WO2016010350A1 - Hollow heatsink with heat-radiating fins, and lighting device comprising same - Google Patents

Hollow heatsink with heat-radiating fins, and lighting device comprising same Download PDF

Info

Publication number
WO2016010350A1
WO2016010350A1 PCT/KR2015/007317 KR2015007317W WO2016010350A1 WO 2016010350 A1 WO2016010350 A1 WO 2016010350A1 KR 2015007317 W KR2015007317 W KR 2015007317W WO 2016010350 A1 WO2016010350 A1 WO 2016010350A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat sink
heat
hub
disposed
Prior art date
Application number
PCT/KR2015/007317
Other languages
French (fr)
Korean (ko)
Inventor
배영수
Original Assignee
주식회사 휴닉스
배영수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴닉스, 배영수 filed Critical 주식회사 휴닉스
Publication of WO2016010350A1 publication Critical patent/WO2016010350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades

Definitions

  • the present invention relates to a heat sink and a lighting device, and more particularly, to a heat sink and a lighting device having a heat dissipation structure that is formed to be well ventilated, air convection and air through the heat dissipation is innovatively improved. .
  • LEDs (or OLEDs) used for lighting have recently been spotlighted as light sources of high efficiency lighting because they have higher energy efficiency than fluorescent lamps, sodium lamps, mercury lamps, and incandescent lamps.
  • the LED (or OLED) is weak to heat, and in order to secure the lifetime and efficiency of the LED (or OLED), it is necessary to dissipate heat generated from the LED (or OLED). Therefore, the heat dissipation function has been regarded as an important function among the attributes that LED (or OLED) lighting equipment should have. If the heat dissipation function is insufficient, there is a problem that the life of the LED (or OLED) lighting device is also shortened rapidly.
  • LED (or OLED) lighting equipment Due to the limitation of the heat sink required to improve the heat dissipation performance, there is a limitation in the spread of LED (or OLED) lighting equipment. This problem is particularly aggravated in the case of LED (or OLED) lighting that generates a lot of heat, such as high power LED (or OLED) lighting.
  • the object of the present invention is formed to be well ventilated, air convection and air through the heat dissipation function is innovatively improved, the product size is small and light, the productivity is improved to improve the cost structure, the heat dissipation wing hollow type It is to provide a heat sink and a lighting device using the heat dissipation blade hollow heat sink.
  • the present invention a heat sink hub; A plurality of heat dissipation wings, one end of which is disposed on an outer circumference of the heat sink hub; A heat dissipation wing opening 529 formed between the heat dissipation wings; It provides a heat-dissipating blade hollow heat sink having a; air through the hollow (A5) is formed in the center of the heat-dissipating blade to make air ventilation and air convection.
  • the heat sink hub may be curved or flat.
  • the heat sink hub may have a heat sink hub through-hole so as to maximize air flow and heat dissipation.
  • the heat dissipation wing may be disposed at least two from the outer circumference of the heat sink hub, and the heat dissipation wing opening may be disposed between the heat dissipation wing.
  • one end of the heat dissipation blade may be radially disposed from the heat sink hub.
  • At least a part of the heat dissipation blade may be arranged in a curved or square shape from the circumference of the heat sink hub.
  • the heat dissipation wing includes: a heat dissipation wing body in which a light source module is disposed on an upper surface of the heat dissipation wing, and a length at which the heat dissipation wing is disposed from the heat sink hub to an outer end of the heat dissipation wing body. It may include a heat dissipation wing side line portion protruding along the direction to form a space in which the light source module is accommodated disposed in the heat dissipation wing body.
  • a heat dissipation wing light source module clip part may be disposed at at least a portion of an outer end of the heat dissipation wing body to prevent the light source module from being separated.
  • the other end of the heat dissipation blade which is connected to the outer circumference of the heat sink hub is disposed in a circumferential direction on a plane substantially perpendicular to the heat dissipation wing, and is adjacent to the heat dissipation wing. It may be provided with a heat dissipation wing connecting portion connecting the other end.
  • a heat dissipation fin may be further provided on the inner side of the heat dissipation blade toward the air through hollow.
  • a lighting device having a heat sink including the heat dissipation blade hollow heat sink.
  • the heat sink is a fixed position and a housing housing the power module; And a light source module disposed in the heat sink and configured to emit light to the outside according to an electrical signal from the power module.
  • the heat sink hub may be provided with a hub line through hole for enabling the passage of a wiring line for electrical connection between the light source module and the power module.
  • the light source of the light source module may be an LED or an OLED.
  • the light source module may be disposed on the heat dissipation wing body of the heat sink.
  • the light source module may be disposed in the heat sink hub of the heat sink for more uniform illuminance spread.
  • an optical adjustment unit may be provided to surround at least a portion of the outside of the heat dissipation wing hollow heat sink and to adjust an external emission of light output from the light source module.
  • the optical adjusting unit includes: an optical adjusting hub disposed at a corresponding position of the heat sink hub, and one end of which is connected to an outer circumference of the optical adjusting hub, and is connected to the heat dissipation wing outwardly from the optical adjusting hub. It may also include an optically adjusted heat dissipation wing disposed correspondingly.
  • the other end of the optical adjustment heat dissipation blade may be provided with an optical adjustment heat dissipation wing clip portion fastened to the housing.
  • the optical adjusting unit may be disposed to surround at least a portion of the heat dissipation blade hollow heat sink.
  • the heat sink may further include a plate heat sink disposed between the heat dissipation blade hollow heat sink and the housing and disposed perpendicular to the arrangement length direction of the housing.
  • a thermally conductive adhesive may be disposed between at least a portion of the heat sink and the light source module.
  • the thermally conductive adhesive may include one or more of a thermally conductive adhesive bond, a thermally conductive foam tape, a thermally conductive foam pad, and a thermally conductive grease.
  • At least a part of the heat sink portion is aluminum (Al), magnesium (Mg), iron (Fe). It may include one or more of galvanized iron, stainless steel, copper, aluminum alloy, magnesium alloy.
  • At least a part of the heat sink portion may be formed of gold (Au), silver (Ag), carbon nanotube (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Surface coating).
  • At least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler may be formed in the heat sink.
  • At least a part of the heat sink is ABS (acrylonitrile-butadiene-styrene), polycarbonate (PC: Polycarbonate), polyimide (PI; Polyimide), PET (PET; polyethylene terephthalate), polyethylene ( Poly Ethylene (PE) and polyether ether ketone (PEEK).
  • ABS acrylonitrile-butadiene-styrene
  • PC Polycarbonate
  • PI Polyimide
  • PET PET
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PEEK polyether ether ketone
  • At least a part of the heat sink portion may be formed of gold (Au), silver (Ag), carbon nanotube (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Surface coating).
  • At least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler may be formed in the heat sink.
  • a heat sink protective layer may be formed on at least a portion of the heat sink portion.
  • the heat sink hub may be fixed to the housing.
  • the other end of the heat dissipation blade connected to the heat sink hub may be fixed to the housing.
  • the heat dissipation blade hollow heat sink and lighting device of the present invention is formed to be well ventilated, air convection, and air through the heat sink to provide a heat sink innovatively improved heat dissipation function in the optimal state And ultimately increase the operational performance efficiency of the luminaire.
  • the heat dissipation blade hollow heat sink and the lighting device of the present invention the compactness and size of the heat dissipation structure is innovatively improved and the assembly cost due to the minimization of the number of parts to improve the assemblage at the same time manufacturing cost reduction It can also increase environmental friendliness.
  • the heat dissipation wing hollow heat sink and the lighting device of the present invention can provide a lighting device that maximizes the mountability due to the compact size and weight reduction as a whole, and increases the use range and maintainability.
  • a lighting device due to the arrangement structure of the heat dissipation blade hollow heat sink and the light source module of the lighting device to form a sufficient light emitting surface to form the direction of the emitted light in multiple directions and widen the light evenly It is possible to provide a lighting device as an LED (or OLED) lighting device that can be illuminated on the area.
  • LED or OLED
  • FIG. 1 is a schematic perspective view of a heat dissipation blade hollow heat sink and a lighting device according to an embodiment of the present invention.
  • Figure 2 is a schematic exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to an embodiment of the present invention.
  • FIG. 3 and 4 are schematic exploded perspective views of different heat dissipation blade hollow heat sinks and lighting apparatuses according to an embodiment of the present invention.
  • Figure 4 is a schematic partial cross-sectional projection overlapping perspective view of the heat dissipation wing hollow heat sink and the lighting device according to an embodiment of the present invention.
  • 5 and 6 are a schematic plan view and a partial cross-sectional view of the light source module of the heat dissipation blade hollow heat sink and the lighting device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a flow path of air of a heat dissipation blade hollow heat sink and a lighting device according to an embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view of a heat sink wing heat sink and a lighting device according to another embodiment of the present invention.
  • FIGS. 9 and 10 are a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
  • FIG. 11 is a perspective view of an optical control unit and an illuminating device surrounding all of the heat dissipation blade hollow heat sinks according to another embodiment of the present invention.
  • FIG. 12 is a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
  • FIG. 13 is a perspective view of a heat dissipation blade hollow heat sink in which a heat sink hub through hole is formed according to another embodiment of the present invention.
  • FIG. 14 to 20 is a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
  • Heat dissipation blade hollow heat sink 500 of the present invention takes the hollow type to maximize the heat dissipation area and form a heat dissipation performance optimization structure by securing an air flow path
  • the lighting device 10 of the present invention is the housing 100
  • the light source module 800 may include the substrate 200 in some cases.
  • the light source module 800 includes the substrate 200.
  • the housing 100 of the lighting device 10 forms an internal space, a power module such as SMPS for applying an electrical signal to the light source 300 of the present invention in the internal space of the housing base 110 (not shown) Is placed.
  • the housing 100 includes a housing base 110 and a housing socket 120.
  • the housing socket 120 may be disposed at an end of the housing base 110 to supply power through an electrical connection with an external connector. .
  • the heat sink 400 is positioned fixed to the housing 100.
  • the heat sink unit 400 receives heat generated from the light source 300 to be dissipated through the surface contact and dissipates to the outside to exhaust heat generated from the light source 300 to prevent performance degradation due to heat of the light source 300. To minimize.
  • the substrate 200 of the light source module 800 is disposed above the heat sink 400, and the substrate 200 may form an area contact with the heat sink 400 directly.
  • Various configurations are possible, such as to form a contact structure through.
  • the substrate 200 of the present invention may have a predetermined strip shape or may form a plurality of continuous arrangement structures of a predetermined rectangular type substrate.
  • the substrate 200 may take a plurality of connection arrangement structures of a conventional printed circuit board, or may be formed of a thermally conductive metal substrate.
  • the substrate 200 is formed of a flexible printed circuit board (FPCB).
  • FPCB flexible printed circuit board
  • the substrate 200 formed of the FPCB according to the present embodiment includes a substrate hub 210 and a substrate heat dissipation wing 220.
  • the substrate hub portion 210 may be formed in a predetermined curved or planar structure.
  • the heat sink hub of the heat sink 400 is formed in a circular sheet structure that is opened and erased by a predetermined angle.
  • the 510 is formed in a curved surface, it is possible to form a smooth surface contact structure.
  • Substrate heat dissipation blade 220 extends in the radial direction from the outer circumference of the substrate hub portion 210, a plurality of substrate heat dissipation wings 220 may be tangled structure that extends in the radial direction from the outer circumference of the substrate hub portion 210 have.
  • One or more light sources 300 may be disposed on one surface of the substrate heat dissipation wing 220 and the substrate hub 210.
  • the light source 300 is disposed on one surface of the substrate 200, and the light source 300 is electrically connected to a power module (not shown) disposed in the housing 100 in accordance with a power source that is an electrical signal applied from the power module. Generates predetermined light and emits it to the outside.
  • the light source 300 may be implemented by a plurality of self-light emitting devices, and may be implemented by a self-light emitting device such as an LED or an organic light emit diode (OLED) or a combination thereof.
  • a self-light emitting device such as an LED or an organic light emit diode (OLED) or a combination thereof.
  • the substrate 200 is required, and in some cases, when the light source 300 is formed of oled used as a surface light source, the substrate 200 may be disposed directly on the heat sink without a substrate. have.
  • the light source 300 may maintain an optimal state maximizing efficiency even during a long time light emission operation or may prevent a sudden drop in the performance of the light source 300 due to at least rapid heat storage, thereby increasing the service life of the light source 300. Can be.
  • the lighting device 10 of the present invention forms a structure that can maximize the heat dissipation function of the heat sink. That is, the heat sink 400 (500, 600) of the present invention includes a heat dissipation blade hollow heat sink 500, the heat dissipation wing hollow heat sink 500 is formed in the longitudinal direction in which the housing 100 is disposed, It takes a structure in which the air flow space is formed at the center by penetrating in the direction perpendicular to the longitudinal direction in which the housing 100 is disposed.
  • the heat dissipation blade hollow heat sink 500 includes a heat sink hub 510 and a heat dissipation wing 520, and the heat dissipation wing 520 is disposed on an outer circumference of the heat sink hub 510.
  • the heat sink hub 510 and the heat dissipation blade 520 may be integrally formed, or may be formed separately, or may be integrally formed with the optical adjusting unit to which the heat sink hub is to be described.
  • the heatsink hub 510 is intersected in the longitudinal direction in which the housing 100 is disposed, in this embodiment vertically, that is, the heatsink hub 510 is disposed perpendicular to the Z axis in the drawing. .
  • the heat sink hub 510 may be formed in a planar or curved surface.
  • the housing 100 may be formed in a planar structure disposed substantially on the XY plane in the drawing, or in a curved structure forming a curved cross section along the longitudinal direction of the Z axis.
  • Various modifications are possible in the range where they are arranged to intersect or substantially perpendicular to the longitudinal direction in which they are disposed.
  • the heat sink hub 510 has a hub mounting portion 511 formed therethrough, which is engaged with the optical adjustment mounting portion 711 formed at the upper end of the optical adjustment portion 700 to be stably mounted to the optical adjustment portion 700.
  • the structure can be formed.
  • the heat sink hub 510 is provided with a hub line through hole 513, which is disposed inside the substrate 200 and the housing 100 disposed in the heat dissipation blade hollow heat sink through the hub line through hole 513. It forms a penetration of a wiring line (not shown) that forms a seamless connection with the power module (not shown).
  • the heat dissipation wing 40 has a structure in which one end is radially disposed from the heat sink hub 510. That is, the heat dissipation blade is disposed extending in the radial direction from the outer circumference of the heat sink hub 510, and formed in the longitudinal direction of the housing 100 as well as the radial direction of the heat sink hub 510, including a heat sink hub and a heat dissipation wing.
  • the hollow heat sink 500 may form a semicircular to parabolic structure having a generally cross section.
  • the heat dissipation wing 520 extends from the heat sink hub 510, and the heat dissipation wing 520 and the heat sink hub 510 form an inner space, and are externally disposed through a gap between the dimension heat sink 520. And form a structure that can extend the securing of the internal air flow path.
  • the heat dissipation wing 520 is disposed to extend at least two from the outer periphery of the heat sink hub 510, one end is connected to the heat sink hub 510 and the other end is in the longitudinal direction of the housing 100, that is, at least a part of the heat sink hub 510 direction
  • the heat dissipation blades 520 are formed to extend toward each other, and the plurality of heat dissipation blades 520 forms a structure in which one end is spaced apart from each other on the circumference of the heat sink hub 510, and the shell flow port is disposed between the heat dissipation wings 520 spaced apart from each other.
  • a 529 is formed to allow air flow between the inner space A5 and the outer space Ao of the heat dissipation wing 520 to facilitate heat dissipation through the heat dissipation wing 520.
  • the shell flow port 529 which is a gap formed by the heat dissipation blade 520, forms a structure in which the gap gradually widens in the direction extending from the heat sink hub 510 in the present embodiment.
  • the heat dissipation wing 520 forms a structure in which a plurality of heat dissipation blades 520 are formed, and the other end of the heat dissipation wing 520 is connected by the heat dissipation wing 520 to form a stable support structure at the other end.
  • the other end of the heat dissipation wing 520 and the heat dissipation wing 520 form a circular ring structure.
  • the heat dissipation blade hollow heat sink 520 has a bell shape as a whole, but has a structure in which a wagon flow port 529 is formed on the outer surface to allow air flow between the inside and the outside. Achieve.
  • the heat dissipation wing 520 includes a heat dissipation wing body 521 and a heat dissipation wing side line part 523.
  • the heat dissipation wing body 521 is disposed in a longitudinal direction in which the housing 100 is disposed from the outer circumference of the heat sink hub 510, that is, in a Z-axis direction, and a substrate is disposed on an upper surface of the heat dissipation wing side line part 523.
  • the heat dissipation wing body 521 is disposed radially from the center of the heat sink hub and the heat dissipation wing on the XY plane in a direction perpendicular to the longitudinal direction in which the housing 100 is disposed outside the heat dissipation wing body 521. ) To form a space in which the substrate 200 is accommodated.
  • the heat dissipation wing side line part 523 may be extended on both sides of the heat dissipation wing body 521 to form a stable accommodation mounting structure of the optical adjusting unit 700 in addition to the formation of an arrangement space of the substrate 200. That is, a structure for closing both sides of the optical adjusting unit 700 corresponding to the heat dissipation wing body 521 is formed to form an airtight sealed space together with the optical adjusting unit 700 and the heat dissipation wing body 521 to form an airtight space. Damage to the substrate 200 and the light source 300 disposed by moisture or dirt may be prevented.
