extended from ordinary meaning to The practical application concept of the specific engineering; the device and the method of the invention can perform the indoor calibration test of high-precision optical fiber mechanical performance, and can also be applied to the optical fiber before the actual engineering test work; when more accurate calibration results are required, the calculation can be performed multiple times according to the The calculation results follow the principle of normal distribution, and finally obtain more accurate calibration results.
  • the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device of the invention comprises a fiber multi-degree of freedom fixed system, a manual loading and unloading device, a hydraulic control loading and unloading device, a fiber to be tested, a distributed fiber Brillouin Frequency shift acquisition system, data processing and analysis system; fiber multi-degree-of-freedom fixed system is connected with manual loading and unloading device and hydraulic control loading and unloading device in sequence, fiber-optic and fiber multi-degree-of-freedom fixed system and distributed fiber Brillouin frequency The transfer acquisition system is connected.
  • the performance of the optical fiber is tested by controlling the device in the multi-degree-of-freedom fixed system; the distributed fiber Brillouin frequency shift acquisition system is used to collect the optical fiber optical information such as the Brillouin frequency shift value under the static or dynamic stress condition of the optical fiber.
  • the data processing and analysis system is used for online processing and analysis of distributed optical fiber Brillouin frequency shift acquisition system and digital information collected by force sensors and high sensitivity thermometers.
  • the initial-end elastic fixing device fixes the initial-end elastic fixing device on the initial fixed-end placing table by fastening the screw through the curved front shack
  • the optical fiber passes through the small-diameter optical fiber communication channel in the curved front chamber and the micro-diameter fiber communication channel in the high-elastic inner ring wall, and applies axial pressure to the high-elastic inner ring wall by rotating the adjusting bolt on the connecting screw, and passes through the circular L-shaped
  • the outer ring wall applies lateral pressure to the highly elastic inner ring wall, and the hoop constraint is transmitted to the micro-caliber fiber-optic communication channel through the highly elastic inner ring wall.
  • the optical fiber multi-degree-of-freedom fixing system further comprises an intermediate pulley linkage device 1 and an intermediate pulley linkage device 2, in the middle upper position of the rear operating platform and The middle and lower positions are respectively provided with front and rear through slots for placing the intermediate pulley linkage device 1 and the intermediate pulley linkage device 2; the intermediate pulley linkage device 1 adjusts the round handle by operating the angle of the connection with the scale disk Controlling the rotating link; fixing the fulcrum disk as a fixed fulcrum, the horizontal connecting pulley will lead the fiber from the initial end elastic fixing device and horizontally transition into the intermediate pulley linkage device 1; the device is packaged in the curved operating room And being fastened by the fastening screw in the rear operation table; the optical fiber to be tested led out from the intermediate pulley linkage device is led to the vertical small-diameter fiber-optic communication passage through the connecting pulley
  • the utility model further comprises an end non-rigid fixing device; the end non-rigid fixing device controls the rotating ring to enter and exit by rotating the rotating ring cap; the screw is arranged in the inner wall of the rotating ring, and the fiber to be tested is provided with a threaded fiber-optic communication passage through the outer wall, the optical fiber
  • the inner side of the Unicom channel is provided with an inner wall of elastic material adjacent to the fiber, and is in contact with the fiber to be tested and transmits the hoop load to the fiber to be tested.
  • the round wall of the elastic material is subjected to the horizontal pressure of the rotating ring, and the thick-walled drum of the outer edge will be
  • the hoop constraint is applied to the circular wall of the elastomeric material and the hoop load is transferred into the inner wall of the elastomeric material in the fiber optic communication channel.
  • the common connecting pulley can be replaced with a special built-in pulley, and the threaded rod handle is connected with the threaded rod, and one end of the threaded rod is deep into the rear operating table.
  • the arcuate grooves are respectively slotted at one end of the upper elongated steel block and the lower elongated steel block, and are respectively slotted at the corresponding other ends thereof, and the high elastic spring applies a vertical load to the opposite curved grooves, thereby being tested The fiber is constrained by the hoop.
  • the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device of the invention further comprises two sets of optical fiber loading and unloading devices.
  • the threaded disk and the fixed disk will have manual control handles. It is fixedly connected with the front operating platform, with a horizontal beam passing through the moving platform, a scale with a scale on the horizontal beam, a two-way force sensor between the moving platform and the front operating platform, a manual control handle connected with the horizontal threaded beam, and a manual control handle
  • the two ends have a rotating handle and a fine adjustment control handle, and the moving platform is subjected to the horizontal rotating force of the horizontal threaded beam to transmit the horizontal load to the initial end elastic fixing device; for the oil pressure control loading and unloading device, the telescopic cylinder and the hydraulic pressure plus The unload control handle is connected.
  • the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device of the invention further comprises a special fixing round seat, and the fixing round sleeve connects the special fixing round seat to the bottom horizontal fixed horizontal column, and The fixing vertical round seats are connected by connecting steel plates.
  • the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device of the present invention is to be tested in the testing device, and extends from the top end along the testing device to the lower end of the testing platform, and finally with the fiber Brillouin frequency shift acquisition system. Connected.
  • the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device described in the invention can apply dynamic and static loads to the optical fiber through the fiber loading and unloading system, and the matched distributed fiber Brillouin frequency shift acquiring system and data processing analysis
  • the system can realize real-time acquisition and analysis of fiber information, and can perform performance test under different curvatures of the fiber, and directly or indirectly monitor parameters such as ultimate tensile load and comprehensive elastic modulus.
  • test steps of the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device according to the present invention are as follows:
  • the fiber to be tested is connected to the initial end elastic fixing device, passes through the intermediate pulley linkage device 1 and the intermediate pulley linkage device 2, and is horizontally led out to the fiber Brillouin frequency shift acquisition system via the end non-rigid fixing device;
  • Step 1 Assemble the components and carry out the operation and commissioning. Specially equipped with special pulleys and adjustments according to the purpose of the test. The angle of the adjustment of the round handle defines the test curvature, and the fiber to be tested is laid.
  • Step 2 Record the initial time, temperature, and the initial gauge length of the fiber to be tested, determine the loading type and dynamic and static monitoring mode, control the loading series by the results monitored by the two-way force sensor, and then stress test the test piece.
  • Step 3 Based on the purpose of the test, monitor and collect monitoring data such as length, angle and load of each part.
  • Step 4 Based on the above mechanical test of the fiber to be tested, the collected static monitoring data is used for static and dynamic analysis.
  • the invention provides a distributed sensing optical fiber multi-objective multi-degree-of-freedom static and dynamic testing device and method, which provides a reliable dynamic and static multi-degree of freedom loading and unloading control system for optical fiber selection, design, production, procurement, construction and use.
  • the calibration of optical fiber sensing parameters, the application of pre-engineering performance detection and the further improvement of distributed optical fiber theory and its practical application provide a better test platform.
  • the present invention ingeniously designs a variety of optical fiber elastic fixing systems to make the optical fiber lossless.
  • the invention has important significance for the accuracy calibration and improvement of the distributed optical fiber sensing technology in practical applications. All components of the test platform can be freely disassembled and assembled, and a multi-target test platform is built for fulfilling different test requirements, and it is possible to The experimental investigation provides a huge secondary development space, and the device of the invention has many advantages such as light structure, low price, convenient operation, small interference, large number of tests, strong adaptability, stable performance and convenient loading and unloading.
  • FIG. 1 is a schematic plan view of a distributed sensing optical fiber multi-target multi-degree-of-freedom static and dynamic testing device according to the present invention
  • FIG. 2 is an enlarged schematic view showing the structure of the portion I in Figure 1;
  • Figure 3 is an enlarged schematic view of the portion II structure of Figure 1;
  • Figure 4 is an enlarged schematic view of the portion III structure of Figure 1;
  • FIG. 5 is a front view of a distributed sensing optical fiber multi-target multi-degree-of-freedom static and dynamic testing device according to the present invention.
