WO2016006964A1 - 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템 - Google Patents

빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템 Download PDF

Info

Publication number
WO2016006964A1
WO2016006964A1 PCT/KR2015/007184 KR2015007184W WO2016006964A1 WO 2016006964 A1 WO2016006964 A1 WO 2016006964A1 KR 2015007184 W KR2015007184 W KR 2015007184W WO 2016006964 A1 WO2016006964 A1 WO 2016006964A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmitting
information
transmission
received
Prior art date
Application number
PCT/KR2015/007184
Other languages
English (en)
French (fr)
Inventor
유현규
정철
김태영
박정호
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP15819568.5A priority Critical patent/EP3168999A4/en
Priority to US15/323,853 priority patent/US10462680B2/en
Priority to CN201580037785.2A priority patent/CN106537806A/zh
Publication of WO2016006964A1 publication Critical patent/WO2016006964A1/ko
Priority to US16/665,453 priority patent/US11246040B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0652Feedback error handling
    • H04B7/0656Feedback error handling at the transmitter, e.g. error detection at base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a communication method and system in a wireless communication system using a beamforming method, and more particularly, to a method and system for obtaining beamforming information between transmitting and receiving devices in a beamforming system.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • the 4G (4th Generation) wireless communication system which is currently being commercialized, has pursued technology development mainly to improve spectral efficiency for increasing data rate.
  • the frequency efficiency improvement technology alone is difficult to meet the demand for wireless data traffic.
  • Beamforming technology is one of the methods for mitigating the path loss of the radio wave caused by the use of the high band frequency and eliminating the reduction of the service area.
  • the beamforming technique can be classified into two types according to the subject. For example, the beamforming technique may be classified into a transmission beamforming technique performed by the transmitting apparatus and a beamforming technique performed by the receiving apparatus.
  • a plurality of antennas have a form of an antenna array, and each of the antennas included in the antenna array becomes an array element.
  • the antenna array may be implemented in various forms such as a linear array and a planar array.
  • the transmission beamforming method is a method of increasing directivity by concentrating a region of arrival of radio waves in a specific direction by using a plurality of antennas.
  • Using the transmission beamforming method can increase the directivity of the signal to increase the reach of the radio wave. Furthermore, since little signal is transmitted in a direction other than the direction to which the signal is directed, signal interference can be greatly reduced on the receiving device side.
  • the reception beamforming method is a method of performing beamforming on a received signal by using a reception antenna array.
  • Receiving beamforming may concentrate the reception of radio waves in a specific direction to increase the sensitivity of the received signal coming in the direction.
  • a signal coming from a direction other than the corresponding direction may be excluded from the received signal. Therefore, the receiving device can increase the gain in a specific direction and block the interference signal in the other direction.
  • the transmission and reception of traffic can be performed only by sharing information on beamforming between the transmitting apparatus and the receiving apparatus. For example, when the transmission beam forming direction in the transmitting apparatus and the receiving beam forming direction in the receiving apparatus are different from each other, it may be determined that data transmission and reception between each other or the channel situation is very poor. Therefore, devices that use transmit beamforming and / or receive beamforming must share information on beamforming with each other to efficiently transmit / receive traffic.
  • the present invention provides a method and system for sharing beamforming information between a transmitter and a receiver.
  • the present invention also provides a method and system for minimizing beamforming errors between a transmitting device and a receiving device.
  • a transmission method is a method for performing communication in a transmitting apparatus of a wireless communication system performing wireless communication in a beamforming method, and assigns identifiers to all transmit beam directions that can be transmitted. Transmitting a beam identifier and a reference signal allocated for each direction; Checking whether there is an error by checking the error detection information when identifier information and error detection information on a beam direction that can be received from a receiving device are received; And transmitting a response signal to the receiving device according to whether the checked error exists and performing data transmission / reception based on the received beam information when no error exists as a result of the error detection information check. have.
  • a receiving method is a method for performing communication in a receiving apparatus of a wireless communication system performing wireless communication in a beamforming method, by transmitting a reference signal from all the receiving beam directions that can be received Checking the quality of the; Selecting a beam direction having a quality that allows communication among the received beam directions; Transmitting a feedback signal including a transmission beam identifier in the selected beam direction and information for error checking to the transmitting device; And determining a beam direction to communicate according to a response signal received from the transmitting apparatus.
  • the apparatus and method according to the present invention it is possible to share information on beam forming between devices using transmit beamforming and / or receive beamforming to efficiently transmit / receive traffic, and It is possible to minimize beamforming errors between receiving devices.
  • FIG. 1 is a conceptual diagram illustrating beam forming in a wireless communication system to which the present invention is applied;
  • FIG. 2 is a signal flow diagram for sharing beamforming information between a transmitter and a receiver according to an embodiment of the present invention
  • FIG. 3 is a signal flow diagram when a beamforming and transmitting a response signal between a transmitter and a receiver according to an embodiment of the present invention
  • FIG. 4 is a signal flowchart when beamforming and transmitting a response signal between a transmitter and a receiver according to another embodiment of the present invention
  • FIG. 5 is a signal flowchart when a response signal is transmitted between a transmitting device and a receiving device according to another embodiment of the present invention.
  • FIG. 6 is a functional internal block diagram of a transmitter according to an embodiment of the present invention.
  • FIG. 7 is a functional internal block diagram of a receiving apparatus according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating beamforming in a wireless communication system to which the present invention is applied.
  • data or / and signals may be transmitted and received between a transmitting device 100 and a receiving device 110 through a predetermined wireless channel.
  • the transmitter 100 and the receiver 110 have distinguished transmission and reception for convenience of description, and both can transmit and receive.
  • the transmitter 100 transmits specific data or signals from the transmitter 100 to the receiver 110
  • the transmitter 100 operates as a transmitter.
  • the receiver 110 receives data or a signal transmitted
  • the transmitter 100 is a receiver. It works. This may be understood in the same way as the receiving device 110.
  • the reception device 110 operates as a reception device when receiving data or a signal from the transmission device 100, but operates as a transmission device when transmitting data or a signal to the transmission device 100.
  • both the transmitting apparatus 100 and the receiving apparatus 110 are electronic devices capable of performing beamforming and include a plurality of antennas.
  • the transmitting apparatus 100 may include a first transmitting antenna TX_ANT_1, a second transmitting antenna TX_ANT_2,. And an Nth transmit antenna TX_ANT_N.
  • the receiving device 110 also includes a first receiving antenna RX_ANT_1, a second receiving antenna RX_ANT_2,. Nth transmit antenna RX_ANT_N.
  • the transmitting device and the receiving device may have the same number of antennas, and if they have different numbers of antennas, for example, the number of antennas of the transmitting device 100 is Nt.
  • the number of antennas of the reception device 110 is Nr
  • the maximum number of streams that can be simultaneously transmitted by the transmission device 100 may transmit the maximum stream according to a value having a smaller number of antennas of Nt and Nr.
  • Nr the number of antennas of the reception device 110 for convenience of description.
  • the transmission apparatus 100 may transmit beams 11, 12,..., 1M in various directions.
  • the receiving device 110 may also receive beams 21, 22,..., 2M received from various directions. 1 illustrates a case in which the number of beam directions that the transmitting device 100 can transmit and the number of beam directions that the receiving device 110 can receive are the same.
  • N communication is possible using a multiple access method such as a base station and a portable terminal of a mobile communication system.
  • FIG. 2 is a signal flow diagram for sharing beamforming information between a transmitter and a receiver according to an embodiment of the present invention.
  • the transmitter 100 generates and transmits a reference signal in step 200.
  • the reference signal generated by the transmitter 100 may be a signal that the transmitter 100 and the receiver 110 know each other.
  • the transmitter 100 according to the present invention may transmit reference signals in all directions that the transmitter 100 can transmit, for example, M directions of FIG. 1.
  • the transmission device 100 may generate and transmit a reference signal by adding identification information (or identifier) for identifying each direction capable of beamforming when beamforming and transmitting the reference signal. Therefore, when the transmission apparatus 100 may perform beamforming in M directions, identification information for identifying the beamforming direction should be able to identify M cases.
  • the transmitter 100 may beam-form and transmit a signal including the reference signal and identification information for identifying the beam direction in each direction.
  • the reception apparatus 110 may measure beams received from the transmission apparatus 100 and select an optimal beam in step 202.
  • the receiving apparatus 110 may perform receiving beamforming.
  • the signal quality is the best. can do.
  • the receiving device 110 may receive and receive the beams received in a plurality of directions with respect to the beams transmitted by the transmitting device 100 in a plurality of directions. Accordingly, the reception device 110 may determine the quality of each of the received transmission beams by receiving the beam beam forming.
  • the reception device 110 may use a signal-to-interference noise ratio (SINR), a reception power intensity (RSSI), or a combination of two or more methods to select an optimal beam.
  • SINR signal-to-interference noise ratio
  • RSSI reception power intensity
  • the reception apparatus 110 feeds back only the identifier information of the transmission beam or the identifier information of the transmission beam and the information on the reception beam to the transmission apparatus 100 in step 204.
  • the reception device 110 may insert and transmit a code, for example, a CRC code, that detects an error of the transmission beam identifier information when feeding back the identifier information of the transmission beam to the transmission device 100.
  • This method may use a CRC code when transmitting the identifier information for the transmission beam in a single message.
  • the identifier information of the transmission beam may be fed back based on the sequence rather than the message format.
  • the information on the error may allow the error to be detected in a threshold-based manner.
  • the transmission device 100 may receive a feedback signal including transmission beam identifier information from the reception device 110.
  • the transmission device 100 may check a CRC code included in the transmission beam identifier information. As a result of performing the CRC check, if a CRC error occurs, the transmitting device 100 may generate a NACK signal and transmit the NACK signal to the receiving device 110. On the other hand, if the CRC check does not occur as a result of performing the CRC check, the transmitting device 100 may generate an acknowledgment signal (ACK signal) and transmit it to the receiving device 110.
  • ACK signal acknowledgment signal
  • the transmitting device 100 may transmit the negative response signal or the positive response signal according to the result of performing the CRC check, the transmitting device 100 may perform an operation based on the negative response signal.
  • the transmitter 100 may be configured not to transmit an acknowledgment signal (ACK signal) when an error does not occur as a result of checking the CRC code included in the transmission beam identifier information received from the receiver 110. That is, when the transmission device 100 checks the CRC code included in the transmission beam identifier information received from the reception device 110 and transmits a NACK signal only when an error occurs.
  • the present invention may use both a negative response and a positive response, and may operate based on the negative response.
  • the operation may be performed based on the positive response signal, similar to the method based on the negative response signal.
  • the transmitter 100 proceeds to step 208 and transmits a NACK signal to the receiver 110.
  • the reception apparatus 110 regenerates the optimal beam selection information in step 210, and proceeds to step 212 to feed back the transmission beam identifier information.
  • the receiving device 110 may be configured not to perform step 210. For example, when the information on the beam generated in step 202 is stored in a predetermined time buffer or the like. In this case, the receiving device 110 may directly retransmit the signal stored in the buffer without performing step 210.
  • the predetermined predetermined time may be, for example, a time slightly longer than the time until the negative response is received from the transmitting device 100.
  • the reception apparatus 100 may receive it and may check the CRC code included in the transmission beam identifier information in step 214. If no error exists as a result of checking the transmission beam identifier information in step 214, the transmitting device 100 may generate an acknowledgment signal in step 216 and transmit it to the receiving device 110.
  • the transmitting device 100 transmits a reference signal in predetermined cycle units. Therefore, the transmitter 100 and the receiver 110 must measure the reference signal beam-formed in various directions on a predetermined cycle basis and perform a feedback operation thereto. That is, the operation of transmitting the reference signal by the transmitting device 100 in step 220 may have the same form as the above-described step 200, and may be performed in a preset time unit. After determining the transmission beamforming and the reception beamforming methods using the reference signal, the transmitting device 100 and the receiving device 110 may transmit and receive data traffic based on the beamforming information determined mutually.
  • it may be configured not to include steps 210 to 216.
  • it may be configured not to include steps 210 to 216.
  • the same applies to the case where only the negative response of step 208 is transmitted as well as the case where both the negative response signal and the positive response signal are transmitted.
  • the number of times that the reception apparatus 110 performs steps 210 to 212 may be limited, such as two or three times. For example, even when the reception apparatus 110 transmits the retransmission twice or three times, if an error occurs in the CRC test result in the transmission apparatus 100, unnecessary waste of system resources may be caused. For other reasons, the transmission apparatus 100 may limit the number of retransmissions even when the transmission time point of the next reference signal arrives soon.
  • the reception device 110 receives when the PDCCH is successfully received through the transmission beams selected in the Nth transmission / reception beam selection process before the predetermined time from the transmission device 100 and transmitted to the transmission device 100.
  • the device (terminal) 110 assumes that the beam information transmitted to the transmitting device (base station) 100 in the Nth transmission / reception beam selection process has been successfully received by the transmitting device 100.
  • this case may be applied to the case where the transmission beam information transmitted during the N th transmission beam selection process and the transmission beam successfully updated between the transmission device 100 and the reception device 110 among the previous time points are different.
  • the reception apparatus 110 may receive the data more efficiently. . As a result, this can increase the efficiency of the wireless communication system and can improve the reliability.
  • various wireless communication systems for beamforming such as a mobile communication system and a WiFi system may be applied. Let's look again at the description above under the following assumptions. Assume that the receiving device 110 is a terminal of a wireless communication system and the transmitting device 100 is a base station of a wireless communication system.
  • the terminal 110 uses a predetermined transmission beam between the base station and the terminal when transmitting an uplink control channel (e.g. PUCCH, etc.).
  • an uplink control channel e.g. PUCCH, etc.
  • the receiving device (terminal) 110 uses an optimal uplink transmission beam as long as the transmitting device (base station) 100 has successfully instructed most recently, and the transmitting device (base station) 100 transmits the corresponding transmission.
  • the uplink control channel is received using an optimal reception beam corresponding to the beam.
  • a predetermined transmission beam may be used between the transmitting device (base station) 100 and the receiving device (terminal) 110. Can be.
  • the beam information between the base station and the terminal is prevented so that an error does not occur when the downlink optimal beam information measured by the terminal or the uplink optimal beam information measured by the base station is transmitted to the base station or the terminal. Must match.
  • the CRC code is checked, and when the sequence is used, the retransmission procedure may be performed based on the threshold value. Since the feedback procedure for the uplink transmission beam is the same as the downlink, it will be described based on the feedback procedure for the downlink transmission beam. When the correlation between the uplink channel and the downlink channel is established, one of feedback procedures for the downlink and uplink transmission beams may be omitted.
  • the receiving device (terminal) 110 may select a predetermined number of downlink beams through a reference signal transmitted by the transmitting device (base station) 100, and feed back information on the selected beams to the base station through uplink.
  • the predetermined number may be one or more values, and the determination of the number may be a value previously indicated by the base station to the terminal in advance or determined in a standard standard.
  • a criterion for selecting a downlink beam may be signal strength, a signal-to-interference noise ratio (SINR), and the like, and the selected downlink beam may be an optimal beam selected using the above criterion. Accordingly, the selected downlink beam may be an identifier or index information for identifying the downlink beam as described above.
  • the transmitting device (base station) 100 transmits the beam information fed back by the terminal through a CRC check without error. Check if it is received.
  • the transmitting device (base station) 100 may determine the possibility of error of the beam information fed back by the receiving device (terminal) 110 through an implementation algorithm. It may be. In general, the use of CRC has higher error detection reliability.
  • the base station which determines whether the beam information fed back by the receiving device (terminal) 110 has an error, may transmit the error to the terminal through the following two methods.
  • the first method may be a method based on a positive response / negative response (ACK / NACK) signal.
  • the transmitting device (base station) 100 may transmit an acknowledgment (ACK) signal to the receiving device (terminal) 110.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the second method is based on a negative acknowledgment (NACK) signal, and the transmitting device (base station) 100 requests retransmission to the receiving device (terminal) 100 only when an error occurs in the beam information fed back by the receiving device (terminal 110). .
  • NACK negative acknowledgment
  • This second method is difficult to apply to the uplink transmission beam feedback procedure.
  • the UE that receives the NACK signal retransmits beam information by a predefined retransmission procedure.
  • the predefined retransmission procedure may be defined in various ways such as synchronous / asynchronous HARQ according to whether the retransmission time is fixed, and adaptive / non-adaptive HARQ according to whether the resource location and size change. Can be.
  • the terminal receiving the retransmission request retransmits beam information according to the base station request.
  • the beam information between the base station and the terminal is updated at the same time based on the corresponding time point, and when the terminal does not receive the retransmission request until a predetermined time point in the second method
  • the beam information between the base station and the terminal is updated at the same time.
  • the base station continuously transmits a reference signal to the terminal, and the terminal measures beam related information.
  • the terminal transmits the beam information to the base station periodically or aperiodically by the base station request or in an event-trigger method.
  • the beamforming method may also be used when the transmitting device 100 transmits an acknowledgment signal (ACK signal) and / or a negative acknowledgment signal (NACK signal) to the receiving device 110.
  • ACK signal acknowledgment signal
  • NACK signal negative acknowledgment signal
  • the interference due to the response signal transmitted / received between the transmitting device 100 and the receiving device 110 may be very small in view of the entire wireless communication system.
  • the probability that the ACK signal or the NACK signal may not be normally received increases. This is because if the alignment between the transmission beam and the reception beam transmitting and receiving the ACK signal or the NACK signal is not correct, the ACK signal or the NACK signal is normally received. Because it may not be. Therefore, in the embodiments of the present invention described below, a method of reducing an error when transmitting an ACK / NACK signal by using beamforming will be described.
  • FIG. 3 is a signal flowchart when beamforming a signal between a transmitter and a receiver and transmitting the signal according to an embodiment of the present invention.
  • the transmitter 100 generates and transmits a reference signal in step 300.
  • the reference signal generated by the transmitter 100 may be a signal mutually known between the transmitter 100 and the receiver 110 as described above.
  • the transmitter 100 according to the present invention may transmit reference signals in all directions that the transmitter 100 can transmit, for example, M directions of FIG. 1.
  • the transmitter 100 may transmit identification information for each transmission beam in each direction. For example, when the number of directions in which the transmission apparatus 100 can beamform M is M, the identification information for distinguishing the respective transmission beams may be added to each of the transmission beams from the first beam to the M beam.
  • the reception apparatus 110 may measure respective beams received from the transmission apparatus 100 in step 302 and select an optimal beam. As illustrated above, when the transmitting apparatus 100 performs beamforming in M directions, the receiving apparatus 110 may perform receiving beamforming. When a specific transmitting beam beamforms in a specific receiving beam direction, the signal quality is the best. can do. In this case, the receiving device 110 receives and receives beams beam-forming in a plurality of directions by the transmitting device 100 in a beam-forming manner. Accordingly, the reception device 110 may determine the quality of each of the received transmission beams by receiving the beam beam forming. The reception device 110 may use a signal-to-interference noise ratio (SINR), a reception power intensity (RSSI), or a combination of two or more methods to select an optimal beam.
  • SINR signal-to-interference noise ratio
  • RSSI reception power intensity
  • the receiving device 110 may feed back identifier information on the optimal transmitting beam to the transmitting device 100 in step 304.
  • the reception device 110 may insert and transmit a code, for example, a CRC code, that detects an error of the transmission beam identifier information when feeding back the identifier information of the transmission beam to the transmission device 100.
  • the sequence information may be used without transmitting the identifier information of the transmission beam using the message format.
  • an error may be detected by using a threshold-based method. In the following description, a description will be given on the assumption that identifier information on a transmission beam is provided using a message format for convenience of description.
  • the transmitting device 100 may receive a feedback signal including the transmission beam identifier information received from the receiving device 110.