  • At least a portion of the heat dissipation wing 520 has a curved or rectangular arrangement structure, wherein the heat dissipation wing body 521 of the heat dissipation wing 520 extends in the longitudinal direction of the housing 100, and has a cross-section as described above.
  • the general shape is a parabolic to circular curved structure in the Z-axis direction, in some cases, the heat dissipation wing body 521 of the heat dissipation wing 520 also takes a curved structure or peeling of the substrate 200 disposed on one surface It may take a square structure to prevent the.
  • the heat dissipation wing body 521 of the heat dissipation wing 520 is formed in the form of a parabolic to semi-circular structure having a generally cross-sectional tendency in the longitudinal direction of the housing 100, that is, the Z-axis direction.
  • the outer circumferential surface of the heat dissipation wing body 521 may have a continuous curved structure, but in this embodiment, the outer circumferential surface of the heat dissipation wing body 521 has a rectangular structure to form a plurality of planar continuous arrangement structures.
  • the heat dissipation efficiency transmitted from the light source 300 to the substrate 200 may be improved by smoothly contacting the substrate 200 with the outer circumferential surface of the heat dissipation wing body 521 through the continuous planar arrangement. It is possible to increase and prevent the peeling from the heat dissipation wing body 521 of the substrate 200.
  • the substrate 200 is disposed on an upper portion of the heat dissipation wing hollow heat sink 500. More specifically, the substrate hub 210 is disposed on one side of the heat sink hub 510, and the upper portion of the heat dissipation wing 520 is disposed on the substrate 200.
  • the substrate heat dissipation blade 220 may be disposed. In this case, the substrate and the heat dissipation blade hollow heat sink 500 may make direct surface contact but increase the efficiency of heat transfer between them, thereby increasing the contact area between the two to increase the heat transfer rate. ) May be further provided.
  • the thermally conductive adhesive 230 is disposed between at least a portion of the heat sinks 400 and 500 and 600 and the substrate 200.
  • the thermally conductive adhesive 230 is a heat dissipation blade hollow heat sink 500. And is disposed between the substrate and the substrate.
  • the thermally conductive adhesive 230 may include one or more of a thermally conductive adhesive bond, a thermally conductive foam tape, a thermally conductive foam pad, and a thermally conductive grease to increase the contact force between the substrate and the heat dissipation blade hollow heatsink. By performing the function of increasing the heat transfer performance can improve the heat transfer rate between the two.
  • the heat sink 400 of the present invention (400; 500, 600) may be formed of a material that improves the heat dissipation performance. At least a portion of the heat sink 400 (500; 600) of the present invention is aluminum (Al), magnesium (Mg), iron (Fe), galvanized iron (Gavanized iron), stainless steel (Stainless Steel), copper, aluminum alloy, It may comprise one or more of the magnesium alloys.
  • the heat generated from the light source module 800 to the power module (not shown) is rapidly dissipated to the outside due to the excellent heat dissipation performance by being formed of a metal material having such excellent heat capacity and / or excellent thermal conductivity. Attenuation can also keep the component's operating performance optimal.
  • the heat sinks 400, 500, and 600 may include gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, graphene, boron nitride (BN), and It may take a structure that is surface coated with one or more of ceramics. That is, gold (Au), silver (Ag), carbon nanotubes (CNT), and graphene on at least a portion of an inner surface, an outer surface, or an inner and outer surface of the heat sinks 400 and 500 and 600 formed of a metal material. By coating one or more of, boron nitride (BN), and ceramic (ceramic) may be configured to maximize the thermal conductivity with the outside air.
  • boron nitride (BN), and ceramic (ceramic) may be configured to maximize the thermal conductivity with the outside air.
  • the heat sink is a material coated with carbon nanotube (CNT) material on a copper (Cu) metal material to selectively increase heat dissipation efficiency and prevent surface corrosion.
  • CNT Carbon Spiral Tube
  • Cu copper
  • CNT Carbon Spiral Tube
  • CNTs include single-walled CNTs (SWNTs), multi-walled CNTs (DWNTs), and multi-walled CNTs (MWNTs), depending on the honeycomb carbon layer.
  • CNTs carbon nanotubes
  • SWNTs single-walled CNTs
  • DWNTs multi-walled CNTs
  • MWNTs multi-walled CNTs
  • Thermal conductivity is further improved by coating carbon nanotubes (CNT) with excellent thermal conductivity compared to other materials such as copper (Cu) and diamonds. Maximized heat dissipation blade hollow heatsink.
  • CNT carbon nanotubes
  • At least a portion of the heat sinks 400 and 500 and 600 may have a structure in which at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is filled and formed. It may be. That is, at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is formed in the heat sinks 400 and 500 and 600 formed of a metal material to form thermal conductivity with external air. It may also take a configuration to maximize the.
  • CNT carbon nanotube
  • BN boron nitride
  • a method of coating carbon nanotubes (CNT) on a metal material such as copper (Cu) may be sprayed by mixing carbon nanotubes (CNT) with a solvent such as water, ethanol (IPA) or acetate, or carbon.
  • a solvent such as water, ethanol (IPA) or acetate, or carbon.
  • the material of the heat sink is referred to mainly as the thermal conductivity, but may be formed of a material having both weight reduction and thermal conductivity improvement at the same time.
  • At least a part of the heat sinks (400; 500, 600) of the present invention is ABS (acrylonitrile -butadiene-styrene), polycarbonate (PC: Polycarbonate), polyimide (PI; Polyimide), PET (PET; polyethylene terephthalate), polyethylene ( Poly Ethylene (PE) and polyether ether ketone (PEEK). It is also possible to improve the carrying and mounting properties through the heat sink of such a hard material.
  • At least a portion of the heat sinks 400, 500, and 600 may include gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, and boron nitride (BN). And a structure that is surface coated with one or more of ceramics. That is, gold (Au), silver (Ag), carbon nanotubes (CNT), and graphene on at least a portion of an inner surface, an outer surface, or an inner and outer surface of the heat sinks 400 and 500 and 600 formed of a synthetic resin material.
  • the surface coating may be made of one or more of boron nitride (BN) and ceramic to maximize thermal conductivity with external air.
  • the heat sinks 400 and 500 and 600 may have a structure in which at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is filled and formed. It may be. That is, the heat sinks 400, 500, 600 formed of a synthetic resin are filled with one or more of carbon nanotube (CNT) fillers, boron nitride (BN) fillers, and ceramic fillers to form thermal conductivity with external air. It may also take a configuration to maximize the.
  • CNT carbon nanotube
  • BN boron nitride
  • the heat sink 400 (500; 600) of the present invention may be formed on at least a portion of the heat sink protective layer to increase the durability by preventing damage due to oxidation.
  • the heat sink protective layer 401 may be formed of a coating or an oxide coating, which may be surface coated by a powder coating or an electrodeposition coating, or may be formed by an oxide plating coating method for forming an oxide coating. Various methods may be used in the range of forming the surface protective film through the heat sink protective layer 401.
  • the other end of the heat dissipation wing body 521 of the present invention may be further provided with a component for fixing the position of the substrate 200. That is, at the other end of the heat dissipation wing body 521 toward the housing 100, a heat dissipation wing substrate clip portion 525 is disposed, and the heat dissipation wing substrate clip portion 525 has a heat dissipation wing body (at the end of the heat dissipation wing body).
  • the substrate of the substrate 200 is formed so as to be spaced apart from one surface of the 521, and at least a part of the end of the substrate 200 is disposed between the surface of the heat dissipation wing body 521 and the heat dissipation wing substrate clip 525.
  • An end portion of the heat dissipation wing 220 may be separated from one surface of the heat dissipation wing body 521 to prevent the end of the heat dissipation wing 220 from being extended toward the outside, thereby preventing assembly discomfort due to the substrate heat dissipation wing 220.
  • the heat dissipation blade hollow heat sink 500 of the present invention may further include a component for increasing the heat dissipation performance to discharge and attenuate heat. That is, the heat dissipation fin 540 may be further provided on the inner surface side of the heat dissipation wing 520 of the heat dissipation wing hollow heat sink 500.
  • the heat dissipation fin 540 is disposed along the Z-axis direction, that is, the length direction of the heat dissipation wing 520, in the longitudinal direction of the housing 100, and the heat dissipation fin 540 is predetermined toward the center of the heat dissipation wing hollow heat sink 500. It may have a width of.
  • a plurality of heat dissipation fins 540 may be arranged, but each of the heat dissipation fins 540 may be spaced apart from each other at a predetermined interval to achieve a space for a smooth flow of air.
  • a plate may be further disposed between the housing 100 of the present invention and the heat dissipation blade hollow heat sink 500 as a component for partitioning the internal space of the housing 100, but in some cases, the housing 100.
  • a component disposed between the heat dissipation blade hollow heat sink 500 may be configured as a separate heat sink.
  • the heat sink 400 of the present invention may further include a flat plate style heat sink 600 together with the heat dissipation wing hollow heat sink 500 of the structure to maximize the heat dissipation performance through the three-dimensional space structure.
  • the plate heat sink 600 is disposed between the heat dissipation blade hollow heat sink 500 and the housing 100 in a direction perpendicular to the longitudinal direction of the housing 100, that is, parallel to the X-Y plane.
  • the plate heat sink 600 may be formed of the same material as the heat dissipation blade hollow heat sink 500.
  • the plate heatsink 600 has a plate heatsink body 610 and a plate heatsink around 620.
  • the plate heatsink body 610 and the plate heatsink around 620 are the housing 100. It takes a structure having a predetermined step in the longitudinal direction, that is, the Z-axis direction, through which the power module (not shown) is arranged and the heat dissipation blade hollow heat sink is arranged to the area where heat transfer occurs It is also possible to take a configuration to achieve an efficient heat dissipation effect by separating.
  • the step is generated according to the design specification of the power module (not shown) disposed inside the housing 100, and in some cases, various modifications may be made according to the specification such that a step may be excluded. This is possible.
  • An around mounting portion 623 is formed at the plate heat sink around 620 of the plate heat sink 600, and a housing mounting portion 113 is formed at the housing 100 at a corresponding position thereof, and the heat dissipation blade hollow heat sink 500 is formed.
  • the shell mounting portion 528 is formed, and the around mounting portion 623, the housing mounting portion 113, and the shell mounting portion 528 are arranged in alignment with each other through a fastening means such as a bolt to form a predetermined fastening structure. It may be.
  • Illuminator 10 of the present invention includes an optical control unit 700, the optical control unit 700 is arranged to surround at least a portion of the heat dissipation wing hollow heat sink 500 outside the light output from the light source 300 Adjust the exit.
  • the optical adjusting unit 700 may be implemented by a plurality of micro lens type optical lenses, or may be implemented by a light cover of a light guiding material formed of a light guiding material. Various choices can be made in the range of adjusting the emitted light. In the present embodiment, the optical adjusting unit 700 will be described based on the case where the optical adjusting unit 700 is implemented as a light cover.
  • the optical adjusting unit 700 includes an optical adjusting hub 710 and an optical adjusting heat dissipation blade 720.
  • the optical adjusting hub 710 is disposed corresponding to the position of the heat sink hub 510, and the optical adjusting heat dissipation blade 720.
  • the optical adjustment hub 710 is formed with the optical adjustment mounting part 711, and the heat dissipation blade hollow heat sink 500 is engaged with the hub mounting part 511 formed in the heat sink hub 510. And a stable mounting structure between the optical adjusting unit 700 may be formed.
  • the optically adjusted heat dissipation wing 720 is disposed corresponding to the heat dissipation wing 520, and faces the heat dissipation wing body 521 of the heat dissipation wing 520 and contacts the heat dissipation wing side line part 523.
  • a predetermined internal space arranged to adjust the light quality, such as the uniformity of the light emitted from the light source 300, at the same time, damage to the substrate 200 to the light source 300 due to the inflow of moisture or foreign matter to degradation It can also prevent.
  • the end of the optical adjustment heat dissipation blade 720 may be further provided with a configuration for individual assembly. That is, the other end of the optical adjustment heat dissipation blade 720, the optical adjustment heat dissipation blade clip portion 725 is protruded, the plate heat sink of the plate heat sink 600 to the corresponding position of the optical adjustment heat dissipation blade clip 725.
  • An around clip portion 621 may be further formed in the around 620, and the other end of the heat dissipation blade hollow heat sink 500 may have a heat dissipation blade clip groove ( 527 is formed, when the optical adjustment unit 700, the heat dissipation blade hollow heat sink 500 and the plate heat sink 600 are sequentially assembled, the optical adjustment heat dissipation wing clip portion 725 is a heat dissipation wing clip groove 527 After being inserted into the) it may be formed to engage the engagement clip portion 621 to be fastened to each other. Through such a structure, it is possible to form a stable fastening structure without interference between each component.
  • the optical adjustment unit may have a shape corresponding to the heat dissipation wing hollow heat sink as described above, but as shown in FIG. 11, the optical adjustment unit 700 may have a cup-type optical adjustment unit 700 having only the upper end 701 opened.
  • various configurations are possible in the range including the heat dissipation blade hollow heat sink to achieve an air flow therein, such that the upper end may also have a closed structure.
  • the heat dissipation blade hollow heat sink of the heat sink of the lighting apparatus has a cross-sectional shape of which an outer parabolic shape is formed, but the present invention is not limited thereto, but an internal space is formed and a plurality of heat dissipation wings are spaced apart.
  • Various configurations are possible in the range in which the shell flow port is formed therebetween.
  • the lamp unit 10a of the present invention is shown. The same components as in the previous embodiment are denoted by the same reference numerals, and redundant description thereof will be omitted.
  • the heat dissipation blade hollow heat sink 500a of the heat sink 400a of the lighting device 10a includes a heat sink hub 510a and a heat dissipation wing 520a, and the heat dissipation wing 520a.
  • Heat dissipation fins 550 may be further provided on the other end outer surface of the substrate.
  • the arrangement position of the light source module 800 of the lighting device (10a) is less than the case of the previous embodiment, but the heat attenuation effect through the heat radiation fin 550 formed on the other end outer surface of the heat dissipation wing (520a). It may be further enhanced.
  • the heat sink hub has been described based on the curved structure in the above embodiments, the heat sink hub of the present invention is not limited thereto. That is, as shown in FIG. 14, the heat sink hub 510 has a planar structure, and the heat dissipation blade 520 is disposed on the outer circumference of the heat sink hub 510 but extends from the heat sink hub 510. Can be taken. At this time, it is apparent from the present technology that the heat dissipation wing may also have a straight structure or a curved structure.
  • the heat sink hub is described as only one curved to planar structure, but the heat sink hub may be formed as a ring structure having a center penetrated therein. That is, as shown in FIG. 15, the heat sink hub 510 may be formed in a ring structure and the heat dissipation wing 520 may be disposed on an outer circumference of the heat sink hub 510 of the ring structure. At least one hub mounting portion 511 is formed at the heat sink hub 510, and an optical adjustment mounting portion 711 is formed at the optical adjusting portion 700 at a corresponding position to form a fastening structure through engagement or fastening means. It may be.
  • the plurality of heat dissipation blades disposed on the outer circumference of the heat sink hub may have a structure connected to the heat sink hubs spaced apart from each other. That is, as illustrated in FIG. 16, a ring type heat sink hub 510b may be disposed, and a plurality of heat dissipation wings 520 may be connected to the ring type heat sink hub 510b.
  • the ring type heat sink hub 510b is provided with hub mounting portions 511b and 511c.
  • the hub mounting parts 511b and 511c include a hub first mounting part 511b disposed on the heat sink hub 510b and a hub second mounting part 511c disposed on the heat dissipation blade 520.
  • the hub first mounting portion 511b is formed on the ring-type heat sink hub 510b, and the hub second mounting portion 511c is disposed on the heat-dissipating blade 520 that is separately removable, but the hub first mounting portion 511b and the hub second
  • the mounting portion 511c may take a structure capable of engaging with each other to maintain a preset positional relationship between the heat dissipation blades 520.
  • the separate removable heat dissipation wing 520 connected to the ring-type heat sink hub 510b may be formed in a linear structure in addition to the curved structure, as described above. That is, the heat dissipation blade 520 (see FIG. 17) is also individualized, and each end is inserted into a through hole formed in the housing middle case 130 that is coupled to the housing base 110, and the other end is divided by the heat dissipation wing and disposed on the top.
  • the ring type heat sink hub 510b may be connected to the structure.
  • the substrate 200 disposed on the heat dissipation blade 520 may be connected to the optical substrate 201 disposed between the housing middle case 130 and the housing base 110, and disposed inside the housing 100.
  • the power supply unit may be connected to the power substrate 203, and may also be in electrical communication with the optical substrate 201 and the power substrate 203.
  • the optical adjusting unit 700 may also be individualized to have a structure in which the optical adjusting unit 700 is inserted into and mounted on the heat sink hub portion corresponding to the heat dissipating wing, and in this case, the optical adjusting unit 700.
  • Components that connect the individualized optical adjustments 700 may be disposed at the bottom to prevent relative displacement formation at the bottom of the.
  • the heat sink hub 510 is formed and disposed in a ring type close to a plate, and a plurality of heat dissipation wings in a vertical direction in individual regions of the ring type heat sink hub 510 b.
  • the optical adjusting unit 700 may have a structure in which the optical adjusting unit 700 is side mounted and supported by the heat sink hub 510 and the housing at both ends.
  • the ring-type heat sink hub may be configured as separate elements as individual elements, but the present invention is not limited thereto, and various configurations are possible. That is, as shown in FIGS. 19 and 20, the heat sink hub 510b is integrated with the optical adjusting unit 700 and is disposed toward the heat dissipation wing 520 toward the inner bottom of the optical adjusting unit 700, and the heat sink hub
  • the hub second mounting portion 511c is formed at 510b, and the hub second mounting portion 511c is formed at the hub first mounting portion 511b formed at the heat sink hub 510b formed integrally with the bottom surface of the optical adjusting unit 700.
  • the hub first mounting boom 511b and the optical adjustment mounting portion 711 may have a structure that is integrated with each other.
  • the heat sink of the present invention has been described with a focus on the case used for a lamp, but can be used in various fields requiring heat dissipation performance through heat transfer.