  • FIG. 6 is a cross-sectional view of a distributed sensing optical fiber multi-target multi-degree-of-freedom static and dynamic testing device 1-1 of the present invention
  • FIG. 7 is a cross-sectional view of the distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device 2-2 of the present invention.
  • Figure 8 is a cross-sectional view showing the initial end elastic fixing device 71 in the testing device of the present invention.
  • Figure 9 is a cross-sectional view of the intermediate pulley linkage device 72 in the testing device of the present invention.
  • Figure 10 is a cross-sectional view of the intermediate pulley linkage device 73 in the testing device of the present invention.
  • Figure 11 is a cross-sectional view of the end non-rigid fixture 74 of the test apparatus of the present invention.
  • Figure 12 is a cross-sectional view taken along line 3-3 of the end non-rigid fixing device 74 of the testing device of the present invention.
  • Figure 13 is a cross-sectional view of the special pulley device 16 of the testing device of the present invention.
  • Figure 14 is a cross-sectional view taken along line 4-4 of the special pulley device 16 of the testing device of the present invention.
  • Figure 15 is a cross-sectional view of the special fixing round seat 92 of the testing device of the present invention.
  • Figure 16 is a comparison diagram of a horizontal tensile test of an optical fiber based on the apparatus of the present invention.
  • Distributed sensing fiber multi-target multi-degree-of-freedom static and dynamic testing device and method which is composed of fiber multi-degree of freedom fixed system 70, manual loading and unloading device 81 and hydraulic control loading and unloading device 40, fiber to be tested 80, distributed optical fiber
  • the Brillouin frequency shift acquisition system 50, the data processing and analysis system 60, and other auxiliary systems are formed.
  • the fiber multi-degree-of-freedom fixing system mainly comprises an initial end elastic fixing device 71, an intermediate pulley linkage device 72 and an intermediate pulley linkage device 73, and an end non-rigid fixing device 74, which are controlled by the multi-degree-of-freedom fixing system 70.
  • Different devices realize the arrangement of different fibers in different directions and different curvatures;
  • the fiber-distributed fiber Brillouin frequency shift acquisition system 50 is mainly used to collect optical fibers under static or dynamic stress conditions, Brillouin frequency shift and other optical fibers.
  • Optical information; data processing and analysis system 60 is mainly for online processing and analysis of distributed optical fiber Brillouin frequency acquisition system and force sensors, high-sensitivity thermometers and other digital information collected; other auxiliary testing devices mainly include high-sensitivity electronic thermometers 91, The special fixing round seat 92, the hydraulic pressure loading and unloading control handle 93, and the shock absorbing elastic bracket 94 and the like are auxiliary devices.
  • the fiber multi-degree-of-freedom fixing system 70 includes four different design ideas and methods of use, and the fiber-optic multi-degree-of-freedom fixing device, wherein the initial-end elastic fixing device 71 penetrates the curved front door 2 through the fastening screw 1, and the initial-end elastic fixing device Firmly fixed to the initial fixed end placement table 46, the optical fiber passes through the small-diameter fiber-optic communication passage 6 in the curved front compartment 2 and the micro-diameter fiber-optic communication passage 7 in the high-elastic inner annular wall 5, and the adjusting bolt 8 on the screw 4 is rotated.
  • the axial pressure is continuously applied to the highly elastic inner ring wall 5, and the high elastic inner ring wall 5 is axially compressed due to the constant axial pressure, but the longitudinal section thereof is subjected to the longitudinal pressure of the circular L-shaped outer ring wall 3.
  • Binding which will continuously tighten the micro-caliber fiber-optic communication channel 7 in the longitudinal direction, and finally press the fiber in the micro-caliber fiber-optic communication channel 7 tightly, and adopt the method of lateral compression-compression longitudinal elastic deformation to make the target fiber non-rigid.
  • the method is fastened to the tensile end, and the physical damage caused by the uncoordinated hardness of the material when the optical fiber is clamped by the rigid jig can be extremely effectively avoided.
  • the initial end elastic fixing device 71 of the present invention is designed for the special requirements of the test platform, and is convenient to replace, simple in operation and strong in practicability, and provides a strong guarantee for the performance test of the optical fiber.
  • the fiber multi-degree-of-freedom fixing system 70 includes an intermediate pulley linkage device 72 and an intermediate pulley linkage device 73.
  • Middle slide In the wheel linkage device 72 the round handle 10 is adjusted by manipulating the angle connected with the scale disc 9, and then the rotary link 18 is controlled to adjust the adjustable angle pulley 15 according to different test requirements, so that the optical fiber bends there.
  • the solid screw 12 is firmly fixed to the rear operating table 20, and the intermediate pulley linkage device 72 of the invention utilizes the principle of lever balance, and the control of the bending angle of the optical fiber is efficiently and accurately realized by the fixed fulcrum, and the operability is strong.
  • the optical fiber 80 to be tested which is taken out from the intermediate pulley linkage device 72, is led to the vertical small-diameter fiber-optic communication passage 17 by the connecting pulley 16 placed in the intermediate slot on the rear console, and connected to the intermediate pulley linkage device 2 73.
  • the intermediate pulley linkage device 73 mainly comprises a large diameter transition pulley 18 and a slightly smaller diameter transition pulley 19, which simply and effectively transitions the optical fiber 80 to be tested to a subsequent test section, where the inventive intermediate pulley linkage device 73 is skillfully utilized.
  • the outer circular arc of the unequal diameter disc is tangent, and the optical fiber 80 to be tested is smoothly transitioned from the vertical position to the horizontal position, which not only can flexibly adjust the position of the optical fiber, but also can make the bending curvature of the optical fiber completely meet the test requirements;
  • a front and rear through-placement groove is respectively disposed at an intermediate upper position and a middle lower portion of the rear operation platform to facilitate placement of the intermediate pulley linkage device 72 and the intermediate pulley linkage device 73.
  • the fiber multi-degree of freedom fixing system 70 also includes an end non-rigid fixture 74.
  • the rotating ring 22 can be controlled to enter and exit by rotating the ring cap 21, and the inner wall of the rotating ring is a threaded member, and the fiber connecting passage 25 is a thin-walled fiber channel with an outer wall, and the fiber channel has a certain thickness near the side of the fiber.
  • the inner wall 47 of the elastic material is in contact with the optical fiber, and can effectively transmit the hoop load to the optical fiber 80 to be tested, and can ensure that the optical fiber is not damaged by the compression of the high-rigidity component with a large difference in the magnitude of the rigidity, when the rotating circle is tightened.
  • the non-rigid fixing device 74 of the invention rationally utilizes the force transmission and the balance principle, and skillfully combines the characteristics of the elastic material body, and controls the load through the rotation between the threads, thereby achieving the non-rigid interlocking fixing of the optical fiber, and the operation is simple. It provides another new way to achieve effective operational control of optical fibers.
  • the ordinary connecting pulley 16 can be replaced with a special built-in pulley.
  • the special pulley device mainly rotates one end of the threaded rod shank 26 into the threaded rod 27 of the rear operating table 20, which compresses the high elastic spring 30, and drives the opposite curved groove 29 to be docked, and the optical fiber 80 to be tested laid therein will be followeded by compact compaction, the device invented here uses the working principle of the spring, the knot In accordance with the principle of force balance, the optical fiber is fixed in the oppositely disposed arcuate groove 29 of a certain thickness of elastic material, which is still an elastic fixing device, but it is a special vertical direction.
  • the fixed position and unique design can realize flexible connection with the optical fiber and synergistic deformation.
  • the idea is novel and the structure is simple.
  • the arcuate grooves 29 are respectively grooved at one end of the upper long steel block 28 and the lower long steel block 31, in order to The spares are slotted at their respective other ends.
  • This test platform fiber loading and unloading system In order to achieve different test requirements, two sets of fiber loading and unloading devices were designed.
  • One set is a manual loading and unloading device 81, which mainly rotates the horizontal threaded beam 32 by manually controlling the handle 33, and moves the moving platform 36 horizontally by the rotation of the thread, thereby pulling the initial end elastic fixing device 71 to move horizontally forward. Therefore, the manual loading and unloading of the optical fiber can be realized, and the manual control handle 33 is connected and fixed to the front operating platform 37 through the threaded disc 35 and the fixed disc 34. In FIG. 1, the left and right ends of the manual control handle 33 are respectively rotated. The handle and the fine-tuning control handle can be correspondingly operated according to different needs.
  • the scaled horizontal beam 38 extends through the moving platform 36, and is mainly used to mark the display scale in real time.
  • the second set of loading device is the oil pressure control loading and unloading device, which mainly has a telescopic cylinder 40, a hydraulic pressure loading and unloading control handle 93 and hydraulic control system and other components.
