WO2016010161A1 - 多量体IgA型遺伝子組換え抗体及びその利用 - Google Patents

多量体IgA型遺伝子組換え抗体及びその利用 Download PDF

Info

Publication number
WO2016010161A1
WO2016010161A1 PCT/JP2015/070742 JP2015070742W WO2016010161A1 WO 2016010161 A1 WO2016010161 A1 WO 2016010161A1 JP 2015070742 W JP2015070742 W JP 2015070742W WO 2016010161 A1 WO2016010161 A1 WO 2016010161A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
iga
protein
type
multimeric
Prior art date
Application number
PCT/JP2015/070742
Other languages
English (en)
French (fr)
Inventor
慎二 齊藤
忠樹 鈴木
長谷川 秀樹
章 相内
希代子 後藤
智規 上野
祐喜 多賀
Original Assignee
国立感染症研究所長が代表する日本国
株式会社ニッピ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立感染症研究所長が代表する日本国, 株式会社ニッピ filed Critical 国立感染症研究所長が代表する日本国
Priority to EP20196341.0A priority Critical patent/EP3786181A1/en
Priority to JP2016534515A priority patent/JP6564777B2/ja
Priority to US15/326,569 priority patent/US10925962B2/en
Priority to EP15822054.1A priority patent/EP3170839B1/en
Publication of WO2016010161A1 publication Critical patent/WO2016010161A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1086Preparation or screening of expression libraries, e.g. reporter assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae

Abstract

 多量体IgA型遺伝子組換え抗体;多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬;IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、多量体IgA型抗体の製造方法;抗体を多量体IgA型化する工程を含む、前記抗体の抗原結合活性又は中和活性を向上させる方法。