Abstract

The present invention relates to a hollow heatsink with heat-radiating fins, and a lighting device, which have innovatively improved heat-radiating performance by being formed so as to achieve good air ventilation, air convection and air penetration, and which enable improvement of the assembility, reduction of the production costs, increase of the potential for mass uptake, and improvement of the environmental friendliness due to minimisation of parts and a compact design allowing innovative improvement of the size and weight of a heat-radiating structure. The present invention provides a hollow heatsink with heat-radiating fins, comprising: a heatsink hub; a plurality of heat-radiating fins of which one of the ends is formed from the outer circumference of the heatsink hub; heat-radiating-fin open parts which are formed between the heat-radiating fins and form air flow spaces; and an air penetration hollow formed such that air ventilation and air convection occur in the centre of the heat-radiating fins. Also, the present invention provides a lighting device comprising: a housing in which a heatsink unit used by the hollow heatsink with heat-radiating fins is secured in position, and a power source module is accommodated; and the light source module which is disposed on the heatsink unit, and allows light to be emitted to the outside in accordance with an electrical signal from the power source module.

Description

방열날개 중공형 히트싱크 및 이를 구비하는 조명기기Heat dissipation blade hollow heat sink and lighting equipment having the same
본 발명은 히트싱크 및 조명기기에 관한 것으로, 더욱 상세하게는 공기통풍, 공기대류 및 공기관통이 잘 되도록 형성되어 방열기능이 혁신적으로 개선된 방열 구조의 히트싱크 및 이를 구비하는 조명기기에 관한 것이다. The present invention relates to a heat sink and a lighting device, and more particularly, to a heat sink and a lighting device having a heat dissipation structure that is formed to be well ventilated, air convection and air through the heat dissipation is innovatively improved. .
최근 조명에 사용되는 LED(또는 OLED)는 형광등, 나트륨등, 수은등, 백열전구 등에 비하여 에너지 효율이 좋아서 최근 고효율 조명의 광원으로 각광받고 있다. 그러나 LED(또는 OLED)는 열에 약해서 LED(또는 OLED)의 수명 및 효율을 확보하기 위해서는 LED(또는 OLED)에서 발생하는 열을 방열할 필요가 있다. 따라서 LED(또는 OLED)조명기기는 갖추어야 할 속성 중에서 방열 기능은 중요한 기능으로 손꼽혀 오고 있다. 방열 기능이 불충분할 경우에는 LED(또는 OLED)조명기기의 수명도 급격히 짧아지는 문제점이 있다.LEDs (or OLEDs) used for lighting have recently been spotlighted as light sources of high efficiency lighting because they have higher energy efficiency than fluorescent lamps, sodium lamps, mercury lamps, and incandescent lamps. However, the LED (or OLED) is weak to heat, and in order to secure the lifetime and efficiency of the LED (or OLED), it is necessary to dissipate heat generated from the LED (or OLED). Therefore, the heat dissipation function has been regarded as an important function among the attributes that LED (or OLED) lighting equipment should have. If the heat dissipation function is insufficient, there is a problem that the life of the LED (or OLED) lighting device is also shortened rapidly.
LED(또는 OLED)조명기기의 신뢰성과 에너지효율 및 제품 수명을 확보하기 위하여 LED(또는 OLED) 조명기기의 방열효율을 향상하기 위한 다양한 노력이 이뤄지고 있다. Various efforts are being made to improve the heat dissipation efficiency of LED (or OLED) lighting equipment in order to secure reliability, energy efficiency and product life of LED (or OLED) lighting equipment.
종래의 LED(또는 OLED)조명에 사용되는 히트싱크는 고출력 LED(또는 OLED)조명 제품에는 방열면적을 크게 하기 위하여 히트싱크 크기를 크게 하거나 단순한 방열핀이 있는 히트싱크 사용하고 있다. 이런 경우 열원이 서로 가까운 곳에 열이 집적되어 발생하므로 방열효율이 부족하거나 고출력 LED(또는 OLED)조명기기의 크기가 크고 무게가 무거운 문제가 있다.Conventional heat sinks used in LED (or OLED) lighting use high heat LED (or OLED) lighting products in order to increase the heat dissipation area. In this case, since the heat sources are generated in close proximity to each other, there is a problem that the heat dissipation efficiency is insufficient or the size of the high power LED (or OLED) lighting device is large and heavy.
또한, 여러 개의 조각 방열핀 사용 및 인위적인 방열 팬 사용하거나 고열전도가 높은 신소재 개발, 히트파이프의 사용하기도 하는데, 이는 부품 및 제품의 생산 공정이 많고 복잡하며 비싼 원자재 가격으로 인한 원가상승으로 제품 가격이 비싼 문제점이 있다. In addition, the use of multiple pieces of heat sink fins, artificial heat sinks, or the development of new materials with high thermal conductivity and heat pipes are used, which are expensive due to the high cost of raw materials and the complicated production process of parts and products. There is a problem.
이와 같은 방열 성능을 향상시키기 위하여 필요한 히트싱크의 한계로 인하여 LED(또는 OLED)조명기기의 보급에 제약이 되고 있다. 이는 특히 고출력 LED(또는 OLED)조명 같이 발열이 많이 되는 LED(또는 OLED)조명의 경우에 더욱 심화되는 문제로 대두되었다. Due to the limitation of the heat sink required to improve the heat dissipation performance, there is a limitation in the spread of LED (or OLED) lighting equipment. This problem is particularly aggravated in the case of LED (or OLED) lighting that generates a lot of heat, such as high power LED (or OLED) lighting.
이에 따라, LED(또는 OLED)조명업계에서는 LED(또는 OLED)에서 방출되는 열의 방열 효율이 혁신적으로 향상된 히트싱크 개발이 요구되고 있으며, LED(또는 OLED)조명의 방열 효율이 좋고 제품 크기가 작고 가벼우며 원가구조가 개선된 LED(또는 OLED)조명설계가 가능한 고효율 히트싱크의 개발 필요성이 요청됨과 동시에, 방열특성이 좋고 가격이 저렴한 보급형 LED(또는 OLED)조명 개발의 필요성이 꾸준히 요구되어 왔다.Accordingly, in the LED (or OLED) lighting industry, there is a demand for the development of heat sinks with an improved heat dissipation efficiency of heat emitted from LEDs (or OLEDs), and the heat dissipation efficiency of LED (or OLED) lights is good and the product size is small and light. In addition, there has been a demand for the development of a high efficiency heat sink capable of designing LED (or OLED) lighting with improved cost structure, and at the same time, there has been a continuous demand for the development of low-cost LED (or OLED) lighting with good heat dissipation characteristics and low cost.
본 발명의 목적은, 공기통풍, 공기대류 및 공기관통이 잘 되도록 형성되어 방열기능이 혁신적으로 개선되고, 제품 크기가 작고 가벼우며 생산성이 향상되어 원가구조가 개선된 조명설계가 가능한 방열날개 중공형 히트싱크와, 상기 방열날개 중공형 히트싱크가 사용되는 조명기기를 제공하는 것이다. The object of the present invention is formed to be well ventilated, air convection and air through the heat dissipation function is innovatively improved, the product size is small and light, the productivity is improved to improve the cost structure, the heat dissipation wing hollow type It is to provide a heat sink and a lighting device using the heat dissipation blade hollow heat sink.
본 발명은, 히트싱크 허브; 일단이 상기 히트싱크 허브의 외주에 배치되는 복수 개의 방열날개; 상기 방열날개 사이에 형성되는 방열날개 개방부(529); 상기 방열날개의 중앙에 공기통풍 및 공기대류가 이루어지도록 형성되는 공기관통 중공(A5);을 구비하는 방열날개 중공형 히트싱크를 제공한다.The present invention, a heat sink hub; A plurality of heat dissipation wings, one end of which is disposed on an outer circumference of the heat sink hub; A heat dissipation wing opening 529 formed between the heat dissipation wings; It provides a heat-dissipating blade hollow heat sink having a; air through the hollow (A5) is formed in the center of the heat-dissipating blade to make air ventilation and air convection.
상기 방열날개 중공형 히트싱크에 있어서, 상기 히트싱크 허브는 곡면 또는 평면일 수도 있다.In the heat dissipation blade hollow heat sink, the heat sink hub may be curved or flat.
상기 방열날개 중공형 히트싱크에 있어서, 상기 히트싱크 허브는 공기유동 및 방열기능이 극대화되도록 히트싱크 허브 관통구가 형성될 수도 있다.In the heat dissipation blade hollow heat sink, the heat sink hub may have a heat sink hub through-hole so as to maximize air flow and heat dissipation.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개는 상기 히트싱크 허브의 외주로부터 둘 이상이 서로 이격되어 배치되고 상기 방열날개 개방부가 상기 방열날개 사이에 배치될 수도 있다.In the heat dissipation wing hollow heat sink, the heat dissipation wing may be disposed at least two from the outer circumference of the heat sink hub, and the heat dissipation wing opening may be disposed between the heat dissipation wing.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개는 일단이 상기 히트싱크 허브로부터 방사 배치될 수도 있다.In the heat dissipation blade hollow heat sink, one end of the heat dissipation blade may be radially disposed from the heat sink hub.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개의 적어도 일부는, 상기 히트싱크 허브의 원주로부터 곡면 또는 각형 배치될 수도 있다.In the heat dissipation blade hollow heat sink, at least a part of the heat dissipation blade may be arranged in a curved or square shape from the circumference of the heat sink hub.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개는: 일면 상부에 광원모듈이 배치될 수 있는 방열날개 바디와, 상기 방열날개 바디의 외측 단부로 상기 히트싱크 허브로부터 상기 방열날개가 배치되는 길이 방향을 따라 돌출 배치되어, 상기 방열날개 바디에 상기 광원모듈이 수용 배치되는 공간을 형성하는 방열날개 사이드 라인부를 포함할 수도 있다.In the heat dissipation blade hollow heat sink, the heat dissipation wing includes: a heat dissipation wing body in which a light source module is disposed on an upper surface of the heat dissipation wing, and a length at which the heat dissipation wing is disposed from the heat sink hub to an outer end of the heat dissipation wing body. It may include a heat dissipation wing side line portion protruding along the direction to form a space in which the light source module is accommodated disposed in the heat dissipation wing body.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개 바디의 외측 단부 적어도 일부에는 상기 광원모듈의 이탈을 방지하는 방열날개 광원모듈 클립부가 배치될 수도 있다.In the heat dissipation blade hollow heat sink, a heat dissipation wing light source module clip part may be disposed at at least a portion of an outer end of the heat dissipation wing body to prevent the light source module from being separated.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개의 상기 히트싱크 허브 외주에 연결되는 타측 끝 단부에는 상기 방열날개에 실질적으로 수직한 평면 상에서 원주 방향으로 배치되어, 상기 방열날개와 인접한 다른 방열날개 간의 타단을 연결하는 방열날개 연결부가 구비될 수도 있다.In the heat dissipation blade hollow heat sink, the other end of the heat dissipation blade which is connected to the outer circumference of the heat sink hub is disposed in a circumferential direction on a plane substantially perpendicular to the heat dissipation wing, and is adjacent to the heat dissipation wing. It may be provided with a heat dissipation wing connecting portion connecting the other end.
상기 방열날개 중공형 히트싱크에 있어서, 상기 방열날개의 내측에는 상기 공기관통 중공을 향하여 배치되는 방열핀이 더 구비될 수도 있다.In the heat dissipation blade hollow heat sink, a heat dissipation fin may be further provided on the inner side of the heat dissipation blade toward the air through hollow.
본 발명의 다른 일면에 따르면, 상기 방열날개 중공형 히트싱크를 포함하는 히트싱크부를 구비하는 조명기기를 제공한다.According to another aspect of the present invention, there is provided a lighting device having a heat sink including the heat dissipation blade hollow heat sink.
상기 조명기기에 있어서, 상기 히트싱크부가 위치 고정되고 전원모듈이 수용되는 하우징; 상기 히트싱크부에 배치되고 상기 전원모듈로부터의 전기적 신호에 따라 외부로의 빛의 출사를 가능하게 하는 광원모듈;을 포함할 수도 있다.In the lighting device, the heat sink is a fixed position and a housing housing the power module; And a light source module disposed in the heat sink and configured to emit light to the outside according to an electrical signal from the power module.
상기 조명기기에 있어서, 상기 히트싱크 허브에는 상기 광원모듈과 전원모듈 간의 전기적 연결을 위한 배선 라인의 관통을 가능하게 하는 허브 라인 관통구가 구비될 수도 있다.In the above lighting apparatus, the heat sink hub may be provided with a hub line through hole for enabling the passage of a wiring line for electrical connection between the light source module and the power module.
상기 조명기기에 있어서, 상기 광원모듈의 광원은 LED 또는 OLED일 수도 있다.In the lighting device, the light source of the light source module may be an LED or an OLED.
상기 조명기기에 있어서, 상기 광원모듈은 상기 히트싱크의 방열날개 바디에 배치될 수도 있다. In the lighting device, the light source module may be disposed on the heat dissipation wing body of the heat sink.
상기 조명기기에 있어서, 상기 광원모듈은 보다 균일한 조도 확산을 위하여 상기 히트싱크의 히트싱크 허브에 배치될 수도 있다.In the lighting apparatus, the light source module may be disposed in the heat sink hub of the heat sink for more uniform illuminance spread.
상기 조명기기에 있어서, 상기 방열날개 중공형 히트싱크 외부의 적어도 일부를 감싸 배치되고 상기 광원모듈로부터 출력되는 빛의 외부 출사를 조정하는 광학 조정부가 구비될 수도 있다.In the lighting apparatus, an optical adjustment unit may be provided to surround at least a portion of the outside of the heat dissipation wing hollow heat sink and to adjust an external emission of light output from the light source module.
상기 조명기기에 있어서, 상기 광학 조정부는: 상기 히트싱크 허브의 대응되는 위치에 배치되는 광학 조정 허브와, 일단이 상기 광학 조정 허브의 외주에 연결되고, 상기 광학 조정 허브에서 외측으로 상기 방열날개에 대응하여 배치되는 광학 조정 방열날개를 포함할 수도 있다.In the illuminating device, the optical adjusting unit includes: an optical adjusting hub disposed at a corresponding position of the heat sink hub, and one end of which is connected to an outer circumference of the optical adjusting hub, and is connected to the heat dissipation wing outwardly from the optical adjusting hub. It may also include an optically adjusted heat dissipation wing disposed correspondingly.
상기 조명기기에 있어서, 상기 광학 조정 방열날개의 타단에는 상기 하우징과 체결되는 광학 조정 방열날개 클립부가 구비될 수도 있다.In the above lighting apparatus, the other end of the optical adjustment heat dissipation blade may be provided with an optical adjustment heat dissipation wing clip portion fastened to the housing.
상기 조명기기에 있어서, 상기 광학 조정부는 상기 방열날개 중공형 히트싱크의 적어도 일부를 감싸 배치될 수도 있다.In the lighting apparatus, the optical adjusting unit may be disposed to surround at least a portion of the heat dissipation blade hollow heat sink.
상기 조명기기에 있어서, 상기 히트싱크부는 상기 방열날개 중공형 히트싱크와 상기 하우징의 사이에 배치되고 상기 하우징의 배치 길이 방향에 수직하게 배치되는 플레이트 히트싱크를 더 구비할 수도 있다.In the above lighting apparatus, the heat sink may further include a plate heat sink disposed between the heat dissipation blade hollow heat sink and the housing and disposed perpendicular to the arrangement length direction of the housing.
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부와 상기 광원모듈 사이에는 열전도성 부착재가 배치될 수도 있다.In the lighting apparatus, a thermally conductive adhesive may be disposed between at least a portion of the heat sink and the light source module.
상기 조명기기에 있어서, 상기 열전도성 부착재는, 열전도성 접착 본드, 열전도성 폼 테이프, 열전도성 폼 패드, 열전도성 그리스 중 하나 이상을 구비할 수도 있다.In the above lighting apparatus, the thermally conductive adhesive may include one or more of a thermally conductive adhesive bond, a thermally conductive foam tape, a thermally conductive foam pad, and a thermally conductive grease.
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부는 알루미늄(Al), 마그네슘(Mg), 철(Fe). 아연도금강판(Gavanized iron), 스테인레스스틸(Stainless Steel), 구리, 알루미늄 합금, 마그네슘 합금 중의 하나 이상을 포함할 수도 있다.In the lighting apparatus, at least a part of the heat sink portion is aluminum (Al), magnesium (Mg), iron (Fe). It may include one or more of galvanized iron, stainless steel, copper, aluminum alloy, magnesium alloy.
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅될 수도 있다.In the lighting device, at least a part of the heat sink portion may be formed of gold (Au), silver (Ag), carbon nanotube (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Surface coating).
상기 조명기기에 있어서, 상기 히트싱크부에는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성될 수도 있다.In the lighting apparatus, at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler may be formed in the heat sink.
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부는 ABS(ABS; acrylonitrile-butadiene-styrene), 폴리카보네이트(PC:Polycarbonate), 폴리이미드(PI; Polyimide), PET(PET; Polyethylene terephthalate), 폴리에틸렌(PE;Poly Ethylene), 폴리에테르에테르케톤(PEEK;polyetheretherketone) 중 하나 이상을 포함할 수도 있다.In the lighting device, at least a part of the heat sink is ABS (acrylonitrile-butadiene-styrene), polycarbonate (PC: Polycarbonate), polyimide (PI; Polyimide), PET (PET; polyethylene terephthalate), polyethylene ( Poly Ethylene (PE) and polyether ether ketone (PEEK).
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅될 수도 있다.In the lighting device, at least a part of the heat sink portion may be formed of gold (Au), silver (Ag), carbon nanotube (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Surface coating).
상기 조명기기에 있어서, 상기 히트싱크부에는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성될 수도 있다.In the lighting apparatus, at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler may be formed in the heat sink.
상기 조명기기에 있어서, 상기 히트싱크부의 적어도 일부에는 히트싱크 보호층이 형성될 수도 있다.In the lighting apparatus, a heat sink protective layer may be formed on at least a portion of the heat sink portion.
상기 조명기기에 있어서, 상기 히트싱크 허브가 상기 하우징에 고정될 수도 있다.In the luminaire, the heat sink hub may be fixed to the housing.
상기 조명기기에 있어서, 상기 히트싱크 허브와 연결되는 상기 방열날개의 타측 단부가 상기 하우징에 고정될 수도 있다.In the lighting device, the other end of the heat dissipation blade connected to the heat sink hub may be fixed to the housing.
첫째, 본 발명의 방열날개 중공형 히트싱크 및 조명기기는, 공기통풍, 공기대류 및 공기관통이 잘 되도록 형성되어 방열기능이 혁신적으로 개선되는 히트싱크부를 제공하여 광원모듈의 작동성능을 최적 상태로 유지시켜 궁극적으로 조명기기의 작동 성능 효율을 증대시킬 수 있다. First, the heat dissipation blade hollow heat sink and lighting device of the present invention is formed to be well ventilated, air convection, and air through the heat sink to provide a heat sink innovatively improved heat dissipation function in the optimal state And ultimately increase the operational performance efficiency of the luminaire.
둘째, 본 발명의 방열날개 중공형 히트싱크 및 조명기기는, 방열 구조의 크기 및 무게가 혁신적으로 개선되는 컴팩트한 구성 및 부품수의 최소화로 인한 조립성 개선과 동시에 제조 원가 절감을 이루어 보급성을 높이고 친환경성을 향상시킬 수도 있다. Second, the heat dissipation blade hollow heat sink and the lighting device of the present invention, the compactness and size of the heat dissipation structure is innovatively improved and the assembly cost due to the minimization of the number of parts to improve the assemblage at the same time manufacturing cost reduction It can also increase environmental friendliness.
셋째, 본 발명의 방열날개 중공형 히트싱크 및 조명기기는, 전체적으로 컴팩트한 사이즈와 중량 감소로 인한 장착성을 극대화하여 사용 범위의 확대 및 유지 보수성을 증진시키는 조명기기를 제공할 수 있다. Third, the heat dissipation wing hollow heat sink and the lighting device of the present invention can provide a lighting device that maximizes the mountability due to the compact size and weight reduction as a whole, and increases the use range and maintainability.
넷째, 본 발명의 방열날개 중공형 히트싱크 및 조명기기의 광원모듈의 배치 구조로 인하여 충분한 발광면을 확보할 수 있도록 배치하여 방출되는 빛의 방향을 다 방향으로 형성하고 균등한 조도의 빛을 넓은 영역에 비출 수 있게 하는 LED(또는 OLED)조명기기로서의 조명기기 제공이 가능하다.Fourth, due to the arrangement structure of the heat dissipation blade hollow heat sink and the light source module of the lighting device to form a sufficient light emitting surface to form the direction of the emitted light in multiple directions and widen the light evenly It is possible to provide a lighting device as an LED (or OLED) lighting device that can be illuminated on the area.