  • a high-sensitivity electronic thermometer 91 for temperature compensation calculation is additionally installed in the test device, which can automatically read the current temperature and display the current date and time, which is to judge the external environment temperature influence effect, perform temperature compensation calculation and record the complete test process. Effective supplement. Excessive tensile loads may occur during use, which may cause positional movement of the device or special circumstances in the non-horizontal plane in actual engineering. For this purpose, a special fixing round seat 92 in other auxiliary systems is specially designed.
  • the fixing round sleeve 42 connects the special fixing round seat 92 to the bottom end horizontal fixing horizontal column 44, and connects the fixing vertical round seat 43 by the connecting steel plate 41, and passes through the fixing vertical round seat 43 when it is required to be fixed, and
  • the bolt rod secures it to a position that requires a fixed position.
  • a shock-absorbing hard elastic bracket 94 is installed at the bottom end of the whole test platform, which is mainly composed of a built-in hard elastic material, and can be used to prevent external force interference and vibrations in the test and transportation process, so as to minimize the interference of the external environment. Improve the accuracy and stability of the test results of the fiber test platform.
  • the spatial resolution of the different analyzers is also greatly different, and the fiber to be tested 80 extends from the top end along the test device to the lower end of the test platform.
  • the unique fiber orientation increases the length of the fiber to be tested.
  • One of the purposes of this approach is to make the device better compatible with fiber analyzers with different spatial resolutions.
  • the data processing and analysis system 60 mainly accesses, processes, and analyzes the digitized measured information acquired by the analyzer 50, the bidirectional force sensor 39, and the high-sensitivity electronic thermometer 91, and plots the information time course.
  • the platform can apply dynamic and static loads to the optical fiber through the fiber loading and unloading system.
  • the distributed distributed fiber Brillouin frequency shift acquisition system 50 and the data processing and analysis system 60 can realize real-time acquisition and analysis of optical fiber information, and can complete optical fibers under different curvatures. Performance testing, as well as direct or indirect monitoring of parameters such as ultimate tensile load and comprehensive elastic modulus. For example, the recorded fiber length of the initial gauge length is l 0 , and the load value collected after applying a certain load is F 0 , and the fiber length is l 00 at this time, then the strain value is Corresponding stress value s 0 is the corresponding fiber cross-sectional area, and the corresponding fiber comprehensive elastic modulus value can be calculated by the device.
  • the platform can also perform high-precision optical fiber mechanical performance calibration test.
  • the effective tensile length of the fiber to be tested at the initial time is recorded as l 1
  • the effective tensile length of the optical fiber is recorded as l 2 after being applied by the loading device, then the deformation control is performed.
  • the fiber strain value obtained by the monitoring device The temperature change value monitored by the high-sensitivity electronic thermometer 91 is ⁇ T
  • the value of the m-th load relative to the initial strain is ⁇ m
  • the corresponding temperature change value is ⁇ T m
  • the corresponding strain change of the n-th load The value is ⁇ n (m ⁇ n), and the corresponding temperature change value is ⁇ T B .
  • the SMF-28e common single-mode optical fiber is taken as the optical fiber 80 to be tested, and the manufacturing and assembly steps of the main device in the present invention are illustrated:
  • a steel plate having a length of 180 mm, a width of 30 mm, and a height of 120 mm is used to form a front operating platform 37, and the moving platform 36 is made of a steel plate having a length of 180 mm, a width of 60 mm, and a height of 60 mm, and is made of a steel plate having a length of 180 mm, a width of 50 mm, and a height of 140 mm.
  • Elastic fixing device is
  • a slot is formed in the upper portion of the rear console 20 to pass through the front and rear slots, and is mainly used for placing the pulley device 16, and the small-diameter fiber-optic communication passage is opened close to the outer surface at the bottom end of the slot, and is connected to the upper and lower ends of the rear console 20
  • the slot is provided through the front and rear slots for placing the intermediate pulley linkage device 73.
  • the bottom horizontal fixed horizontal column 44 has a length of 620 mm and a diameter of 27 mm, and the two ports are threaded.
  • a special fixing round seat 92 having a size slightly larger than the bottom horizontal fixed horizontal column 44 is horizontally fixed at the bottom end.
  • Horizontal column 44, with bottom level The fixed cross column 44 connects the front operating platform 37 and the rear operating table 20, and connects the front operating platform 37, the moving platform 36 and the rear operating table 20 through a two-port threaded graduated horizontal beam 38 having a length of 620 mm and a diameter of 24 mm.
  • the manual control handle 33 is connected to the rotating horizontal threaded beam 32 having a length of 500 mm and a diameter of 30 mm through a circular hole in the front operating platform 37 using a fixed disc 34 having a diameter of 50 mm and a thickness of 30 mm and a diameter of 18 mm. Finally, the above components are tightly fixed by bolts of corresponding specifications.
  • the third step taking into account the complexity and high manufacturing process of each fiber-optic elastic fixture and other precision components, the detailed production steps and the process will not be described here, and the fiber-optic elastic fixtures prepared beforehand are designed and installed according to the regulations. Go to the designated location of each part.
  • the fiber Brillouin frequency shift acquisition system 50 and the data processing analysis system 60 are connected with the assembled test system to form a set of loading and unloading system, force measuring system, sensing system and data processing and analysis system.
  • test of the distributed fiber deformation performance under the horizontal axial tension of the test fiber is taken as an example.
  • the outer surface has a rubber protective layer, and the tight-fitting fiber is sequentially passed through the initial end elastic fixing device 71, the intermediate pulley linkage device 72 and the intermediate pulley linkage device 73 and the end non-rigid fixture 74, and the NBX-6050A pre-pumped Brillouin optical time domain analysis technology for distributed fiber Brillouin frequency acquisition system, DVP-730 fiber fusion machine, heat shrinkable tube number And DVP-105 fiber cleaver, Panasonic-CF-FGCYCDP type data processing and analysis system and other ancillary equipment.
  • Step 1 First, the round shank 10 is adjusted according to a certain curvature rotation angle, and the initial end elastic fixing device 71 and the end non-rigid fixing device 74 that have passed through the optical fiber to be tested are adjusted by adjusting the corresponding component tightening device.
  • Step 2 Connect the two ends of the fiber to be tested to the port of the distributed optical fiber monitoring system of the NBX-6050A pre-pumped Brillouin optical time domain analysis technology, and fix the two-way force sensor 39 to the corresponding position to open the high-sensitivity electronic thermometer.
  • the Panasonic-CF-FGCYCDP type data processing and analysis system is connected to each monitoring component to complete the pre-loading preparation.
  • Step 3 Record the start time and start temperature, select the loading type.
  • select the manual loading mode calibrate the initial gauge length before loading, and record the value, then adjust the round handle 10 by turning the angle.
  • the result monitored by the force sensor 39 controls the number of loading stages, and the hand-operated handle on the knob 10 is adjusted by the rotation angle to perform fine-tuning loading to realize real-time dynamic precise control, and the Brillouin frequency shift is continuously acquired by using the NBX-6050A.
  • Numerical values and calculation of strain results using the Panasonic-CF-FGCYCDP type data processing and analysis system.
  • Step 4 According to the purpose of this test, adjust the value of the thermometer at this time by adjusting the round handle 10 for each rotation angle, and use the NBX-6050A for fiber strain monitoring.
  • the strain results of the preset eight loadings are analyzed. Firstly, the temperature changes recorded by the thermometer are found to be kept at about 20°.
  • the variation ⁇ T ⁇ 0, the Brillouin frequency shift caused by it can be ignored, and the whole test time is shorter, and the temperature is basically kept constant during the indoor test, so from the temperature of the record, it can be ignored because of the temperature change.
  • the comparative analysis results are shown in Fig. 13, and 4 of them are listed in the figure.
  • the comparison value of the secondary loading result except for the unchangeable reason such as the relative displacement of the internal material during stretching in the fiber manufacturing process, from the four result values, the partial stretching including the length of the clamp At the 1.8m ⁇ 2.25m segment, as the loading step increases, the tensile strain value of the fiber as a whole increases continuously, and the change is greatest in the intermediate load step, and the increase is small in the initial and final stages of loading.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种分布式传感光纤多目标多自由度静动态测试装置,包括光纤多自由度固定系统(70)、人工加卸载装置(81)、油压控制加卸载装置(40)、待测光纤(80)、分布式光纤布里渊频移获取系统(50)、数据处理分析系统(60),光纤多自由度固定系统(70)依次与人工加卸载装置(81)和油压控制加卸载装置(40)相连接,待测光纤(80)与光纤多自由度固定系统(70)以及分布式光纤布里渊频移获取系统(50)相连接,通过控制光纤多自由度固定系统(70)中的装置实现对光纤性能的测试。该分布式传感光纤多目标多自由度静动态测试装置的所有部件均可自由拆卸与装配,为完成不同测试要求搭建了一个多目标测试平台,给可能的试验探究提供了二次开发空间,并且具有构造轻便、操作方便、受干扰小、测试类多、适应性强、性能稳定以及加载方便等众多优势。还提供一种利用该分布式传感光纤多目标多自由度静动态测试装置的测试方法。

