WO2016009476A1 - 電力システム - Google Patents

電力システム Download PDF

Info

Publication number
WO2016009476A1
WO2016009476A1 PCT/JP2014/068713 JP2014068713W WO2016009476A1 WO 2016009476 A1 WO2016009476 A1 WO 2016009476A1 JP 2014068713 W JP2014068713 W JP 2014068713W WO 2016009476 A1 WO2016009476 A1 WO 2016009476A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
ecu
output
power generation
Prior art date
Application number
PCT/JP2014/068713
Other languages
English (en)
French (fr)
Inventor
数野修一
児島泰
堺靖貴
佐伯響
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US15/325,719 priority Critical patent/US9776622B2/en
Priority to PCT/JP2014/068713 priority patent/WO2016009476A1/ja
Priority to JP2016534007A priority patent/JP6247764B2/ja
Publication of WO2016009476A1 publication Critical patent/WO2016009476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/32Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/09Other types of propulsion units, e.g. fluid motors, or type not specified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a power system.
  • the hybrid electronic control unit (70) of US Patent Application Publication No. 2008/0018111 (hereinafter referred to as “US 2008/0018111 A1”) is configured to limit input / output of the battery (50) in order to satisfy a predetermined output requirement.
  • the operating point of the engine (22) and torque commands Tm1 * , Tm2 * of the motors MG1, MG2 are set.
  • the operating point of the engine (22) is transmitted to the engine ECU (24)
  • the torque commands Tm1 * and Tm2 * are transmitted to the motor ECU (40)
  • the input / output restriction of the battery (50) is restricted to the motor ECU (40).
  • Send summary).
  • the motor ECU (40) verifies whether or not the input / output limit of the battery (50) is within the range when the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 * .
  • the motor ECU (40) resets the torque commands Tm1 * and Tm2 * to be within the input / output limit range, The motors MG1 and MG2 are driven and controlled. Thereby, even if the power balance varies depending on the communication lag, charging and discharging due to excessive power of the battery can be effectively suppressed (summary).
  • the communication lag here means a delay in time required for communication ([0003]). More specifically, the communication lag is generated from the timing of creating the operation command (torque commands Tm1 * , Tm2 * ) to the timing of controlling the operation of the power generation means (engine 22) and the electric motors (motors MG1, MG2). ([0007]).
  • US 2008/0018111 A1 discloses a technique for protecting a battery by limiting the outputs of a power generation means (engine 22) and electric motors (motors MG1, MG2).
  • a power generation means engine 22
  • electric motors motors MG1, MG2
  • the motor control routine (FIG. 8) by the motor ECU (40) is repeatedly executed every predetermined time (for example, every several msec) ([0057] last line ).
  • the routine is from acquisition of torque commands Tm1 * , Tm2 * , motor rotation speeds Nm1, Nm2 and battery input / output limits Win, Wout (S200) to control of motors MG1, MG2 by torque commands Tm1 * , Tm2 * (S300).
  • the following flow is included (FIG. 8). For this reason, it can be considered that the acquisition cycle of the torque commands Tm1 * , Tm2 *, etc. and the control cycle of the motors MG1, MG2 are the same.
  • the input or output to the battery May not be able to cope with sudden changes in As such a sudden change, for example, a sudden increase in input power to the battery due to a sudden decrease in power consumption of the drive motor due to wheel locking or the like can be considered.
  • the present invention has been made in consideration of the above-described problems, and an object thereof is to provide an electric power system capable of more appropriately protecting a power storage device.
  • the power system includes a power generation device, a power storage device, the power generation device and a drive motor that is driven by power from the power storage device, a power generation control device that controls a power generation amount of the power generation device, and the power storage device.
  • a parameter acquisition unit that acquires parameters relating to input or output of the power generation device, a power management device configured as a separate body from the power generation control device, a first signal system that connects the power generation control device and the power management device, and A second signal system that bypasses the power management device and connects the power generation control device and the parameter acquisition unit, wherein the power management device manages the power generation amount of the entire power system, and The control device obtains the power generation command value of the power generation device acquired from the power management device via the first signal system and the parameter acquisition via the second signal system. And controlling the power generating device using the and said parameters obtained from.
  • the power generation control device uses the power generation command value of the power generation device acquired from the power management device via the first signal system and the parameter acquired from the parameter acquisition unit via the second signal system. Control the power generator. For this reason, for example, during normal times, the power generation command value is mainly used, while instantaneous changes in parameters related to input or output of the power storage device (for example, to the power storage device due to a sudden decrease in power consumption of the drive motor due to wheel locking or the like) When a sudden increase in the input power occurs, it is possible to control the power generation of the power generation apparatus with emphasis on the change in parameters. Therefore, the power storage device can be protected in response to a sudden change in input or output to the power storage device.
  • the power generation control device acquires the power generation command value of the power generation device acquired from the power management device via the first signal system or the limit value thereof from the parameter acquisition unit via the second signal system.
  • the power generator may be controlled by correcting with parameters. Accordingly, it is possible to protect the power storage device while avoiding a sudden change in input or output to the power storage device.
  • the power generation control device acquires a power generation command value of the power generation device from the power management device via the first signal system in a first cycle, and acquires the parameter from the parameter acquisition unit via the second signal system.
  • the control of the power generation apparatus using the power generation command value acquired in the second period shorter than the first period and corrected by the parameter may be performed in the third period shorter than the first period.
  • the power generation control device uses the parameter acquired from the parameter acquisition unit via the second signal system, the power generation command value of the power generation apparatus acquired from the power management apparatus via the first signal system or the limit value thereof.
  • the power generator is controlled with correction.
  • the parameter acquisition period (second period) and the power generation apparatus control period (third period) are shorter than the period (first period) in which the power generation command value of the power generation apparatus is acquired. For this reason, it is possible to control the power generation of the power generation device in response to instantaneous parameter changes (for example, a sudden increase in input power to the power storage device due to a sudden decrease in power consumption of the drive motor due to wheel locks, etc.) It becomes. Therefore, it is possible to protect the power storage device by avoiding a sudden change in input or output to the power storage device.
  • the power generation control device limits the output of the power generation device when input power to the power storage device exceeds an input power threshold, or when the output power from the power storage device exceeds an output power threshold, The output may be increased.
  • the output of the power generation device is limited. Accordingly, it is possible to protect the power storage device by reducing input power to the power storage device and avoiding overcharging of the power storage device.
  • the output power from the power storage device exceeds the output power threshold, the output of the power generation device is increased. Accordingly, it is possible to protect the power storage device by reducing the output power from the power storage device and avoiding overdischarge from the power storage device.
  • the power generation device includes a fuel cell
  • the power generation control device includes a first converter on the fuel cell side, and a first converter control device that controls the first converter
  • the power system includes the power storage device.
  • the input power threshold value or the output power threshold value of the power storage device may be set based on a remaining capacity of the power storage device or a temperature of the power storage device. Thereby, it is possible to appropriately set the input power threshold value or the output power threshold value of the power storage device, and further to impose an appropriate limit on the output current of the fuel cell.
  • the first converter control device may correct the output of the fuel cell based on a deviation between the input power of the power storage device and the input power threshold or a deviation between the output power of the power storage device and the output power threshold. Good. Thus, it is possible to appropriately correct the output of the fuel cell by taking into account the deviation between the input power of the power storage device and the input power threshold or the deviation between the output power of the power storage device and the output power threshold.
  • a load different from the drive motor is connected to the power line connecting the power storage device and the second converter, and the first converter control device supplies power to the power storage device based on the primary power of the second converter. Input power or output power from the power storage device may be estimated. Thereby, the state of the power storage device can be monitored. As a result, the degree of freedom in design is improved and the fail-safe point is excellent.
  • the first converter control device may estimate the input power to the power storage device or the output power from the power storage device based on the secondary power of the second converter. Thereby, the state of the power storage device can be monitored. As a result, the degree of freedom in design is improved and the fail-safe point is excellent.
  • the power system includes a power generation device, a power storage device, a drive motor that is driven by the power from the power generation device and the power storage device, a motor control device that controls an output of the drive motor, and the power generation device.
  • a power generation control device that controls the amount of power generation; a parameter acquisition unit that acquires parameters relating to input or output of the power storage device; a power management device configured separately from the motor control device and the power generation control device; A first signal system connecting the motor control device and the power management device; and a second signal system bypassing the power management device and connecting the motor control device and the parameter acquisition unit,
  • the motor control device outputs an output command value of the drive motor acquired from the power management device via the first signal system and the second signal system. And controlling said drive motor with said parameters acquired from the parameter acquisition unit.
  • the motor control device uses the output command value of the drive motor acquired from the power management device via the first signal system and the parameter acquired from the parameter acquisition unit via the second signal system. Control the drive motor.
  • output command values are mainly used, while instantaneous changes in parameters relating to input or output of the power storage device (for example, from the power storage device accompanying a sudden increase in power consumption of the drive motor due to wheel slip or the like)
  • the power generation of the power generation device can be controlled with emphasis on the change in parameters. Therefore, the power storage device can be protected in response to a sudden change in input or output to the power storage device.
  • 1 is a schematic overall configuration diagram of a fuel cell vehicle as an electric power system according to a first embodiment of the present invention.
  • 5 is a flowchart for controlling an FC converter by an FC converter electronic control unit in the first embodiment. It is explanatory drawing explaining calculation of the target primary side current of the said FC converter in 1st Embodiment.
  • it is the flowchart (detail of S3 of FIG. 2) which calculates the said target primary side current of the said FC converter.
  • it is a flowchart (detail of S11 of FIG. 4) which calculates the primary side current limiting value of the said FC converter from a viewpoint of battery protection.
  • 5 is a flowchart (details of S14 in FIG.
  • FIG. 6 is a block diagram showing a schematic configuration of a modified example of the fuel cell vehicle according to the first to fourth embodiments.
  • FIG. 1 is a schematic overall configuration diagram of a fuel cell vehicle 10 (hereinafter referred to as “FC vehicle 10” or “vehicle 10”) as an electric power system according to a first embodiment of the present invention.
  • the vehicle 10 includes a travel motor 12 (hereinafter also referred to as “motor 12” or “drive motor 12”), an inverter 14, and a motor electronic control device 16 (hereinafter also referred to as “motor ECU 16” or “MOT ECU 16”).
  • a travel motor 12 hereinafter also referred to as “motor 12” or “drive motor 12”
  • motor ECU 16 motor electronice control device 16
  • the vehicle 10 includes a fuel cell stack 20 (hereinafter referred to as “FC stack 20” or “FC20”), a fuel cell electronic control device 22 (hereinafter referred to as “FC ECU 22”), and a fuel cell converter 24 (hereinafter referred to as “FC 20”).
  • FC stack 20 a fuel cell stack 20
  • FC ECU 22 a fuel cell electronic control device 22
  • FC 20 a fuel cell converter 24
  • FC converter 24 " FC converter electronic control unit 26
  • FC converter ECU 26 "or" ECU 26 " FC converter electronic control unit 26
  • air pump 28 are included as FC system 2000.
  • the vehicle 10 includes a battery 30, a battery electronic control device 32 (hereinafter referred to as “battery ECU 32” or “BAT ECU 32”), a battery converter 34 (hereinafter also referred to as “BAT converter 34”), and battery converter electronics.
  • a control device 36 (hereinafter also referred to as “battery converter ECU 36” or “BAT converter ECU 36”) is provided as a battery system 3000.
  • the vehicle 10 includes an air conditioner 40, a step-down converter 42, a 12V system 44, and a general electronic control device 50 (hereinafter also referred to as “general ECU 50” or “MG ECU 50”).
  • the air pump 28, the air conditioner 40, the step-down converter 42, and the 12V system 44 are auxiliary machines in the vehicle 10, and are also part of the load in the vehicle 10 as an electric power system.
  • the motor 12 of the first embodiment is a three-phase AC brushless type.
  • the motor 12 generates a driving force based on the electric power supplied from the FC 20 and the battery 30, and rotates wheels (not shown) through a transmission (not shown) by the driving force. Further, the motor 12 outputs electric power (regenerative power Preg) [W] generated by performing regeneration to the battery 30 or the like.
  • the inverter 14 has a three-phase full-bridge configuration and performs DC-AC conversion. More specifically, the inverter 14 converts direct current into three-phase alternating current and supplies it to the motor 12, while supplying direct current after alternating current-direct current conversion accompanying the regenerative operation to the battery 30 and the like through the battery converter 34.
  • the motor 12 and the inverter 14 are main machines in the vehicle 10 and are part of a load in the vehicle 10 as an electric power system.
  • inverter voltage Vinv The input terminal voltage Vinv of the inverter 14 (hereinafter referred to as “inverter voltage Vinv”) is detected by the voltage sensor 60 and output to the motor ECU 16 via the signal line 62.
  • Input terminal current Iinv of inverter 14 (hereinafter referred to as “inverter current Iinv”) is detected by current sensor 64 and output to motor ECU 16 via signal line 66.
  • the motor ECU 16 controls the motor 12 and the inverter 14 based on input values such as a command value from the overall ECU 50. Further, the motor ECU 16 outputs the inverter voltage Vinv, the inverter current Iinv, the inverter power Pinv, and the like to the communication network 70.
  • the inverter power Pinv is the input terminal power of the inverter 14 and is calculated by multiplying the inverter voltage Vinv and the inverter current Iinv.
  • the communication network 70 in the first embodiment is a CAN (controller area network).
  • the communication network 70 is also referred to as a CAN 70.
  • the motor ECU 16 includes an input / output device, a calculation device, and a storage device (not shown). The same applies to other ECUs.
  • the FC stack 20 has a structure in which, for example, fuel cells formed by sandwiching a solid polymer electrolyte membrane between an anode electrode and a cathode electrode from both sides are stacked.
  • the periphery of the FC stack 20 includes an anode system, a cathode system, a cooling system, and the like.
  • the anode system supplies and discharges hydrogen (fuel gas) to and from the anode of the FC stack 20.
  • the cathode system supplies and discharges air (oxidant gas) containing oxygen to the cathode of the FC stack 20.
  • the cooling system cools the FC stack 20. In FIG. 1, the anode system, the cathode system, and the cooling system are not shown except for the air pump 28 and the FC ECU 22.
  • FC ECU 22 controls overall power generation by the FC 20 such as supply of hydrogen and oxygen to the FC 20 based on input values such as command values from the general ECU 50. That is, the FC ECU 22 controls the anode system, the cathode system, and the cooling system. The FC ECU 22 transmits the power consumption Pap [W] of the air pump 28 to the general ECU 50, the FC converter ECU 26, and the like via the CAN 70.
  • FC converter 24 is a boost chopper type voltage converter (DC / DC converter) that boosts the output voltage of the FC 20 (hereinafter referred to as “FC voltage Vfc”) and supplies the boosted voltage to the inverter 14.
  • FC voltage Vfc boosts the output voltage of the FC 20
  • FC voltage Vfc boosts the output voltage of the FC 20
  • FC voltage Vfc boosts the output voltage of the FC 20
  • the primary side voltage Vfccon1 of the FC converter 24 is detected by the voltage sensor 80 and output to the FC converter ECU 26 via the signal line 82.
  • the primary current Ifccon1 of the FC converter 24 is detected by the current sensor 84 and output to the FC converter ECU 26 via the signal line 86.
  • the secondary side voltage Vfccon2 of the FC converter 24 is detected by the voltage sensor 88 and output to the FC converter ECU 26 via the signal line 90.
  • the secondary current Ifccon2 of the FC converter 24 is detected by the current sensor 92 and output to the FC converter ECU 26 via the signal line 94.
  • FC converter ECU 26 controls the FC 20 via the FC converter 24 based on an input value such as a command value from the overall ECU 50.
  • FC VCU 96 FC VCU 96
  • the input value to the FC converter ECU 26 includes a value input directly to the FC converter ECU 26 and a value input via the communication network 70.
  • the input value directly input to the FC converter ECU 26 includes an input / output terminal current Ibat of the battery 30 detected by a current sensor 104 described later. Thereby, the battery 30 can be protected (details will be described later).
  • the battery 30 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydrogen secondary battery, or the like can be used. In the first embodiment, a lithium ion secondary battery is used. Instead of the battery 30, a power storage device such as a capacitor may be used.
  • the input / output terminal voltage (hereinafter referred to as “BAT terminal voltage Vbat”) [V] of the battery 30 is detected by the voltage sensor 100 and output to the battery ECU 32 via the signal line 102.
  • the input / output terminal current (hereinafter referred to as “BAT terminal current Ibat”) [A] of the battery 30 is detected by the current sensor 104 and output to the FC converter ECU 26 and the battery ECU 32 via the signal line 106.
  • the temperature Tbat of the battery 30 (hereinafter also referred to as “battery temperature Tbat”) [° C.] is detected by the temperature sensor 108 and output to the battery ECU 32 via the signal line 110.
  • the battery ECU 32 controls the battery 30 based on an input value such as a command value from the overall ECU 50.
  • the battery ECU 32 calculates the remaining capacity (hereinafter referred to as “SOC” or “battery SOC”) [%] of the battery 30 based on the BAT end voltage Vbat and the BAT end current Ibat, and uses it for managing the battery 30.
  • the battery ECU 32 determines the input limit value Pbatlimin (hereinafter also referred to as “BAT end input limit value Pbatlimin”) [W] and the output limit value Pbatlimitout (hereinafter referred to as “BAT end output”) based on the battery temperature Tbat and SOC. Also referred to as “limit value Pbatlimout”.) [W] is calculated.
  • the method for setting the input limit value Pbatlimin and the output limit value Pbatlimout can be performed, for example, in the same manner as in US 2008/0018111 A1 (see FIGS. 2 and 3 of US 2008/0018111 A1).
  • step-down converter terminal voltage Vlow An input terminal voltage (hereinafter referred to as “step-down converter terminal voltage Vlow”) [V] of step-down converter 42 is detected by voltage sensor 120 and output to battery ECU 32 through signal line 122.
  • step-down converter terminal current Ilow An input terminal current (hereinafter referred to as “step-down converter terminal current Ilow”) [A] of step-down converter 42 is detected by current sensor 124 and output to battery ECU 32 via signal line 126.
  • Battery ECU 32 multiplies step-down converter end voltage Vlow and step-down converter end current Ilow to calculate step-down converter end power Plow (hereinafter also referred to as “step-down converter power consumption Plow” or “power consumption Plow”) [W].
  • the battery ECU 32 sends the BAT end voltage Vbat, the BAT end current Ibat, the battery temperature Tbat, the battery SOC, the BAT end input limit value Pbatlimin, the BAT end output limit value Pbatlimout, and the step-down converter end power Plow via the CAN 70 to the MG ECU 50, FC. It transmits to converter ECU26 grade
  • the BAT converter 34 is a step-up / down chopper type voltage converter (DC / DC converter). That is, the BAT converter 34 boosts the output voltage (BAT end voltage Vbat) of the battery 30 and supplies it to the inverter 14. In addition, the BAT converter 34 steps down the regenerative voltage of the motor 12 (hereinafter referred to as “regenerative voltage Vreg”) or the secondary side voltage Vfccon 2 of the FC converter 24 and supplies it to the battery 30.
  • regenerative voltage Vreg regenerative voltage of the motor 12
  • Vfccon 2 secondary side voltage