도 1은 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 개략적인 사시도이다. 1 is a schematic perspective view of a heat dissipation blade hollow heat sink and a lighting device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 개략적인 분해 사시도이다. Figure 2 is a schematic exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 다른 시점에서의 개략적인 분해 사시도이다. 3 and 4 are schematic exploded perspective views of different heat dissipation blade hollow heat sinks and lighting apparatuses according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 개략적인 부분 단면 투영 중첩 사시도이다. Figure 4 is a schematic partial cross-sectional projection overlapping perspective view of the heat dissipation wing hollow heat sink and the lighting device according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 광원모듈에 대한 개략적인 평면도 및 부분 단면도이다. 5 and 6 are a schematic plan view and a partial cross-sectional view of the light source module of the heat dissipation blade hollow heat sink and the lighting device according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 공기의 유동 경로를 나타내는 개략적인 선도이다. 7 is a schematic diagram illustrating a flow path of air of a heat dissipation blade hollow heat sink and a lighting device according to an embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 히트싱크부의 부분 단면도이다. 8 is a partial cross-sectional view of a heat sink wing heat sink and a lighting device according to another embodiment of the present invention.
도 9 및 도 10은 본 발명의 또 다른 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 사시도 및 분해 사시도이다.9 and 10 are a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 일 실시예에 따른 방열날개 중공형 히트싱크 전부를 둘러싼 광학 조정부 및 조명기기의 사시도이다.11 is a perspective view of an optical control unit and an illuminating device surrounding all of the heat dissipation blade hollow heat sinks according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 일 실시예에 따른 방열날개 중공형 히트싱크 및 조명기기의 사시도 및 분해 사시도이다. 12 is a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 일 실시예에 따른 히트싱크 허브 관통구가 형성된 방열날개 중공형 히트싱크의 사시도이다. FIG. 13 is a perspective view of a heat dissipation blade hollow heat sink in which a heat sink hub through hole is formed according to another embodiment of the present invention. FIG.
도 14 내지 도 20은 본 발명의 또 다른 일 실시예들에 따른 방열날개 중공형 히트싱크 및 조명기기의 사시도 및 분해 사시도이다.14 to 20 is a perspective view and an exploded perspective view of the heat dissipation blade hollow heat sink and the lighting device according to another embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 방열날개 중공형 히트싱크(500)는 중공형 타입을 취하여 방열 면적을 극대화시키고 공기 유동 경로 확보를 통한 방열 성능 최적화 구조를 형성하고, 본 발명의 조명기기(10)는 하우징(100)과 광원모듈(800)와, 상기 중공형 히트싱크(500)를 포함하는 히트싱크부(400)를 구비하고, 경우에 따라 광학 조정부(700)를 포함한다. 또한 광원모듈(800)은 경우에 따라 기판(200)을 포함할 수도 있는데, 본 실시에에서 광원모듈(800)이 기판(200)을 포함하는 경우를 기준으로 설명한다. Heat dissipation blade hollow heat sink 500 of the present invention takes the hollow type to maximize the heat dissipation area and form a heat dissipation performance optimization structure by securing an air flow path, the lighting device 10 of the present invention is the housing 100 And a heat sink 400 including the light source module 800 and the hollow heat sink 500, and optionally includes an optical adjusting unit 700. In addition, the light source module 800 may include the substrate 200 in some cases. In this embodiment, the light source module 800 includes the substrate 200.
먼저, 조명기기(10)의 하우징(100)은 내부 공간을 형성하는데, 하우징 베이스(110)의 내부 공간에는 본 발명의 광원(300)에 전기적 신호를 인가하는 SMPS 등의 전원모듈(미도시)이 배치된다. 하우징(100)은 하우징 베이스(110)와 하우징 소켓(120)을 포함하는데, 하우징 소켓(120)은 하우징 베이스(110)의 단부에 배치되어 외부 커넥터와의 전기적 연결을 통하여 전원 공급이 이루어질 수 있다. First, the housing 100 of the lighting device 10 forms an internal space, a power module such as SMPS for applying an electrical signal to the light source 300 of the present invention in the internal space of the housing base 110 (not shown) Is placed. The housing 100 includes a housing base 110 and a housing socket 120. The housing socket 120 may be disposed at an end of the housing base 110 to supply power through an electrical connection with an external connector. .
히트싱크부(400)는 하우징(100)에 위치 고정되어 배치된다. 히트싱크부(400)는 하기되는 광원(300)에서 발생하는 열이 면접촉을 통하여 전달받아 외부로 발산함으로써 광원(300)에서 생성되는 열을 소진시켜 광원(300)의 열로 인한 성능 저하를 방지 내지 최소화시킬 수 있다. The heat sink 400 is positioned fixed to the housing 100. The heat sink unit 400 receives heat generated from the light source 300 to be dissipated through the surface contact and dissipates to the outside to exhaust heat generated from the light source 300 to prevent performance degradation due to heat of the light source 300. To minimize.
광원모듈(800)의 기판(200)은 히트싱크부(400)의 상부에 배치되는데, 기판(200)은 히트싱크부(400)와 직접 면적촉을 이룰 수도 있고, 하기되는 열전도성 부착재를 통한 접촉 구조를 이룰 수도 있는 등 다양한 구성이 가능하다. The substrate 200 of the light source module 800 is disposed above the heat sink 400, and the substrate 200 may form an area contact with the heat sink 400 directly. Various configurations are possible, such as to form a contact structure through.
본 발명의 기판(200)은 소정의 스트립 형상일 수도 있고, 소정의 직사각형 타입의 기판의 복수 개의 연속 배치 구조를 이룰 수도 있는 등 다양한 구성이 가능하다. The substrate 200 of the present invention may have a predetermined strip shape or may form a plurality of continuous arrangement structures of a predetermined rectangular type substrate.
본 실시예에서 기판(200)은 통상적인 인쇄회로기판의 복수 개의 연결 배치 구조를 취할 수도 있고, 열전도성 메탈 기판으로 형성될 수도 있으나, 본 실시예에서는 FPCB(Flexible printed circuit board)로 형성되는 구조로 구현되었으나 이에 국한되지 않고 하기되는 히트싱크부의 구조에 부합하는 범위에서 다양한 구현이 가능하다. In this embodiment, the substrate 200 may take a plurality of connection arrangement structures of a conventional printed circuit board, or may be formed of a thermally conductive metal substrate. In this embodiment, the substrate 200 is formed of a flexible printed circuit board (FPCB). Although not limited thereto, various implementations may be made in a range corresponding to the structure of the heat sink unit described below.
본 실시예의 FPCB로 형성되는 기판(200)은 기판 허브부(210)와 기판 방열날개(220)을 포함한다. 기판 허브부(210)는 소정의 곡면 내지 평면 구조로 형성될 수 있는데, 곡면으로 형성되는 경우, 소정 각도만큼 개방 삭제된 원형 시트 구조로 형성되어 하기되는 히트싱크부(400)의 히트싱크 허브(510)이 곡면으로 형성되는 경우 원활한 면접촉 구조 형성 가능하다. The substrate 200 formed of the FPCB according to the present embodiment includes a substrate hub 210 and a substrate heat dissipation wing 220. The substrate hub portion 210 may be formed in a predetermined curved or planar structure. When the substrate hub portion 210 is formed in a curved surface, the heat sink hub of the heat sink 400 is formed in a circular sheet structure that is opened and erased by a predetermined angle. When the 510 is formed in a curved surface, it is possible to form a smooth surface contact structure.
기판 방열날개(220) 기판 허브부(210)의 외주로부터 반경 방향으로 연장 되고, 기판 방열날개(220)은 복수 개가 기판 허브부(210)의 외주로부터 반경 방향으로 연장 배치되는 구조를 혀엉할 수 있다. Substrate heat dissipation blade 220 extends in the radial direction from the outer circumference of the substrate hub portion 210, a plurality of substrate heat dissipation wings 220 may be tangled structure that extends in the radial direction from the outer circumference of the substrate hub portion 210 have.
기판 방열날개(220)과 기판 허브부(210)의 일면 상에는 하나 이상의 광원(300)이 배치될 수 있다. One or more light sources 300 may be disposed on one surface of the substrate heat dissipation wing 220 and the substrate hub 210.
광원(300)은 기판(200)의 일면 상에 배치되는데, 광원(300)은 하우징(100)에 배치되는 전원모듈(미도시)과 전기적으로 연결되어 전원모듈로부터 인가되는 전기적 신호인 전원에 따라 소정의 빛을 생성하여 외부로 출사한다. The light source 300 is disposed on one surface of the substrate 200, and the light source 300 is electrically connected to a power module (not shown) disposed in the housing 100 in accordance with a power source that is an electrical signal applied from the power module. Generates predetermined light and emits it to the outside.
광원(300)은 복수 개의 자발광 소자로 구현되는데, LED 또는 OLED(organic light emit diode)와 같은 자발광 소자 내지 이들의 조합으로 구현될 수 있다. 광원모듈(800)의 광원(300)이 led로 형성되는 경우 기판(200)이 요구되고, 경우에 따라 면광원으로 활용되는 oled로 형성되는 경우 기판없이 직접 히트싱크부에 배치되는 구조를 취할 수도 있다. The light source 300 may be implemented by a plurality of self-light emitting devices, and may be implemented by a self-light emitting device such as an LED or an organic light emit diode (OLED) or a combination thereof. When the light source 300 of the light source module 800 is formed of leds, the substrate 200 is required, and in some cases, when the light source 300 is formed of oled used as a surface light source, the substrate 200 may be disposed directly on the heat sink without a substrate. have.
이와 같은 구조를 통하여 광원(300)에서 생성되는 열은 광원모듈(800)의 기판(200)으로부터 히트싱크부(400)를 거쳐 외부로 발산됨으로써, 광원(300)에서의 열 감쇠로 인하여 광원(300)은 장시간의 발광 작동시에도 효율을 최대화시키는 최적의 상태를 유지하거나 적어도 급격한 축열로 인한 광원(300) 성능의 급저하를 방지할 수 있고, 이를 통하여 광원(300)의 내구 연한을 증대시킬 수 있다. Through such a structure, heat generated in the light source 300 is emitted from the substrate 200 of the light source module 800 to the outside through the heat sink 400, and thus, due to heat attenuation in the light source 300, the light source ( 300 may maintain an optimal state maximizing efficiency even during a long time light emission operation or may prevent a sudden drop in the performance of the light source 300 due to at least rapid heat storage, thereby increasing the service life of the light source 300. Can be.
한편, 본 발명의 조명기기(10)는 히트싱크부의 열발산 기능을 극대화시킬 수 있는 구조를 형성한다. 즉, 본 발명의 히트싱크부(400;500,600)는 방열날개 중공형 히트싱크(500)를 포함하는데, 방열날개 중공형 히트싱크(500)는 하우징(100)이 배치되는 길이 방향으로 형성되고, 하우징(100)이 배치되는 길이 방향에 수직한 방향으로 관통되어 중앙에 공기 유동 공간이 형성되는 구조를 취한다. On the other hand, the lighting device 10 of the present invention forms a structure that can maximize the heat dissipation function of the heat sink. That is, the heat sink 400 (500, 600) of the present invention includes a heat dissipation blade hollow heat sink 500, the heat dissipation wing hollow heat sink 500 is formed in the longitudinal direction in which the housing 100 is disposed, It takes a structure in which the air flow space is formed at the center by penetrating in the direction perpendicular to the longitudinal direction in which the housing 100 is disposed.
보다 구체적으로, 방열날개 중공형 히트싱크(500)는 히트싱크 허브(510)와 방열날개(520)을 포함하는데, 히트싱크 허브(510)의 외주에 방열날개(520)가 배치된다. 본 실시예에서 히트싱크 허브(510)와 방열날개(520)는 일체로 형성될 수도 있고, 별개물로 형성될 수도 있으며, 히트싱크 허브가 하기되는 광학조정부와 일체로 형성될 수도 있다. More specifically, the heat dissipation blade hollow heat sink 500 includes a heat sink hub 510 and a heat dissipation wing 520, and the heat dissipation wing 520 is disposed on an outer circumference of the heat sink hub 510. In the present embodiment, the heat sink hub 510 and the heat dissipation blade 520 may be integrally formed, or may be formed separately, or may be integrally formed with the optical adjusting unit to which the heat sink hub is to be described.
본 실시예에서, 히트싱크 허브(510)는 하우징(100)이 배치되는 길이 방향에 교차 배치되는데, 본 실시예에서는 수직하게, 즉 히트싱크 허브(510)는 도면 상 Z축에 수직하게 배치된다. In this embodiment, the heatsink hub 510 is intersected in the longitudinal direction in which the housing 100 is disposed, in this embodiment vertically, that is, the heatsink hub 510 is disposed perpendicular to the Z axis in the drawing. .
히트싱크 허브(510)는 평면 또는 곡면으로 형성될 수 있는데, 실질적으로 도면 상에서 X-Y 평면 상 배치되는 평면 구조를 형성하거나 도는 Z축의 길이 방향을 따라 곡선 단면을 형성하는 곡면 구조를 이루는 등 하우징(100)이 배치되는 길이 방향에 교차 내지는 실질적으로 수직하게 배치되는 범위에서 다양한 변형이 가능하다. The heat sink hub 510 may be formed in a planar or curved surface. The housing 100 may be formed in a planar structure disposed substantially on the XY plane in the drawing, or in a curved structure forming a curved cross section along the longitudinal direction of the Z axis. Various modifications are possible in the range where they are arranged to intersect or substantially perpendicular to the longitudinal direction in which they are disposed.
히트싱크 허브(510)에는 허브 장착부(511)가 관통 형성되고, 이는 하기되는 광학 조정부(700)의 상단에 형성되는 광학 조정 장착부(711)와 함께 맞물리어 체결됨으로써 광학 조정부(700)의 안정적인 장착 구조를 형성할 수 있다. The heat sink hub 510 has a hub mounting portion 511 formed therethrough, which is engaged with the optical adjustment mounting portion 711 formed at the upper end of the optical adjustment portion 700 to be stably mounted to the optical adjustment portion 700. The structure can be formed.
히트싱크 허브(510)에는 허브 라인 관통구(513)를 형성하는데, 허브 라인 관통구(513)를 통하여 방열날개 중공형 히트싱크에 배치되는 기판(200)과 하우징(100)의 내부에 배치되는 전원모듈(미도시)과의 원활한 연결을 형성하는 배선라인(미도시)의 관통을 형성한다. The heat sink hub 510 is provided with a hub line through hole 513, which is disposed inside the substrate 200 and the housing 100 disposed in the heat dissipation blade hollow heat sink through the hub line through hole 513. It forms a penetration of a wiring line (not shown) that forms a seamless connection with the power module (not shown).
방열날개(40)은 일단이 히트싱크 허브(510)로부터 방사 배치되는 구조를 취한다. 즉, 히트싱크 허브(510)의 외주로부터 방사 방향으로 연장 배치되되, 히트싱크 허브(510)의 반경 방향뿐만 아니라 하우징(100)의 길이 방향으로 형성되어 히트싱크 허브와 방열날개를 포함하는 방열날개 중공형 히트싱크(500)는 단면이 대체적인 반원 내지 포물선 구조를 형성할 수 있다. The heat dissipation wing 40 has a structure in which one end is radially disposed from the heat sink hub 510. That is, the heat dissipation blade is disposed extending in the radial direction from the outer circumference of the heat sink hub 510, and formed in the longitudinal direction of the housing 100 as well as the radial direction of the heat sink hub 510, including a heat sink hub and a heat dissipation wing. The hollow heat sink 500 may form a semicircular to parabolic structure having a generally cross section.
방열날개(520)은 히트싱크 허브(510)로부터 연장 배치되되, 방열날개(520)과 히트싱크 허브(510)가 내부 공간을 형성하고 디멘져런 히트싱크 방열날개(520)의 사이 간극을 통하여 외부와 내부의 공기 유동 경로 확보를 확장시킬 수 있는 구조를 형성한다. The heat dissipation wing 520 extends from the heat sink hub 510, and the heat dissipation wing 520 and the heat sink hub 510 form an inner space, and are externally disposed through a gap between the dimension heat sink 520. And form a structure that can extend the securing of the internal air flow path.
방열날개(520)은 히트싱크 허브(510)의 외주로부터 둘 이상이 연장 배치되는데, 일단이 히트싱크 허브(510)에 연결되고 타단은 하우징(100)의 길이 방향, 즉 적어도 일부가 Z축 방향을 향하도록 연장 배치되는데, 복수 개의 방열날개(520)은 서로 일단이 배치되는 히트싱크 허브(510)의 원주 상에서 서로 이격 배치되는 구조를 형성하여 이격 배치되는 방열날개(520)의 사이에 쉘 유동구(529)를 형성하여 방열날개(520)의 내부 공간(A5)와 외부 공간(Ao) 간의 공기 유동을 허용하여 방열날개(520)을 통한 열방출을 원활하게 한다. The heat dissipation wing 520 is disposed to extend at least two from the outer periphery of the heat sink hub 510, one end is connected to the heat sink hub 510 and the other end is in the longitudinal direction of the housing 100, that is, at least a part of the heat sink hub 510 direction The heat dissipation blades 520 are formed to extend toward each other, and the plurality of heat dissipation blades 520 forms a structure in which one end is spaced apart from each other on the circumference of the heat sink hub 510, and the shell flow port is disposed between the heat dissipation wings 520 spaced apart from each other. A 529 is formed to allow air flow between the inner space A5 and the outer space Ao of the heat dissipation wing 520 to facilitate heat dissipation through the heat dissipation wing 520.
이와 같은 구조를 통하여 쉘 유동구(529)를 통한 원활한 공기의 유동 경로 형성을 허용하고, 내부 공간(A5)에서의 원활한 유동경로 형성을 가능하게 하여 열감쇠 속도를 증진시켜 광원(300)에서 발생하는 열을 신속히 배출함으로서 열화 발생 방지 및 최적 작동 성능을 유지시킬 수 있다. Through such a structure, a smooth flow path of air through the shell flow port 529 is allowed, and a smooth flow path is formed in the inner space A5, thereby increasing the thermal attenuation speed to be generated in the light source 300. By quickly dissipating heat, deterioration can be prevented and optimum operating performance can be maintained.
한편, 방열날개(520)이 이루는 간극인 쉘 유동구(529)는 본 실시에에서 히트싱크 허브(510)로부터 연장되는 방향으로 간격이 점점 넓어지는 구조를 형성한다. Meanwhile, the shell flow port 529, which is a gap formed by the heat dissipation blade 520, forms a structure in which the gap gradually widens in the direction extending from the heat sink hub 510 in the present embodiment.
방열날개(520)는 복수 개가 배치되는 구조를 형성하고, 복수 개의 방열날개(520)은 타단에서의 안정적인 지지 구조를 형성하도록 방열날개(520)의 타단은 방열날개(520)에 의하여 연결되는데, 방열날개(520)의 타단과 방열날개(520)은 원형 링 구조를 형성한다. 이와 같은 구조를 통하여 방열날개 중공형 히트싱크(520)는 전체적으로 종(bell) 모양을 형성하되, 외측면에 수레 유동구(529)가 형성되는 구조를 취하여 내부와 외부 간의 공기 유동을 허용하는 구조를 이룬다. The heat dissipation wing 520 forms a structure in which a plurality of heat dissipation blades 520 are formed, and the other end of the heat dissipation wing 520 is connected by the heat dissipation wing 520 to form a stable support structure at the other end. The other end of the heat dissipation wing 520 and the heat dissipation wing 520 form a circular ring structure. Through such a structure, the heat dissipation blade hollow heat sink 520 has a bell shape as a whole, but has a structure in which a wagon flow port 529 is formed on the outer surface to allow air flow between the inside and the outside. Achieve.
방열날개(520)은 방열날개 바디(521)와 방열날개 사이드 라인부(523)을 포함한다. The heat dissipation wing 520 includes a heat dissipation wing body 521 and a heat dissipation wing side line part 523.
방열날개 바디(521)는 히트싱크 허브(510)의 외주로부터 하우징(100)이 배치되는 길이 방향, 즉 Z축 방향으로 배치되고, 일면 상부에 기판이 배치되고, 방열날개 사이드 라인부(523)는 방열날개 바디(521)의 외측으로 하우징(100)이 배치되는 길이 방향에 수직한 방향, 예를 들어 X-Y 평면 상에서 히트싱크 허브 및 방열날개의 중심으로부터 반경 방향으로 배치되어, 방열날개 바디(521)에 기판(200)이 수용 배치되는 공간을 형성한다. The heat dissipation wing body 521 is disposed in a longitudinal direction in which the housing 100 is disposed from the outer circumference of the heat sink hub 510, that is, in a Z-axis direction, and a substrate is disposed on an upper surface of the heat dissipation wing side line part 523. The heat dissipation wing body 521 is disposed radially from the center of the heat sink hub and the heat dissipation wing on the XY plane in a direction perpendicular to the longitudinal direction in which the housing 100 is disposed outside the heat dissipation wing body 521. ) To form a space in which the substrate 200 is accommodated.
방열날개 사이드 라인부(523)은 방열날개 바디(521)의 양측에 연장 형성되어 기판(200)의 배치 공간 형성과 더불어 광학 조정 부(700)의 안정적인 수용 장착 구조를 형성할 수도 있다. 즉, 방열날개 바디(521)에 대응 배치되는 광학 조정부(700)의 양측을 폐쇄시키는 구조를 형성하여 광학 조정부(700) 및 방열날개 바디(521)와 함께 기밀된 밀폐 공간을 형성하여 내부 공간에 배치되는 기판(200) 및 광원(300)의 수분 내지 오물에 의한 손상을 방지하도록 할 수도 있다. The heat dissipation wing side line part 523 may be extended on both sides of the heat dissipation wing body 521 to form a stable accommodation mounting structure of the optical adjusting unit 700 in addition to the formation of an arrangement space of the substrate 200. That is, a structure for closing both sides of the optical adjusting unit 700 corresponding to the heat dissipation wing body 521 is formed to form an airtight sealed space together with the optical adjusting unit 700 and the heat dissipation wing body 521 to form an airtight space. Damage to the substrate 200 and the light source 300 disposed by moisture or dirt may be prevented.