Description

分布式传感光纤多目标多自由度静动态测试装置及方法 技术领域
本发明涉及本发明涉及分布式传感光纤性能的多目标多自由度静动态测试集成平台及测试方法。
背景技术
随着人们安全意识不断提高以及各领域工程大量兴建,结构物的健康监测更显重要和紧迫,光纤智能材料作为一种功能型传感器在结构健康监测领域应用不断增加。分布式光纤监测系统相对于电信号为基础的传感监测系统和点式光纤监测系统而言,其技术难度、监测量的内容、指标以及监测场合和范围均显现出了巨大优势。
与分布式光纤传感器光学参数相比,其自身一些物理参数并不完全是定量技术指标,国内外通常做法是进行相关试验,在试验中不破坏即为合格产品,试验的发生是概率事件,不可能对于每一卷光纤每一处都进行试验,因此对于实际工程中所应用的光纤参数性能基本为未知,即使对于进行过不破坏试验的合格光纤而言,对于其性能优劣程度也缺乏定量认知,因此对于光纤选型、设计、生产、采购、施工以及使用均带来了极大不便和浪费。
对于目前国内外光纤应用领域来讲,用户所使用的分布式光纤传感器参数基本都是采用光纤出厂时所常规标定的参数。应用于较复杂的工作环境时,特别是针对水工建筑物等复杂巨工程的野外特殊工作环境,其对监测结果可靠性产生影响,尤其是分布式光纤传感器的力学性能以及传感性能显著影响实际应用精度。
不同的光纤原材料或者不同的光纤生产工艺下所制造的光纤各项指标存在着较大差别,对于不同光纤生产厂家、不同光纤型号、不同护套材料以及同一光纤型号不同生产批次等情况下光纤基本参数也存在差异性,因此不论是科学研究还是生产应用,对于分布式光纤力学性能以及传感性能的测试都成为首要开展的前提工作。
光纤拉伸断裂力比较小,为了能够及时精确地捕捉追踪到其产生、发展、破坏全生命周期内的变形机理,急切需要研究一种精确灵便的多目标光纤试验平台;随着光纤传感技术向着智能化、数字化、集成化以及小型化方向发展,监测其空间分辨率技术不断提高,其监测微小结构体成为了必然趋势,为了更好配套于分布式光纤传感技术的发展,需要研发一种量程可调、方便携带、测试精确及构造简单的多目标测试集成平台。
发明内容
本发明的目的是针对现有技术的不足,为了解决实际工程中分布式传感光纤的力学性能 以及传感性能等测试问题而提出一种更加有效准确地静动态多自由度光纤性能测试平台及测试方法,将紧套光纤的一些性能从一个定性指标变成一个定量指标,从普通意义推广到具体工程实际应用概念;本发明装置以及方法可进行高精度光纤力学性能室内标定试验,也可以面向光纤应用于实际工程前的测试工作;在要求更精确标定结果时,可以多次计算,根据其计算结果服从正态分布原则,最终获得更加精确的校准结果。
本发明采用如下技术方案:
本发明所述的分布式传感光纤多目标多自由度静动态测试装置,包括光纤多自由度固定系统、人工加卸载装置、油压控制加卸载装、待测光纤、分布式光纤布里渊频移获取系统、数据处理分析系统;光纤多自由度固定系统依次与人工加卸载装置和油压控制加卸载装相连接,待测光纤与光纤多自由度固定系统以及分布式光纤布里渊频移获取系统相连接。通过控制多自由度固定系统中的装置实现对光纤性能的测试;分布式光纤布里渊频移获取系统用于采集光纤处于静态或动态受力条件下布里渊频移量值等光纤光学信息;数据处理分析系统用于在线处理与分析分布式光纤布里渊频移获取系统以及力传感器、高灵敏度温度计等采集到的数字化信息。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置,所述初始端弹性固定装置通过紧固螺杆贯通弧形前仓将初始端弹性固定装置固定于初始固定端放置台上,光纤通过弧形前仓中小口径光纤连通通道与高弹性内环壁中的微小口径光纤联通通道,通过转动连通螺杆上的调节螺栓对高弹性内环壁施加轴向的压力,通过圆L型外环壁对高弹性内环壁施加横向压力,通过高弹性内环壁将环向约束传递到微小口径光纤联通通道。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置,光纤多自由度固定系统还包括中间滑轮连动装置一和中间滑轮连动装置二,在后操作台中间上部位置以及中间偏下部位置分别设置有前后贯通的放置槽,以安放中间滑轮连动装置一和中间滑轮连动装置二;中间滑轮连动装置一中通过操纵与刻度圆盘连接的角度调节圆柄进而带动控制转动连杆;以固定支点圆盘为固定支点,水平连接滑轮将从初始端弹性固定装置中引出光纤且水平地过渡到中间滑轮连动装置一中;上述装置被封装在弧形操作室中,且被紧固螺杆固定于后操作台内;通过放置于后操作台上的中间槽内连接滑轮,将中间滑轮连动装置一中引出的待测光纤引至竖向小口径光纤联通通道内、并且连接到中间滑轮连动装置二上;中间滑轮连动装置二主要包括大直径过渡滑轮以及小直径过渡滑轮,其将待测光纤过渡到后续测试段。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置,光纤多自由度固定系统 还包括末端非刚性固定装置;末端非刚性固定装置中通过转动旋转圆环帽控制旋转圆环进出;旋转圆环内壁内设有螺件,待测光纤通过外壁设有螺纹的光纤联通通道,光纤联通通道靠近光纤一侧设有弹性材料内壁、且与待测光纤接触并将环向荷载传递到待测光纤中,弹性材料圆壁受到旋转圆环的水平向压力,外缘厚壁圆桶将环向约束施加到弹性材料圆壁上,环向荷载传递到光纤联通通道中的弹性材料内壁中。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置中,普通连接滑轮可更换为内置弹簧的特制滑轮,螺纹杆柄与螺纹杆相连,螺纹杆的一端深入后操作台,弧形槽分别开槽于上长条形钢块和下长条形钢块一端,在其对应的另一端分别开槽,高弹性弹簧对相向的弧形槽施加竖向荷载,从而,待测光纤受到环向约束。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置本测试装置还包括两套光纤加卸载装置,对于人工加卸载装置而言,螺纹圆盘以及固定圆盘将人工控制手柄与前操作平台连接固定,带刻度水平横梁贯穿移动平台,带刻度水平横梁上标注有刻度,移动平台与前操作平台之间有双向力传感器,人工控制手柄与转动水平螺纹横梁连接,人工控制手柄两端分别有转动手柄和微调控制手柄,移动平台受到水平螺纹横梁的水平转动力,将水平荷载传递到初始端弹性固定装置上;对于油压控制加卸载装置而言,伸缩圆柱与油压加卸载控制手柄相连。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置本测试装置还包括特殊固定用圆座,固定用圆套管将特殊固定用圆座连接到底端水平固定横柱,并且通过连接钢板将固定用竖圆座连接。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置本测试装置中待测光纤,从顶端一直沿着测试装置延伸到测试平台下端,最后与光纤布里渊频移获取系统相连接。
本发明所叙述的分布式传感光纤多目标多自由度静动态测试装置本装置可以通过光纤加卸载系统对光纤施加动静态荷载,配套的分布式光纤布里渊频移获取系统和数据处理分析系统可以实现实时采集以及分析光纤信息,可以完成光纤不同曲率下的性能测试,以及对其极限拉伸荷载及综合弹性模量等参数实现直接或间接监测。
本发明所述的分布式传感光纤多目标多自由度静动态测试装置的测试步骤如下:
待测光纤与初始端弹性固定装置连接,经过中间滑轮连动装置一以及中间滑轮连动装置二,后经末端非刚性固定装置被水平引出到光纤布里渊频移获取系统;
步骤1:装配各部件并进行运行调试,根据试验目的尤其装配特制滑轮装置以及调整转 动角度调节圆柄规定试验曲率,布设待测光纤。
步骤2:记录初始时间、温度以及待测光纤初始标距,确定加载类型和动静态监测方式,通过双向力传感器所监测的结果来控制加载级数,后对试件进行受力试验
步骤3:基于试验目的,监测、采集各个部位的长度、角度和荷载等监测数据。
步骤4:基于待测光纤的上述力学试验,利用采集到的监测数据进行时时静动态分析。
有益效果
发明提供的分布式传感光纤多目标多自由度静动态测试装置及方法,对于光纤选型、设计、生产、采购、施工以及使用提供了一个可靠的动静态多自由度加卸控制系统,对于光纤传感参数的标定、应用于工程前的性能检测以及进一步完善分布式光纤理论及其实际应用,提供了较好的测试平台;本发明巧妙设计了多种光纤弹性固定系统,将光纤无损耗且多自由度固定,依靠独特滑轮连杆装置可随意改变光纤弯曲角度,实现多目标监测;采用特殊设计的人工和油压两套加卸载系统实现了自由控制光纤动静态加卸载,其布里渊频移获取系统、力传感系统以及温度采集系统等辅助设备可以实现对其力学性能以传感性能的实时采集和分析。