Description

多量体IgA型遺伝子組換え抗体及びその利用
 本発明は、多量体IgA型遺伝子組換え抗体及びその利用に関する。本願は、2014年7月18日に、日本に出願された特願2014-148328号に基づき優先権を主張し、その内容をここに援用する。
 抗体の最大の特徴は、標的である抗原にだけ強く結合し、それ以外には結合しないという抗原結合活性と特異性の高さである。抗体は、この抗原結合活性と特異性の総和により中和活性等の機能活性を有しており、抗体医薬、診断薬、生物学研究ツール等としてバイオ産業全般で幅広く利用されている。
 近年、キメラ抗体、ヒト化抗体、ヒト抗体の大量製造系が確立され、抗体医薬は主要な医薬品の1つとなっている。しかしながら、ほとんどのモノクローナル抗体はIgG型であり、特に抗体医薬に関してはIgG型のみしか実用化されていない。
 一方、抗体には、IgGの他にIgM、IgA、IgD、IgE等の様々なアイソタイプが存在しており、それぞれ生体内での機能が異なっている。例えば、IgGは生体内血液中の主たる抗体であるが、粘膜上皮を覆う粘液や分泌液中の主たる抗体はIgAであり、粘膜感染症における生体防御機構の最前線として機能していることが知られている(例えば、非特許文献1を参照)。
 また、IgAやIgM等の一部の抗体は、同一の可変領域を有する抗体同士が二量体や五量体などの多量体を形成し、生体内で機能していることが知られている。例えば、初乳や唾液等の分泌液中、及び多発性骨髄腫の患者血清中には、多量体IgAが存在することが知られている。
 そして、多発性骨髄腫の患者血清中には、単量体、二量体、三量体、四量体のIgAが様々な割合で含まれていることが明らかにされている。また、分泌液中には、二量体と四量体が含まれることが報告されている。しかしながら、これらの多量体抗体の生理学的意義については、ほとんど分かっていない。
 また、人為的に二量体IgAを作製する技術は既に報告されているが、その収率は悪く、IgGをIgA型に変換したことによる高機能化が達成された例はない。また、人為的に三量体以上の多量体IgAを作製する技術は知られていない。
Woof J.M. and Russell M.W., Structure and function relationships in IgA, Mucosal immunology, 4(6), 590-597, 2011
 これまでに、任意の単量体抗体を人為的に多量体化する技術は知られていない。また、IgA型抗体を工業的に生産し、産業応用した例は存在しない。そこで、本発明は、多量体IgA型遺伝子組換え抗体を提供することを目的とする。また、多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬を提供することを目的とする。また、多量体IgA型抗体の製造方法を提供することを目的とする。また、抗体の抗原結合活性を向上させる方法を提供することを目的とする。
 本発明は以下の通りである。
(1)多量体IgA型遺伝子組換え抗体。
(2)重鎖定常領域の第458番目のアミノ酸残基が疎水性アミノ酸に由来するアミノ酸残基である、(1)に記載の多量体IgA型遺伝子組換え抗体。
(3)四量体の含有量が全IgAの20モル%以上である、(1)又は(2)に記載の多量体IgA型遺伝子組換え抗体。
(4)(1)~(3)のいずれか一項に記載の多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬。
(5)感染症の治療又は予防用である、(4)に記載の医薬。
(6)IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、多量体IgA型抗体の製造方法。
(7)前記IgA型抗体重鎖タンパク質は、遺伝子組換えによりIgG型からIgA型に変換されたものである、(6)に記載の製造方法。
(8)前記工程において、更にp180タンパク質及びSF3b4タンパク質を前記細胞内で共発現させる、(6)又は(7)に記載の製造方法。
(9)前記細胞がCHO YA7細胞株(受託番号NITE BP-01535)である、(6)~(8)のいずれかに記載の製造方法。
(10)前記工程は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を発現するための発現ベクターを前記細胞内に導入することにより行われ、前記発現ベクターは、プロモーターの下流で、かつ、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質又は分泌成分タンパク質をコードする核酸の開始コドンの上流に、RNA結合タンパク質が認識、結合又は相互作用するcis-エレメントを有する、(6)~(9)のいずれかに記載の製造方法。
(11)前記cis-エレメントが、配列モチーフGAN-(X)-ACN(nは3~6の整数であり、N及びNは、それぞれ独立して、A、T、G、Cのいずれかである。)からなる塩基配列を1~数個含む、(10)に記載の製造方法。
(12)前記cis-エレメントが、
 配列番号21~23のいずれかに示される塩基配列、
 配列番号21~23のいずれかに示される塩基配列において、1~数個の塩基が欠失、置換又は付加されている塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列、
 配列番号21~23のいずれかに示される塩基配列と同一性が80%以上である塩基配列からなり、かつ、RNA結合タンパク質が認識、結合若しくは相互作用する塩基配列、又は、
 配列番号21~23のいずれかに示される塩基配列からなる核酸と相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズすることができる塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列からなる、(10)又は(11)に記載の製造方法。
(13)抗体を多量体IgA型化する工程を含む、前記抗体の抗原結合活性又は中和活性を向上させる方法。
(14)前記抗体は、IgG型抗体である、(13)に記載の方法。
(15)前記工程が、前記抗体の重鎖可変領域を有するIgA型抗体重鎖タンパク質、前記抗体の軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、(13)又は(14)に記載の方法。
 本発明によれば、多量体IgA型遺伝子組換え抗体を提供することができる。また、多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬を提供することができる。また、多量体IgA型抗体の製造方法を提供することができる。また、抗体の抗原結合活性を向上させる方法を提供することができる。
発現及び精製した遺伝子組換えモノクローナルIgG1抗体の各クローンをSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、Simply Blue(商標) Safe Stainで染色した結果を示す写真である。 発現及び精製した遺伝子組換えモノクローナルIgA1抗体の各クローンをSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、Simply Blue(商標) Safe Stainで染色した結果を示す写真である。 J鎖非共発現下もしくはJ鎖共発現下で発現及び精製したIgA1抗体を未変性ポリアクリルアミドゲル電気泳動(BN-PAGE)に供し、染色液(0.02%クーマシーR-250,30%メタノール,10%酢酸)で染色した結果を示す写真である。 多量体IgA1抗体をサイズ分画したゲル濾過クロマトグラフィーのチャート及び各分画を未変性ポリアクリルアミドゲル電気泳動(BN-PAGE)に供し、染色液(0.02%クーマシーR-250,30%メタノール,10%酢酸)で染色した結果を示す写真である。 単量体IgG1型抗体のインフルエンザウイルス中和活性を1とした場合における、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の中和活性比を示すグラフである。単位タンパク質量当たりの中和活性比を示す。 単量体IgG1型抗体のインフルエンザウイルス中和活性を1とした場合における、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の中和活性比を示すグラフである。単位分子数あたりの中和活性比を示すグラフである。 CHO YA7細胞とcis-エレメント使用による多量体抗体の発現増強効果を確認するための未変性ポリアクリルアミドゲル電気泳動(BN-PAGE)の結果を示す写真である。 実験例9の結果を示すグラフである。 実験例10の結果を示すグラフである。 実験例10の結果を示すグラフである。 実験例11の結果を示すグラフである。 IgA抗体の変異体の構造を示す模式図である。 実験例12の結果を示す写真である。 実験例13の結果を示すグラフである。 実験例14の結果を示すグラフである。 実験例15の結果を示す写真である。 実験例16の結果を示すグラフである。 実験例17の結果を示すグラフである。 実験例18の結果を示す写真である。 実験例19の結果を示す写真である。 実験例19の結果を示す写真である。 実験例19の結果を示す写真である。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例20の結果を示すグラフである。 実験例21の結果を示すグラフである。 実験例21の結果を示すグラフである。
[用語の説明]
 IgA型抗体に関連して、従来用いられている用語について以下に説明する。
(単量体IgA(Monomeric IgA、mIgA))
 IgAは、血清中では、主に単量体IgAとして分子量17万前後で存在しており、IgA1が主要構成要素である。
(二量体IgA(Dimeric IgA、dIgA))
 二量体IgAとは、粘膜固有層に存在する形質細胞が産生する二量体IgAであって、重鎖:軽鎖:J鎖の割合が4:4:1である分子を指す。IgA2が約半分程度存在する。
(多量体IgA(Polymeric IgA、pIgA))
 従来、ポリメリックIg受容体により認識される二量体以上のIgAを総称して、多量体IgAという場合が多い。すなわち、重鎖:軽鎖:J鎖の構成比が4:4:1の複合体である二量体IgAが主成分で、抗体J鎖タンパク質(Joining chain)によりIgA二分子が結合し、分泌成分タンパク質(secretory component、SCタンパク質)を含む場合と含まない場合の両方について「多量体IgA」という用語が使用されている。
 すなわち、形質細胞が分泌する多量体IgA(重鎖:軽鎖:J鎖の構成比が4:4:1の複合体)を指して「多量体IgA」という場合と、粘膜上皮細胞より分泌されるS-IgA(重鎖:軽鎖:J鎖:SCの構成比が4:4:1:1の複合体)を指して「多量体IgA」という場合、及びこれら両者を指す場合が散見され、厳密に区別されずに使用されている。電気泳動での移動度、ゲル濾過クロマトグラフィーでの挙動から二量体IgAより分子量が大きい成分も検出され、二量体以上であろうと予想されて多量体IgAと呼ばれている場合もあるが、凝集体との鑑別はなされていないため、分子構造の詳細は不明である。
(ポリメリックIg受容体(pIgR、多量体免疫グロブリン受容体))
 粘膜上皮細胞の基底膜側の細胞膜上に発現しているpIgRは、免疫グロブリンスーパーファミリーに属するI型の膜貫通型蛋白質で、細胞外ドメイン部分、膜貫通部、細胞質内領域からなる。pIgRは粘膜固有層に存在する形質細胞が産生したJ鎖を含む二量体/多量体型Ig分子を特異的に認識して結合し、上皮細胞中への取り込み後も結合したままアピカル側へ輸送される。上皮細胞内から粘膜面への放出には、pIgRの細胞外ドメイン部分と膜貫通部との間で切断が必要で、上皮細胞のタンパク質分解酵素による切断後に内腔側粘膜層へS-IgAとして分泌される。このpIgRの細胞外ドメイン部分がIgA複合体の構成成分となる事実に由来して、分泌成分タンパク質(secretory component、SCタンパク質)とも呼ばれている。pIgRは五量体IgMの取り込みにも同様にして機能している。
 SCタンパク質はpIgRの細胞外ドメイン部分であり分子量約70kDaの高度に糖鎖修飾を受けたポリペプチドである。N末端から5つの免疫グロブリン様ドメインを持ち、それぞれD1からD5と名付けられており、このうちD1からD3までが二量体IgAとの結合に必要で、特にD1は免疫グロブリンの可変領域のcomplementarity-determining regions (CDRs)に類似した構造をもち二量体IgAとの結合に重要な役割を担う。この相互作用には、D1のCDR1中のThr27-Thr33が関与する。またD1のCDR2ループ中のGlu53-Gly54も寄与するとの報告もある。J鎖は分子量15kDaのポリペプチド鎖であり、N結合型糖鎖を持ち免疫グロブリン構造をとるように折りたたまれている。哺乳類と鳥類のJ鎖を比較した場合、一次構造や抗原認識の交差性において非常に高い相同性を持つため、それらの基本特性が生物間で保存されてきたと考えられている。J鎖は二量体IgAがpIgRと相互作用する上で必要不可欠である。J鎖を取り込んだ二量体IgAは、pIgRのD1とIgAのFc領域又はpIgRとJ鎖との間に相互作用を生じ、その後にIgACα2ドメイン中の311番目のcys残基とSCのD5の467番目のcys残基間にS-S結合が形成されると考えられている。(Mucosal immunology, 4(6), 590-597, 2011、清野宏(2010).臨床粘膜免疫学 株式会社シナジー)
(分泌型IgA(Secretory IgA、S-IgA))
 粘膜上皮細胞より分泌され、SCタンパク質を含んだ二量体以上のIgA複合体を指し、Secretory dimeric IgA(S-dIgA)の場合は重鎖:軽鎖:J鎖:SCの構成比が4:4:1:1である。
(多量体IgAと分泌型多量体IgAの違い)
 粘膜固有層に存在する形質細胞が産生する多量体IgAの分子量等の性状解析は技術的に困難なため、分泌型多量体IgA形成の詳細な分子形成過程は不明である。すなわち、生体内で形質細胞が産生する主要な分泌型多量体IgAは、二量体、三量体、四量体等の多量体のうちどれが主であるか、多量体化は上皮細胞内で起こっているかどうか、粘膜部で生体防御に中心的役割を果たしているのがどの型かも不明である。生体内IgA及び組換え体でも二量体(440kDa付近)より大きいIgAも微量検出されているが、凝集体との鑑別はなされていない。
(本明細書での多量体IgAの定義)
 本明細書においては、分泌成分タンパク質(SC)を分子内に有する多量体抗体を分泌型抗体という。また、次のように表記する場合がある。
・単量体抗体=mIgA
・二量体抗体=dIgA
・分泌型二量体抗体=S-dIgA
・分泌型三量体抗体=S-tIgA
・分泌型四量体抗体=S-qIgA
・四量体以上の分泌型多量体抗体=S-pIgA
・組換え単量体抗体=rmIgA
・組換え二量体抗体=rdIgA
・組換え分泌型二量体抗体=recombinant S-dIgA(rS-dIgA)
・組換え分泌型三量体抗体=recombinant S-tIgA(rS-tIgA)
・組換え分泌型四量体抗体=recombinant S-qIgA(rS-qIgA)
・四量体以上の組換え分泌型多量体抗体=recombinant S-pIgA(rS-pIgA)
 ここでは、分泌成分タンパク質(SC)を分子内に有する場合に「S-」を分子名の頭に付記する。分子内にSCを有さない抗体は「S-」を付記しない。また、分子の会合状態を、IgAの前に略称を付記することにより表記する。単量体は「m」、二量体は「d」、三量体は「t」、四量体は「q」、四量体以上の多量体は「p」を付記する。また、単量体抗体と組換え単量体抗体を特に区別なく「monomer」と表記する場合がある。また、二量体抗体と分泌型二量体抗体、組換え二量体抗体、組換え分泌型二量体抗体を特に区別なく「dimer」と表記する場合がある。また、分泌型三量体抗体と組換え分泌型三量体抗体を特に区別なく「trimer」と表記する場合がある。また、分泌型四量体抗体と組換え分泌型四量体抗体を特に区別なく「tetramer」と表記する場合がある。また、四量体以上の分泌型抗体と四量体以上の組換え分泌型多量体抗体を特に区別なく「polymer」と表記する場合がある。
[多量体IgA型遺伝子組換え抗体]
 1実施形態において、本発明は、多量体IgA型遺伝子組換え抗体を提供する。本実施形態の多量体IgA型遺伝子組換え抗体は、本来非IgA型であった抗体を遺伝子組換えによりIgA型に変換し、更に多量体化したものであってもよい。非IgA型抗体としては、特に制限されず、例えば、非IgA型の、ヒト抗体、非ヒト哺乳動物由来の抗体、げっ歯類由来の抗体、鳥類由来の抗体等が挙げられる。また、抗体のクラスも特に制限されず、例えば、IgG型、IgM型、IgE型、IgD型、IgY型抗体等が挙げられる。
 例えば、IgG型抗体の可変領域をIgA型抗体のバックボーンフレームワークに移植することによりIgA型に変換することができる。あるいは、IgG型抗体のCDR領域のみをIgA型抗体のCDR領域に移植することにより、IgA型に変換することもできる。IgAのサブクラスは、IgA1型であってもIgA2型であってもよい。
 なお、免疫グロブリン分子において、同一種内の個体間に認められる遺伝的に異なった抗原性をもつアロタイプの存在が知られている。アロタイプは、多くの場合免疫グロブリン分子の定常部領域の1~数個のアミノ酸変異に起因することが多い。
 ヒトのIgA2においては、一般的に2つのアロタイプ(IgA2m(1)及びIgA2m(2))が認められ、IgA2(n)という3番目のアロタイプの存在も報告されている。本明細書において、IgA2は、上記のいずれのアロタイプであってもよい。
 本実施形態の多量体IgA型遺伝子組換え抗体は、分子内に分泌成分タンパク質(SC)を含むことが好ましい。また、二量体以上であることが好ましく、三量体以上であることがより好ましく、四量体以上であることが更に好ましい。
 後述するように、発明者らは、多量体IgA型遺伝子組換え抗体を効率的に作製することに初めて成功した。本実施形態の抗体により、IgA型遺伝子組換え抗体を産業応用することが可能になる。
 本実施形態の多量体IgA型遺伝子組換え抗体において、重鎖定常領域の第458番目のアミノ酸残基が疎水性アミノ酸に由来するアミノ酸残基であることが好ましい。
 実施例において後述するように、発明者らは、重鎖定常領域の第458番目のアミノ酸残基が疎水性アミノ酸に由来するアミノ酸残基であると、三量体/四量体抗体の割合を大きく高めることができることを見出した。
 上記の疎水性アミノ酸としては、イソロイシン(I)、ロイシン(L)、メチオニン(M)、トリプトファン(W)、グリシン(G)が挙げられる。中でも、三量体/四量体抗体の割合をより高める活性が高いことからイソロイシンであることが好ましい。
 本実施形態の多量体IgA型遺伝子組換え抗体は、二量体、三量体、四量体抗体の混合物であってもよい。また、単量体が混入していてもよい。本実施形態の多量体IgA型遺伝子組換え抗体は、四量体の含有量が全IgAの20モル%以上である。四量体の含有量は全IgAの30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることが更に好ましく、60モル%以上であることが特に好ましい。
 多量体IgA型遺伝子組換え抗体中の単量体、二量体、三量体/四量体抗体の割合は、例えば、実施例において後述するように、サイズ排除クロマトグラフィーにより測定することができる。実施例において後述するように、サイズ排除クロマトグラフィーによる測定では、三量体及び四量体のピークが分離しない場合がある。このような場合において、本実施形態の多量体IgA型遺伝子組換え抗体は、三量体/四量体(三量体又は四量体)の含有量が全IgAの20モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることが更に好ましく、50モル%以上であることが特に好ましく、60モル%以上であることが最も好ましい。
 実施例において後述するように、二量体IgAは300~400kDaの分子量を有する。また、三量体IgAは500~600kDaの分子量を有する。また、四量体IgAは700~800kDaの分子量を有する。IgAの分子量は、実施例において後述するように、例えばイオンの取り込み部付近の真空度を下げることによって達成されるマイルドなイオン導入条件下における質量分析等によって測定することができる。
 本実施形態の多量体IgA型遺伝子組換え抗体において、抗体はIgA型抗体と非IgA型抗体とのキメラであってもよい。本明細書において、IgA型抗体とは、少なくとも1部がIgA型抗体に由来するアミノ酸配列を有する抗体を意味する。いい換えると、IgA型抗体とは、一般的な抗IgAポリクローナル抗体が反応するタンパク質であるということもできる。
 実施例において後述するように、発明者らは、多量体抗体は、抗原に対する抗原結合活性又は中和活性が、単量体抗体よりも高いことを見出した。
 1実施形態において、本発明は、配列番号70~97に記載のアミノ酸配列を有するペプチドを内部標準に用いて質量分析を行う工程を備える、多量体IgA型抗体の構成成分の定量方法を提供する。また、Taga Y., et al., Stable isotope-labeled collagen: a novel and versatile tool for quantitative collagen analyses using mass spectrometry, J. Proteome Res. 13 (8), 3671-3678, 2014 に記載されるような方法で、IgA抗体分泌細胞に安定同位体標識アミノ酸を添加して培養し安定同位体標識IgA抗体を作製すれば、これを内部標準として用いることもできる。多量体IgA型抗体はヒト型であることが好ましい。また、上記の構成成分とは、IgA1抗体重鎖、IgA2抗体重鎖、λ型抗体軽鎖、κ型抗体軽鎖、J鎖、SCであってもよい。
 1実施形態において、本発明は、配列番号70~97に記載のアミノ酸配列を有するペプチドセットを含む、多量体IgA型抗体の構成成分定量用スタンダードを提供する。
[医薬]
 1実施形態において、本発明は、多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬を提供する。本実施形態の医薬は、感染症の治療又は予防用であることが好ましい。感染症としては、寄生虫、細菌、真菌、ウイルス、異常プリオン等の病原体によるものが挙げられる。
 粘膜上皮を覆う粘液や分泌液中の主たる抗体はIgAであり、粘膜感染症における生体防御機構の最前線として機能しているにもかかわらず、IgAは抗体医薬として実用化されていないのが現状である。
 発明者らは、次世代インフルエンザワクチンとしてインフルエンザウイルス不活化全粒子抗原を用いた安全で簡便な接種を特徴とする経鼻不活化全粒子インフルエンザワクチンの開発研究を行ってきた。これまでに、動物を用いた基礎研究に加え健康成人ボランティアを募った臨床研究においても良い成績を得ており、実用化を見据えた臨床開発の段階に入りつつある。
 この過程で、発明者らは、経鼻不活化インフルエンザワクチンを接種したヒトの呼吸器粘膜上でウイルス感染防御に重要な役割を果たすIgA抗体の中に二量体よりも大きい多量体抗体が存在し、インフルエンザウイルス中和活性が単量体、二量体抗体よりも高いことを見出した。
 また、後述するように、発明者らは、多量体IgA型遺伝子組換え抗体を効率的に作製することに初めて成功し、多量体IgA型遺伝子組換え抗体が、単量体、二量体抗体よりも高いインフルエンザウイルス中和活性及びHAタンパク質結合活性を有することを明らかにした。
 したがって、本実施形態の医薬は、インフルエンザウイルス感染症、RSウイルス感染症、重症急性呼吸器症候群(SARS)、中東呼吸器症候群(MERS)、後天性免疫不全症候群(AIDS)等の粘膜感染症の治療又は予防剤として有用である。
 また、後述するように、多量体IgA型遺伝子組換え抗体は、少量で、インフルエンザウイルス、RSウイルス等に結合し、中和することができる。
 したがって、本実施形態の医薬は、呼吸器投与型抗体医薬として、上記の感染症の予防又は治療薬、体外診断薬、研究用途の抗体等として応用することができる。
 本実施形態の医薬は、上記の感染症の原因ウイルスによる感染リスクが高い対象に対して、予防を目的として投与してもよい。あるいは、上記の感染症に対する罹患が認められた患者に対して、治療及びウイルス拡散防止を目的として投与してもよい。
 本実施形態の医薬は、粉剤、液剤等の剤型に製剤化して投与することができる。本実施形態の医薬には、例えば、噴霧した抗体の滞留性を高める目的で、既に市販されているアレルギー性鼻炎に対する点鼻薬に通常含まれるような増粘剤を添加してもよい。
 本実施形態の医薬は、鼻腔粘膜上への噴霧による投与、ネブライザーを用いた下気道への吸入による投与等により投与することができる。
 鼻腔粘膜上への噴霧による投与は、例えば、Ainai A, et al., Intranasal vaccination with an inactivated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of healthy adults., Hum Vaccin Immunother. 9(9), 1962-1970, 2013. に記載された、経鼻全粒子不活化インフルエンザワクチンと同様にして行うことができる。
 本実施形態の治療又は予防剤を、鼻腔粘膜上に噴霧により投与する場合、例えば、両側鼻孔に片鼻250μLずつ噴霧するとよい。また、投与抗体量は、接種1回(500μL)あたり、数百μg~数mgであってもよい。噴霧には、例えば、経鼻不活化全粒子インフルエンザワクチンに使用される噴霧デバイスを使用すればよい。また、1日あたり2回(朝晩)~4回(6時間ごとに1回)噴霧すればよい。投与期間としては、例えば1週間が挙げられる。
 また、本実施形態の医薬を、下気道への吸入により投与する場合、例えば、通常使用されるエアロゾルタイプの吸入器を使用するとよい。吸入抗体量は、例えば、1回の吸入あたり数mg~数十mgであってもよい。また、1日あたり2回(朝晩)程度吸入すればよい。投与期間としては、例えば1週間が挙げられる。