방열날개(520)의 적어도 일부는 곡면 도는 각형 배치 구조를 취하는데, 방열날개(520)의 방열날개 바디(521)는 하우징(100)의 길이 방향으로 연장 배치되되, 앞서 기술된 바와 같이 단면의 대체적인 형상이 Z축 방향으로 포물선 내지 원형 곡선 구조를 이루는데, 경우에 따라 방열날개(520)의 방열날개 바디(521)도 곡면 구조를 취하거나 또는 일면 상에 배치되는 기판(200)의 박리를 방지하기 위한 각형 구조를 취할 수도 있다. 즉, 방열날개(520)의 방열날개 바디(521)는 하우징(100)의 길이 방향, 즉 Z축 방향으로 대체적인 단면 경향이 포물선 내지 반원 구조를 이루는 형식으로 형성되되, 방열날개(520)의 방열날개 바디(521)의 외주면은 연속적 곡선 구조를 취할 수도 있으나, 본 실시예에서 방열날개 바디(521)의 외주면은 각형 구조를 취하여 소정의 복수 개의 평면 연속 배치 구조를 이룬다. 이와 같이 연속적 곡선 배치 구조 이외에 연속적 평면 배치 구조를 통하여 기판(200)과 방열날개 바디(521)의 외주면의 접촉 상태를 보다 원활하게 하여 광원(300)로부터 기판(200)으로 전달되는 열 발산 효율성을 증대시키고 기판(200)의 방열날개 바디(521)로부터의 박리를 방지할 수 있다. At least a portion of the heat dissipation wing 520 has a curved or rectangular arrangement structure, wherein the heat dissipation wing body 521 of the heat dissipation wing 520 extends in the longitudinal direction of the housing 100, and has a cross-section as described above. The general shape is a parabolic to circular curved structure in the Z-axis direction, in some cases, the heat dissipation wing body 521 of the heat dissipation wing 520 also takes a curved structure or peeling of the substrate 200 disposed on one surface It may take a square structure to prevent the. That is, the heat dissipation wing body 521 of the heat dissipation wing 520 is formed in the form of a parabolic to semi-circular structure having a generally cross-sectional tendency in the longitudinal direction of the housing 100, that is, the Z-axis direction. The outer circumferential surface of the heat dissipation wing body 521 may have a continuous curved structure, but in this embodiment, the outer circumferential surface of the heat dissipation wing body 521 has a rectangular structure to form a plurality of planar continuous arrangement structures. As described above, the heat dissipation efficiency transmitted from the light source 300 to the substrate 200 may be improved by smoothly contacting the substrate 200 with the outer circumferential surface of the heat dissipation wing body 521 through the continuous planar arrangement. It is possible to increase and prevent the peeling from the heat dissipation wing body 521 of the substrate 200.
방열날개 중공형 히트싱크(500)의 상부에는 기판(200)이 배치되는데, 보다 구체적으로 히트싱크 허브(510)의 일면 상부에는 기판 허브(210)가, 그리고 방열날개(520)의 일면 상부에는 기판 방열날개(220)이 배치될 수 있다. 이때, 기판과 방열날개 중공형 히트싱크(500)는 직접적인 면접촉을 이룰 수도 있으나 이들 사이에 열전달의 효율성을 높이가니 양자 간의 접촉 면적을 증대시켜 열전달율을 증대시키는 구성요소로서 열전도성 부착재(230)가 더 구비될 수도 있다. 열전도성 부착재(230)는 히트싱크부(400;500,600)의 적어도 일부와 기판(200) 사이에 배치되는데, 본 실시예에서 열전도성 부착재(230)는 방열날개 중공형 히트싱크(500)와 기판 사이에 배치되도록 구현되었다. 열전도성 부착재(230)는 열전도성 접착 본드, 열전도성 폼 테이프, 열전도성 폼 패드, 열전도성 그리스 중 하나 이상을 포함할 수 있는데, 기판과 방열날개 중공형 히트싱크 사이의 접촉력을 증대시키거나 열전달성능을 증대시키는 기능을 수행하여 양자 간의 열전달율을 향상 시킬 수 있다. The substrate 200 is disposed on an upper portion of the heat dissipation wing hollow heat sink 500. More specifically, the substrate hub 210 is disposed on one side of the heat sink hub 510, and the upper portion of the heat dissipation wing 520 is disposed on the substrate 200. The substrate heat dissipation blade 220 may be disposed. In this case, the substrate and the heat dissipation blade hollow heat sink 500 may make direct surface contact but increase the efficiency of heat transfer between them, thereby increasing the contact area between the two to increase the heat transfer rate. ) May be further provided. The thermally conductive adhesive 230 is disposed between at least a portion of the heat sinks 400 and 500 and 600 and the substrate 200. In the present embodiment, the thermally conductive adhesive 230 is a heat dissipation blade hollow heat sink 500. And is disposed between the substrate and the substrate. The thermally conductive adhesive 230 may include one or more of a thermally conductive adhesive bond, a thermally conductive foam tape, a thermally conductive foam pad, and a thermally conductive grease to increase the contact force between the substrate and the heat dissipation blade hollow heatsink. By performing the function of increasing the heat transfer performance can improve the heat transfer rate between the two.
한편, 본 발명의 히트싱크부(400;500,600)는 방열 성능을 향상시키는 재료로 형성될 수 있다. 본 발명의 히트싱크부(400;500,600)의 적어도 일부는 알루미늄(Al), 마그네슘(Mg), 철(Fe), 아연도금강판(Gavanized iron), 스테인레스스틸(Stainless Steel), 구리, 알루미늄 합금, 마그네슘 합금 중의 하나 이상을 포함할 수 있다. 이와 같은 열용량이 우수하고 및/또는 열전도성이 우수한 금속 재질로 형성됨으로써 우수한 방열 성능으로 인하여 광원모듈(800) 내지 경우에 따라 전원모듈(미도시)에서 생성된 열이 외부로 신속히 발산됨으로써 우수한 열감쇠로 인하여 구성요소의 작동 성능을 최적의 상태로 유지시킬 수도 있다. On the other hand, the heat sink 400 of the present invention (400; 500, 600) may be formed of a material that improves the heat dissipation performance. At least a portion of the heat sink 400 (500; 600) of the present invention is aluminum (Al), magnesium (Mg), iron (Fe), galvanized iron (Gavanized iron), stainless steel (Stainless Steel), copper, aluminum alloy, It may comprise one or more of the magnesium alloys. The heat generated from the light source module 800 to the power module (not shown) is rapidly dissipated to the outside due to the excellent heat dissipation performance by being formed of a metal material having such excellent heat capacity and / or excellent thermal conductivity. Attenuation can also keep the component's operating performance optimal.
경우에 따라, 히트싱크부(400;500,600)의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅되는 구조를 취할 수도 있다. 즉, 금속 재질로 형성되는 히트싱크부(400;500,600)의 내측면 또는 외측면 또는 내외측면의 적어도 일부에 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상을 코팅함으로써 외부 공기와의 열전도성을 극대화시키는 구성을 취할 수도 있다. In some cases, at least a portion of the heat sinks 400, 500, and 600 may include gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, graphene, boron nitride (BN), and It may take a structure that is surface coated with one or more of ceramics. That is, gold (Au), silver (Ag), carbon nanotubes (CNT), and graphene on at least a portion of an inner surface, an outer surface, or an inner and outer surface of the heat sinks 400 and 500 and 600 formed of a metal material. By coating one or more of, boron nitride (BN), and ceramic (ceramic) may be configured to maximize the thermal conductivity with the outside air.
예를 들어, 히트싱크부, 특히 방열날개 중공형 히트싱크는 선택적으로 방열효율을 높이고 표면의 부식을 방지하기 위하여 구리(Cu) 소재의 금속에 탄소나노튜브(CNT) 소재의 물질을 코팅한 것일 수 있는데, CNT(탄소 나도 튜브)는 탄소의 동소체(Allotrope)의 하나인 흑연판(Graphite sheet)이 나노(Nano) 크기의 직경으로 둥글게 말린 형태의 탄소 섬유 복합소재로, CNT(탄소 나도 튜브)는 탄소 6개로 이루어진 육각형 벌집구조의 탄소 층이 가늘고 길게 연결된 원통(튜브) 형태 구조 탄소섬유 복합소재이다. For example, the heat sink, especially the heat dissipation blade hollow heat sink, is a material coated with carbon nanotube (CNT) material on a copper (Cu) metal material to selectively increase heat dissipation efficiency and prevent surface corrosion. CNT (Carbon Spiral Tube) is a carbon fiber composite material in which a graphite sheet, one of the Allotrope of carbon, is rounded to a nano size diameter. Is a cylindrical (tube) structure carbon fiber composite material in which a carbon layer of hexagonal honeycomb structure composed of six carbons is thin and long connected.
CNT는 벌집구조 탄소 층에 따라 단층 벽 CNT(SWNT), 복층 벽 CNT(DWNT) 및 다층 벽 CNT(MWNT) 등이 있는데, CNT(탄소 나노 튜브)는 강철보다 4배 이상 고강도이고 알루미늄 보다 50% 이상 가벼우며 전기 전도성이 우수하고 열전도성이 자연계에서 가장 뛰어난 다이아몬드를 능가한다(표 1 참조). CNTs include single-walled CNTs (SWNTs), multi-walled CNTs (DWNTs), and multi-walled CNTs (MWNTs), depending on the honeycomb carbon layer.CNTs (carbon nanotubes) are four times higher than steel and 50% higher than aluminum. It is ideally light, has excellent electrical conductivity, and has the highest thermal conductivity of diamond in nature (see Table 1).
표 1
물질 열전도성 Kcal/m.hr.'C
탄소 나노 튜브 6,000
그래핀 5,000
다이아몬드 1,300~2,400
360
구리 320
265
알루미늄 175
플라스틱 0.2~0.5
종이 0.03~0.2
Table 1
matter Thermal Conductivity Kcal / m.hr.'C
Carbon nanotube 6,000
Graphene 5,000
Diamond 1,300-2,400
silver 360
Copper 320
gold 265
aluminum 175
plastic 0.2-0.5
paper 0.03-0.2
구리(Cu)는 물론 다이아몬드와 같은 기존 다른 물질에 비하여 열전도성이 획기적으로 뛰어난 탄소나노튜브(CNT)를 방열날개 중공형 히트싱크 구조의 방열날개 중공형 히트싱크의 표면에 코팅함으로써 열전도성이 더욱 극대화된 방열날개 중공형 히트싱크가 된다.Thermal conductivity is further improved by coating carbon nanotubes (CNT) with excellent thermal conductivity compared to other materials such as copper (Cu) and diamonds. Maximized heat dissipation blade hollow heatsink.
또한, 경우에 따라, 히트싱크부(400;500,600)의 적어도 일부는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성되는 구조를 취할 수도 있다. 즉, 금속 재질로 형성되는 히트싱크부(400;500,600)에 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성함으로써 외부 공기와의 열전도성을 극대화시키는 구성을 취할 수도 있다. 예를 들어, 구리(Cu)와 같은 금속재에, 탄소나노튜브(CNT)를 코팅하는 방법으로는 탄소나노튜브(CNT)를 물, 에탄올(IPA) 또는 아세테이트 등과 같은 용제와 섞어서 스프레이시키거나, 탄소나노튜브(CNT) 페이스트 형태로 도포하는 방법 등이 있는데, 이러한 도포 후, 열건조기를 통한 건조 또는 UV 처리를 통하여 탄소나노튜브(CNT) 코팅의 우수한 물성을 확보할 수도 있다. In some cases, at least a portion of the heat sinks 400 and 500 and 600 may have a structure in which at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is filled and formed. It may be. That is, at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is formed in the heat sinks 400 and 500 and 600 formed of a metal material to form thermal conductivity with external air. It may also take a configuration to maximize the. For example, a method of coating carbon nanotubes (CNT) on a metal material such as copper (Cu) may be sprayed by mixing carbon nanotubes (CNT) with a solvent such as water, ethanol (IPA) or acetate, or carbon. There is a method of applying in the form of a nanotube (CNT) paste, it is possible to ensure the excellent properties of the coating of carbon nanotubes (CNT) through drying or UV treatment through a heat dryer after such coating.
이 밖에도, 금속재에 CNT 또는 그래핀 원료 물질을 분쇄하거나 절단한 후 CNT 분산액을 대상 필름에 적용해 코팅하는 습식 코팅 방법과, CNT 또는 그래핀을 생산하는 즉시 필름에 코팅해 비용과 공정을 줄이면서 성능 또한 높일 수 있는 건식 코팅 방법 등을 활용할 수도 있다. In addition, the wet coating method of crushing or cutting CNT or graphene raw material on a metal material and then applying the CNT dispersion to the target film and coating the film immediately after producing CNT or graphene to reduce costs and processes. Dry coating methods can also be used to increase performance.
한편, 상기 실시에에서 히트싱크부의 재료는 열전도성을 중심으로 언급하였으나, 경량화 및 열전도성 향상을 동시에 구비하는 재료로 형성될 수도 있다. On the other hand, in the above embodiment, the material of the heat sink is referred to mainly as the thermal conductivity, but may be formed of a material having both weight reduction and thermal conductivity improvement at the same time.
본 발명의 히트싱크부(400;500,600)의 적어도 일부는 ABS(acrylonitrile -butadiene-styrene), 폴리카보네이트(PC:Polycarbonate), 폴리이미드(PI; Polyimide), PET(PET; Polyethylene terephthalate), 폴리에틸렌(PE;Poly Ethylene), 폴리에테르에테르케톤(PEEK;polyetheretherketone) 중 하나 이상을 포함할 수 있다. 이와 같은 경질 재료의 히트싱크부를 통하여 운반성 및 장착성을향상시킬 수도 있다. At least a part of the heat sinks (400; 500, 600) of the present invention is ABS (acrylonitrile -butadiene-styrene), polycarbonate (PC: Polycarbonate), polyimide (PI; Polyimide), PET (PET; polyethylene terephthalate), polyethylene ( Poly Ethylene (PE) and polyether ether ketone (PEEK). It is also possible to improve the carrying and mounting properties through the heat sink of such a hard material.
경우에 따라 이와 동시에, 히트싱크부(400;500,600)의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅되는 구조를 취할 수도 있다. 즉, 합성수지 재질로 형성되는 히트싱크부(400;500,600)의 내측면 또는 외측면 또는 내외측면의 적어도 일부에 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅함으로써 외부 공기와의 열전도성을 극대화시키는 구성을 취할 수도 있다. In some cases, at the same time, at least a portion of the heat sinks 400, 500, and 600 may include gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, and boron nitride (BN). And a structure that is surface coated with one or more of ceramics. That is, gold (Au), silver (Ag), carbon nanotubes (CNT), and graphene on at least a portion of an inner surface, an outer surface, or an inner and outer surface of the heat sinks 400 and 500 and 600 formed of a synthetic resin material. The surface coating may be made of one or more of boron nitride (BN) and ceramic to maximize thermal conductivity with external air.
또한, 경우에 따라, 히트싱크부(400;500,600)의 적어도 일부는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성되는 구조를 취할 수도 있다. 즉, 합성수지 재질로 형성되는 히트싱크부(400;500,600)에 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성됨으로써 외부 공기와의 열전도성을 극대화시키는 구성을 취할 수도 있다. In some cases, at least a portion of the heat sinks 400 and 500 and 600 may have a structure in which at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is filled and formed. It may be. That is, the heat sinks 400, 500, 600 formed of a synthetic resin are filled with one or more of carbon nanotube (CNT) fillers, boron nitride (BN) fillers, and ceramic fillers to form thermal conductivity with external air. It may also take a configuration to maximize the.
또 한편, 본 발명의 히트싱크부(400;500,600)는 산화 등으로 인한 손상을 방지하여 내구성을 증대시키도록 적어도 일부에 히트싱크 보호층이 형성될 수 있다. 히트싱크 보호층(401)은 도료 내지 산화피막 코팅으로 형성될 수 있는데, 도료를 이용한 분체 도장 내지 도료 전착 도장 방식으로 표면 코팅되거나 또는 산화피막형성을 위한 산화피막 도금코팅 방식으로 형성될 수도 있는 등 히트싱크 보호층(401)을 통한 표면 보호막 형성을 이루는 범위에서 다양한 방법이 사용될 수 있다.On the other hand, the heat sink 400 (500; 600) of the present invention may be formed on at least a portion of the heat sink protective layer to increase the durability by preventing damage due to oxidation. The heat sink protective layer 401 may be formed of a coating or an oxide coating, which may be surface coated by a powder coating or an electrodeposition coating, or may be formed by an oxide plating coating method for forming an oxide coating. Various methods may be used in the range of forming the surface protective film through the heat sink protective layer 401.
한편, 본 발명의 방열날개 바디(521) 타단에는 기판(200)의 위치를 고정 유지시키는 구성요소가 더 구비될 수도 있다. 즉, 방열날개 바디(521)의 단부로 하우징(100)을 향한 타단에는 방열날개 기판 클립부(525)가 배치되는데, 방열날개 기판 클립부(525)는 방열날개 바디의 단부에서 방열날개 바디(521)의 일면으로부터 이격되어 돌출 형성되고, 방열날개 기판 클립부(525)에 기판(200)의 단부 적어도 일부가 방열날개 바디(521)의 일면과의 사이에 배치되도록 하여 기판(200)의 기판 방열날개(220)의 단부가 방열날개 바디(521)의 일면으로부터 분리되어 외부를 향하여 뻗쳐 배치되는 것을 방지하여 조립시 기판 방열날개(220)로 인한 조립 불편을 방지할 수도 있다. On the other hand, the other end of the heat dissipation wing body 521 of the present invention may be further provided with a component for fixing the position of the substrate 200. That is, at the other end of the heat dissipation wing body 521 toward the housing 100, a heat dissipation wing substrate clip portion 525 is disposed, and the heat dissipation wing substrate clip portion 525 has a heat dissipation wing body (at the end of the heat dissipation wing body). The substrate of the substrate 200 is formed so as to be spaced apart from one surface of the 521, and at least a part of the end of the substrate 200 is disposed between the surface of the heat dissipation wing body 521 and the heat dissipation wing substrate clip 525. An end portion of the heat dissipation wing 220 may be separated from one surface of the heat dissipation wing body 521 to prevent the end of the heat dissipation wing 220 from being extended toward the outside, thereby preventing assembly discomfort due to the substrate heat dissipation wing 220.
또 한편, 본 발명의 방열날개 중공형 히트싱크(500)는 열을 배출하여 감쇠시키는 방열 성능을 증대시키기 위한 구성요소를 더 구비할 수도 있다. 즉, 방열날개 중공형 히트싱크(500)의 방열날개(520)의 내면 측에는 방열핀(540)이 더 구비될 수 있다. 방열핀(540)은 하우징(100)의 길이 방향인 Z축 방향, 즉 방열날개(520)의 길이 방향을 따라 배치되는데, 방열핀(540)은 방열날개 중공형 히트싱크(500)의 중앙을 향하여 소정의 너비를 구비할 수 있다. 방열핀(540)은 복수 개가 배치될 수 있으나, 각각의 방열핀(540)은 서로 사전 설정된 간격으로 이격 배치되어 공기의 원활한 유동을 위한 공간 확보를 이룰 수 있다. On the other hand, the heat dissipation blade hollow heat sink 500 of the present invention may further include a component for increasing the heat dissipation performance to discharge and attenuate heat. That is, the heat dissipation fin 540 may be further provided on the inner surface side of the heat dissipation wing 520 of the heat dissipation wing hollow heat sink 500. The heat dissipation fin 540 is disposed along the Z-axis direction, that is, the length direction of the heat dissipation wing 520, in the longitudinal direction of the housing 100, and the heat dissipation fin 540 is predetermined toward the center of the heat dissipation wing hollow heat sink 500. It may have a width of. A plurality of heat dissipation fins 540 may be arranged, but each of the heat dissipation fins 540 may be spaced apart from each other at a predetermined interval to achieve a space for a smooth flow of air.
또한, 본 발명의 하우징(100)과 방열날개 중공형 히트싱크(500)의 사이에는 하우징(100)의 내부 공간을 구획하는 구성요소로서 플레이트가 더 배치될 수 있으나, 경우에 따라 하우징(100)과 방열날개 중공형 히트싱크(500)의 사이에 배치되는 구성요소를 별개의 히트싱크로 구성할 수도 있다. In addition, a plate may be further disposed between the housing 100 of the present invention and the heat dissipation blade hollow heat sink 500 as a component for partitioning the internal space of the housing 100, but in some cases, the housing 100. And a component disposed between the heat dissipation blade hollow heat sink 500 may be configured as a separate heat sink.
즉, 본 발명의 히트싱크부(400)는 입체적 공간 구조를 통한 방열 성능을 극대화시키는 구조의 방열날개 중공형 히트싱크(500)와 더불어 평판 스타일의 플레이트 히트싱크(600)를 더 구비할 수도 있다. 이 경우, 플레이트 히트싱크(600)는 방열날개 중공형 히트싱크(500)와 하우징(100)의 사이로 하우징(100)의 길이 방향에 수직한 방향, 즉 X-Y 평면에 평행하게 배치된다. 플레이트 히트싱크(600)는 방열날개 중공형 히트싱크(500)와 동일한 재료로 형성될 수도 있다. That is, the heat sink 400 of the present invention may further include a flat plate style heat sink 600 together with the heat dissipation wing hollow heat sink 500 of the structure to maximize the heat dissipation performance through the three-dimensional space structure. . In this case, the plate heat sink 600 is disposed between the heat dissipation blade hollow heat sink 500 and the housing 100 in a direction perpendicular to the longitudinal direction of the housing 100, that is, parallel to the X-Y plane. The plate heat sink 600 may be formed of the same material as the heat dissipation blade hollow heat sink 500.