本发明对于分布式光纤传感技术在实际应用中精度校准以及提高都具有重要的意义,本测试平台所有部件均可自由拆卸与装配,为完成不同测试要求搭建了一个多目标测试平台,给可能的试验探究提供了巨大的二次开发空间,本发明的装置,具有构造轻便、价格低廉、操作方便、受干扰小、测试类多、适应性强、性能稳定以及加卸方便等众多优势。
附图说明
图1为本发明的分布式传感光纤多目标多自由度静动态测试装置的平面示意图;
图2是图1中局部I结构的放大示意图;
图3是图1中局部II结构的放大示意图;
图4是图1中局部III结构的放大示意图;
图5为本发明的分布式传感光纤多目标多自由度静动态测试装置的主视图;
图6为本发明的分布式传感光纤多目标多自由度静动态测试装置1-1剖面图;
图7为本发明的分布式传感光纤多目标多自由度静动态测试装置2-2剖面图;
图8为本发明试验装置中初始端弹性固定装置71剖面图;
图9为本发明试验装置中中间滑轮连动装置一72剖面图;
图10为本发明试验装置中中间滑轮连动装置二73剖面图;
图11为本发明试验装置中末端非刚性固定装置74剖面图;
图12为本发明试验装置中末端非刚性固定装置74的3-3剖面图;
图13为本发明试验装置中特制滑轮装置16剖面图;
图14为本发明试验装置中特制滑轮装置16的4-4剖面图;
图15为本发明试验装置中特殊固定用圆座92剖面图;
图16为基于本发明装置光纤水平拉伸试验对比图。
具体实施方式
下面结合附图对本发明进一步详细说明:
分布式传感光纤多目标多自由度静动态测试装置及方法,它是由光纤多自由度固定系统70、人工加卸载装置81以及油压控制加卸载装置40、待测光纤80、分布式光纤布里渊频移获取系统50、数据处理分析系统60以及其他辅助系统组成。
其中,光纤多自由度固定系统主要包括初始端弹性固定装置71、中间滑轮连动装置一72和中间滑轮连动装置二73以及末端非刚性固定装置74,通过控制多自由度固定系统70中的不同装置实现待测光纤不同方向、不同曲率上的布设;光纤分布式光纤布里渊频移获取系统50主要用来采集光纤处于静态或者动态受力条件下,布里渊频移量值等光纤光学信息;数据处理分析系统60主要是在线处理与分析分布式光纤布里渊频移获取系统以及力传感器、高灵敏度温度计等采集到的数字化信息;其他辅助测试装置主要包括高灵敏度电子温度计91、特殊固定用圆座92、油压加卸载控制手柄93以及减震弹性支架94等配套附属装置。
光纤多自由度固定系统70包括四种不同设计思路和使用方法的光纤多自由度固定装置,其中初始端弹性固定装置71中通过紧固螺杆1贯通弧形前仓2,将初始端弹性固定装置牢固地固定于初始固定端放置台46,光纤通过弧形前仓2中小口径光纤连通通道6以及高弹性内环壁5中的微小口径光纤联通通道7,通过转动连通螺杆4上的调节螺栓8不断对高弹性内环壁5施加轴向的压力,高弹性内环壁5因受到轴向压力不断受迫而发生轴向压缩,但其纵向截面因受到圆L型外环壁3的纵向压力束缚,其将不断地纵向紧固微小口径光纤联通通道7,最终将微小口径光纤联通通道7中的光纤紧紧压制于其中,采用横向受压联动纵向弹性变形的方法将目标光纤以非刚性的方式紧固于拉伸端,可以极为有效地避免光纤在受到刚性夹具夹持时因材料硬度不协调而产生的物理损伤。本发明的初始端弹性固定装置71为针对本试验平台特殊要求而设计,更换方便、操作简单、实用性强,其为光纤性能测试提供了有力的保障。
光纤多自由度固定系统70包括中间滑轮连动装置一72和中间滑轮连动装置二73。中间滑 轮连动装置一72中,通过操纵与刻度圆盘9连接的角度调节圆柄10,进而带动控制转动连杆18,根据不同测试需求来调节可调角度滑轮15,使得光纤在该处的弯曲角度发生变化,固定支点圆盘11起到固定以及支点作用,水平连接滑轮14主要是将从初始端弹性固定装置71中引出的光纤,水平过渡到中间滑轮连动装置一72中,整个装置被封装在弧形操作室13中,其可以自由拆卸,以便于安装光纤以及控制操作,其主要是提供各个部件连接及操作空间,保护各个部件免受外界可能存在的不利环境干扰,整个装置被紧固螺杆12牢固地固定于后操作台20,该处发明的中间滑轮连动装置一72利用杠杆平衡原理,通过固定支点高效精确地实现了对光纤弯曲角度的控制,其可操作性强。通过放置于后操作台上的中间槽内连接滑轮16,将从中间滑轮连动装置一72中引出的待测光纤80引至竖向小口径光纤联通通道17,连接到中间滑轮连动装置二73。中间滑轮连动装置二73主要包括大直径过渡滑轮18以及稍小直径过渡滑轮19,其将待测光纤80简单有效地过渡到后续试验段,该处发明的中间滑轮连动装置二73巧妙利用不等直径的大小圆盘外圆弧相切,将待测光纤80平缓地从竖直位置过渡到水平位置,其不仅可以灵活调节光纤位置,而且可以使得该处光纤弯曲曲率完全符合测试要求;在后操作平台中间上部位置以及中间偏下部位置分别设置有前后贯通的放置槽,以方便放置中间滑轮连动装置一72以及中间滑轮连动装置二73。
光纤多自由度固定系统70还包括末端非刚性固定装置74。该装置中通过转动旋转圆环帽21可以控制旋转圆环22进出,旋转圆环内壁为带螺纹部件,光纤联通通道25为外壁带螺纹薄层光纤通道,该光纤通道靠近光纤一侧有一定厚度的弹性材料内壁47,其与光纤接触,可以将环向荷载有效传递到待测光纤80中,且可以保证光纤不受到刚性量级差距较大的高刚性部件压迫而破坏,当旋紧旋转圆环22时,其靠近弹性材料圆壁24的一端面将挤压弹性材料圆壁24,由于其外缘厚壁圆桶23刚性较大,迫使其向光纤联通通道25方向压缩,外加其内层的弹性材料内壁47具有弹性膨胀与压缩特性,将光纤以非刚性的方式固定于其中。本发明的非刚性固定装置74,合理利用了力传递以及平衡原理,巧妙结合弹性材料体特性,通过螺纹间转动连动控制荷载,较好地实现了光纤非刚性的连动固定,其操作简单,为实现光纤的有效操作控制提供了另一新途径。
本测试平台在需要精确计算温度效应影响或者环境温度变化较大等情况下的温度补偿计算时,可以将普通连接滑轮16更换为内置弹簧的特制滑轮。本特制滑轮装置主要通过螺纹杆柄26转动一端深入后操作台20的螺纹杆27,其将连带高弹性弹簧30压缩,带动对向的弧形槽29对接,其内敷设的待测光纤80将随之被紧密压实,此处发明的装置利用弹簧工作原理,结 合螺纹加卸载思路,根据力平衡原理,通过外层设置有一定厚度弹性材料的对向移动的弧形槽29将光纤固定于其中,其仍为弹性固定装置,但其为该处特殊竖向固定位置而独特设计,可以实现与光纤柔性衔接,协同变形,其思路新颖,构造简洁,其中弧形槽29分别开槽于上长条形钢块28和下长条形钢块31一端,为了备用在其对应的另一端分别开槽。将待测光纤80固定之后,从该处一直向下延伸到末端非刚性固定装置74处的待测光纤80为固定且自由状态,其不受加载装置的影响,其为只有温度变化所引起的布里渊频移段,通过分布式光纤布里渊频移获取系统50将本处作为温度补偿段分析计算。
本测试平台光纤加卸载系统。为了实现不同测试需求,设计了两套光纤加卸载装置。一套为人工加卸载装置81,其主要是通过人工控制手柄33来转动水平螺纹横梁32,通过将螺纹转动带动移动平台36水平向受力移动,进而拉动初始端弹性固定装置71水平向前移,从而可以实现对光纤的人工加卸载,通过螺纹圆盘35以及固定圆盘34,将其人工控制手柄33与前操作平台37连接固定,在附图1中人工控制手柄33左右端分别有转动手柄和微调控制手柄,根据不同需要可以对其进行相应操作,带刻度水平横梁38贯穿移动平台36,其主要用来实时标注显示刻度,在移动平台36与前操作平台37之间有双向力传感器39,其主要用来获取传感光纤受到加卸载装置作用下动静态加荷和卸载值;第二套加载装置为油压控制加卸载装置,其主要有伸缩圆柱40、油压加卸载控制手柄93以及油压控制系统等多部件组成。
本测试装置中另安装一套温度补偿计算用高灵敏度电子温度计91,其可以自动读取此刻温度以及显示当前日期以及时间,其为判断外界环境温度影响效应、进行温度补偿计算和记录完整测试过程的有效补充。在使用过程中可能存在过大的拉伸荷载,使得该设备出现位置移动或者是在实际工程中出现非水平面内使用的特殊情况,为此特殊设计了其他辅助系统中的特殊固定用圆座92:固定用圆套管42将特殊固定用圆座92连接到底端水平固定横柱44,并且通过连接钢板41将固定用竖圆座43连接,在需要固定情况下通过固定用竖圆座43以及螺栓杆将其固定于某需要固定位置处。在整个测试平台底端安装有减震硬弹性支架94,其主要由内置硬弹性材料构成,可以用来防止外力干扰以及试验和运输过程存在的震动等影响,以最大程度地降低外界环境的干扰,提高光纤测试平台测试结果的准确性和稳定性。
对于本测试装置中的光纤布里渊频移获取系统50而言,对于不同的分析仪其空间分辨率也有较大差别,待测光纤80从顶端一直沿着测试装置延伸到试验平台下端,该独特的光纤走向,增加了待测光纤的长度,本做法目的之一即为了使得本装置能与不同空间分辨率的光纤分析仪更好结合使用。