  • the BAT converter 34 is disposed between the battery 30 and the inverter 14. In other words, one of the BAT converters 34 is connected to the primary side where the battery 30 is located, and the other is connected to the secondary side which is a connection point between the FC 20 and the inverter 14.
  • the primary voltage Vbatcon1 of the BAT converter 34 is detected by the voltage sensor 130 and is output to the BAT converter ECU 36 via the signal line 132.
  • the primary current Ibatcon1 of the BAT converter 34 is detected by the current sensor 134 and output to the BAT converter ECU 36 via the signal line 136.
  • the secondary current Ibatcon2 of the BAT converter 34 is detected by the current sensor 138 and output to the BAT converter ECU 36 via the signal line 140.
  • the primary side voltage Vbatcon1 is a voltage on the BAT converter 34 side of the auxiliary line connection point 144 in the power line 142 connecting the battery 30 and the BAT converter 34.
  • the primary side current Ibatcon1 is a current on the BAT converter 34 side of the auxiliary device connection point 144 in the power line 142 connecting the battery 30 and the BAT converter 34.
  • the BAT converter ECU 36 controls the BAT converter 34 based on an input value such as a command value from the overall ECU 50.
  • the BAT converter 34 and the BAT converter ECU 36 are also referred to as “BAT VCU 150” in the meaning of the voltage control unit for the battery 30.
  • the BAT converter ECU 36 transmits the primary side voltage Vbatcon1, the primary side current Ibatcon1, the secondary side current Ibatcon2, and the passing current Ibatt to the MG ECU 50, the FC converter ECU 26, and the like via the CAN 70.
  • the passing current Ibatt is a current passing through the BAT converter 34.
  • the BAT converter ECU 36 sets the one output from the BAT converter 34 out of the primary side current Ibatcon1 and the secondary side current Ibatcon2 as the passing current Ibatt. For example, when the battery 30 is being charged, the primary current Ibatcon1 is set as the passing current Ibatt.
  • the air pump 28, the air conditioner 40, the step-down converter 42 (step-down DC-DC converter), and the 12V system 44 are included as auxiliary devices.
  • a water pump (not shown) that is included in the cooling system of the FC system 2000 and circulates water as a refrigerant for cooling the FC 20 can be used as an auxiliary machine.
  • the air conditioner 40 adjusts the temperature in the vehicle 10 and the like.
  • the power consumption Pac [W] of the air conditioner 40 is transmitted from the control device (not shown) of the air conditioner 40 to the MG ECU 50, the FC converter ECU 26, etc. via the CAN 70.
  • the step-down converter 42 steps down the voltage on the primary side of the BAT converter 34 (BAT VCU 150) and supplies it to the 12V system 44.
  • the 12V system 44 includes a 12V battery, an accessory, a radiator fan, a headlight, and the like (not shown).
  • the accessories include devices such as audio devices and navigation devices.
  • the radiator fan is a fan for cooling the refrigerant circulated by the water pump in the radiator.
  • the overall ECU 50 transmits command values to the MOT ECU 16, FC ECU 22, FC converter ECU 26, BAT ECU 32, BAT converter ECU 36, and the like via the communication network 70 (FIG. 1).
  • the motor 12, the inverter 14, the FC 20, the FC converter 24, the battery 30, the BAT converter 34, and auxiliary equipment are controlled.
  • the MG ECU 50 executes a program stored in a storage unit (not shown). Further, the MG ECU 50 uses detection values of various sensors such as voltage sensors 60, 80, 88, 100, 120, 130, current sensors 64, 84, 92, 104, 124, 134, and 138.
  • the various sensors here include an accelerator pedal operation amount sensor (hereinafter referred to as “AP operation amount sensor”), a motor rotation number sensor, and a wheel speed sensor (all not shown).
  • the AP operation amount sensor detects an operation amount [%] of an accelerator pedal (not shown).
  • the motor rotation speed sensor detects the rotation speed of the motor 12 (hereinafter referred to as “motor rotation speed Nmot” or “rotation speed Nmot”) [rpm].
  • the MG ECU 50 detects the vehicle speed V [km / h] of the FC vehicle 10 using the rotational speed Nmot.
  • the wheel speed sensor detects the speed (wheel speed) of each wheel (not shown).
  • the MG ECU 50 determines the load (total load) required for the FC vehicle 10 as a whole based on the state of the FC stack 20, the state of the battery 30 and the state of the motor 12, as well as input from various switches and various sensors (load request). Is calculated. The MG ECU 50 determines, from the total load, the load that the FC stack 20 should bear (FC load), the load that the battery 30 should bear (battery load), and the load that the regenerative power source (motor 12) should bear (regeneration). (Load) distribution (sharing) is determined while arbitrating. Then, the MG ECU 50 transmits a command value to the MOT ECU 16, FC ECU 22, FC converter ECU 26, BAT ECU 32, BAT converter ECU 36, etc. according to each of these loads.
  • the command value transmitted from the MG ECU 50 to the FC converter ECU 26 includes a request value of the primary current Ifccon1 of the FC converter 24 (hereinafter referred to as “requested primary current Ifccon1req”).
  • the requested primary current Ifccon1req can also be regarded as a requested value of the output current of the FC 20.
  • the requested primary side current Ifccon1req indicates the load that the FC 20 should bear (that is, the target output of the FC 20).
  • FC converter control FC converter control
  • FIG. 2 shows a flowchart of the control of the FC converter 24 (FC converter control) by the FC converter ECU 26 in the first embodiment.
  • step S1 the FC converter ECU 26 updates various sensor values Mdir that are directly input to the FC converter ECU 26.
  • the various sensor values Mdir here include the FC converter primary side voltage Vfccon1 from the voltage sensor 80, the FC converter primary side current Ifccon1 from the current sensor 84, and the FC converter secondary side voltage Vfccon2 from the voltage sensor 88. included. Furthermore, in the first embodiment, since the current sensor 104 is directly connected to the FC converter ECU 26 (FIG. 1), the BAT end current Ibat is also included in the sensor value Mdir.
  • the update period Tdir of these sensor values Mdir is, for example, several milliseconds. It is also possible to make the update cycle Tdir different for each sensor value Mdir.
  • step S2 the FC converter ECU 26 updates various control values Ccan and sensor values Mcan input through the CAN 70.
  • the control value Ccan here includes, for example, the requested primary current Ifccon1req of the FC converter 24, the input limit value Pbatlimin and the output limit value Pbatlimout of the battery 30.
  • the sensor value Mcan here includes inverter power Pinv, air conditioner power consumption Pac, air pump power consumption Pap, step-down converter power consumption Plow, BAT end voltage Vbat, primary side voltage Vbatcon1, BAT converter 34, primary.
  • the side current Ibatcon1, the secondary side current Ibatcon2, and the passing current Ibatt are included.
  • the update period Tcan of the control value Ccan and the sensor value Mcan is, for example, several tens of msec and is longer than the update period Tdir in step S1. It is also possible to make the update cycle Tdir different for each control value Ccan or each sensor value Mcan.
  • the calculation cycle (hereinafter referred to as “control cycle Tc”) of steps S1 to S4 in FIG. 2 in the first embodiment is, for example, several milliseconds, and is equal to the update cycle Tdir of the sensor value Mdir.
  • the control cycle Tc can be shorter or longer than the update cycle Tdir.
  • step S3 the FC converter ECU 26 calculates the target primary current Ifccon1tar of the FC converter 24 based on the control value Ccan and the sensor values Mdir and Mcan (details will be described later with reference to FIGS. 3 to 6). ).
  • step S4 the ECU 26 controls the FC converter 24 so as to realize the target primary current Ifccon1tar calculated in step S3. Specifically, when the primary side current Ifccon1 is smaller than the target primary side current Ifccon1tar, the drive duty ratio for the FC converter 24 is increased. When the primary current Ifccon1 is larger than the target primary current Ifccon1tar, the drive duty ratio for the FC converter 24 is decreased. When the primary side current Ifccon1 is equal to the target primary side current Ifccon1tar, the current drive duty ratio for the FC converter 24 is maintained.
  • FIG. 3 is an explanatory diagram illustrating calculation of the target primary side current Ifccon1tar of the FC converter 24 in the first embodiment.
  • FIG. 4 is a flowchart (details of S3 in FIG. 2) for calculating the target primary current Ifccon1tar of the FC converter 24 in the first embodiment. 3 and 4 relate to the charging of the battery 30.
  • the FC converter ECU 26 calculates the primary current limit value Ifccon1lim1 of the FC converter 24 from the viewpoint of protection of the battery 30. Details will be described later with reference to FIG.
  • the FC converter ECU 26 converts the primary current limit value Ifccon1lim2 of the FC converter 24 from the viewpoint of protection of the FC converter 24 into the input limit values Pbatlimin and BAT of the battery 30. Calculation is based on the end voltage Vbat. For example, the ECU 26 sets a value obtained by dividing the input limit value Pbatlimin by the BAT end voltage Vbat as the primary side current limit value Ifccon1lim2.
  • the ECU 26 requests the primary current limit value Ifccon1lim1 calculated in the calculation blocks 200 and 202 (steps S11 and S12) and the requested primary side current Ifccon1req from the MG ECU 50. , Ifccon1lim2 is selected as the temporary target primary current Ifccon1trap. This places a limit on the requested primary current Ifccon1req.
  • the ECU 26 calculates the feedback correction value ⁇ Ifccon1cor (hereinafter also referred to as “F / B correction value ⁇ Ifccon1cor”) of the primary current Ifccon1 of the FC converter 24 in the calculation block 206 of FIG. 3 (step S14 in FIG. 4). Details will be described later with reference to FIG.
  • the FC converter ECU 26 adds the temporary target primary current Ifccon1tarp calculated in the calculation block 204 (S13 in FIG. 4) to the calculation block 206 (S14 in FIG. 4).
  • the target primary side current Ifccon1tar is calculated by adding the F / B correction value ⁇ Ifccon1cor calculated in step (1).
  • FIG. 5 is a flowchart (details of S11 in FIG. 4) for calculating the primary side current limit value Ifccon1lim1 of the FC converter 24 from the viewpoint of protection of the battery 30 in the first embodiment.
  • step S21 of FIG. 5 the FC converter ECU 26 adds the air pump power consumption Pap, the air conditioner power consumption Pac, and the power consumption Plow of the step-down converter 42 to calculate the auxiliary machine power consumption Paux. To do.
  • These power consumptions Pap, Pac, and Plow are all sensor values Mcan acquired by the FC converter 24 via the CAN 70.
  • step S22 of FIG. 5 the ECU 26 estimates the BAT converter 34 based on the passing current Ibatt and the primary side voltage Vbatcon1 of the BAT converter 34 and the secondary side voltage Vfccon2 of the FC converter 24.
  • the power consumption Lbatcon is calculated. That is, the storage unit of the FC converter ECU 26 stores in advance a map that defines the relationship between the combination of the passing current Ibatt, the primary side voltage Vbatcon1 and the secondary side voltage Vfccon2, and the estimated power consumption Lbatcon. Then, the FC converter ECU 26 specifies the estimated power consumption Lbatcon based on the combination of the passing current Ibatt, the primary side voltage Vbatcon1 and the secondary side voltage Vfccon2.
  • the passing current Ibatt and the primary side voltage Vbatcon1 are sensor values Mcan acquired via the CAN 70.
  • step S23 of FIG. 5 the FC converter ECU 26 subtracts the BAT end input limit value Pbatlimin from the inverter power Pinv, and further adds the control margin Pmar, the auxiliary machine power consumption Paux, and the estimated power consumption Lbatcon.
  • the power limit value Pfcconlim of the FC converter 24 is calculated.
  • the inverter power Pinv and the BAT end input limit value Pbatlimin are the sensor value Mcan and the control value Ccan acquired by the FC converter 24 via the CAN 70.
  • the control margin Pmar is a stored value stored in the storage unit of the FC converter ECU 26.
  • the estimated power consumption Lbatcon is a value calculated in the calculation block 212 (S22 in FIG. 5).
  • step S24 of FIG. 5 (calculation block 200 of FIG. 3), the FC converter ECU 26 divides the power limit value Pfcconlim calculated in step S23 by the primary side voltage Vfccon1 of the FC converter 24 to obtain a primary side current limit value Ifccon1lim1. Is calculated.
  • the primary side voltage Vfccon1 is a sensor value Mdir acquired directly from the voltage sensor 80 by the FC converter ECU 26.
  • FIG. 6 is a flowchart (details of S14 in FIG. 4) for calculating the F / B correction value ⁇ Ifccon1cor of the primary current Ifccon1 of the FC converter 24 in the first embodiment.
  • step S31 of FIG. 6 the FC converter ECU 26 multiplies the BAT end voltage Vbat and the BAT end current Ibat to calculate the BAT end power Pbat.
  • the BAT end voltage Vbat from the voltage sensor 100 is input to the FC converter ECU 26 via the CAN 70, while the BAT end current Ibat from the current sensor 104 is directly input to the FC converter ECU 26. Input (FIG. 1). Therefore, the BAT end voltage Vbat is the sensor value Mcan via the CAN 70 by the FC converter ECU 26, and the BAT end current Ibat is the sensor value Mdir directly acquired from the current sensor 104 by the FC converter ECU 26. Accordingly, the BAT end voltage Vbat is updated at the update cycle Tcan, while the BAT end current Ibat is updated at the update cycle Tdir ( ⁇ Tcan).
  • step S32 of FIG. 6 the FC converter ECU 26 calculates the deviation ⁇ Pbat by subtracting the BAT end input limit value Pbatlimin from the BAT end power Pbat and adding the control margin Pmar.
  • the BAT end power Pbat is calculated in the calculation block 214 (S31 in FIG. 6).
  • the BAT end input limit value Pbatlimin is the sensor value Mcan acquired by the FC converter 24 via the CAN 70.
  • the control margin Pmar is a stored value stored in the storage unit of the FC converter ECU 26. Since the BAT end power Pbat is calculated in the control cycle Tc ( ⁇ update cycle Tcan), the deviation ⁇ Pbat is also calculated in the control cycle Tc ( ⁇ update cycle Tcan).
  • step S33 of FIG. 6 (calculation block 206 of FIG. 3), the FC converter ECU 26 performs FID control (PID: ProportionalionIntegral Derivative) based on the deviation ⁇ Pbat calculated in step S32 to calculate the F / B correction value ⁇ Ifccon1cor. .
  • FID control PID: ProportionalionIntegral Derivative
  • the FC converter ECU 26 receives the request primary acquired from the MG ECU 50 (power management device) via the CAN 70 (first signal system).
  • Side current Ifccon1req power generation command value of FC20 (power generation device)
  • BAT end current Ibat barium senor
  • Ibat parameter acquired from the current sensor 104 (parameter acquisition unit) via the signal line 106 (second signal system)
  • the FC20 is controlled using For this reason, for example, in the normal state, the requested primary side current Ifccon1req is mainly used, while instantaneous changes in the BAT end current Ibat related to the input or output of the battery 30 (power storage device) (for example, driving due to wheel locking or the like)
  • the battery 30 power storage device
  • the requested primary side current Ifccon1req is mainly used, while instantaneous changes in the BAT end current Ibat related to the input or output of the battery 30 (power storage device) (for example, driving due to wheel locking or the like)
  • the FC converter ECU 26 (part of the power generation control device) is configured to request the primary current Ifccon1req (FC20 (power generation device) obtained from the MG ECU 50 (power management device) via the CAN 70 (first signal system). ) Is corrected by the BAT terminal current Ibat (parameter) (FIG. 1) acquired from the current sensor 104 (parameter acquisition unit) via the signal line 106 (second signal system) and FC20 (power generation device) ) Is controlled (FIGS. 3, 6, etc.). Thereby, it is possible to protect the battery 30 while avoiding a sudden change in input or output to the battery 30 (power storage device).
  • the FC converter ECU 26 (part of the power generation control device) updates the requested primary current Ifccon1req from the MG ECU 50 (power management device) via the CAN 70 (first signal system) to the update cycle Tcan (first (Period) (S2 in FIG. 2). Further, the ECU 26 updates the BAT terminal current Ibat (parameter) from the current sensor 104 (parameter acquisition unit) via the signal line 106 (second signal system) at an update cycle Tdir (second cycle) shorter than the update cycle Tcan. Obtain (S1 in FIG. 2).
  • the ECU 26 controls the FC 20 using the requested primary current Ifccon1req (target primary current Ifccon1tar) corrected by the BAT end current Ibat and the like at a control cycle Tc (third cycle) shorter than the update cycle Tcan. Do.
  • the FC converter ECU 26 obtains the requested primary side current Ifccon1req obtained from the MG ECU 50 via the CAN 70 directly from the current sensor 104 via the signal line 106.
  • the FC 20 is controlled by correcting with Ibat or the like (FIG. 6, FIG. 3, etc.). Further, the update cycle Tdir for acquiring the BAT end current Ibat and the control cycle Tc (third cycle) of the FC 20 are shorter than the update cycle Tcan for acquiring the requested primary current Ifccon1req.
  • the power generation of the battery 30 is controlled in accordance with an instantaneous change in the BAT end current Ibat (for example, a rapid increase in input power to the battery 30 due to a sudden decrease in power consumption of the drive motor 12 due to wheel locking or the like). It becomes possible to do. Therefore, the battery 30 can be protected by avoiding a sudden change in the input or output to the battery 30.
  • the FC converter ECU 26 determines the primary side current limit when the requested primary side current Ifccon1req acquired from the MG ECU 50 exceeds the primary side current limit value Ifccon1lim1 or Ifccon1lim2.
  • the value Ifccon1lim1 or Ifccon1lim2 is set as the target primary current Ifccon1tar (block 204 in FIG. 3, S13 in FIG. 4).
  • the FC converter ECU 26 limits the output of the FC 20 when the input power to the battery 30 (power storage device) exceeds the input power threshold. Thereby, it becomes possible to protect the battery 30 by reducing the input power to the battery 30 and avoiding overcharging of the battery 30.
  • the FC VCU 96 power generation control device
  • the FC VCU 96 includes an FC converter 24 (first converter) on the FC 20 side and an FC converter ECU 26 (first converter control device) that controls the FC converter 24 (FIG. 1).
  • Vehicle 10 (electric power system) includes a BAT converter 34 (second converter) on the battery 30 (power storage device) side, and a BAT converter ECU 36 (second converter control device) that controls BAT converter 34 (FIG. 1). ).
  • the FC converter ECU 26 sets the primary current limit value Ifccon1lim1 (or Ifccon1lim2) to the target primary when the requested primary current Ifccon1req obtained from the MG ECU 50 exceeds the primary current limit value Ifccon1lim1 (or Ifccon1lim2).
  • the side current Ifccon1tar is assumed (block 204 in FIG. 3, S13 in FIG. 4).
  • the FC converter ECU 26 limits the output current of the FC 20 when the input power to the battery 30 exceeds the input power threshold, and the primary side current limit value of the FC converter 24 based on the input power threshold of the battery 30.
  • Ifccon1lim1 (or Ifccon1lim2) (output current limit value) is changed (FIG. 5). This makes it possible to impose an appropriate limit on the output current of the FC 20 according to the input power threshold value of the battery 30.
  • the primary current limit value Ifccon1lim2 (the input power threshold value of the battery 30 (power storage device)) of the FC converter 24 is set based on the battery temperature Tbat and the SOC.
  • the primary-side current limit value Ifccon1lim2 can be set appropriately, and further, an appropriate limit can be imposed on the output current of the FC 20 as well.
  • the FC converter ECU 26 determines the FC 20 based on the deviation ⁇ Pbat between the BAT end power Pbat (input power of the power storage device) and the BAT end input limit value Pbatlimin (input power threshold).
  • the output is corrected (FIG. 6, FIG. 3, etc.). Thereby, it becomes possible to correct
  • FIG. 7 is a schematic overall configuration diagram of a fuel cell vehicle 10A (hereinafter referred to as “FC vehicle 10A” or “vehicle 10A”) as an electric power system according to the second embodiment of the present invention.
  • FC vehicle 10A fuel cell vehicle 10A
  • vehicle 10A vehicle 10A
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the current sensor 104 is connected to the FC converter ECU 26 via the signal line 106, and the BAT terminal current Ibat is directly input to the ECU 26 (FIG. 1).
  • the current sensor 134 is connected to the FC converter electronic control unit 26a (hereinafter referred to as “FC converter ECU 26a” or “ECU 26a”) via the signal line 136, and the BAT converter 34.
  • FC converter ECU 26a FC converter electronic control unit 26a
  • ECU 26a Primary side current Ibatcon1 is directly input to the ECU 26a (FIG. 7).
  • the FC converter ECU 26 of the first embodiment the BAT terminal power Pbat calculated based on the BAT terminal voltage Vbat and the BAT terminal current Ibat was used (the calculation block 214 in FIG. 3 and S31 in FIG. 6).
  • the FC converter ECU 26a of the second embodiment uses the estimated BAT end power Pbatest estimated based on the primary side voltage Vbatcon1 and the primary side current Ibatcon1 of the BAT converter 34 (calculation block 214a, FIG. 8). S43 in FIG. 9).
  • the current sensor 134 is connected to the FC converter ECU 26a via the signal line 136, and the primary current Ibatcon1 of the BAT converter 34 is directly input to the ECU 26a (FIG. 7). . Therefore, in the case of the second embodiment, the various sensor values Mdir that are directly input to the ECU 26a in step S1 of FIG. 2 include the primary current Ibatcon1, but do not include the BAT end current Ibat. Further, the various sensor values Mcan input to the ECU 26a via the CAN 70 in step S2 of FIG. 2 include the BAT end current Ibat, but not the primary side current Ibatcon1.
  • the update cycle Tdir in step S1 in FIG. 2 is shorter than the update cycle Tcan in step S2.
  • FIG. 8 is an explanatory diagram for explaining calculation of the target primary current Ifccon1tar of the FC converter 24 in the second embodiment.
  • the outline of the flowchart (details of S3 in FIG. 2) for calculating the target primary side current Ifccon1tar of the FC converter 24 is the same as that in the first embodiment (FIG. 4).
  • the outline of the calculation of the primary current limit value Ifccon1lim1 (S11 in FIG. 4) of the FC converter 24 from the viewpoint of protecting the battery 30 is the same as that in the first embodiment (FIG. 5).
  • FIG. 3 of the first embodiment and FIG. 8 of the second embodiment will be described later with reference to FIG.
  • FIG. 9 is a flowchart (details of S14 in FIG. 4) for calculating the F / B correction value ⁇ Ifccon1cor of the primary current Ifccon1 of the FC converter 24 in the second embodiment.
  • step S41 of FIG. 9 the FC converter ECU 26a calculates the primary power Pbatcon1 by multiplying the primary side voltage Vbatcon1 of the BAT converter 34 and the primary side current Ibatcon1.