 本実施形態の医薬は、ヒトを対象とするものであってもよく、例えば、ウマ、ウシ、ヤギ、ヒツジ、ブタ等の家畜;イヌ、ネコ等の愛玩動物;チンパンジー、ゴリラ、カニクイザル等の霊長類;マウス、ラット、モルモット等のげっ歯類等を対象とするものであってもよい。
 本実施形態の医薬において、IgA重鎖、IgA軽鎖、J鎖、分泌成分タンパク質(以下、「SC」という場合がある。)は、対象とする動物由来のアミノ酸配列を有している(対象とする動物型である)ことが好ましい。ここで、対象とする動物型であるとは、多量体抗体をコードするIgA重鎖、IgA軽鎖の定常領域が対象とする動物のIgA重鎖、IgA軽鎖の定常領域のアミノ酸配列を有していることを意味する。また、J鎖、分泌成分タンパク質が対象とする動物型であるとは、J鎖、分泌成分タンパク質が、対象とする動物のJ鎖、分泌成分タンパク質のアミノ酸配列を有していることを意味する。IgA重鎖、IgA軽鎖、J鎖、分泌成分タンパク質のアミノ酸配列は、目的とする抗原結合活性を有している限り変異を含んでいてもよい。
[多量体IgA型抗体の製造方法]
 1実施形態において、本発明は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、多量体IgA型抗体の製造方法を提供する。多量体IgA型抗体は、遺伝子組換え抗体であってもよい。
 上述したように、粘膜上皮細胞の基底膜側の細胞膜上に発現しているpIgRは、粘膜固有層に存在する形質細胞が産生した二量体/多量体型Ig分子中のJ鎖タンパク質を特異的に認識して結合して細胞内に取り込み、上皮細胞中への取り込み後も結合したままアピカル側へ輸送された後、pIgRの細胞外ドメイン部分と膜貫通部との間で切断されて、上皮細胞内から粘膜面に放出される。
 つまり、生体内においては、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質が1つの細胞内で共発現されることはない。
 これに対し、発明者らは、分泌成分タンパク質を、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質と共に1つの細胞内で共発現させることにより、意外にも、多量体IgA型抗体を作製することに初めて成功した。本実施形態の製造方法により、多量体IgA型抗体を産業応用することが可能となる。
 多量体IgA型抗体が、医薬として対象に投与するものである場合、抗体J鎖タンパク質及び分泌成分タンパク質は、対象である動物種に由来するアミノ酸配列を有するものであることが好ましい。また、抗体J鎖タンパク質及び分泌成分タンパク質は、複数の動物種に由来するアミノ酸配列を有するキメラであってもよい。
 本実施形態におけるIgA型抗体重鎖タンパク質は、本来非IgA型であった抗体を遺伝子組換えによりIgA型に変換したものであってもよい。非IgA型抗体としては、特に制限されず、例えば、非IgA型の、ヒト抗体、非ヒト哺乳動物由来の抗体、げっ歯類由来の抗体、鳥類由来の抗体等が挙げられる。また、抗体のクラスも特に制限されず、例えば、IgG型、IgM型、IgE型、IgD型、IgY型抗体等が挙げられる。
 例えば、IgG型抗体の可変領域をIgA型抗体のバックボーンフレームワークに移植することによりIgA型に変換することができる。あるいは、IgG型抗体のCDR領域のみをIgA型抗体のCDR領域に移植することにより、IgA型に変換することもできる。IgAのサブクラスは、IgA1型であってもIgA2型であってもよい。
 宿主細胞としては、哺乳動物細胞、昆虫細胞等が挙げられる。哺乳動物細胞としては、293F細胞、CHO細胞、CHO YA7細胞等が挙げられ、特にCHO YA7細胞が好ましい。昆虫細胞としては、Sf9細胞株、Sf21細胞株等が挙げられる。
 1実施形態において、本発明は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質、分泌成分タンパク質、p180タンパク質及びSF3b4タンパク質を1つの細胞内で共発現させる工程を含む、多量体IgA型抗体の製造方法を提供する。多量体IgA型抗体は、遺伝子組換え抗体であってもよい。p180タンパク質のアミノ酸配列を配列番号98に示し、p180タンパク質をコードする塩基配列を配列番号99に示す。また、SF3b4タンパク質のアミノ酸配列を配列番号100に示し、SF3b4タンパク質をコードする塩基配列を配列番号101に示す。
 p180タンパク質及びSF3b4タンパク質を細胞中で発現させることにより、当該細胞内の小胞体膜上において、ポリソーム形成を促進することができる。ここで、ポリソームとは、細胞内の小胞体膜上に存在する複数のリボソームに対して、1分子のmRNAが結合したものである。ポリソーム形成の促進の結果として、タンパク質の合成能を亢進し、目的タンパク質の生産効率を向上させることができる。好適な宿主細胞は、上述したものと同様である。またヒトp180タンパク質は、小胞体に存在するI型の膜貫通型蛋白質であり、短い細胞質内領域と膜貫通部、および細胞質ドメイン部分からなる。既に明らかになっているcDNA配列の分析から、細胞質ドメインのN末端近傍に種間で高度に保存され非常に強い塩基性を持つドメイン(配列番号98の第27~197番目)とそれに続く塩基性の反復配列とを有することが知られており、この反復数が54回、26回、14回の少なくとも3種類の分子種が存在することが分かっている(Ogawa-Goto K. et al., An endoplasmic reticulum protein, p180, is highly expressed in human cytomegalovirus-permissive cells and interacts with the tegument protein encoded by UL48, J. Virol., 76 (5), 2350-2362, 2002.)。本実施形態においては、いずれの反復数を有するp180タンパク質も用いることもできるが、54回の反復数を有するp180タンパク質が好ましい。p180タンパク質のC末端側はcoiled-coilドメインを形成し、このうち、配列番号98の第945~1540番目の部分が、SF3b4タンパク質との相互作用によるポリソーム形成促進に重要である(Ueno T. et al., Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180, Nucleic Acids Res., 40 (7), 3006-3017, 2012.)。
 したがって、本実施形態の製造方法により、多量体IgA型抗体を効率よく製造することが可能となる。
 細胞内のDNAから転写されたmRNA前駆体は、スプライシングによりイントロン部分が除去され、成熟型mRNAに変換される。この過程は、スプライソソームという核内低分子RNA(snRNA)-タンパク質からなる巨大複合体が担う。スプライソソームには、5種類の低分子リポ核タンパク質複合体(snRNP)が存在し、SF3b4タンパク質はこのうちのU2-snRNPの構成成分であり、RNA結合ドメインを有している。
 発明者らは、SF3b4タンパク質が細胞質内の小胞体を含む膜画分で優位に増加し、それとともにmRNAと結合したSF3b4タンパク質が、p180タンパク質のcoiled-coilドメインと相互作用することにより、mRNAの小胞体への局在化を促進させ、その結果として細胞によるタンパク質の合成能又は分泌能が亢進されることを明らかにした。
 したがって、p180タンパク質及びSF3b4タンパク質の発現が亢進された細胞において、目的タンパク質をコードする核酸を発現させると、当該核酸から転写されたmRNAがSF3b4タンパク質又はp180タンパク質と相互作用した結果、あるいは上記mRNAがSF3b4タンパク質と相互作用し、次いでp180タンパク質のcoiled-coilドメインとSF3b4タンパク質とが相互作用した結果、mRNAの小胞体への局在化を促進させ、この細胞内において目的タンパク質の合成能又は分泌能が亢進される。
 本実施形態において、p180タンパク質は、配列番号98に示されるアミノ酸配列からなるタンパク質であってもよく、配列番号98に示されるアミノ酸配列との配列同一性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上であるアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよく、配列番号98に示されるアミノ酸配列との配列類似性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上であるアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよく、配列番号98に示されるアミノ酸配列において、1又は数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよく、配列番号99に示される塩基配列との配列同一性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である塩基配列によりコードされるアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよく、配列番号99に示される塩基配列と相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズすることができる塩基配列によりコードされるアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよい。また、p180タンパク質は、ヒト以外の哺乳動物由来のものであってもよい。
 また、SF3b4タンパク質は、配列番号100に示されるアミノ酸配列からなるタンパク質であってもよく、配列番号100に示されるアミノ酸配列との配列同一性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上であるアミノ酸配列からなり、配列番号100に示されるアミノ酸配列からなるタンパク質と同等の、細胞に発現された場合に目的物としてのタンパク質の合成能又は分泌能を亢進させる機能を有するタンパク質であってもよく、配列番号100に示されるアミノ酸配列との配列類似性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上であるアミノ酸配列からなり、配列番号100に示されるアミノ酸配列からなるタンパク質と同等の、細胞に発現された場合に目的物としてのタンパク質の合成能又は分泌能を亢進させる機能を有するタンパク質であってもよく、配列番号100に示されるアミノ酸配列において、1又は数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、配列番号100に示されるアミノ酸配列からなるタンパク質と同等の、細胞に発現された場合に目的物としてのタンパク質の合成能又は分泌能を亢進させる機能を有するタンパク質であってもよく、配列番号101に示される塩基配列との配列同一性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である塩基配列によりコードされるアミノ酸配列からなり、配列番号100に示されるアミノ酸配列からなるタンパク質と同等の、細胞に発現された場合に目的物としてのタンパク質の合成能又は分泌能を亢進させる機能を有するタンパク質であってもよく、配列番号101に示される塩基配列と相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズすることができる塩基配列によりコードされるアミノ酸配列からなり、細胞内の小胞体膜上でのポリソーム形成を促進する機能を有するタンパク質であってもよい。
 1実施形態において、本発明は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を、CHO YA7細胞株(寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NPMD)、寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室、寄託日:2013年2月13日、受託番号:NITE BP-01535)で発現させる工程を含む、多量体IgA型抗体の製造方法を提供する。多量体IgA型抗体は、遺伝子組換え抗体であってもよい。
 CHO YA7細胞株は、発明者らが樹立した細胞株であり、p180タンパク質及びSF3b4タンパク質を細胞内で構成的に発現している。したがって、本実施形態の製造方法により、多量体IgA型抗体を効率よく製造することが可能となる。
 1実施形態において、本発明は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程が、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を発現するための発現ベクターを細胞内に導入することにより行われ、前記発現ベクターは、プロモーターの下流で、かつ、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質又は分泌成分タンパク質をコードする核酸の開始コドンの上流に、RNA結合タンパク質が認識、結合又は相互作用するcis-エレメントを有する、多量体IgA型抗体の製造方法を提供する。多量体IgA型抗体は、遺伝子組換え抗体であってもよい。
 前記cis-エレメントは、配列モチーフGAN-(X)-ACN(nは3~6の整数であり、N及びNは、それぞれ独立して、A、T、G、Cのいずれかである。)からなる塩基配列を1~数個含むことが好ましい。
 発明者らは、成熟mRNAの5’非翻訳領域に上記のcis-エレメントが存在すると、当該cis-エレメントを認識するRRMタンパク質が当該cis-エレメントに結合し、分泌タンパク質の合成の場である小胞体の膜上へのmRNAの輸送/局在化を増強し、翻訳効率を上昇させる機能があることを見出している。
 したがって、本実施形態の製造方法により、多量体IgA型遺伝子組換え抗体を更に効率よく製造することが可能となる。好適な宿主細胞は、上述したものと同様である。
 上記のcis-エレメントは、配列番号21~23のいずれかに示される塩基配列であってもよく、配列番号21~23のいずれかに示される塩基配列において、1~数個の塩基が欠失、置換又は付加されている塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列であってもよく、配列番号21~23のいずれかに示される塩基配列と同一性が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である塩基配列からなり、かつ、RNA結合タンパク質が認識、結合若しくは相互作用する塩基配列であってもよく、配列番号21~23のいずれかに示される塩基配列からなる核酸と相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズすることができる塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列からなる核酸断片であってもよい。上記のcis-エレメントは、非天然型の塩基配列からなる核酸断片であってもよい。核酸断片としては、DNA、RNA、cDNA等が挙げられる。
 本明細書において、欠失、置換又は付加されてもよい塩基の数としては、例えば1~30個、例えば1~15個、例えば1~10個、例えば1~5個が挙げられる。また、欠失、置換又は付加されてもよいアミノ酸の数としては、例えば2~40個、例えば2~30個、例えば2~20個、例えば2~10個、例えば2~7個、例えば2~5個、例えば5個、例えば4個、例えば3個、例えば2個が挙げられる。
 本明細書において、アミノ酸配列の同一性とは、対象とする2つのアミノ酸配列の同一性をいい、当該技術分野において公知の数学的アルゴリズムを用いて作成されたアミノ酸配列の最適なアラインメントにおいて一致するアミノ酸残基の割合(%)によって表される。アミノ酸配列の同一性は、視覚的検査及び数学的計算により決定することができ、当業者に周知のホモロジー検索プログラム(例えば、BLAST、FASTA)、配列整列プログラム(例えば、ClustalW)、遺伝情報処理ソフトウェア(例えば、GENETYX(登録商標))等を用いて算出することができる。
 本明細書におけるアミノ酸配列の同一性は、具体的には、DDBJ(DNA Data Bank of Japan)のウェブサイトで公開されている系統解析プログラムClustalW(http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja)を用い、初期設定の条件(Version 2.1、Alignment type: slow、Protein Weight Matrix: Gonnet、GAP OPEN: 10、GAP EXTENSION: 0.1)で求めることができる。
 本明細書において、アミノ酸配列の類似性とは、対象とする2つのアミノ酸配列の類似性をいい、当該技術分野において公知の数学的アルゴリズムを用いて作成されたアミノ酸配列の最適なアラインメントにおいて一致するアミノ酸残基及び類似性を示すアミノ酸残基の割合(%)によって表される。アミノ酸配列の類似性は、物理化学的な性質が相互に類似するアミノ酸残基の関係により示され、例えば、芳香族アミノ酸(Phe、Tyr、Trp)、疎水性アミノ酸(Ala、Leu、Ile、Val、Gly、Pro、Met、Phe、Trp)、脂肪族アミノ酸(Ala、Leu、Ile、Val)、極性アミノ酸(Asn、Gln)、塩基性アミノ酸(Lys、Arg、His)、酸性アミノ酸(Asp、Glu)、ヒドロキシル基を含むアミノ酸(Ser、Thr)、側鎖の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)等のグループにおいて、同一のグループに属するアミノ酸同士は、相互に類似するアミノ酸残基であると理解される。このような類似性を示すアミノ酸残基は、タンパク質の表現型に影響を及ぼさないことが予測される。アミノ酸配列の類似性は、同一性と同様に視覚的検査及び数学的計算により決定することができ、当業者に周知のホモロジー検索プログラム(例えば、BLAST、PSI-BLAST、HMMER)、遺伝情報処理ソフトウェア(例えば、GENETYX(登録商標))等を用いて算出することができる。
 本明細書におけるアミノ酸配列の類似性は、具体的には、GENETYX(登録商標)ネットワーク版ver.11.1.3(株式会社ゼネティックス)を用い、Protein vs Protein Global Homology を初期設定の条件(Unit size to compare を2に設定する)で求めることができる。
 本明細書において、塩基配列の同一性とは、対象とする2つの塩基配列の同一性をいい、当該技術分野において公知の数学的アルゴリズムを用いて作成された塩基配列の最適なアラインメントにおいて一致する核酸残基の割合(%)によって表される。
 塩基配列の同一性を算出する代表的なコンピュータ・プログラムとしては、遺伝学コンピュータ・グループ(GCG;ウィスコンシン州マディソン)のウィスコンシン・パッケージ、バージョン10.0プログラム「GAP」(Devereux, et al., 1984, Nucl. Acids Res., 12: 387)、米国国立医学ライブラリーのウェブサイト:http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html により利用可能なBLASTNプログラム、バージョン2.2.7、又はUW-BLAST2.0アルゴリズム等が挙げられる。
 本明細書において「ストリンジェントな条件下」とは、例えば、Molecular Cloning-A LABORATORY MANUAL SECOND EDITION(Sambrookら、Cold Spring Harbor Laboratory Press)に記載の方法が挙げられる。例えば、5×SSC(20×SSCの組成:3M塩化ナトリウム、0.3Mクエン酸溶液、pH7.0)、0.1重量%N-ラウロイルサルコシン、0.02重量%のSDS、2重量%の核酸ハイブルダイゼーション用ブロッキング試薬、及び50%ホルムアミドからなるハイブリダイゼーションバッファー中で、55~70℃で数時間から一晩インキュベーションを行うことによりハイブリダイズさせる条件を挙げることができる。なお、インキュベーション後の洗浄の際に用いる洗浄バッファーとしては、好ましくは0.1重量%SDS含有1×SSC溶液、より好ましくは0.1重量%SDS含有0.1×SSC溶液である。
 上記のcis-エレメントは、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質の発現ベクターのうち、いずれか1つ以上に含まれていれば多量体IgA型抗体の発現量又は分泌量の向上の効果が得られる。
 後述するように、本実施形態の方法により、従来の方法に比べ26倍から35倍以上に効率良く多量体抗体を作製することが可能である。さらに、この方法により作製したインフルエンザウイルスに対するモノクローナル四量体抗体(rS-qIgA)は、単量体抗体に比べ、抗原結合活性が上昇しており、最大で100倍以上の中和活性を示した。
[抗体の抗原結合活性又は中和活性を向上させる方法]
 1実施形態において、本発明は、抗体を多量体IgA型化する工程を含む、前記抗体の抗原結合活性又は中和活性を向上させる方法を提供する。
 抗体を多量体IgA型化する工程は、前記抗体の重鎖可変領域を有するIgA型抗体重鎖タンパク質、前記抗体の軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含むことが好ましい。
 抗体の抗原結合活性とは、抗体が標的分子に結合する能力そのものであるが、特異性とは、標的分子以外には結合しないという能力であり、高い特異性を担保するためには標的分子にしか存在しない部位を認識部位(エピトープ)とする必要がある。これらの抗原結合活性と特異性は、抗体分子の可変領域配列の多様性によって生み出されるが、可変領域配列から標的分子への抗原結合活性と特異性を予測することは困難であり、抗原結合活性および特異性の高い抗体は、マウスなどの生体内やランダムに生み出された抗体産生細胞や抗体遺伝子、もしくは人為的に作製したランダムな可変領域ライブラリーから何らかの方法によりクローニングする必要がある。また、特異性と抗原結合活性の双方が独立して可変領域の配列に依存していることから、得られた抗体の特異性を変化させることなく、すなわち、認識するエピトープを変化させることなく、人為的に抗原結合活性を向上させることは非常に難しい。
 これに対し、後述するように、発明者らは、IgA型抗体重鎖タンパク質、前記抗体の軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させることにより、多量体IgA型抗体を製造できることを見出した。好適な宿主細胞は、上述したものと同様である。
 発明者らは、更に、単量体抗体を多量体化することにより、抗体の抗原結合活性又は中和活性を向上させることができることを見出した。例えば、後述するように単量体抗体を多量体化することにより、単量体抗体に比べ、抗体1モルあたりのウイルス中和活性を100倍以上に向上させることも可能である。
 抗原結合活性又は中和活性を向上させる対象となる抗体としては、特に制限されず、例えば、ヒト抗体、非ヒト哺乳動物由来の抗体、げっ歯類由来の抗体、鳥類由来の抗体等が挙げられる。また、抗体のクラスも特に制限されず、例えば、IgG型、IgM型、IgE型、IgA型、IgD型、IgY型抗体等が挙げられる。本実施形態の方法により、既存の抗体の特異性を変化させることなく抗原結合活性又は中和活性を向上させることができる。
 遺伝子組換えにより、当該抗体の可変領域をIgA型抗体の定常領域に結合してIgA型に変換することにより、本実施形態の方法を適用することができる。例えば、IgG型モノクローナル抗体の可変領域をIgA型抗体のバックボーンフレームワークに移植することによりIgA型モノクローナル抗体に変換することができる。あるいは、抗原結合活性を向上させる対象となる抗体のCDR領域のみをIgA型抗体のCDR領域に移植することにより、IgA型に変換してもよい。IgAのサブクラスは、IgA1型であってもIgA2型であってもよい。
 本実施形態の方法は、同じエピトープを認識する可変領域を有するIgG型モノクローナル抗体を高結合型、高活性型に変換できる技術として非常に汎用性が高い。このため、医薬品用抗体、イムノクロマト法、免疫組織化学、ELISA法等に用いられる診断用抗体、その他の研究用途の抗体等モノクローナル抗体が使用されている製品に広く応用することができる。
 IgA1抗体の定常領域のアミノ酸配列中のアミノ酸残基の位置を示す場合、本明細書では、Liu YS et al. Complete covalent structure of a human IgA1 immunoglobulin. Science. 1976;193: 1017-20. にしたがった番号を用いた。また、IgA2抗体アロタイプ(IgA2m1、IgA2m2、IgA2(n))の定常領域のアミノ酸残基の位置を示す場合、各IgA2抗体アロタイプの定常領域とIgA1抗体の定常領域とのアラインメントを行い、対応するIgA1抗体のアミノ酸残基の番号を用いた。IgA1抗体のアミノ酸配列224-236(STPPTPSPSTPPT)は各IgA2抗体アロタイプにおいては対応するアミノ酸が存在しないため欠番とした。
 以下、実験例により本発明を説明するが、本発明は以下の実験例に限定されるものではない。
[実験例1:経鼻不活化全粒子インフルエンザワクチンによりヒトに誘導される抗体可変領域遺伝子の単離及びそれを利用したモノクローナルIgG1抗体の作製]
(ワクチン接種と末梢血リンパ球の回収)
 高病原性トリインフルエンザウイルスA/H5N1の不活化全粒子ワクチンを健康成人へ3週間隔で2回経鼻接種(片鼻250μL、計500μL)した。ワクチンとしては、45μgのヘマグルチニン(HA)を含有する不活化全粒子ワクチンを使用した。2回目のワクチン接種から7日後に末梢血を回収し、血球分離溶液Lymphoprep(商標)(AXIS-SHIELD社)を用いて末梢血リンパ球を回収した。