  • the transmitting device 100 may check the CRC code included in the transmission beam identifier information. As a result of performing the CRC check, if a CRC error occurs, the transmitting device 100 may generate a NACK signal and transmit the NACK signal to the receiving device 110. On the other hand, if the CRC check does not occur as a result of performing the CRC check, the transmitting device 100 may generate an acknowledgment signal (ACK signal) and transmit it to the receiving device 110.
  • ACK signal acknowledgment signal
  • the reception device (terminal) 110 is N. It is assumed that beam information transmitted to the transmitting device (base station) 100 in the first transmission / reception beam selection process is successfully received by the transmitting device 100. However, this case may be applied to the case where the transmission beam information transmitted during the N th transmission beam selection process and the transmission beam successfully updated between the transmission device 100 and the reception device 110 among the previous time points are different.
  • the response signal when transmitting an acknowledgment or a negative response signal for the Nth transmitted reference signal, the response signal is generated using a transmission beam successfully updated between the transmitting device 100 and the receiving device 110 among the previous time points. I can send it.
  • the time point in which the most recent successful update between the transmitting device 100 and the receiving device 110 among the time points before the Nth reference signal is transmitted is N.
  • a negative response or a positive response signal may be transmitted in the N ⁇ 1 th updated beam direction.
  • the N-2nd time when the most successfully updated time point between the transmitting device 100 and the receiving device 110 among the time points before transmitting the Nth reference signal is successfully updated based on the N-2nd reference signal, the N-2nd time.
  • the negative response or the positive response signal may be transmitted in the updated direction.
  • the transmitting device 100 may inform the receiving device 110 which beam to use in advance to transmit a negative response or a positive response. Can be.
  • the same method as described above may be used. That is, the transmission beam identifier information may be fed back to the most recently successfully updated beam direction among the previous time points.
  • steps 310 to 318 correspond to steps 300 to 308 described above.
  • FIG. 3 it should be noted that an operation of transmitting or receiving data traffic in a beamforming direction set after the transmission direction is set is omitted.
  • FIG. 4 is a signal flowchart when beamforming and transmitting a response signal between a transmitter and a receiver according to another embodiment of the present invention.
  • the transmitter 100 generates and transmits a reference signal in step 400.
  • the reference signal generated by the transmitter 100 may be a signal mutually known between the transmitter 100 and the receiver 110 as described above.
  • the transmitter 100 according to the present invention may transmit reference signals in all directions that the transmitter 100 can transmit, for example, M directions of FIG. 1.
  • the transmitter 100 may transmit identification information for each transmission beam in each direction. For example, when the number of directions in which the transmission apparatus 100 can beamform M is M, the identification information for distinguishing the respective transmission beams may be added to each of the transmission beams from the first beam to the M beam.
  • the reception apparatus 110 may measure respective beams received from the transmission apparatus 100 in step 402 and select an optimal beam. As illustrated above, when the transmitting apparatus 100 performs beamforming in M directions, the receiving apparatus 110 may perform receiving beamforming. When a specific transmitting beam beamforms in a specific receiving beam direction, the signal quality is the best. can do. In this case, the receiving device 110 receives and receives beams beam-forming in a plurality of directions by the transmitting device 100 in a beam-forming manner. Accordingly, the reception device 110 may determine the quality of each of the received transmission beams by receiving the beam beam forming. The reception device 110 may use a signal-to-interference noise ratio (SINR), a reception power intensity (RSSI), or a combination of two or more methods to select an optimal beam.
  • SINR signal-to-interference noise ratio
  • RSSI reception power intensity
  • the receiving device 110 may feed back identifier information on the optimal transmitting beam to the transmitting device 100 in step 404.
  • the reception device 110 may insert and transmit a code, for example, a CRC code, that detects an error of the transmission beam identifier information when feeding back the identifier information of the transmission beam to the transmission device 100.
  • a response is made by using a transmission beam successfully updated between the transmitting device 100 and the receiving device 110 among the points before the Nth reference signal is received. You can send a signal.
  • the transmitting device 100 may receive a feedback signal including the transmission beam identifier information received from the receiving device 110 in step 404, and proceed to step 406 to check the CRC code included in the transmission beam identifier information. Thereafter, in step 408, the transmitting device 100 determines whether an error exists as a result of checking the CRC code. This may be the case where there is no error in the data received from the receiving device 110. As such, when there is no error, the transmitting device 100 may transmit an acknowledgment (ACK) signal through the beam direction measured and reported by the Nth reference signal from the receiving device 110.
  • ACK acknowledgment
  • the received signal is normally received, it is affirmative that the beamforming is not performed in the direction which was most recently successfully updated among the points before the Nth reference signal transmission, that is, a direction that may have changed due to a change in the channel environment.
  • the response signal can be transmitted more efficiently.
  • step 410 in which the beamforming is performed by beamforming in the most recently updated direction among the points before the Nth reference signal is transmitted, and transmits a NACK signal can do.
  • step 410 or step 412 may be an optional operation. For example, if step 410 is performed, step 412 is not performed, and if step 412 is performed, step 410 is not performed.
  • the transmitting device (base station) 100 transmits a negative acknowledgment (NACK) signal when an error occurs in the beam information fed back by the receiving device 110, and an acknowledgment (ACK) signal when the error does not occur to the terminal.
  • NACK negative acknowledgment
  • the corresponding acknowledgment (ACK) signal is transmitted using beam information received without error in the current N-th feedback step, and the negative acknowledgment (NACK) signal is transmitted most recently among the points before the N-th reference signal transmission point.
  • a transmission beam successfully updated between the device 100 and the receiving device 110 may be transmitted. Since there is only one reception chain, the reception device 110 receives an acknowledgment (ACK) or a negative acknowledgment (NACK) signal by using an optimal reception beam corresponding to the transmission beam transmitted at the current nth feedback time point.
  • the transmitter 100 transmits a negative acknowledgment (NACK) signal when an error occurs in the beam information fed back by the receiver 110, and an acknowledgment (ACK) signal when the error does not occur to the terminal.
  • NACK negative acknowledgment
  • ACK acknowledgment
  • the acknowledgment signal is transmitted using the beam information received without error in the current Nth feedback step, and the NACK signal transmits the most recently successfully updated beam information among the Nth previous time points. To transmit.
  • the transmitting device 100 transmits an acknowledgment signal in the p-th time interval and transmits a negative response signal in the q-th time interval. That is, in the case of an affirmative response, a signal is transmitted only in the p-th time interval, but no signal is transmitted in the q-th time interval. In case of a negative response, the signal is transmitted only in the q-th time period and no signal is transmitted in the p-th time period. Since the signal transmission resource position indicates the information of the acknowledgment (ACK) and the negative response (NACK), the same signal can be transmitted regardless of the time interval (signal transmission resource position). Alternatively, in the case of a positive response, the signal may be transmitted in both the p and q time periods, and in the case of a negative response, the NACK signal may be transmitted in both the p and q time periods.
  • the above method is a method for supporting a terminal having one reception chain, but is not necessarily limited to one terminal reception chain.
  • the terminal when an acknowledgment (ACK) signal transmitted from the base station is received by the terminal and an error occurs and the signal is interpreted as a negative acknowledgment (NACK) signal, the terminal may perform a specific timing or a specific timing.
  • the base station command to retransmit beam information is not received, it may be determined that there is an error in the negative acknowledgment (NACK) signal, and may be corrected again by the positive acknowledgment (ACK) signal.
  • the base station transmits beam information to the terminal
  • the base station receives an acknowledgment (ACK) signal and an error occurs when the base station receives the signal
  • the base station again transmits the beam information to the terminal.
  • the base station When an error occurs when the terminal receives the negative response signal transmitted by the base station and interprets it as a positive response signal, the base station requests the terminal to retransmit beam information. Since the request for retransmission is transmitted based on the transmission beam information most recently received by the base station, the terminal preferably receives the reception beam suitable for the transmission beam. Therefore, when the terminal detects the positive signal, the terminal may update the beam information after a specific time interval instead of immediately updating the beam information.
  • the specific time interval should be set larger than the time interval enough for the base station to request retransmission to the terminal.
  • the base station interprets the negative response signal transmitted by the terminal as a positive response signal when the base station receives an error, if the base station does not retransmit the beam information within a specific time, the terminal determines that the base station has received an error when receiving the negative response signal.
  • the beam information retransmission request may be requested to the base station by using a beam information retransmission request message / channel.
  • FIG. 5 is a signal flow diagram when a response signal is transmitted between a transmitting device and a receiving device according to another embodiment of the present invention.
  • the transmitting device 100 generates and transmits a reference signal in step 500.
  • the reference signal generated by the transmitter 100 may be a signal mutually known between the transmitter 100 and the receiver 110 as described above.
  • the transmitter 100 according to the present invention may transmit reference signals in all directions that can be transmitted by the transmitter 100, for example, M directions of FIG. 1.
  • the transmitter 100 may transmit identification information for each transmission beam in each direction. For example, when the number of directions in which the transmission apparatus 100 can beamform M is M, the identification information for distinguishing the respective transmission beams may be added to each of the transmission beams from the first beam to the M beam.
  • the reception apparatus 110 may measure respective beams received from the transmission apparatus 100 and select an optimal beam in step 502. As illustrated above, when the transmitting apparatus 100 performs beamforming in M directions, the receiving apparatus 110 may perform receiving beamforming. When a specific transmitting beam beamforms in a specific receiving beam direction, the signal quality is the best. can do. In this case, the receiving device 110 receives and receives beams beam-forming in a plurality of directions by the transmitting device 100 in a beam-forming manner. Accordingly, the reception device 110 may determine the quality of each of the received transmission beams by receiving the beam beam forming. The reception device 110 may use a signal-to-interference noise ratio (SINR), a reception power intensity (RSSI), or a combination of two or more methods to select an optimal beam.
  • SINR signal-to-interference noise ratio
  • RSSI reception power intensity
  • the receiving apparatus which receives the reference signal including the identification information for each transmission beam measures the quality of each transmission beam and determines L beams that can be used. Thereafter, the receiving device 110 may generate information about L beams available in step 504, for example, information including identification information of each selected beam and / or quality information of the selected beam, and may feed back to the transmitting device 100. have. In this case, the reception device 110 may insert and transmit a code, for example, a CRC code, that detects an error of the transmission beam identifier information when feeding back the identifier information of the transmission beam to the transmission device 100.
  • a code for example, a CRC code
  • the transmitting device 100 may receive a feedback signal from the receiving device 110 in step 504, and proceed to step 506 to check the CRC code included in the transmission beam identifier information.
  • the feedback signal may include information including identification information of each selected beam and / or quality information of the selected beam.
  • the transmitting device 100 determines the number of beams to be used when an error does not exist.
  • the determined number of beams may determine beams to be used for communication based on the L pieces of information reported as capable of data communication from the receiving device 110.
  • step 508 there may be three cases of step 508a, step 508b and step 508c.
  • the transmission apparatus 100 checks the CRC code in step 506 and there is an error, it may be a case of requesting retransmission.
  • the transmitting device 100 may proceed to step 508a and request retransmission of beam information through a resource allocation control channel (PDCCH). That is, if an error does not exist as a result of checking the CRC code, retransmission is not requested through the PDCCH only when an error exists.
  • the transmitting device 100 may request retransmission using a transmission beam successfully updated between the transmitting device 100 and the receiving device 110 at the most recent previous time.
  • the receiving device 110 since the receiving device 110 knows that the transmitting device 100 will transmit the PDCCH requesting retransmission by using the successfully transmitted transmission beam between the transmitting device 100 and the receiving device 110 at the most recent previous time, the receiving device suitable for the corresponding transmission beam The PDCCH can be monitored and received using.
  • the reception device 110 may assume that the feedback signal of the transmission beams selected for the Nth received reference signal has been successfully received by the transmission device 100. Alternatively, the reception device 110 may monitor and transmit the PDCCH to the transmission beams transmitted during the N-th transmission / reception beam selection process and the transmission beam successfully updated between the transmission device 100 and the reception device 110 among the previous time points. All suitable receive beams may be monitored and received.
  • the transmitting device 100 is a case where the L beam information of the L beams is successfully received by the optimal beam available from the receiving device 110 in step 504.
  • the transmitting device 100 may use all of the L transmission beams selected by the receiving device 110, or may use only some of the L transmission beams.
  • the transmitting device 100 may provide the receiving device 110 with information about the S beams having a number less than or equal to L to be used by the transmitting device 100 among the L transmission beam identifiers fed back by the receiving device 100 in step 508b through the PDCCH. have.
  • S may be an integer of "1" or more.
  • the transmission device 100 may include a CRC for detecting an error in the information transmitted on the PDCCH. Accordingly, the receiving device 110 may demodulate and decode the PDCCH in operation 510 and may determine whether the received data has an error through the received CRC check. In operation 510, when the reception apparatus 110 determines an error, the PDCCH is received through the beam selected in the Nth transmission / reception beam selection process. Therefore, when there is no error as a result of performing a CRC check on the received PDCCH, the receiving device 110 may assume that the feedback of the transmission beams has been successfully received by selecting from the Nth reference signal.
  • the reception device 110 selects the best beams in the Nth transmission / reception beam selection process before the predetermined time from the transmission device 100 and informs the transmission device 100 of the best beams. If it is.
  • the transmitting device 100 may receive information on the optimal beam received in step 506, and if there is no error in the CRC check result, in step 508c, may transmit a PDCCH signaling a general resource allocation. That is, the PDCCH is successfully received through the transmission beams transmitted from the receiving device 110 to the transmitting device 100.
  • the receiving device (terminal) 110 when the receiving device (terminal) 110 receives the PDCCH signaling such a general resource allocation, the receiving device (terminal) 110 transmits the beam information transmitted to the transmitting device (base station) 100 in the Nth transmission / reception beam selection process by the transmitting device 100. Assume that it was received successfully. However, this case may be applied to the case where the transmission beam information transmitted during the N th transmission beam selection process and the transmission beam successfully updated between the transmission device 100 and the reception device 110 among the previous time points are different.
  • step 520 illustrates a time point for transmitting the reference signal after step 500, and after step 512 can transmit and receive packet data in the set beam direction.
  • FIG. 6 is a functional internal block diagram of a transmitter according to an embodiment of the present invention.
  • the transmitter 100 may include a transmitter beamformer 601, a transmitter error detector 603, a transmitter memory 605, and a transmitter controller 611.
  • the respective transmit antennas TX_ANT_1, TX_ANT_2,... , TX_ANT_N may be connected to the transmitter beam shaping unit 601.
  • the transmitter beam shaping unit 601 multiplies the reference signal to be transmitted by factors for beam forming and transmits the antennas TX_ANT_1, TX_ANT_2,... Can be output as TX_ANT_N. Accordingly, the antennas TX_ANT_1, TX_ANT_2,... In TX_ANT_N, the beam may be shaped in various directions.
  • the transmitter beam shaping unit 601 converts the baseband signal to be transmitted into a band set for communication, for example, and transmits the antennas TX_ANT_1, TX_ANT_2,... , And a band-down conversion of the signal received by beamforming in TX_ANT_N.
  • the transmitter beam shaping unit 601 may receive data transmitted to at least one or more specific transmission beams through at least one or more specific reception beam shaping under the control of the transmitter control unit 611 to be described later. In this case, the transmitter beam shaping unit 601 may perform the reception beam shaping in a specific direction to receive the transmission beam in a specific direction under the control of the transmitter control unit 611.
  • the signal received by beam shaping in the transmitter beam shaping unit 601 is input to the transmitter error detection unit 603.
  • the transmitter error detection unit 603 may check whether there is an error of data received through a specific transmission / reception beamforming under the control of the transmitter control unit 611.
  • the error checking of the data may be the CRC checking described above.
  • the transmitter error detector 603 may provide the error check result information and / or information received through the transmission / reception beam to the transmitter controller 611.
  • the transmitter error detection unit 603 transmits information indicating that there is no error and information received through transmission / reception beam shaping, for example, identifier information of a specific transmission beam. It may be provided to the device controller 611. If an error exists in the information received as a result of the error check, the transmitter error detector 603 may provide only the information or indicator indicating that the error exists to the transmitter controller 611.
  • the transmitter control unit 611 may control the transmitter beam shaping unit 601 to perform the shaping of the transmission beam and the shaping of the reception beam. Such beam shaping may be performed according to the method described above with reference to FIGS. 1 to 5.
  • the identifier information about the transmission beam is received from the receiving apparatus 110 without error after transmitting the Nth reference signal, it may be controlled to store the received identifier information in the transmitting apparatus memory 605.
  • the transmitter memory 605 has an area for storing data necessary for overall control of the transmitter 100, data generated during control and identifier information for the transmission beam, and transmission beam identifier history information controlled to be stored by the transmitter controller 611. Can be.
  • the transmitter memory 605 may store information of a transmission beam successfully updated between the transmitter 100 and the receiver 110 at the most recent previous time.
  • the transmitter control unit 611 may set an optimal beam according to the method of FIGS. 2 to 5 described above by using the information stored in the transmitter apparatus 605.
  • FIG. 7 is a functional internal block diagram of a receiving apparatus according to an embodiment of the present invention.
  • the receiving apparatus 110 may include a receiving apparatus beam forming unit 701, a receiving apparatus beam quality measuring unit 703, a receiving apparatus memory 705, and a receiving apparatus controller 711.
  • the respective reception antennas RX_ANT_1, RX_ANT_2,... , RX_ANT_N may be connected to the receiver beam shaping unit 701.
  • the receiver beam shaping unit 701 receives the RX_ANT_1, RX_ANT_2,... Antennas for beamforming a signal to be transmitted in a specific direction. , RX_ANT_N can be output by multiplying the factors. Accordingly, the reception antennas RX_ANT_1, RX_ANT_2,... In RX_ANT_N, the transmission beam and the reception beam can be shaped in various directions.
  • the receiver beam shaping unit 701 converts the baseband signal to be transmitted into a band set for communication by using a radio processor, for example, and transmits RX_ANT_1, RX_ANT_2,... And a band down conversion of the signal received by beamforming in RX_ANT_N.
  • the receiver beam shaping unit 701 may receive data transmitted to at least one or more specific transmission beams through at least one or more specific reception beam shaping under the control of the receiver control unit 711 to be described later. In this case, the receiver beam shaping unit 701 may perform the reception beam shaping in a specific direction in order to receive the transmission beam in a specific direction under the control of the receiver control unit 711.
  • the signal received by beam shaping at the receiver beam shaping unit 701 is input to the receiver beam quality measuring unit 703.
  • the receiver beam quality measurer 703 measures the quality of each transmission beam under the control of the receiver controller 711. For example, when the transmitting device 100 performs beamforming in two directions and the receiving device 110 performs beamforming in two directions, a number of four cases occurs. Corresponding to each of the above cases, a pair of a transmission beam and a reception beam having a reception quality above a predetermined threshold may be found among the received signals. As such, information on a pair of a transmission beam and a reception beam having a reception quality higher than or equal to a threshold value is provided to the reception device controller 711.
  • the reception device controller 711 may configure data to provide optimal transmission beam information to the transmission device 100 according to the method of FIGS. 2 to 5 described above.
  • the reception device controller 711 may include error detection information to enable error detection of the transmission beam information.
  • the information thus configured may be provided to the transmitting device 100 through the receiving device beam shaping unit 701. Since the detailed description of this operation has already been described above, the redundant description will be omitted.
  • the receiving device memory 705 stores data necessary for overall control of the receiving device 110, data generated during control, identifier information on the transmission beam, identifier information on the receiving beam, and various information controlled to be stored by the receiving device controller 711. It can have an area for In addition, the receiving device memory 705 may store information of a transmission beam successfully updated between the transmitting device 100 and the receiving device 110 at the most recent previous time.
  • the present invention can be used in a wireless communication system using a beam forming method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 제공될 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명의 실시예에 따른 송신 방법은, 빔 포밍 방식으로 무선 통신을 수행하는 무선 통신 시스템의 송신 장치에서 통신을 수행하기 위한 방법으로, 송신할 수 있는 모든 송신 빔 방향에 대하여 식별자를 부여하고 각 방향별로 할당된 빔 식별자와 기준 신호를 송신하는 단계; 수신 장치로부터 수신이 가능한 빔 방향에 대한 식별자 정보와 오류 검출 정보가 수신될 시 상기 오류 검출 정보를 검사하여 오류 존재 유무를 검사하는 단계; 및 상기 검사된 오류 존재 유무에 따라 상기 수신 장치로 응답 신호를 송신하고, 상기 오류 검출 정보 검사 결과 오류가 존재하지 않을 시 상기 수신된 빔 정보를 기반으로 데이터 송수신을 수행하는 단계;를 포함할 수 있다.