待测光纤80在受到光纤加卸载系统加载时其布里渊频移的变化量值(ΔvB)拉伸与温度T、应变ε的变化有关,且有较好的线性关系,温度T所引起的布里渊频移vB(T)用公式表示为vB(T)=vB(T0)+C′TΔT,即ΔvB(T)=vB(T)-vB(T0)=ΔT×C′T,其中,vB(T0)为初始温度T0下的布里渊频移量值,ΔvB(T)为待测光纤被拉伸段的温度变化所引起的布里渊频移变化量,C′T为待测光纤被拉伸段的温度系数,ΔT即为温度的变化量值,可以通过前述温度补偿用光纤或者高灵敏度电子温度计91获取结果;通过上述公式可以计算出此时被拉伸段待测光纤因外界温度引起的形变量值,进而根据ΔvB(ε,T)拉伸=C′εΔε+C′TΔT可以得出ΔvB(ε,T)拉伸=ΔvB(ε)拉伸+Δv8(T)拉伸,即可得出ΔvB(ε)拉伸=ΔvB(ε,T)拉伸-ΔvB(T)拉伸,最终计算出利用本测试平台所监测的形变量值为
Figure PCTCN2014095071-appb-000001
其中ΔvB(ε,T)拉伸为应变与温度耦合引起的布里渊频移的变化量值,Δε为应变的变化,ΔvB(ε)拉伸、ΔvB(T)拉伸分别为拉伸段光纤应变以及温度所引起的布里渊频移变化量值,C′ε为被拉伸段待测光纤的应变系数,Δε拉伸为被拉伸段待测光纤的应力引起应变变化量值。
数据处理分析系统60,其主要是将分析仪50、双向力传感器39、高灵敏度电子温度计91等获取的数字化测值信息进行存取、处理、分析,并且绘制信息时程变化曲线。
本平台可以通过光纤加卸载系统对光纤施加动静态荷载,配套的分布式光纤布里渊频移获取系统50和数据处理分析系统60可以实现实时采集以及分析光纤信息,可以完成光纤不同曲率下的性能测试,以及对于其极限拉伸荷载及综合弹性模量等参数可以实现直接或间接监测。比如,记录的光纤初始标距长度为l0,当施加一定荷载后采集到的荷载值为F0,此时的光纤长度为l00,则此刻应变值为
Figure PCTCN2014095071-appb-000002
其对应应力值为
Figure PCTCN2014095071-appb-000003
s0为对应的光纤横截面积,则可以通过本装置计算出对应的光纤综合弹性模量值为
Figure PCTCN2014095071-appb-000004
本平台还可以进行高精度光纤力学性能标定试验,通过上述操作将初始时待测光纤有效拉伸长度记为l1,在受到加载装置作用后光纤有效拉伸长度记为l2,则形变控制以及监测设 备所获取的光纤应变值为
Figure PCTCN2014095071-appb-000005
使用高灵敏度电子温度计91所监测到的温度变化值为ΔT,第m次加载相对于初始的应变量值为Δεm,对应的温度变化量值为ΔTm,第n次加载对应的应变量变化值为Δεn(m≠n),对应的温度变化量值为ΔTB,则根据光纤布里渊频移计算原理可以得出下列计算公式
Figure PCTCN2014095071-appb-000006
利用上面公式可以得到:
Figure PCTCN2014095071-appb-000007
进而可以得到:
Figure PCTCN2014095071-appb-000008
其中Cε为应变系数,CT为温度系数,(ΔVB)i为第i次加载下的布里渊频移变化量值。通过利用本试验平台,根据上述公式的推导过程,借助本发明装置可以对待测光纤80的温度系数以及应变系数进行高精度标定,本发明装置以及方法也可以面向光纤应用于实际工程前的测试工作;在要求更精确标定结果时,可以多次计算,根据其计算结果服从正态分布原则最终获得更加精确的校准结果。
实施例1
本实施例将以SMF-28e普通单模光纤作为待测光纤80为例,说明本发明中主要装置的制作和装配步骤:
第一步,采用长180mm、宽30mm、高120mm的钢板制作成前操作平台37,将移动平台36制作成长180mm、宽60mm、高60mm的钢板,使用长180mm、宽50mm、高140mm的钢板制作成后操作台20;在前操作平台37、移动平台36和后操作台20上端两个角部区域各加工一个M24标准螺栓孔,在前操作平台37和后操作台20中下部各加工一个M27标准螺栓孔,在前操作平台37两个螺栓孔的中间偏下部位加工一个30mm的圆孔,在后操作台20、移动平台36顶部对应位置加工一个M20螺栓孔,用于放置不同类型的光纤弹性固定装置。在后操作台20中间靠上部位开设贯通前后的槽孔,主要用于放置滑轮装置16,并且在槽孔底端贴近外边面开通贯通上下的小口径光纤联通通道,在后操作台20中间下端位置开设贯通前后的槽孔,用于放置中间滑轮连动装置二73。
第二步,底端水平固定横柱44长为620mm、直径为27mm、两端口带螺纹,首先将尺寸略大于底端水平固定横柱44的特殊固定用圆座92套置于底端水平固定横柱44,用底端水平 固定横柱44将前操作平台37和后操作台20连接,通过长度为620mm、直径为24mm两端口带螺纹的带刻度水平横梁38将前操作平台37、移动平台36和后操作台20连接,使用直径为50mm,厚度为30mm螺纹圆盘35外接直径18mm的固定圆盘34将其人工控制手柄33通过前操作平台37上的圆孔与长度为500mm、直径为30mm的转动水平螺纹横梁32连接,最后使用相应规格的螺栓将上述部件紧密固定。
第三步,考虑到各个光纤弹性固定装置及其他精密部件复杂性和高制作工艺,关于其详细的制作步骤以及工艺本处不再赘述,将事前制作好的各个光纤弹性固定装置按照规定设计安装到各个部位的指定位置。
第四步,参照说明书中的内容,将其他辅助系统中每一个部件按照具体测试要求进行选择以及安装。最后将光纤布里渊频移获取系统50和数据处理分析系统60与前述装配好的测试系统连接,以组成一套集加卸载系统、测力系统、传感系统以及数据处理分析系统为一体的分布式传感光纤性能多目标多自由度静动态测试集成平台。
实施例2
为了方便阐述本平台最基本的操作步骤,仅以测试光纤水平轴向拉伸下分布式光纤变形性能测试为例做具体阐述。
1.试验材料与试件
使用SMF-28e普通单模光纤,由于其非裸光纤,外表有一层橡胶保护层,将紧套光纤依次穿过初始端弹性固定装置71、中间滑轮连动装置一72和中间滑轮连动装置二73以及末端非刚性固定装置74,并且使用NBX-6050A型预泵浦布里渊光时域分析技术的分布式光纤布里渊频移获取系统、DVP-730型光纤熔接机、热缩管数个以及DVP-105型光纤切割刀、Panasonic-CF-FGCYCDP型数据处理分析系统等配套设备。
2.测试步骤
步骤1:首先按照一定曲率转动角度调节圆柄10,并且将已经贯穿有待测光纤的初始端弹性固定装置71以及末端非刚性固定装置74通过调节相应的部件拧紧装置。
步骤2:将待测光纤两端分别连接NBX-6050A型预泵浦布里渊光时域分析技术的分布式光纤监测系统的端口,固定双向力传感器39于对应位置,打开高灵敏度电子温度计,将Panasonic-CF-FGCYCDP型数据处理分析系统连接各个监测部件,完成加载前的准备工作。
步骤3:记录开始时间及开始温度,选择加载类型,本次试验为了方便阐述,选择手动加载方式进行,标定加载前的初始标距,并记录其数值,然后转动角度调节圆柄10,通过双向 力传感器39所监测的结果来控制加载级数,通过转动角度调节圆柄10上的手握式转柄进行微调加载,以实现实时动态精确控制,通过使用NBX-6050A不断采集布里渊频移数值以及利用Panasonic-CF-FGCYCDP型数据处理分析系统计算应变结果。
步骤4:根据本试验的目的每转动角度调节圆柄10一圈即刻记录此时温度计的数值,以及使用NBX-6050A进行光纤应变监测。
3.试验结果分析
对预先设定好的八次加载的应变结果进行分析,首先通过温度计所记录的温度变化情况,发现温度一直保持在20°左右,通过公式(ΔvB)T=CvTΔT可以得出试验温度变化ΔT≈0,其所引起的布里渊频移可以不用考虑,结合整个测试时间历时较短,在室内试验时温度基本上保持恒定,所以从记录的温度上看,可以忽略因为温度变化所引起的应变。
通过公式ΔvB(ε,T)=CΔε+CvTΔT以及ΔvB(ε)=ΔvB(ε,T)-Δv8(T)计算得出待测光纤80的拉伸应变值,然后采用基准分析方法,将每次加载步的应变值均减去初始结果,扣除初始应力影响,只考虑拉伸加载过程中的变形,对比分析结果见图13,在图中列出了其中4次加载结果的对比值,扣除因为光纤制作过程中本身内部材料在拉伸时存在的相对位移等不可改变的原因外,从这四次结果值上看,在包含夹具长度在内的部分拉伸段1.8m~2.25m处,随着加载步的不断增加,光纤整体上其拉伸应变值在不断增加,且在中间荷载步上变化最大,在加载初始和最终阶段增加较小。
通过试验验证,以及进行结果对比分析,进而验证了本发明装置及测试方法的合理性及可行性。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (10)