  • the primary side voltage Vbatcon1 from the voltage sensor 130 is input to the ECU 26a via the CAN 70, while the primary side current Ibatcon1 from the current sensor 134 is directly input to the ECU 26a. (FIG. 7). Therefore, the primary side voltage Vbatcon1 is the sensor value Mcan via the CAN 70a, and the primary side current Ibatcon1 is the sensor value Mdir directly acquired from the current sensor 134 by the ECU 26a. Therefore, the primary side voltage Vbatcon1 is updated at the update cycle Tcan, while the primary side current Ibatcon1 is updated at the update cycle Tdir ( ⁇ Tcan).
  • step S42 in FIG. 9 the FC converter ECU 26a acquires the auxiliary machine power consumption Paux calculated in step S21 in FIG. 5 (calculation block 210 in FIG. 8).
  • step S43 the ECU 26a calculates the estimated BAT end power Pbatest by adding the primary power Pbatcon1 of the BAT converter 34 and the auxiliary machine power consumption Paux.
  • step S44 of FIG. 9 the FC converter ECU 26a calculates the deviation ⁇ Pbat2 by subtracting the BAT end input limit value Pbatlimin from the estimated BAT end power Pbatest and further adding the control margin Pmar.
  • the estimated BAT end power Pbatest is calculated in the calculation block 214a (S43 in FIG. 9).
  • the BAT end input limit value Pbatlimin is the sensor value Mcan acquired by the FC converter 24 via the CAN 70.
  • the control margin Pmar is a stored value stored in the storage unit of the FC converter ECU 26a. Since the estimated BAT end power Pbatest is calculated in the control cycle Tc ( ⁇ update cycle Tcan), the deviation ⁇ Pbat2 is also calculated in the control cycle Tc ( ⁇ update cycle Tcan).
  • step S45 in FIG. 9 (calculation block 206a in FIG. 8), the FC converter ECU 26a performs PID control based on the deviation ⁇ Pbat2 calculated in step S44 to calculate the F / B correction value ⁇ Ifccon1cor.
  • FIG. 10 is a time chart showing various sensor values Mdir and Mcan and a control value Ccan in the fuel cell vehicle according to the comparative example.
  • FIG. 11 is a time chart showing various sensor values Mdir and Mcan and a control value Ccan in the FC vehicle 10A according to the second embodiment.
  • the primary side current Ibatcon1 from the current sensor 134 is not directly input to the FC converter ECU 26a, but is input to the FC converter ECU 26a via the CAN 70.
  • FIG. 10 shows the wheel speed Vw [km / h].
  • 10 and 11 show the FC end power Pfc [W], the BAT end power Pbat [W], the estimated BAT end power Pbatest [W], and the inverter power Pinv when the MG ECU 50 transmits. [W] is shown.
  • FIG. 10 shows inverter power Pinv [W] when received by FC converter ECU 26a.
  • the third-stage BAT terminal power Pbat is an enlargement of the second-stage BAT terminal power Pbat, and both show the same data. Further, as can be seen from the positions of the BAT end input limit value Pbatlimin and the BAT end output limit value Pbatlimout, the scale (vertical direction) of the BAT end power Pbat in the third stage is different in FIGS. 10 and 11. I want to be.
  • the control includes setting the target primary side current Ifccon1tar to be equal to or lower than the primary side current Ifccon1.
  • the unillustrated hydraulic brake mechanism is actuated, so that the unillustrated wheel is locked.
  • the BAT end power Pbat shifts from the discharged state to the charged state with a rapid decrease in the wheel speed Vw.
  • the target primary side current Ifccon1tar starts to be reduced earlier. That is, in the comparative example, the target primary side current Ifccon1tar decreases from the time point t3, whereas in the second embodiment, the target primary side current Ifccon1tar starts decreasing from the time point t2.
  • the primary voltage Vbatcon1 of the BAT converter 34 is used (the operation block 220 in FIG. 8 and S41 in FIG. 9).
  • the primary current Ibatcon1 is directly input from the current sensor 134 to the FC converter ECU 26a (FIG. 7).
  • the FC converter ECU 26a of the second embodiment can quickly start the decrease in the target primary side current Ifccon1tar.
  • the primary current Ibatcon1 is input to the FC converter ECU 26a via the CAN 70. For this reason, as a result of the time difference D until the primary side current Ibatcon1 is input to the FC converter ECU 26a, the target primary side current Ifccon1tar cannot be quickly started to decrease.
  • the BAT end power Pbat of the second embodiment only slightly exceeds (below) the BAT end input limit value Pbatlimin, but the BAT end power Pbat of the comparative example greatly exceeds the BAT end input limit value Pbatlimin. (Below).
  • an auxiliary machine such as an air pump 28 is connected to the power line 142 connecting the battery 30 (power storage device) and the BAT converter 34 (second converter) as a load different from the drive motor 12 (FIG. 7).
  • the FC converter ECU 26a (first converter control device) estimates input power to the battery 30 or output power from the battery 30 based on the primary power Pbatcon1 of the BAT converter 34 (see FIG. 9). Thereby, the state of the battery 30 can be monitored. As a result, the degree of freedom in design is improved and the fail-safe point is excellent.
  • FIG. 12 is a schematic overall configuration diagram of a fuel cell vehicle 10B (hereinafter referred to as “FC vehicle 10B” or “vehicle 10B”) as an electric power system according to a third embodiment of the present invention.
  • FC vehicle 10B fuel cell vehicle 10B
  • vehicle 10B vehicle 10B
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the current sensor 104 is connected to the FC converter ECU 26 via the signal line 106, and the BAT terminal current Ibat is directly input to the FC converter ECU 26 (FIG. 1).
  • the current sensor 134 is connected to the FC converter ECU 26a via the signal line 136, and the primary current Ibatcon1 of the BAT converter 34 is directly input to the FC converter ECU 26a (FIG. 7).
  • the current sensor 138 is connected to the FC converter electronic control unit 26b (hereinafter referred to as “FC converter ECU 26b” or “ECU 26b”) via the signal line 140, and the BAT converter 34. Secondary side current Ibatcon2 is directly input to the FC converter ECU 26b (FIG. 12).
  • the BAT terminal power Pbat calculated based on the BAT terminal voltage Vbat and the BAT terminal current Ibat was used (the calculation block 214 in FIG. 3 and S31 in FIG. 6).
  • the estimated BAT end power Pbatest estimated based on the primary side voltage Vbatcon1 and the primary side current Ibatcon1 of the BAT converter 34 is used (calculation blocks 214a and 220 in FIG. 8, FIG. 9 S41 to S43).
  • the FC converter ECU 26b of the third embodiment based on the secondary side voltage Vfccon2 of the FC converter 24 (substantially equal to the secondary side voltage of the BAT converter 34), the secondary current Ibatcon2 of the BAT converter 34, and the like.
  • the estimated estimated BAT end power Pbaste2 is used.
  • the current sensor 138 is connected to the FC converter ECU 26b via the signal line 140, and the secondary current Ibatcon2 of the BAT converter 34 is directly input to the FC converter ECU 26b (FIG. 12).
  • the various sensor values Mdir that are directly input to the FC converter ECU 26b in step S1 in FIG. 2 include the secondary current Ibatcon2, while the BAT end current Ibat and the primary current. Ibatcon1 is not included.
  • the various sensor values Mcan input to the FC converter ECU 26b via the CAN 70 in step S2 of FIG. 2 include the BAT end current Ibat and the primary side current Ibatcon1, but not the secondary side current Ibatcon2. .
  • the update cycle Tdir in step S1 in FIG. 2 is shorter than the update cycle Tcan in step S2.
  • FIG. 13 is an explanatory diagram for explaining calculation of the target primary current Ifccon1tar of the FC converter 24 in the third embodiment.
  • the outline of the flowchart (details of S3 in FIG. 2) for calculating the target primary current Ifccon1tar of the FC converter 24 is the same as that in the first and second embodiments (FIG. 4).
  • the outline of the calculation of the primary current limit value Ifccon1lim1 (S11 in FIG. 4) of the FC converter 24 from the viewpoint of protecting the battery 30 is the same as in the first and second embodiments (FIG. 5). Differences between FIG. 3 of the first embodiment and FIG. 8 of the second embodiment and FIG. 13 of the third embodiment will be described later with reference to FIG.
  • FIG. 14 is a flowchart (details of S14 in FIG. 4) for calculating the F / B correction value ⁇ Ifccon1cor of the primary current Ifccon1 of the FC converter 24 in the third embodiment.
  • step S51 of FIG. 14 (calculation block 220a of FIG. 13) the FC converter ECU 26b multiplies the secondary side voltage Vfccon2 of the FC converter 24 by the secondary side current Ibatcon2 of the BAT converter 34, and the secondary side of the BAT converter 34.
  • the power Pbatcon2 is calculated.
  • the secondary side voltage Vfccon2 from the voltage sensor 88 and the secondary side current Ibatcon2 from the current sensor 138 are directly input to the FC converter ECU 26b (FIG. 12). Therefore, the secondary side voltage Vfccon2 and the secondary side current Ibatcon2 are sensor values Mdir directly acquired by the FC converter ECU 26b from the voltage sensor 88 and the current sensor 138. For this reason, the secondary side voltage Vfccon2 and the secondary side current Ibatcon2 are updated at the update cycle Tdir.
  • step S52 of FIG. 14 (calculation block 214b of FIG. 13) the FC converter ECU 26b acquires the auxiliary machine power consumption Paux calculated in step S21 of FIG. 5 (calculation block 210 of FIG. 13).
  • step S53 the ECU 26b calculates the estimated BAT end power Pbatest2 by adding the secondary power Pbatcon2 of the BAT converter 34 and the auxiliary machine power consumption Paux.
  • step S54 of FIG. 14 the ECU 26b calculates a deviation ⁇ Pbat3 by subtracting the BAT end input limit value Pbatlimin from the estimated BAT end power Pbatest2 and adding the control margin Pmar.
  • the estimated BAT end power Pbatest2 is calculated in the calculation block 214b (S53 in FIG. 14).
  • the BAT end input limit value Pbatlimin is the sensor value Mcan acquired by the FC converter 24 via the CAN 70.
  • the control margin Pmar is a stored value stored in the storage unit of the FC converter ECU 26b. Since the estimated BAT end power Pbatest2 is calculated in the control cycle Tc ( ⁇ update cycle Tcan), the deviation ⁇ Pbat3 is also calculated in the control cycle Tc ( ⁇ update cycle Tcan).
  • step S55 in FIG. 14 (calculation block 206b in FIG. 13), the FC converter ECU 26b performs PID control based on the deviation ⁇ Pbat3 calculated in step S54 to calculate the F / B correction value ⁇ Ifccon1cor.
  • FC converter ECU26b (1st converter control apparatus) is based on the secondary side electric power Pbatcon2 of BAT converter 34 (2nd converter), or input electric power to the battery 30 (power storage device) or from the battery 30 The output power is estimated (see FIG. 14). Thereby, the state of the battery 30 can be monitored. As a result, the degree of freedom in design is improved and the fail-safe point is excellent.
  • FIG. 15 is a schematic overall configuration diagram of a fuel cell vehicle 10C (hereinafter referred to as “FC vehicle 10C” or “vehicle 10C”) as an electric power system according to a fourth embodiment of the present invention.
  • FC vehicle 10C fuel cell vehicle 10C
  • vehicle 10C vehicle 10C
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the battery 30 is protected through control by the FC converter ECUs 26, 26a, and 26b.
  • the FC converter electronic control device 26c hereinafter referred to as “FC converter ECU 26c” or “ECU 26c”
  • the motor electronic control device 16a hereinafter referred to as “motor ECU 16a” or “ECU 16a”.
  • the battery 30 is protected through the control in.
  • the current sensor 104 is connected to the FC converter ECU 26c and the motor ECU 16a via the signal line 106, and the BAT terminal current Ibat is directly input to the ECUs 16a and 26c (FIG. 15).
  • the FC converter ECU 26c is controlled to prevent the input power to the battery 30 from becoming excessive due to wheel locking or the like, which is substantially the same as the ECU 26 of the first embodiment. Further, the motor ECU 16a performs control so as to prevent the output power from the battery 30 from becoming excessive due to spinning of the wheels or the like.
  • FIG. 16 shows a flowchart of battery protection control by the motor ECU 16a in the fourth embodiment.
  • the motor ECU 16a changes the output of the motor 12 via the inverter 14, thereby protecting the battery 30.
  • step S61 in FIG. 16 the motor ECU 16a updates various sensor values Mdir2 that are directly input to the motor ECU 16a.
  • the various sensor values Mdir2 here include the inverter voltage Vinv from the voltage sensor 60 and the inverter current Iinv from the current sensor 64.
  • the BAT end current Ibat is also included in the sensor value Mdir2.
  • the update period Tdir2 of the sensor value Mdir2 is set to several msec, for example. It is also possible to make the update cycle Tdir2 different for each sensor value Mdir2.
  • step S62 the motor ECU 16a updates various control values Ccan2 and sensor values Mcan2 input through the CAN 70.
  • the control value Ccan2 here includes, for example, the required torque Tmreq of the motor 12 from the MG ECU 50.
  • the BAT end output limit value Pbatlimout from the BAT ECU 32 is included.
  • the sensor value Mcan2 here includes, for example, the BAT end voltage Vbat.
  • the update cycle Tcan2 of the control value Ccan2 and the sensor value Mcan2 is, for example, several tens of msec and longer than the update cycle Tdir2. It is also possible to make the update cycle Tdir2 different for each control value Ccan2 or for each sensor value Mcan2.
  • the calculation cycle (hereinafter referred to as “control cycle Tc2”) of steps S61 to S66 in FIG. 16 in the fourth embodiment is, for example, several milliseconds, and is equal to the update cycle Tdir2 of the sensor value Mdir2.
  • control cycle Tc2 can be made shorter or longer than the update cycle Tdir2.
  • step S63 the motor ECU 16a multiplies the BAT end voltage Vbat and the BAT end current Ibat to calculate the BAT end power Pbat.
  • the BAT end voltage Vbat from the voltage sensor 100 is input to the ECU 16a via the CAN 70, while the BAT end current Ibat from the current sensor 104 is directly input to the ECU 16a ( FIG. 15). Therefore, the BAT end voltage Vbat is the sensor value Mcan2 through the CAN 70, and the BAT end current Ibat is the sensor value Mdir2 directly acquired from the current sensor 104 by the ECU 16a. Therefore, the BAT end voltage Vbat is updated at the update cycle Tcan2, while the BAT end current Ibat is updated at the update cycle Tdir2 ( ⁇ Tcan2).
  • step S64 the motor ECU 16a determines whether or not the BAT end power Pbat (S63) is greater than or equal to the BAT end output limit value Pbatlimitout.
  • the ECU 16a limits the output of the motor 12 from the viewpoint of protecting the battery 30. For example, the ECU 16a reduces the required torque Tmreq of the motor 12 by a predetermined amount and uses it.
  • the ECU 16a does not limit the output of the motor 12 from the viewpoint of protecting the battery 30. For example, the ECU 16a uses the required torque Tmreq without changing it from the viewpoint of protecting the battery 30 (there may be an output restriction from another viewpoint).
  • the motor ECU 16a (motor control device) includes the required torque Tmreq (output command value) of the drive motor 12 acquired from the MG ECU 50 (power management device) via the CAN 70 (first signal system).
  • the drive motor 12 is controlled using the BAT end current Ibat (parameter) acquired from the current sensor 104 (parameter acquisition unit) via the signal line 106 (second signal system) (FIG. 16).
  • the required torque Tmreq is mainly used, while the instantaneous change in the BAT end current Ibat related to the input or output of the battery 30 (power storage device) (for example, the slip of the drive motor 12 due to wheel slip or the like).
  • the present invention is applied with the vehicles 10, 10A to 10C as the power system.
  • the present invention is not limited to this.
  • the present invention can be applied using a moving object such as a ship or an aircraft as an electric power system.
  • the present invention may be applied using a robot, a manufacturing apparatus, a household power system, or a home appliance as a power system.
  • FC 20 (and the motor 12 during regeneration) is used as a power generator that can supply power to the battery 30 (FIG. 1 and the like).
  • the FC 20 (and the motor 12 during regeneration) is used as a power generator that can supply power to the battery 30 (FIG. 1 and the like).
  • this is not a limitation.
  • a generator driven by an engine or a power storage device (separate battery, capacitor, etc.) different from battery 30 may be used.
  • the motor 12 is an AC type.
  • the motor 12 is not limited thereto. Absent.
  • the motor 12 can be a direct current type. In this case, it is also possible to provide an on / off switch instead of the inverter 14.
  • the motor 12 is used for traveling or driving the FC vehicles 10, 10A to 10C.
  • the present invention is not limited to this.
  • the motor 12 may be used for in-vehicle devices (for example, electric power steering, air compressor, air conditioner 40).
  • FC converter 24 and BAT converter 34 In each of the above embodiments, the FC 20 and the battery 30 are arranged in parallel, the FC converter 24 that is a boost converter is arranged in front of the FC 20, and the BAT converter 34 that is a buck-boost converter is arranged in front of the battery 30. (Fig. 1 etc.).
  • the FC converter 24 arranged in front of the FC 20 may be a step-up / step-down type or a step-down type instead of the step-up type.
  • the FC 20 and the battery 30 may be arranged in parallel, and the FC converter 24 that is a step-up, step-down or step-up / step-down DC / DC converter may be arranged in front of the FC 20. .
  • the current sensor 104 is connected to the FC converter ECUs 26 and 26c via the signal line 106, and the BAT end current Ibat is directly input to the FC converter ECUs 26 and 26c.
  • the current sensor 134 is connected to the FC converter ECU 26a via the signal line 136, and the primary current Ibatcon1 of the BAT converter 34 is directly input to the ECU 26a.
  • the current sensor 138 is connected to the FC converter ECU 26b via the signal line 140, and the secondary current Ibatcon2 of the BAT converter 34 is directly input to the ECU 26b.
  • the present invention is not limited to this.
  • the present invention is also possible to directly input the BAT end voltage Vbat to the FC converter ECUs 26 and 26c in addition to or instead of the BAT end current Ibat.
  • the primary side current Ibatcon1 in addition to or instead of the primary side current Ibatcon1, it is also possible to directly input the primary side voltage Vbatcon1 to the FC converter ECU 26a.
  • the current sensor 104 is connected to the motor ECU 16a via the signal line 106, and the BAT terminal current Ibat is directly input to the ECU 16a (FIG. 15).
  • the present invention is not limited to this.
  • the BAT end voltage Vbat can be directly input to the motor ECU 16a.
  • Pbeast2 S43 in FIG. 9, S53 in FIG.
  • the primary side current Ibatcon1 of the BAT converter 34 detected by the current sensor 134 or the current sensor It is also possible to directly input the secondary current Ibatcon2 of the BAT converter 34 detected by 138 to the ECU 16a (see the second and third embodiments).
  • sensor values Mdir, Mdir2, Mcan, Mcan2, and control values Ccan, Ccan2 are input to the FC converter ECUs 26, 26c and the motor ECU 16a using the CAN 70 and the signal line 106 (FIGS. 1 and 15).
  • the second signal system in which the time to reach the destination (for example, the FC converter ECUs 26, 26a to 26c) is shorter than the first signal system for transmitting the sensor values Mcan and Mcan2 and the control values Ccan and Ccan2. From the viewpoint of use, it is not limited to this.
  • the first signal system that transmits the sensor values Mcan and Mcan2 and the control values Ccan and Ccan2 may be a low-speed CAN
  • the second signal system that transmits the sensor values Mdir and Mdir2 may be a high-speed CAN
  • LIN Local Interconnect Network
  • FlexRay or the like can be used as the first signal system or the second signal system.
  • FC converter ECU 26, 26a to 26c In the FC converter ECUs 26, 26a to 26c of the above embodiments, in order to avoid overcharging in the battery 30, when the input power to the battery 30 increases, the primary current Ifccon1 of the FC converter 24 is reduced ( (See FIG. 6). However, for example, from the viewpoint of protection of the battery 30, this is not a limitation. For example, in the FC converter ECUs 26, 26a to 26c, in order to avoid overdischarge in the battery 30, when the output power from the battery 30 increases (when the output power or a parameter related thereto exceeds a predetermined threshold), the FC It is also possible to increase the primary current Ifccon1 of the converter 24.
  • the FC converter ECU 26 uses the request primary current Ifccon1req (power generation command value of the FC20 (power generation device)) acquired from the MG ECU 50 via the CAN 70 (first signal system) as a signal line 106 (first The FC 20 (power generation device) was controlled by correcting with the BAT end current Ibat (parameter) (FIG. 1) acquired from the current sensor 104 (parameter acquisition unit) via the two-signal system (FIGS. 3, 6, etc.).
  • Ifccon1req power generation command value of the FC20 (power generation device)
  • the FC 20 was controlled by correcting with the BAT end current Ibat (parameter) (FIG. 1) acquired from the current sensor 104 (parameter acquisition unit) via the two-signal system (FIGS. 3, 6, etc.).
  • the requested primary current Ifccon1req power generation command value of the FC20 (power generation device)
  • the CAN 70 first signal system
  • the current sensor 104 via the signal line 106 (second signal system)
  • the present invention is not limited to this.
  • a sudden change change exceeding the threshold value
  • the FC converter ECUs 26, 26a to 26c use the requested primary side current Ifccon1req obtained from the MG ECU 50 via the CAN 70 (first signal system) as the power generation command value of the FC 20 (power generation device) ( FIG. 1 etc.).
  • the request value of the secondary current Ifccon2 of the FC converter ECUs 26, 26a to 26c is used as the FC 20 power generation command value. Is also possible.
  • the primary current limit value Ifccon1lim2 (the input power threshold value of the battery 30 (power storage device)) of the FC converter 24 is set based on the temperature Tbat and SOC of the battery 30 (S12 in FIG. 4).
  • the primary side current limit value Ifccon1lim2 it is also possible to set the primary side current limit value Ifccon1lim2 using only one of the temperature Tbat and the SOC of the battery 30.
  • the primary side current limit value Ifccon1lim1 it is possible not to set the primary side current limit value Ifccon1lim2.
  • the motor ECU 16a sends the required torque Tmreq (output command value of the motor 12) acquired from the MG ECU 50 via the CAN 70 (first signal system) via the signal line 106 (second signal system).
  • the motor 12 was controlled by correcting with the BAT end current Ibat (parameter) (FIG. 15) acquired from the current sensor 104 (parameter acquisition unit) (FIG. 16).
  • the required torque Tmreq output command value of the motor 12 acquired via the CAN 70 (first signal system) and the current sensor 104 (parameter acquisition unit) via the signal line 106 (second signal system).
  • the present invention is not limited to this.
  • the motor 12 can be controlled based on the BAT end current Ibat without using the required torque Tmreq.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

 電力システム(10)の電力管理装置(50)は、電力システム(10)全体の発電量を管理する。発電制御装置(96)は、第1信号系統(70)を介して電力管理装置(50)から取得した発電装置(20)の発電指令値(Ifccon1req)と、第2信号系統(106)を介してパラメータ取得部(104)から直接取得したパラメータ(Ibat)とを用いて発電装置(20)を制御する。

Description

電力システム
 本発明は、電力システムに関する。
 米国特許出願公開第2008/0018111号公報(以下「US 2008/0018111 A1」という。)のハイブリッド用電子制御ユニット(70)は、所定の出力要求を満たすため、バッテリ(50)の入出力制限の範囲内においてエンジン(22)の運転ポイントとモータMG1、MG2のトルク指令Tm1*、Tm2*とを設定する。そして、エンジンECU(24)にエンジン(22)の運転ポイントを、モータECU(40)にトルク指令Tm1*、Tm2*を送信すると共に、モータECU(40)にバッテリ(50)の入出力制限を送信する(要約)。
 モータECU(40)は、トルク指令Tm1*、Tm2*でモータMG1、MG2を駆動したときにバッテリ(50)の入出力制限の範囲内となるかを検証する。モータMG1、MG2を駆動が、バッテリ(50)の入出力制限の範囲外のとき、モータECU(40)は、入出力制限の範囲内となるようトルク指令Tm1*、Tm2*を再設定し、モータMG1、MG2を駆動制御する。これにより、通信ラグにより電力収支が異なるものとなっても、バッテリの過大な電力による充放電を効果的に抑止することができるとされている(要約)。
 ここでの通信ラグは、通信に要する時間の遅れを意味する([0003])。より具体的には、通信ラグは、運転指令(トルク指令Tm1*、Tm2*)を作成するタイミングから発電手段(エンジン22)や電動機(モータMG1、MG2)を運転制御するタイミングまでに発生するものとされている([0007])。
 上記のように、US 2008/0018111 A1では、発電手段(エンジン22)及び電動機(モータMG1,MG2)の出力を制限することによるバッテリの保護を図る技術が開示されている。しかしながら、バッテリ(蓄電装置)の保護の観点からすれば、改善の余地がある。
 例えば、US 2008/0018111 A1では、モータECU(40)によるモータ制御ルーチン(図8)は、所定時間毎(例えば、数msec毎)に繰り返し実行されるものとされている([0057]最終行)。当該ルーチンは、トルク指令Tm1*、Tm2*、モータ回転速度Nm1、Nm2及びバッテリ入出力制限Win、Woutの取得(S200)からトルク指令Tm1*、Tm2*によるモータMG1、MG2の制御(S300)までの一連の流れを含んでいる(図8)。このため、トルク指令Tm1*、Tm2*等の取得周期と、モータMG1、MG2の制御周期が同じであるものと見受けられる。
 ここで、ハイブリッド用電子制御ユニット(70)とモータECU(40)との間の通信周期(すなわち、トルク指令Tm1*、Tm2*等の取得周期)に制約がある場合、バッテリへの入力又は出力の急激な変化に対応できないおそれがある。そのような急激な変化としては、例えば、車輪のロック等による駆動モータの消費電力の急減に伴うバッテリへの入力電力の急激な増加が考えられる。
 本発明は上記のような課題を考慮してなされたものであり、蓄電装置の保護をより適切に行うことが可能な電力システムを提供することを目的とする。
 本発明に係る電力システムは、発電装置と、蓄電装置と、前記発電装置及び前記蓄電装置からの電力により駆動する駆動モータと、前記発電装置の発電量を制御する発電制御装置と、前記蓄電装置の入力又は出力に関するパラメータを取得するパラメータ取得部と、前記発電制御装置とは別体として構成された電力管理装置と、前記発電制御装置と前記電力管理装置とを結ぶ第1信号系統と、前記電力管理装置をバイパスして前記発電制御装置と前記パラメータ取得部とを結ぶ第2信号系統とを備えるものであって、前記電力管理装置は、前記電力システム全体の発電量を管理し、前記発電制御装置は、前記第1信号系統を介して前記電力管理装置から取得した前記発電装置の発電指令値と、前記第2信号系統を介して前記パラメータ取得部から取得した前記パラメータとを用いて前記発電装置を制御することを特徴とする。
 本発明によれば、発電制御装置は、第1信号系統を介して電力管理装置から取得した発電装置の発電指令値と、第2信号系統を介してパラメータ取得部から取得したパラメータとを用いて発電装置を制御する。このため、例えば、通常時は、主として発電指令値を用いる一方、蓄電装置の入力又は出力に関するパラメータの瞬間的な変化(例えば、車輪のロック等による駆動モータの消費電力の急減に伴う蓄電装置への入力電力の急激な増加)が生じたときは、パラメータの変化に重点を置いて発電装置の発電を制御することが可能となる。従って、蓄電装置への入力又は出力の急激な変化に応じて蓄電装置を保護することが可能となる。
 前記発電制御装置は、前記第1信号系統を介して前記電力管理装置から取得した前記発電装置の発電指令値又はその制限値を、前記第2信号系統を介して前記パラメータ取得部から取得した前記パラメータで補正して前記発電装置を制御してもよい。これにより、蓄電装置への入力又は出力の急激な変化を避けて蓄電装置を保護することが可能となる。
 前記発電制御装置は、前記第1信号系統を介して前記電力管理装置から前記発電装置の発電指令値を第1周期で取得し、前記第2信号系統を介して前記パラメータ取得部から前記パラメータを、前記第1周期よりも短い第2周期で取得し、前記パラメータにより補正した前記発電指令値を用いた前記発電装置の制御を、前記第1周期よりも短い第3周期で行ってもよい。
 本発明によれば、発電制御装置は、第1信号系統を介して電力管理装置から取得した発電装置の発電指令値又はその制限値を、第2信号系統を介してパラメータ取得部から取得したパラメータで補正して発電装置を制御する。また、発電装置の発電指令値を取得する周期(第1周期)よりも、パラメータを取得する周期(第2周期)及び発電装置の制御周期(第3周期)の方が短い。このため、瞬間的なパラメータの変化(例えば、車輪のロック等による駆動モータの消費電力の急減に伴う蓄電装置への入力電力の急激な増加)に応じて発電装置の発電を制御することが可能となる。従って、蓄電装置への入力又は出力の急激な変化を避けることで、蓄電装置を保護することが可能となる。
 前記発電制御装置は、前記蓄電装置への入力電力が入力電力閾値を超えるとき、前記発電装置の出力を制限し、又は前記蓄電装置からの出力電力が出力電力閾値を超えるとき、前記発電装置の出力を増加させてもよい。
 上記によれば、蓄電装置への入力電力が入力電力閾値を超えるとき、発電装置の出力を制限する。これにより、蓄電装置への入力電力を低下させ、蓄電装置の過充電を回避することで、蓄電装置を保護することが可能となる。或いは、蓄電装置からの出力電力が出力電力閾値を超えるとき、発電装置の出力を増加させる。これにより、蓄電装置からの出力電力を低下させ、蓄電装置からの過放電を回避することで、蓄電装置を保護することが可能となる。
 前記発電装置は、燃料電池を含み、前記発電制御装置は、前記燃料電池側の第1コンバータと、前記第1コンバータを制御する第1コンバータ制御装置とを含み、前記電力システムは、前記蓄電装置側の第2コンバータと、前記第2コンバータを制御する第2コンバータ制御装置とを含み、前記第1コンバータ制御装置は、前記蓄電装置への入力電力が前記入力電力閾値を超えるとき、前記燃料電池の出力電流を制限し、前記蓄電装置の前記入力電力閾値に基づいて前記燃料電池の出力電流制限値を変化させ、又は前記蓄電装置からの出力電力が前記出力電力閾値を超えるとき、前記燃料電池の出力電流を増加させ、前記蓄電装置の前記出力電力閾値に基づいて前記燃料電池の出力電流制限値を変化させてもよい。
 これにより、燃料電池の出力電流に対して、蓄電装置の入力電力閾値又は出力電力閾値に応じた適切な制限を課すことが可能となる。
 前記蓄電装置の前記入力電力閾値又は前記出力電力閾値は、前記蓄電装置の残容量又は前記蓄電装置の温度に基づいて設定されてもよい。これにより、蓄電装置の入力電力閾値又は出力電力閾値を適切に設定し、さらには、燃料電池の出力電流に対しても適切な制限を課すことが可能となる。
 前記第1コンバータ制御装置は、前記蓄電装置の入力電力と前記入力電力閾値との偏差又は前記蓄電装置の出力電力と前記出力電力閾値との偏差に基づいて前記燃料電池の出力を補正してもよい。これにより、蓄電装置の入力電力と入力電力閾値との偏差又は蓄電装置の出力電力と出力電力閾値との偏差を踏まえることで適切に燃料電池の出力を補正することが可能となる。
 前記蓄電装置と前記第2コンバータを結ぶ電力線には、前記駆動モータとは異なる負荷が接続され、前記第1コンバータ制御装置は、前記第2コンバータの1次側電力に基づいて前記蓄電装置への入力電力又は前記蓄電装置からの出力電力を推定してもよい。これにより、蓄電装置の状態監視が可能となる。その結果、設計の自由度が向上すると共にフェールセーフの点で優れることとなる。
 前記第1コンバータ制御装置は、前記第2コンバータの2次側電力に基づいて前記蓄電装置への入力電力又は前記蓄電装置からの出力電力を推定してもよい。これにより、蓄電装置の状態監視が可能となる。その結果、設計の自由度が向上すると共にフェールセーフの点で優れることとなる。
 本発明に係る電力システムは、発電装置と、蓄電装置と、前記発電装置及び前記蓄電装置からの電力により駆動する駆動モータと、前記駆動モータの出力を制御するモータ制御装置と、前記発電装置の発電量を制御する発電制御装置と、前記蓄電装置の入力又は出力に関するパラメータを取得するパラメータ取得部と、前記モータ制御装置及び前記発電制御装置とは別体として構成された電力管理装置と、前記モータ制御装置と前記電力管理装置とを結ぶ第1信号系統と、前記電力管理装置をバイパスして前記モータ制御装置と前記パラメータ取得部とを結ぶ第2信号系統とを備えるものであって、前記モータ制御装置は、前記第1信号系統を介して前記電力管理装置から取得した前記駆動モータの出力指令値と、前記第2信号系統を介して前記パラメータ取得部から取得した前記パラメータとを用いて前記駆動モータを制御することを特徴とする。
 本発明によれば、モータ制御装置は、第1信号系統を介して電力管理装置から取得した駆動モータの出力指令値と、第2信号系統を介してパラメータ取得部から取得したパラメータとを用いて駆動モータを制御する。これにより、例えば、通常時は、主として出力指令値を用いる一方、蓄電装置の入力又は出力に関するパラメータの瞬間的な変化(例えば、車輪のスリップ等による駆動モータの消費電力の急増に伴う蓄電装置からの出力電力の急激な増加)が生じたときは、パラメータの変化に重点を置いて発電装置の発電を制御することが可能となる。従って、蓄電装置への入力又は出力の急激な変化に応じて蓄電装置を保護することが可能となる。
本発明の第1実施形態に係る電力システムとしての燃料電池車両の概略全体構成図である。 第1実施形態において、FCコンバータ電子制御装置がFCコンバータを制御するフローチャートである。 第1実施形態における前記FCコンバータの目標1次側電流の算出を説明する説明図である。 第1実施形態において、前記FCコンバータの前記目標1次側電流を算出するフローチャート(図2のS3の詳細)である。 第1実施形態において、バッテリ保護の観点での前記FCコンバータの1次側電流制限値を算出するフローチャート(図4のS11の詳細)である。 第1実施形態において、前記FCコンバータの1次側電流のフィードバック補正値を算出するフローチャート(図4のS14の詳細)である。 本発明の第2実施形態に係る電力システムとしての燃料電池車両の概略全体構成図である。 第2実施形態におけるFCコンバータの目標1次側電流の算出を説明する説明図である。 第2実施形態において、前記FCコンバータの1次側電流のフィードバック補正値を算出するフローチャート(図4のS14の詳細)である。 比較例に係る車両における各種のセンサ値及び制御値を示すタイムチャートである。 第2実施形態に係る燃料電池車両における各種のセンサ値及び制御値を示すタイムチャートである。 本発明の第3実施形態に係る電力システムとしての燃料電池車両の概略全体構成図である。 第3実施形態におけるFCコンバータの目標1次側電流の算出を説明する説明図である。 第3実施形態において、前記FCコンバータの1次側電流のフィードバック補正値を算出するフローチャート(図4のS14の詳細)である。 本発明の第4実施形態に係る電力システムとしての燃料電池車両の概略全体構成図である。 第4実施形態におけるモータ電子制御装置によるバッテリ保護制御のフローチャートである。 第1~第4実施形態に係る燃料電池車両の変形例の概略構成を示すブロック図である。
A.第1実施形態
[A1.第1実施形態の構成]
(A1-1.全体構成)
 図1は、本発明の第1実施形態に係る電力システムとしての燃料電池車両10(以下「FC車両10」又は「車両10」という。)の概略全体構成図である。車両10は、走行モータ12(以下「モータ12」又は「駆動モータ12」ともいう。)と、インバータ14と、モータ電子制御装置16(以下「モータECU16」又は「MOT ECU16」ともいう。)とを駆動系1000として有する。
 また、車両10は、燃料電池スタック20(以下「FCスタック20」又は「FC20」という。)と、燃料電池電子制御装置22(以下「FC ECU22」という。)と、燃料電池コンバータ24(以下「FCコンバータ24」という。)と、FCコンバータ電子制御装置26(以下「FCコンバータECU26」又は「ECU26」という。)と、エアポンプ28とをFC系2000として有する。
 さらに、車両10は、バッテリ30と、バッテリ電子制御装置32(以下「バッテリECU32」又は「BAT ECU32」という。)と、バッテリコンバータ34(以下「BATコンバータ34」ともいう。)と、バッテリコンバータ電子制御装置36(以下「バッテリコンバータECU36」又は「BATコンバータECU36」ともいう。)とをバッテリ系3000として有する。
 さらにまた、車両10は、エアコンディショナ40と、降圧コンバータ42と、12V系44と、統括電子制御装置50(以下「統括ECU50」又は「MG ECU50」ともいう。)とを備える。エアポンプ28、エアコンディショナ40、降圧コンバータ42及び12V系44は、車両10における補機であり、電力システムとしての車両10における負荷の一部でもある。
(A1-2.駆動系1000)
(A1-2-1.走行モータ12)
 第1実施形態のモータ12は、3相交流ブラシレス式である。モータ12は、FC20及びバッテリ30から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション(図示せず)を通じて車輪(図示せず)を回転させる。また、モータ12は、回生を行うことで生成した電力(回生電力Preg)[W]をバッテリ30等に出力する。
(A1-2-2.インバータ14)
 インバータ14は、3相フルブリッジ型の構成を有し、直流-交流変換を行う。より具体的には、インバータ14は、直流を3相の交流に変換してモータ12に供給する一方、回生動作に伴う交流-直流変換後の直流をバッテリコンバータ34を通じてバッテリ30等に供給する。なお、モータ12とインバータ14は、車両10における主機であり、電力システムとしての車両10における負荷の一部でもある。
 インバータ14の入力端電圧Vinv(以下「インバータ電圧Vinv」という。)は、電圧センサ60により検出され、信号線62を介してモータECU16に出力される。インバータ14の入力端電流Iinv(以下「インバータ電流Iinv」という。)は、電流センサ64により検出され、信号線66を介してモータECU16に出力される。
(A1-2-3.モータECU16)
 モータECU16は、統括ECU50からの指令値等の入力値に基づいてモータ12及びインバータ14を制御する。また、モータECU16は、インバータ電圧Vinv、インバータ電流Iinv、インバータ電力Pinv等を通信ネットワーク70に出力する。インバータ電力Pinvは、インバータ14の入力端電力であり、インバータ電圧Vinvとインバータ電流Iinvを乗算して算出する。なお、第1実施形態における通信ネットワーク70は、CAN(controller area network)である。以下では、通信ネットワーク70をCAN70ともいう。
 モータECU16は、図示しない入出力装置、演算装置及び記憶装置を含む。他のECUも同様である。
(A1-3.FC系2000)
(A1-3-1.FCスタック20)
 FCスタック20は、例えば、固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成された燃料電池セルを積層した構造を有する。FCスタック20の周辺には、アノード系、カソード系、冷却系等が含まれる。アノード系は、FCスタック20のアノードに対して水素(燃料ガス)を給排する。カソード系は、FCスタック20のカソードに対して酸素を含む空気(酸化剤ガス)を給排する。冷却系は、FCスタック20を冷却する。図1では、エアポンプ28及びFC ECU22を除き、アノード系、カソード系及び冷却系の図示を省略している。
(A1-3-2.FC ECU22)
 FC ECU22は、統括ECU50からの指令値等の入力値に基づいて、FC20に対する水素及び酸素の供給等、FC20による発電全般を制御する。すなわち、FC ECU22は、アノード系、カソード系及び冷却系を制御する。FC ECU22は、エアポンプ28の消費電力Pap[W]を、CAN70を介して統括ECU50、FCコンバータECU26等に送信する。
(A1-3-3.FCコンバータ24)
 FCコンバータ24は、FC20の出力電圧(以下「FC電圧Vfc」という。)を昇圧してインバータ14に供給する昇圧チョッパ型の電圧変換装置(DC/DCコンバータ)である。FCコンバータ24は、FC20とインバータ14との間に配置される。換言すると、FCコンバータ24は、一方がFC20のある1次側に接続され、他方がインバータ14とバッテリ30との接続点である2次側に接続されている。
 FCコンバータ24の1次側電圧Vfccon1は、電圧センサ80により検出され、信号線82を介してFCコンバータECU26に出力される。FCコンバータ24の1次側電流Ifccon1は、電流センサ84により検出され、信号線86を介してFCコンバータECU26に出力される。FCコンバータ24の2次側電圧Vfccon2は、電圧センサ88により検出され、信号線90を介してFCコンバータECU26に出力される。FCコンバータ24の2次側電流Ifccon2は、電流センサ92により検出され、信号線94を介してFCコンバータECU26に出力される。
(A1-3-4.FCコンバータECU26)
 FCコンバータECU26は、統括ECU50からの指令値等の入力値に基づいて、FCコンバータ24を介してFC20を制御する。以下では、FCコンバータ24及びFCコンバータECU26を、FC20用電圧制御ユニットの意味で「FC VCU96」とも称する。
 FCコンバータECU26への入力値には、FCコンバータECU26に対して直接入力されるものと、通信ネットワーク70を介して入力されるものがある。第1実施形態では、FCコンバータECU26に対して直接入力される入力値には、後述する電流センサ104が検出したバッテリ30の入出力端電流Ibatが含まれる。これにより、バッテリ30を保護することが可能となる(詳細は後述する。)。
(A1-4.バッテリ系3000)
(A1-4-1.バッテリ30)
 バッテリ30は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池等を利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。バッテリ30の代わりに、キャパシタ等の蓄電装置を用いることも可能である。
 バッテリ30の入出力端電圧(以下「BAT端電圧Vbat」という。)[V]は、電圧センサ100により検出され、信号線102を介してバッテリECU32に出力される。バッテリ30の入出力端電流(以下「BAT端電流Ibat」という。)[A]は、電流センサ104により検出され、信号線106を介してFCコンバータECU26及びバッテリECU32に出力される。バッテリ30の温度Tbat(以下「バッテリ温度Tbat」ともいう。)[℃]は、温度センサ108により検出され、信号線110を介してバッテリECU32に出力される。
(A1-4-2.バッテリECU32)
 バッテリECU32は、統括ECU50からの指令値等の入力値に基づいて、バッテリ30を制御する。バッテリECU32は、BAT端電圧VbatとBAT端電流Ibatとに基づいて、バッテリ30の残容量(以下「SOC」又は「バッテリSOC」という。)[%]を算出してバッテリ30の管理に用いる。
 例えば、バッテリECU32は、バッテリ温度Tbat及びSOCに基づいて、バッテリ30の入力制限値Pbatlimin(以下「BAT端入力制限値Pbatlimin」ともいう。)[W]及び出力制限値Pbatlimout(以下「BAT端出力制限値Pbatlimout」ともいう。)[W]を算出する。入力制限値Pbatlimin及び出力制限値Pbatlimoutの設定方法は、例えば、US 2008/0018111 A1と同様に行うことが可能である(US 2008/0018111 A1の図2及び図3参照)。
 また、第1実施形態のバッテリECU32は、統括ECU50からの指令値等の入力値に基づいて降圧コンバータ42を制御する。降圧コンバータ42の入力端電圧(以下「降圧コンバータ端電圧Vlow」という。)[V]は、電圧センサ120により検出され、信号線122を介してバッテリECU32に出力される。降圧コンバータ42の入力端電流(以下「降圧コンバータ端電流Ilow」という。)[A]は、電流センサ124により検出され、信号線126を介してバッテリECU32に出力される。バッテリECU32は、降圧コンバータ端電圧Vlowと降圧コンバータ端電流Ilowを乗算して降圧コンバータ端電力Plow(以下「降圧コンバータ消費電力Plow」又は「消費電力Plow」ともいう。)[W]を算出する。
 バッテリECU32は、BAT端電圧Vbat、BAT端電流Ibat、バッテリ温度Tbat、バッテリSOC、BAT端入力制限値Pbatlimin、BAT端出力制限値Pbatlimout及び降圧コンバータ端電力Plowを、CAN70を介してMG ECU50、FCコンバータECU26等に送信する。
(A1-4-3.バッテリコンバータ34)
 BATコンバータ34は、昇降圧チョッパ型の電圧変換装置(DC/DCコンバータ)である。すなわち、BATコンバータ34は、バッテリ30の出力電圧(BAT端電圧Vbat)を昇圧してインバータ14に供給する。加えて、BATコンバータ34は、モータ12の回生電圧(以下「回生電圧Vreg」という。)又はFCコンバータ24の2次側電圧Vfccon2を降圧してバッテリ30に供給する。
 BATコンバータ34は、バッテリ30とインバータ14との間に配置される。換言すると、BATコンバータ34は、一方がバッテリ30のある1次側に接続され、他方がFC20とインバータ14との接続点である2次側に接続されている。
 BATコンバータ34の1次側電圧Vbatcon1は、電圧センサ130により検出され、信号線132を介してBATコンバータECU36に出力される。BATコンバータ34の1次側電流Ibatcon1は、電流センサ134により検出され、信号線136を介してBATコンバータECU36に出力される。BATコンバータ34の2次側電流Ibatcon2は、電流センサ138により検出され、信号線140を介してBATコンバータECU36に出力される。
 なお、1次側電圧Vbatcon1は、バッテリ30とBATコンバータ34を結ぶ電力線142のうち補機用の接続点144よりもBATコンバータ34側の電圧である。同様に、1次側電流Ibatcon1は、バッテリ30とBATコンバータ34を結ぶ電力線142のうち補機用の接続点144よりもBATコンバータ34側の電流である。電力線142に補機(エアポンプ28等)を接続しない場合、電圧センサ100、130の一方を省略すること及び電流センサ104、134の一方を省略することが可能である。
(A1-4-4.バッテリコンバータECU36)
 BATコンバータECU36は、統括ECU50からの指令値等の入力値に基づいて、BATコンバータ34を制御する。以下では、BATコンバータ34及びBATコンバータECU36を、バッテリ30用電圧制御ユニットの意味で「BAT VCU150」とも称する。
 BATコンバータECU36は、1次側電圧Vbatcon1、1次側電流Ibatcon1、2次側電流Ibatcon2及び通過電流Ibattを、CAN70を介してMG ECU50、FCコンバータECU26等に送信する。通過電流Ibattは、BATコンバータ34を通過している電流である。BATコンバータECU36は、1次側電流Ibatcon1と2次側電流Ibatcon2のうちBATコンバータ34から出力された方を通過電流Ibattとする。例えば、バッテリ30が充電中である場合、1次側電流Ibatcon1を通過電流Ibattとする。
(A1-5.補機類)
 上記のように、第1実施形態では、例えば、エアポンプ28、エアコンディショナ40、降圧コンバータ42(降圧型DC-DCコンバータ)及び12V系44が補機として含まれる。これに加え、FC系2000の冷却系に含まれ、FC20を冷却する冷媒としての水を循環させるウォータポンプ(図示せず)を補機とすることも可能である。
 エアコンディショナ40は、車両10内の気温等を調整する。エアコンディショナ40の消費電力Pac[W]は、エアコンディショナ40の図示しない制御装置から、CAN70を介してMG ECU50、FCコンバータECU26等に送信される。
 降圧コンバータ42は、BATコンバータ34(BAT VCU150)の1次側における電圧を降圧して12V系44に供給する。12V系44には、図示しない12Vバッテリ、アクセサリ、ラジエータファン、ヘッドライト等が含まれる。前記アクセサリは、オーディオ機器、ナビゲーション装置等の機器を含む。前記ラジエータファンは、前記ウォータポンプにより循環させる冷媒をラジエータにおいて冷却させるためのファンである。
(A1-6.統括ECU50)
 統括ECU50は、通信ネットワーク70(図1)を介して、MOT ECU16、FC ECU22、FCコンバータECU26、BAT ECU32、BATコンバータECU36等に指令値を送信する。これにより、モータ12、インバータ14、FC20、FCコンバータ24、バッテリ30、BATコンバータ34及び補機類を制御する。当該制御に際しては、MG ECU50は、図示しない記憶部に記憶されたプログラムを実行する。また、MG ECU50は、電圧センサ60、80、88、100、120、130、電流センサ64、84、92、104、124、134、138等の各種センサの検出値を用いる。
 ここでの各種センサには、上記センサに加え、アクセルペダル操作量センサ(以下「AP操作量センサ」という。)、モータ回転数センサ及び車輪速センサ(いずれも図示せず)が含まれる。AP操作量センサは、図示しないアクセルペダルの操作量[%]を検出する。モータ回転数センサは、モータ12の回転数(以下「モータ回転数Nmot」又は「回転数Nmot」という。)[rpm]を検出する。MG ECU50は、回転数Nmotを用いてFC車両10の車速V[km/h]を検出する。車輪速センサは、図示しない各車輪の速度(車輪速)を検出する。
 MG ECU50は、FCスタック20の状態、バッテリ30の状態及びモータ12の状態の他、各種スイッチ及び各種センサからの入力(負荷要求)に基づき、FC車両10全体として要求される負荷(全体負荷)を算出する。そして、MG ECU50は、全体負荷から、FCスタック20が負担すべき負荷(FC負荷)と、バッテリ30が負担すべき負荷(バッテリ負荷)と、回生電源(モータ12)が負担すべき負荷(回生負荷)の配分(分担)を調停しながら決定する。そして、MG ECU50は、これらの各負荷に応じて、MOT ECU16、FC ECU22、FCコンバータECU26、BAT ECU32、BATコンバータECU36等に指令値を送信する。
 MG ECU50からFCコンバータECU26に対して送信される指令値の中には、FCコンバータ24の1次側電流Ifccon1の要求値(以下「要求1次側電流Ifccon1req」という。)が含まれる。要求1次側電流Ifccon1reqは、FC20の出力電流の要求値として捉えることも可能である。換言すると、要求1次側電流Ifccon1reqは、FC20が負担すべき負荷(すなわち、FC20の目標出力)を示す。
[A2.第1実施形態の制御]
 次に、主として、FCコンバータECU26によるFCコンバータ24の制御(FCコンバータ制御)について説明する。
(A2-1.FCコンバータ制御の概要)
 図2には、第1実施形態において、FCコンバータECU26によるFCコンバータ24の制御(FCコンバータ制御)のフローチャートが示されている。ステップS1において、FCコンバータECU26は、FCコンバータECU26に対して直接入力される各種のセンサ値Mdirを更新する。
 ここでの各種のセンサ値Mdirには、電圧センサ80からのFCコンバータ1次側電圧Vfccon1、電流センサ84からのFCコンバータ1次側電流Ifccon1及び電圧センサ88からのFCコンバータ2次側電圧Vfccon2が含まれる。さらに第1実施形態では、電流センサ104がFCコンバータECU26に直接接続されているため(図1)、BAT端電流Ibatもセンサ値Mdirに含まれる。
 これらセンサ値Mdirの更新周期Tdirは、例えば、数msecとする。センサ値Mdir毎に更新周期Tdirを相違させることも可能である。
 ステップS2において、FCコンバータECU26は、CAN70を通じて入力される各種の制御値Ccan及びセンサ値Mcanを更新する。ここでの制御値Ccanには、例えば、FCコンバータ24の要求1次側電流Ifccon1req並びにバッテリ30の入力制限値Pbatlimin及び出力制限値Pbatlimoutが含まれる。また、ここでのセンサ値Mcanには、インバータ電力Pinv、エアコンディショナ消費電力Pac、エアポンプ消費電力Pap、降圧コンバータ消費電力Plow、BAT端電圧Vbat、BATコンバータ34の1次側電圧Vbatcon1、1次側電流Ibatcon1、2次側電流Ibatcon2及び通過電流Ibattが含まれる。
 これらの制御値Ccan及びセンサ値Mcanの更新周期Tcanは、例えば、数十msecであり、ステップS1の更新周期Tdirよりも長い。制御値Ccan毎又はセンサ値Mcan毎に更新周期Tdirを相違させることも可能である。なお、第1実施形態における図2のステップS1~S4の演算周期(以下「制御周期Tc」という。)は、例えば、数msecであり、センサ値Mdirの更新周期Tdirと等しい。例えば、更新周期Tdir及び制御周期Tcを更新周期Tcanよりも短くする観点からすれば、制御周期Tcは、更新周期Tdirよりも短くする又は長くすることも可能である。
 ステップS3において、FCコンバータECU26は、制御値Ccan及びセンサ値Mdir、Mcanに基づいてFCコンバータ24の目標1次側電流Ifccon1tarを算出する(詳細は、図3~図6を参照して後述する。)。
 ステップS4において、ECU26は、ステップS3で算出した目標1次側電流Ifccon1tarを実現するようにFCコンバータ24を制御する。具体的には、1次側電流Ifccon1が目標1次側電流Ifccon1tarよりも小さい場合、FCコンバータ24に対する駆動デューティ比を増加させる。1次側電流Ifccon1が目標1次側電流Ifccon1tarよりも大きい場合、FCコンバータ24に対する駆動デューティ比を減少させる。1次側電流Ifccon1が目標1次側電流Ifccon1tarと等しい場合、FCコンバータ24に対する現在の駆動デューティ比を維持する。
(A2-2.FCコンバータ24の目標1次側電流Ifccon1tarの算出(図2のS3))
(A2-2-1.目標1次側電流Ifccon1tarの算出の全体的な流れ)
 図3は、第1実施形態におけるFCコンバータ24の目標1次側電流Ifccon1tarの算出を説明する説明図である。図4は、第1実施形態において、FCコンバータ24の目標1次側電流Ifccon1tarを算出するフローチャート(図2のS3の詳細)である。図3及び図4は、いずれもバッテリ30の充電時に係るものである。
 図3において、楕円で囲まれているものは、制御値Ccan又はセンサ値Mdir、Mcanを示している。特に、太字の楕円で囲まれているものは、センサ値Mdir(FCコンバータECU26に直接入力される値)であり、太字以外の楕円で囲まれているものは、制御値Ccan又はセンサ値Mcan(CAN70を介してFCコンバータECU26に入力される値)を示す。また、図3における四角200、202、204、206、210、212、214(以下「演算ブロック200、202、204、206、210、212、214」又は「ブロック200、202、204、206、210、212、214」ともいう。)及び加算器208は、FCコンバータECU26における処理を示す。
 図3の演算ブロック200(図4のステップS11)において、FCコンバータECU26は、バッテリ30保護の観点でのFCコンバータ24の1次側電流制限値Ifccon1lim1を算出する。詳細は、図5を参照して後述する。
 図3の演算ブロック202(図4のステップS12)において、FCコンバータECU26は、FCコンバータ24保護の観点でのFCコンバータ24の1次側電流制限値Ifccon1lim2を、バッテリ30の入力制限値Pbatlimin及びBAT端電圧Vbatに基づいて算出する。例えば、ECU26は、入力制限値PbatliminをBAT端電圧Vbatで割った値を1次側電流制限値Ifccon1lim2とする。
 図3の演算ブロック204(図4のステップS13)において、ECU26は、MG ECU50からの要求1次側電流Ifccon1req並びに演算ブロック200、202(ステップS11、S12)で算出した1次側電流制限値Ifccon1lim1、Ifccon1lim2のうち最小値を、仮目標1次側電流Ifccon1tarpとして選択する。これにより、要求1次側電流Ifccon1reqに対して制限を掛けることとなる。
 図3の演算ブロック206(図4のステップS14)において、ECU26は、FCコンバータ24の1次側電流Ifccon1のフィードバック補正値ΔIfccon1cor(以下「F/B補正値ΔIfccon1cor」ともいう。)を算出する。詳細は、図6を参照して後述する。
 図3の加算器208(図4のステップS15)において、FCコンバータECU26は、演算ブロック204(図4のS13)で算出した仮目標1次側電流Ifccon1tarpに、演算ブロック206(図4のS14)で算出したF/B補正値ΔIfccon1corを加算して目標1次側電流Ifccon1tarを算出する。
(A2-2-2.1次側電流制限値Ifccon1lim1の算出)
 図5は、第1実施形態において、バッテリ30保護の観点でのFCコンバータ24の1次側電流制限値Ifccon1lim1を算出するフローチャート(図4のS11の詳細)である。図5のステップS21(図3の演算ブロック210)において、FCコンバータECU26は、エアポンプ消費電力Pap、エアコンディショナ消費電力Pac及び降圧コンバータ42の消費電力Plowを加算して補機消費電力Pauxを算出する。これらの消費電力Pap、Pac、Plowは、いずれもCAN70を介してFCコンバータ24が取得したセンサ値Mcanである。
 図5のステップS22(図3の演算ブロック212)において、ECU26は、BATコンバータ34の通過電流Ibatt及び1次側電圧Vbatcon1並びにFCコンバータ24の2次側電圧Vfccon2に基づいて、BATコンバータ34の推定消費電力Lbatconを算出する。すなわち、FCコンバータECU26の記憶部には、通過電流Ibatt、1次側電圧Vbatcon1及び2次側電圧Vfccon2の組合せと、推定消費電力Lbatconとの関係を規定したマップを予め記憶しておく。そして、FCコンバータECU26は、通過電流Ibatt、1次側電圧Vbatcon1及び2次側電圧Vfccon2の組合せに基づいて推定消費電力Lbatconを特定する。
 通過電流Ibatt及び1次側電圧Vbatcon1は、CAN70を介して取得したセンサ値Mcanである。2次側電圧Vfccon2は、FCコンバータECU26が電圧センサ88から直接取得したセンサ値Mdirである。従って、図5のステップS21~S24を繰り返す際、通過電流Ibatt及び1次側電圧Vbatcon1については、更新周期Tcanで更新され、2次側電圧Vfccon2については、制御周期Tc(=更新周期Tdir<Tcan)で更新される。
 図5のステップS23(図3の演算ブロック200)において、FCコンバータECU26は、インバータ電力PinvからBAT端入力制限値Pbatliminを引き、さらに制御マージンPmar、補機消費電力Paux及び推定消費電力Lbatconを足して、FCコンバータ24の電力制限値Pfcconlimを算出する。インバータ電力Pinv及びBAT端入力制限値Pbatliminは、CAN70を介してFCコンバータ24が取得したセンサ値Mcan及び制御値Ccanである。制御マージンPmarは、FCコンバータECU26の記憶部に記憶されている記憶値である。推定消費電力Lbatconは、演算ブロック212(図5のS22)で算出した値である。
 図5のステップS24(図3の演算ブロック200)において、FCコンバータECU26は、ステップS23で算出した電力制限値Pfcconlimを、FCコンバータ24の1次側電圧Vfccon1で割って1次側電流制限値Ifccon1lim1を算出する。1次側電圧Vfccon1は、FCコンバータECU26が電圧センサ80から直接取得したセンサ値Mdirである。
(A2-2-3.F/B補正値ΔIfccon1corの算出)
 図6は、第1実施形態において、FCコンバータ24の1次側電流Ifccon1のF/B補正値ΔIfccon1corを算出するフローチャート(図4のS14の詳細)である。図6のステップS31(図3の演算ブロック214)において、FCコンバータECU26は、BAT端電圧VbatとBAT端電流Ibatを乗算してBAT端電力Pbatを算出する。
 上記の通り、第1実施形態では、電圧センサ100からのBAT端電圧Vbatは、CAN70を介してFCコンバータECU26に入力される一方、電流センサ104からのBAT端電流Ibatは、FCコンバータECU26に直接入力される(図1)。このため、BAT端電圧Vbatは、FCコンバータECU26がCAN70を介したセンサ値Mcanであり、BAT端電流Ibatは、FCコンバータECU26が電流センサ104から直接取得したセンサ値Mdirである。従って、BAT端電圧Vbatは、更新周期Tcanで更新される一方、BAT端電流Ibatは、更新周期Tdir(<Tcan)で更新される。
 図6のステップS32(図3の演算ブロック206)において、FCコンバータECU26は、BAT端電力PbatからBAT端入力制限値Pbatliminを引き、さらに制御マージンPmarを足して、偏差ΔPbatを算出する。BAT端電力Pbatは、演算ブロック214(図6のS31)で演算される。BAT端入力制限値Pbatliminは、CAN70を介してFCコンバータ24が取得したセンサ値Mcanである。さらに制御マージンPmarは、FCコンバータECU26の記憶部に記憶されている記憶値である。BAT端電力Pbatは、制御周期Tc(<更新周期Tcan)で演算されるため、偏差ΔPbatも制御周期Tc(<更新周期Tcan)で演算される。
 図6のステップS33(図3の演算ブロック206)において、FCコンバータECU26は、ステップS32で算出した偏差ΔPbatに基づくPID制御(PID:Proportional Integral Derivative)を行ってF/B補正値ΔIfccon1corを算出する。
[A3.第1実施形態の効果]
 以上説明したように、第1実施形態によれば、FCコンバータECU26(発電制御装置の一部)は、CAN70(第1信号系統)を介してMG ECU50(電力管理装置)から取得した要求1次側電流Ifccon1req(FC20(発電装置)の発電指令値)と、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)(図1)とを用いてFC20を制御する。このため、例えば、通常時は、主として要求1次側電流Ifccon1reqを用いる一方、バッテリ30(蓄電装置)の入力又は出力に関するBAT端電流Ibat等の瞬間的な変化(例えば、車輪のロック等による駆動モータ12の消費電力の急減に伴うバッテリ30への入力電力の急激な増加)が生じたときは、BAT端電流Ibat等の変化に重点を置いてバッテリ30の発電を制御することが可能となる。従って、バッテリ30への入力又は出力の急激な変化に応じてバッテリ30を保護することが可能となる。
 第1実施形態において、FCコンバータECU26(発電制御装置の一部)は、CAN70(第1信号系統)を介してMG ECU50(電力管理装置)から取得した要求1次側電流Ifccon1req(FC20(発電装置)の発電指令値)を、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)(図1)で補正してFC20(発電装置)を制御する(図3、図6等)。これにより、バッテリ30(蓄電装置)への入力又は出力の急激な変化を避けてバッテリ30を保護することが可能となる。
 なお、瞬間的なBAT端電流Ibatの変化の要因としては、例えば、車輪のロック等による駆動モータ12の消費電力の急減に伴うバッテリ30(蓄電装置)への入力電力の急激な増加が考えられる。或いは、エアポンプ28の出力変動やリップルノイズも瞬間的なBAT端電流Ibatの変化の要因となり得る。
 第1実施形態において、FCコンバータECU26(発電制御装置の一部)は、CAN70(第1信号系統)を介してMG ECU50(電力管理装置)から要求1次側電流Ifccon1reqを更新周期Tcan(第1周期)で取得する(図2のS2)。さらに、ECU26は、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)からBAT端電流Ibat(パラメータ)を、更新周期Tcanよりも短い更新周期Tdir(第2周期)で取得する(図2のS1)。そして、ECU26は、BAT端電流Ibat等により補正した要求1次側電流Ifccon1req(目標1次側電流Ifccon1tar)を用いたFC20の制御を、更新周期Tcanよりも短い制御周期Tc(第3周期)で行う。
 上記のような第1実施形態によれば、FCコンバータECU26は、CAN70を介してMG ECU50から取得した要求1次側電流Ifccon1reqを、信号線106を介して電流センサ104から直接取得したBAT端電流Ibat等で補正してFC20を制御する(図6、図3等)。また、要求1次側電流Ifccon1reqを取得する更新周期Tcanよりも、BAT端電流Ibatを取得する更新周期Tdir及びFC20の制御周期Tc(第3周期)の方が短い。このため、瞬間的なBAT端電流Ibatの変化(例えば、車輪のロック等による駆動モータ12の消費電力の急減に伴うバッテリ30への入力電力の急激な増加)に応じてバッテリ30の発電を制御することが可能となる。従って、バッテリ30への入力又は出力の急激な変化を避けることで、バッテリ30を保護することが可能となる。
 第1実施形態において、FCコンバータECU26(発電制御装置の一部)は、MG ECU50から取得した要求1次側電流Ifccon1reqが、1次側電流制限値Ifccon1lim1又はIfccon1lim2を超えるとき、1次側電流制限値Ifccon1lim1又はIfccon1lim2を目標1次側電流Ifccon1tarとする(図3のブロック204、図4のS13)。換言すると、FCコンバータECU26は、バッテリ30(蓄電装置)への入力電力が入力電力閾値を超えるとき、FC20の出力を制限する。これにより、バッテリ30への入力電力を低下させ、バッテリ30の過充電を回避することで、バッテリ30を保護することが可能となる。
 第1実施形態において、FC VCU96(発電制御装置)は、FC20側のFCコンバータ24(第1コンバータ)と、FCコンバータ24を制御するFCコンバータECU26(第1コンバータ制御装置)とを含む(図1)。また、車両10(電力システム)は、バッテリ30(蓄電装置)側のBATコンバータ34(第2コンバータ)と、BATコンバータ34を制御するBATコンバータECU36(第2コンバータ制御装置)とを含む(図1)。
 そして、FCコンバータECU26は、MG ECU50から取得した要求1次側電流Ifccon1reqが、1次側電流制限値Ifccon1lim1(又はIfccon1lim2)を超えるとき、1次側電流制限値Ifccon1lim1(又はIfccon1lim2)を目標1次側電流Ifccon1tarとする(図3のブロック204、図4のS13)。換言すると、FCコンバータECU26は、バッテリ30への入力電力が入力電力閾値を超えるとき、FC20の出力電流を制限し、バッテリ30の前記入力電力閾値に基づいてFCコンバータ24の1次側電流制限値Ifccon1lim1(又はIfccon1lim2)(出力電流制限値)を変化させる(図5)。これにより、FC20の出力電流に対して、バッテリ30の入力電力閾値に応じた適切な制限を課すことが可能となる。
 第1実施形態において、FCコンバータ24の1次側電流制限値Ifccon1lim2(バッテリ30(蓄電装置)の入力電力閾値)は、バッテリ温度Tbat及びSOCに基づいて設定される。これにより、1次側電流制限値Ifccon1lim2を適切に設定し、さらには、FC20の出力電流に対しても適切な制限を課すことが可能となる。
 第1実施形態において、FCコンバータECU26(第1コンバータ制御装置)は、BAT端電力Pbat(蓄電装置の入力電力)とBAT端入力制限値Pbatlimin(入力電力閾値)との偏差ΔPbatに基づいてFC20の出力を補正する(図6、図3等)。これにより、偏差ΔPbatを踏まえることで適切にFC20の出力を補正することが可能となる。
B.第2実施形態
[B1.第2実施形態の構成(第1実施形態との相違)]
 図7は、本発明の第2実施形態に係る電力システムとしての燃料電池車両10A(以下「FC車両10A」又は「車両10A」という。)の概略全体構成図である。第1実施形態と同一の構成要素には、同一の参照符号を付して詳細な説明を省略する。
 第1実施形態の車両10では、電流センサ104が信号線106を介してFCコンバータECU26に接続され、BAT端電流IbatがECU26に直接入力された(図1)。これに対し、第2実施形態の車両10Aでは、電流センサ134が信号線136を介してFCコンバータ電子制御装置26a(以下「FCコンバータECU26a」又は「ECU26a」という。)に接続され、BATコンバータ34の1次側電流Ibatcon1がECU26aに直接入力される(図7)。
 また、第1実施形態のFCコンバータECU26では、BAT端電圧Vbat及びBAT端電流Ibatに基づいて算出したBAT端電力Pbatを用いた(図3の演算ブロック214、図6のS31)。これに対し、第2実施形態のFCコンバータECU26aでは、BATコンバータ34の1次側電圧Vbatcon1及び1次側電流Ibatcon1等に基づいて推定した推定BAT端電力Pbatestを用いる(図8の演算ブロック214a、図9のS43)。
[B2.第2実施形態の制御]
(B2-1.FCコンバータ制御の概要)
 第2実施形態におけるFCコンバータECU26aによるFCコンバータ24の制御(FCコンバータ制御)の概要は、第1実施形態(図2)と同様である。
 但し、上記のように、第2実施形態では、電流センサ134が信号線136を介してFCコンバータECU26aに接続され、BATコンバータ34の1次側電流Ibatcon1がECU26aに直接入力される(図7)。このため、第2実施形態の場合、図2のステップS1においてECU26aに直接入力される各種センサ値Mdirには、1次側電流Ibatcon1が含まれる一方、BAT端電流Ibatは含まれない。また、図2のステップS2においてCAN70を介してECU26aに入力される各種センサ値Mcanには、BAT端電流Ibatは含まれる一方、1次側電流Ibatcon1は含まれない。
 図2のステップS1における更新周期Tdirが、ステップS2における更新周期Tcanよりも短い点については、第2実施形態でも同じである。
(B2-2.FCコンバータ24の目標1次側電流Ifccon1tarの算出(図2のS3))
(B2-2-1.目標1次側電流Ifccon1tarの算出の全体的な流れ)
 図8は、第2実施形態におけるFCコンバータ24の目標1次側電流Ifccon1tarの算出を説明する説明図である。第2実施形態において、FCコンバータ24の目標1次側電流Ifccon1tarを算出するフローチャート(図2のS3の詳細)の概要は、第1実施形態(図4)と同様である。また、バッテリ30保護の観点でのFCコンバータ24の1次側電流制限値Ifccon1lim1の算出(図4のS11)の概要についても、第1実施形態(図5)と同様である。第1実施形態の図3と第2実施形態の図8との相違点については、図9を参照して後述する。
(B2-2-2.F/B補正値ΔIfccon1corの算出)
 図9は、第2実施形態において、FCコンバータ24の1次側電流Ifccon1のF/B補正値ΔIfccon1corを算出するフローチャート(図4のS14の詳細)である。図9のステップS41(図8の演算ブロック220)において、FCコンバータECU26aは、BATコンバータ34の1次側電圧Vbatcon1と1次側電流Ibatcon1を乗算して1次側電力Pbatcon1を算出する。
 上記の通り、第2実施形態では、電圧センサ130からの1次側電圧Vbatcon1は、CAN70を介してECU26aに入力される一方、電流センサ134からの1次側電流Ibatcon1は、ECU26aに直接入力される(図7)。このため、1次側電圧Vbatcon1は、ECU26aがCAN70を介したセンサ値Mcanであり、1次側電流Ibatcon1は、ECU26aが電流センサ134から直接取得したセンサ値Mdirである。このため、1次側電圧Vbatcon1は、更新周期Tcanで更新される一方、1次側電流Ibatcon1は、更新周期Tdir(<Tcan)で更新される。
 図9のステップS42(図8の演算ブロック214a)において、FCコンバータECU26aは、図5のステップS21(図8の演算ブロック210)で算出した補機消費電力Pauxを取得する。
 ステップS43(図8の演算ブロック214a)において、ECU26aは、BATコンバータ34の1次側電力Pbatcon1と補機消費電力Pauxを加算して推定BAT端電力Pbatestを算出する。
 図9のステップS44(図8の演算ブロック206a)において、FCコンバータECU26aは、推定BAT端電力PbatestからBAT端入力制限値Pbatliminを引き、さらに制御マージンPmarを足して、偏差ΔPbat2を算出する。推定BAT端電力Pbatestは、演算ブロック214a(図9のS43)で演算される。BAT端入力制限値Pbatliminは、CAN70を介してFCコンバータ24が取得したセンサ値Mcanである。さらに制御マージンPmarは、FCコンバータECU26aの記憶部に記憶されている記憶値である。推定BAT端電力Pbatestは、制御周期Tc(<更新周期Tcan)で演算されるため、偏差ΔPbat2も制御周期Tc(<更新周期Tcan)で演算される。
 図9のステップS45(図8の演算ブロック206a)において、FCコンバータECU26aは、ステップS44で算出した偏差ΔPbat2に基づくPID制御を行ってF/B補正値ΔIfccon1corを算出する。
[B3.第2実施形態と比較例]
 図10は、比較例に係る燃料電池車両における各種のセンサ値Mdir、Mcan及び制御値Ccanを示すタイムチャートである。図11は、第2実施形態に係るFC車両10Aにおける各種のセンサ値Mdir、Mcan及び制御値Ccanを示すタイムチャートである。図10の比較例では、電流センサ134からの1次側電流Ibatcon1は、FCコンバータECU26aに直接入力されるのではなく、CAN70を介してFCコンバータECU26aに入力される。
 図10及び図11の1段目には、車輪速Vw[km/h]が示されている。図10及び図11の2段目には、FC端電力Pfc[W]と、BAT端電力Pbat[W]と、推定BAT端電力Pbatest[W]と、MG ECU50が送信した際のインバータ電力Pinv[W]とが示されている。加えて、図10では、FCコンバータECU26aが受信した際のインバータ電力Pinv[W]が示されている。
 図10及び図11の3段目には、BAT端電力Pbat[W]が示されている。3段目のBAT端電力Pbatは、2段目のBAT端電力Pbatを拡大したものであり、両者は、同じデータを示している。また、BAT端入力制限値Pbatlimin及びBAT端出力制限値Pbatlimoutの位置からもわかるように、図10及び図11では、3段目におけるBAT端電力Pbatの縮尺(縦方向)が相違することに留意されたい。
 図10及び図11の4段目には、FCコンバータ24の1次側電流Ifccon1[A]、MG ECU50が送信した際の要求1次側電流Ifccon1req[A]と、FCコンバータECU26aが受信した際の要求1次側電流Ifccon1req[A]と、目標1次側電流Ifccon1tar[A]が示されている。なお、図10、図11の4段目では、1次側電流Ifccon1及び目標1次側電流Ifccon1tarが一致している。これは、比較例では、1次側電流Ifccon1の低下時には、目標1次側電流Ifccon1tarを1次側電流Ifccon1以下とする制御を含めているためである。
 図10及び図11の時点t1において、図示しない油圧ブレーキ機構が作動したことにより、図示しない車輪がロック状態となる。時点t1以降、急激な車輪速Vwの減少に伴って、BAT端電力Pbatが放電状態から充電状態に移行する。
 この際、比較例と比較して、第2実施形態では、目標1次側電流Ifccon1tarの減少が早期に開始される。すなわち、比較例では、時点t3から目標1次側電流Ifccon1tarが減少するのに対し、第2実施形態では、時点t2から目標1次側電流Ifccon1tarの減少が開始する。
 目標1次側電流Ifccon1tar(BATコンバータ1次側電力Pbatcon1)の算出時には、BATコンバータ34の1次側電圧Vbatcon1が用いられる(図8の演算ブロック220及び図9のS41)。また、第2実施形態では、1次側電流Ibatcon1が電流センサ134からFCコンバータECU26aに直接入力される(図7)。このため、1次側電流Ibatcon1の変化(減少)に伴って、第2実施形態のFCコンバータECU26aは、目標1次側電流Ifccon1tarの低下を迅速に開始することができる。一方、比較例では、1次側電流Ibatcon1がCAN70を介してFCコンバータECU26aに入力される。このため、1次側電流Ibatcon1がFCコンバータECU26aに入力されるまでの時間差Dが生じる結果、目標1次側電流Ifccon1tarの低下を迅速に開始することができない。
 1次側電流Ibatcon1の取扱いに上記のような相違があることから、比較例と比較して、第2実施形態では、BAT端電力Pbatの過度の低下を抑制することができる。すなわち、第2実施形態のBAT端電力Pbatは、BAT端入力制限値Pbatliminをわずかに超える(下回る)だけであるが、比較例のBAT端電力Pbatは、BAT端入力制限値Pbatliminを大幅に超える(下回る)。
[B4.第2実施形態の効果]
 上記のような第2実施形態によれば、第1実施形態の効果に加え又はこれに代えて、以下の効果を奏することができる。
 第2実施形態によれば、バッテリ30(蓄電装置)とBATコンバータ34(第2コンバータ)を結ぶ電力線142には、駆動モータ12とは異なる負荷としてエアポンプ28等の補機が接続される(図7)。また、FCコンバータECU26a(第1コンバータ制御装置)は、BATコンバータ34の1次側電力Pbatcon1に基づいてバッテリ30への入力電力又はバッテリ30からの出力電力を推定する(図9参照)。これにより、バッテリ30の状態監視が可能となる。その結果、設計の自由度が向上すると共にフェールセーフの点で優れることとなる。
C.第3実施形態
[C1.第3実施形態の構成(第1・第2実施形態との相違)]
 図12は、本発明の第3実施形態に係る電力システムとしての燃料電池車両10B(以下「FC車両10B」又は「車両10B」という。)の概略全体構成図である。第1・第2実施形態と同一の構成要素には、同一の参照符号を付して詳細な説明を省略する。
 第1実施形態の車両10では、電流センサ104が信号線106を介してFCコンバータECU26に接続され、BAT端電流IbatがFCコンバータECU26に直接入力された(図1)。第2実施形態の車両10Aでは、電流センサ134が信号線136を介してFCコンバータECU26aに接続され、BATコンバータ34の1次側電流Ibatcon1がFCコンバータECU26aに直接入力された(図7)。これに対し、第3実施形態の車両10Bでは、電流センサ138が信号線140を介してFCコンバータ電子制御装置26b(以下「FCコンバータECU26b」又は「ECU26b」という。)に接続され、BATコンバータ34の2次側電流Ibatcon2がFCコンバータECU26bに直接入力される(図12)。
 また、第1実施形態のFCコンバータECU26では、BAT端電圧Vbat及びBAT端電流Ibatに基づいて算出したBAT端電力Pbatを用いた(図3の演算ブロック214、図6のS31)。第2実施形態のFCコンバータECU26aでは、BATコンバータ34の1次側電圧Vbatcon1及び1次側電流Ibatcon1等に基づいて推定した推定BAT端電力Pbatestを用いた(図8の演算ブロック214a、220、図9のS41~S43)。これに対し、第3実施形態のFCコンバータECU26bでは、FCコンバータ24の2次側電圧Vfccon2(BATコンバータ34の2次側電圧と略等しい)及びBATコンバータ34の2次側電流Ibatcon2等に基づいて推定した推定BAT端電力Pbatest2を用いる。
[C2.第3実施形態の制御]
(C2-1.FCコンバータ制御の概要)
 第3実施形態におけるFCコンバータECU26bによるFCコンバータ24の制御(FCコンバータ制御)の概要は、第1・第2実施形態(図2)と同様である。
 上記のように、第3実施形態では、電流センサ138が信号線140を介してFCコンバータECU26bに接続され、BATコンバータ34の2次側電流Ibatcon2がFCコンバータECU26bに直接入力される(図12)。このため、第3実施形態の場合、図2のステップS1においてFCコンバータECU26bに直接入力される各種センサ値Mdirには、2次側電流Ibatcon2が含まれる一方、BAT端電流Ibat及び1次側電流Ibatcon1は含まれない。また、図2のステップS2においてCAN70を介してFCコンバータECU26bに入力される各種センサ値Mcanには、BAT端電流Ibat及び1次側電流Ibatcon1は含まれる一方、2次側電流Ibatcon2は含まれない。
 図2のステップS1における更新周期Tdirが、ステップS2における更新周期Tcanよりも短い点については、第3実施形態でも同じである。
(C2-2.FCコンバータ24の目標1次側電流Ifccon1tarの算出(図2のS3))
(C2-2-1.目標1次側電流Ifccon1tarの算出の全体的な流れ)
 図13は、第3実施形態におけるFCコンバータ24の目標1次側電流Ifccon1tarの算出を説明する説明図である。第3実施形態において、FCコンバータ24の目標1次側電流Ifccon1tarを算出するフローチャート(図2のS3の詳細)の概要は、第1・第2実施形態(図4)と同様である。また、バッテリ30保護の観点でのFCコンバータ24の1次側電流制限値Ifccon1lim1の算出(図4のS11)の概要についても、第1・第2実施形態(図5)と同様である。第1実施形態の図3及び第2実施形態の図8と第3実施形態の図13との相違点については、図14を参照して後述する。
(C2-2-2.F/B補正値ΔIfccon1corの算出)
 図14は、第3実施形態において、FCコンバータ24の1次側電流Ifccon1のF/B補正値ΔIfccon1corを算出するフローチャート(図4のS14の詳細)である。図14のステップS51(図13の演算ブロック220a)において、FCコンバータECU26bは、FCコンバータ24の2次側電圧Vfccon2とBATコンバータ34の2次側電流Ibatcon2を乗算してBATコンバータ34の2次側電力Pbatcon2を算出する。
 上記の通り、第3実施形態では、電圧センサ88からの2次側電圧Vfccon2及び電流センサ138からの2次側電流Ibatcon2は、FCコンバータECU26bに直接入力される(図12)。このため、2次側電圧Vfccon2及び2次側電流Ibatcon2は、FCコンバータECU26bが電圧センサ88及び電流センサ138から直接取得したセンサ値Mdirである。このため、2次側電圧Vfccon2及び2次側電流Ibatcon2は、更新周期Tdirで更新される。
 図14のステップS52(図13の演算ブロック214b)において、FCコンバータECU26bは、図5のステップS21(図13の演算ブロック210)で算出した補機消費電力Pauxを取得する。
 ステップS53(図13の演算ブロック214b)において、ECU26bは、BATコンバータ34の2次側電力Pbatcon2と補機消費電力Pauxを加算して推定BAT端電力Pbatest2を算出する。
 図14のステップS54(図13の演算ブロック206b)において、ECU26bは、推定BAT端電力Pbatest2からBAT端入力制限値Pbatliminを引き、さらに制御マージンPmarを足して、偏差ΔPbat3を算出する。推定BAT端電力Pbatest2は、演算ブロック214b(図14のS53)で演算される。BAT端入力制限値Pbatliminは、CAN70を介してFCコンバータ24が取得したセンサ値Mcanである。さらに制御マージンPmarは、FCコンバータECU26bの記憶部に記憶されている記憶値である。推定BAT端電力Pbatest2は、制御周期Tc(<更新周期Tcan)で演算されるため、偏差ΔPbat3も制御周期Tc(<更新周期Tcan)で演算される。
 図14のステップS55(図13の演算ブロック206b)において、FCコンバータECU26bは、ステップS54で算出した偏差ΔPbat3に基づくPID制御を行ってF/B補正値ΔIfccon1corを算出する。
[C3.第3実施形態の効果]
 上記のような第3実施形態によれば、第1・第2実施形態の効果に加え又はこれに代えて、以下の効果を奏することができる。
 第3実施形態において、FCコンバータECU26b(第1コンバータ制御装置)は、BATコンバータ34(第2コンバータ)の2次側電力Pbatcon2に基づいてバッテリ30(蓄電装置)への入力電力又はバッテリ30からの出力電力を推定する(図14参照)。これにより、バッテリ30の状態監視が可能となる。その結果、設計の自由度が向上すると共にフェールセーフの点で優れることとなる。
 なお、第3実施形態についても、図11と同様の波形を得ることができる。
D.第4実施形態
[D1.第4実施形態の構成(第1~第3実施形態との相違)]
 図15は、本発明の第4実施形態に係る電力システムとしての燃料電池車両10C(以下「FC車両10C」又は「車両10C」という。)の概略全体構成図である。第1~第3実施形態と同一の構成要素には、同一の参照符号を付して詳細な説明を省略する。
 第1~第3実施形態の車両10、10A、10Bでは、FCコンバータECU26、26a、26bでの制御を介してバッテリ30の保護を図った。これに対し、第4実施形態の車両10Cでは、FCコンバータ電子制御装置26c(以下「FCコンバータECU26c」又は「ECU26c」という。)及びモータ電子制御装置16a(以下「モータECU16a」又は「ECU16a」という。)での制御を介してバッテリ30の保護を図る。図15に示すように、電流センサ104は、信号線106を介してFCコンバータECU26c及びモータECU16aに接続され、BAT端電流IbatがECU16a、26cに直接入力される(図15)。
 FCコンバータECU26cは、第1実施形態のECU26と実質的に同一である、車輪のロック等により、バッテリ30への入力電力が過大となることを防ぐよう制御する。また、モータECU16aは、車輪のスピン等により、バッテリ30からの出力電力が過大となることを防ぐように制御する。
[D2.第4実施形態の制御]
(D2-1.FCコンバータECU26cの制御)
 第4実施形態におけるFCコンバータECU26cによるFCコンバータ24の制御(FCコンバータ制御)の概要は、第1実施形態(図2等)と同様である。図2のステップS1における更新周期Tdirが、ステップS2における更新周期Tcanよりも短い点については、第4実施形態でも同じである。
(D2-2.モータECU16aの制御)
(D2-2-1.バッテリ保護制御)
 図16には、第4実施形態におけるモータECU16aによるバッテリ保護制御のフローチャートが示されている。バッテリ保護制御では、モータECU16aがインバータ14を介してモータ12の出力を変化させることで、バッテリ30の保護を図る。
 図16のステップS61において、モータECU16aは、モータECU16aに対して直接入力される各種のセンサ値Mdir2を更新する。ここでの各種のセンサ値Mdir2には、電圧センサ60からのインバータ電圧Vinv及び電流センサ64からのインバータ電流Iinvが含まれる。さらに第4実施形態では、電流センサ104が直接モータECU16aに接続されているため、BAT端電流Ibatもセンサ値Mdir2に含まれる。これらセンサ値Mdir2の更新周期Tdir2は、例えば、数msecとする。センサ値Mdir2毎に更新周期Tdir2を相違させることも可能である。
 ステップS62において、モータECU16aは、CAN70を通じて入力される各種の制御値Ccan2及びセンサ値Mcan2を更新する。ここでの制御値Ccan2には、例えば、MG ECU50からのモータ12の要求トルクTmreqが含まれる。加えて、BAT ECU32からのBAT端出力制限値Pbatlimoutが含まれる。また、ここでのセンサ値Mcan2には、例えば、BAT端電圧Vbatが含まれる。
 これら制御値Ccan2及びセンサ値Mcan2の更新周期Tcan2は、例えば、数十msecであり、更新周期Tdir2よりも長い。制御値Ccan2毎又はセンサ値Mcan2毎に更新周期Tdir2を相違させることも可能である。なお、第4実施形態における図16のステップS61~S66の演算周期(以下「制御周期Tc2」という。)は、例えば、数msecであり、センサ値Mdir2の更新周期Tdir2と等しい。例えば、更新周期Tdir2及び制御周期Tc2を更新周期Tcan2よりも短くする観点からすれば、制御周期Tc2は、更新周期Tdir2よりも短くする又は長くすることも可能である。
 ステップS63において、モータECU16aは、BAT端電圧VbatとBAT端電流Ibatを乗算してBAT端電力Pbatを算出する。上記の通り、第4実施形態では、電圧センサ100からのBAT端電圧Vbatは、CAN70を介してECU16aに入力される一方、電流センサ104からのBAT端電流Ibatは、ECU16aに直接入力される(図15)。このため、BAT端電圧Vbatは、ECU16aがCAN70を介したセンサ値Mcan2であり、BAT端電流Ibatは、ECU16aが電流センサ104から直接取得したセンサ値Mdir2である。従って、BAT端電圧Vbatは、更新周期Tcan2で更新される一方、BAT端電流Ibatは、更新周期Tdir2(<Tcan2)で更新される。
 ステップS64において、モータECU16aは、BAT端電力Pbat(S63)が、BAT端出力制限値Pbatlimout以上であるか否かを判定する。BAT端電力Pbatが制限値Pbatlimout以上である場合(S64:YES)、ステップS65において、ECU16aは、バッテリ30保護の観点でモータ12の出力制限を行う。例えば、ECU16aは、モータ12の要求トルクTmreqを所定量減少させて用いる。一方、BAT端電力Pbatが制限値Pbatlimout以上でない場合(S64:NO)、ステップS66において、ECU16aは、バッテリ30保護の観点ではモータ12の出力制限を行わない。例えば、ECU16aは、バッテリ30保護の観点では要求トルクTmreqを変化させずに用いる(その他の観点で出力制限を行う場合はあり得る。)。
[D3.第4実施形態の効果]
 上記のような第4実施形態によれば、第1~第3実施形態の効果に加え又はこれに代えて、以下の効果を奏することができる。
 第4実施形態によれば、モータECU16a(モータ制御装置)は、CAN70(第1信号系統)を介してMG ECU50(電力管理装置)から取得した駆動モータ12の要求トルクTmreq(出力指令値)と、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)とを用いて駆動モータ12を制御する(図16)。これにより、例えば、通常時は、主として要求トルクTmreqを用いる一方、バッテリ30(蓄電装置)の入力又は出力に関するBAT端電流Ibat等の瞬間的な変化(例えば、車輪のスリップ等による駆動モータ12の消費電力の急増に伴うバッテリ30からの出力電力の急激な増加)が生じたときは、BAT端電流Ibat等の変化に重点を置いてFC20(発電装置)の発電を制御することが可能となる。従って、バッテリ30への入力又は出力の急激な変化に応じてバッテリ30を保護することが可能となる。
E.変形例
 なお、本発明は、上記各実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
[E1.搭載対象]
 上記各実施形態では、車両10、10A~10Cを電力システムとして本発明を適用した。しかしながら、例えば、CAN70等の通信ネットワーク(第1信号系統)とは異なる信号経路(第2信号系統)を利用する観点からすれば、これに限らない。例えば、別の対象を電力システムとして本発明を適用してもよい。例えば、船舶や航空機等の移動物体を電力システムとして本発明を適用することもできる。或いは、ロボット、製造装置、家庭用電力システム又は家電製品を電力システムとして本発明を適用してもよい。
[E2.車両10、10A~10Cの構成]
(E2-1.FC20(発電装置))
 上記各実施形態では、バッテリ30に電力を供給可能な発電装置としてFC20(及び回生時のモータ12)を用いた(図1等)。しかしながら、例えば、バッテリ30に電力を供給可能な発電装置の観点からすれば、これに限らない。例えば、FC20に代えて又はこれに加えて、エンジンにより駆動されるジェネレータ又はバッテリ30とは別の蓄電装置(別のバッテリ、キャパシタ等)を用いることも可能である。
(E2-2.駆動モータ12)
 上記各実施形態では、モータ12を交流式としたが、例えば、CAN70等の通信ネットワーク(第1信号系統)とは異なる信号経路(第2信号系統)を利用する観点からすれば、これに限らない。例えば、モータ12は、直流式とすることも可能である。この場合、インバータ14の代わりにオンオフスイッチを設けることも可能である。
 上記各実施形態では、モータ12をFC車両10、10A~10Cの走行用又は駆動用とした。しかしながら、例えば、CAN70等の通信ネットワーク(第1信号系統)とは異なる信号経路(第2信号系統)を利用する観点からすれば、これに限らない。例えば、モータ12を車載機器(例えば、電動パワーステアリング、エアコンプレッサ、エアコンディショナ40)用に用いてもよい。
(E2-3.FCコンバータ24及びBATコンバータ34)
 上記各実施形態では、FC20とバッテリ30を並列に配置し、FC20の手前に昇圧コンバータであるFCコンバータ24を配置し、バッテリ30の手前に昇降圧コンバータであるBATコンバータ34を配置する構成とした(図1等)。しかしながら、例えば、CAN70等の通信ネットワーク(第1信号系統)とは異なる信号経路(第2信号系統)を利用する観点からすれば、これに限らない。例えば、FC20の手前に配置するFCコンバータ24を昇圧式ではなく、昇降圧式又は降圧式としてもよい。或いは、図17に示すように、FC20とバッテリ30を並列に配置し、昇圧式、降圧式又は昇降圧式のDC/DCコンバータであるFCコンバータ24をFC20の手前に配置する構成であってもよい。
(E2-4.電流センサ104、134、138等(パラメータ取得部))
 第1・第4実施形態(図1、図15)では、信号線106を介して電流センサ104をFCコンバータECU26、26cに接続して、BAT端電流IbatをFCコンバータECU26、26cに直接入力した。第2実施形態(図7)では、信号線136を介して電流センサ134をFCコンバータECU26aに接続して、BATコンバータ34の1次側電流Ibatcon1をECU26aに直接入力した。第3実施形態(図12)では、信号線140を介して電流センサ138をFCコンバータECU26bに接続して、BATコンバータ34の2次側電流Ibatcon2をECU26bに直接入力した。
 しかしながら、例えば、バッテリ30(蓄電装置)の入力又は出力に関するパラメータをFCコンバータECU26、26a~26cに直接入力する観点からすれば、これに限らない。例えば、第1・第4実施形態の場合、BAT端電流Ibatに加えて又はこれに代えて、BAT端電圧VbatをFCコンバータECU26、26cに直接入力することも可能である。第2実施形態の場合、1次側電流Ibatcon1に加えて又はこれに代えて、1次側電圧Vbatcon1をFCコンバータECU26aに直接入力することも可能である。
 第4実施形態では、信号線106を介して電流センサ104をモータECU16aに接続して、BAT端電流IbatをECU16aに直接入力した(図15)。しかしながら、例えば、バッテリ30(蓄電装置)の入力又は出力に関するパラメータをモータECU16aに直接入力する観点からすれば、これに限らない。例えば、BAT端電流Ibatに加えて又はこれに代えて、BAT端電圧VbatをモータECU16aに直接入力することも可能である。また、例えば、モータECU16aにおいて推定BAT端電力Pbatest、Pbatest2(図9のS43、図14のS53)を用いる観点からすれば、電流センサ134が検出したBATコンバータ34の1次側電流Ibatcon1又は電流センサ138が検出したBATコンバータ34の2次側電流Ibatcon2を、ECU16aに直接入力することも可能である(第2・第3実施形態参照)。
(E2-5.CAN70及び信号線106、136、140(第1信号系統及び第2信号系統))
 第1・第4実施形態では、CAN70及び信号線106を用いてセンサ値Mdir、Mdir2、Mcan、Mcan2及び制御値Ccan、Ccan2をFCコンバータECU26、26c及びモータECU16aに入力した(図1、図15)。しかしながら、例えば、センサ値Mcan、Mcan2及び制御値Ccan、Ccan2を送信するための第1信号系統よりも目的地(例えば、FCコンバータECU26、26a~26c)に到達する時間が短い第2信号系統を利用する観点からすれば、これに限らない。例えば、センサ値Mcan、Mcan2及び制御値Ccan、Ccan2を送信する第1信号系統を低速CANとし、センサ値Mdir、Mdir2を送信する第2信号系統を高速CANとすることも可能である。或いは、第1信号系統又は第2信号系統としては、LIN(Local Interconnect Network)、FlexRay等を用いることも可能である。
(E2-6.FCコンバータECU26、26a~26c)
 上記各実施形態のFCコンバータECU26、26a~26cでは、バッテリ30での過充電を避けるため、バッテリ30への入力電力が大きくなる場合に、FCコンバータ24の1次側電流Ifccon1を低下させた(図6等参照)。しかしながら、例えば、バッテリ30の保護の観点からすれば、これに限らない。例えば、FCコンバータECU26、26a~26cでは、バッテリ30での過放電を避けるため、バッテリ30からの出力電力が大きくなる場合(出力電力又はこれに関連するパラメータが所定の閾値を超える場合)、FCコンバータ24の1次側電流Ifccon1を増加させることも可能である。
 第1実施形態において、FCコンバータECU26は、CAN70(第1信号系統)を介してMG ECU50から取得した要求1次側電流Ifccon1req(FC20(発電装置)の発電指令値)を、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)(図1)で補正してFC20(発電装置)を制御した(図3、図6等)。
 しかしながら、例えば、CAN70(第1信号系統)を介して取得した要求1次側電流Ifccon1req(FC20(発電装置)の発電指令値)と、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)とを用いる観点からすれば、これに限らない。例えば、BAT端電流Ibatに急激な変化(閾値を超える変化)が生じた場合、要求1次側電流Ifccon1reqを用いずに、BAT端電流Ibatに基づいてFC20を制御することも可能である。第2~第4実施形態のFCコンバータECU26a~26cについても同様である。
 上記各実施形態において、FCコンバータECU26、26a~26cは、CAN70(第1信号系統)を介してMG ECU50から取得した要求1次側電流Ifccon1reqをFC20(発電装置)の発電指令値として用いた(図1等)。しかしながら、例えば、FC20(発電装置)の発電を制御する観点からすれば、これに限らず、FCコンバータECU26、26a~26cの2次側電流Ifccon2の要求値を、FC20の発電指令値として用いることも可能である。
 上記各実施形態では、FCコンバータ24の1次側電流制限値Ifccon1lim2(バッテリ30(蓄電装置)の入力電力閾値)を、バッテリ30の温度Tbat及びSOCに基づいて設定した(図4のS12)。しかしながら、例えば、1次側電流制限値Ifccon1lim2を設定する観点からすれば、バッテリ30の温度Tbat及びSOCの一方のみを用いて1次側電流制限値Ifccon1lim2を設定することも可能である。また、例えば、1次側電流制限値Ifccon1lim1を設定する観点からすれば、1次側電流制限値Ifccon1lim2を設定しないことも可能である。
(E2-7.モータECU16a)
 第4実施形態のモータECU16aでは、バッテリ30での過放電を避けるため、バッテリ30からの出力電力が大きくなる場合に、モータ12の出力を制限した(図16参照)。しかしながら、例えば、バッテリ30の保護の観点からすれば、これに限らない。例えば、モータECU16aでは、バッテリ30での過充電を避けるため、バッテリ30への入力電力が大きくなる場合(入力電力又はこれに関連するパラメータが所定の閾値を超える場合)、モータ12の出力を一時的に増加させることも可能である。
 第4実施形態において、モータECU16aは、CAN70(第1信号系統)を介してMG ECU50から取得した要求トルクTmreq(モータ12の出力指令値)を、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)(図15)で補正してモータ12を制御した(図16)。
 しかしながら、例えば、CAN70(第1信号系統)を介して取得した要求トルクTmreq(モータ12の出力指令値)と、信号線106(第2信号系統)を介して電流センサ104(パラメータ取得部)から取得したBAT端電流Ibat(パラメータ)とを用いる観点からすれば、これに限らない。例えば、BAT端電流Ibatに急激な変化(閾値を超える変化)が生じた場合、要求トルクTmreqを用いずに、BAT端電流Ibatに基づいてモータ12を制御することも可能である。

Claims (10)

  1.  発電装置(20)と、
     蓄電装置(30)と、
     前記発電装置(20)及び前記蓄電装置(30)からの電力により駆動する駆動モータ(12)と、
     前記発電装置(20)の発電量を制御する発電制御装置(96)と、
     前記蓄電装置(30)の入力又は出力に関するパラメータを取得するパラメータ取得部(104、134、138)と、
     前記発電制御装置(96)とは別体として構成された電力管理装置(50)と、
     前記発電制御装置(96)と前記電力管理装置(50)とを結ぶ第1信号系統(70)と、
     前記電力管理装置(50)をバイパスして前記発電制御装置(96)と前記パラメータ取得部(104、134、138)とを結ぶ第2信号系統(106、136、140)と
     を備える電力システム(10、10A~10C)であって、
     前記電力管理装置(50)は、前記電力システム(10、10A~10C)全体の発電量を管理し、
     前記発電制御装置(96)は、前記第1信号系統(70)を介して前記電力管理装置(50)から取得した前記発電装置(20)の発電指令値と、前記第2信号系統(106、136、140)を介して前記パラメータ取得部(104、134、138)から取得した前記パラメータとを用いて前記発電装置(20)を制御する
     ことを特徴とする電力システム(10、10A~10C)。
  2.  請求項1記載の電力システム(10、10A~10C)において、
     前記発電制御装置(96)は、前記第1信号系統(70)を介して前記電力管理装置(50)から取得した前記発電装置(20)の発電指令値又はその制限値を、前記第2信号系統(106、136、140)を介して前記パラメータ取得部(104、134、138)から取得した前記パラメータで補正して前記発電装置(20)を制御する
     ことを特徴とする電力システム(10、10A~10C)。
  3.  請求項2記載の電力システム(10、10A~10C)において、
     前記発電制御装置(96)は、
      前記第1信号系統(70)を介して前記電力管理装置(50)から前記発電装置(20)の発電指令値を第1周期で取得し、
      前記第2信号系統(106、136、140)を介して前記パラメータ取得部(104、134、138)から前記パラメータを、前記第1周期よりも短い第2周期で取得し、
      前記パラメータにより補正した前記発電指令値を用いた前記発電装置(20)の制御を、前記第1周期よりも短い第3周期で行う
     ことを特徴とする電力システム(10、10A~10C)。
  4.  請求項1~3のいずれか1項に記載の電力システム(10、10A~10C)において、
     前記発電制御装置(96)は、
      前記蓄電装置(30)への入力電力が入力電力閾値を超えるとき、前記発電装置(20)の出力を制限し、又は
      前記蓄電装置(30)からの出力電力が出力電力閾値を超えるとき、前記発電装置(20)の出力を増加させる
     ことを特徴とする電力システム(10、10A~10C)。
  5.  請求項4記載の電力システム(10、10A~10C)において、
     前記発電装置(20)は、燃料電池(20)を含み、
     前記発電制御装置(96)は、
      前記燃料電池(20)側の第1コンバータ(24)と、
      前記第1コンバータ(24)を制御する第1コンバータ制御装置(26、26a~26c)と
     を含み、
     前記電力システム(10、10A~10C)は、
      前記蓄電装置(30)側の第2コンバータ(34)と、
      前記第2コンバータ(34)を制御する第2コンバータ制御装置(36)と
     を含み、
     前記第1コンバータ制御装置(26、26a~26c)は、
      前記蓄電装置(30)への入力電力が前記入力電力閾値を超えるとき、前記燃料電池(20)の出力電流を制限し、前記蓄電装置(30)の前記入力電力閾値に基づいて前記燃料電池(20)の出力電流制限値を変化させ、又は
      前記蓄電装置(30)からの出力電力が前記出力電力閾値を超えるとき、前記燃料電池(20)の出力電流を増加させ、前記蓄電装置(30)の前記出力電力閾値に基づいて前記燃料電池(20)の出力電流制限値を変化させる
     ことを特徴とする電力システム(10、10A~10C)。
  6.  請求項5記載の電力システム(10、10A~10C)において、
     前記蓄電装置(30)の前記入力電力閾値又は前記出力電力閾値は、前記蓄電装置(30)の残容量又は前記蓄電装置(30)の温度に基づいて設定される
     ことを特徴とする電力システム(10、10A~10C)。
  7.  請求項5又は6記載の電力システム(10、10A~10C)において、
     前記第1コンバータ制御装置(26、26a~26c)は、前記蓄電装置(30)の入力電力と前記入力電力閾値との偏差又は前記蓄電装置(30)の出力電力と前記出力電力閾値との偏差に基づいて前記燃料電池(20)の出力を補正する
     ことを特徴とする電力システム(10、10A~10C)。
  8.  請求項5~7のいずれか1項に記載の電力システム(10A)において、
     前記蓄電装置(30)と前記第2コンバータ(34)を結ぶ電力線(142)には、前記駆動モータ(12)とは異なる負荷(28、40、42、44)が接続され、
     前記第1コンバータ制御装置(26a)は、前記第2コンバータ(34)の1次側電力に基づいて前記蓄電装置(30)への入力電力又は前記蓄電装置(30)からの出力電力を推定する
     ことを特徴とする電力システム(10A)。
  9.  請求項5~8のいずれか1項に記載の電力システム(10B)において、
     前記第1コンバータ制御装置(26b)は、前記第2コンバータ(34)の2次側電力に基づいて前記蓄電装置(30)への入力電力又は前記蓄電装置(30)からの出力電力を推定する
     ことを特徴とする電力システム(10B)。
  10.  発電装置(20)と、
     蓄電装置(30)と、
     前記発電装置(20)及び前記蓄電装置(30)からの電力により駆動する駆動モータ(12)と、
     前記駆動モータ(12)の出力を制御するモータ制御装置(16a)と、
     前記発電装置(20)の発電量を制御する発電制御装置(96)と、
     前記蓄電装置(30)の入力又は出力に関するパラメータを取得するパラメータ取得部(104、134、138)と、
     前記モータ制御装置(16a)及び前記発電制御装置(96)とは別体として構成された電力管理装置(50)と、
     前記モータ制御装置(16a)と前記電力管理装置(50)とを結ぶ第1信号系統(70)と、
     前記電力管理装置(50)をバイパスして前記モータ制御装置(16a)と前記パラメータ取得部(104、134、138)とを結ぶ第2信号系統(106、136、140)と
     を備える電力システム(10C)であって、
     前記モータ制御装置(16a)は、前記第1信号系統(70)を介して前記電力管理装置(50)から取得した前記駆動モータ(12)の出力指令値と、前記第2信号系統(106、136、140)を介して前記パラメータ取得部(104、134、138)から取得した前記パラメータとを用いて前記駆動モータ(12)を制御する
     ことを特徴とする電力システム(10C)。
PCT/JP2014/068713 2014-07-14 2014-07-14 電力システム WO2016009476A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/325,719 US9776622B2 (en) 2014-07-14 2014-07-14 Power system
PCT/JP2014/068713 WO2016009476A1 (ja) 2014-07-14 2014-07-14 電力システム
JP2016534007A JP6247764B2 (ja) 2014-07-14 2014-07-14 電力システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068713 WO2016009476A1 (ja) 2014-07-14 2014-07-14 電力システム

Publications (1)

Publication Number Publication Date
WO2016009476A1 true WO2016009476A1 (ja) 2016-01-21

Family

ID=55078000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068713 WO2016009476A1 (ja) 2014-07-14 2014-07-14 電力システム

Country Status (3)

Country Link
US (1) US9776622B2 (ja)
JP (1) JP6247764B2 (ja)
WO (1) WO2016009476A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915353A (zh) * 2017-03-30 2017-07-04 重庆长安汽车股份有限公司 热管理可用功率的计算方法、热管理控制器、热管理系统
JP2019144246A (ja) * 2018-02-22 2019-08-29 日置電機株式会社 電力演算装置および電力演算方法
WO2019163936A1 (ja) * 2018-02-22 2019-08-29 日置電機株式会社 電力演算装置および電力演算方法
WO2020066260A1 (ja) * 2018-09-27 2020-04-02 三洋電機株式会社 電源システム、及び管理装置
JP2021097567A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097566A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693446B2 (ja) * 2017-03-10 2020-05-13 トヨタ自動車株式会社 駆動装置
JP7276113B2 (ja) 2019-12-19 2023-05-18 トヨタ自動車株式会社 車両、車両制御システム
JP7251464B2 (ja) * 2019-12-19 2023-04-04 トヨタ自動車株式会社 車両、車両制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256439A (ja) * 1995-03-16 1996-10-01 Mitsubishi Electric Corp 電力変換装置
JP2009303359A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 燃料電池車両
JP2010045889A (ja) * 2008-08-11 2010-02-25 Honda Motor Co Ltd 電力システム及び燃料電池車両
JP2010200529A (ja) * 2009-02-26 2010-09-09 Omron Corp 充電制御装置および方法、充電装置、並びに、プログラム
JP2013169096A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199331B2 (ja) * 1998-06-22 2008-12-17 トヨタ自動車株式会社 蓄電器を備えた車両の電力制限装置
AU2005261263B2 (en) * 2004-07-12 2009-01-08 Toyota Jidosha Kabushiki Kaisha Power output unit, vehicle using it and its control method
DE112009005156T5 (de) 2009-08-17 2012-06-14 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256439A (ja) * 1995-03-16 1996-10-01 Mitsubishi Electric Corp 電力変換装置
JP2009303359A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 燃料電池車両
JP2010045889A (ja) * 2008-08-11 2010-02-25 Honda Motor Co Ltd 電力システム及び燃料電池車両
JP2010200529A (ja) * 2009-02-26 2010-09-09 Omron Corp 充電制御装置および方法、充電装置、並びに、プログラム
JP2013169096A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915353A (zh) * 2017-03-30 2017-07-04 重庆长安汽车股份有限公司 热管理可用功率的计算方法、热管理控制器、热管理系统
CN106915353B (zh) * 2017-03-30 2019-03-26 重庆长安汽车股份有限公司 热管理可用功率的计算方法、热管理控制器、热管理系统
JP2019144246A (ja) * 2018-02-22 2019-08-29 日置電機株式会社 電力演算装置および電力演算方法
WO2019163936A1 (ja) * 2018-02-22 2019-08-29 日置電機株式会社 電力演算装置および電力演算方法
JPWO2019163936A1 (ja) * 2018-02-22 2021-02-12 日置電機株式会社 電力演算装置および電力演算方法
JP7279009B2 (ja) 2018-02-22 2023-05-22 日置電機株式会社 電力演算装置および電力演算方法
WO2020066260A1 (ja) * 2018-09-27 2020-04-02 三洋電機株式会社 電源システム、及び管理装置
JP2021097567A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097566A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP7272259B2 (ja) 2019-12-19 2023-05-12 トヨタ自動車株式会社 車両
JP7272258B2 (ja) 2019-12-19 2023-05-12 トヨタ自動車株式会社 車両

Also Published As

Publication number Publication date
JP6247764B2 (ja) 2017-12-13
US9776622B2 (en) 2017-10-03
JPWO2016009476A1 (ja) 2017-04-27
US20170158189A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6247764B2 (ja) 電力システム
JP6693446B2 (ja) 駆動装置
JP7176852B2 (ja) 車両電源システム
JP4179383B2 (ja) 駆動力発生システムおよびそれを備える車両、ならびにその制御方法
US8793041B2 (en) Electric powered vehicle and control method for the same
EP2444269B1 (en) Electric vehicle and method for controlling electric vehicle
US9132738B2 (en) Electric vehicle
JP7068893B2 (ja) 車両電源システム
JP7158166B2 (ja) 車両電源システム
WO2008004464A1 (fr) Convertisseur de tension et véhicule équipé du convertisseur de tension
US20160375792A1 (en) Method for controlling fuel cell vehicle, and fuel cell vehicle
JP7149093B2 (ja) 車両電源システム
JP7081959B2 (ja) 車両電源システム
JP7081958B2 (ja) 車両電源システム
WO2008066092A1 (en) Secondary battery charge/discharge control device and vehicle using the same
WO2007126037A1 (ja) 内燃機関の停止制御装置および停止制御方法
WO2008007724A1 (fr) Système d'alimentation et véhicule équipé de celui-ci, et procédé de gestion de la température
JP5510283B2 (ja) 車両用蓄電部保護システム
KR20150115849A (ko) 전원 제어 장치 및 전원 제어 방법
JP6989431B2 (ja) 車両電源システム
JP6186315B2 (ja) 電力システム
JP6104635B2 (ja) 電力システム及び燃料電池車両
JP6353477B2 (ja) 電力供給システム
JP7096046B2 (ja) 車両電源システム
JP2006033966A (ja) 電動機駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534007

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15325719

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897579

Country of ref document: EP

Kind code of ref document: A1