Description

빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
본 발명은 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템에 관한 것으로, 특히 빔 포밍 시스템에서 송수신 장치간 빔 포밍 정보를 획득하기 위한 방법 및 시스템에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
최근 정보화 시대에 접어들면서, 다양한 분야에서 처리되는 정보의 양의 증가는 물론, 질적인 부분에서도 크게 향상되고 있다. 이에 따라 예전에는 적은 양의 데이터만으로도 정보를 전달할 수 있었으나, 점점 보다 많은 데이터의 처리가 요구되고 있다. 이처럼 양적, 질적인 팽창에 따라 무선 통신 시스템에서도 데이터 트래픽(traffic)의 수요가 증가하고 있다. 이러한 현상을 충족하기 위해 무선 통신 시스템은 보다 높은 데이터 전송률을 지원하는 방향으로 발전하고 있다.
현재 상용화가 시작되는 4G(4th Generation) 무선 통신 시스템은 데이터 전송률 증가를 위해 주로 주파수 효율성(spectral efficiency)을 개선하는 방향으로 기술 개발을 추구하였다. 그러나 상기 주파수 효율성 개선 기술만으로는 폭증하는 무선 데이터 트래픽 수요를 만족시키기 어렵게 되었다.
이러한 문제를 해결하기 위한 하나의 방안으로서, 매우 넓은 주파수 대역을 사용하는 방안이 있다. 하지만 현재 이동 통신 셀룰러(cellular) 시스템에서 사용되는 주파수 대역은 일반적으로 10GHz이하로서, 넓은 주파수 대역 확보가 매우 어렵다. 따라서 더 높은 주파수 대역에서 광대역 주파수를 확보해야 할 필요성이 있다. 하지만 더 높은 주파수 대역에서 광대역 주파수를 확보하는 것만으로는 현실적으로 모든 문제를 해결할 수 없다. 왜냐하면, 무선 통신을 위해 보다 높은 주파수 대역을 사용할수록 전파의 경로 손실이 증가하기 때문이다.
높은 대역의 주파수를 사용하면, 보다 넓은 주파수 대역의 확보는 가능해지는 이점이 있지만, 전파 도달거리는 상대적으로 짧아지며, 이에 따라 서비스 영역(coverage)이 감소한다. 따라서 전파 도달거리가 짧아져 서비스 영역이 감소하는 문제를 해소해야만 한다.
높은 대역의 주파수 사용으로 인해 발생하는 전파의 경로 손실을 완화하고, 서비스 영역의 감소를 해소하기 위한 방법의 하나로 빔 포밍(beam forming) 기술이 있다. 빔 포밍 기법은 주체에 따라 2가지로 구분할 수 있다. 예컨대, 빔 포밍 기법을 송신 장치에서 수행하는 송신 빔 포밍 기법과 빔 포밍 기법을 수신 장치에서 수행하는 수신 빔 포밍 기법으로 구분할 수 있다.
이러한 송신 빔 포밍 또는 수신 빔 포밍을 위해서는 다수의 안테나들이 집합된 안테나 어레이(antenna array) 형태를 가지며, 안테나 어레이에 포함된 각각의 안테나들은 어레이 엘레먼트(array element)가 된다. 안테나 어레이의 형태는 선형 어레이(linear array), 평면 어레이(planar array) 등 다양한 형태로 구현할 수 있다.
송신 빔 포밍 방법은 일반적으로, 다수의 안테나를 이용하여 전파의 도달 영역을 특정한 방향으로 집중시켜 지향성(directivity)을 증대시키는 방식이다. 송신 빔 포밍 방법을 사용하면 신호의 지향성을 증대시켜 전파의 도달 거리를 증가시킬 수 있다. 나아가, 지향되는 방향 이외의 다른 방향으로는 신호가 거의 전송되지 않기 때문에 수신 장치 측면에서는 신호 간섭을 크게 감소시킬 수 있다.
수신 빔 포밍 방법은 수신 안테나 어레이를 이용하여 수신 신호에 대한 빔 포밍을 수행하는 방식이다. 수신 빔 포밍은 전파의 수신을 특정 방향으로 집중시켜 해당 방향으로 들어오는 수신 신호 감도를 증가시킬 수 있다. 또한 해당 방향 이외의 방향에서 들어오는 신호를 수신 신호에서 배제할 수 있다. 따라서 수신 장치는 특정 방향의 이득은 증대시키고, 다른 방향의 간섭 신호를 차단할 수 있다.
이상에서 상술한 빔 포밍 기법을 사용하는 경우 송신 장치와 수신 장치간 빔 포밍에 대한 정보를 공유해야만 트래픽의 송수신을 수행할 수 있다. 가령, 송신 장치에서의 송신 빔 포밍 방향과 수신 장치에서의 수신 빔 포밍 방향이 서로 다른 경우 상호간 데이터 송수신이 불가능하거나 또는 채널 상황이 매우 열악한 것으로 판단할 수 있다. 따라서 송신 빔 포밍 또는/및 수신 빔 포밍을 사용하는 장치들 상호간 빔 포밍에 대한 정보를 공유해야만 트래픽을 효율적으로 송/수신할 수 있다.
따라서 본 발명에서는 송신 장치와 수신 장치 간 빔 포밍 정보를 공유하기 위한 방법 및 시스템을 제공한다.
또한 본 발명에서는 송신 장치와 수신 장치 간 빔 포밍 오류를 최소화하기 위한 방법 및 시스템을 제공한다.
본 발명의 실시예에 따른 송신 방법은, 빔 포밍 방식으로 무선 통신을 수행하는 무선 통신 시스템의 송신 장치에서 통신을 수행하기 위한 방법으로, 송신할 수 있는 모든 송신 빔 방향에 대하여 식별자를 부여하고 각 방향별로 할당된 빔 식별자와 기준 신호를 송신하는 단계; 수신 장치로부터 수신이 가능한 빔 방향에 대한 식별자 정보와 오류 검출 정보가 수신될 시 상기 오류 검출 정보를 검사하여 오류 존재 유무를 검사하는 단계; 및 상기 검사된 오류 존재 유무에 따라 상기 수신 장치로 응답 신호를 송신하고, 상기 오류 검출 정보 검사 결과 오류가 존재하지 않을 시 상기 수신된 빔 정보를 기반으로 데이터 송수신을 수행하는 단계;를 포함할 수 있다.
본 발명의 실시예에 따른 수신 방법은, 빔 포밍 방식으로 무선 통신을 수행하는 무선 통신 시스템의 수신 장치에서 통신을 수행하기 위한 방법으로, 수신할 수 있는 모든 수신 빔 방향으로부터 기준 신호를 송신하여 신호의 품질을 검사하는 단계; 상기 수신된 빔 방향 중 통신이 가능한 품질을 갖는 빔 방향을 선택하는 단계; 상기 선택된 빔 방향의 송신 빔 식별자와 오류 검사를 위한 정보를 포함한 피드백 신호를 상기 송신 장치로 송신하는 단계; 및 상기 송신 장치로부터 수신된 응답 신호에 따라 통신할 빔 방향을 결정하는 단계;를 포함할 수 있다.
본 발명에 따른 장치 및 방법을 사용하면, 송신 빔 포밍 또는/및 수신 빔 포밍을 사용하는 장치들 상호간 빔 포밍에 대한 정보를 공유할 수 있어 트래픽을 효율적으로 송/수신할 수 있으며, 송신 장치와 수신 장치 간 빔 포밍 오류를 최소화할 수 있다.
도 1은 본 발명이 적용되는 무선 통신 시스템에서 빔 포밍을 설명하기 위한 개념도,
도 2는 본 발명의 일 실시 예에 따라 송신 장치와 수신 장치간 빔 포밍 정보를 공유하기 위한 신호 흐름도,
도 3은 본 발명의 일 실시 예에 따라 송신 장치와 수신 장치간 응답 신호를 빔 포밍하여 송신하는 경우의 신호 흐름도,
도 4는 본 발명의 다른 실시예에 따라 송신 장치와 수신 장치간 응답 신호를 빔 포밍하여 송신하는 경우의 신호 흐름도,
도 5는 본 발명의 본 발명의 또 다른 실시 예에 따라 송신 장치와 수신 장치간 응답 신호 송신하는 경우의 신호 흐름도,
도 6은 본 발명의 일 실시 예에 따른 송신 장치의 기능적 내부 블록 구성도,
도 7은 본 발명의 일 실시 예에 따른 수신 장치의 기능적 내부 블록 구성도.
이하, 첨부된 도면들을 참조하여 다양한 실시예들을 상세히 설명한다. 이때, 첨부된 도면들에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 이하에 첨부된 본 발명의 도면은 본 발명의 이해를 돕기 위해 제공되는 것으로, 본 발명의 도면에 예시된 형태 또는 배치 등에 본 발명이 제한되지 않음에 유의해야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 하기의 설명에서는 본 발명의 다양한 실시 예들에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
도 1은 본 발명이 적용되는 무선 통신 시스템에서 빔 포밍을 설명하기 위한 개념도이다.
도 1을 참조하면, 송신 장치 100과 수신 장치 110간 미리 결정된 무선 채널을 통해 데이터 또는/및 신호를 송수신할 수 있다. 송신 장치 100과 수신 장치 110간은 설명의 편의를 위해 송신 및 수신을 구분하였을 뿐 양자가 모두 송신 및 수신이 가능하다. 예컨대, 송신 장치 100에서 수신 장치 110로 특정한 데이터 또는 신호를 송신하는 경우에는 송신 장치 100이 송신 장치로써 동작하지만, 수신 장치 110이 송신한 데이터 또는 신호를 수신하는 경우에 송신 장치 100은 수신 장치로써 동작한다. 이는 수신 장치 110 또한 동일하게 이해될 수 있다. 예컨대, 수신 장치 110은 송신 장치 100으로부터 데이터 또는 신호를 수신하는 경우에 수신 장치로써 동작하지만, 송신 장치 100으로 데이터 또는 신호를 송신하는 경우에는 송신 장치로써 동작한다.
또한 본 발명에 따른 송신 장치 100과 수신 장치 110은 모두 빔 포밍을 수행할 수 있는 전자장치로, 다수의 안테나들을 포함한다. 예컨대, 송신 장치 100은 제1송신 안테나(TX_ANT_1), 제2송신 안테나(TX_ANT_2), …, 제N송신 안테나(TX_ANT_N)를 포함한다. 수신 장치 110 또한 제1수신 안테나(RX_ANT_1), 제2수신 안테나(RX_ANT_2), …, 제N송신 안테나(RX_ANT_N)를 포함한다. 일반적으로 송신 장치와 수신 장치간 무선 채널을 통해 통신하는 경우 송신 장치와 수신 장치는 동일한 개수의 안테나를 가질 수 있으며, 만일 서로 다른 개수의 안테나를 갖는 경우 예컨대, 송신 장치 100의 안테나 수가 Nt개이며, 수신 장치 110의 안테나 수가 Nr개이면, 송신 장치 100에서 동시에 전송할 수 있는 최대 스트림 수는 Nt와 Nr의 값 중 적은 개수의 안테나를 갖는 값에 따라 최대 스트림을 전송할 수 있다. 이하의 설명에서는 설명의 편의를 위해 송신 장치 100과 수신 장치 110간 동일한 개수의 안테나를 갖는 경우를 가정하여 설명하기로 한다.
또한 도 1을 참조하면, 송신 장치 100은 다양한 방향으로 빔들(11, 12, …, 1M)을 송신할 수 있다. 또한 수신 장치 110 또한 다양한 방향으로부터 수신되는 빔들(21, 22, …, 2M)을 수신할 수 있다. 도 1에서는 송신 장치 100이 송신할 수 있는 빔의 방향의 개수와 수신 장치 110이 수신할 수 있는 빔의 방향의 개수는 서로 같은 경우를 예시하였다.
또한 도 1의 예시에서는 하나의 송신 장치와 하나의 수신 장치간 통신을 설명하기 위해 송신 장치와 수신 장치를 하나씩만 도시하였다. 하지만, 이동통신 시스템의 기지국과 휴대용 단말기와 같이 다중접속 방식을 이용하여 1:N의 통신이 가능함은 자명하다.
도 2는 본 발명의 일 실시 예에 따라 송신 장치와 수신 장치간 빔 포밍 정보를 공유하기 위한 신호 흐름도이다.
송신 장치 100은 200단계에서 기준 신호(reference signal)를 생성하여 송신한다. 이때, 송신 장치 100이 생성하는 기준 신호는 송신 장치 100과 수신 장치 110간 상호 알고 있는 신호가 될 수 있다. 또한 본 발명에 따른 송신 장치 100은 200단계에서 송신 장치 100이 송신할 수 있는 모든 방향 예컨대, 도 1의 M개의 방향으로 기준 신호를 송신할 수 있다. 이때, 송신 장치 100은 기준신호(reference signal)를 생성하여 빔 포밍하여 송신할 시 빔 포밍할 수 있는 각 방향을 식별하기 위한 식별정보(또는 식별자)를 부가하여 송신할 수 있다. 따라서 송신 장치 100가 M개의 방향으로 빔 포밍을 수행할 수 있는 경우 빔 포밍 방향을 식별하기 위한 식별정보는 M가지의 경우를 식별할 수 있어야 한다. 또한 송신 장치 100은 기준신호와 빔 방향을 식별하기 위한 식별정보를 포함한 신호를 각 방향으로 빔 포밍하여 송신할 수 있다.
이처럼 식별정보를 포함하는 기준 신호가 송신되면, 수신 장치 110은 202단계에서 송신 장치 100으로부터 수신된 빔들을 측정하고, 최적의 빔을 선택할 수 있다. 앞서 예시한 바와 같이 송신 장치 100이 M개의 방향으로 빔 포밍을 하는 경우 수신 장치 110은 수신 빔 포밍을 수행할 수 있으며, 특정한 송신 빔이 특정한 수신 빔 방향으로 빔 포밍하는 경우 신호의 품질이 가장 우수할 수 있다. 이때, 수신 장치 110은 송신 장치 100이 빔 포밍하여 다수의 방향으로 송신한 빔들에 대하여 다수의 방향으로 수신 빔 포밍하여 수신할 수 있다. 따라서 수신 장치 110은 수신 빔 포밍되어 수신된 각 송신 빔들에 대한 품질을 결정할 수 있다. 수신 장치 110은 품질 결정 시 신호대비 간섭 잡음비(SINR)를 이용할 수도 있고, 수신 전력의 세기(RSSI)를 이용할 수도 있으며, 둘 이상의 방법을 조합하여 최적의 빔을 선택할 수도 있다.
이처럼 송신 빔과 수신 빔에 대하여 최적의 빔이 선택되면, 수신 장치 110은 204단계에서 송신 빔에 대한 식별자 정보만을 또는 송신 빔에 대한 식별자 정보와 수신 빔에 대한 정보를 함께 송신 장치 100으로 피드백(feedback)할 수 있다. 이때, 수신 장치 110은 송신 장치 100으로 송신 빔에 대한 식별자 정보를 피드백할 시 송신 빔 식별자 정보의 오류를 검출할 수 있는 코드 예컨대, CRC 코드를 삽입하여 송신할 수 있다. 이러한 방법은 송신 빔에 대한 식별자 정보를 하나의 메시지로 구성하여 송신하는 경우에 CRC 코드를 사용할 수 있다. 다른 방법으로, 송신 빔에 대한 식별자 정보를 피드백할 시 메시지 형식이 아닌 시퀀스(Sequence) 기반으로 송신 빔에 대한 식별자 정보를 피드백할 수도 있다. 이처럼 메시지 형식이 아닌 시퀀스 기반으로 송신 빔에 대한 식별자 정보를 피드백할 시 오류에 대한 정보는 임계값을 기반 방식으로 에러를 검출하도록 할 수도 있다.
그러므로 송신 장치 100은 204단계에서 수신 장치 110으로부터 송신 빔 식별자 정보가 포함된 피드백 신호를 수신하고, 206단계로 진행하여 송신 빔 식별자 정보에 포함된 CRC 코드를 검사할 수 있다. CRC 검사를 수행한 결과 만일 CRC 오류가 발생한 경우 송신 장치 100은 부정 응답 신호(NACK signal)를 생성하여 수신 장치 110으로 전송할 수 있다. 반면에 CRC 검사를 수행한 결과 만일 CRC 오류가 발생하지 않은 경우 송신 장치 100은 긍정 응답 신호(ACK signal)를 생성하여 수신 장치 110으로 전송할 수 있다.
송신 장치 100이 CRC 검사를 수행한 결과에 따라 부정 응답 신호 또는 긍정 응답 신호를 송신할 수도 있지만, 송신 장치 100이 부정 응답 신호에 기반한 동작을 수행할 수도 있다. 예컨대, 송신 장치 100이 수신 장치 110으로부터 수신된 송신 빔 식별자 정보에 포함된 CRC 코드를 검사한 결과 오류가 발생하지 않은 경우 긍정 응답 신호(ACK signal)를 송신하지 않도록 구성할 수도 있다. 즉, 송신 장치 100이 수신 장치 110으로부터 수신된 송신 빔 식별자 정보에 포함된 CRC 코드를 검사한 결과 오류가 발생한 경우에만 부정 응답 신호(NACK signal)를 송신하도록 구성하는 경우이다. 이처럼 본 발명에서는 부정 응답 및 긍정 응답을 모두 사용할 수도 있으며, 부정 응답에 기반하여 동작하도록 할 수도 있다. 또 다른 예로, 부정 응답 신호에 기반한 방법과 유사하게 긍정 응답 신호에 기반하여 동작할 수도 있다.
도 2의 예에서는 부정 응답 및 긍정 응답을 모두 사용하는 경우를 예시하였으며, 설명의 편의를 위해 부정 응답 및 긍정 응답을 모두 사용하는 경우를 기반으로 설명하기로 한다.
송신 장치 100은 206단계의 단계의 CRC 검사결과 오류가 발생한 경우 208단계로 진행하여 부정 응답 신호(NACK signal)를 수신 장치 110으로 송신한다. 이처럼 부정 응답 신호를 수신하면, 수신 장치 110은 210단계에서 최적의 빔 선택 정보를 재생성하고, 212단계로 진행하여 송신 빔 식별자 정보를 다시 피드백한다. 이때, 수신 장치 110은 210단계를 수행하지 않도록 구성할 수도 있다. 예컨대, 202단계에서 생성된 빔에 대한 정보를 미리 결정된 소정의 시간 버퍼 등에 저장하도록 하는 경우이다. 이러한 경우 수신 장치 110은 210단계를 수행하지 않고, 버퍼에 저장된 신호를 바로 재전송할 수도 있다. 또한 미리 결정된 소정의 시간은 가령, 송신 장치 100으로부터 부정 응답이 수신되기까지의 시간보다 약간 긴 시간이 될 수 있다.
이처럼 수신 장치 110이 212단계에서 송신 빔 식별자 정보를 다시 피드백하면, 송신 장치 100은 이를 수신하고, 214단계에서 다시 송신 빔 식별자 정보에 포함된 CRC 코드를 검사할 수 있다. 214단계의 송신 빔 식별자 정보를 검사한 결과 오류가 존재하지 않는 경우 송신 장치 100은 216단계에서 긍정 응답 신호를 생성하여 수신 장치 110으로 전송할 수 있다.
이상에서 설명한 동작은 송신 장치 100이 미리 설정된 주기 단위로 기준 신호를 송신하는 경우를 가정하였다. 따라서 송신 장치 100과 수신 장치 110간은 미리 설정된 주기 단위로 다양한 방향으로 빔 포밍된 기준 신호를 측정하고, 이에 대한 궤환 동작을 수행해야 한다. 즉, 송신 장치 100이 220단계에서 기준 신호 송신하는 동작은 앞서 설명한 200단계와 동일한 형태일 수 있으며, 미리 설정된 시간 단위로 이루어질 수 있다. 이처럼 기준 신호를 이용하여 송신 빔 포밍 및 수신 빔 포밍 방법을 결정한 이후 송신 장치 100과 수신 장치 110은 상호간 결정된 빔 포밍 정보에 근거하여 데이터 트래픽을 송신 및 수신할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 210단계 내지 216단계를 포함하지 않도록 구성할 수도 있다. 예컨대, 송신 장치 100이 수신 장치 110으로 송신하는 기준 신호의 송신 주기가 매우 짧은 경우 210단계 내지 216단계를 포함하지 않도록 구성할 수 있다. 이러한 경우 208단계의 부정 응답만을 송신하는 경우 뿐 아니라 부정 응답 신호와 긍정 응답 신호를 모두 송신하는 경우에도 동일하게 적용할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 수신 장치 110이 210단계 내지 212단계를 수행하는 횟수를 2회 또는 3회와 같이 제한을 둘 수도 있다. 가령, 수신 장치 110이 재송신을 2회 또는 3회 송신한 경우에도 송신 장치 100에서 CRC 검사 결과가 오류가 발생하는 경우 불필요한 시스템 자원의 낭비를 초래할 수 있기 때문이다. 그 외의 다른 이유로, 송신 장치 100이 다음 기준 신호의 송신 시점이 곧 도래하는 경우가 되는 경우에도 재송신 횟수를 제한할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 수신 장치 110은 송신 장치 100으로부터 미리 정해진 시간 이전에 N번째 송수신 빔 선택 과정에서 선택하여 송신 장치 100으로 전송한 송신 빔들을 통해 PDCCH가 성공적으로 수신되는 경우 수신 장치(단말) 110은 N번째 송수신 빔 선택 과정에서 송신 장치(기지국) 100으로 전송한 빔 정보가 송신 장치 100에서 성공적으로 수신되었다고 가정한다. 단, 이 경우는 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110 간 성공적으로 업데이트된 송신 빔과 N번째 송수신 빔 선택 과정에서 전송한 송신 빔 정보가 다른 경우에 적용할 수 있다.
이상에서 설명한 방법을 통해 송신 장치 100과 수신 장치 110 상호간 송신 빔 포밍 식별정보만을 또는 송신 빔 포밍 식별정보와 수신 빔 포밍 식별자를 함께 공유하게 되는 경우 수신 장치 110에서 보다 효율적으로 데이터를 수신할 수 있다. 결과적으로 이는 무선 통신 시스템의 효율을 증대시킬 수 있으며, 신뢰성을 향상시킬 수 있다.
이상에서 설명한 방법이 적용될 수 있는 시스템은 이동통신 시스템, WiFi 시스템 등 빔 포밍을 수행하는 다양한 무선 통신 시스템들이 적용될 수 있다. 이상에서 설명한 내용을 아래의 가정 하에 다시 살펴보기로 하자. 수신 장치 110을 무선 통신 시스템의 단말로 가정하고, 송신 장치 100을 무선 통신 시스템의 기지국으로 가정하자.
그러면 단말 110이 상향링크 컨트롤 채널(e.g. PUCCH 등) 송신 시 기지국과 단말 사이에 미리 정해진 송신 빔을 사용한다. 예를 들어, 상향링크 컨트롤 채널 전송 시 수신 장치(단말) 110은 송신 장치(기지국) 100이 가장 최근에 성공적으로 지시한 한 최적의 상향링크 송신 빔을 사용하고 송신 장치(기지국) 100은 해당 송신 빔에 대응하는 최적의 수신 빔을 사용하여 상향링크 컨트롤 채널을 수신한다.
이 밖의 경우에도 송신 장치(기지국) 100이 자원 할당 시 매번 명확(explicit)하게 송신 빔 정보를 지시하지 않는 경우에는 송신 장치(기지국) 100과 수신 장치(단말) 110 사이에 미리 정해진 송신 빔을 사용할 수 있다. 이처럼 운용 시나리오가 오류 없이 정상적으로 동작하기 위해서는 단말이 측정한 하향링크 최적 빔 정보 혹은 기지국이 측정한 상향링크 최적 빔 정보를 기지국 혹은 단말에게 전달 시 오류가 발생하지 않도록 하여 기지국과 단말 사이의 빔 정보가 일치하여야 한다.
또한 이상에서 예로써 설명한 내용은 주로 컨트롤 채널에 대한 운용 시나리오를 예로 들었지만 데이터 채널의 경우도 기지국과 단말 사이의 빔 정보가 일치하여야 보다 신뢰성 있는 통신이 가능하다.
기지국과 단말 사이의 빔 정보 불일치를 최소화하기 위해 빔 정보 피드백 시 앞서 설명한 바와 같이 메시지를 이용하는 경우 CRC 코드를 검사하는 방식으로, 시퀀스를 이용하는 경우 임계값에 기반하여 재전송 절차를 수행할 수 있다. 상향링크 송신 빔에 대한 피드백 절차는 하향링크와 동일하기 때문에 하향링크 송신 빔에 대한 피드백 절차를 기준으로 설명한다. 상향링크 채널과 하향링크 채널 상호간 상호관계(Reciprocity)가 성립할 시는 하향링크와 상향링크 송신 빔에 대한 피드백 절차 중 하나를 생략할 수 있다.
수신 장치(단말) 110은 송신 장치(기지국) 100이 전송하는 레퍼런스 신호를 통하여 소정 개수의 하향링크 빔을 선택하고, 선택된 빔에 대한 정보를 상향링크를 통해 기지국으로 피드백 할 수 있다. 여기서 소정 개수는 1개 이상의 값이 될 수 있으며, 개수의 결정은 기지국이 단말에게 사전에 지시하거나 표준 규격에 정해져 있는 값이 될 수 있다. 또한 하향링크 빔을 선택하는 기준은, 신호 세기, 신호대비 간섭 잡음비(SINR) 등이 될 수 있으며, 선택된 하향링크 빔은 상기한 기준을 이용하여 선택된 최적의 빔이 될 수 있다. 따라서 선택된 하향링크 빔은, 앞서 설명한 바와 같이 하향링크 빔을 식별할 수 있는 식별자 또는 인덱스 정보일 수 있다.
또한 앞서 설명한 바와 같이 수신 장치(단말) 110이 피드백한 빔 정보에는 CRC 코드가 부가(Attach)되어 있기 때문에 송신 장치(기지국) 100은 CRC 검사(check)를 통해 단말이 피드백한 빔 정보가 오류 없이 수신되었는지 확인한다. 다른 실시 예로 수신 장치(단말) 110이 피드백한 빔 정보에 CRC가 부가되어 있지 않는 경우 송신 장치(기지국) 100은 구현 알고리즘을 통해 수신 장치(단말) 110이 피드백한 빔 정보의 오류 가능성을 판단할 수도 있다. 일반적으로 CRC를 사용하는 경우가 더욱 높은 오류 검출 신뢰성을 갖는다.
수신 장치(단말) 110이 피드백한 빔 정보의 오류 여부를 판단한 기지국은 다음 두 가지의 방법을 통해 오류 여부를 단말에게 전달할 수 있다. 첫 번째 방법은 긍정 응답/부정응답(ACK/NACK) 신호에 기반한 방법이 될 수 있다. 수신 장치(단말) 110이 피드백한 빔 정보가 오류 없이 수신된 경우 송신 장치(기지국) 100은 긍정 응답(ACK) 신호를 수신 장치(단말) 110으로 전송할 수 있다. 반면에 수신 장치(단말) 110이 피드백한 빔 정보에 수신 오류가 발생한 경우 송신 장치(기지국) 100은 부정 응답(NACK) 신호를 전송할 수 있다. 두 번째 방법은, 부정 응답(NACK) 신호에 기반한 방법으로 수신 장치(단말) 110이 피드백한 빔 정보에 오류가 발생한 경우에만 송신 장치(기지국) 100은 수신 장치(단말) 100에게 재전송을 요청한다. 이러한 두 번째 방법은 상향링크 송신 빔 피드백 절차에는 적용되기 어렵다.
상기 첫 번째 방법에서 NACK 신호를 수신한 단말은 미리 정의된 재전송 절차에 의해 빔 정보를 재전송한다. 미리 정의된 재전송 절차는 재전송 시점 고정 여부에 따라 동기식/비동기식(Synchronous/Asynchronous) HARQ, 자원 위치 및 크기의 변동 여부에 따라 적응적/비적응적(Adaptive/Non-adaptive) HARQ 등 다양하게 정의될 수 있다. 상기 두 번째 방법에서 재전송 요청을 수신한 단말은 기지국 요청 내용에 따라 빔 정보를 재전송한다.
상기 첫 번째 방법에서 단말이 긍정 응답(ACK) 신호를 받은 경우 해당 시점을 기준으로 기지국과 단말 사이의 빔 정보가 동시에 업데이트 되며, 두 번째 방법에서 단말이 재전송 요청을 정해진 특정 시점까지 받지 않은 경우 해당 시점을 기준으로 기지국과 단말 사이의 빔 정보가 동시에 업데이트 된다.
이후 기지국은 단말에게 레퍼런스 신호를 지속적으로 전송하고 단말은 빔 관련 정보를 측정한다. 그리고 단말은 해당 빔 정보를 기지국 요청에 의해 혹은 이벤트-트리거(Event-trigger) 방식으로 주기적 혹은 비주기적으로 기지국에 전송한다.
다음으로, 송신 장치 100이 수신 장치 110으로 긍정 응답 신호(ACK signal) 또는/및 부정 응답 신호(NACK signal)를 송신할 때에도 빔 포밍 방법을 사용할 수 있다. 이러한 경우 송신 장치 100과 수신 장치 110간 송/수신되는 응답 신호로 인한 간섭이 무선 통신 시스템 전체의 관점에서 매우 작아질 수 있다. 하지만, 이처럼 응답 신호를 빔 포밍 방법을 이용하여 송신하는 경우 긍정 응답(ACK signal) 또는 부정 응답(NACK signal)이 정상적으로 수신되지 않을 수 있는 확률이 증가한다. 왜냐하면, 긍정 응답(ACK signal) 또는 부정 응답(NACK signal)을 송수신하는 송신 빔과 수신 빔 상호간 매칭(align)이 정확하지 않은 경우 긍정 응답(ACK signal) 또는 부정 응답(NACK signal) 신호가 정상적으로 수신되지 않을 수 있기 때문이다. 따라서 이하에서 설명되는 본 발명의 실시예에서는 긍정/부정 응답 신호(ACK/NACK signal)를 빔 포밍을 이용하여 송신할 시 오류를 줄일 수 있는 방법에 대하여 살펴보기로 한다.
도 3은 본 발명의 일 실시 예에 따라 송신 장치와 수신 장치간 응답 신호를 빔 포밍하여 송신하는 경우의 신호 흐름도이다.
도 3을 참조하면, 송신 장치 100은 300단계에서 기준 신호(reference signal)를 생성하여 송신한다. 이때, 송신 장치 100이 생성하는 기준 신호는 앞서 설명한 바와 같이 송신 장치 100과 수신 장치 110간 상호 알고 있는 신호가 될 수 있다. 또한 본 발명에 따른 송신 장치 100은 300단계에서 송신 장치 100이 송신할 수 있는 모든 방향 예컨대, 도 1의 M개의 방향으로 기준 신호를 송신할 수 있다. 이때, 송신 장치 100은 각 방향의 송신 빔마다 식별정보를 포함하여 송신할 수 있다. 예컨대, 송신 장치 100이 빔 포밍할 수 있는 방향의 수가 M개인 경우 1번 빔부터 M번 빔까지 송신 빔 각각에 대하여 각각의 송신 빔들을 구별하기 위한 식별정보를 부가할 수 있다.
이처럼 각 송신 빔마다 식별정보를 포함한 기준 신호가 송신되면, 수신 장치 110은 302단계에서 송신 장치 100으로부터 수신된 각각의 빔들을 측정하고, 최적의 빔을 선택할 수 있다. 앞서 예시한 바와 같이 송신 장치 100이 M개의 방향으로 빔 포밍을 하는 경우 수신 장치 110은 수신 빔 포밍을 수행할 수 있으며, 특정한 송신 빔이 특정한 수신 빔 방향으로 빔 포밍하는 경우 신호의 품질이 가장 우수할 수 있다. 이때, 수신 장치 110은 송신 장치 100이 빔 포밍하여 다수의 방향으로 송신한 빔들을 다수의 방향으로 수신 빔 포밍하여 수신한다. 따라서 수신 장치 110은 수신 빔 포밍되어 수신된 각 송신 빔들에 대한 품질을 결정할 수 있다. 수신 장치 110은 품질 결정 시 신호대비 간섭 잡음비(SINR)를 이용할 수도 있고, 수신 전력의 세기(RSSI)를 이용할 수도 있으며, 둘 이상의 방법을 조합하여 최적의 빔을 선택할 수도 있다.
이처럼 최적의 빔이 선택되면, 수신 장치 110은 304단계에서 최적의 송신 빔에 대한 식별자 정보를 송신 장치 100으로 피드백(feedback)할 수 있다. 이때, 수신 장치 110은 송신 장치 100으로 송신 빔에 대한 식별자 정보를 피드백할 시 송신 빔 식별자 정보의 오류를 검출할 수 있는 코드 예컨대, CRC 코드를 삽입하여 송신할 수 있다. 이때에도 앞서 설명한 바와 같이 메시지 형식을 이용하여 송신 빔에 대한 식별자 정보를 송신하지 않고, 시퀀스 방식을 이용할 수도 있다. 시퀀스 방식을 사용하는 경우 앞서 설명한 바와 같이 임계값 기반 방법 등을 이용하여 오류를 검출할 수도 있다. 이하의 설명에서는 설명의 편의를 위해 메시지 형식을 이용하여 송신 빔에 대한 식별자 정보를 제공하는 경우를 가정하여 설명하기로 한다.
이에 따라 송신 장치 100은 304단계에서 수신 장치 110으로부터 수신된 송신 빔 식별자 정보가 포함된 피드백 신호를 수신하고, 306단계로 진행하여 송신 빔 식별자 정보에 포함된 CRC 코드를 검사할 수 있다. CRC 검사를 수행한 결과 만일 CRC 오류가 발생한 경우 송신 장치 100은 부정 응답 신호(NACK signal)를 생성하여 수신 장치 110으로 전송할 수 있다. 반면에 CRC 검사를 수행한 결과 만일 CRC 오류가 발생하지 않은 경우 송신 장치 100은 긍정 응답 신호(ACK signal)를 생성하여 수신 장치 110으로 전송할 수 있다.
또 다른 예로 수신 장치 110은 송신 장치 100으로부터 미리 정해진 시간 이전에 N번째 송수신 빔 선택 과정에서 선택하여 송신 장치 100으로 전송한 송신 빔들을 통해 PDCCH가 성공적으로 수신되는 경우 수신 장치(단말) 110은 N번째 송수신 빔 선택 과정에서 송신 장치(기지국) 100으로 전송한 빔 정보가 송신 장치 100에서 성공적으로 수신되었다고 가정한다. 단, 이 경우는 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110 간 성공적으로 업데이트된 송신 빔과 N번째 송수신 빔 선택 과정에서 전송한 송신 빔 정보가 다른 경우에 적용할 수 있다.
이때, 본 발명에서는 N번째 송신한 기준 신호에 대한 긍정 응답 또는 부정 응답 신호를 송신할 시 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔을 이용하여 응답 신호를 송신할 수 있다.
예컨대, N번째 송신한 기준 신호에 대한 긍정 응답 또는 부정 응답 신호를 송신할 시 N번째 기준 신호를 송신한 시점 이전 시점들 중 송신 장치 100과 수신 장치 110간 가장 최근에 성공적으로 갱신된 시점이 N-1번째 기준 신호에 의거하여 성공적으로 갱신된 경우 N-1번째 갱신된 빔 방향으로 부정 응답 또는 긍정 응답 신호를 송신할 수 있다. 다른 예로, N번째 기준 신호를 송신한 시점 이전 시점들 중 송신 장치 100과 수신 장치 110간 가장 최근에 성공적으로 갱신된 시점이 N-2번째 기준 신호에 의거하여 성공적으로 갱신된 경우 N-2번째 갱신된 방향으로 부정 응답 또는 긍정 응답 신호를 송신할 수 있다. 이처럼 송신 장치 100과 수신 장치 110간 성공적으로 갱신(update)된 상호간 이미 알고 있는 빔을 사용함으로써, 응답 신호의 송/수신 오류 확률을 줄일 수 있다.
또한 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 빔들이 둘 이상인 경우 송신 장치 100이 수신 장치 110으로 미리 어떠한 빔을 이용하여 부정응답 또는 긍정 응답을 송신할 것인지를 알려줄 수 있다.
또한 304단계의 송신 빔 식별자 정보를 피드백할 경우에도 위에서 설명한 바와 동일한 방법을 이용할 수 있다. 즉, 이전 시점들 중 가장 최근에 성공적으로 갱신된 빔 방향으로 송신 빔 식별자 정보를 피드백할 수 있다.
이러한 방법은 이후에도 계속적으로 이루어질 수 있다. 예컨대, 310단계 내지 318단계는 앞서 설명한 300단계 내지 308단계에 대응한다. 또한 도 3에서는 송신 방향이 설정된 이후 상호간 설정된 빔 포밍 방향으로 데이터 트래픽을 송신 또는 수신하는 동작은 생략되었음에 유의해야 한다.
도 4는 본 발명의 다른 실시예에 따라 송신 장치와 수신 장치간 응답 신호를 빔 포밍하여 송신하는 경우의 신호 흐름도이다.
도 4의 흐름도는 앞서 설명한 바와 동일한 동작 또는 유추할 수 있는 동작들 예컨대, 부정 응답을 송신한 이후의 재송신 동작 또는 설정된 빔 포밍 방향으로의 데이터 송신 및 수신에 대한 동작 등은 생략하였다.
도 4를 참조하면, 송신 장치 100은 400단계에서 기준 신호(reference signal)를 생성하여 송신한다. 이때, 송신 장치 100이 생성하는 기준 신호는 앞서 설명한 바와 같이 송신 장치 100과 수신 장치 110간 상호 알고 있는 신호가 될 수 있다. 또한 본 발명에 따른 송신 장치 100은 300단계에서 송신 장치 100이 송신할 수 있는 모든 방향 예컨대, 도 1의 M개의 방향으로 기준 신호를 송신할 수 있다. 이때, 송신 장치 100은 각 방향의 송신 빔마다 식별정보를 포함하여 송신할 수 있다. 예컨대, 송신 장치 100이 빔 포밍할 수 있는 방향의 수가 M개인 경우 1번 빔부터 M번 빔까지 송신 빔 각각에 대하여 각각의 송신 빔들을 구별하기 위한 식별정보를 부가할 수 있다.
이처럼 각 송신 빔마다 식별정보를 포함한 기준 신호가 송신되면, 수신 장치 110은 402단계에서 송신 장치 100으로부터 수신된 각각의 빔들을 측정하고, 최적의 빔을 선택할 수 있다. 앞서 예시한 바와 같이 송신 장치 100이 M개의 방향으로 빔 포밍을 하는 경우 수신 장치 110은 수신 빔 포밍을 수행할 수 있으며, 특정한 송신 빔이 특정한 수신 빔 방향으로 빔 포밍하는 경우 신호의 품질이 가장 우수할 수 있다. 이때, 수신 장치 110은 송신 장치 100이 빔 포밍하여 다수의 방향으로 송신한 빔들을 다수의 방향으로 수신 빔 포밍하여 수신한다. 따라서 수신 장치 110은 수신 빔 포밍되어 수신된 각 송신 빔들에 대한 품질을 결정할 수 있다. 수신 장치 110은 품질 결정 시 신호대비 간섭 잡음비(SINR)를 이용할 수도 있고, 수신 전력의 세기(RSSI)를 이용할 수도 있으며, 둘 이상의 방법을 조합하여 최적의 빔을 선택할 수도 있다.
이처럼 최적의 빔이 선택되면, 수신 장치 110은 404단계에서 최적의 송신 빔에 대한 식별자 정보를 송신 장치 100으로 피드백(feedback)할 수 있다. 이때, 수신 장치 110은 송신 장치 100으로 송신 빔에 대한 식별자 정보를 피드백할 시 송신 빔 식별자 정보의 오류를 검출할 수 있는 코드 예컨대, CRC 코드를 삽입하여 송신할 수 있다.
이때, 본 발명에서는 N번째 기준 신호에 대하여 선택된 빔에 대한 정보를 피드백할 시 N번째 기준 신호 수신 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔을 이용하여 응답 신호를 송신할 수 있다.
이에 따라 송신 장치 100은 404단계에서 수신 장치 110으로부터 수신된 송신 빔 식별자 정보가 포함된 피드백 신호를 수신하고, 406단계로 진행하여 송신 빔 식별자 정보에 포함된 CRC 코드를 검사할 수 있다. 이후 송신 장치 100은 408단계에서 CRC 코드를 검사한 결과 오류가 존재하지 않는가를 검사한다. 이는 수신 장치 110으로부터 수신된 데이터에 오류가 없는 경우가 될 수 있다. 이처럼 오류가 존재하지 않는 경우 송신 장치 100은 수신 장치 110으로부터 N번째 기준 신호를 측정하여 보고한 빔 방향을 통해 긍정 응답(ACK) 신호를 송신할 수 있다. 이는 수신된 신호가 정상적으로 수신된 경우이기 때문에 굳이 N번째 기준 신호 송신 이전 시점들 중 가장 최근에 성공적으로 갱신된 방향 즉, 채널 환경의 변화로 인하여 변경되었을 수 있는 방향으로 빔 포밍을 하지 않도록 함으로써 긍정 응답 신호를 보다 효율적으로 송신할 수 있다.
반면에 408단계에서 CRC 코드를 검사한 결과 오류가 존재하는 경우 412단계로 진행하여 N번째 기준 신호 송신 전의 시점들 중 가장 최근에 성공적으로 갱신된 방향으로 빔 포밍하여 부정 응답(NACK) 신호를 송신할 수 있다. 따라서 410단계 또는 412단계는 선택적으로 이루어지는 동작이 될 수 있다. 가령, 410단계가 수행되는 경우 412단계는 수행되지 않고, 412단계가 수행되는 경우 410단계가 수행되지 않는다.
또한 도 4와 같은 방법에서 수신 체인이 하나인 수신 장치(단말) 110을 지원하기 위해서는 다음과 같은 방법이 가능하다. 송신 장치(기지국) 100은 수신 장치 110이 피드백한 빔 정보에 에러가 발생하였을 경우는 부정 응답(NACK) 신호를, 에러가 발생하지 않았을 경우에는 긍정 응답(ACK) 신호를 단말에게 전송한다. 이때, 해당 긍정 응답(ACK) 신호는 현재 N번째 피드백 단계에서 에러 없이 수신한 빔 정보를 사용하여 전송하고, 부정 응답(NACK) 신호는 N번째 기준 신호 송신 시점 이전의 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔을 사용하여 송신할 수 있다. 수신 장치 110은 수신 체인이 하나이기 때문에 현재 n번째 피드백 시점에서 전송한 송신 빔에 대응되는 최적의 수신 빔을 이용하여 긍정 응답(ACK) 혹은 부정 응답(NACK) 신호를 수신한다.
수신 체인이 하나인 수신 장치 110을 지원하기 위한 또 다른 실시 예로 다음과 같은 방법이 있다. 송신 장치 100은 수신 장치 110이 피드백한 빔 정보에 에러가 발생하였을 경우는 부정 응답(NACK) 신호를, 에러가 발생하지 않았을 경우에는 긍정 응답(ACK) 신호를 단말에게 전송한다. 이때, 긍정 응답(ACK) 신호는 현재 N번째 피드백 단계에서 에러 없이 수신한 빔 정보를 사용하여 전송하고, 부정 응답(NACK) 신호는 N번째 이전 시점들 중 가장 최근에 성공적으로 갱신된 빔 정보를 사용하여 전송한다.
또한 수신 장치 110은 수신 체인이 하나이기 때문에 송신 장치 100이 긍정 응답 신호를 p번째 시간 구간에서 전송하고, 부정 응답 신호를 q번째 시간 구간에서 전송한다. 즉, 긍정 응답인 경우는 p번째 시간 구간에만 신호를 전송하고, q번째 시간 구간에는 신호를 전송하지 않는다. 또한 부정 응답인 경우는 q번째 시간 구간에만 신호를 전송하고 p번째 시간 구간에는 신호를 전송하지 않는다. 신호 전송 자원 위치가 긍정 응답(ACK), 부정 응답(NACK)의 정보를 나타내기 때문에 시간 구간(신호 전송 자원 위치)에 상관없이 동일한 신호를 전송할 수 있다. 또는 긍정 응답인 경우는 p, q번째 시간 구간에 모두 신호를 전송할 수 있고, 부정 응답인 경우 p, q번째 시간 구간에 모두 NACK 신호를 전송하는 것도 가능하다.
위의 방법이 수신 체인 하나인 단말을 지원하기 위한 방법이나 반드시 단말 수신 체인이 하나인 경우에만 한정되는 것은 아니다.
이상에서 설명한 송신 장치 100을 기지국으로, 수신 장치 110을 단말로 가정하여 부가적인 내용들을 더 살펴보기로 하자.
도 3 및 도 4의 실시 예에서 기지국이 전송한 긍정 응답(ACK) 신호를 단말에서 수신 시 오류가 발생하여 부정 응답(NACK) 신호로 해석한 경우, 단말은 특정 시간 이전에 혹은 특정 타이밍(timing)에 빔 정보를 재전송하라는 기지국 명령을 받지 못할 시 부정 응답(NACK) 신호에 오류가 있었음을 판단하고, 이를 다시 긍정 응답(ACK) 신호로 정정할 수 있다.
반대로 기지국이 단말에게 빔 정보를 전송하는 경우, 단말이 전송한 긍정 응답(ACK) 신호를 기지국이 수신 시 오류가 발생하여, 부정 응답(NACK) 신호로 해석한 경우, 기지국은 다시 단말에게 빔 정보를 재전송한다.
기지국이 전송한 부정 응답 신호를 단말이 수신 시 오류가 발생하여 긍정 응답 신호로 해석한 경우, 기지국은 빔 정보에 대한 재전송을 단말에게 요청한다. 재전송에 대한 요청은 기지국이 가장 최근에 성공적으로 수신한 송신 빔 정보를 기반으로 전송되기 때문에 단말은 해당 송신 빔에 적합한 수신 빔으로 수신하는 것이 바람직하다. 따라서 단말은 긍정 신호로 검출하였을 시 바로 빔 정보를 업데이트하는 것이 아니라 특정 시간 구간 이후에 업데이트 할 수 있다. 해당 특정 시간 구간은 기지국이 단말에게 재전송을 요청할 수 있을 정도의 시간 구간 보다 크게 설정되어야 한다.
반대로 단말이 전송한 부정 응답 신호를 기지국이 수신 시 오류가 발생하여 긍정 응답 신호로 해석한 경우, 기지국이 특정 시간 내에 빔 정보를 재전송해주지 않으면 단말은 기지국이 부정 응답 신호 수신 시 오류가 발생하였다고 판단하고 빔 정보 재전송 요청 메시지/채널 등을 활용하여 기지국에 빔 정보 재전송을 요청할 수 있다.
도 5는 본 발명의 본 발명의 또 다른 실시 예에 따라 송신 장치와 수신 장치간 응답 신호 송신하는 경우의 신호 흐름도이다.
도 5를 참조하면, 송신 장치 100은 500단계에서 기준 신호(reference signal)를 생성하여 송신한다. 이때, 송신 장치 100이 생성하는 기준 신호는 앞서 설명한 바와 같이 송신 장치 100과 수신 장치 110간 상호 알고 있는 신호가 될 수 있다. 또한 본 발명에 따른 송신 장치 100은 500단계에서 송신 장치 100이 송신할 수 있는 모든 방향 예컨대, 도 1의 M개의 방향으로 기준 신호를 송신할 수 있다. 이때, 송신 장치 100은 각 방향의 송신 빔마다 식별정보를 포함하여 송신할 수 있다. 예컨대, 송신 장치 100이 빔 포밍할 수 있는 방향의 수가 M개인 경우 1번 빔부터 M번 빔까지 송신 빔 각각에 대하여 각각의 송신 빔들을 구별하기 위한 식별정보를 부가할 수 있다.
이처럼 각 송신 빔마다 식별정보를 포함한 기준 신호가 송신되면, 수신 장치 110은 502단계에서 송신 장치 100으로부터 수신된 각각의 빔들을 측정하고, 최적의 빔을 선택할 수 있다. 앞서 예시한 바와 같이 송신 장치 100이 M개의 방향으로 빔 포밍을 하는 경우 수신 장치 110은 수신 빔 포밍을 수행할 수 있으며, 특정한 송신 빔이 특정한 수신 빔 방향으로 빔 포밍하는 경우 신호의 품질이 가장 우수할 수 있다. 이때, 수신 장치 110은 송신 장치 100이 빔 포밍하여 다수의 방향으로 송신한 빔들을 다수의 방향으로 수신 빔 포밍하여 수신한다. 따라서 수신 장치 110은 수신 빔 포밍되어 수신된 각 송신 빔들에 대한 품질을 결정할 수 있다. 수신 장치 110은 품질 결정 시 신호대비 간섭 잡음비(SINR)를 이용할 수도 있고, 수신 전력의 세기(RSSI)를 이용할 수도 있으며, 둘 이상의 방법을 조합하여 최적의 빔을 선택할 수도 있다.
이처럼 각 송신 빔마다 식별정보를 포함한 기준신호를 수신한 수신장치는 각 송신 빔들의 품질을 측정하고, 사용할 수 있는 L개의 빔을 결정한다. 이후 수신 장치 110은 504단계에서 사용할 수 있는 L개의 빔들에 대한 정보 예컨대, 선택된 각 빔의 식별정보들 또는/및 선택된 빔의 품질 정보를 포함한 정보를 생성하여 송신 장치 100으로 피드백(feedback)할 수 있다. 이때, 수신 장치 110은 송신 장치 100으로 송신 빔에 대한 식별자 정보를 피드백할 시 송신 빔 식별자 정보의 오류를 검출할 수 있는 코드 예컨대, CRC 코드를 삽입하여 송신할 수 있다.
이에 따라 송신 장치 100은 504단계에서 수신 장치 110으로부터 피드백 신호를 수신하고, 506단계로 진행하여 송신 빔 식별자 정보에 포함된 CRC 코드를 검사할 수 있다. 이때, 피드백 신호는 앞서 설명한 바와 같이 선택된 각 빔의 식별정보들 또는/및 선택된 빔의 품질 정보를 포함한 정보를 포함할 수 있다.
이후 송신 장치 100은 506단계에서 CRC 코드를 검사한 결과 오류가 존재하지 않는 경우 사용할 빔의 개수를 결정한다. 이때, 결정되는 빔의 개수는 수신 장치 110으로부터 데이터 통신이 가능하다고 보고된 L개의 정보에 근거하여 통신에 사용할 빔들을 결정할 수 있다.
여기서 508단계는 508a단계와 508b단계 및 508c단계의 3가지 경우가 존재할 수 있다.
첫째, 송신 장치 100은 506단계에서 CRC 코드를 검사한 결과 오류가 존재하는 경우 재전송을 요청하는 경우가 될 수 있다. 이러한 경우 송신 장치 100은 508a단계로 진행하여 자원 할당 컨트롤 채널(PDCCH)을 통해 빔 정보 재전송을 요청할 수 있다. 즉, CRC 코드를 검사한 결과 오류가 존재하지 않는 경우 재전송을 요청하지 않고, 오류가 존재하는 경우만 PDCCH를 통해 재전송을 요청한다. 이때, 송신 장치 100은 508a단계에서 PDCCH로 재전송 요청 시 가장 최근 이전 시점에서 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔을 사용하여 재전송을 요청할 수 있다.
이에 따라 수신 장치 110은 송신 장치 100이 가장 최근 이전 시점에서 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔을 사용하여 재전송을 요청하는 PDCCH를 전송할 것임을 알고 있기 때문에 해당 송신 빔에 적합한 수신 빔을 사용하여 PDCCH를 모니터링 및 수신할 수 있다.
따라서 수신 장치 110은 미리 정해진 시간까지 혹은 미리 정해진 시각에 PDCCH가 성공적으로 수신되지 않으면 N번째 수신된 기준 신호에 대하여 선택한 송신 빔들의 피드백 신호가 송신 장치 100에서 성공적으로 수신되었다고 가정할 수 있다. 이와 다른 방법으로, 수신 장치 110은 PDCCH를 모니터링 및 수신할 때 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔과 N번째 송수신 빔 선택 과정에서 전송한 송신 빔들에 적합한 수신 빔들을 모두 모니터링 및 수신할 수도 있다.
둘째, 506단계의 검사결과 CRC 검사결과에 오류가 존재하지 않는 경우에 대하여 살펴보기로 하자. 506단계의 검사결과 CRC 검사결과에 오류가 존재하지 않는 경우 송신 장치 100은 504단계에서 수신 장치 110으로부터 사용할 수 있는 최적의 빔으로 L개의 송신 빔 식별자 정보를 성공적으로 수신한 경우가 된다. 이때, 송신 장치 100은 수신 장치 110이 선택한 L개의 송신 빔들 모두를 사용할 수도 있고, L개의 송신 빔들 중 일부의 송신 빔만을 사용할 수도 있다. 따라서 송신 장치 100은 508b단계에서 수신 장치 100이 피드백한 L개의 송신 빔 식별자들 중 송신 장치 100이 사용할 L보다 작거나 같은 수를 갖는 S개의 빔의 정보를 수신 장치 110으로 PDCCH를 통해 제공할 수 있다. 이때, S는 “1” 또는 그 이상의 정수가 될 수 있다.
또한 이러한 경우 송신 장치 100은 PDCCH로 전송되는 데이터는 전송되는 정보에 오류를 검출하기 위한 CRC를 포함할 수 있다. 이에 따라 수신 장치 110은 510단계에서 PDCCH의 복조 및 복호를 수행하고, 수신된 CRC 검사를 통해 수신된 데이터의 오류 여부를 판별할 수 있다. 510단계와 같이 수신 장치 110에서 오류를 판별하는 경우는 N번째 송수신 빔 선택 과정에서 선택된 빔을 통해 PDCCH가 수신된 경우이다. 따라서 수신 장치 110은 수신된 PDCCH에 대하여 CRC 검사를 수행한 결과 오류가 없는 경우 N번째 기준 신호에서 선택하여 송신 빔들의 피드백이 성공적으로 수신되었다고 가정할 수 있다.
셋째, 506단계의 검사결과 CRC 검사결과에 오류가 존재하지 않는 중 다른 예에 대하여 살펴보기로 하자. 506단계의 검사결과 CRC 검사결과에 오류가 존재하지 않는 경우 수신 장치 110은 송신 장치 100으로부터 미리 정해진 시간 이전에 N번째 송수신 빔 선택 과정에서 최적의 빔들을 선택하여 송신 장치 100으로 최적의 빔들을 알린 경우이다. 이러한 경우 송신 장치 100은 506단계에서 수신된 최적의 빔에 대한 정보를 수신하고, CRC 검사결과 오류가 존재하지 않는다면, 508c단계에서 일반적인 자원 할당을 시그널링(Signaling)하는 PDCCH를 송신할 수 있다. 즉, 수신 장치 110으로부터 송신 장치 100으로 전송한 송신 빔들을 통해 PDCCH가 성공적으로 수신되는 경우가 된다. 따라서 수신 장치(단말) 110가 이처럼 일반적인 자원 할당을 시그널링하는 PDCCH를 수신하는 경우 수신 장치(단말) 110은 N번째 송수신 빔 선택 과정에서 송신 장치(기지국) 100으로 전송한 빔 정보가 송신 장치 100에서 성공적으로 수신되었다고 가정한다. 단, 이 경우는 이전 시점들 중 가장 최근에 송신 장치 100과 수신 장치 110 간 성공적으로 업데이트된 송신 빔과 N번째 송수신 빔 선택 과정에서 전송한 송신 빔 정보가 다른 경우에 적용할 수 있다.
한편, 520단계는 500단계 이후 기준 신호를 송신하는 시점을 예시하였으며, 512단계 이후로는 설정된 빔 방향으로 패킷 데이터를 송신 및 수신할 수 있다.
도 6은 본 발명의 일 실시 예에 따른 송신 장치의 기능적 내부 블록 구성도이다.
도 6을 참조하면, 송신 장치 100은 송신장치 빔 성형부 601와 송신장치 오류 검출부 603, 송신장치 메모리 605 및 송신장치 제어부 611을 포함할 수 있다. 각 송신 안테나들 TX_ANT_1, TX_ANT_2, …, TX_ANT_N은 송신장치 빔 성형부 601과 연결될 수 있다.
송신장치 빔 성형부 601은 송신할 기준 신호를 빔 성형(beam forming)을 위한 펙터(factor)들을 곱하여 각 안테나들 TX_ANT_1, TX_ANT_2, …, TX_ANT_N로 출력할 수 있다. 이에 따라 각 안테나들 TX_ANT_1, TX_ANT_2, …, TX_ANT_N에서는 다양한 방향으로 빔을 성형할 수 있다. 송신장치 빔 성형부 601은 무선처리부 예컨대, 송신할 기저대역 신호를 통신을 위해 설정된 대역으로 대역상승 변환 및 각 안테나들 TX_ANT_1, TX_ANT_2, …, TX_ANT_N에서 빔 포밍하여 수신한 신호를 대역하강 변환하기 위한 구성을 포함할 수 있다. 또한 송신장치 빔 성형부 601은 후술할 송신장치 제어부 611의 제어에 의해 적어도 하나의 또는 그 이상의 특정한 수신 빔 성형을 통해 적어도 하나 또는 그 이상의 특정한 송신 빔으로 전송되어 오는 데이터를 수신할 수 있다. 이때에도 송신장치 빔 성형부 601은 송신장치 제어부 611의 제어에 의해 특정한 방향의 송신 빔을 수신하기 위하여 특정한 방향으로 수신 빔 성형을 수행할 수 있다.
송신장치 빔 성형부 601에서 빔 성형하여 수신된 신호는 송신장치 오류 검출부 603으로 입력된다. 송신장치 오류 검출부 603는 송신장치 제어부 611의 제어에 의해 특정 송수신 빔 성형을 통해 수신한 데이터의 오류가 존재하는지를 검사할 수 있다. 예컨대, 데이터의 오류 검사는 앞서 설명한 CRC 검사가 될 수 있다. 송신장치 오류 검출부 603는 오류 검사 결과 정보와 또는/및 송수신 빔을 통해 수신된 정보를 송신장치 제어부 611로 제공할 수 있다. 예컨대, 송신장치 오류 검출부 603은 오류 검사 결과 수신된 정보에 오류가 존재하지 않는 경우 오류 없음을 알리는 정보 또는 지시자(indicator)와 송수신 빔 성형을 통해 수신된 정보 예컨대, 특정한 송신 빔의 식별자 정보를 송신장치 제어부 611로 제공할 수 있다. 만일 송신장치 오류 검출부 603은 오류 검사 결과 수신된 정보에 오류가 존재하면, 오류가 존재함을 알리는 정보 또는 지시자만을 송신장치 제어부 611로 제공할 수 있다.
송신장치 제어부 611은 송신장치 빔 성형부 601을 제어하여 송신 빔의 성형 및 수신 빔의 성형을 수행할 수 있다. 이러한 빔 성형에 대하여는 앞서 설명한 도 1 내지 도 5에서 설명한 방식에 따라 이루어질 수 있다. 또한 N번째 기준신호를 송신한 이후 수신 장치 110로부터 송신 빔에 대한 식별자 정보를 오류 없이 수신하면, 수신된 식별자 정보를 송신장치 메모리 605에 저장하도록 제어할 수 있다.
송신장치 메모리 605는 송신장치 100의 전반적인 제어에 필요한 데이터 및 제어 시 발생되는 데이터와 송신 빔에 대한 식별자 정보, 송신장치 제어부 611에서 저장하도록 제어한 송신 빔 식별자 이력 정보 등을 저장하기 위한 영역을 가질 수 있다. 예컨대, 송신장치 메모리 605는 가장 최근 이전 시점에서 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔의 정보를 저장할 수 있다.
송신장치 제어부 611은 이처럼 송신장치 메모리 605에 저장된 정보를 이용하여 앞서 설명한 도 2 내지 도 5의 방식에 따라 최적의 빔을 설정할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 수신 장치의 기능적 내부 블록 구성도이다.
도 7을 참조하면, 수신 장치 110은 수신장치 빔 성형부 701와 수신장치 빔 품질 측정부 703, 수신장치 메모리 705 및 수신장치 제어부 711을 포함할 수 있다. 각 수신 안테나들 RX_ANT_1, RX_ANT_2, …, RX_ANT_N은 수신장치 빔 성형부 701과 연결될 수 있다.
수신장치 빔 성형부 701은 송신할 신호를 특정한 방향으로 빔 성형(beam forming)을 위해 각 수신 안테나들 RX_ANT_1, RX_ANT_2, …, RX_ANT_N에 펙터(factor)들을 곱하여 출력할 수 있다. 이에 따라 각 수신 안테나들 RX_ANT_1, RX_ANT_2, …, RX_ANT_N에서는 다양한 방향으로 송신 빔 및 수신 빔을 성형할 수 있다. 수신장치 빔 성형부 701은 무선처리부 예컨대, 송신할 기저대역 신호를 통신을 위해 설정된 대역으로 대역상승 변환 및 각 수신 안테나들 RX_ANT_1, RX_ANT_2, …, RX_ANT_N에서 빔 포밍하여 수신한 신호를 대역하강 변환하기 위한 구성을 포함할 수 있다. 또한 수신장치 빔 성형부 701은 후술할 수신장치 제어부 711의 제어에 의해 적어도 하나의 또는 그 이상의 특정한 수신 빔 성형을 통해 적어도 하나 또는 그 이상의 특정한 송신 빔으로 전송되어 오는 데이터를 수신할 수 있다. 이때에도 수신장치 빔 성형부 701은 수신장치 제어부 711의 제어에 의해 특정한 방향의 송신 빔을 수신하기 위하여 특정한 방향으로 수신 빔 성형을 수행할 수 있다.
수신장치 빔 성형부 701에서 빔 성형하여 수신된 신호는 수신장치 빔 품질 측정부 703으로 입력된다. 수신장치 빔 품질 측정부 703은 수신장치 제어부 711의 제어에 의해 각 송신 빔들에 대한 품질을 측정한다. 예컨대, 송신 장치 100이 2 방향으로 빔 포밍을 수행하고, 수신 장치 110가 2개의 방향으로 빔 포밍을 수행하여 수신하는 경우 4가지 경우의 수가 발생하게 된다. 이처럼 발생하는 각 경우에 대응하여 수신된 신호들 중 미리 결정된 임계값 이상의 수신 품질을 갖는 송신 빔 및 수신 빔의 쌍을 찾을 수 있다. 이처럼 임계값 이상의 수신 품질을 갖는 송신 빔 및 수신 빔의 쌍의 정보는 수신장치 제어부 711로 제공된다.
수신장치 제어부 711은 앞서 설명한 도 2 내지 도 5의 방식에 따라 최적의 송신 빔 정보를 송신 장치 100으로 제공하기 위해 데이터로 구성할 수 있다. 이때, 수신장치 제어부 711은 송신 빔 정보의 오류 검출이 가능하도록 오류 검출 정보를 포함하여 구성할 수 있다. 이처럼 구성된 정보는 수신 장치 빔 성형부 701을 통해 송신 장치 100으로 제공될 수 있다. 이러한 동작의 구체적인 설명은 이미 위에서 설명하였으므로 중복 설명은 생략하기로 한다.
수신장치 메모리 705는 수신 장치 110의 전반적인 제어에 필요한 데이터 및 제어 시 발생되는 데이터와 송신 빔에 대한 식별자 정보, 수신 빔에 대한 식별자 정보 및 수신장치 제어부 711에서 저장하도록 제어한 각종 정보 등을 저장하기 위한 영역을 가질 수 있다. 또한 수신장치 메모리 705는 가장 최근 이전 시점에서 송신 장치 100과 수신 장치 110간 성공적으로 갱신된 송신 빔의 정보를 저장할 수 있다.
한편, 이상에서 설명한 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 빔 포밍 방식을 사용하는 무선 통신 시스템에서 사용할 수 있다.

Claims (17)

  1. 빔 포밍 방식으로 무선 통신을 수행하는 무선 통신 시스템의 송신 장치에서 통신을 수행하기 위한 방법에 있어서,
    송신할 수 있는 모든 송신 빔 방향에 대하여 식별자를 부여하고 각 방향별로 할당된 빔 식별자와 기준 신호를 송신하는 단계;
    수신 장치로부터 수신이 가능한 빔 방향에 대한 식별자 정보와 오류 검출 정보가 수신될 시 상기 오류 검출 정보를 검사하여 오류 존재 유무를 검사하는 단계; 및
    상기 검사된 오류 존재 유무에 따라 상기 수신 장치로 응답 신호를 송신하고, 상기 오류 검출 정보 검사 결과 오류가 존재하지 않을 시 상기 수신된 빔 정보를 기반으로 데이터 송수신을 수행하는 단계;를 포함하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  2. 제1항에 있어서, 상기 응답 신호는,
    긍정 응답(ACK, Acknowledgement) 신호, 부정 응답(NACK, Non-Acknowledgement) 신호 및 재전송 요청 신호 중 하나인, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  3. 제2항에 있어서,
    상기 긍정 응답 신호 송신 시 현재 송신한 기준 신호에서 획득한 빔 방향으로 기준 신호를 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  4. 제1항에 있어서,
    상기 수신 장치로 응답 신호를 송신할 시 가장 최근의 이전 시점에서 수신 장치와 성공적으로 갱신된 송신 빔 방향으로 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  5. 제1항에 있어서,
    상기 수신 장치로부터 수신이 가능한 빔 방향에 대한 식별자 정보를 둘 이상 수신하는 경우 송신에 사용할 빔 방향을 결정하는 단계;
    상기 사용할 빔 정보를 상기 수신 장치로 알리는 단계;를 더 포함하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  6. 제5항에 있어서,
    상기 사용할 빔 정보를 상기 수신 장치로 알릴 시 가장 최근의 이전 시점에서 수신 장치와 성공적으로 갱신된 송신 빔을 기반으로 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  7. 제5항에 있어서,
    상기 사용할 빔 정보를 상기 수신 장치로 알릴 시 현재 송신한 상기 기준 신호에서 결정된 빔을 기반으로 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  8. 제1항에 있어서,
    상기 오류 존재 유무에 따라 상기 수신 장치로 응답 신호 송신 시 오류가 존재할 경우에만 부정 응답(NACK, Non-Acknowledgement) 신호 및 재전송 요청 신호 중 하나를 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  9. 제8항에 있어서,
    상기 부정 응답 신호 또는 재전송 요청 신호 송신 시 가장 최근의 이전 시점에서 수신 장치와 성공적으로 갱신된 송신 빔 방향으로 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  10. 빔 포밍 방식으로 무선 통신을 수행하는 무선 통신 시스템의 수신 장치에서 통신을 수행하기 위한 방법에 있어서,
    수신할 수 있는 모든 수신 빔 방향으로부터 기준 신호를 송신하여 신호의 품질을 검사하는 단계;
    상기 수신된 빔 방향 중 통신이 가능한 품질을 갖는 빔 방향을 선택하는 단계;
    상기 선택된 빔 방향의 송신 빔 식별자와 오류 검사를 위한 정보를 포함한 피드백 신호를 상기 송신 장치로 송신하는 단계; 및
    상기 송신 장치로부터 수신된 응답 신호에 따라 통신할 빔 방향을 결정하는 단계;를 포함하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  11. 제10항에 있어서, 상기 응답 신호는,
    긍정 응답(ACK, Acknowledgement) 신호, 부정 응답(NACK, Non-Acknowledgement) 신호 및 재전송 요청 신호 중 하나인, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  12. 제11항에 있어서,
    상기 긍정 응답 신호가 수신될 시 상기 선택된 빔 방향으로 통신을 수행하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  13. 제11항에 있어서,
    상기 부정 응답(NACK, Non-Acknowledgement) 신호 또는 재전송 요청 신호를 수신할 시 상기 피드백 신호를 재전송하는 단계;를 더 포함하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  14. 제10항에 있어서,
    상기 응답 신호는, 가장 최근의 이전 시점에서 송신 장치와 성공적으로 갱신된 빔 방향으로 수신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  15. 제10항에 있어서,
    상기 통신이 가능한 빔 방향이 둘 이상인 경우 상기 통신이 가능한 모든 빔에 대한 정보를 상기 피드백 정보에 포함하여 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  16. 제15항에 있어서,
    상기 송신 장치로부터 사용할 빔의 개수 및 빔 식별정보를 수신하는 단계; 및
    상기 수신된 빔의 개수 및 빔 방향으로 데이터를 수신하는 단계;를 더 포함하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
  17. 제10항에 있어서, 상기 피드백 신호의 송신은,
    가장 최근의 이전 시점에서 송신 장치와 성공적으로 갱신된 빔 방향으로 송신하는, 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법.
PCT/KR2015/007184 2014-07-10 2015-07-10 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템 WO2016006964A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15819568.5A EP3168999A4 (en) 2014-07-10 2015-07-10 Communication method and system in wireless communication system using beamforming scheme
US15/323,853 US10462680B2 (en) 2014-07-10 2015-07-10 Communication method and system in wireless communication system using beamforming scheme
CN201580037785.2A CN106537806A (zh) 2014-07-10 2015-07-10 使用波束形成方案的无线通信系统中的通信方法和系统
US16/665,453 US11246040B2 (en) 2014-07-10 2019-10-28 Communication method and system in wireless communication system using beamforming scheme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0087008 2014-07-10
KR1020140087008A KR102309726B1 (ko) 2014-07-10 2014-07-10 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/323,853 A-371-Of-International US10462680B2 (en) 2014-07-10 2015-07-10 Communication method and system in wireless communication system using beamforming scheme
US16/665,453 Continuation US11246040B2 (en) 2014-07-10 2019-10-28 Communication method and system in wireless communication system using beamforming scheme

Publications (1)

Publication Number Publication Date
WO2016006964A1 true WO2016006964A1 (ko) 2016-01-14

Family

ID=55064514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007184 WO2016006964A1 (ko) 2014-07-10 2015-07-10 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템

Country Status (5)

Country Link
US (2) US10462680B2 (ko)
EP (1) EP3168999A4 (ko)
KR (1) KR102309726B1 (ko)
CN (1) CN106537806A (ko)
WO (1) WO2016006964A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105439A (zh) * 2016-02-22 2017-08-29 中兴通讯股份有限公司 一种波束间协同传输方法,装置及系统
WO2018095305A1 (zh) * 2016-11-22 2018-05-31 华为技术有限公司 一种波束训练方法及装置
US10064183B2 (en) * 2015-06-04 2018-08-28 Electronics And Telecommunications Research Institute Method and apparatus for configuring virtual beam identifier, and method and apparatus for allocating resources using the virtual beam identifier
WO2018165946A1 (zh) * 2017-03-16 2018-09-20 南通朗恒通信技术有限公司 一种被用于多天线传输的用户设备、基站中的方法和装置
CN108702198A (zh) * 2016-02-23 2018-10-23 Kddi株式会社 无线通信系统、发送装置、接收装置以及通信方法
CN110268743A (zh) * 2017-02-13 2019-09-20 高通股份有限公司 基于初始接入信号质量来发起移动性参考信号
WO2020015378A1 (zh) * 2018-07-20 2020-01-23 华为技术有限公司 信息传输方法、发起节点及响应节点
EP3574673A4 (en) * 2017-05-09 2020-09-23 Telefonaktiebolaget LM Ericsson (publ) METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING DATA
EP3518438B1 (en) * 2016-11-03 2023-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method, terminal device and network device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102309726B1 (ko) * 2014-07-10 2021-10-07 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
JP6582945B2 (ja) * 2015-12-08 2019-10-02 富士通株式会社 無線通信システム、無線通信方法、送信装置、及び、送信方法
KR102461619B1 (ko) * 2016-02-12 2022-11-02 삼성전자주식회사 무선 통신 시스템에서의 빔 포밍 장치 및 방법
CN108633006B (zh) * 2017-03-17 2021-03-19 电信科学技术研究院 一种上行发送波束确定方法和装置
CN108809368B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 一种波束管理方法及其装置
CN117279107A (zh) * 2017-05-05 2023-12-22 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
CN116867092A (zh) * 2017-05-15 2023-10-10 苹果公司 用于无线电链路监视的方法和装置
US10932270B2 (en) * 2017-06-15 2021-02-23 Qualcomm Incorporated Techniques and apparatuses for user equipment-requested beam pair link procedure
US20180368009A1 (en) * 2017-06-16 2018-12-20 Futurewei Technologies, Inc. System and Method for Triggering Beam Recovery
CN109219151A (zh) * 2017-06-29 2019-01-15 索尼公司 电子装置、无线通信设备和无线通信方法
CN111165004B (zh) * 2017-08-11 2023-03-28 苹果公司 用于波束报告、指示和数据发射的调度的装置和方法
US10841970B2 (en) 2017-08-11 2020-11-17 Qualcomm Incorporated Beam management for beam-swept wakeup signals
CN110786060A (zh) * 2017-09-21 2020-02-11 Oppo广东移动通信有限公司 无线通信方法和设备
US11444679B2 (en) 2017-10-30 2022-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Reception beam selection for a radio access network
CN110167152B (zh) * 2018-02-12 2022-04-12 大唐移动通信设备有限公司 一种数据传输方法和设备
US10660101B2 (en) 2018-03-02 2020-05-19 At&T Intellectual Property I, L.P. Identifying a beam in 5G wireless communication systems
US11108473B2 (en) * 2018-06-11 2021-08-31 Samsung Electronics Co., Ltd. Methods for terminal-specific beamforming adaptation for advanced wireless systems
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
EP3591856B1 (en) * 2018-07-04 2021-10-27 Intel Corporation Techniques for control of beam switching
US11375507B2 (en) 2018-07-19 2022-06-28 Qualcomm Incorporated Decoupled uplink/downlink initial access
JP7153865B2 (ja) * 2018-08-27 2022-10-17 パナソニックIpマネジメント株式会社 無線通信システム、無線通信装置および指向性決定方法
EP3959538A1 (en) 2019-04-26 2022-03-02 Sony Group Corporation Radar probing using radio communication terminals
US11082098B2 (en) * 2019-05-11 2021-08-03 Marvell Asia Pte, Ltd. Methods and apparatus for providing an adaptive beamforming antenna for OFDM-based communication systems
CN110971384A (zh) * 2019-11-15 2020-04-07 深圳职业技术学院 一种终端辅助的信息传输方法
WO2021114043A1 (zh) * 2019-12-09 2021-06-17 华为技术有限公司 设备到设备的通信方法和通信装置
WO2021134682A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种定向测量方法及设备
US20230143786A1 (en) * 2020-02-28 2023-05-11 Qualcomm Incorporated Hybrid automatic repeat request feedback verification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076955A1 (en) * 2006-10-09 2011-03-31 Sony Deutschland Gmbh Transmitting device, receiving device and method for establishing a wireless communication link
US20130040684A1 (en) * 2011-08-11 2013-02-14 Samsung Electronics Co. Ltd. Method and apparatus for beam tracking in wireless communication system
KR20130100733A (ko) * 2012-03-02 2013-09-11 삼성전자주식회사 무선통신 시스템에서 적응적 빔포밍 이득 조정 장치 및 방법
US20130315321A1 (en) * 2012-04-09 2013-11-28 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in mmwave mobile communication systems
US20140056256A1 (en) * 2011-08-12 2014-02-27 Samsung Electronics Co., Ltd. Apparatus and method for adaptive beam-forming in wireless communication system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001192A2 (en) * 2006-06-28 2008-01-03 Nokia Corporation Apparatus, method and computer program product providing protected feedback signaling transmission in uplink closed-loop mimo
WO2008097000A1 (en) * 2007-02-08 2008-08-14 Samsung Electronics Co., Ltd. Method and apparatus for determining reverse transmission power of mobile station in an orthogonal frequency division multiplexing system
KR101496382B1 (ko) * 2007-03-21 2015-02-27 인터디지탈 테크날러지 코포레이션 전용 기준 신호 모드에 기초하여 리소스 블록 구조를 전송 및 디코딩하는 mimo 무선 통신 방법 및 장치
EP2557715B1 (en) 2007-04-30 2016-12-07 InterDigital Technology Corporation Feedback signaling error detection and checking in MIMO wireless communication systems
WO2009051748A2 (en) * 2007-10-15 2009-04-23 Marvell World Trade Ltd. Beamforming using predefined spatial mapping matrices
CN102204115B (zh) * 2008-11-02 2014-09-10 Lg电子株式会社 用于在多输入输出系统中进行空间复用的预编码方法及设备
US8660060B2 (en) * 2009-03-26 2014-02-25 Futurewei Technologies, Inc. System and method for communications using spatial multiplexing with incomplete channel information
CN102804895B (zh) * 2009-06-02 2017-04-12 太阳专利信托公司 终端装置和终端装置中的发送方法
US8437300B2 (en) * 2009-10-12 2013-05-07 Samsung Electronics Co., Ltd Method and system of multi-layer beamforming
US8761086B2 (en) * 2009-11-02 2014-06-24 Qualcomm Incorporated Method and apparatus for hierarchical codebook design in wireless communication
KR20110100604A (ko) * 2010-03-04 2011-09-14 한국전자통신연구원 기지국, 이동국, 다중 입력 다중 출력 피드백 수신 방법, 및 다중 입력 다중 출력 피드백 전송 방법
US8446971B2 (en) * 2010-08-23 2013-05-21 Intel Corporation Communication station and method for efficiently providing channel feedback for MIMO communications
NO334170B1 (no) * 2011-05-16 2013-12-30 Radionor Comm As Fremgangsmåte og system for langdistanse, adaptivt, mobilt, stråleformende adhoc-kommunikasjonssystem med integrert posisjonering
KR101828836B1 (ko) * 2011-08-23 2018-02-13 삼성전자주식회사 빔 포밍 기반의 무선통신시스템에서 빔 스캐닝을 통한 스케줄링 장치 및 방법
KR101980101B1 (ko) * 2011-09-16 2019-05-21 삼성전자주식회사 무선통신 시스템에서의 빔 할당 장치 및 방법
US9439174B2 (en) 2012-03-27 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
US20130286960A1 (en) 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
EP2988431B1 (en) * 2013-06-28 2018-11-14 Chung-Ang University Industry-Academy Cooperation Foundation Beam training device and method
JP6121931B2 (ja) * 2014-03-20 2017-04-26 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
KR102309726B1 (ko) * 2014-07-10 2021-10-07 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076955A1 (en) * 2006-10-09 2011-03-31 Sony Deutschland Gmbh Transmitting device, receiving device and method for establishing a wireless communication link
US20130040684A1 (en) * 2011-08-11 2013-02-14 Samsung Electronics Co. Ltd. Method and apparatus for beam tracking in wireless communication system
US20140056256A1 (en) * 2011-08-12 2014-02-27 Samsung Electronics Co., Ltd. Apparatus and method for adaptive beam-forming in wireless communication system
KR20130100733A (ko) * 2012-03-02 2013-09-11 삼성전자주식회사 무선통신 시스템에서 적응적 빔포밍 이득 조정 장치 및 방법
US20130315321A1 (en) * 2012-04-09 2013-11-28 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in mmwave mobile communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168999A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10064183B2 (en) * 2015-06-04 2018-08-28 Electronics And Telecommunications Research Institute Method and apparatus for configuring virtual beam identifier, and method and apparatus for allocating resources using the virtual beam identifier
CN107105439B (zh) * 2016-02-22 2021-08-20 中兴通讯股份有限公司 一种波束间协同传输方法,装置及系统
WO2017143810A1 (zh) * 2016-02-22 2017-08-31 中兴通讯股份有限公司 一种波束间协同传输方法、装置及系统、设备、存储介质
CN107105439A (zh) * 2016-02-22 2017-08-29 中兴通讯股份有限公司 一种波束间协同传输方法,装置及系统
CN108702198A (zh) * 2016-02-23 2018-10-23 Kddi株式会社 无线通信系统、发送装置、接收装置以及通信方法
EP3422596A4 (en) * 2016-02-23 2019-09-18 KDDI Corporation WIRELESS COMMUNICATION SYSTEM, TRANSMITTER, RECEIVER AND COMMUNICATION PROCESS
US11696272B2 (en) 2016-11-03 2023-07-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method, terminal device and network device
EP3518438B1 (en) * 2016-11-03 2023-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method, terminal device and network device
WO2018095305A1 (zh) * 2016-11-22 2018-05-31 华为技术有限公司 一种波束训练方法及装置
CN110268743A (zh) * 2017-02-13 2019-09-20 高通股份有限公司 基于初始接入信号质量来发起移动性参考信号
US11272429B2 (en) 2017-02-13 2022-03-08 Qualcomm Incorporated Initiation of mobility reference signal based on quality of initial access signals
US11201656B2 (en) 2017-03-16 2021-12-14 Shanghai Langbo Communication Technology Company Limited Method and device in UE and base station for multi-antenna transmission
CN109964413A (zh) * 2017-03-16 2019-07-02 南通朗恒通信技术有限公司 一种被用于多天线传输的用户设备、基站中的方法和装置
US11616554B2 (en) 2017-03-16 2023-03-28 Dido Wireless Innovations Llc Method and device in UE and base station for multi-antenna transmission
WO2018165946A1 (zh) * 2017-03-16 2018-09-20 南通朗恒通信技术有限公司 一种被用于多天线传输的用户设备、基站中的方法和装置
EP3574673A4 (en) * 2017-05-09 2020-09-23 Telefonaktiebolaget LM Ericsson (publ) METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING DATA
US10966212B2 (en) 2017-05-09 2021-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting and receiving data
US11785629B2 (en) 2017-05-09 2023-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting and receiving data
WO2020015378A1 (zh) * 2018-07-20 2020-01-23 华为技术有限公司 信息传输方法、发起节点及响应节点

Also Published As

Publication number Publication date
US20170134964A1 (en) 2017-05-11
EP3168999A4 (en) 2018-03-28
CN106537806A (zh) 2017-03-22
US20200068417A1 (en) 2020-02-27
KR102309726B1 (ko) 2021-10-07
US11246040B2 (en) 2022-02-08
EP3168999A1 (en) 2017-05-17
US10462680B2 (en) 2019-10-29
KR20160007062A (ko) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2016006964A1 (ko) 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
WO2015156575A1 (ko) 빔포밍 기반 셀룰러 시스템의 상향링크 빔 추적 방법 및 장치
US20180227887A1 (en) Robust Control Channel Transmission Scheme
WO2018059282A1 (en) System and method for d2d communication
WO2014098542A1 (en) Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
WO2010079926A2 (ko) 다중 셀 환경에서 comp 수행 셀 결정방법 및 장치
WO2011019168A2 (en) Method and apparatus for transmitting reference signals in communication systems
US11063705B2 (en) Methods and apparatus for HARQ in NOMA transmission for 5G NR
JP2023154039A (ja) 通信方法、送信装置、ネットワーク装置、およびプログラム
WO2017073972A1 (en) Method and apparatus for scheduling data in a wireless communication system
WO2011136587A2 (en) Apparatus and method for transmitting ack/nack in tdd system
WO2018230869A1 (ko) 이동 통신 시스템에서의 데이터 전송 방법 및 장치
EP2742603A2 (en) Method and apparatus for tracking beam in wireless communication system
WO2013112008A1 (en) Method and system for providing service in a wireless communication system
WO2017177459A1 (zh) 用于基站的方法、用于用户设备的方法、基站、以及用户设备
US10530530B2 (en) Method and apparatus for transmitting and receiving data in mobile communication system
WO2017164663A1 (ko) 탐색 신호 전송 방법 및 장치
JP6405450B2 (ja) ユーザ端末及び無線通信方法
WO2020166981A1 (en) Methods and systems for adapting beamwidth of beams on nr physical channels
CN113994616B (zh) 用于增强传输抢占的设备和方法
WO2021020735A1 (en) Method and apparatus for improving harq in a non-terrestrial network
WO2023153897A1 (ko) 불연속 수신 동작을 지원하는 무선 통신 시스템에서 단말 및 기지국과 그 동작 방법
WO2017034246A1 (en) Method and apparatus for performing hybrid automatic repeat request in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819568

Country of ref document: EP