  1. 分布式传感光纤多目标多自由度静动态测试装置,其特征在于:包括光纤多自由度固定系统(70)、人工加卸载装置(81)、油压控制加卸载装(40)、待测光纤(80)、分布式光纤布里渊频移获取系统(50)、数据处理分析系统(60);光纤多自由度固定系统(70)依次与人工加卸载装置(81)和油压控制加卸载装(40)相连接,待测光纤(80)与光纤多自由度固定系统(70)以及分布式光纤布里渊频移获取系统(50)相连接;通过控制多自由度固定系统(70)中的装置实现对光纤性能的测试;分布式光纤布里渊频移获取系统(50)用于采集光纤处于静态或动态受力条件下布里渊频移量值等光纤光学信息;数据处理分析系统(60)用于在线处理与分析分布式光纤布里渊频移获取系统以及力传感器、高灵敏度温度计等采集到的数字化信息。
  2. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:所述初始端弹性固定装置(71)通过紧固螺杆(1)贯通弧形前仓(2)将初始端弹性固定装置固定于初始固定端放置台(46)上,光纤通过弧形前仓(2)中小口径光纤连通通道(6)与高弹性内环壁(5)中的微小口径光纤联通通道(7),通过转动连通螺杆(4)上的调节螺栓(8)对高弹性内环壁(5)施加轴向的压力,通过圆L型外环壁(3)对高弹性内环壁(5)施加横向压力,通过高弹性内环壁(5)将环向约束传递到微小口径光纤联通通道(7)。
  3. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:光纤多自由度固定系统(70)还包括中间滑轮连动装置一(72)和中间滑轮连动装置二(73),后操作台(20)中间上部与中间偏下部分别设置有前后贯通的放置槽、用于放置中间滑轮连动装置一(72)和中间滑轮连动装置二(73);中间滑轮连动装置一(72)中通过操纵与刻度圆盘(9)连接的角度调节圆柄(10)进而带动控制转动连杆(18);以固定支点圆盘(11)为固定支点,水平连接滑轮(14)将从初始端弹性固定装置(71)中引出光纤且水平地过渡到中间滑轮连动装置一(72)中;上述装置被封装在弧形操作室(13)中,且被紧固螺杆(12)固定于后操作台(20)内;通过放置于后操作台(20)上的中间槽内连接滑轮(16),将中间滑轮连动装置一(72)中引出的待测光纤(80)引至竖向小口径光纤联通通道(17)内、并且连接到中间滑轮连动装置二(73)上;中间滑轮连动装置二(73)包括大直径过渡滑轮(18)以及小直径过渡滑轮(19),大直径过渡滑轮(18)以及小直径过渡滑轮(19)用于将待测光纤(80)过渡到后续测试段。
  4. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:光纤多自由度固定系统(70)还包括末端非刚性固定装置(74);末端非刚性固定装置(74) 中通过转动旋转圆环帽(21)控制旋转圆环(22)进出;旋转圆环(22)内壁内设有螺件,待测光纤(80)通过外壁设有螺纹的光纤联通通道(25),光纤联通通道(25)靠近光纤一侧设有弹性材料内壁(47)、且与待测光纤(80)接触并将环向荷载传递到待测光纤(80)中,弹性材料圆壁(24)受到旋转圆环(22)的水平向压力,外缘厚壁圆桶(23)将环向约束施加到弹性材料圆壁(24)上,环向荷载传递到光纤联通通道(25)中的弹性材料内壁(47)中。
  5. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:连接滑轮(16)可更换为内置弹簧的特制滑轮,螺纹杆柄(26)与螺纹杆(27)相连,螺纹杆(27)的一端深入后操作台(20),弧形槽(29)分别开槽于上长条形钢块(28)和下长条形钢块(31)一端,在其对应的另一端分别开槽,高弹性弹簧(30)对相向的弧形槽(29)施加竖向荷载、环向约束待测光纤(80)。
  6. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:还包括对于人工加卸载装置(81)与油压控制加卸载装置;人工加卸载装置(81)上的螺纹圆盘(35)以及固定圆盘(34)将人工控制手柄(33)与前操作平台(37)连接固定,带刻度水平横梁(38)贯穿移动平台(36),带刻度水平横梁(38)上标注有刻度,移动平台(36)与前操作平台(37)之间有双向力传感器(39),人工控制手柄(33)与转动水平螺纹横梁(32)连接,人工控制手柄(33)两端分别有转动手柄和微调控制手柄,移动平台(36)受到水平螺纹横梁(32)的水平转动力,将水平荷载传递到初始端弹性固定装置(71)上;油压控制加卸载装置上的伸缩圆柱(40)与油压加卸载控制手柄(93)相连。
  7. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:还包括固定用圆座(92),固定用圆套管(42)将固定用圆座(92)连接到底端水平固定横柱(44),并且通过连接钢板(41)将固定用竖圆座(43)连接。
  8. 根据权利要求1所述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:待测光纤(80)从顶端一直沿着测试装置延伸到测试平台下端与光纤布里渊频移获取系统(50)相连接。
  9. 根据权利要求1所叙述的分布式传感光纤多目标多自由度静动态测试装置,其特征在于:通过光纤加卸载系统对光纤施加动静态荷载,配套的分布式光纤布里渊频移获取系统(50)和数据处理分析系统(60)实现实时采集以及分析光纤信息,完成光纤不同曲率下的性能测试以及对其极限拉伸荷载及综合弹性模量等参数实现直接或间接监测。
  10. 利用上述权利要求所述的分布式传感光纤多目标多自由度静动态测试装置,其特征 在于,测试方法步骤如下:
    待测光纤(80)与初始端弹性固定装置(71)连接,经过中间滑轮连动装置一(72)以及中间滑轮连动装置二(73),后经末端非刚性固定装置(74)被水平引出到光纤布里渊频移获取系统(50);
    步骤1:装配各部件并进行运行调试,根据试验目的尤其装配特制滑轮装置(16)以及调整转动角度调节圆柄(10)规定试验曲率,布设待测光纤(80);
    步骤2:记录初始时间、温度以及待测光纤初始标距,确定加载类型和动静态监测方式,通过双向力传感器39所监测的结果来控制加载级数,后对试件进行受力试验;
    步骤3:基于试验目的,监测、采集各个部位的长度、角度和荷载等监测数据;
    步骤4:基于待测光纤(80)的上述力学试验,利用采集到的监测数据进行时时静动态分析。
PCT/CN2014/095071 2014-07-22 2014-12-26 分布式传感光纤多目标多自由度静动态测试装置及方法 WO2016011775A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/888,708 US9581522B2 (en) 2014-07-22 2014-12-26 Distributed sensing optical fiber multi-objective multi-degree-of-freedom static and dynamic test device and method
CA2910468A CA2910468C (en) 2014-07-22 2014-12-26 Distributed sensing optical fiber multi-objective multi-degree-of-freedom static and dynamic test device and method
EP14886668.4A EP3015840A4 (en) 2014-07-22 2014-12-26 Multi-target multi-degree-of-freedom static and dynamic test apparatus and method for distributed sensing optical fiber
JP2017524076A JP6393421B2 (ja) 2014-07-22 2014-12-26 分散型センシング光ファイバの多目標多自由度の静的および動的試験装置及び方法
AU2014388970A AU2014388970B2 (en) 2014-07-22 2014-12-26 Distributed sensing optical fiber multi-objective multi-degree-of-freedom static and dynamic test device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410351312.7 2014-07-22
CN201410351312.7A CN104142224B (zh) 2014-07-22 2014-07-22 分布式传感光纤多目标多自由度静动态测试装置及方法