(抗体産生形質細胞の単離及びcDNA調製)
 経鼻ワクチン接種により末梢血中に誘導された抗体産生形質細胞の単離は、FACS Aria (BD Bioscience社)を用いて実施した。細胞表面マーカーCD2、CD3、CD4、CD10、CD20、IgD、CD19low、CD27highかつCD38highの細胞集団を抗体産生形質細胞とし、単一細胞として分離・回収した。単一抗体産生形質細胞は、各ウェルに45ngのキャリアRNAを含む滅菌水9μLを分注した96穴プレートに回収した。cDNA調製は、T. Tillerら(J Immunol Methods, 329, 112-24, 2008)の報告に則り実施した。具体的には、細胞を回収した各ウェルにSuperscript III RT(ライフテクノロジーズ社)、Randam Hexamer(ライフテクノロジーズ社)、RNaseOUT(ライフテクノロジーズ社)、dNTP mix(キアゲン社)を含む6μLの混合液を添加し、50℃50分、85℃5分の反応を行うことでcDNAを調製した。
(抗体アイソタイプの決定)
 調製したcDNAを2μL用いて、各ウェルに単離された抗体重鎖のアイソタイプをReal-time PCRにより決定した。IgG、IgAおよびIgMの各定常領域に対してTaqManプローブとプライマーを準備した。IgG、IgAおよびIgMに対するTaqManプローブは、それぞれFAM、HEXおよびCy5による標識とした。QuantiTect Multiplex PCR NoROX Master Mix(キアゲン社)を使用し、LightCycler480(ロシュ社)を用いて解析を行った。
(抗体可変領域遺伝子の増幅及びシークエンス)
 抗体可変領域遺伝子の増幅は、T. Tillerら(J Immunol Methods, 329, 112-24, 2008)の報告に則り実施した。具体的には、調製したcDNA1μLに対して11.5μLのHotStarTaq DNA polymerase(キアゲン社)、dNTP mix及び各抗体可変領域遺伝子を増幅するプライマーセットの混合液を添加し、1回目のPCR反応を行った。更にこのPCR産物1μLに含まれる各遺伝子に対して更に内側に設計したプライマーセットを用いて2回目のPCR反応を行った。いずれのPCR反応においても、95℃15分、(94℃30秒、58℃20秒、72℃60秒)×43サイクル、72℃2分の条件で増幅を行った。また、PCR産物の塩基配列解析(シークエンス)を常法により行った。
(抗体可変領域遺伝子の発現ベクターへのクローニング)
 抗体可変領域遺伝子のPCRはPrimeSTAR(登録商標)MAX DNA Polymerase(TaKaRa社)を使用して、説明書にしたがって実施した。鋳型として上述の1回目のPCR産物を使用し、プライマーとしては、上述の2回目のPCR産物のシークエンスの結果に基づいて、増幅する遺伝子座に適切なペアを選択した。PCR条件は98℃10秒、55℃5秒、72℃10秒で25サイクルとした。PCR産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、30μLのBuffer Cに溶出した。
 精製されたPCR産物は全量30μLでAgeI-HF(全ての鎖)及びSalI-HF(重鎖)、BsiWI(κ鎖)又はXhoI(λ鎖)(以上、NEB社)を用いて、適切な条件で制限酵素処理した。各鎖に応じた発現ベクターγ1 HC(重鎖)、κ LC(κ鎖)、λ LC(λ鎖)も同様の酵素の組み合わせで制限酵素処理した。制限酵素産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、20μLのBuffer Cに溶出した。
 制限酵素処理したDNAのライゲーションはDNA Ligation Kit <Mighty Mix>(TaKaRa社)を使用して、説明書にしたがって全量10μLで実施した。ライゲーション産物は、Competent Quick DH5α(TOYOBO社)へ42℃の加温により10μL形質転換した。プラスミド抽出は、PureYield(商標)Plasmid Miniprep System(プロメガ社)を使用して、説明書にしたがって実施した。
 続いて、1遺伝子につき4クローンをシークエンスした。抽出したプラスミドのシークエンス反応はBigDye(登録商標)Terminator v3.1 Cycle Sequencing Kit(ライフテクノロジーズ社)を使用して、説明書にしたがって実施した。反応産物はBigDye XTerminator(商標)Kit(ライフテクノロジーズ社)を用いて、説明書にしたがって精製し、Applied Biosystems 3130 Genetic Analyzer(ライフテクノロジーズ社)でシークエンスした。読まれた配列と2回目のPCR産物の配列のアラインメント解析を実施し、最も共通配列を保持するサンプルを選択した。
(遺伝子組換えモノクローナルIgG1抗体の発現)
 遺伝子組換え抗体の作製にはExpi293(商標)Expression System(ライフテクノロジーズ社)を説明書にしたがって用いた。30mLの系を以下に例示する。
 継代し維持しているExpi293F細胞の密度が3.0×10個/mL以上であり、生存率95%以上であり、細胞が凝集していないことを確認した。37℃に保温されたExpi293 Expression mediumを用いて、細胞数を2.9×10個/mLに調製した。使い捨てのベントフィルターキャップ付三角フラスコに、調製した細胞懸濁液を25.5mL移し、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。1.5mLのOpti-MEM I培地にプラスミドDNA30μg(IgG重鎖及び軽鎖各15μg)を添加した。別に用意した1.5mLのOpti-MEM I培地に80μLのExpiFectamine 293 Reagentを添加した。5分間、室温で静置した後、DNA溶液をExpiFectamine溶液へ全量加え、室温で20~30分静置した。細胞へトランスフェクションミックスを添加した後、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクションの16~18時間後、150μLのExpiFectamine 293 Transfection Enhancer1及び1.5mLのExpiFectamine 293 Transfection Enhancer2を加えた。細胞は37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクション後6日で上清を回収した。
(遺伝子組換えモノクローナルIgG1抗体の精製)
 細胞のデブリを1000×g、10分間の遠心分離により取り除いた後、Millex-HV Filter Unit (ミリポア社)で上清の濾過を行った。遺伝子組換え抗体の精製はCaptureSelect(商標)human Fc affinity matrix(ライフテクノロジーズ社)を用いて、説明書にしたがって実施した。具体的には、カラムは10カラム容量のリン酸緩衝液(PBS)で平衡化し、サンプルをロードし、10カラム容量のPBSで洗浄し、5カラム容量の0.1M Glycine-HCl(pH3.0)により抗体を溶出し、1M Tris-HCl(pH9.0)で溶出液を中和した。カラムは10カラム容量のPBSで再平衡化した。抗体の濃度はNanoDrop(Thermo Scientific社)で測定した。抗体の濃縮はAmicon(登録商標)Ultra Centrifugal Filter Devices(ミリポア社)を用いて、説明書にしたがって実施した。Zeba Desalt Spin Columns(Thermo Scientific社)で、説明書にしたがってPB(pH7.4)にバッファー交換した。バッファー交換後の濃度はNanoDropで測定した。
(遺伝子組換えモノクローナルIgG1抗体の確認)
 精製した抗体の確認はNuPAGE(登録商標)Bis-Tris Gel(ライフテクノロジーズ社)を用いて、説明書にしたがってSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)を実施した。図1はSDS-PAGEの結果を示す写真である。抗体クローンG2、H10、D11、F9、F11、H5及びC1が、IgG1型化されたことが確認された。抗体クローンG2、H10、D11、F9、F11、H5及びC1が、IgG1型化されたことが確認された。クローンによって発現量にばらつきが見られた。40mL培養系において、クローンB12は約40mg、クローンD11は約4mg、クローンF9は約1.5mg、クローンF11は約2.1mg、クローンH5は約1mgの抗体を作製することができた。
[実験例2:性状解析されたモノクローナルIgG抗体と同一の可変領域を保持するモノクローナルIgA抗体の作製]
 IgA型遺伝子組換え抗体を以下の方法により作製した。実験例1で作製したIgG1抗体に限らず、配列が既知の抗体は全て以下の方法でIgA型化することができる。
(α1 HC発現ベクターの作製)
 IgA1抗体定常領域遺伝子を含む発現ベクターα1 HCを作製した。IgA1抗体定常領域遺伝子のPCRは、PrimeSTAR(登録商標)MAX DNA Polymerase(TaKaRa社)を使用して、説明書にしたがって実施した。
 具体的には、鋳型としてpFUSE-CHIg-hA1(InvivoGen社)を用い、IgA1抗体定常領域遺伝子を増幅した。PCR条件は、98℃10秒、55℃5秒、72℃30秒で30サイクルとした。PCR産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、30μLのBuffer Cに溶出した。精製したPCR産物及びγ1 HCプラスミドを、全量30μLでXhoI及びHindIII-HF(以上、NEB社)を用いて37℃で制限酵素処理した。制限酵素処理産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、20μLのBuffer Cに溶出した。制限酵素処理したDNAのライゲーションはDNA Ligation Kit <Mighty Mix>(TaKaRa社)を使用して、説明書にしたがって全量10μLで実施した。ライゲーション産物は、Competent Quick DH5αへ42℃の加温により10μL形質転換した。
 プラスミド抽出は、PureYield(商標)Plasmid Miniprep System(プロメガ社)を使用して、説明書にしたがって実施した。抽出したプラスミドのシークエンス反応はBigDye(登録商標)Terminator v3.1 Cycle Sequencing Kit(ライフテクノロジーズ社)を使用して、説明書にしたがって実施した。反応産物はBigDye XTerminator(商標)Kit(ライフテクノロジーズ社)を用いて、説明書にしたがって精製され、Applied Biosystems 3130 Genetic Analyzer(ライフテクノロジーズ社)でシークエンスした。
(抗体可変領域遺伝子のα1 HC発現ベクターへのPCRクローニング)
 抗体可変領域遺伝子のPCRはPrimeSTAR(登録商標)MAX DNA Polymerase(TaKaRa社)を使用して、説明書にしたがって実施した。γ1 HC発現ベクターへクローニングした抗体遺伝子を鋳型として、リバースプライマーをα1 HC発現ベクター用のものに変更し、PCR条件は98℃10秒、55℃5秒、72℃5秒で25サイクルとした。
 PCR産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、30μLのBuffer Cに溶出した。精製されたPCR産物及びα1 HC発現ベクターは全量30μLでAgeI-HF及びNheI-HF(以上、NEB社)を用いて、適切な条件で制限酵素処理した。制限酵素産物の精製はMonoFas(登録商標)DNA精製キットI(ジーエルサイエンス社)を使用して、説明書にしたがって実施し、20μLのBuffer Cに溶出した。制限酵素処理したDNAのライゲーションはDNA Ligation Kit <Mighty Mix>(TaKaRa社)を使用して、説明書にしたがって全量10μLで実施した。ライゲーション産物は、Competent Quick DH5α(TOYOBO社)へ42℃の加温により10μL形質転換した。
 プラスミド抽出は、PureYield(商標)Plasmid Miniprep System(プロメガ社)を使用して、説明書にしたがって実施した。抽出したプラスミドのシークエンス反応はBigDye(登録商標)Terminator v3.1 Cycle Sequencing Kit(ライフテクノロジーズ社)を使用して、説明書にしたがって実施した。反応産物はBigDye XTerminator(商標)Kit(ライフテクノロジーズ社)を用いて、説明書にしたがって精製し、Applied Biosystems 3130 Genetic Analyzer(ライフテクノロジーズ社)でシークエンスした。シークエンスの結果、γ1 HC発現ベクターへクローニングした抗体遺伝子と同一であることが確かめられた。
(遺伝子組換えモノクローナルIgA1抗体の発現)
 遺伝子組換え抗体の作製にはExpi293(商標)Expression System(ライフテクノロジーズ社)を説明書にしたがって用いた。30mLの系を以下に例示する。
 継代し維持しているExpi293F細胞の密度が3.0×10個/mL以上であり、生存率95%以上であり、細胞が凝集していないことを確認した。37℃に保温されたExpi293 Expression mediumを用いて、細胞数を2.9×10個/mLに調製した。使い捨てのベントフィルターキャップ付三角フラスコに、調製した細胞懸濁液を25.5mL移し、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。1.5mLのOpti-MEM I培地にプラスミドDNA30μg(IgA1重鎖及び軽鎖各15μg)を添加した。別に用意した1.5mLのOpti-MEM I培地に80μLのExpiFectamine 293 Reagentを添加した。5分間、室温で静置した後、DNA溶液をExpiFectamine溶液へ全量加え、室温で20~30分静置した。細胞へトランスフェクションミックスを添加した後、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクションの16~18時間後、150μLのExpiFectamine 293 Transfection Enhancer1及び1.5mLのExpiFectamine 293 Transfection Enhancer2を加えた。細胞は37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクション後6日で上清を回収した。
(遺伝子組換えモノクローナルIgA1抗体の精製)
 細胞のデブリを1000×g、10分間の遠心分離により取り除いた後、Millex-HV Filter Unit (ミリポア社)で上清の濾過を行った。遺伝子組換え抗体の精製はCaptureSelect(商標)human IgA affinity matrix(ライフテクノロジーズ社)を用いて、説明書にしたがって実施した。具体的には、カラムは10カラム容量のリン酸緩衝液(PBS)で平衡化し、サンプルをロードし、10カラム容量のPBSで洗浄し、5カラム容量の0.1M Glycine-HCl(pH3.0)により抗体を溶出し、1M Tris-HCl(pH9.0)で溶出液を中和した。カラムは10カラム容量のPBSで再平衡化した。抗体の濃度はNanoDrop(Thermo Scientific社)で測定した。抗体の濃縮はAmicon(登録商標)Ultra Centrifugal Filter Devices(ミリポア社)を用いて、説明書にしたがって実施した。Zeba Desalt Spin Columns(Thermo Scientific社)で、説明書にしたがってPB(pH7.4)にバッファー交換した。バッファー交換後の濃度はNanoDropで測定した。
(遺伝子組換えモノクローナルIgA1抗体の確認)
 精製した抗体の確認はNuPAGE(登録商標)Bis-Tris Gel(ライフテクノロジーズ社)を用いて、説明書にしたがってSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)を実施した。図2はSDS-PAGEの結果を示す写真である。抗体クローンB12、D11、F9、F11及びH5が、IgA1型化されたことが確認された。
[実験例3:モノクローナルIgA抗体の二量体作製]
 実験例2において作製したIgA1抗体発現コンストラクトを用いて、二量体IgA1型抗体を作製した。
(抗体J鎖のクローニング)
 抗体J鎖は人工遺伝子合成サービス(オペロン バイオテクノロジー)を利用して、J鎖(GenBank accession no.NM_144646)のコード領域(CDS)の5’側にXhoI切断サイト及びKozak配列を付加し、3’側にNotI切断サイトを付加した人工遺伝子(配列番号24)を合成した。J鎖遺伝子をXhoI及びNotI-HF(以上、NEB社)を用いて、適切な条件で制限酵素処理した。同一の制限酵素で処理したpCXSNベクター(CMVプロモーターとSV40 polyAから構成される哺乳類細胞発現用ベクター)にクロ-ニングし、抗体J鎖の発現プラスミドであるpCXSN-hJCを得た。
(二量体IgA1型抗体の発現)
 二量体IgA1型抗体の作製にはExpi293(商標)Expression System(ライフテクノロジーズ社)を説明書にしたがって用いた。30mLの系を以下に例示する。
 継代し維持しているExpi293F細胞の密度が3.0×10個/mL以上であり、生存率95%以上であり、細胞が凝集していないことを確認した。37℃に保温されたExpi293 Expression mediumを用いて、細胞数を2.9×10個/mLに調製した。使い捨てのベントフィルターキャップ付三角フラスコに、調製した細胞懸濁液を25.5mL移し、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。1.5mLのOpti-MEM I培地にプラスミドDNA(J鎖発現群:IgA1重鎖及び軽鎖各12μg、J鎖6μg;J鎖非発現群:IgA1重鎖及び軽鎖各15μg)を添加した。
 別に用意した1.5mLのOpti-MEM I培地に80μLのExpiFectamine 293 Reagentを添加した。5分間、室温で静置した後、DNA溶液をExpiFectamine溶液へ全量加え、室温で20~30分静置した。細胞へトランスフェクションミックスを添加した後、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクションの16~18時間後、150μLのExpiFectamine 293 Transfection Enhancer1及び1.5mLのExpiFectamine 293 Transfection Enhancer2を加えた。細胞は37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクション後6日で上清を回収した。
(発現させたIgA1抗体の精製)
 細胞のデブリを1000×g、10分間の遠心分離により取り除いた後、Millex-HV Filter Unit (ミリポア社)で上清の濾過を行った。遺伝子組換え抗体の精製はCaptureSelect(商標)human IgA affinity matrix(ライフテクノロジーズ社)を用いて、説明書にしたがって実施した。具体的には、カラムは10カラム容量のリン酸緩衝液(PBS)で平衡化し、サンプルをロードし、10カラム容量のPBSで洗浄し、5カラム容量の0.1M Glycine-HCl(pH3.0)により抗体を溶出し、1M Tris-HCl(pH9.0)で溶出液を中和した。カラムは10カラム容量のPBSで再平衡化した。抗体の濃度はNanoDrop(Thermo Scientific社)で測定した。抗体の濃縮はAmicon(登録商標)Ultra Centrifugal Filter Devices(ミリポア社)を用いて、説明書にしたがって実施した。Zeba Desalt Spin Columns(Thermo Scientific社)で、説明書にしたがってPB(pH7.4)にバッファー交換した。バッファー交換後の濃度はNanoDropで測定した。
(発現させたIgA1抗体の確認)
 精製した抗体の確認は、未変性ポリアクリルアミドゲル電気泳動法(BN-PAGE、3-13%、Invitrogen社)により行った。図3はBN-PAGEの結果を示す写真である。J鎖非発現群(-J)では、単量体IgA型遺伝子組換え抗体のバンドが確認されたのに対し、J鎖発現群(+J)では、単量体のバンドに加えて、二量体IgA型遺伝子組換え抗体のバンドが確認された。
[実験例4:モノクローナルIgA抗体の多量体作製]
 実験例2において作製したIgA1抗体発現コンストラクトを用いて、多量体IgA1型抗体を作製した。
(分泌成分(Secretory component、SC)のクローニング)
 GeneArt(登録商標)Strings(商標)DNA Fragments(ライフテクノロジーズ社)を利用して、polymeric immunoglobulin receptor(GenBank accession no. NM_002644)の185~2005残基の5’側にXhoI切断サイト及びKozak配列を付加し、3’側にHindIII切断サイト、thrombin切断サイト、ヒスチジンタグ及びNotI切断サイトを付加した人工DNAフラグメントを、中央付近で重複するように5’側フラグメントと3’側フラグメントの2本合成した。合成した2本のDNAフラグメントを鋳型に用いてPrimeSTAR(登録商標)MAX DNA Polymerase(TaKaRa社)を使用したoverlap PCRを行い、分泌成分(SC)をコードする遺伝子断片を増幅し(配列番号25)、XhoI及びNotIで制限酵素処理し、pCXSNベクターにクローニングし、分泌成分の発現プラスミドであるpCXSN-hSC-HisTagを得た。また、pCXSN-hSC-HisTagを鋳型としてインバースPCRを行い、3’側に付与したHindIII切断サイト、thrombin切断サイト、ヒスチジンタグを除去した分泌成分のみを発現するpCXSN-hSCを作製した。分泌成分としてどちらのプラスミドを用いても多量体抗体を作製することができた。
(多量体IgA1型抗体の発現)
 多量体IgA1型抗体の作製にはExpi293(商標)Expression System(ライフテクノロジーズ社)を説明書にしたがって用いた。30mLの系を以下に例示する。
 継代し維持しているExpi293F細胞の密度が3.0×10個/mL以上であり、生存率95%以上であり、細胞が凝集していないことを確認した。37℃に保温されたExpi293 Expression mediumを用いて、細胞数を2.9×10個/mLに調製した。使い捨てのベントフィルターキャップ付三角フラスコに、調製した細胞懸濁液を25.5mL移し、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。1.5mLのOpti-MEM I培地にプラスミドDNA(IgA1重鎖及び軽鎖各12μg、J鎖及び分泌成分各6μg)を添加した。
 別に用意した1.5mLのOpti-MEM I培地に80μLのExpiFectamine 293 Reagentを添加した。5分間、室温で静置した後、DNA溶液をExpiFectamine溶液へ全量加え、室温で20~30分静置した。細胞へトランスフェクションミックスを添加した後、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクションの16~18時間後、150μLのExpiFectamine 293 Transfection Enhancer1及び1.5mLのExpiFectamine 293 Transfection Enhancer2を加えた。細胞は37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクション後6日で上清を回収した。
(発現させたIgA1抗体の精製)
 細胞のデブリを1000×g、10分間の遠心分離により取り除いた後、Millex-HV Filter Unit (ミリポア社)で上清の濾過を行った。遺伝子組換え抗体の精製はCaptureSelect(商標)human IgA affinity matrix(ライフテクノロジーズ社)を用いて、説明書にしたがって実施した。具体的には、カラムは10カラム容量のリン酸緩衝液(PBS)で平衡化し、サンプルをロードし、10カラム容量のPBSで洗浄し、5カラム容量の0.1M Glycine-HCl(pH3.0)により抗体を溶出し、1M Tris-HCl(pH9.0)で溶出液を中和した。カラムは10カラム容量のPBSで再平衡化した。抗体の濃度はNanoDrop(Thermo Scientific社)で測定した。抗体の濃縮はAmicon(登録商標)Ultra Centrifugal Filter Devices(ミリポア社)を用いて、説明書にしたがって実施した。Zeba Desalt Spin Columns(Thermo Scientific社)で、説明書にしたがってPB(pH7.4)にバッファー交換した。バッファー交換後の濃度はNanoDropで測定した。
(多量体IgA1型抗体のサイズ分画)
 濃縮した多量体IgA1型抗体を、AKTA explorer10(GEヘルスケア社)を用いて、ゲル濾過クロマトグラフィーにより分画した。カラムには、Superose6 10/300 GL (GEヘルスケア社)を用いた。DPBS(Dulbecco’s Phosphate Buffered Saline)を以下のプロトコールで流した。流速0.5mL/分、カラム平衡化1.5カラム容量、溶出0.5mL(計1.5カラム容量)。
 溶出したサンプルをフラクションごとに回収し、IgAを含むフラクションをAmicon(登録商標)Ultra Centrifugal Filter Devices(ミリポア社)を用いて濃縮した。Zeba Desalt Spin Columns(Thermo Scientific社)で、説明書にしたがってPB(pH7.4)にバッファー交換した。バッファー交換後の濃度はNanoDropで測定した。
 続いて、各フラクションに含まれる抗体を、非還元条件下のBlue native PAGE(BN-PAGE)により確認した。図4は、ゲル濾過クロマトグラフィーのチャート及びフラクション19~32に含まれる抗体のBN-PAGEの結果を示す写真である。発現させたIgA1型抗体には、四量体、二量体、単量体が含まれることが示された。この結果は、四量体IgA型遺伝子組換え抗体を作製した初めての結果である。
[実験例5:インフルエンザウイルス中和活性の検討]
 実験例1において、インフルエンザウイルスに対するヒトIgG1抗体を作製し、実験例2において、当該IgG1抗体と同一の可変領域を有するIgA1抗体を作製した。また、実験例3及び4において多量体IgA1型抗体を作製した。これらの抗体を用いて、インフルエンザウイルス中和活性を検討した。
 調製した各抗体の中和活性は、マイクロ中和試験による最小中和濃度測定により定量した。サンプルの2倍段階希釈系列を準備し、100 TCID50(50%組織培養感染量の100倍量)のウイルス液と混合後、30分間37℃にてインキュベーションした。その後、この混合液をMDCK細胞(イヌ腎臓由来株化細胞)に添加して4日間培養を行い、顕微鏡下でインフルエンザウイルスによる細胞変性効果が確認できないサンプル最大希釈倍率でサンプルの濃度を割った値を最少中和濃度とした。最少中和濃度が低いほどウイルス中和活性が高いことを示す。
(単量体遺伝子組換え抗体のインフルエンザウイルス中和活性)
 抗体クローンG2、H10、D11、F9、F11、H5、B12及びC1の単量体IgG1型抗体及び単量体IgA1型抗体を用いて、インフルエンザウイルス中和活性を測定した。ウイルスにはA/H5N1株(clade 2.1)及びA/H1N1株を使用した。
 表1に結果を示す。最少中和濃度が低いほどウイルス中和活性が高いことを示す。クローンF11及びH5の抗体は、H5N1株及びH1N1株の双方に対して良好な中和活性を示すことが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
(二量体IgA1型遺伝子組換え抗体のインフルエンザウイルス中和活性)
 抗体クローンD11、F9、F11、H5及びB12の単量体IgA1型抗体及び二量体IgA1型抗体を用いて、上記と同様にしてインフルエンザウイルス中和活性を測定した。ウイルスにはA/H5N1株(clade 2.1)及びA/H1N1株を使用した。
 表2に結果を示す。最少中和濃度が低いほどウイルス中和活性が高いことを示す。抗体の可変領域の構造は同じであるにもかかわらず、単量体抗体よりも二量体抗体の方が、ウイルス中和活性が高い傾向が示された。
Figure JPOXMLDOC01-appb-T000002
(四量体IgA1型遺伝子組換え抗体のインフルエンザウイルス中和活性)
 抗体クローンF9、F11及びH5の単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体を用いて、上記と同様にしてインフルエンザウイルス中和活性を測定した。ウイルスにはA/H5N1株(clade 2.1)を使用した。表3に結果を示す。最少中和濃度が低いほどウイルス中和活性が高いことを示す。
 抗体の可変領域の構造は同じであるにもかかわらず、単量体抗体よりも二量体抗体の方がウイルス中和活性が高く、二量体抗体よりも四量体抗体の方がウイルス中和活性が高い傾向が示された。
Figure JPOXMLDOC01-appb-T000003
(多量体化によるインフルエンザウイルス中和活性の増加)
 抗体クローンF11及びH5について、単量体IgG1型抗体、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の中和能の活性比較のため、図5A及び図5Bに単量体IgG1型抗体のウイルス中和活性を1とした場合における、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の中和活性比を示した。ウイルスにはA/H5N1株(clade 2.1)を使用した。
 図5Aは、単量体IgG1型抗体のウイルス中和活性を1とした場合における、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の単位タンパク質量当たりの中和活性比を示すグラフである。
 図5Bは、単量体IgG1型抗体のウイルス中和活性を1とした場合における、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体の単位分子数当たりの中和活性比を示すグラフである。
 クローンF11及びH5共に、IgG1型からIgA1型に変換することによりウイルス中和活性の増加が認められ、更に、二量体化、四量体化することにより更なる中和活性の増加が認められた。また、抗体1モルあたりのウイルス中和活性は、四量体化することにより、単量体の100倍以上の上昇が認められた。
[実験例6:抗体の塩基配列及びアミノ酸配列の解析]
 抗体クローンF11及びH5について、重鎖及び軽鎖の塩基配列及びアミノ酸配列をIGBLAST(http://www.ncbi.nlm.nih.gov/igblast/)にて解析した。また、相補性決定領域(complementarity determining region、CDR)をAndrew C.R. Martin博士らの方法(http://www.bioinf.org.uk/abs/)により決定した。配列表の配列番号と、各塩基配列及びアミノ酸配列との対応を表4に示す。クローンF11の軽鎖はκ鎖であった。また、クローンH5の軽鎖はλ鎖であった。
Figure JPOXMLDOC01-appb-T000004
[実験例7:抗原結合活性の検討]
 遺伝子組換えウイルス糖タンパク質発現ベクターの作製、遺伝子組換えウイルス糖タンパク質の発現と精製は後述する実験例9と同様の方法により行った。抗体クローンB12及びF11について、単量体IgA1型抗体、二量体IgA1型抗体及び四量体IgA1型抗体を用いて、インフルエンザウイルスHAタンパク質に対する抗原結合活性を検討した。
 96ウェルハーフプレートに50μLの遺伝子組換えHAタンパク質(A/H5N1株由来、1μg/mL)を添加し、4℃で一晩放置した後、ブロッキングを行った。
 続いて、各抗体サンプルの2倍段階希釈系列を4℃で一晩反応させた。PBSTでの洗浄後、Goat anti-Human IgA Antibody Alkaline Phosphatase Conjugated(BETHYL LABORATORIES社)を2500倍希釈したものを、室温で1時間反応させた。続いて、Phosphatase Substrate(SIGMA社)を用いて発色反応を行い、690nmを基準波長として405nmの波長における吸光度を測定した。測定された吸光度に基づいて、各抗体のHAタンパク質に対する最少結合濃度を求めた。
 結果を表5及び表6に示す。抗体クローンF11では、ワクチンと同クレード(clade 2.1)のウイルス(A/H5N1(clade 2.1)由来HAに対しては、二量体及び四量体で、単量体よりも結合活性の上昇が見られた。また、ワクチンと別クレードのウイルス(A/H5N1(clade 1)由来のHAに対しては、四量体で最も強い抗原結合活性が見られた。また、単量体の抗体で抗原結合活性を有するクローンは、多量体化することにより、抗原結合活性が向上することが示された。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実験例8:CHO YA7細胞とcis-エレメント使用による多量体抗体の発現増強効果]
 上述した抗体J鎖タンパク質の発現プラスミドであるpCXSN-hJCのプロモーターの下流かつJ鎖タンパク質の開始コドンの上流に、配列番号22に示すcis-エレメント#1を導入し、pCXSN-cis#1-hJCを得た。遺伝子配列解析によりcis-エレメントの向きが正しい挿入方向であることを確認した。
 また、上述した分泌成分の発現プラスミドであるpCXSN-hSCのプロモーターの下流かつ分泌成分タンパク質の開始コドンの上流に、配列番号23に示すcis-エレメント#2を導入し、pCXSN-cis#2-hSCを得た。遺伝子配列解析によりcis-エレメントの向きが正しい挿入方向であることを確認した。
 p180タンパク質とSF3b4タンパク質を共発現する細胞株である、CHO YA7細胞及び対照のCHO細胞それぞれ1×10個に対して、実験例2で構築したIgA1抗体重鎖発現プラスミド、軽鎖全長の発現プラスミド、pCXSN-cis#1-hJC及びpCXSN-cis#2-hSCの4種類の発現プラスミド各0.5μgずつを、リポフェクション法にてトランスフェクションした。
 5%ウシ胎児血清0.5mLを含むDMEM培地中で24時間培養した後、培養上清各10μLを実験例3と同様にしてBN-PAGEにより分離し、PVDF膜へ転写後にぺルオキシダーゼ標識抗ヒトIgA抗体(Bethyl社)を使用して検出し、多量体IgA型抗体産生能を評価した。
 図6は、BN-PAGEの結果を示す写真である。レーン1及び2は、CHO細胞で多量体IgA型抗体を発現させた結果であり、レーン3及び4は、CHO YA7細胞で多量体IgA型抗体を発現させた結果である。また、レーン1及び3は、対照として、cis-エレメントを有しない抗体J鎖タンパク質の発現プラスミド及びcis-エレメントを有しない分泌成分の発現プラスミドを使用した結果であり、レーン2及び4は、cis-エレメントを有する抗体J鎖タンパク質の発現プラスミド及びcis-エレメントを有する分泌成分の発現プラスミドを使用した結果である。矢印は四量体IgA型抗体のバンドを示す。
 その結果、cis-エレメントを有しない発現プラスミドを用いた場合において、CHO YA7細胞の多量体IgA型抗体の分泌量がCHO細胞の約2倍に増加したことが示された。更に、cis-エレメントを有する発現プラスミドの使用により、CHO YA7細胞の多量体IgA型抗体の分泌量がCHO細胞の3.2倍に増加したことが示された。
 以上の結果は、p180タンパク質及びSF3b4タンパク質を共発現することや、cis-エレメントを有する発現プラスミドを使用することにより、多量体IgA型抗体の高効率な発現及び分泌が可能であることを示す。
[実験例9:抗RSウイルスFタンパク質抗体の結合活性に対する多量体化の影響の検討]
(抗RSウイルスFタンパク質抗体の作製)
 公共データベースであるRCSB PDBに登録されている抗RSウイルスFタンパク質抗体のアミノ酸配列(PDB ID:2HWZ)の重鎖及び軽鎖可変領域のアミノ酸配列をヒト用にコドン最適化したアミノ酸配列をコードするDNA断片をそれぞれ人工合成した。合成した重鎖可変領域をコードするDNA断片を上述したα1 HCに、軽鎖 可変領域をコードするDNA断片を上述したκ LCにクローニングした。続いて、実験例4と同様にして抗RSウイルスFタンパク質抗体の多量体の発現及び精製を行った。
(ウイルス糖タンパク質発現ベクターの作製)
 インフルエンザウイルスのHAタンパク質及びRSウイルスのFタンパク質ΔFP(アミノ酸配列137-146番の欠失変異体、McLellan J. S., et al., Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes., J. Virol. 85(15), 7788-7796, 2011 を参照)の細胞外領域をコードするアミノ酸配列のC末端側に三量体形成配列及び精製用タグのコード配列(バクテリオファージT4フィブリチン三量体形成フォールドン配列、トロンビン切断部位(RSRSLVPRGSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFL、配列番号26)、タンパク質精製用のStrep-tag(登録商標)II配列(WSHPQFEK、配列番号27)及び6×His tag配列(Stevens J. et al., Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus., Science 303, 1866-1870, 2004 を参照))を融合したアミノ酸配列をコードするDNA断片を合成し、哺乳類細胞発現用のベクターpCXSNにクローニングした。
(ウイルス糖タンパク質の発現)
 遺伝子組換えウイルス糖タンパク質の作製にはExpi293(商標)Expression System(ライフテクノロジーズ社)を説明書にしたがって用いた。30mL系を以下に例示する。
 継代し維持しているExpi293F細胞の密度が3.0×10個/mL以上であり、生存率95%以上であり、細胞が凝集していないことを確認した。37℃に保温されたExpi293 Expression mediumを用いて、細胞数を2.9×10個/mLに調製した。使い捨てのベントフィルターキャップ付三角フラスコに、調製した細胞懸濁液を25.5mL移し、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。1.5mLのOpti-MEM I培地にプラスミドDNA30μgを添加した。別に用意した1.5mLのOpti-MEM I培地に80μLのExpiFectamine 293 Reagentを添加した。5分間、室温で静置した後、DNA溶液をExpiFectamine溶液へ全量加え、室温で20~30分静置した。細胞へトランスフェクションミックスを添加した後、37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクションの16~18時間後、150μLのExpiFectamine 293 Transfection Enhancer1及び1.5mLのExpiFectamine 293 Transfection Enhancer2を加えた。細胞は37℃、8%COに調整した細胞培養用インキュベーターに戻し、125rpmで振盪培養した。トランスフェクション後4~6日で上清を回収した。
(ウイルス糖タンパク質の精製)
 まず、回収した上清中の細胞のデブリを1000×g、10分間の遠心分離により取り除いた。続いて、Millex-HV Filter Unit(ミリポア社)を使用して上清をろ過した。続いて、AKTA explorer10(GEヘルスケア社)を用いたアフィニティー精製によりウイルス糖タンパク質を精製した。カラムにはHisTrap excel(GEヘルスケア社)を用いた。より具体的には、平衡化溶液として20mMリン酸ナトリウム、0.5M NaCl、pH7.4を使用した。また、洗浄液として20mMリン酸ナトリウム、0.5M NaCl、10mMイミダゾール、pH7.4を使用した。また、溶出液として、20mMリン酸ナトリウム、0.5M NaCl、500mMイミダゾール、pH7.4を使用した。精製条件は、流速1mL/分、カラム平衡化10CV、カラム洗浄40CV、溶出1mL/フラクション(計50CV)、カラム再平衡化5CVとした。6xHis tagによる精製サンプルを、更に精製する場合にはStrep-tag(登録商標)/Strep-Tactin(登録商標)システムを使用した。Strep-Tactin(登録商標)Superflow(登録商標)(iba社)を用いて、説明書にしたがって精製した。より具体的には、まず、試薬として、Buffer W(100mM Tris-HCl、150mM NaCl、1mM EDTA、pH8.0)、Buffer E(100mM Tris-HCl、150mM NaCl、1mM EDTA、2.5mM desthiobiotin、pH8.0)、Buffer R(100mM Tris-HCl、150mM NaCl、1mM EDTA、1mM HABA、pH8.0)を準備した。続いて、カラムを2CVのBuffer Wで平衡化し、サンプルをロードし、1CVのBuffer Wで5回洗浄し、3CVのBuffer Eでウイルス糖タンパクを溶出した。そして、カラムを5CVのBuffer Rで3回再生洗浄し、4CVのBuffer Wで2回平衡化した。タンパク質を濃縮する場合には、Amicon(登録商標)Ultra Centrifugal Filter Devicesを用いて、説明書にしたがって濃縮した。精製されたタンパク質の濃度はNanoDrop(Thermo SCIENTIFIC社)を用いた吸光測定により測定した。
(RSウイルスFタンパク質に対するELISA)
 抗RSウイルスFタンパク質抗体の多量体のRSウイルスFタンパク質に対する反応性をELISAにより検討した。まず、96ウェルハーフプレートに50μLの遺伝子組換えFタンパク質(1μg/mL)を4℃で一晩固相化した後、ブロッキングを行った。続いて、抗RSウイルスFタンパク質抗体サンプルの2倍段階希釈系列を室温で2時間反応させた。続いて、PBSTを用いた洗浄後、HRP標識ヤギ抗ヒトIgA抗体(30000倍)(BETHYL LABORATORIES社)を室温で1時間反応させた。続いて、1-Step(商標)Ultra TMB-ELISA(Thermo SCIENTIFIC社)を用いて発色反応を行い、1M硫酸を加えて反応停止後、吸光度を測定した。抗RSウイルスFタンパク質抗体サンプル濃度1μg/mLにおけるOD 450nmの値(平均値±標準偏差)を図7に示した。その結果、抗RSウイルスFタンパク質抗体の抗原結合活性は、抗体が、二量体、四量体化すると有意に上昇することが確認された。
[実験例10:IgA1及び各IgA2アロタイプの多量体化の検討]
(α2m1 HC、α2m2 HC、α2(n) HC発現ベクターの作製)
 IgA2のアロタイプの重鎖定常領域の遺伝子をクローニングした。具体的には、IgA2m1の重鎖定常領域をコードする遺伝子(α2m1 HC、アクセッション番号:J00221)、IgA2m2の重鎖定常領域をコードする遺伝子(α2m2 HC、アクセッション番号:M60192及びAJ012264)、IgA2(n)の重鎖定常領域をコードする遺伝子(α2(n) HC、アクセッション番号:S71043)の各塩基配列を、公共データベースであるIMGT/LIGM-DBに登録されている配列に基づいて入手し、ヒト用にコドン最適化を行い、人工遺伝子合成した。可変領域の最後のアミノ酸アラニンと定常領域の最初のアミノ酸セリンのコドンを改変してNheI切断サイトを作製した。NheI及びHindIIIで処理した合成配列を、上述のα1 HCをNheI及びHindIIIで処理したベクターにクローニングした。
(抗体可変領域遺伝子の各IgA2発現ベクターへのクローニング)
 PrimeSTAR(登録商標)MAX DNA Polymeraseを使用して、上述した抗インフルエンザウイルス抗体クローンB12の抗体可変領域遺伝子のPCRを行った。γ1 HC発現ベクターにクローニングした抗体遺伝子を鋳型とする場合には、α1 HC発現ベクターへの抗体遺伝子のクローニングと同様の方法を用いた。α1 HC発現ベクターにクローニングした抗体遺伝子を利用する場合には、AgeI及びNheIを用いた通常の制限酵素を用いたサブクローニング法を用いた。
 続いて、実験例4と同様にして、IgA1型及び各IgA2アロタイプ型の抗インフルエンザ抗体クローンB12の多量体の発現及び精製を行った。
(サイズ排除クロマトグラフィーによる多量体の解析)
 コスモスピンフィルターH(ナカライテスク社)を用いてサンプルを前処理し、サイズ排除クロマトグラフィーにより分子サイズに基づいて分離し、抗体の構造を解析した。HPLCシステムとして、Agilent 1260 Infinity(Agilent Technologies社)を用いた。また、カラムにはAgilent Bio SEC-5 500Å (Agilent Technologies社)を用いた。溶離液にはPBS(pH7.4)を用い、流速は1mL/分の条件で行った。1回の解析あたり抗体サンプルを1μg以上使用した。クロマトグラムはOpenLAB CDS ChemStation Edition(Agilent Technologies社)を用いて解析し、三量体/四量体、二量体、単量体各々に相当するピーク面積を算出し、面積比として比較した。図8Aに、サイズ排除クロマトグラフィーにより得られるクロマトグラムのIgA1、IgA2m1、IgA2m2、IgA2(n)型抗体の代表的な結果を示す。図8Bは、図8Aに基づいて、三量体/四量体、二量体、単量体抗体各々のピーク面積比を算出した結果を示すグラフである。図8Aのクロマトグラムのピーク間の谷又はピークの分離が不明瞭な場合はピークの変曲点を推測し、ベースラインへ垂直の線を引き、各々のフラクションに区分けを行い、クロマトグラムとベースラインに囲まれる面積を算出した。
 その結果、現在報告されているIgAアイソタイプ、アロタイプ(IgA1、IgA2m1、IgA2m2、IgA2(n))は全て多量体を形成可能であることが明らかになった。また、IgA1及び各IgA2アロタイプの多量体化の傾向は異なることが明らかになった。特に、IgA2m2型抗体は、多量体形成能が高いことが示された。
[実験例11:IgA1型抗体及びIgA2m2型抗体のキメラ抗体の多量体化の検討]
 IgA2m2型抗体の多量体化促進活性について解析するため、以下の解析を行った。
(α1α2m2 HCキメラ発現ベクターの作製)
 PrimeSTAR(登録商標)MAX DNA Polymeraseを使用して、上述したα1 HC発現ベクターを鋳型として、IgA1 HCのCH1からCH2までの配列(α1セグメント:定常領域のN末端からG342まで)をPCR増幅した。また、α2m2 HC発現ベクターを鋳型として、IgA2m2 HCのCH3以降C末までの配列(α2m2セグメント:N343から定常領域のC末端まで)をPCR増幅した。
 続いて、KOD-Plus-Neo(TOYOBO社)を使用して、上記のα1セグメントとα2m2セグメントを鋳型に用いたOverlap PCRを行った。続いて、得られたDNA断片を、NheI及びHindIIIを用いたサブクローニング法により、α1 HCの定常領域の配列と交換し、IgA1A2m2キメラ発現ベクターを得た。
 続いて、実験例10と同様にしてIgA1A2m2キメラ発現ベクターに抗インフルエンザウイルス抗体クローンB12の抗体可変領域をクローニングした。また、実験例4と同様にして、多量体抗体の発現及び精製を行った。また、実験例10と同様にして、サイズ排除クロマトグラフィーにより、単量体、二量体、三量体/四量体の各構造の抗体の存在比を解析した。
 図9は結果を示すグラフである。その結果、IgA1抗体重鎖のCH3以降C末端までの配列をIgA2m2由来配列に置換すると、多量体形成が促進されることが明らかになった。
[実施例12:IgA2m2の多量体化促進活性に関わる領域の解析]
 IgA2m2の多量体化促進活性について解析するため、各種発現ベクターを以下の通りに構築した。
(IgA重鎖定常領域を改変した発現ベクターの構築)
 IgA重鎖定常領域の変異体発現ベクターを構築するため、定常領域にアミノ酸置換を伴わないよう制限酵素部位を付加した定常領域フラグメントIgA1H-NRE(配列番号28)、IgA2m2-NRE(配列番号29)を人工遺伝子合成(Genscript社)により合成した。続いて、IgA1H-NRE、IgA2m2-NREを制限酵素NheI及びHindIIIで処理し、ライゲーション用フラグメントを調製した。
 続いて、上述した抗インフルエンザウイルス抗体クローンB12のIgA1型重鎖の発現プラスミド(pIgA1H)、及び抗インフルエンザウイルス抗体クローンB12のIgA2m2型重鎖の発現プラスミド(pIgA2m2H)を制限酵素NheI及びHindIIIで処理し、同様にライゲーション用フラグメントを調製した。各フラグメントを連結し、プラスミドpIgA1H-NRE、pIgA2m2H-NREを作製した。
(IgA1/IgA2m2キメラ重鎖発現ベクターの構築)
 IgA1/IgA2m2キメラ重鎖発現ベクターの構築を以下の通りに行った。すなわち、pIgA2m2H-NREをMfeI及びHindIIIで処理し得られたフラグメントとMfeI及びHindIII処理したpIgA1H-NREとを連結し、IgA1重鎖のアミノ酸342~472番目の領域をIgA2m2型に置換した変異体pIgA1H/pIgA2m2-chimeraを構築した。図10Aは各変異体の構造を示す模式図である。
(J/SC安定発現株の構築とIgA多量体産生能の検証)
 J鎖、SCの共発現ベクター構築のため、実施例5のpCXSN-cis#1-hJC及びpCXSN-cis#2-hSCより、cis#1-hJC ORF、cis#2-hSC ORFを切り出した。cis#1-hJC ORF、cis#2-hSC ORFをそれぞれヒトEF1プロモーターとBGH polyAから構成される発現ユニット内のプロモーターとpolyAの間に連結し、発現ベクターpEF-cis-hJC/Zeo及びpEF/cis-hSC/Zeoをそれぞれ構築した。
 また、J鎖、SC各タンパク質について、N結合型糖鎖が結合するアスパラギン(N)をグルタミン(Q)に置換した変異体(以下、それぞれ「JNQ」及び「SCNQ」という。)を発現するベクターを構築するため、JNQ及びSCNQをコードするフラグメントを人工遺伝子合成(Genscript社)により作製した(配列番号30、31)。J鎖はN59をQに置換した。また、SCはN83、N90、N135、N186、N421、N469及びN499を全てQに置換した。続いて、各合成フラグメントをXhoI及びNotIで処理後、同じくXhoI及びNotIで処理したpCXSN-cis#1-hJC又はpCXSN-cis#2-hSCとそれぞれ連結し、pCXSN-cis#1-hJCNQ及びpCXSN-cis#2-hSCNQを構築した。
 また、国際公開第2014/157429号に記載の方法にしたがって、CHO-K1細胞にp180及びSF3b4の発現ベクターを導入後、ハイグロマイシンによる薬剤選択を行いp180とSF3b4を安定に発現するCHO-K1細胞株1E26を作製した。なお、本明細書において、発現増強2因子(p180及びSF3b4)の発現ベクターを細胞に導入することにより、遺伝子の発現を増強する技術を「spERt技術」という。
 CHO-K1(1E26)細胞に、上述したpEF-cis-hJC/Zeo及びpEF/cis-hSC/Zeoを導入し、Zeocin(400μg/mL)で薬剤選択を行い、hJC及びhSCを安定に発現するCHO-K1株C23を樹立した。同様に、CHO-K1(1E26)細胞に、pCXSN-cis#1-hJCNQ及びpCXSN-cis#2-hSCNQを導入し、Zeocin(400μg/mL)で薬剤選択を行い、hJCNQ及びhSCNQを安定に発現するCHO-K1株C452を樹立した。
 続いて、C23細胞に、上述した抗インフルエンザウイルス抗体クローンB12の軽鎖発現ベクター(pIgA-LC)と、抗インフルエンザウイルス抗体クローンB12のIgA重鎖発現ベクターをリポフェクション法にてトランスフェクションした。IgA重鎖発現ベクターとしては、上述した3種の発現ベクター(pIgA1H、pIgA2m2、pIgA1H/pIgA2m2-chimera)を使用した。
 続いて、各細胞を5%ウシ胎児血清を含むDMEM中で72時間培養した後、培養上清各10μLを、実験例3と同様の方法により未変性ポリアクリルアミドゲル電気泳動法(BN-PAGE、3-12%、Invitrogen社)により分離し、PVDF膜へ転写後にペルオキシダーゼ標識抗ヒトIgA抗体(Bethyl社)を使用して検出した。
 その結果、図10Bに示すように、C23細胞の培養上清中にIgA1多量体、IgA2m2多量体がそれぞれ検出され(図10B、レーン2及び3)、C23細胞にIgA抗体重鎖及び軽鎖の遺伝子導入を行うことにより、効率良くIgA多量体抗体を作製できることが確認された。
 また、図16Cのレーン11及び12に示すように、上述した抗インフルエンザウイルス抗体クローンF11及びC452細胞を用いて行った同様の実験においても、培養上清中にIgA1多量体及びIgA2m2多量体がそれぞれ検出された。
 図10Bのレーン2及び3の比較から、IgA2m2はIgA1よりも多量体化が促進されることが明らかとなった。また、pIgA1H/pIgA2m2キメラ体はIgA1野生型よりも高分子側にシフトしたバンドが増え(図10B、矢印)、IgA2m2野生型に近い多量体化がみられた(図10B、レーン1)。したがって、IgA1重鎖の多量体形成には342残基以降のC末側ドメインが重要であり、この部分をIgA2m2由来配列に置換すると、CHO細胞において多量体形成が促進されることが明らかとなった。
[実験例13:IgA2m2抗体のシングルアミノ酸置換変異体の多量体化の検討]
 IgA1重鎖のCH3以降C末端までのアミノ酸配列と、これに対応するIgA2m2重鎖のアミノ酸配列とで異なるアミノ酸残基は、第411残基、第428残基、第451残基、第458残基、第467残基の5残基であるため、以下の解析を行った。
(Fc領域のアミノ酸置換変異体の作製)
 重鎖定常領域(Fc領域)のアミノ酸置換変異体を作製した。より具体的には、α2m2 HC発現ベクターを鋳型として、5種のアミノ酸置換(Y411F、E428D、M451L、I458V、A467V)が起こるように配列を改編したプライマーを用いて、PrimeSTAR(登録商標)MAX DNA Polymeraseを使用して、インバースPCRを行った。
 続いて、増幅したPCR産物の5’末端をT4ポリヌクレオチドキナーゼを用いてリン酸化し、T4DNAリガーゼにより環状に連結させた。反応産物で大腸菌を形質転換し、プラスミドを抽出し、シークエンスによりアミノ酸置換を起こす変異が導入されたことを確認した。
 以下、作製した変異体を「IgA2m2 Y411F」のように表記する。この場合、IgA2m2の定常領域の第411残基に相当するアミノ酸チロシン(Y)がフェニルアラニン(F)に置換されている。他の変異体についても同様である。
 続いて、実験例11と同様にして、各変異体の多量体化への影響を解析した。図11は検討結果を示すグラフである。その結果、IgA2m2抗体の458番目のIをVに置換すると、多量体が減少し単量体の比率が増加することが明らかとなった。
[実験例14:IgA1抗体のシングルアミノ酸置換変異体の多量体化の検討]
 実験例13と同様にして、Fc領域のアミノ酸置換変異体の作製及び解析を行った。以下、作製した変異体を「IgA1 F411Y」のように表記する。この場合、IgA1の定常領域の第411残基に相当するアミノ酸フェニルアラニン(F)がチロシン(Y)に置換されている。他の変異体についても同様である。
 続いて、実験例11と同様にして、各変異体の多量体化への影響を解析した。図12は検討結果を示すグラフである。その結果、IgA1抗体の458番目のVをIに置換すると、多量体化が顕著に促進されることが明らかとなった。
[実施例15:IgA多量体化促進活性に対するIgA1重鎖内V458の解析]
 IgAの多量体化促進活性におけるIgA1重鎖内V458の役割について解析するため、V458の変異体発現ベクターを以下の通りに構築した。
(V458変異体ベクターの構築)
 IgA1重鎖458番目のVをアミノ酸各種に置換した変異体を構築するため、pIgA1H-NREを制限酵素MfeI及びHindIIIで処理しライゲーション用フラグメントを調製した。また、インサートリンカーを調製するため、V458I(配列番号32及び33)、V458A(配列番号34及び35)、V458W(配列番号36及び37)、V458C(配列番号38及び39)、V458D(配列番号40及び41)、V458E(配列番号42及び43)、V458F(配列番号44及び45)、V458G(配列番号46及び47)、V458H(配列番号48及び49)、V458K(配列番号50及び51)、V458L(配列番号52及び53)、V458M(配列番号54及び55)、V458N(配列番号56及び57)、V458P(配列番号58及び59)、V458Q(配列番号60及び61)、V458R(配列番号62及び63)、V458S(配列番号64及び65)、V458T(配列番号66及び67)、V458Y(配列番号68及び69)の組み合わせで各DNA断片を95℃で10分熱処理後に段階的に25℃まで下げてアニーリングさせた。
 続いて、各リンカーとベクターとを連結し、pIgA1H-NRE-V458I、pIgA1H-NRE-V458A、pIgA1H-NRE-V458W、pIgA1H-NRE-V458C、pIgA1H-NRE-V458D、pIgA1H-NRE-V458E、pIgA1H-NRE-V458F、pIgA1H-NRE-V458G、pIgA1H-NRE-V458H、pIgA1H-NRE-V458K、pIgA1H-NRE-V458L、pIgA1H-NRE-V458M、pIgA1H-NRE-V458N、pIgA1H-NRE-V458P、pIgA1H-NRE-V458Q、pIgA1H-NRE-V458R、pIgA1H-NRE-V458S、pIgA1H-NRE-V458T、pIgA1H-NRE-V458Yを構築した。
(各種変異体発現ベクターの遺伝子導入と発現解析)
 続いて、リポフェクション法により、作製したV458の各種変異体発現ベクターと上述した抗インフルエンザウイルス抗体クローンB12の軽鎖発現ベクター(pIgA-LC)とをC23細胞にそれぞれトランスフェクションした。
 続いて、5%ウシ胎児血清を含むDMEM中で72時間培養した後、多量体抗体産生能の評価のため培養上清各10μLを実験例3と同様にして、BN-PAGE、ウエスタンブロッティング解析に供した。
 図13は、ウエスタンブロッティングの結果を示す写真である。その結果、第458残基をI、L、M、W、G、Yに置換した場合に多量体が検出され、特にIに置換した場合に、より高分子側へシフトしていた。上記以外のアミノ酸に置換した場合には、ほとんど多量体の形成は認められなかった。この結果から、多量体形成には第458残基のアミノ酸が重要な役割を担い、第458残基が疎水性アミノ酸である場合に有意に抗体の多量体化が促進されることが明らかとなった。また、特に第458残基がイソロイシンである場合に、強い多量体形成促進活性が認められた。
[実験例16:Expi293F細胞におけるIgA1抗体の第458残基のアミノ酸置換変異体の多量体化の検討]
(Fc領域のアミノ酸置換変異体の作製)
 C23細胞の代わりにExpi293F細胞を用いて実験例15と同様の検討を行った。具体的には、実験例15で作製した、pIgA1H-NRE-V458I、pIgA1H-NRE-V458A、pIgA1H-NRE-V458W、pIgA1H-NRE-V458E、pIgA1H-NRE-V458G、pIgA1H-NRE-V458K、pIgA1H-NRE-V458Lの発現プラスミドを使用し、実験例13と同様の実験を行った。
 図14は、検討結果を示すグラフである。その結果、IgA1抗体の458番目のVをIに置換すると多量体化が顕著に促進されることが明らかとなった。
[実験例17:IgA1及び各IgA2アロタイプの多量体化におけるV458の役割の検討]
(Fc領域のアミノ酸置換変異体の作製)
 IgA1、IgA2m1、IgA2m2、IgA2(n)について、第458残基の変異体を作製し、多量体化における役割を検討した。α2m1 HCのアミノ酸置換変異体を作製する場合、α2m1 HC発現ベクターを鋳型として、目的のアミノ酸置換(V458I)が起こるように配列を改編したプライマーを用いて、PrimeSTAR(登録商標)MAX DNA Polymeraseを使用したインバースPCRを行った。続いて、増幅したPCR産物の5’末端をT4ポリヌクレオチドキナーゼを用いてリン酸化し、T4DNAリガーゼにより環状に連結させた。続いて、反応産物で大腸菌を形質転換し、プラスミドを抽出し、シークエンスにより目的のアミノ酸置換を起こす変異が導入されたことを確認した。α2(n) HCについても同様にして第458残基のアミノ酸変異を有する変異体を作製した。α1 HCについては実験例14、α2m2 HCは実験例13で作製した変異体を用いた。
 続いて、実験例13と同様にして、作製した各変異体の多量体化への影響を解析した。図15は検討結果を示すグラフである。その結果、第458番目のアミノ酸残基がIの場合に、IgA1及び全てのIgA2アロタイプで顕著な多量体形成促進活性が確認された。
[実験例18:IgA四量体安定発現株の樹立及びプロダクトの機能解析]
 上述したspERt技術を用いて四量体IgA抗体を製造し、以下の方法で解析した。
(spERt技術を用いたIgA四量体安定発現株の樹立)
 J/SC安定発現CHO株C23に抗インフルエンザウイルス抗体クローンF11の軽鎖発現ベクターpIgA-LCと、IgA1重鎖発現ベクターpIgA1-HC又はIgA2m2重鎖発現ベクターpIgA2m2-HCとをリポフェクション法にてトランスフェクションした。ピューロマイシン(10μg/ml)による薬剤選択を経て、IgA1重鎖及び軽鎖を安定に発現するCHO株C78、並びにIgA2m2重鎖及び軽鎖を安定に発現するCHO株C179を樹立した。
 CHO-K1(1E26)細胞に上述したpCXSN-cis#1-hJCNQ及びpCXSN-cis#2-hSCNQ並びに抗インフルエンザウイルス抗体クローンF11の軽鎖発現ベクターpIgA-LCと、IgA1重鎖発現ベクターpIgA1-HC又はIgA2m2重鎖発現ベクターpIgA2m2-HCとをリポフェクション法にて導入しZeocin(400μg/mL)及びピューロマイシン(10μg/mL)で薬剤選択を行い、IgA1重鎖、軽鎖、hJCNQ、hSCNQを安定に発現するCHO-K1株C104、及び、IgA2m2重鎖、軽鎖、hJCNQ、hSCNQを安定に発現するCHO-K1株C117を樹立した。各細胞の培養上清をBN-PAGEとウエスタンブロッティングにより解析した。図16Aは結果を示す写真である。これらの細胞株は全てIgA多量体を効率的に分泌することが確認された。
(IgA多量体抗体のウイルス中和活性解析)
 上述した細胞株C78、C179、C104及びC117を、それぞれ5%ウシ胎児血清含有DMEMにて7日間培養し、培養液を低速遠心とポアサイズ0.45μmのフィルターを用いたろ過により清澄化後、IgA抗体をCaptureSelect human Fc affinity matrix(ライフテクノロジーズ社製)を用いて実験例1~4と同様にして精製した。
 得られたIgA粗精製画分に対しVivaspin20(GE社製)を用いてPBS(-)に溶媒置換し、IgA1及びIgA2m2多量体抗体溶液を調製した。
 抗体の収量は、細胞懸濁液80mLあたり、C78は約0.404mg、C179は0.712mg、C104は約0.298mg、C117は約0.179mgであった。なお、抗体の収量は、各細胞を無血清馴化後に浮遊培養を行うことや、培養条件、培地を検討すること等により、1~2桁上昇させることが可能である。
 調製した各抗体の中和活性は、マイクロ中和試験による最小中和濃度測定により定量した。抗体サンプルの2倍段階希釈系列を準備し、100TCID50(50%組織培養感染量の100倍量)のウイルス液と混合後、30分間37℃にてインキュベーションした。その後、この混合液をMDCK細胞に添加し5日間培養を行い、顕微鏡下でインフルエンザウイルスによる細胞変性効果が確認できないサンプル最大希釈倍率でサンプルの濃度を割った値を最少中和濃度とした。
 ウイルスとしては、ワクチン製造株A/X-179A(H1N1pdm09)(以下、「X-179A」という場合がある。)及び実験室株A/Puerto Rico/8/34(H1N1)(以下、「PR8」という場合がある。)を用いた。
 結果を表7に示す。その結果、CHO細胞から調製したIgA1、IgA2m2抗体のX-179Aに対する最少中和濃度は、それぞれ0.44、0.22、0.63、0.22μg/mLであり、Expi293細胞で調製したIgA1、IgA2m2抗体の最少中和濃度とほぼ同程度であった。またA/Puerto Rico/8/34に対するIgA1抗体の最少中和濃度はそれぞれ4.42μg/mlであり、Expi293細胞で調製したIgA1抗体の最少中和濃度とほぼ同程度であった。
 以上のことから、spERt技術を用いて作製したIgA1、IgA2m2抗体は、実験例7で測定した結果と同等の中和活性を有することが示された。
Figure JPOXMLDOC01-appb-T000007
[実験例19:spERt技術によるIgA抗体の作製]
 spERt技術によるIgA抗体の生産性増強効果について検討した。
(単量体IgA抗体の生産性増強効果)
 実験例12に記載の方法と同様にして、p180及びSF3b4を安定に発現するCHO-K1細胞株1C17を樹立した。
 細胞株C23、CHO-K1及び1C17を無血清浮遊の培養条件に段階的に馴化し、細胞株C23S、CHO-K1S、1C17Sを樹立した。また、国際公開第2014/157429号に記載のcis#2を抗インフルエンザウイルス抗体クローンB12及びクローンF11のpIgA1-HC又はpIgA2m2-HCに挿入した発現ベクターpIgA1-cis-HC、pIgA2m2-cis-HCと、cis#1を抗インフルエンザウイルス抗体クローンB12及びクローンF11のpIgA-LCに挿入した発現ベクターpIgA-cis-LCを構築した。
 CHO-K1S細胞に、pIgA-LCと、pIgA1-HC又はpIgA2m2-HCとをトランスフェクションした。また、1C17S細胞に、pIgA-cis-LCと、pIgA1-cis-HC又はpIgA2m2-cis-HCをトランスフェクションした。48時間後の培養上清をSDS-PAGE及びウエスタンブロッティングにより解析した。図16Bは結果を示す写真である。図16B中、「293posi」は実施例4と同様に293expi細胞で作製した多量体IgA分画の陽性コントロールを表し、「IgAposi」はIgAのスタンダードを表す。
 その結果、1C17S細胞は、CHO-K1S細胞と比較して、IgAの発現が飛躍的に増加したことが確認された。
(多量体IgA抗体の生産性増強効果)
 各クローンの多量体を作製するため、CHO-K1S細胞に、上述したpIgA-LCと、pEF-cis-hJC/Zeoと、pEF/cis-hSC/Zeoと、pIgA1-HC又はpIgA2m2-HCとをリポフェクション法によりトランスフェクションした。
 同様に、1C17S細胞に、上述したpIgA-cis-LCと、pEF-cis-hJC/Zeoと、pEF/cis-hSC/Zeoと、pIgA1-cis-HC又はpIgA2m2-cis-HCとをトランスフェクションした。
 また、C23細胞に、pIgA-cis-LCと、pIgA1-cis-HC又はpIgA2m2-cis-HCとをトランスフェクションした。
 続いて、48時間後の培養上清を、実験例15と同様にしてBN-PAGE及びウエスタンブロッティングにより解析した。結果を図16Cに示す。その結果、1C17S細胞、C23細胞におけるクローンB12およびF11ともに720kDa以上の領域にヒトアルファ鎖に対する抗体の陽性バンドが強く検出され、多量体IgA1抗体産生量が26倍から35倍以上に増加した(図16C、レーン1~3、7~9)。
 また、多量体IgA2m2産生量も1C17S細胞、C23細胞において顕著に増加していた。しかしながら、これらの細胞の親株であるCHO-K1S細胞では多量体IgA2m2の発現がではほとんど検出できなかった(図16C、レーン4~6)。
 また、図16Dに示すように、抗SC抗体、抗J鎖抗体によるウエスタンブロッティングを行った結果、これらの多量体バンドは、SCおよびJ鎖陽性であることが明らかとなった。
 以上の結果より、spERt技術によりIgA多量体抗体の生産性を著しく向上させることができることが示され、IgA多量体製造におけるspERt技術の高い有用性が確認された。
[実験例20:IgA多量体の質量分析]
 実験例4と同様に調製したIgA1、IgA2m2の多量体(四量体)分画成分の分子量を、質量分析計を用いて測定した。ここで、IgA1にはpCXSN-hSCを用いてタグの無いSCを作製した。また、IgA2m2にはpCXSN-hSC-HisTagを用いてタグ付きSCを発現させて各多量体を作製した。
 まずIgA1、IgA2m2多量体画分の溶媒を、脱塩カラム(Thermo Fisher Scientific社製、「Zeba Spin Desalting Columns」、7K MWCO、0.5mL)を用いて12.5mM酢酸アンモニウムに置換した。この試料を50mM又は100mM酢酸アンモニウムで5倍または10倍に希釈し、ナノイオン源(Advion 社製「TriVersa NanoMate」)を用いて四重極-飛行時間型質量分析装置maXis II(Bruker Daltonics社製)に導入して、以下の条件で測定を行った。イオン化:ESIポジティブ(High Massオプション)、イオンスプレー電圧:1.4~1.8kV、イオンソース温度:80℃。
 図17A~図17Dに、High Massオプションを使用したマイルドなイオン導入条件下で測定された四量体、及び通常に近いイオン導入条件下で測定された単量体相当のイオンピークの例を示す。
 図17Aに示すように、マイルドなイオン導入により、IgA1の多量体画分では、四量体に相当する平均質量745.63kDaのピーク等が検出された。
 図17Cに示すように、マイルドなイオン導入により、IgA2m2の多量体画分では、四量体に相当する745.18kDaのピーク等が検出された。
 これらの試料に、通常に近い条件下でイオン導入することにより、複合体を解離させると、図17Bに示すように、IgA1の単量体に相当する162.18kDaのピーク等が検出された。
 また、図17Dに示すように、通常に近い条件下でイオン導入することにより、IgA2m2の単量体に相当する154.87kDaのピーク等が検出された。
 その他、IgA1多量体画分の分析から49.00kDa、49.21kDaのイオンピークが検出された。また、IgA2m2多量体画分では57.28kDa、23.03kDa、354.49kDaのイオンピークが検出された。表8に各試料から得られた平均質量を示す。
Figure JPOXMLDOC01-appb-T000008
 続いて、実験例4と同様にして調製したIgA2m2の多量体(四量体)画分について、HM3 interaction module(CovalX社製)を装着したMALDI-TOF型質量分析計TOF/TOF 5800システム(ABSciex社製)で高分子領域の分子量測定を行った。まず、試料をそのまま分析したところ、図18Aに示すように、単量体に相当する162.63kDaのピークと四量体に相当する734.93kDaのピークが検出された。更に、図18Bに示すように、576.82kDaのピークも検出された。576.82kDaのピークは、四量体に相当する734.93kDaのピークとの差が約158kDaであることから、三量体型であると考えられた。
 また、図18Cに示すように、クロスリンク剤(Bich C., et al., Reactivity and applications of new amine reactive cross-linkers for mass spectrometric detection of protein-protein complexes., Anal. Chem. 82, 172-179, 2010 を参照。)により複合体を安定化させると、四量体の増加とそれに伴う単量体の減少が確認された。
[実施例21:質量分析による新規定量方法]
 多量体画分中の各サブユニットの構成比を高精度に定量するため、安定同位体標識ペプチドを内部標準とした質量分析による新規定量方法を確立した。
 ヒトIgAの各重鎖(α1、α2m1、α2m2、α2n)及び軽鎖(λ型、κ型)の定常領域部分のアミノ酸配列よりトリプシンによる生成される予想ペプチドを比較し、IgA1重鎖(α1)特異的配列、IgA2重鎖(α2m1、α2m2、α2n)特異的配列、IgA1/IgA2共通配列、軽鎖のλ型とκ型の各特異配列の候補を選定した。
 ここで、軽鎖については、個体間で異なる定常領域遺伝子及びアレルによる配列の違いで生じる影響を除外するため、公共データベースであるIMGTに登録されているアミノ酸配列情報から、ほとんどのサブタイプを網羅する共通配列部分を選択した。
 続いて、実験例2と同様にして調製したIgA1、IgA2m2の単量体を以下の手順でトリプシン消化後、高速液体クロマトグラフ-質量分析計(LC-MS)に供して、上記候補配列の中からイオン強度が良好な配列を選定し、各ペプチドのC末端に位置するリジンまたはアルギニンを安定同位体(13 15-Lysまたは13 15-Arg)で標識した安定同位体標識ペプチドを外注により合成した(Anygen社)。選定した各アミノ酸配列を表9に示す。
 J鎖及びSCに関しても同様にして候補を選び、実験例4と同様にして調製したIgA1及びIgA2m2の多量体画分のトリプシン消化物の分析結果から、イオン強度が良好な配列を選定し、安定同位体標識ペプチドを外注により合成した(Anygen社)。選定した各アミノ酸配列を表9に示す。
 ヒト鼻腔粘膜由来IgA二量体画分及び組換えIgA1多量体画分について、LC-MSによる解析を行った。ヒト鼻腔粘膜由来IgA二量体画分は、Suzuki T., et al., Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus, PNAS 112 (25), 7809-7817, 2015 に記載された方法と同様にして調製した。また、組換えIgA1多量体画分は、実験例4と同様にして調製した。これらのサンプルについて、IgA多量体画分のサブユニット比を、トリプシン消化後、LC-MSを用いて以下のように評価した。
 まず、IgAサンプル10μgに100mMとなるようにTris-HCl(pH7.6)を、1mMとなるようにCaClを、そして各サブユニットの安定同位体標識ペプチドを内部標準として0.05nmol添加した。この溶液に5mMとなるようにDTT(Wako社製)を添加してから、56℃で30分間加熱して還元処理を行った。その後、25mMとなるようにヨードアセトアミド(Wako社製)を添加し、遮光しながら室温で30分間、遊離SH基のアルキル化反応を行った。続いて、0.2μgのトリプシン(Promega社製、「Sequencing Grade Modified Trypsin,Frozen」)を加え、37℃、16時間分解反応を行った。得られた分解液にギ酸を1%となるように添加し、これを測定試料とした。
 LC-MS(LC部:島津製作所社製Prominence、MS部:Bruker Daltonics社製maXis II)により、作製したペプチド溶液の分析を行った。Ascentis Express C18カラム(Supleco社製、粒子径5μm、直径2.1mm、長さ150mm)を用い、カラム温度25℃、流速0.5mL/分で以下のグラジエント条件により分離を行った。
 0~2分:A液(0.1%ギ酸)98%、B液(100%アセトニトリル)2%;
 2.1~6分:A液98~50%、B液2~50%;
 6.1~8分:A液10%、B液90%;
 8.1~10分:A液98%、B液2%。
 分離したペプチド成分を、次の条件により質量分析部で検出した。イオン化:ESIポジティブ、イオンスプレー電圧:4.5kV、イオンソース温度:200℃。
 表9に示す各サブユニット由来のペプチドのピーク面積及びそれに対応する安定同位体標識ペプチドのピーク面積を定量し、そのピーク面積比の2ペプチドの平均から、重鎖(共通)を1として各サブユニットの比率を算出した。
 図19Aにヒト由来IgA二量体画分の結果を示す。その結果、重鎖のIgA1とIgA2m2の比は約5対1であり、軽鎖のλ型とκ型の比は約1対2であり、混在が認められた。また、全体としての重鎖と軽鎖の比は約1対1と算出された。一方、J鎖及びSC鎖の存在量は明らかに低く、重鎖及び軽鎖に対する比は、どちらも約1対4と算出された。
 図19Bに、組換えIgA1多量体画分の結果を示す。その結果、軽鎖λ型がIgA1重鎖に対し1:1に近い比で検出された。一方、J鎖及びSCは、IgA1重鎖に対する比がそれぞれ約1対7及び約1対8であった。
Figure JPOXMLDOC01-appb-T000009
 本発明によれば、多量体IgA型遺伝子組換え抗体を提供することができる。また、多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬を提供することができる。また、多量体IgA型抗体の製造方法を提供することができる。また、抗体の抗原結合活性を向上させる方法を提供することができる。
 NITE BP-01535

Claims (15)

  1.  多量体IgA型遺伝子組換え抗体。
  2.  重鎖定常領域の第458番目のアミノ酸残基が疎水性アミノ酸に由来するアミノ酸残基である、請求項1に記載の多量体IgA型遺伝子組換え抗体。
  3.  四量体の含有量が全IgAの20モル%以上である、請求項1又は2に記載の多量体IgA型遺伝子組換え抗体。
  4.  請求項1~3のいずれか一項に記載の多量体IgA型遺伝子組換え抗体を有効成分として含有する医薬。
  5.  感染症の治療又は予防用である、請求項4に記載の医薬。
  6.  IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、多量体IgA型抗体の製造方法。
  7.  前記IgA型抗体重鎖タンパク質は、遺伝子組換えによりIgG型からIgA型に変換されたものである、請求項6に記載の製造方法。
  8.  前記工程において、更にp180タンパク質及びSF3b4タンパク質を前記細胞内で共発現させる、請求項6又は7に記載の製造方法。
  9.  前記細胞がCHO YA7細胞株(受託番号NITE BP-01535)である、請求項6~8のいずれか一項に記載の製造方法。
  10.  前記工程は、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を発現するための発現ベクターを前記細胞内に導入することにより行われ、
     前記発現ベクターは、プロモーターの下流で、かつ、IgA型抗体重鎖タンパク質、抗体軽鎖タンパク質、抗体J鎖タンパク質又は分泌成分タンパク質をコードする核酸の開始コドンの上流に、RNA結合タンパク質が認識、結合又は相互作用するcis-エレメントを有する、請求項6~9のいずれか一項に記載の製造方法。
  11.  前記cis-エレメントが、配列モチーフGAN-(X)-ACN(nは3~6の整数であり、N及びNは、それぞれ独立して、A、T、G、Cのいずれかである。)からなる塩基配列を1~数個含む、請求項10に記載の製造方法。
  12.  前記cis-エレメントが、
     配列番号21~23のいずれかに示される塩基配列、
     配列番号21~23のいずれかに示される塩基配列において、1~数個の塩基が欠失、置換又は付加されている塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列、
     配列番号21~23のいずれかに示される塩基配列と同一性が80%以上である塩基配列からなり、かつ、RNA結合タンパク質が認識、結合若しくは相互作用する塩基配列、又は、
     配列番号21~23のいずれかに示される塩基配列からなる核酸と相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズすることができる塩基配列からなり、かつRNA結合タンパク質が認識、結合若しくは相互作用する塩基配列からなる、請求項10又は11に記載の製造方法。
  13.  抗体を多量体IgA型化する工程を含む、前記抗体の抗原結合活性又は中和活性を向上させる方法。
  14.  前記抗体は、IgG型抗体である、請求項13に記載の方法。
  15.  前記工程が、前記抗体の重鎖可変領域を有するIgA型抗体重鎖タンパク質、前記抗体の軽鎖タンパク質、抗体J鎖タンパク質及び分泌成分タンパク質を1つの細胞内で共発現させる工程を含む、請求項13又は14に記載の方法。
PCT/JP2015/070742 2014-07-18 2015-07-21 多量体IgA型遺伝子組換え抗体及びその利用 WO2016010161A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20196341.0A EP3786181A1 (en) 2014-07-18 2015-07-21 Polymeric iga-type recombinant antibody and use thereof
JP2016534515A JP6564777B2 (ja) 2014-07-18 2015-07-21 多量体IgA型遺伝子組換え抗体を含む組成物及びその利用
US15/326,569 US10925962B2 (en) 2014-07-18 2015-07-21 Polymeric IgA-type recombinant antibody and use thereof
EP15822054.1A EP3170839B1 (en) 2014-07-18 2015-07-21 POLYMERIC IgA-TYPE RECOMBINANT ANTIBODY AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014148328 2014-07-18
JP2014-148328 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010161A1 true WO2016010161A1 (ja) 2016-01-21

Family

ID=55078646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070742 WO2016010161A1 (ja) 2014-07-18 2015-07-21 多量体IgA型遺伝子組換え抗体及びその利用

Country Status (4)

Country Link
US (1) US10925962B2 (ja)
EP (2) EP3786181A1 (ja)
JP (1) JP6564777B2 (ja)
WO (1) WO2016010161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671477C2 (ru) * 2016-12-30 2018-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pBiPr-ABIgA2m1F16-ht ДЛЯ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ИММУНОГЛОБУЛИНА А ИЗОТИПА IGA2m1
WO2021193553A1 (ja) * 2020-03-23 2021-09-30 東興薬品工業株式会社 多量体IgA抗体の作製法及び多重特異性多量体IgA抗体
JP2022522985A (ja) * 2019-01-22 2022-04-21 ジェネンテック, インコーポレイテッド 免疫グロブリンa抗体、並びに産生及び使用の方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220004979A (ko) 2019-03-27 2022-01-12 유엠씨 우트레크트 홀딩 비.브이. 조작된 iga 항체 및 사용 방법
US20220033851A1 (en) * 2020-08-03 2022-02-03 Roger B. Swartz mRNA, episomal and genomic integrated lentiviral and gammaretroviral vector expression of dimeric immunoglobulin A and polymeric immunoglobulin A to Enable Mucosal and Hematological Based Immunity/Protection via Gene Therapy for Allergens, viruses, HIV, bacteria, pneumonia, infections, pathology associated proteins, systemic pathologies, cancer, toxins and unnatural viruses. CAR engineered and non-CAR engineered immune cell expression of dimeric immunoglobulin A and polymeric immunoglobulin A.
CA3229487A1 (en) * 2021-08-20 2023-02-23 Adam WAICKMAN Iga monoclonal antibodies for treating flavivirus infection
WO2023044419A2 (en) * 2021-09-17 2023-03-23 The Board Of Trustees Of The University Of Illinois Chimeric secretory component polypeptides and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087914A1 (en) * 2011-12-16 2013-06-20 Synthon Biopharmaceuticals B.V. EXPRESSION OF SECRETORY IgA ANTIBODIES IN DUCKWEED
WO2014157429A1 (ja) * 2013-03-26 2014-10-02 株式会社 ニッピ タンパク質の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004081A1 (en) * 1993-07-30 1995-02-09 Oravax, Inc. MONOCLONAL IgA ANTIBODY AGAINST RESPIRATORY SYNCYTIAL VIRUS
US6063905A (en) * 1997-01-07 2000-05-16 Board Of Regents, The University Of Texas System Recombinant human IGA-J. chain dimer
JP6086743B2 (ja) 2013-01-31 2017-03-01 株式会社吉野工業所 詰め替え容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087914A1 (en) * 2011-12-16 2013-06-20 Synthon Biopharmaceuticals B.V. EXPRESSION OF SECRETORY IgA ANTIBODIES IN DUCKWEED
WO2014157429A1 (ja) * 2013-03-26 2014-10-02 株式会社 ニッピ タンパク質の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOHANSEN, FE. ET AL.: "Recombinant expression of polymeric IgA: incorporation of J chain and secretory component of human origin", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 29, no. 5, 1999, pages 1701 - 1708, XP002331960, DOI: doi:10.1002/(SICI)1521-4141(199905)29:05<1701::AID-IMMU1701>3.0.CO;2-Z *
LI, C. ET AL.: "Construction of a Chimeric Secretory IgA and Its Neutralization Activity against Avian Influenza Virus H5N1", JOURNAL OF IMMUNOLOGY RESEARCH, vol. 394127, 13 February 2014 (2014-02-13), pages 1 - 10, XP055385659 *
LORIN, V. ET AL.: "Efficient generation of human IgA monoclonal antibodies", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 422, 22 April 2015 (2015-04-22), pages 102 - 110, XP029239942, DOI: doi:10.1016/j.jim.2015.04.010 *
MURAMATSU, M. ET AL.: "Comparison of Antiviral Activity between IgA and IgG Specific to Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity", PLOS ONE, vol. 9, no. 1, 17 January 2014 (2014-01-17), pages e85582, XP055385668 *
See also references of EP3170839A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671477C2 (ru) * 2016-12-30 2018-10-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pBiPr-ABIgA2m1F16-ht ДЛЯ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ИММУНОГЛОБУЛИНА А ИЗОТИПА IGA2m1
JP2022522985A (ja) * 2019-01-22 2022-04-21 ジェネンテック, インコーポレイテッド 免疫グロブリンa抗体、並びに産生及び使用の方法
WO2021193553A1 (ja) * 2020-03-23 2021-09-30 東興薬品工業株式会社 多量体IgA抗体の作製法及び多重特異性多量体IgA抗体

Also Published As

Publication number Publication date
EP3170839A1 (en) 2017-05-24
US10925962B2 (en) 2021-02-23
JPWO2016010161A1 (ja) 2017-06-01
EP3170839B1 (en) 2020-10-28
JP6564777B2 (ja) 2019-08-21
US20170340732A1 (en) 2017-11-30
EP3786181A1 (en) 2021-03-03
EP3170839A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6564777B2 (ja) 多量体IgA型遺伝子組換え抗体を含む組成物及びその利用
CA2956000C (en) An anti-ctla4 monoclonal antibody or antigen binding fragment thereof, a pharmaceutical composition and use
US11926657B2 (en) Neutralizing anti-influenza binding molecules and uses thereof
AU2016363455A1 (en) Full human antibody against respiratory syncytial virus
CA3052903A1 (en) Anti human annexin a1 antibody
JPWO2016010160A1 (ja) 抗インフルエンザウイルス抗体及びその利用
CN105542003B (zh) 一种针对rsv粘附g蛋白表面抗原的全人源单克隆抗体
RU2777073C1 (ru) Однодоменное антитело для нейтрализации вирусов и его модификации, и способ их применения для экстренной профилактики заболеваний, вызываемых вирусом гриппа А
WO2023105087A1 (en) Novel flt3 antibodies and antibody-drug-conjugates based thereon, therapeutic methods and uses thereof in combination with tyrosine kinase inhibitors
TW202411247A (zh) 針對流感神經胺酸酶的廣泛中和抗體
EP3122772A1 (en) Chimerization and characterization of a monoclonal antibody with potent neutralizing activity across multiple influenza a h5n1 clades
NZ505932A (en) Human cmrf-35-h9 receptor which binds IgM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015822054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326569

Country of ref document: US