플레이트 히트싱크(600)는 플레이트 히트싱크 바디(610)와 플레이트 히트싱크 어라운드(620)를 구비하는데, 본 실시예에서 플레이트 히트싱크 바디(610)와 플레이트 히트싱크 어라운드(620)는 하우징(100)의 길이 방향, 즉 Z축 방향으로 소정의 단차를 갖는 구조를 취하는데, 이와 같은 구조를 통하여 전원모듈(미도시)이 배치되는 부분과 방열날개 중공형 히트싱크가 배치되어 열전달이 발생하는 구역을 분리시켜 효율적 열발산 효과를 이루도록 하는 구성을 취할 수도 있다. 또한, 본 실시예의 경우 상기 단차 발생은 하우징(100)의 내부에 배치되는 전원모듈(미도시)의 설계 사양에 따른 것으로 경우에 따라 단차가 배제되는 구조를 형성할 수도 있는 등 사양에 따라 다양한 변형이 가능하다. The plate heatsink 600 has a plate heatsink body 610 and a plate heatsink around 620. In this embodiment, the plate heatsink body 610 and the plate heatsink around 620 are the housing 100. It takes a structure having a predetermined step in the longitudinal direction, that is, the Z-axis direction, through which the power module (not shown) is arranged and the heat dissipation blade hollow heat sink is arranged to the area where heat transfer occurs It is also possible to take a configuration to achieve an efficient heat dissipation effect by separating. In addition, in the present embodiment, the step is generated according to the design specification of the power module (not shown) disposed inside the housing 100, and in some cases, various modifications may be made according to the specification such that a step may be excluded. This is possible.
플레이트 히트싱크(600)의 플레이트 히트싱크 어라운드(620)에는 어라운드 장착부(623)이 형성되고 이의 대응되는 위치로 하우징(100)에는 하우징 장착부(113)가 형성되고 방열날개 중공형 히트싱크(500)에는 쉘 장착부(528)가 형성되는데, 볼트 등과 같은 체결 수단을 통하여 어라운드 장착부(623), 하우징 장착부(113), 쉘 장착부(528)는 서로 정렬 연결되는 구조를 취함으로서 소정의 체결 구조가 형성될 수도 있다. An around mounting portion 623 is formed at the plate heat sink around 620 of the plate heat sink 600, and a housing mounting portion 113 is formed at the housing 100 at a corresponding position thereof, and the heat dissipation blade hollow heat sink 500 is formed. The shell mounting portion 528 is formed, and the around mounting portion 623, the housing mounting portion 113, and the shell mounting portion 528 are arranged in alignment with each other through a fastening means such as a bolt to form a predetermined fastening structure. It may be.
본 발명의 조명기기(10)는 광학 조정부(700)를 포함하는데, 광학 조정부(700)는 방열날개 중공형 히트싱크(500) 외부 적어도 일부를 감싸 배치되어 광원(300)로부터 출력되는 빛의 외부 출사를 조정한다. 광학 조정부(700)는 복수 개의 마이크로 렌즈 타입의 광학 렌즈 구현될 수도 있고, 도광 재료로 형성되는 도광재의 라이트 커버로 구현될 수도 있는 등 출사되는 빛의 균일도를 조정하는 것과 같이 광원(300)로부터 출사되는 빛의 출사를 조정하는 범위에서 다양한 선택이 가능하다. 본 실시예에서 광학 조정부(700)는 라이트 커버로 구현되는 경우를 중심으로 설명하다. Illuminator 10 of the present invention includes an optical control unit 700, the optical control unit 700 is arranged to surround at least a portion of the heat dissipation wing hollow heat sink 500 outside the light output from the light source 300 Adjust the exit. The optical adjusting unit 700 may be implemented by a plurality of micro lens type optical lenses, or may be implemented by a light cover of a light guiding material formed of a light guiding material. Various choices can be made in the range of adjusting the emitted light. In the present embodiment, the optical adjusting unit 700 will be described based on the case where the optical adjusting unit 700 is implemented as a light cover.
광학 조정부(700)는 광학 조정 허브(710)와 광학 조정 방열날개(720)을 포함하는데, 광학 조정 허브(710)는 히트싱크 허브(510)의 위치에 대응하여 배치되고 광학 조정 방열날개(720)은 일단이 광학 조정 허브(710)의 외주에 연결되고, 광학 조정 허브(710)에서 외측으로 방열날개(520)에 대응하여 연장 배치되는 구조를 취한다. 즉, 광학 조정부(700)도 소정의 종(bell) 형상을 구비하되 측면이 복수 개의 광학 조정 방열날개(720)에 의하여 간격 형성되는 광학 조정 유동구(730)를 형성하여 대응되는 방열날개 중공형 히트싱크(500)와의 원활한 결합 상태를 형성한다. The optical adjusting unit 700 includes an optical adjusting hub 710 and an optical adjusting heat dissipation blade 720. The optical adjusting hub 710 is disposed corresponding to the position of the heat sink hub 510, and the optical adjusting heat dissipation blade 720. ) Has a structure in which one end is connected to the outer circumference of the optical adjustment hub 710 and extends to correspond to the heat dissipation blade 520 outward from the optical adjustment hub 710. That is, the optical adjustment unit 700 also has a predetermined bell shape, but the side of the heat radiation wing hollow heat corresponding to the optical adjustment flow hole 730 is formed by the plurality of optical adjustment heat dissipation blades 720 are formed A smooth coupling state with the sink 500 is formed.
광학 조정 허브(710)에는 앞서 기술된 바와 같이 광학 조정 장착부(711)가 형성되고, 히트싱크 허브(510)에 형성되는 허브 장착부(511)와의 맞물림 체결을 통하여 방열날개 중공형 히트싱크(500)와 광학 조정부(700) 간의 안정적인 장착 구조가 형성될 수 있다. As described above, the optical adjustment hub 710 is formed with the optical adjustment mounting part 711, and the heat dissipation blade hollow heat sink 500 is engaged with the hub mounting part 511 formed in the heat sink hub 510. And a stable mounting structure between the optical adjusting unit 700 may be formed.
광학 조정 방열날개(720)은 방열날개(520)에 대응하여 배치되는데, 방열날개(520)의 방열날개 바디(521)와 마주하고 방열날개 사이드 라인부(523)과 접촉하여 기판(200)이 배치되는 소정의 내부 공간을 형성하여 광원(300)로부터 출사되는 빛의 균일도 등의 광품질을 조정함과 동시에, 수분 내지 이물의 유입으로 인한 기판(200) 내지 광원(300)의 손상을 내지 열화를 방지할 수도 있다.The optically adjusted heat dissipation wing 720 is disposed corresponding to the heat dissipation wing 520, and faces the heat dissipation wing body 521 of the heat dissipation wing 520 and contacts the heat dissipation wing side line part 523. By forming a predetermined internal space arranged to adjust the light quality, such as the uniformity of the light emitted from the light source 300, at the same time, damage to the substrate 200 to the light source 300 due to the inflow of moisture or foreign matter to degradation It can also prevent.
한편, 광학 조정 방열날개(720)의 단부에는 조립성을 개성하는 구성이 더 구비될 수도 있다. 즉, 광학 조정 방열날개(720)의 타단에는 광학 조정 방열날개 클립부(725)가 돌출 형성되고, 광학 조정 방열날개 클립부(725)의 대응되는 위치로 플레이트 히트싱크(600)의 플레이트 히트싱크 어라운드(620)에는 어라운트 클립부(621)이 더 형성될 수 있고, 방열날개 중공형 히트싱크(500)의 타단에는 광학 조정 방열날개 클립부(725)와의 간섭을 방지하도록 방열날개 클립 홈(527)이 형성되는데, 광학 조정부(700)와 방열날개 중공형 히트싱크(500)와 플레이트 히트싱크(600)가 순차적으로 조립되는 경우 광학 조정 방열날개 클립부(725)는 방열날개 클립 홈(527)에 삽입된 후 어라운트 클립부(621)에 맞물리어 상호 체결되는 구조를 형성할 수도 있다. 이와 같은 구조를 통하여 각 구성요소의 간에 간섭없이 안정적인 체결 구조를 형성할 수도 있다. On the other hand, the end of the optical adjustment heat dissipation blade 720 may be further provided with a configuration for individual assembly. That is, the other end of the optical adjustment heat dissipation blade 720, the optical adjustment heat dissipation blade clip portion 725 is protruded, the plate heat sink of the plate heat sink 600 to the corresponding position of the optical adjustment heat dissipation blade clip 725. An around clip portion 621 may be further formed in the around 620, and the other end of the heat dissipation blade hollow heat sink 500 may have a heat dissipation blade clip groove ( 527 is formed, when the optical adjustment unit 700, the heat dissipation blade hollow heat sink 500 and the plate heat sink 600 are sequentially assembled, the optical adjustment heat dissipation wing clip portion 725 is a heat dissipation wing clip groove 527 After being inserted into the) it may be formed to engage the engagement clip portion 621 to be fastened to each other. Through such a structure, it is possible to form a stable fastening structure without interference between each component.
또한, 광학 조정부는 상기와 같이 방열날개 중공형 히트싱크와 대응되는 형상을 구비할 수도 있으나, 도 11에 도시된 바와 같이 상단부만이 개방(701)된 컵형 광학 조정부(700) 구조를 취할 수도 있고, 경우에 따라 상단부도 폐쇄된 구조를 취할 수도 있는 등 내부에서 공기 유동을 이루도록 방열날개 중공형 히트싱크를 구비하는 범위에서 다양한 구성이 가능하다. In addition, the optical adjustment unit may have a shape corresponding to the heat dissipation wing hollow heat sink as described above, but as shown in FIG. 11, the optical adjustment unit 700 may have a cup-type optical adjustment unit 700 having only the upper end 701 opened. In some cases, various configurations are possible in the range including the heat dissipation blade hollow heat sink to achieve an air flow therein, such that the upper end may also have a closed structure.
한편, 상기 실시예들에서 조명기기의 히트싱크부의 방열날개 중공형 히트싱크는 외곽이 포물선을 이루는 단면 형상을 구비하나 본 발명은 이에 국한되지 않고 내부 공간이 형성되고 방열날개가 복수 개가 이격 형성되고 사이에 쉘 유동구가 형성되는 범위에서 다양한 구성이 가능하다. 도면에는 본 발명의 램프유니트(10a)의 다른 일예가 도시되는데, 앞선 실시예에서와 동일한 구성요소에 대하여는 동일한 도면 부호를 부여하며 중복된 설명은 생략한다. Meanwhile, in the above embodiments, the heat dissipation blade hollow heat sink of the heat sink of the lighting apparatus has a cross-sectional shape of which an outer parabolic shape is formed, but the present invention is not limited thereto, but an internal space is formed and a plurality of heat dissipation wings are spaced apart. Various configurations are possible in the range in which the shell flow port is formed therebetween. In the drawings, another example of the lamp unit 10a of the present invention is shown. The same components as in the previous embodiment are denoted by the same reference numerals, and redundant description thereof will be omitted.
도면에 도시된 바와 같이, 조명기기(10a)의 히트싱크부(400a)의 방열날개 중공형 히트싱크(500a)는 히트싱크 허브(510a)와 방열날개(520a)을 포함하는데, 방열날개(520a)의 타단 외측면에는 방열핀(550)이 더 구비될 수 있다. 이 경우, 조명기기(10a)의 광원모듈(800)의 배치 위치는 앞선 실시예보다 적은 경우를 형성하나, 방열날개(520a)의 타단 외측면에 형성되는 방열핀(550)을 통하여 열감쇠 효과를 더욱 증진시킬 수도 있다.As shown in the figure, the heat dissipation blade hollow heat sink 500a of the heat sink 400a of the lighting device 10a includes a heat sink hub 510a and a heat dissipation wing 520a, and the heat dissipation wing 520a. Heat dissipation fins 550 may be further provided on the other end outer surface of the substrate. In this case, the arrangement position of the light source module 800 of the lighting device (10a) is less than the case of the previous embodiment, but the heat attenuation effect through the heat radiation fin 550 formed on the other end outer surface of the heat dissipation wing (520a). It may be further enhanced.
또한, 상기 실시예들에서는 히트싱크 허브가 연결되는 방열날개의 타측 단부가 하우징에 장착되는 경우를 설명하였으나, 반대의 경우를 취할 수도 있다. 즉, 도 12 및 도 13에 도시된 바와 같이, 히트싱크 허브(510)가 하우징 측을 향하되, 공기 유동을 극대화 할 수 있도록 히트싱크 허브에 큰 관통구(512)가 형성되고, 방열날개에 배치 가능한 광원모듈(800)의 광원 및/또는 기판과 하우징에 배치되는 전원모듈과의 전기적 연결을 위한 배선(미도시)이 히트싱크 허브를 관통하여 배치되는 구조를 취할 수도 있는 등 다양한 변형이 가능하다.In addition, in the above embodiments, a case in which the other end of the heat dissipation blade to which the heat sink hub is connected has been described in the housing, may be reversed. That is, as shown in FIGS. 12 and 13, the heat sink hub 510 faces the housing side, and a large through hole 512 is formed in the heat sink hub to maximize the air flow, Various modifications are possible, such as a wire (not shown) for electrical connection between the light source of the deployable light source module 800 and / or the power module disposed on the substrate and the housing may be disposed through the heat sink hub. Do.
또한, 앞선 실시예들에서 히트싱크 허브는 곡면 구조를 중심으로 기술되었으나, 본 발명의 히트싱크 허브가 이에 국한되는 것은 아니다. 즉, 도 14에 도시된 바와 같이, 히트싱크 허브(510)는 평면 구조를 취하고, 방열날개(520)가 히트싱크 허브(510)의 외주에 배치되되 히트싱크 허브(510)로부터 연장 형성되는 구조를 취할 수 있다. 이때 방열날개도 직선 구조를 취할 수도 있고 곡선 구조를 취할 수도 있음은 본 기술로부터 명백하다. In addition, although the heat sink hub has been described based on the curved structure in the above embodiments, the heat sink hub of the present invention is not limited thereto. That is, as shown in FIG. 14, the heat sink hub 510 has a planar structure, and the heat dissipation blade 520 is disposed on the outer circumference of the heat sink hub 510 but extends from the heat sink hub 510. Can be taken. At this time, it is apparent from the present technology that the heat dissipation wing may also have a straight structure or a curved structure.
또한, 상기 실시예들에서 히트싱크 허브는 하나의 곡면 내지 평면 구조로만 기술되었으나, 히트싱크 허브는 중앙이 관통된 링 구조로 형성될 수도 있다. 즉, 도 15에 도시된 바와 같이, 히트싱크 허브(510)는 링 구조로 형성되고 링 구조의 히트싱크 허브(510)의 외주에 방열날개(520)가 배치되는 구조를 취할 수도 있다. 히트싱크 허브(510)에 허브 장착부(511)가 하나 이상이 형성되고, 대응되는 위치로 광학 조정부(700)에 광학 조정 장착부(711)가 형성되어 서로 맞물림 내지 체결 수단을 통한 체결 구조를 형성할 수도 있다. In addition, in the above embodiments, the heat sink hub is described as only one curved to planar structure, but the heat sink hub may be formed as a ring structure having a center penetrated therein. That is, as shown in FIG. 15, the heat sink hub 510 may be formed in a ring structure and the heat dissipation wing 520 may be disposed on an outer circumference of the heat sink hub 510 of the ring structure. At least one hub mounting portion 511 is formed at the heat sink hub 510, and an optical adjustment mounting portion 711 is formed at the optical adjusting portion 700 at a corresponding position to form a fastening structure through engagement or fastening means. It may be.
또한, 히트싱크 허브의 외주에 배치되는 복수 개의 방열날개는 이격 배치되는 히트싱크 허브에 연결되는 구조를 취할 수도 있다. 즉, 도 16에 도시된 바와 같이, 링 타입의 히트싱크 허브(510b) 가 배치되고, 방열날개(520)는 복수 개가 링타입의 히트싱크 허브(510b)에 연결 배치되는 구조를 취할 수도 있다. In addition, the plurality of heat dissipation blades disposed on the outer circumference of the heat sink hub may have a structure connected to the heat sink hubs spaced apart from each other. That is, as illustrated in FIG. 16, a ring type heat sink hub 510b may be disposed, and a plurality of heat dissipation wings 520 may be connected to the ring type heat sink hub 510b.
링 타입의 히트싱크 허브(510b)에는 허브 장착부(511b,511c)가 구비된다. 허브 장착부(511b,511c)는 히트싱크 허브(510b)에 배치되는 허브 제 1 장착부(511b)와, 방열날개(520)에 배치되는 허브 제 2 장착부(511c)를 포함한다. 허브 제 1 장착부(511b)는 링 타입의 히트싱크 허브(510b)에 형성되고 허브 제 2 장착부(511c)는 개별 분리 가능한 방열날개(520)에 배치되되 허브 제 1 장착부(511b)와 허브 제 2 장착부(511c)는 서로 맞물림 결합 가능한 구조를 취하여 방열 날개(520) 간에 사전 설정 위치 관계를 유지하도록 할 수도 있다. The ring type heat sink hub 510b is provided with hub mounting portions 511b and 511c. The hub mounting parts 511b and 511c include a hub first mounting part 511b disposed on the heat sink hub 510b and a hub second mounting part 511c disposed on the heat dissipation blade 520. The hub first mounting portion 511b is formed on the ring-type heat sink hub 510b, and the hub second mounting portion 511c is disposed on the heat-dissipating blade 520 that is separately removable, but the hub first mounting portion 511b and the hub second The mounting portion 511c may take a structure capable of engaging with each other to maintain a preset positional relationship between the heat dissipation blades 520.
또한, 이와 같은 링 타입의 히트싱크 허브(510b)와 연결되는 개별 분리 가능한 방열날개(520)는 곡선 구조 이외에도 직선 구조로 형성될 수도 있음은 앞서 기술한 바와 동일하다. 즉, 방열날개(520, 도 17 참조)도 개별화되어 각각의 일단은 하우징 베이스(110)와 결합하는 하우징 미들 케이스(130)에 형성된 관통구에 삽입 배치되고 타단은 방열날개 별로 분할되어 상단에 배치되는 링 타입의 히트싱크 허브(510b)와 연결되는 구조를 취할 수 있다. 도 17에서 방열날개(520)에 배치되는 기판(200)은 하우징 미들 케이스(130)와 하우징 베이스(110) 사이에 배치되는 광학 기판(201)과 연결될 수 있고, 하우징(100)의 내부에 배치되는 전원부는 전원 기판(203)과 연결될 수 있으며, 광학 기판(201) 및 전원 기판(203) 간에도 서로 전기적 소통을 이룰 수 있다. 이때, 도 17에 시된 바와 같이 광학 조정부(700)도 개별화되어 각각의 방열날개에 대하여 방열날개에 대응하는 히트싱크 허브 부위에 삽입 배치되어 장착되는 구조를 취할 수도 있고, 이 경우 광학 조정부(700)의 하단에서의 상대 변위 형성을 방지하도록 개별화된 광학 조정부(700)를 연결하는 구성요소가 하단에 배치될 수도 있다. In addition, the separate removable heat dissipation wing 520 connected to the ring-type heat sink hub 510b may be formed in a linear structure in addition to the curved structure, as described above. That is, the heat dissipation blade 520 (see FIG. 17) is also individualized, and each end is inserted into a through hole formed in the housing middle case 130 that is coupled to the housing base 110, and the other end is divided by the heat dissipation wing and disposed on the top. The ring type heat sink hub 510b may be connected to the structure. In FIG. 17, the substrate 200 disposed on the heat dissipation blade 520 may be connected to the optical substrate 201 disposed between the housing middle case 130 and the housing base 110, and disposed inside the housing 100. The power supply unit may be connected to the power substrate 203, and may also be in electrical communication with the optical substrate 201 and the power substrate 203. In this case, as shown in FIG. 17, the optical adjusting unit 700 may also be individualized to have a structure in which the optical adjusting unit 700 is inserted into and mounted on the heat sink hub portion corresponding to the heat dissipating wing, and in this case, the optical adjusting unit 700. Components that connect the individualized optical adjustments 700 may be disposed at the bottom to prevent relative displacement formation at the bottom of the.
또한, 도 14 및 도 18에 도시된 바와 같이 히트싱크 허브(510)는 플레이트에 가까운 링 타입으로 형성되어 배치되고 링 타입의 히트싱크 허브(510b)의 개개의 영역에서 수직 방향으로 복수 개의 방열날개가 연결 배치되는 구조를 취할 수 있는데, 히트싱크 허브(510)와 방열날개는 일체로 형성될 수도 있고 개별 분리 결합 구조로 형성될 수도 있음은 앞서 기술한 바와 같다. 이때 광학 조정부(700)는 측면 장착되어 양단에서 히트싱크 허브(510)와 하우징에 의하여 장착 지지되는 구조를 취할 수도 있다. In addition, as shown in FIGS. 14 and 18, the heat sink hub 510 is formed and disposed in a ring type close to a plate, and a plurality of heat dissipation wings in a vertical direction in individual regions of the ring type heat sink hub 510 b. May take a structure in which the heat sink hub 510 and the heat dissipation blade are integrally formed or may be formed in a separate separation coupling structure, as described above. In this case, the optical adjusting unit 700 may have a structure in which the optical adjusting unit 700 is side mounted and supported by the heat sink hub 510 and the housing at both ends.
또한, 이러한 링 타입의 히트싱크 허브는 개별 요소로서 별개물로 구성될 수도 있으나, 본 발명은 이에 국한되지 않고 다양한 구성이 가능하다. 즉, 도 19 및 도 20에 도시된 바와 같이, 히트싱크 허브(510b)가 광학 조정부(700)에 일체화되어 광학 조정부(700)의 내측 저면으로 방열날개(520)를 향하여 배치되고, 히트싱크 허브(510b)에는 허브 제 2 장착부(511c)가 형성되고, 허브 제 2 장착부(511c)는 광학 조정부(700)의 저면에 일체화 형성되는 히트싱크 허브(510b)에 형성된 허브 제 1 장착부(511b)에 맞물리는데, 허브 제 1 장착붐(511b)와 광학 조정 장착부(711)는 서로 일체화되는 구조를 취할 수도 있다. In addition, the ring-type heat sink hub may be configured as separate elements as individual elements, but the present invention is not limited thereto, and various configurations are possible. That is, as shown in FIGS. 19 and 20, the heat sink hub 510b is integrated with the optical adjusting unit 700 and is disposed toward the heat dissipation wing 520 toward the inner bottom of the optical adjusting unit 700, and the heat sink hub The hub second mounting portion 511c is formed at 510b, and the hub second mounting portion 511c is formed at the hub first mounting portion 511b formed at the heat sink hub 510b formed integrally with the bottom surface of the optical adjusting unit 700. To engage, the hub first mounting boom 511b and the optical adjustment mounting portion 711 may have a structure that is integrated with each other.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따 라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
본 발명의 히트싱크는 전등에 사용되는 경우를 중심으로 기술하였으나 열전달을 통한 방열 성능이 필요한 다양한 분야에 사용 가능하다. The heat sink of the present invention has been described with a focus on the case used for a lamp, but can be used in various fields requiring heat dissipation performance through heat transfer.

Claims (32)

  1. 히트싱크 허브; Heatsink hub;
    일단이 상기 히트싱크 허브의 외주에 배치되는 복수 개의 방열날개;A plurality of heat dissipation wings, one end of which is disposed on an outer circumference of the heat sink hub;
    상기 방열날개 사이에 형성되는 방열날개 개방부(529);A heat dissipation wing opening 529 formed between the heat dissipation wings;
    상기 방열날개의 중앙에 공기통풍 및 공기대류가 이루어지도록 형성되는 공기관통 중공(A5);을 구비하는 방열날개 중공형 히트싱크.Heat dissipation blade hollow heat sink comprising; air through the hollow (A5) is formed in the center of the heat dissipation blades so that the air ventilation and air convection.
  2. 제 1항에 있어서,The method of claim 1,
    상기 히트싱크 허브는 곡면 또는 평면인 것을 특징으로 하는 방열날개 중공형 히트싱크.The heat sink hub is a heat sink wing heat sink, characterized in that the curved surface or flat.
  3. 제 1항에 있어서,The method of claim 1,
    상기 히트싱크 허브는 공기유동 및 방열기능이 극대화되도록 히트싱크 허브 관통구가 형성되는 방열날개 중공형 히트싱크The heat sink hub is a heat dissipation blade hollow heat sink in which a heat sink hub through hole is formed to maximize airflow and heat dissipation.
  4. 제 1항에 있어서,The method of claim 1,
    상기 방열날개는 상기 히트싱크 허브의 외주로부터 둘 이상이 서로 이격되어 배치되고 상기 방열날개 개방부가 상기 방열날개 사이에 배치되는 것을 특징으로 하는 방열날개 중공형 히트싱크.The heat dissipation blade is a heat dissipation blade hollow heat sink, characterized in that two or more spaced apart from each other from the outer circumference of the heat sink hub and the heat dissipation wing opening is disposed between the heat dissipation wing.
  5. 제 1항에 있어서, The method of claim 1,
    상기 방열날개는 일단이 상기 히트싱크 허브로부터 방사 배치되는 것을 특징으로 하는 방열날개 중공형 히트싱크.The heat dissipation blade hollow heat sink, characterized in that one end is radially disposed from the heat sink hub.
  6. 제 1항에 있어서,The method of claim 1,
    상기 방열날개의 적어도 일부는, 상기 히트싱크 허브의 원주로부터 곡면 또는 각형 배치되는 것을 특징으로 하는 방열날개 중공형 히트싱크.At least a portion of the heat dissipation blade is a heat dissipation blade hollow heat sink, characterized in that the curved surface or the rectangular arrangement from the circumference of the heat sink hub.
  7. 제 1항에 있어서, The method of claim 1,
    상기 방열날개는:The heat dissipation wing is:
    일면 상부에 광원모듈이 배치될 수 있는 방열날개 바디와, Heat dissipation wing body and the light source module can be disposed on one side,
    상기 방열날개 바디의 외측 단부로 상기 히트싱크 허브로부터 상기 방열날개가 배치되는 길이 방향을 따라 돌출 배치되어, 상기 방열날개 바디에 상기 광원모듈이 수용 배치되는 공간을 형성하는 방열날개 사이드 라인부를 포함하는 것을 특징으로 하는 방열날개 중공형 히트싱크.And a heat dissipation wing side line portion protruding from the heat sink hub along a length direction in which the heat dissipation wing is disposed to an outer end of the heat dissipation wing body to form a space in which the light source module is accommodated. Heat dissipation blade hollow heat sink, characterized in that.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 방열날개 바디의 외측 단부 적어도 일부에는 상기 광원모듈의 이탈을 방지하는 방열날개 광원모듈 클립부가 배치되는 것을 특징으로 하는 방열날개 중공형 히트싱크.The heat dissipation blade hollow heat sink, characterized in that the heat dissipation wing light source module clip portion is disposed on at least a portion of the outer end of the heat dissipation wing body to prevent the light source module from being separated.
  9. 제 1항에 있어서,The method of claim 1,
    상기 방열날개의 상기 히트싱크 허브 외주에 연결되는 타측 끝 단부에는 상기 방열날개에 실질적으로 수직한 평면 상에서 원주 방향으로 배치되어, 상기 방열날개와 인접한 다른 방열날개 간의 타단을 연결하는 방열날개 연결부가 구비되는 것을 특징으로 하는 방열날개 중공형 히트싱크.The other end end connected to the heat sink hub outer circumference of the heat dissipation wing is disposed in a circumferential direction on a plane substantially perpendicular to the heat dissipation wing, and has a heat dissipation wing connection part connecting the other end between the heat dissipation wing and another heat dissipation wing adjacent thereto. Heat dissipation blade hollow heat sink, characterized in that.
  10. 제 1항에 있어서,The method of claim 1,
    상기 방열날개의 내측에는 상기 공기관통 중공을 향하여 배치되는 방열핀이 더 구비되는 것을 특징으로 하는 방열날개 중공형 히트싱크.The heat dissipation blade hollow heat sink, characterized in that the heat dissipation wing is further provided with a heat dissipation fin disposed toward the air through the hollow.
  11. 제 1항 내지 제 9항 중 어느 한 항에 따른 방열날개 중공형 히트싱크를 포함하는 히트싱크부를 구비하는 조명기기.10. A lighting device comprising a heat sink comprising a heat dissipation blade hollow heat sink according to any one of claims 1 to 9.
  12. 제 11항에 있어서,The method of claim 11,
    상기 히트싱크부가 위치 고정되고 전원모듈이 수용되는 하우징A housing in which the heat sink is positioned and a power module is accommodated
    상기 히트싱크부에 배치되고 상기 전원모듈로부터의 전기적 신호에 따라 외부로의 빛의 출사를 가능하게 하는 광원모듈;을 포함하는 조명기기.And a light source module disposed in the heat sink and configured to emit light to the outside according to an electrical signal from the power module.
  13. 제 11항에 있어서,The method of claim 11,
    상기 히트싱크 허브에는 상기 광원모듈과 전원모듈 간의 전기적 연결을 위한 배선 라인의 관통을 가능하게 하는 허브 라인 관통구가 구비되는 것을 특징으로 하는 조명기기.The heat sink hub is provided with a hub line through hole for enabling the passage of the wiring line for the electrical connection between the light source module and the power module.
  14. 제 12항에 있어서, The method of claim 12,
    상기 광원모듈의 광원은 LED 또는 OLED인 것을 특징으로 하는 조명기기.The light source of the light source module is an illumination device, characterized in that the LED or OLED.
  15. 제 12항에 있어서The method of claim 12
    상기 광원모듈이 상기 히트싱크의 방열날개 바디에 상기 광원모듈이 배치되는 것을 특징으로 하는 조명기기. The light source module is a lighting device, characterized in that the light source module is disposed on the heat dissipation wing body of the heat sink.
  16. 제 12항에 있어서The method of claim 12
    상기 광원모듈이 상기 히트싱크의 히트싱크 허브에 상기 광원모듈이 배치되는 것을 특징으로 하는 조명기기. And the light source module is disposed in the heat sink hub of the heat sink.
  17. 제 12항에 있어서,The method of claim 12,
    상기 방열날개 중공형 히트싱크의 외부를 감싸 배치되고 상기 광원으로부터 출력되는 빛의 외부 출사를 조정하는 광학 조정부(라이트 커버 및 광학 렌즈)가 구비되는 것을 특징으로 하는 조명기기.Illumination apparatus, characterized in that provided with an optical control unit (light cover and optical lens) arranged to surround the outside of the heat dissipation blade hollow heat sink and adjust the external emission of the light output from the light source.
  18. 제 17항에 있어서, The method of claim 17,
    상기 광학 조정부는:The optical adjusting unit:
    상기 히트싱크 허브의 대응되는 위치에 배치되는 광학 조정 허브와, An optical adjustment hub disposed at a corresponding position of the heat sink hub;
    일단이 상기 광학 조정 허브의 외주에 연결되고, 상기 광학 조정 허브에서 외측으로 상기 방열날개에 대응하여 배치되는 광학 조정 방열날개를 포함하는 것을 특징으로 하는 조명기기.One end is connected to the outer periphery of the optical adjustment hub, and the illumination device comprising an optical adjustment heat dissipation blade disposed to correspond to the heat dissipation wing from the optical adjustment hub to the outside.
  19. 제 18항에 있어서,The method of claim 18,
    상기 광학 조정 방열날개의 타단에는 상기 하우징과 체결되는 광학 조정 방열날개 클립부가 구비되는 것을 특징으로 하는 조명기기.Illumination device, characterized in that the other end of the optical adjustment heat dissipation blade is provided with an optical control heat dissipation blade clip portion coupled to the housing.
  20. 제 17항에 있어서,The method of claim 17,
    상기 광학 조정부는 상기 방열날개 중공형 히트싱크의 적어도 일부를 감싸 배치되는 것을 특징으로 하는 조명기기..And the optical control unit is disposed to surround at least a portion of the heat dissipation blade hollow heat sink.
  21. 제 13항에 있어서, The method of claim 13,
    상기 히트싱크부는 상기 방열날개 중공형 히트싱크와 상기 하우징의 사이에 배치되고 상기 하우징의 배치 길이 방향에 수직하게 배치되는 플레이트 히트싱크를 더 구비하는 것을 특징으로 하는 조명기기.The heat sink unit further comprises a plate heat sink disposed between the heat dissipation blade hollow heat sink and the housing and disposed perpendicular to the arrangement length direction of the housing.
  22. 제 12항에 있어서, The method of claim 12,
    상기 히트싱크부의 적어도 일부와 상기 기판 사이에는 열전도성 부착재가 배치되는 것을 특징으로 하는 조명기기. And a thermally conductive attachment material disposed between at least a portion of the heat sink and the substrate.
  23. 제 22항에 있어서, The method of claim 22,
    상기 열전도성 부착재는, 열전도성 접착 본드, 열전도성 폼 테이프, 열전도성 폼 패드, 열전도성 그리스 중 하나 이상을 구비하는 것을 특징으로 하는 조명기기.The thermally conductive adhesive includes at least one of a thermally conductive adhesive bond, a thermally conductive foam tape, a thermally conductive foam pad, and a thermally conductive grease.
  24. 제 12항에 있어서,The method of claim 12,
    상기 히트싱크부의 적어도 일부는 알루미늄(Al), 마그네슘(Mg), 철(Fe). 아연도금강판(Gavanized iron), 스테인레스스틸(Stainless Steel), 구리, 알루미늄 합금, 마그네슘 합금 중의 하나 이상을 포함하는 것을 특징으로 하는 조명기기.At least a part of the heat sink is aluminum (Al), magnesium (Mg), iron (Fe). A luminaire comprising at least one of galvanized iron, stainless steel, copper, an aluminum alloy and a magnesium alloy.
  25. 제 24항에 있어서, The method of claim 24,
    상기 히트싱크부의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅되는 것을 특징으로 하는 조명기기.At least a portion of the heat sink portion is surfaced with at least one of gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Lighting equipment, characterized in that the coating.
  26. 제 23항에 있어서, The method of claim 23, wherein
    상기 히트싱크부에는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성되는 것을 특징으로 하는 조명기기.And at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is formed in the heat sink.
  27. 제 12항에 있어서,The method of claim 12,
    상기 히트싱크부의 적어도 일부는 ABS(ABS; acrylonitrile-butadiene-styrene), 폴리카보네이트(PC:Polycarbonate), 폴리이미드(PI; Polyimide), PET(PET; Polyethylene terephthalate), 폴리에틸렌(PE;Poly Ethylene), 폴리에테르에테르케톤(PEEK;polyetheretherketone) 중 하나 이상을 포함하는 것을 특징으로 하는 조명기기.At least a portion of the heat sink portion may include ABS (ABS; acrylonitrile-butadiene-styrene), polycarbonate (PC: Polycarbonate), polyimide (PI; Polyimide), PET (PET; polyethylene terephthalate), polyethylene (PE; Poly Ethylene), Illuminator comprising at least one of polyetheretherketone (PEEK).
  28. 제 27항에 있어서, The method of claim 27,
    상기 히트싱크부의 적어도 일부는, 금(Au), 은(Ag), 탄소나노튜브(CNT), 그래핀(graphene), 질화붕소(BN;boron nitride), 및 세라믹(ceramic) 중의 하나 이상으로 표면 코팅되는 것을 특징으로 하는 조명기기.At least a portion of the heat sink portion is surfaced with at least one of gold (Au), silver (Ag), carbon nanotubes (CNT), graphene, graphene, boron nitride (BN), and ceramic (ceramic). Lighting equipment, characterized in that the coating.
  29. 제 27항에 있어서, The method of claim 27,
    상기 히트싱크부에는, 탄소나노튜브(CNT) 필러, 질화붕소(BN;boron nitride) 필러, 및 세라믹 필러 중 하나 이상이 충전 형성되는 것을 특징으로 하는 조명기기.And at least one of a carbon nanotube (CNT) filler, a boron nitride (BN) filler, and a ceramic filler is formed in the heat sink.
  30. 제 12항에 있어서,The method of claim 12,
    상기 히트싱크부의 적어도 일부에는 히트싱크 보호층이 형성되는 것을 특징으로 하는 조명기기.Lighting device, characterized in that the heat sink protective layer is formed on at least a portion of the heat sink.
  31. 제 11항에 있어서,The method of claim 11,
    상기 히트싱크 허브가 상기 하우징에 고정되는 것을 특징으로 하는 조명기기.And the heat sink hub is fixed to the housing.
  32. 제 11항에 있어서,The method of claim 11,
    상기 히트싱크 허브와 연결되는 상기 방열날개의 타측 단부가 상기 하우징에 고정되는 것을 특징으로 하는 조명기기.Illumination device, characterized in that the other end of the heat dissipation blade connected to the heat sink hub is fixed to the housing.
PCT/KR2015/007317 2014-07-14 2015-07-14 Hollow heatsink with heat-radiating fins, and lighting device comprising same WO2016010350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088371A KR20160008338A (en) 2014-07-14 2014-07-14 Hollow type heatsink with dissipation wing and lamp unit having the same
KR10-2014-0088371 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016010350A1 true WO2016010350A1 (en) 2016-01-21

Family

ID=55078768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007317 WO2016010350A1 (en) 2014-07-14 2015-07-14 Hollow heatsink with heat-radiating fins, and lighting device comprising same

Country Status (2)

Country Link
KR (1) KR20160008338A (en)
WO (1) WO2016010350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342792A (en) * 2017-01-11 2017-11-10 深圳市兆驰数码科技股份有限公司 A kind of Homeplug
CN113286209A (en) * 2021-07-22 2021-08-20 深圳市美迪声科技有限公司 Loudspeaker box with good heat dissipation effect

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022565B1 (en) * 2016-01-25 2019-09-18 배영수 Hollow type light cap cover with wing part and lamp unit having the same
KR102126348B1 (en) * 2020-02-03 2020-06-24 (주)코리아반도체조명 LED lighting using heating panel with LED module
KR102126353B1 (en) * 2020-02-03 2020-06-24 (주)코리아반도체조명 Heat sink structure connected by bridge to absorb heat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059305A (en) * 2001-08-13 2003-02-28 Eitekkusu Kk Led bulb
US20080316755A1 (en) * 2007-06-22 2008-12-25 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Led lamp having heat dissipation structure
JP2013016493A (en) * 2011-07-05 2013-01-24 Industrial Technology Research Inst Illumination device, and assembling method thereof
JP2013020911A (en) * 2011-07-14 2013-01-31 Osram-Melco Ltd Light-emitting diode lamp, and lighting fixture
KR20130119632A (en) * 2012-04-24 2013-11-01 고정호 Light emitting diode lamp apparatus having separable housing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059305A (en) * 2001-08-13 2003-02-28 Eitekkusu Kk Led bulb
US20080316755A1 (en) * 2007-06-22 2008-12-25 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Led lamp having heat dissipation structure
JP2013016493A (en) * 2011-07-05 2013-01-24 Industrial Technology Research Inst Illumination device, and assembling method thereof
JP2013020911A (en) * 2011-07-14 2013-01-31 Osram-Melco Ltd Light-emitting diode lamp, and lighting fixture
KR20130119632A (en) * 2012-04-24 2013-11-01 고정호 Light emitting diode lamp apparatus having separable housing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342792A (en) * 2017-01-11 2017-11-10 深圳市兆驰数码科技股份有限公司 A kind of Homeplug
CN113286209A (en) * 2021-07-22 2021-08-20 深圳市美迪声科技有限公司 Loudspeaker box with good heat dissipation effect

Also Published As

Publication number Publication date
KR20160008338A (en) 2016-01-22

Similar Documents

Publication Publication Date Title
WO2016010350A1 (en) Hollow heatsink with heat-radiating fins, and lighting device comprising same
WO2014134850A1 (en) Lamp bulb of high-efficiency energy-saving led street lamp
WO2013047929A1 (en) Led lighting device
WO2013100308A1 (en) Optical semiconductor lighting apparatus
WO2010038982A2 (en) Heat-sink device and bulb-shaped led lighting device using the same
WO2010038983A2 (en) Spiral heat-sink device and bulb-shaped led lighting device using the same
US8118449B2 (en) Threaded LED retrofit module
US20100165632A1 (en) Heat dissipation device and luminaire comprising the same
WO2013024943A1 (en) Light-emitting diode lamp module
WO2010064793A2 (en) Radially-shaped heat dissipating apparatus, and bulb-shaped led lighting apparatus using same
TW201235594A (en) LED lamp
WO2013053253A1 (en) Led lamp heat dissipation structure
WO2009157704A2 (en) Led package and manufacturing method for same
TWI408312B (en) Lamp
US20150036369A1 (en) Automobile led head lamp module using flexible substrate and heat sink structure thereof
WO2010008186A2 (en) Heat dissipating unit and led lighting apparatus using the same
US8480262B2 (en) Light profile controllable light emitting device
WO2017095181A1 (en) Led lighting device
TW201300693A (en) Illuminating apparatus
KR20090000151U (en) Radiator for led lighting equipment
WO2013081269A1 (en) Explosion-proof led-type lamp
KR20110106366A (en) Light emitting diode luminaire
KR101231658B1 (en) LED lamp provided an improved capability of discharging heat
KR101231078B1 (en) Led fluorescent lamp with metal pcb
KR101393509B1 (en) Led lamp for tunnel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822875

Country of ref document: EP

Kind code of ref document: A1