Publications (1)

Publication Number Publication Date
WO2016011775A1 true WO2016011775A1 (zh) 2016-01-28

Family

ID=51851460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095071 WO2016011775A1 (zh) 2014-07-22 2014-12-26 分布式传感光纤多目标多自由度静动态测试装置及方法

Country Status (7)

Country Link
US (1) US9581522B2 (zh)
EP (1) EP3015840A4 (zh)
JP (1) JP6393421B2 (zh)
CN (1) CN104142224B (zh)
AU (1) AU2014388970B2 (zh)
CA (1) CA2910468C (zh)
WO (1) WO2016011775A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990724A (zh) * 2019-02-27 2019-07-09 西安科技大学 基于分布式光纤传感器的预应力加载实验装置、系统及方法
CN111649708A (zh) * 2020-06-28 2020-09-11 河南大学 一种山地坡长测量仪及测量方法
CN112649183A (zh) * 2020-11-20 2021-04-13 长春英利汽车工业股份有限公司 一种试验机用龙门式六自由度承载装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142224B (zh) 2014-07-22 2015-05-20 河海大学 分布式传感光纤多目标多自由度静动态测试装置及方法
FR3047308B1 (fr) 2016-02-02 2018-02-16 Saipem S.A. Procede de surveillance du comportement thermomecanique d'une conduite sous-marine de transport de fluides sous pression
TWI634316B (zh) * 2017-09-13 2018-09-01 財團法人國家實驗研究院 光纖感測方法
CN108829905B (zh) * 2018-04-03 2023-04-14 桂林电子科技大学 一种基于布尔代数和自由度分析的基准体系合理性检验方法
CN109579722A (zh) * 2018-12-07 2019-04-05 东莞理工学院 一种长量程分布式光纤的定位标定器
CN109613669B (zh) * 2018-12-07 2020-10-16 东莞理工学院 一种结构内埋的分布式光纤加固装置及其使用方法
JP7143201B2 (ja) * 2018-12-14 2022-09-28 株式会社アドバンテスト センサ試験装置
CN110186386B (zh) * 2019-07-09 2024-01-26 中交第一公路勘察设计研究院有限公司 基于分布式光纤小应变的大变形测试试验装置及方法
CN110686613B (zh) * 2019-11-14 2024-05-17 大连理工大学 一种基于分布式光纤动静应变测试的路基变形监测系统
CN111024222A (zh) * 2020-01-06 2020-04-17 上海仪电科学仪器股份有限公司 多通道光参数测量装置
CN113804229A (zh) * 2020-06-17 2021-12-17 京元电子股份有限公司 具有限制过转机构的动态测试模块
CN113375631B (zh) * 2021-06-08 2023-04-25 长安大学 一种陀螺光纤环加速度场下的最大形变量测量装置及方法
CN113551881B (zh) * 2021-07-16 2023-02-10 中国科学院长春光学精密机械与物理研究所 高精度六自由度光学组件性能测试方法
CN113534381B (zh) * 2021-07-22 2023-07-18 华北电力大学(保定) 一种变压器内置分布式光纤出线布置方法
CN114111614A (zh) * 2021-11-19 2022-03-01 浙江省水利水电勘测设计院 一种永久钢模板施工期变形连续监测装置及方法
CN116773040A (zh) * 2021-12-28 2023-09-19 西安和其光电科技股份有限公司 一种获取高精度、易更换的变压器荧光测温设备的方法
CN114322818B (zh) * 2022-03-09 2022-06-14 北京航空航天大学 航天环境模拟器热实验用热沉光纤光栅标定装置及方法
CN115950464B (zh) * 2023-01-05 2023-08-18 水利部交通运输部国家能源局南京水利科学研究院 贴壁式涉水结构体传感光纤区域感测装置及感测方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325023A (ja) * 1994-04-07 1995-12-12 Sumitomo Electric Ind Ltd 光ファイバ被覆の物性評価方法及び被覆光ファイバ
CN1115380A (zh) * 1994-07-21 1996-01-24 敦智科技股份有限公司 光纤自动测试及警报系统
CN1731119A (zh) * 2005-08-09 2006-02-08 中国电子科技集团公司第二十三研究所 光纤自动监测方法
CN101201292A (zh) * 2006-12-13 2008-06-18 横河电机株式会社 光纤特性测定装置
CN101241040A (zh) * 2007-04-29 2008-08-13 长飞光纤光缆有限公司 光纤的测试分析和筛选分切的自动处理方法及设备
CN202693267U (zh) * 2012-04-19 2013-01-23 山西省电力公司大同供电分公司 一种光纤测试仪器
CN202814682U (zh) * 2012-08-28 2013-03-20 桂林铭瑶电子科技有限公司 模块化多功能光纤测试仪
CN103048070A (zh) * 2013-01-17 2013-04-17 广东电网公司电力调度控制中心 分布式光纤系统的应力监测方法
CN103175558A (zh) * 2013-01-17 2013-06-26 广东电网公司电力调度控制中心 分布式光纤传感系统的参数测量装置
CN103328933A (zh) * 2011-01-31 2013-09-25 国立大学法人东京大学 光纤特性测定装置及方法
CN104142224A (zh) * 2014-07-22 2014-11-12 河海大学 分布式传感光纤多目标多自由度静动态测试装置及方法
CN204142466U (zh) * 2014-07-22 2015-02-04 河海大学 分布式传感光纤多目标多自由度静动态测试装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611378A (en) * 1982-12-20 1986-09-16 Grumman Aerospace Corporation Method of making a fiber optic strain sensor
DE4314189C1 (de) * 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Vorrichtung zur Untersuchung von Lichtleitfasern aus Glas mittels Heterodyn-Brillouin-Spektroskopie
US6532839B1 (en) * 1996-03-29 2003-03-18 Sensor Dynamics Ltd. Apparatus for the remote measurement of physical parameters
JPH11174275A (ja) * 1997-12-15 1999-07-02 Shimizu Tadanori 光伝送用ファイバーの連結装置
CN1390299A (zh) * 1999-11-17 2003-01-08 康宁股份有限公司 光纤的自动测试和测量的方法和设备
EP1189039A1 (en) * 2000-09-18 2002-03-20 NTT Advanced Technology Corporation Fiber-optic liquid level measurement device
JP2002277304A (ja) * 2001-03-15 2002-09-25 Ntt Advanced Technology Corp 液面計
TW500912B (en) * 2001-11-30 2002-09-01 Nat Chao Tung University Libra Method to sense the stress and temperature distribution of fiber simultaneously
FR2867561B1 (fr) * 2004-03-11 2007-02-02 Commissariat Energie Atomique Systeme de mesure distribuee des courbures d'une structure
BRPI0513013B1 (pt) * 2004-07-07 2016-11-01 Shell Int Research método para inserir um cabo de detecção de fibra óptica em um poço subaquático
JP4721435B2 (ja) * 2006-04-06 2011-07-13 本田技研工業株式会社 接着部の剥離検査方法
US20100033711A1 (en) * 2006-12-28 2010-02-11 Sumitomo Electric Industries, Ltd. Method of measuring physical quantity of object to be measured, and method of controlling the same
US7746454B2 (en) * 2008-03-27 2010-06-29 Corning Incorporated Optical fiber continuous measurement system
WO2010015793A1 (en) * 2008-08-07 2010-02-11 Sensornet Limited Fiber splice housing
CN101344452B (zh) * 2008-08-22 2011-07-20 北京交通大学 利用压电陶瓷实现偏振敏感光时域反射技术的方法
US9200508B2 (en) * 2011-01-06 2015-12-01 Baker Hughes Incorporated Method and apparatus for monitoring vibration using fiber optic sensors
US8636063B2 (en) * 2011-02-16 2014-01-28 Halliburton Energy Services, Inc. Cement slurry monitoring
CA2829092C (en) * 2011-03-09 2019-02-26 Shell Internationale Research Maatschappij B.V. Integrated fiber optic monitoring system for a wellsite and method of using same
CN102252831A (zh) * 2011-06-22 2011-11-23 北京交通大学 光纤中双折射分布的三点测量法
CN102322806B (zh) * 2011-08-01 2013-08-07 杭州欧忆光电科技有限公司 一种混沌激光相关布里渊光时域分析器
WO2014024233A1 (ja) * 2012-08-10 2014-02-13 公益財団法人 地球環境産業技術研究機構 物体の体積変化計測方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325023A (ja) * 1994-04-07 1995-12-12 Sumitomo Electric Ind Ltd 光ファイバ被覆の物性評価方法及び被覆光ファイバ
CN1115380A (zh) * 1994-07-21 1996-01-24 敦智科技股份有限公司 光纤自动测试及警报系统
CN1731119A (zh) * 2005-08-09 2006-02-08 中国电子科技集团公司第二十三研究所 光纤自动监测方法
CN101201292A (zh) * 2006-12-13 2008-06-18 横河电机株式会社 光纤特性测定装置
CN101241040A (zh) * 2007-04-29 2008-08-13 长飞光纤光缆有限公司 光纤的测试分析和筛选分切的自动处理方法及设备
CN103328933A (zh) * 2011-01-31 2013-09-25 国立大学法人东京大学 光纤特性测定装置及方法
CN202693267U (zh) * 2012-04-19 2013-01-23 山西省电力公司大同供电分公司 一种光纤测试仪器
CN202814682U (zh) * 2012-08-28 2013-03-20 桂林铭瑶电子科技有限公司 模块化多功能光纤测试仪
CN103048070A (zh) * 2013-01-17 2013-04-17 广东电网公司电力调度控制中心 分布式光纤系统的应力监测方法
CN103175558A (zh) * 2013-01-17 2013-06-26 广东电网公司电力调度控制中心 分布式光纤传感系统的参数测量装置
CN104142224A (zh) * 2014-07-22 2014-11-12 河海大学 分布式传感光纤多目标多自由度静动态测试装置及方法
CN204142466U (zh) * 2014-07-22 2015-02-04 河海大学 分布式传感光纤多目标多自由度静动态测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3015840A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990724A (zh) * 2019-02-27 2019-07-09 西安科技大学 基于分布式光纤传感器的预应力加载实验装置、系统及方法
CN111649708A (zh) * 2020-06-28 2020-09-11 河南大学 一种山地坡长测量仪及测量方法
CN112649183A (zh) * 2020-11-20 2021-04-13 长春英利汽车工业股份有限公司 一种试验机用龙门式六自由度承载装置

Also Published As

Publication number Publication date
AU2014388970B2 (en) 2016-09-29
US20160161363A1 (en) 2016-06-09
AU2014388970A1 (en) 2016-02-11
JP2017528732A (ja) 2017-09-28
US9581522B2 (en) 2017-02-28
CN104142224A (zh) 2014-11-12
EP3015840A4 (en) 2017-04-19
CA2910468A1 (en) 2016-01-22
CA2910468C (en) 2019-02-12
EP3015840A1 (en) 2016-05-04
JP6393421B2 (ja) 2018-09-19
CN104142224B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016011775A1 (zh) 分布式传感光纤多目标多自由度静动态测试装置及方法
RU2621935C2 (ru) Индентационное устройство, автоматизированная измерительная система и способ определения механических свойств материалов индентационным методом
CN206920243U (zh) 一种单轴压缩测试装置
CN103292969B (zh) 手动弹簧拉压试验机
WO2016173365A1 (zh) 一种手持式常刚度环剪仪及其使用方法
CN113074760B (zh) 一种微应变光纤光栅传感器、应力测量系统及其工作方法
US9228928B2 (en) Continuous or instrumented indentation device
CN109470558A (zh) 一种用于高温高压下的位移传感器标定装置
CN104344987B (zh) 一种拉弯扭材料加载试验机
IT202000011857A1 (it) Apparecchiatura per l’azzeramento, la taratura e la misurazione di strumenti di misura
CN203287173U (zh) 手动弹簧拉压试验机
CN207423680U (zh) 拉压力加载装置
CN103175497A (zh) 小孔测量机构
RU176860U1 (ru) Установка для испытания на кручение
CN103323535B (zh) 孔腔近表面残余应力超声检测装置
CN209166771U (zh) 一种弹簧测试装置
CN108436819A (zh) 一种大载荷螺栓紧固机具校准装置及其校准方法
CN211477502U (zh) 一种用于压力表校验的适配组件
CN109269446B (zh) 一种全自动止推轴盖止推面小圆角测量工具
KR100729029B1 (ko) 고온 고압 환경 피로 시험기
CN210347323U (zh) 一种胶管线抗拉强度检测装置
CN1255195A (zh) 无损伤测定物质弹性的方法及装置
CN208751518U (zh) 一种螺栓伸长量检测装置
CN101294790B (zh) 浮动式校检平台
CN211042546U (zh) 一种压力仪表检测用的夹持装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014886668

Country of ref document: EP

Ref document number: 2014388970

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 14888708

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017524076

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2910468

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE