WO2017177459A1 - 用于基站的方法、用于用户设备的方法、基站、以及用户设备 - Google Patents

用于基站的方法、用于用户设备的方法、基站、以及用户设备 Download PDF

Info

Publication number
WO2017177459A1
WO2017177459A1 PCT/CN2016/079490 CN2016079490W WO2017177459A1 WO 2017177459 A1 WO2017177459 A1 WO 2017177459A1 CN 2016079490 W CN2016079490 W CN 2016079490W WO 2017177459 A1 WO2017177459 A1 WO 2017177459A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
beamforming
user equipment
base station
receiving
Prior art date
Application number
PCT/CN2016/079490
Other languages
English (en)
French (fr)
Inventor
孙芳蕾
孙欢
杨涛
Original Assignee
上海贝尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司 filed Critical 上海贝尔股份有限公司
Priority to PCT/CN2016/079490 priority Critical patent/WO2017177459A1/zh
Priority to EP16898277.5A priority patent/EP3445124A4/en
Priority to US16/093,810 priority patent/US20190132850A1/en
Priority to CN201680084078.3A priority patent/CN108886813B/zh
Publication of WO2017177459A1 publication Critical patent/WO2017177459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to communication technologies, and more particularly to methods for a base station, methods for user equipment, base stations, and user equipment.
  • the goal of the 5G physical layer of the 5th generation mobile communication technology is to provide high performance in terms of data rate and latency with reduced cost and power consumption.
  • one option is to utilize the large bandwidth available at the millimeter wave frequency.
  • the wireless channel has some unfavorable propagation qualities, including strong path loss, atmospheric absorption and rainwater absorption, low diffraction around obstacles, and penetration of objects.
  • embodiments of the present disclosure use beamforming transmission and/or reception for a random access channel RACH, and provide a method for a base station, a method for a user equipment, and a base station And the user equipment, thereby solving the above-mentioned at least one technical problem existing in the prior art.
  • a method for a base station includes receiving a random access preamble from a user equipment by receiving beamforming, and transmitting a random access response to the user equipment.
  • receiving the random access preamble from the user equipment by receiving beamforming may include performing receive beamforming based on the codebook; or performing a calculation based on the downlink channel measurement to derive the receive beam.
  • receiving beamforming based on the codebook may include iteratively using each codeword in the codebook to process a random access preamble received from the user equipment; and corresponding to the best codeword The processed random access preamble is used as a random access preamble received by receive beamforming.
  • transmitting the random access response to the user equipment can include transmitting the random access response by beamforming broadcast or non-beamformed broadcast.
  • the method can further include transmitting the random access response to the user equipment in a non-broadcast manner by transmit beamforming.
  • transmitting the random access response to the user equipment may include: performing transmit beamforming of the random access response based on feedback information of the downlink channel state received from the user equipment; or based on uplink channel information Transmitting a transmit codeword corresponding to the best received codeword in the codebook to perform transmit beamforming of the random access response; or performing calculation based on the uplink channel measurement to derive a transmit beam of the random access response.
  • receiving feedback information of the downlink channel state from the user equipment may include receiving feedback information of the downlink channel state in the random access preamble.
  • feedback information for the downlink channel state may be explicitly appended to the random access preamble.
  • the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles.
  • the feedback information for the downlink channel state may include at least a beam identifier.
  • the method can further include: measuring feedback information for an uplink channel state of the user equipment in response to receiving the random access preamble from the user equipment; and transmitting the measured uplink to the user equipment Feedback information of channel status.
  • transmitting feedback information of the measured uplink channel state to the user equipment may include transmitting a feedback signal of the uplink channel state in the random access response interest.
  • the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the method can further include receiving the message 3 from the user equipment by receiving beamforming.
  • receiving the message 3 from the user equipment by receiving beamforming may include receiving beamforming of message 3 using a codeword identical or similar to the receive beamforming of the random access preamble.
  • receiving the message 3 from the user equipment by receiving beamforming may include: performing a receive beamforming by searching for the best received codeword in the codebook based on the uplink channel information; or based on uplink channel measurements A calculation is performed to derive the receive beam of message 3.
  • the method can further include receiving, in message 3, an optimal beam direction or beam index of the downlink fed back by the user equipment.
  • the method can further include transmitting a message 4 to the user equipment by transmitting beamforming in response to receiving the message 3 from the user equipment.
  • transmitting the message 4 to the user equipment by transmit beamforming may include transmitting beamforming of the message 4 using a same or similar codeword as the transmit beamforming of the random access response.
  • the method may further comprise: performing a transmit beamforming of the message 4 based on an optimal beam direction or beam index of the downlink fed back by the user equipment; or in the codebook based on the uplink channel information The transmit codeword corresponding to the best received codeword is searched for transmit beamforming of message 4; or the transmit beam of message 4 is derived based on uplink channel measurements.
  • the random access preamble may be transmitted by the user equipment by transmit beamforming.
  • transmit beamforming may include transmit beamforming by the user equipment based on the outgoing direction derived from the downlink channel measurements.
  • transmitting the random access response to the user equipment can include transmitting a random access response to the user equipment by transmit beamforming based on the departure direction information of the base station.
  • the method may further comprise: receiving a message 3 from the user equipment based on the direction of arrival derived from the uplink channel measurement; or transmitting to the user equipment based on the direction of departure corresponding to the direction of arrival derived from the uplink channel measurement Message 4.
  • the pilot code may include: receiving the same random access preamble from the user equipment multiple times by receiving beamforming; and combining the same random access preambles received multiple times.
  • the method can further include optimizing transmit beamforming and receive beamforming using the correlation between the transmit beam and the receive beam if channel reciprocity is established.
  • a method for a user equipment includes transmitting a random access preamble to a base station, and receiving a random access response from the base station by receiving beamforming.
  • receiving the random access response from the base station by receiving beamforming may include receiving beamforming based on the codebook; or performing a calculation based on the downlink channel measurements to derive a received beam of the random access response.
  • receiving beamforming based on the codebook may include iteratively using each codeword in the codebook to process a random access response received from the base station; and correlating the best codeword with the best codeword The processed random access response acts as a random access response received by receive beamforming.
  • receiving the random access response from the base station by receiving beamforming may include calculating beamforming weights based on feedback information of downlink channel states detected by the user equipment; and using the calculated beamforming Weights are used for receive beamforming.
  • calculating the beamforming weight based on the feedback information of the downlink channel state detected by the user equipment may include performing maximum ratio combining based on the downlink channel information.
  • the method can further include transmitting feedback information of the downlink channel state to the base station.
  • transmitting feedback information of the downlink channel state to the base station may include transmitting feedback information of the downlink channel state in the random access preamble.
  • feedback information for the downlink channel state may be explicitly appended to the random access preamble.
  • the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles.
  • the feedback information for the downlink channel state may include at least a beam identifier.
  • the method can further include receiving an uplink from the base station Feedback information of channel status.
  • receiving feedback information of an uplink channel state from a base station may include receiving feedback information of an uplink channel state in a random access response.
  • the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the method can further include transmitting the message 3 to the base station by transmit beamforming.
  • transmitting the message 3 to the base station by the transmit beamforming may include performing a transmit beamforming of the message 3 by searching for a transmit codeword corresponding to the best received codeword in the codebook based on the downlink channel information. Or derive a transmit beam of message 3 based on a calculation of the downlink channel measurements.
  • transmitting the message 3 to the base station by transmit beamforming may include receiving an optimal beam direction or beam index of the uplink channel from the base station; and performing transmit beamforming based on the best beam direction or beam index .
  • receiving the best beam direction or beam index of the uplink channel from the base station may include receiving an optimal beam direction or beam index of the uplink channel in the random access response.
  • the method can further include: feeding back, to the base station, an optimal beam direction or beam index of the downlink channel in response to receiving the random access response from the base station.
  • feeding back the best beam direction or beam index of the downlink channel to the base station may include including the best beam direction or beam index of the downlink channel in message 3 for transmission.
  • the method may further comprise: searching for the best received codeword in the codebook based on the downlink channel information, or performing a calculation based on the uplink channel measurement to derive the received beam, and receiving the beam from the base station by receiving the beam Receive message 4.
  • transmitting the random access preamble to the base station may include transmitting the random access preamble to the base station by transmit beamforming.
  • transmit beamforming may include transmit beamforming in the direction of departure corresponding to the direction of arrival derived from the downlink channel measurements.
  • the method may further comprise: estimating a direction of arrival of the user equipment using a downlink reference signal learned during a downlink synchronization procedure or a downlink control signal reception process, thereby deriving the departure of the user equipment Direction information.
  • receiving from the base station by receiving beamforming The machine access response may include: performing receive beamforming using a receive beamforming codeword corresponding to the transmit beamforming codeword; or searching for the best beam in the predefined received codebook for receive beamforming .
  • the method may further comprise: transmitting a message 3 to the base station based on a departure direction corresponding to the direction of arrival derived from the downlink channel measurement; or receiving a message from the base station based on the direction of arrival derived from the measurement of the downlink channel .
  • transmitting the random access preamble to the base station may include transmitting the same random access preamble to the base station multiple times. In some embodiments, transmitting the same random access preamble to the base station multiple times may include transmitting the same random access preamble to the base station multiple times according to a predefined timing; or only successfully receiving the random access response At the same time, the same random access preamble is transmitted to the base station multiple times.
  • the method can further include optimizing transmit beamforming and receive beamforming using the correlation between the transmit beam and the receive beam if channel reciprocity is established.
  • a base station includes: a receiving unit configured to receive a random access preamble from the user equipment by receiving beamforming; and a transmitting unit configured to transmit a random access response to the user equipment.
  • a user equipment includes: a transmitting unit configured to transmit a random access preamble to the base station; and a receiving unit configured to receive a random access response from the base station by receiving beamforming.
  • Embodiments of the present disclosure propose a beamforming based random access channel RACH procedure to combat strong path loss in a wireless communication environment (eg, millimeter wave communication), thereby enabling efficient uplink access for user equipment.
  • a wireless communication environment eg, millimeter wave communication
  • FIG. 1 schematically illustrates a method for a base station according to an embodiment of the present disclosure. Flow chart.
  • FIG. 2 schematically illustrates a flow diagram of a method for a user equipment, in accordance with an embodiment of the present disclosure.
  • FIG. 3 schematically illustrates a signaling interaction diagram between a user equipment and a base station, in accordance with an embodiment of the present disclosure.
  • FIG. 4 schematically illustrates a signaling interaction diagram between a user equipment and a base station in accordance with another embodiment of the present disclosure.
  • FIG. 5 schematically illustrates a signaling interaction diagram between a user equipment and a base station in accordance with yet another embodiment of the present disclosure.
  • FIG. 6 schematically illustrates a signaling interaction diagram between a user equipment and a base station in accordance with still another embodiment of the present disclosure.
  • FIG. 7 schematically illustrates a block diagram of a base station in accordance with an embodiment of the present disclosure.
  • FIG. 8 schematically illustrates a block diagram of a user equipment in accordance with an embodiment of the present disclosure.
  • each pair of transmit and receive beams is scanned with the same preamble transmission to ensure that the best performance on a particular pair of beams can be searched in N slots of RACH slots.
  • the long duration of the RACH preamble has some negative impact on initial access, recovery of radio link failure RLF, and handover.
  • its implementation will also be limited by a time division duplex TDD uplink-downlink (UL-DL) configuration with discontinuous uplink UL subframes.
  • UL-DL time division duplex TDD uplink-downlink
  • Possible ways to solve these problems The method has been proposed in several directions, including enhanced preamble detection, addition of multiple digital chains at the BS, and the like.
  • no detailed solution for beamforming RACH is given in the prior art.
  • beamforming for the preamble and further message 2-4 is proposed for transmission and reception.
  • the base station side it can use receive beamforming to enhance the detection of the preamble.
  • the transmit beamforming of the preamble at the user equipment can also be supported where the best direction from the user equipment towards the base station can be predicted.
  • signal combining at the receiving end is also a complementary solution to the enhancement of the auxiliary signal strength.
  • embodiments of the present disclosure define some new procedures.
  • some configurations such as the configuration of some associated beamforming reference signals, can be known in advance.
  • new channel state information CSI feedback/derived beam information eg, beam direction
  • beam direction can be defined and fed back to perform beamformed transmissions in some steps.
  • a user equipment refers to any device capable of communicating with a "base station” (BS).
  • a user equipment may include a terminal, a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a mobile station (MS), or an access terminal (AT).
  • a "base station” (BS) may represent a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), a remote radio unit (RRU), a radio head (RH), a remote radio head (RRH), a repeater.
  • low power nodes such as pico base stations, femto base stations, and the like.
  • FIG. 1 schematically illustrates a flow diagram of a method 100 for a base station, in accordance with an embodiment of the present disclosure.
  • the executive body of method 100 can be a base station in communication with a user equipment.
  • the method 100 can be performed by the base station 700 described later in connection with FIG.
  • method 100 includes step 101.
  • step 101 the base station receives a random access preamble from the user equipment by receiving beamforming.
  • step 102 the base station transmits the following to the user equipment. Machine access response.
  • the user equipment may transmit a preamble on the RACH resource.
  • the transmission of the preamble may not use transmit beamforming because the user equipment may not have an uplink. Any direction information of the UL channel.
  • receive beamforming can be applied to overcome the strong path loss suffered by unfavorable propagation qualities such as millimeter wave channels.
  • a narrower beam can be used at the base station in order to compensate for the same path loss. This solution is completely acceptable due to the powerful processing capabilities of the base station.
  • step 101 may comprise: performing receive beamforming based on a codebook; or performing a calculation based on downlink channel measurements to derive a receive beam. In the latter case, it is assumed that the uplink and the downlink are reciprocal so that the downlink transmit beam can be derived.
  • receiving beamforming based on the codebook may include iteratively using each codeword in the codebook to process a random access preamble received from the user equipment; and corresponding to the best codeword The processed random access preamble is used as a random access preamble received by receive beamforming.
  • codebook based receive beamforming can be used because there may be no specific channel information.
  • a codebook based on a discrete Fourier transform DFT can be used.
  • the base station can perform this operation in each of the assigned transmission time intervals TTI with RACH preamble transmission.
  • receive beamforming is more advantageous for, for example, millimeter wave systems, etc., which is different from processing in LTE systems.
  • step 102 can include: broadcasting by beamforming or Non-beamformed broadcasts to transmit random access responses.
  • the method 100 can further include transmitting a random access response to the user equipment in a non-broadcast manner by transmit beamforming.
  • step 102 may include performing transmit beamforming of the random access response based on feedback information of the downlink channel state received from the user equipment; or searching for the most in the codebook based on the uplink channel information
  • the transmit codeword corresponding to the received codeword is used for performing transmit beamforming of the random access response; or based on the uplink channel measurement, the transmit beam of the random access response is derived. In the latter case, it is assumed that the uplink and the downlink are reciprocal so that the downlink transmit beam can be derived.
  • the base station After receiving the random access preamble from the user equipment, the base station feeds back the random access response RAR to the user equipment whose preamble is successfully decoded. Since multiple user equipments may use the same preamble and the preambles of multiple user equipments may be successfully decoded, this RAR information is for multiple user equipments. Therefore, the base station can employ a downlink DL broadcast/control channel for transmission enhancement.
  • the manner of broadcasting may include a beamforming broadcast mode or a non-beamformed broadcast mode.
  • the base station is capable of performing random access response RAR transmissions for a particular user equipment based on user equipment preferred receive beamforming information included in message 1 (ie, random access preamble).
  • receiving feedback information of the downlink channel state from the user equipment may include receiving feedback information of the downlink channel state in the random access preamble.
  • feedback information for the downlink channel state may be explicitly appended to the random access preamble.
  • the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles.
  • the feedback information for the downlink channel state may include at least a beam identifier.
  • the user equipment may obtain recent downlink DL channel state information prior to performing the RACH procedure, eg, this may be based on a pair of downlink DL physical broadcast channel PBCH, or downlink control Measurement of the downlink DL reference signal RS in the channel, and the like. If the channel state information is still valid for the immediately following RACH procedure, downlink DL channel state information (CSI), such as beam ID information, best precoding matrix indicator PMI in LTE, etc., can be reversed Feed to the base station.
  • CSI downlink DL channel state information
  • the base station may perform beamforming by transmitting, and the preamble successfully transmits the random access response RAR to the received user equipment.
  • the user equipment may append channel state information CSI to the preamble for feedback to the base station.
  • the specific signaling manner may include: first, explicit manner, for example, appending channel state information CSI to the preamble and transmitting them to the base station; second, implicit manner, for example, beam ID information may pass through the preamble Location or group to implied representation.
  • the base station may measure the uplink UL channel and enable feedback to the uplink optimal beam direction or beam to the user equipments with different preambles. index. This is very useful for the user equipment to further enhance the transmit performance of Message 3.
  • the base station can embed this beamforming information in a random access response RAR for each desired user equipment.
  • the method 100 can further include: in response to receiving the random access preamble from the user equipment, the base station can measure feedback information for the uplink channel state of the user equipment; and transmit the measured uplink to the user equipment Feedback information of the link channel status.
  • transmitting the feedback information of the measured uplink channel state to the user equipment may include transmitting feedback information of the uplink channel state in the random access response.
  • the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the user equipment may transmit the message 3 to the base station according to the procedure of the random access signal.
  • the user equipment can further perform beamforming transmission of message 3 based on the following method.
  • MRT maximum ratio transmission
  • the user equipment can detect the equivalent channel of the downlink DL beamforming, for example Then the corresponding MRT precoding vector can be Another method is to utilize uplink channel feedback information, such as beam direction or beam index, that the base station includes in the random access response.
  • uplink channel feedback information such as beam direction or beam index
  • the user equipment may have performed downlink DL synchronization and may receive the primary information block MIB, a portion of the system information block SIB, and even broadcast Random access response RAR. Therefore, the user equipment has an opportunity to obtain downlink DL beamforming information. This is useful for enhancing the message 4 of further contention resolution in the random access channel RACH.
  • the user equipment may have a downlink DL beamforming codebook. If the downlink DL reference signal RS transmits a non-precoding based scheme, the best beam ID can be fed back to the base station as a precoding matrix indicator PMI feedback. Otherwise, if the downlink DL transmits a beamforming based transmission scheme, the codebook used for the downlink DL broadcast information, the beam search pattern, for example, timing and time period, can be known in advance. Based on this predefined knowledge, the user equipment can feed back the best downlink DL beam direction or beam index to the base station. The user equipment can embed this information in message 3.
  • the downlink DL reference signal RS transmits a non-precoding based scheme
  • the best beam ID can be fed back to the base station as a precoding matrix indicator PMI feedback. Otherwise, if the downlink DL transmits a beamforming based transmission scheme, the codebook used for the downlink DL broadcast information, the beam search pattern, for example, timing and time period, can be known in advance. Based on this
  • the method 100 can further include receiving the message 3 from the user equipment by receiving beamforming.
  • receiving the message 3 from the user equipment by receiving beamforming may include receiving beamforming of message 3 using a codeword identical or similar to the receive beamforming of the random access preamble.
  • the codeword may not be exactly the same as the previously received codeword, but both belong to similar codewords.
  • receiving the message 3 from the user equipment by receiving beamforming may include: searching for the best received codeword in the codebook for receive beamforming based on the uplink channel information; or based on uplink channel measurements A calculation is performed to derive the receive beam of message 3.
  • the method 100 can further include receiving, in the message 3, an optimal beam direction or beam index of the downlink fed back by the user equipment.
  • the base station may not reroute multiple beamforming codewords in order to receive the simplicity of the message 3. , can be detected and the desired beam via known vector (e.g., w j) message 3, to simplify the processing at the base station.
  • the base station may also process the received message 3 by using a plurality of beamforming codewords cyclically based on the beamformed uplink UL channel used.
  • the method 100 can further include transmitting the message 4 to the user equipment by transmitting beamforming in response to receiving the message 3 from the user equipment.
  • transmitting the message 4 to the user equipment by transmit beamforming may include transmitting beamforming of the message 4 using a same or similar codeword as the transmit beamforming of the random access response.
  • the codeword herein may not be exactly the same as the previously transmitted codeword, but both belong to similar codewords.
  • the method 100 may further comprise: performing a transmit beamforming of the message 4 based on an optimal beam direction or beam index of the downlink fed back by the user equipment; or in the codebook based on the uplink channel information
  • the transmit codeword corresponding to the best received codeword is searched for transmit beamforming of message 4; or the transmit beam of message 4 is derived based on uplink channel measurements. In the latter case, it is assumed that the uplink and the downlink are reciprocal so that the downlink transmit beam can be derived.
  • the base station can transmit a beamformed message 4 for a particular user equipment.
  • the beamforming vector used may be the beamforming vector used for message 2 or the beamforming vector fed back in message 3 for the previous step.
  • beamforming reference message configuration if the base station employs a beamforming broadcast mode and beamformed transmission for a particular user equipment is used in the step of transmitting message 4. It can be known to the user equipment.
  • an enhanced uplink UL random connection is proposed Another transmission mode of the incoming channel RACH, that is, the transmission beam shaping on the transmitting side enhances the strength of the signal.
  • the random access preamble may be transmitted by the user equipment by transmit beamforming.
  • transmit beamforming may include transmit beamforming by the user equipment based on the outgoing direction derived from the downlink channel measurements.
  • transmitting the random access response to the user equipment can include transmitting a random access response to the user equipment by transmit beamforming based on the departure direction information of the base station.
  • the method 100 may further comprise: receiving a message 3 from the user equipment based on the direction of arrival derived from the uplink channel measurement; or transmitting to the user equipment based on the direction of departure corresponding to the direction of arrival derived from the uplink channel measurement Message 4.
  • the user equipment may have performed downlink DL synchronization and is aware of the downlink DL reference signaling configuration. Therefore, they are capable of measuring the downlink DL channel and are capable of making a direction of arrival (DoA) measurement. Based on the obtained DoA information, that is, the leaving direction DoD information from the user equipment to the base station, the user equipment may search for a transmit beamforming vector from the codebook to transmit an uplink UL preamble, for example, between the search and the DoD. The minimum angle of the codeword.
  • DoA direction of arrival
  • the DoD derived user equipment is applied when the base station receives uplink UL signaling via a beam similar to that used for downlink DL beamforming transmission Transmit beamforming vector.
  • DoD-based uplink UL transmit beamforming is primarily in the scenario where the DoD of the uplink UL and the DoA of the downlink DL are substantially identical.
  • a non-beamforming manner with respect to broadcast signaling may be employed.
  • beamforming transmissions of DoDs based on predefined codebooks or user equipments that are successfully received from the base station to the preamble may also be supported for signaling enhancement.
  • a similar transmit beam can be used for the receive beam. If the transmitter and receiver use different codes If the RAR is received from the base station, the user equipment can search for the best beam by looping the codeword in the predefined receiving codebook.
  • the base station and the user equipment can communicate via beamformed transmission and reception.
  • step 102 can include receiving the same random access preamble from the user equipment multiple times by receiving beamforming; and combining the same random access preambles received multiple times.
  • the user equipment may transmit multiple preambles in the time domain to obtain time diversity.
  • signal combining can be employed for signal improvement.
  • the number of retransmissions is configurable, but for simplicity, in the description herein, one retransmission is employed as an example. For retransmission of multiple preambles, there are two options.
  • the first option is that retransmission in the time domain is mandatory and the timing of retransmissions is predefined. For example, assuming that the initial preamble transmission is on subframe n, retransmission may be scheduled on the first uplink UL subframe after subframe n+k. Then, the base station can further schedule the next random access response RAR based on the retransmission timing.
  • the second option is that retransmission in the time domain is not mandatory. If the base station successfully receives the preamble of the initial transmission, the random access response RAR may be transmitted using the receive beamforming of FIG. 1 as in the four steps previously resolved. In this case, the user equipment may no longer perform retransmission of the random access preamble.
  • the advantage of this option is that the random access channel RACH procedure can be shortened in the case where the signal quality of the partial preamble is good.
  • a potential problem may be that some user equipments with poor transmission quality may not have sufficient access opportunities. In this respect, another fairness approach can be introduced to balance the two.
  • the method 100 can further include optimizing transmit beamforming and receive beamforming using the correlation between the transmit beam and the receive beam if channel reciprocity is established.
  • TDD operations have significant advantages for future 5G solutions.
  • the use of TDD mode also allows for the use of channel reciprocity between UL and DL in order to reduce feedback overhead, which is very beneficial for large multiple input multiple output MIMO techniques that require extensive channel state information. If the channel reciprocity is established, the transmit beam and the receive beam on the base station side or the user equipment side can be associated, they are derived from the same codebook or are derived through the same channel.
  • the user equipment may receive a signal for beamforming or a reference signal RS of the downlink DL of the non-beamformed channel. Based on this channel information and channel reciprocity, the user equipment can utilize the best beam direction to transmit the uplink UL preamble and achieve higher performance gains.
  • the user equipment can obtain recent downlink DL channel state information, which is valid for the following random access channel RACH procedure. Based on the channel reciprocity, the user equipment can search for the optimal beamforming weight within the predefined codebook, or calculate the precoding weight for the subsequent beamformed preamble transmission, which can further enhance the random access channel RACH procedure. Probability of success.
  • the best beam for downlink DL transmissions can also be used for uplink UL reception, which can simplify beam pairing with respect to the user equipment random access channel RACH procedure.
  • the corresponding receive beam and the transmit beam later used for the next step can be optimized for optimal performance.
  • FIG. 2 schematically illustrates a flow diagram of a method 200 for a user equipment, in accordance with an embodiment of the present disclosure.
  • the executive body of method 200 can be a user device in communication with a base station.
  • method 200 can be performed by user device 800, which is described later in connection with FIG.
  • the method 200 for the user equipment is the operation procedure of the communication parties corresponding to the method 100 of the user base station described above, and therefore the method 200 can be understood with reference to the description of the method 100, Content that is a duplicate of the description of method 100 may be omitted from the description of method 200.
  • method 200 includes step 201.
  • step 201 The user equipment transmits a random access preamble to the base station.
  • step 202 the user equipment receives a random access response from the base station by receiving beamforming.
  • step 202 can include performing receive beamforming based on the codebook; or performing a calculation based on the downlink channel measurements to derive a receive beam of the random access response. In the latter case, it is assumed that the uplink and the downlink are reciprocal so that the downlink transmit beam can be derived.
  • receiving beamforming based on the codebook may include iteratively using each codeword in the codebook to process a random access response received from the base station; and correlating the best codeword with the best codeword The processed random access response acts as a random access response received by receive beamforming.
  • step 202 can include calculating beamforming weights based on feedback information of downlink channel states detected by the user equipment; and performing beamforming using the calculated beamforming weights.
  • calculating the beamforming weight based on the feedback information of the downlink channel state detected by the user equipment may include performing maximum ratio combining based on the downlink channel information.
  • the first option is to perform receiver beamforming by searching for the best beam in a predefined codebook.
  • a second option is to merge the MRC based on the maximum ratio of the downlink DL channel detected by the user equipment based on the beamforming or non-beamforming reference signal RS.
  • the method 200 can further include transmitting feedback information of the downlink channel state to the base station.
  • transmitting feedback information of the downlink channel state to the base station may include transmitting feedback information of the downlink channel state in the random access preamble.
  • feedback information for the downlink channel state may be explicitly appended to the random access preamble.
  • the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles.
  • the feedback information for the downlink channel state may include at least a beam identifier.
  • the user equipment may have obtained the RACH procedure.
  • Recent downlink DL channel state information may be based on measurements of downlink DL reference signals RS embedded in the downlink DL physical broadcast channel PBCH, and the like. If the channel state information is still valid for the immediately following RACH procedure, downlink DL channel state information (CSI), such as beam ID information, best precoding matrix indicator PMI in LTE, etc., can be fed back Base station.
  • CSI downlink DL channel state information
  • the user equipment may append channel state information CSI to the preamble for feedback to the base station.
  • the specific signaling manner may include: first, explicit manner, for example, appending channel state information CSI to the preamble and transmitting them to the base station; second, implicit manner, for example, beam ID information may pass through the preamble Location or group to implied representation.
  • the method 200 can further include receiving feedback information of an uplink channel state from the base station.
  • receiving feedback information of an uplink channel state from a base station may include receiving feedback information of an uplink channel state in a random access response.
  • the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the base station after receiving the preambles of the plurality of user equipments, can measure the uplink UL channel and enable feedback to the user equipment having different preambles for the best beam direction or beam index. This is very useful for the user equipment to further enhance the transmit performance of Message 3.
  • the base station can embed this beamforming information in a random access response RAR for each desired user equipment.
  • method 200 can further include transmitting message 3 to the base station by transmit beamforming.
  • transmitting the message 3 to the base station by the transmit beamforming may include performing a transmit beamforming of the message 3 by searching for a transmit codeword corresponding to the best received codeword in the codebook based on the downlink channel information. Or derive a transmit beam of message 3 based on a calculation of the downlink channel measurements. In the latter case, it is assumed that the uplink and the downlink are reciprocal so that the uplink transmit beam can be derived.
  • transmitting the message 3 to the base station by transmit beamforming may include receiving an optimal beam direction or beam index of the uplink channel from the base station; and based on the optimal wave Beam direction or beam index for transmit beamforming.
  • receiving the best beam direction or beam index of the uplink channel from the base station may include receiving an optimal beam direction or beam index of the uplink channel in the random access response.
  • the user equipment may transmit the message 3 to the base station according to the procedure of the random access signal.
  • the user equipment can further perform beamforming transmission of message 3 based on the following method.
  • MRT maximum ratio transmission
  • the user equipment can detect the equivalent channel of the downlink DL beamforming, for example Then the corresponding MRT precoding vector can be Another method is to utilize uplink channel feedback information, such as beam direction or beam index, that the base station includes in the random access response.
  • uplink channel feedback information such as beam direction or beam index
  • the user equipment may have performed downlink DL synchronization and may receive the primary information block MIB, a portion of the system information block SIB, and even broadcast Random access response RAR. Therefore, the user equipment has an opportunity to obtain downlink DL beamforming information. This is useful for enhancing the message 4 of further contention resolution in the random access channel RACH.
  • the user equipment may have a downlink DL beamforming codebook. If the downlink DL reference signal RS transmits a non-precoding based scheme, the best beam ID can be fed back to the base station as a precoding matrix indicator PMI feedback. Otherwise, if the downlink DL transmits a beamforming based transmission scheme, the codebook used for the downlink DL broadcast information, the beam search pattern, for example, timing and time period, can be known in advance. Based on this predefined knowledge, the user equipment can feed back the best downlink DL beam direction or beam index to the base station. The user equipment can embed this information in message 3.
  • the downlink DL reference signal RS transmits a non-precoding based scheme
  • the best beam ID can be fed back to the base station as a precoding matrix indicator PMI feedback. Otherwise, if the downlink DL transmits a beamforming based transmission scheme, the codebook used for the downlink DL broadcast information, the beam search pattern, for example, timing and time period, can be known in advance. Based on this
  • the method 200 can further include: in response to receiving a random access response from the base station, feeding back to the base station an optimal beam direction of the downlink channel or Beam index.
  • feeding back the best beam direction or beam index of the downlink channel to the base station may include including the best beam direction or beam index of the downlink channel in message 3 for transmission.
  • the method may further comprise: searching for the best received codeword in the codebook based on the downlink channel information, or performing a calculation based on the uplink channel measurement to derive the received beam, and receiving the beam from the base station by receiving the beam Receive message 4.
  • step 201 can include transmitting a random access preamble to the base station by transmitting beamforming.
  • transmit beamforming may include transmit beamforming in the direction of departure corresponding to the direction of arrival derived from the downlink channel measurements.
  • the method may further comprise: estimating a direction of arrival of the user equipment using a downlink reference signal learned during a downlink synchronization procedure or a downlink control signal reception process, thereby deriving the departure of the user equipment Direction information.
  • receiving the random access response from the base station by receiving beamforming may include receiving beamforming using a receive beamforming codeword corresponding to the transmit beamforming codeword; or in a predefined The received beam is searched for the best beam for receive beamforming.
  • the method 200 may further include: transmitting a message 3 to the base station based on a departure direction corresponding to the direction of arrival derived from the downlink channel measurement; or receiving the message from the base station based on the direction of arrival derived from the measurement of the downlink channel .
  • the user equipment may have performed downlink DL synchronization and is aware of the downlink DL reference signaling configuration prior to performing the random access channel RACH procedure. Therefore, they are capable of measuring the downlink DL channel and are capable of making a direction of arrival (DoA) measurement.
  • DoA direction of arrival
  • the user equipment may search for a transmit beamforming vector from the codebook to transmit an uplink UL preamble, for example, between the search and the DoD. The code word with the smallest angle.
  • DoD-based uplink UL transmit beamforming is primarily in the scenario where the DoD of the uplink UL and the DoA of the downlink DL are substantially identical.
  • a non-beamforming manner with respect to broadcast signaling may be employed.
  • beamforming transmissions of DoDs based on predefined codebooks or user equipments that are successfully received from the base station to the preamble may also be supported for signaling enhancement.
  • a similar transmit beam can be used for the receive beam. If the transmitting end and the receiving end use different codebooks, when receiving the RAR from the base station, the user equipment can search for the best beam by looping the codeword in the predefined receiving codebook.
  • the base station and the user equipment can communicate via beamformed transmission and reception.
  • step 201 can include transmitting the same random access preamble to the base station multiple times.
  • transmitting the same random access preamble to the base station multiple times may include transmitting the same random access preamble to the base station multiple times according to a predefined timing; or only successfully receiving the random access response At the same time, the same random access preamble is transmitted to the base station multiple times.
  • the user equipment may transmit multiple preambles in the time domain to obtain time diversity.
  • signal combining can be employed for signal improvement.
  • method 200 can further include optimizing transmit beamforming and receive beamforming using the correlation between the transmit beam and the receive beam if channel reciprocity is established.
  • TDD operations have significant advantages for future 5G solutions.
  • the use of TDD mode also allows for the use of channel reciprocity between UL and DL in order to reduce feedback overhead, which is very beneficial for large multiple input multiple output MIMO techniques that require extensive channel state information. If the channels are mutually If the eligibility is established, the transmit beam and the receive beam on the base station side or the user equipment side may be associated with each other from the same codebook or derived through the same channel.
  • the user equipment may receive a signal for beamforming or a reference signal RS of the downlink DL of the non-beamformed channel. Based on this channel information and channel reciprocity, the user equipment can utilize the best beam direction to transmit the uplink UL preamble and achieve higher performance gains.
  • FIG. 3 schematically illustrates a signaling interaction diagram 300 between a user equipment and a base station, in accordance with an embodiment of the present disclosure. It should be understood that FIG. 3 illustrates one possible signaling interaction process between user equipment 310 and base station 320, in accordance with an embodiment of the present disclosure, by way of example only. Embodiments of the present disclosure may be implemented without the details shown in FIG. The scope of the disclosure is not limited by the specific details described in FIG.
  • user equipment 310 may transmit a random access preamble to base station 320 to initiate a random access channel RACH procedure.
  • user equipment 310 does not use transmit beamforming to transmit a random access preamble.
  • base station 320 can receive a random access preamble from a plurality of base stations 310, and there may be multiple user equipments 310 transmitting the same random access preamble to base station 320.
  • a random access preamble can be received from user equipment 310 by receive beamforming.
  • base station 320 can use codebook based receive beamforming, or can receive beamforming based on uplink DL channel information (e.g., beam ID) fed back by user equipment 310 in a random access preamble.
  • uplink DL channel information e.g., beam ID
  • the base station 320 may transmit a random access response to the user equipment 310 by using a beamforming broadcast manner, a non-beamformed broadcast manner, or a transmit beamforming manner using beam ID feedback information.
  • base station 320 transmits a random access response for a particular user equipment 310 or a particular group of user equipment 310.
  • the base station 320 may include feedback of uplink UL channel state information CSI or beam direction information in the random access response.
  • the receiving beamforming may be performed by calculating the beamforming weight, or by searching the codebook for receiving beamforming.
  • the user equipment 310 may perform transmit beamforming of the message 3 based on information such as the beam direction derived from the feedback information of the base station.
  • user equipment 310 may include feedback of downlink UL channel state information CSI or beam direction information in message 3.
  • the receive beam shaping of message 3 can be made by using the beam direction used in step 301.
  • base station 320 may also perform receive beamforming of message 3 based on the beam-formed uplink UL channel used to find the best codebook in the codebook.
  • the base station 320 may perform transmit beamforming of the message 4 using the same or similar codewords that transmit the random access response, or may also perform transmit beamforming of the message 4 based on the feedback information of the user equipment 310.
  • the user equipment 310 may perform the receive beamforming of the message 4 using the same or similar codewords that receive the random access response, or may also perform the receive beamforming of the message 4 based on the feedback information of the base station 320.
  • FIG. 4 schematically illustrates a signaling interaction diagram 400 between a user equipment and a base station in accordance with another embodiment of the present disclosure. It should be understood that FIG. 4 illustrates one possible signaling interaction process between user equipment 410 and base station 420, in accordance with an embodiment of the present disclosure, by way of example only. Embodiments of the present disclosure may be implemented without the details shown in FIG. The scope of the disclosure is not limited by the specific details described in FIG.
  • user equipment 410 transmits a random access preamble to base station 420 using transmit beamforming.
  • user equipment 410 may have performed downlink DL synchronization and is aware of the downlink DL reference signaling configuration. Therefore, they are capable of measuring the downlink DL channel and are capable of making a direction of arrival (DoA) measurement.
  • DoA direction of arrival
  • the user equipment 410 may search for a transmit beamforming vector from the codebook to transmit an uplink UL preamble, for example , search for the codeword with the smallest angle between the DoD and the DoD.
  • the approximate interaction of user equipment 410 with base station 420 is similar to that of FIG. The difference is that the user equipment 410 and the base station 420 may use respective departure direction DoD information for transmit beamforming and receive beamforming using respective arrival direction DoA information.
  • FIG. 5 schematically illustrates a signaling interaction diagram 500 between a user equipment and a base station in accordance with yet another embodiment of the present disclosure. It should be understood that FIG. 5 illustrates one possible signaling interaction process between user equipment 510 and base station 520, in accordance with an embodiment of the present disclosure, by way of example only. Embodiments of the present disclosure may be implemented without the details shown in FIG. The scope of the disclosure is not limited by the specific details described in FIG.
  • user equipment 510 transmits a random access preamble to base station 520 multiple times using time diversity.
  • user equipment 510 can transmit a random access preamble to base station 520.
  • user equipment 510 may again transmit the same random access preamble to base station 520.
  • signal combining may be performed on multiple received random access preambles.
  • user equipment 510 can use two retransmissions.
  • the first mode is represented in FIG. 5 using a tag 5021 in which the user equipment 510 performs multiple transmissions of the random access preamble at a predefined timing, whether or not a random access response is received from the base station 520.
  • Another way is indicated in FIG. 5 using the indicia 5022, wherein the user equipment 510 does not retransmit the random access preamble if it receives a random access response from the base station 520.
  • the subsequent steps 503, 504, and 505 in FIG. 5 are similar to the corresponding steps in FIG. 3, and are not described herein again.
  • FIG. 6 schematically illustrates a signaling interaction diagram 600 between a user equipment and a base station in accordance with yet another embodiment of the present disclosure. It should be understood that FIG. 6 illustrates one possible signaling interaction procedure between user equipment 610 and base station 620, in accordance with an embodiment of the present disclosure, by way of example only. Embodiments of the present disclosure may be implemented without the details shown in FIG. 6. The scope of the disclosure is not limited by the specific details described in FIG. 6.
  • the user equipment 610 and the base station 620 may The reciprocity of the channel is used to optimize transmit beamforming and receive beamforming.
  • user equipment 610 may receive a reference signal RS for a beamformed signal or a downlink DL of a non-beamformed channel. Based on this channel information and channel reciprocity, user equipment 610 can utilize the optimal beam direction to transmit the uplink UL preamble and achieve higher performance gains. It is assumed that user equipment 610 can obtain recent downlink DL channel state information that is valid for the immediately following random access channel RACH procedure. Based on channel reciprocity, user equipment 610 may search for the best beamforming weights within the predefined codebook or calculate precoding weights for subsequent beamformed preamble transmissions, which may further enhance the random access channel RACH procedure. The probability of success.
  • the best beam for downlink DL transmissions can also be used for uplink UL reception, which can simplify beam pairing with respect to user equipment random access channel RACH procedures.
  • the corresponding receive beam and the transmit beam later used for the next step can be optimized for optimal performance.
  • the other steps in FIG. 6 are similar to the corresponding steps in FIG. 3 and will not be described again here.
  • FIG. 7 schematically illustrates a block diagram of a base station 700 in accordance with an embodiment of the present disclosure.
  • base station 700 can include other functions that enable it to function properly.
  • Unit or component In particular practice, base station 700 can include other functions that enable it to function properly.
  • Unit or component In particular practice, base station 700 can include other functions that enable it to function properly.
  • Unit or component In particular practice, base station 700 can include other functions that enable it to function properly. Unit or component.
  • the necessary connection relationships may exist between the various units or components shown in FIG. 7, but these connection relationships are not depicted in FIG. 7 for the sake of brevity.
  • a dashed box is used to indicate an optional unit or component.
  • the base station 700 includes a receiving unit 701 and a transmitting unit 702.
  • the receiving unit 701 is configured to receive a random access preamble from the user equipment by receiving beamforming
  • the transmitting unit 702 is configured to transmit a random access response to the user equipment.
  • the receiving unit 701 can be further configured to: perform receive beamforming based on the codebook; or derive a receive beam based on downlink channel measurements. In some embodiments, the receiving unit 701 can be further configured to: iteratively use each codeword in the codebook to process the random access preamble received from the user equipment; and the corresponding to the best codeword Handling random access preamble as received by Beamforming The received random access preamble.
  • the transmitting unit 702 can be further configured to transmit a random access response by beamforming broadcast or non-beamformed broadcast. In some embodiments, the transmitting unit 702 can be further configured to transmit a random access response to the user equipment in a non-broadcast manner by transmit beamforming. In some embodiments, the transmitting unit 702 can be further configured to: perform transmit beamforming of the random access response based on feedback information of the downlink channel state received from the user equipment; or code based on the uplink channel information The transmitting codeword corresponding to the best received codeword is searched for the transmit beamforming of the random access response; or the uplink channel measurement is performed to calculate the transmit beam of the random access response.
  • the receiving unit 701 can be further configured to: receive feedback information of a downlink channel state in a random access preamble.
  • feedback information for the downlink channel state may be explicitly appended to the random access preamble.
  • the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles.
  • the feedback information for the downlink channel state may include at least a beam identifier.
  • the base station 700 can further include: a measuring unit 703 configured to measure feedback information for an uplink channel state of the user equipment in response to receiving the random access preamble from the user equipment; and the transmitting unit 702 It may be further configured to transmit feedback information of the measured uplink channel state to the user equipment.
  • the transmitting unit 702 can be further configured to transmit feedback information of an uplink channel state in a random access response.
  • the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the receiving unit 701 can be further configured to receive the message 3 from the user equipment by receiving beamforming. In some embodiments, the receiving unit 701 can be further configured to perform receive beamforming of the message 3 using a codeword identical or similar to the receive beamforming of the random access preamble. In some embodiments, the receiving unit 701 can be further configured to: search for the best in the codebook based on the uplink channel information. Receive a codeword for receive beamforming; or calculate based on uplink channel measurements to derive a receive beam for message 3. In some embodiments, the receiving unit 701 can be further configured to receive the best beam direction or beam index of the downlink fed back by the user equipment in message 3.
  • the transmitting unit 702 can be further configured to transmit the message 4 to the user equipment by transmitting beamforming in response to receiving the message 3 from the user equipment. In some embodiments, the transmitting unit 702 can be further configured to perform transmit beamforming of the message 4 using the same or similar codeword as the transmit beamforming of the random access response. In some embodiments, the transmitting unit 702 can be further configured to: perform transmit beamforming of the message 4 based on an optimal beam direction or beam index of the downlink fed back by the user equipment; or based on uplink channel information The codebook searches for the transmit codeword corresponding to the best received codeword to perform transmit beamforming of message 4; or performs calculation based on uplink channel measurement to derive the transmit beam of message 4.
  • the random access preamble may be transmitted by the user equipment by transmit beamforming.
  • transmit beamforming may include transmit beamforming by the user equipment based on the outgoing direction derived from the downlink channel measurements.
  • the transmitting unit 702 can be further configured to transmit a random access response to the user equipment by transmit beamforming based on the departure direction information of the base station.
  • the receiving unit 701 can be further configured to: receive the message 3 from the user equipment based on the direction of arrival derived from the uplink channel measurement; or the transmitting unit 702 can be further configured to: derive based on the uplink channel measurement The direction of departure corresponding to the direction of arrival is to transmit a message 4 to the user equipment.
  • the receiving unit 701 may be further configured to: receive the same random access preamble from the user equipment multiple times by receiving beamforming; and signal combine the same random access preambles received multiple times .
  • base station 700 can further include an optimization unit 704 configured to optimize transmit beamforming and receive beam assignment using correlation between transmit beams and receive beams if channel reciprocity is established. shape.
  • FIG. 8 schematically illustrates a box of user equipment 800 in accordance with an embodiment of the present disclosure.
  • Figure. It will be understood by those skilled in the art that only the units or components in the user equipment 800 that are closely related to the embodiments of the present disclosure are shown in FIG. 8. In specific practice, the user equipment 800 may include enabling it to operate normally. Other functional units or components. In addition, the necessary connection relationships may exist between the various units or components shown in FIG. 8, but these connection relationships are not depicted in FIG. 8 for the sake of brevity. In Figure 8, a dashed box is used to indicate an optional unit or component.
  • the user equipment 800 includes a transmitting unit 801 and a receiving unit 802.
  • the transmitting unit 801 is configured to transmit a random access preamble to the base station
  • the receiving unit 802 is configured to receive a random access response from the base station by receiving beamforming.
  • the receiving unit 802 can be further configured to: perform receive beamforming based on the codebook; or derive a receive beam of the random access response based on the downlink channel measurements. In some embodiments, receiving unit 802 can be further configured to: iteratively use each codeword in the codebook to process a random access response received from the base station; and process the corresponding to the best codeword The random access response acts as a random access response received by receive beamforming.
  • the user equipment 800 may further include: a computing unit 803 configured to calculate beamforming weights based on feedback information of downlink channel states detected by the user equipment; and the receiving unit 802 may be further configured to Receive beamforming is performed using the calculated beamforming weights. In some embodiments, receiving unit 802 can be further configured to perform maximum ratio combining based on downlink channel information.
  • the transmitting unit 801 can be further configured to transmit feedback information of the downlink channel state to the base station. In some embodiments, the transmitting unit 801 can be further configured to transmit feedback information of a downlink channel state in a random access preamble. In some embodiments, feedback information for the downlink channel state may be explicitly appended to the random access preamble. In some embodiments, the feedback information for the downlink channel state may be implicitly represented by the location or group of random access preambles. In some embodiments, the feedback information for the downlink channel state may include at least a beam identifier.
  • receiving unit 802 can be further configured to receive feedback information of an uplink channel state from a base station. In some embodiments, the receiving unit 802 can Further configured to: receive feedback information of an uplink channel state in a random access response. In some embodiments, the feedback information of the uplink channel state may include at least an optimal beam direction or beam index of the uplink.
  • the transmitting unit 801 can be further configured to transmit the message 3 to the base station by transmit beamforming. In some embodiments, the transmitting unit 801 may be further configured to: perform a transmit beamforming of the message 3 by searching for a transmit codeword corresponding to the best received codeword in the codebook based on the downlink channel information; or based on the downlink The link channel measurement is calculated to derive the transmit beam of message 3. In some embodiments, the transmitting unit 801 can be further configured to: receive an optimal beam direction or beam index of the uplink channel from the base station; and perform transmit beamforming based on the optimal beam direction or beam index.
  • receiving unit 802 can be further configured to receive an optimal beam direction or beam index of the uplink channel in the random access response.
  • the transmitting unit 801 can be further configured to: feed back, to the base station, an optimal beam direction or beam index of the downlink channel in response to receiving the random access response from the base station.
  • the transmitting unit 801 can be further configured to include the best beam direction or beam index of the downlink channel in message 3 for transmission.
  • the receiving unit 802 can be further configured to: search for the best received codeword in the codebook based on the downlink channel information, or calculate and derive the received beam based on the uplink channel measurement, and receive the beam by receiving The message is received from the base station.
  • the transmitting unit 801 can be further configured to transmit a random access preamble to the base station by transmit beamforming.
  • transmit beamforming may include transmit beamforming based on the direction of departure of the direction of arrival derived from the downlink channel measurements.
  • the user equipment 800 may further include an estimating unit 804 configured to estimate a direction of arrival of the user equipment using a downlink reference signal learned during a downlink synchronization procedure or a downlink control signal reception process. Information, which in turn derives the departure direction information of the user equipment.
  • the receiving unit 802 can be further configured to: perform receive beamforming using a receive beamforming codeword corresponding to the transmit beamforming codeword; or The search for the best beam is performed in a predefined received codebook for receive beamforming.
  • the transmitting unit 801 can be further configured to: transmit a message 3 to the base station based on a direction of departure corresponding to the direction of arrival derived from the downlink channel measurement; or the receiving unit 802 can be further configured to be based on the uplink The direction of arrival derived from the channel channel measurement receives message 4 from the base station.
  • the transmitting unit 801 can be further configured to transmit the same random access preamble to the base station multiple times. In some embodiments, the transmitting unit 801 can be further configured to: transmit the same random access preamble to the base station multiple times according to a predefined timing; or only multiple times if the random access response is not successfully received The base station transmits the same random access preamble.
  • user equipment 800 can further include an optimization unit 805 configured to optimize transmit beamforming and receive beams using correlations between transmit beams and receive beams if channel reciprocity is established. Forming.
  • embodiments of the present disclosure may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control code such as in a programmable memory or data carrier such as an optical or electronic signal carrier. Such code.

Abstract

本公开的实施例提供了一种用于基站的方法、一种用于用户设备的方法、一种基站、以及一种用户设备。用于基站的方法包括:通过接收波束赋形从用户设备接收随机接入前导码;以及向用户设备发射随机接入响应。用于用户设备的方法包括:向基站发射随机接入前导码;以及通过接收波束赋形从基站接收随机接入响应。本公开的实施例提出了基于波束赋形的随机接入信道过程以对抗无线通信环境(例如,毫米波通信)中的强路径损耗,从而有效地保证了用户设备的上行链路接入。

Description

用于基站的方法、用于用户设备的方法、基站、以及用户设备 技术领域
本公开的实施例一般性地涉及通信技术,并且更特别地涉及用于基站的方法、用于用户设备的方法、基站以及用户设备。
背景技术
第五代移动通信技术5G物理层的目标在于以减少的成本和功率消耗在数据速率和时延方面提供高性能。为了达到用于下一代移动蜂窝通信标准的千兆比特每秒的数据速率,一种选择是利用在毫米波频率的可用的大带宽。在毫米波频率上进行工作,无线信道具有一些不利的传播质量,包括强路径损耗、大气吸收和雨水吸收、障碍物周围的低衍射、以及对物体的穿透。
为了克服毫米波系统中的这些不利的传播质量,大的天线阵列和窄波束被预期为是一种用于数据传输的关键技术。然而,对于上行链路UL的随机接入信道RACH而言,LTE系统中仅支持非预编码的传输方案。但是,在传播质量不利的情况下,例如在毫米波无线通信系统中,归因于毫米波信道的上述特性,使用LTE RACH的无线传输方案可能无法满足无线通信系统(例如,毫米波系统)中的信号干扰噪声比SINR和覆盖要求。
发明内容
鉴于现有技术中存在的上述技术问题,本公开的实施例针对随机接入信道RACH使用波束赋形的发射和/或接收,并且提供了用于基站的方法、用于用户设备的方法、基站、以及用户设备,从而解决了现有技术中存在的上述至少一个技术问题。
根据本公开的第一方面,提供了一种用于基站的方法。该方法包括:通过接收波束赋形从用户设备接收随机接入前导码;以及向用户设备发射随机接入响应。
在一些实施例中,通过接收波束赋形从用户设备接收随机接入前导码可以包括:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出接收波束。在一些实施例中,基于码本来进行接收波束赋形可以包括:迭代地使用码本中的每个码字来处理从用户设备接收的随机接入前导码;以及将与最佳码字相对应的经处理的随机接入前导码作为通过接收波束赋形接收的随机接入前导码。
在一些实施例中,向用户设备发射随机接入响应可以包括:通过波束赋形的广播或者非波束赋形的广播来发射随机接入响应。在一些实施例中,该方法可以进一步包括:通过发射波束赋形以非广播方式向用户设备发射随机接入响应。在一些实施例中,向用户设备发射随机接入响应可以包括:基于从用户设备接收的下行链路信道状态的反馈信息来进行随机接入响应的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行随机接入响应的发射波束赋形;或者基于上行链路信道测量进行计算来导出随机接入响应的发射波束。
在一些实施例中,从用户设备接收下行链路信道状态的反馈信息可以包括:在随机接入前导码中接收下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在一些实施例中,该方法可以进一步包括:响应于从用户设备接收到随机接入前导码,测量针对用户设备的上行链路信道状态的反馈信息;以及向用户设备发射所测量的上行链路信道状态的反馈信息。在一些实施例中,向用户设备发射所测量的上行链路信道状态的反馈信息可以包括:在随机接入响应中发射上行链路信道状态的反馈信 息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在一些实施例中,该方法可以进一步包括:通过接收波束赋形从用户设备接收消息3。在一些实施例中,通过接收波束赋形从用户设备接收消息3可以包括:使用与随机接入前导码的接收波束赋形相同或相似的码字来进行消息3的接收波束赋形。在一些实施例中,通过接收波束赋形从用户设备接收消息3可以包括:基于上行链路信道信息在码本中搜索最佳接收码字来进行接收波束赋形;或者基于上行链路信道测量进行计算来导出消息3的接收波束。在一些实施例中,该方法可以进一步包括:在消息3中接收由用户设备反馈的下行链路的最佳波束方向或者波束索引。
在一些实施例中,该方法可以进一步包括:响应于从用户设备接收到消息3,通过发射波束赋形向用户设备发射消息4。在一些实施例中,通过发射波束赋形向用户设备发射消息4可以包括:使用与随机接入响应的发射波束赋形相同或相似的码字来进行消息4的发射波束赋形。在一些实施例中,该方法可以进一步包括:基于由用户设备反馈的下行链路的最佳波束方向或者波束索引来进行消息4的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息4的发射波束赋形;或者基于上行链路信道测量进行计算来导出消息4的发射波束。
在一些实施例中,随机接入前导码可以由用户设备通过发射波束赋形来发射。在这些实施例中,发射波束赋形可以包括用户设备基于下行链路信道测量导出的离开方向所进行的发射波束赋形。在一些实施例中,向用户设备发射随机接入响应可以包括:通过基于基站的离开方向信息的发射波束赋形向用户设备发射随机接入响应。在一些实施例中,该方法可以进一步包括:基于上行链路信道测量导出的到达方向从用户设备接收消息3;或者基于上行链路信道测量导出的到达方向所对应的离开方向来向用户设备发射消息4。
在一些实施例中,通过接收波束赋形从用户设备接收随机接入前 导码可以包括:通过接收波束赋形多次从用户设备接收相同的随机接入前导码;以及将多次接收的相同的随机接入前导码进行信号合并。
在一些实施例中,该方法可以进一步包括:在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
根据本公开的第二方面,提供了一种用于用户设备的方法。该方法包括:向基站发射随机接入前导码;以及通过接收波束赋形从基站接收随机接入响应。
在一些实施例中,通过接收波束赋形从基站接收随机接入响应可以包括:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出随机接入响应的接收波束。在一些实施例中,基于码本来进行接收波束赋形可以包括:迭代地使用码本中的每个码字来处理从基站接收的随机接入响应;以及将与最佳码字相对应的经处理的随机接入响应作为通过接收波束赋形接收的随机接入响应。
在一些实施例中,通过接收波束赋形从基站接收随机接入响应可以包括:基于用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重;以及使用所计算的波束赋形权重来进行接收波束赋形。在一些实施例中,基于用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重可以包括:基于下行链路信道信息来进行最大比合并。
在一些实施例中,该方法可以进一步包括:向基站发射下行链路信道状态的反馈信息。在一些实施例中,向基站发射下行链路信道状态的反馈信息可以包括:在随机接入前导码中发射下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在一些实施例中,该方法可以进一步包括:从基站接收上行链路 信道状态的反馈信息。在一些实施例中,从基站接收上行链路信道状态的反馈信息可以包括:在随机接入响应中接收上行链路信道状态的反馈信息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在一些实施例中,该方法可以进一步包括:通过发射波束赋形向基站发射消息3。在一些实施例中,通过发射波束赋形向基站发射消息3可以包括:基于下行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息3的发射波束赋形;或者基于下行链路信道测量进行计算来导出消息3的发射波束。在一些实施例中,通过发射波束赋形向基站发射消息3可以包括:从基站接收上行链路信道的最佳波束方向或者波束索引;以及基于最佳波束方向或者波束索引来进行发射波束赋形。在一些实施例中,从基站接收上行链路信道的最佳波束方向或者波束索引可以包括:在随机接入响应中接收上行链路信道的最佳波束方向或者波束索引。
在一些实施例中,该方法可以进一步包括:响应于从基站接收到随机接入响应,向基站反馈下行链路信道的最佳波束方向或者波束索引。在一些实施例中,向基站反馈下行链路信道的最佳波束方向或者波束索引可以包括:将下行链路信道的最佳波束方向或者波束索引包括在消息3中进行发射。在一些实施例中,该方法可以进一步包括:基于下行链路信道信息在码本中搜索最佳接收码字,或者基于上行链路信道测量进行计算导出接收波束,而通过接收波束赋形从基站接收消息4。
在一些实施例中,向基站发射随机接入前导码可以包括:通过发射波束赋形向基站发射随机接入前导码。在这些实施例中,发射波束赋形可以包括基于下行链路信道测量导出的到达方向所对应的离开方向的发射波束赋形。在一些实施例中,该方法可以进一步包括:使用在下行链路同步过程或者下行链路控制信号接收过程中获知的下行链路参考信号来估算用户设备的到达方向信息,进而导出用户设备的离开方向信息。在一些实施例中,通过接收波束赋形从基站接收随 机接入响应可以包括:使用与发射波束赋形码字相对应的接收波束赋形码字来进行接收波束赋形;或者在预定义的接收码本中搜索最佳波束来进行接收波束赋形。
在一些实施例中,该方法可以进一步包括:基于下行链路信道测量导出的到达方向所对应的离开方向来向基站发射消息3;或者基于下行链路信道测量导出的到达方向从基站接收消息4。
在一些实施例中,向基站发射随机接入前导码可以包括:多次向基站发射相同的随机接入前导码。在一些实施例中,多次向基站发射相同的随机接入前导码可以包括:按照预定义的定时多次向基站发射相同的随机接入前导码;或者仅在没有成功接收到随机接入响应时,才多次向基站发射相同的随机接入前导码。
在一些实施例中,该方法可以进一步包括:在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
根据本公开的第三方面,提供了一种基站。该基站包括:接收单元,被配置为通过接收波束赋形从用户设备接收随机接入前导码;以及发射单元,被配置为向用户设备发射随机接入响应。
根据本公开的第四方面,提供了一种用户设备。该用户设备包括:发射单元,被配置为向基站发射随机接入前导码;以及接收单元,被配置为通过接收波束赋形从基站接收随机接入响应。
本公开的实施例提出了基于波束赋形的随机接入信道RACH过程以对抗无线通信环境(例如,毫米波通信)中的强路径损耗,从而能够有效地保证用户设备的上行链路接入。
附图说明
通过参考附图阅读下文的详细描述,本公开的实施例的上述以及其他目的、特征和优点将变得容易理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施例,其中:
图1示意性地示出了根据本公开的实施例的一种用于基站的方法 的流程图。
图2示意性地示出了根据本公开的实施例的一种用于用户设备的方法的流程图。
图3示意性地示出了根据本公开的实施例的在用户设备与基站之间的信令交互示图。
图4示意性地示出了根据本公开的另一实施例的在用户设备与基站之间的信令交互示图。
图5示意性地示出了根据本公开的又另一实施例的在用户设备与基站之间的信令交互示图。
图6示意性地示出了根据本公开的再另一实施例的在用户设备与基站之间的信令交互示图。
图7示意性地示出了根据本公开的实施例的基站的框图。
图8示意性地示出了根据本公开的实施例的用户设备的框图。
具体实施方式
下面将参考附图中所示出的若干示例性实施例来描述本公开的原理和精神。应当理解,描述这些具体的实施例仅是为了使本领域的技术人员能够更好地理解并实现本公开,而并非以任何方式限制本公开的范围。
当前,已经提出了一种用于随机接入信道RACH的新帧结构。该RACH帧包括连续的Nslots个RACH时隙,在该RACH帧中,Nslots=MBS×MUE,其中MBS是在BS处的接收波束的数目,并且MUE是在MS处的发射波束的数目。在这些时隙中,发射波束与接收波束的每个对利用相同的前导码传输进行扫描,以保证某个波束对上的最佳性能可以在Nslots个RACH时隙中被搜索到。
然而,根据进一步的分析,RACH前导码的长持续期对初始接入、无线电链路失效RLF的恢复、以及切换具有一些负面影响。另外,其实施也将受到具有不连续上行链路UL子帧的时分双工TDD上行链路-下行链路(UL-DL)配置的限制。对于解决这些问题的可能方 法,已经提出了若干方向,包括增强前导码检测、增加BS处的多个数字链,等等。然而,现有技术中并没有给出有关波束赋形RACH的详细解决方案。
在本公开的实施例中,对于RACH过程,为了对抗无线通信(例如,毫米波通信信道)中的强路径损耗,提出了针对前导码以及进一步的消息2-4的波束赋形的发射和接收。考虑到基站侧的强大处理能力,所以其能够使用接收波束赋形来增强对前导码的检测。为了进一步增强接收能力,在可以预测从用户设备朝向基站的最佳方向的情况下,用户设备处对前导码的发射波束赋形也能够被支持。另外,在接收端处进行信号合并也是一种辅助信号强度增强的补充方案。
为了支持波束赋形的发射和/或接收、或者在接收端处的信号合并,本公开的实施例定义了一些新的过程。在这些过程中,一些配置,例如一些有关的波束赋形参考信号的配置,可以提前被知晓。此外,新的信道状态信息CSI反馈/导出的波束信息(例如,波束方向)可以被定义并且被反馈,以在一些步骤中执行波束赋形的发射。
在本公开的实施例中,术语“用户设备”(UE)是指能够与“基站”(BS)进行通信的任何设备。作为示例,用户设备可以包括终端、移动终端(MT)、订户台(SS)、便携式订户台(PSS)、移动台(MS)或者接入终端(AT)。“基站”(BS)可以表示节点B(NodeB或者NB)、演进型节点B(eNodeB或者eNB)、远程无线电单元(RRU)、射频头(RH)、远端射频头(RRH)、中继器、低功率节点,诸如微微基站、毫微微基站等。
图1示意性地示出了根据本公开的实施例的一种用于基站的方法100的流程图。在一些实施例中,方法100的执行主体可以是与用户设备进行通信的基站。在另一些实施例中,方法100可以由稍后结合图7所描述的基站700来执行。
如图1中所示出的,方法100包括步骤101。在步骤101中,基站通过接收波束赋形从用户设备接收随机接入前导码。在步骤101之后,方法100进入步骤102。在步骤102中,基站向用户设备发射随 机接入响应。
如前文所描述的,在例如毫米波无线传输等的不利传播质量的情况下,更好的是利用方向性天线来使用波束赋形技术用于随机接入前导码的传输。因此,在随机接入信道RACH过程中,用户设备可以在RACH资源上发射前导码,在一些实施例中,该前导码的发射可以不使用发射波束赋形,这是因为用户设备可能没有上行链路UL信道的任何方向信息。
但是,在基站的接收端侧,可以应用接收波束赋形来克服例如毫米波信道等不利传播质量所遭受的强路径损耗。与下行链路DL波束赋形发射相比较,因为用户设备的发射功率小于基站的发射功率,所以为了补偿相同的路径损耗,在基站处可以使用更窄的波束。由于基站具有强大的处理能力,该方案完全是可接受的。
在一些实施例中,步骤101可以包括:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出接收波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出下行链路发射波束。在一些实施例中,基于码本来进行接收波束赋形可以包括:迭代地使用码本中的每个码字来处理从用户设备接收的随机接入前导码;以及将与最佳码字相对应的经处理的随机接入前导码作为通过接收波束赋形接收的随机接入前导码。
对于在基站处进行接收波束赋形的波束赋形矩阵,因为可能没有具体的信道信息,所以可以使用基于码本的接收波束赋形。例如,可以基于离散傅里叶变换DFT的码本。对于从用户设备接收的前导码,基站利用诸如W={wi,i=1,...,N}中的不同码字迭代地进行处理,其中N是波束的数目,并且提取与最佳码字(例如,wj)对应的经处理的前导码作为通过波束赋形接收的前导码。在所指配的每个具有RACH前导码发射的传输时间间隔TTI中,基站都可以进行这个操作。考虑到在基站处通常配置了许多天线,接收波束赋形对于例如毫米波系统等是更有利的,这与LTE系统中的处理是不同的。
在一些实施例中,步骤102可以包括:通过波束赋形的广播或者 非波束赋形的广播来发射随机接入响应。在一些实施例中,方法100可以进一步包括:通过发射波束赋形以非广播方式向用户设备发射随机接入响应。在这些实施例中,步骤102可以包括:基于从用户设备接收的下行链路信道状态的反馈信息来进行随机接入响应的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行随机接入响应的发射波束赋形;或者基于上行链路信道测量进行计算来导出随机接入响应的发射波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出下行链路发射波束。
在从用户设备接收到随机接入前导码后,基站将向前导码被成功解码的用户设备反馈随机接入响应RAR。因为多个用户设备可能使用相同的前导码并且多个用户设备的前导码可能被成功解码,所以这个RAR信息是针对多个用户设备的。因此,基站可以采用下行链路DL广播/控制信道以便用于发射增强。广播的方式可以包括波束赋形的广播方式,或者非波束赋形的广播方式。在另外一些实施例中,基站能够基于包括在消息1(即,随机接入前导码)中的用户设备优选的接收波束赋形信息来进行针对特定用户设备的随机接入响应RAR发射。
在一些实施例中,从用户设备接收下行链路信道状态的反馈信息可以包括:在随机接入前导码中接收下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在这些实施例中,在进行RACH过程之前,用户设备可能得到了近期的下行链路DL信道状态信息,例如,这可能是基于对嵌入在下行链路DL物理广播信道PBCH、或者下行链路控制信道中的下行链路DL参考信号RS的测量等等。如果该信道状态信息对于紧随的RACH过程仍然是有效的,则下行链路DL信道状态信息(CSI),例如波束ID信息、LTE中的最佳预编码矩阵指示符PMI等,能够被反 馈给基站。
因此,在发射随机接入响应的步骤中,基站可以通过发射波束赋形,向前导码成功被接收的用户设备发送随机接入响应RAR。在一些实施例中,用户设备可以将信道状态信息CSI附加到前导码以用于向基站反馈。具体的信令方式可以包括:第一,显式方式,例如,将信道状态信息CSI附加到前导码并且将它们发送给基站;第二,隐式方式,例如,波束ID信息可以通过前导码的位置或群组来隐含表示。本领域的技术人员可以理解,此处所讨论的信令方式也能够适合用于本公开的实施例中的其他步骤中提到的其他反馈信息。
作为一种可选的实施方式,在接收到多个用户设备的前导码之后,基站可以测量上行链路UL信道并且使得能够向具有不同前导码的用户设备反馈上行链路最佳波束方向或者波束索引。这对于用户设备进一步增强消息3的发射性能是非常有用的。基站可以将这一波束赋形信息嵌入在针对每个所期望用户设备的随机接入响应RAR中。
在一些实施例中,方法100可以进一步包括:响应于从用户设备接收到随机接入前导码,基站可以测量针对用户设备的上行链路信道状态的反馈信息;以及向用户设备发射所测量的上行链路信道状态的反馈信息。在一些实施例中,向用户设备发射所测量的上行链路信道状态的反馈信息可以包括:在随机接入响应中发射上行链路信道状态的反馈信息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在接收到来自基站的随机接入响应RAR之后,按照随机接入信号的过程,用户设备可以向基站发射消息3。基于以下的方法,用户设备能够进一步执行消息3的波束赋形发射。
为了上行链路UL波束赋形发射的简单性,一种方法是使用最大比发射(MRT)。当接收到RAR时,用户设备可以检测下行链路DL波束赋形的等效信道,例如
Figure PCTCN2016079490-appb-000001
则对应的MRT预编码矢量可以是
Figure PCTCN2016079490-appb-000002
另一种方法是利用基站在随机接入响应中所包括的上行链路信道反馈信息,例如,波束方向或者波束索引。如此,给定所反馈的 波束索引或者所计算的MRT预编码矩阵,用户设备能够在所调度的资源上通过发射波束赋形向基站发出消息3。
在一些情况中,在基站向用户设备发射随机接入响应RAR的步骤中,用户设备可能已经进行了下行链路DL同步并且可以接收到主信息块MIB、系统信息块SIB的一部分、以及甚至广播的随机接入响应RAR。因此,用户设备具有得到下行链路DL波束赋形信息的机会。这对于增强随机接入信道RACH中的进一步的竞争解决的消息4是有用的。
为了得到近期的下行链路DL波束信息,在用户设备侧,用户设备可以具有下行链路DL波束赋形码本。如果下行链路DL参考信号RS发射基于非预编码的方案,则作为预编码矩阵指示符PMI反馈,最佳波束ID能够被反馈给基站。否则,如果下行链路DL发射基于波束赋形的发射方案,则可以提前知道用于下行链路DL广播信息所使用的码本、波束搜索图案,例如,定时和时段。基于这一预定义的知识,用户设备能够向基站反馈最佳的下行链路DL波束方向或波束索引。用户设备可以将这一信息嵌入在消息3中。
因此,在一些实施例中,方法100可以进一步包括:通过接收波束赋形从用户设备接收消息3。在一些实施例中,通过接收波束赋形从用户设备接收消息3可以包括:使用与随机接入前导码的接收波束赋形相同或相似的码字来进行消息3的接收波束赋形。本领域的技术人员可以理解,由于无线信道可能随着时间而变化,所以此处的码字也可能与前次进行接收的码字并不完全相同,而是两者属于相近的码字。在另一些实施例中,通过接收波束赋形从用户设备接收消息3可以包括:基于上行链路信道信息在码本中搜索最佳接收码字进行接收波束赋形;或者基于上行链路信道测量进行计算来导出消息3的接收波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出下行链路发射波束。在一些实施例中,方法100可以进一步包括:在消息3中接收由用户设备反馈的下行链路的最佳波束方向或者波束索引。
因为基站已经在接收随机接入前导码的步骤中得到了中用于前导码接收的最佳接收波束赋形,所以为了接收消息3的简单性,基站可以不再循环多个波束赋形码字,并且能够经由已知的波束矢量(例如wj)来检测所期望的消息3,以简化基站处的处理。在另一些情况下,为了进行更准确的接收,基站也可以基于所使用的波束赋形的上行链路UL信道来循环使用多个波束赋形码字来处理接收的消息3。
在一些实施例中,方法100可以进一步包括:响应于从用户设备接收到消息3,通过发射波束赋形向用户设备发射消息4。在一些实施例中,通过发射波束赋形向用户设备发射消息4可以包括:使用与随机接入响应的发射波束赋形相同或相似的码字来进行消息4的发射波束赋形。本领域的技术人员可以理解,由于无线信道可能随着时间而变化,所以此处的码字也可能与前次进行发射的码字并不完全相同,而是两者属于相近的码字。在一些实施例中,方法100可以进一步包括:基于由用户设备反馈的下行链路的最佳波束方向或者波束索引来进行消息4的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息4的发射波束赋形;或者基于上行链路信道测量进行计算来导出消息4的发射波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出下行链路发射波束。
在随机接入信道过程的最后的消息4的发射步骤中,基站可以针对特定的用户设备来发射波束赋形的消息4。所使用的波束赋形矢量可以是针对消息2使用的波束赋形矢量或者针对消息3在前一步骤中所反馈的波束赋形矢量。在发射随机接入响应的步骤中,如果基站采用了波束赋形的广播方式,并且在发射消息4的步骤中使用了波束赋形的针对特定用户设备的发射,则波束赋形的参考消息配置对用户设备而言可以是已知的。
为了对抗例如毫米波传输中的强路径损耗,并且进一步补偿用户设备侧的微弱发射功率的影响,可以考虑采用更窄的波束来进行发射。在本公开的进一步的实施例中,提出了增强上行链路UL随机接 入信道RACH的另一种传输方式,也就是在发射侧通过发射波束赋形来增强信号的强度。
因此,在方法100的一些实施例中,随机接入前导码可以由用户设备通过发射波束赋形来发射。在这些实施例中,发射波束赋形可以包括用户设备基于下行链路信道测量导出的离开方向所进行的发射波束赋形。在一些实施例中,向用户设备发射随机接入响应可以包括:通过基于基站的离开方向信息的发射波束赋形向用户设备发射随机接入响应。在一些实施例中,方法100可以进一步包括:基于上行链路信道测量导出的到达方向从用户设备接收消息3;或者基于上行链路信道测量导出的到达方向所对应的离开方向来向用户设备发射消息4。
在进行随机接入信道RACH过程之前,用户设备可能已经进行了下行链路DL同步并且知晓下行链路DL参考信令配置。因此,它们能够测量下行链路DL信道,并且能够进行到达方向(DoA)的测量。基于所获得的DoA信息,即从用户设备到基站的离开方向DoD信息,用户设备可以从码本中搜索发射波束赋形矢量来发射上行链路UL前导码,例如,搜索与DoD之间的具有最小角度的码字。
如果DoA测量基于波束赋形的信道,则当基站经由与用于下行链路DL波束赋形发射所使用的波束相类似的波束接收上行链路UL信令时,应用基于DoD所导出的用户设备的发射波束赋形矢量。一般而言,基于DoD的上行链路UL发射波束赋形主要是在上行链路UL的DoD和了下行链路DL的DoA基本一致的场景中。
对于在基站侧的随机接入响应RAR发射,如前文所描述的,可以采用关于广播信令的非波束赋形的方式。另外,基于预定义码本或者从基站到前导码成功被接收的用户设备的DoD的波束赋形发射也可以被支持以用于信令增强。
对于在用户设备侧的随机接入响应RAR接收,在发射端和接收端共享相同码本的情况中(这在许多情况中是成立的),类似的发射波束可以被使用用于接收波束。如果发射端和接收端采用了不同的码 本,则从基站接收RAR时,用户设备可以经由在预定义接收码本中对码字进行循环来搜索最佳波束。
在随机接入信道过程的后续操作中,基于根据所测量的DoD或者波束方向反馈对波束的更新,基站和用户设备可以经由波束赋形的发射和接收来进行通信。
在一些实施例中,步骤102可以包括:通过接收波束赋形多次从用户设备接收相同的随机接入前导码;以及将多次接收的相同的随机接入前导码进行信号合并。
在这些实施例中,为了增强随机接入信道RACH过程中的前导码发射,用户设备可以在时域中发射多次的前导码以得到时间分集。在基站侧,可以采用信号合并以用于信号改进。本领域的技术人员可以理解,重发的次数是可以配置的,但是为了简单,在本文的描述中,采用了一次重发作为示例。对于多次前导码的重发发射,可以具有以下两种选择。
第一种选择是,在时域中进行重发是强制性的并且重发的定时是预定义的。例如,假设初始的前导码发射是在子帧n上,则可以在子帧n+k之后的第一上行链路UL子帧上调度重发。那么,基站可以基于重发定时来进一步调度接下来的随机接入响应RAR。
第二种选择是,在时域中进行重发不是强制性的。如果基站成功地接收到初始发射的前导码,则随机接入响应RAR可以像在先前解决的四个步骤中那样利用图1中的接收波束赋形来发射。在这种情况下,用户设备可以不再进行随机接入前导码的重发。这种选择的优点是,在部分前导码的信号质量良好的情况中,随机接入信道RACH过程可以被缩短。然而,潜在的问题可能是,一些具有低劣发射质量的用户设备可能没有足够的接入机会。在这个方面,可以引入另一种公平方案在两者之间进行平衡。
在一些实施例中,方法100可以进一步包括:在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
在这些实施例中,考虑到TDD操作的成本有效性以及利用大型不成对频带的可能性,设想到TDD操作对于未来的5G解决方案具有显著的优点。使用TDD模式还允许利用UL与DL之间的信道互易性以便减少反馈开销,这对于要求广泛的信道状态信息的大型多输入多输出MIMO技术而言是非常有益的。如果信道互易性成立,则基站侧或者用户设备侧的发射波束与接收波束可以被关联,它们来自相同的码本或者通过相同的信道所导出。
在这种情况中,在随机接入信道RACH过程之前,用户设备可以接收用于波束赋形的信号或者非波束赋形的信道的下行链路DL的参考信号RS。基于这一信道信息和信道互易性,用户设备能够利用最佳波束方向来发射上行链路UL前导码,并且获得更高的性能增益。
假设用户设备可以得到近期的下行链路DL信道状态信息,其对于紧随的随机接入信道RACH过程是有效的。基于信道互易性,用户设备可以在预定义码本内搜索最佳波束赋形权重,或者针对随后的波束赋形的前导码发射计算预编码权重,这可以进一步增强随机接入信道RACH过程的成功概率。
在基站侧,用于下行链路DL发射的最佳波束也可以用于上行链路UL接收,这可以简化关于用户设备随机接入信道RACH过程的波束配对。对于更新了波束赋形的发射信道的后续步骤,对应的接收波束和稍后用于下一步骤的发射波束可以被优化以获得最佳性能。
图2示意性地示出了根据本公开的实施例的一种用于用户设备的方法200的流程图。在一些实施例中,方法200的执行主体可以是与基站进行通信的用户设备。在另一些实施例中,方法200可以由稍后结合图8所描述的用户设备800来执行。
本领域的技术人员可以理解,用于用户设备的方法200与前文所描述的用户基站的方法100是相对应的通信双方的操作过程,因此方法200可以参考对方法100的描述来进行理解,下文对方法200的描述中可能省略了与方法100的描述相重复的内容。
如图2中所示出的,方法200包括步骤201。在步骤201中,用 户设备向基站发射随机接入前导码。在步骤201之后,方法200进入步骤202。在步骤202中,用户设备通过接收波束赋形从基站接收随机接入响应。
在一些实施例中,步骤202可以包括:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出随机接入响应的接收波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出下行链路发射波束。在一些实施例中,基于码本来进行接收波束赋形可以包括:迭代地使用码本中的每个码字来处理从基站接收的随机接入响应;以及将与最佳码字相对应的经处理的随机接入响应作为通过接收波束赋形接收的随机接入响应。
在一些实施例中,步骤202可以包括:基于用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重;以及使用所计算的波束赋形权重来进行接收波束赋形。在一些实施例中,基于用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重可以包括:基于下行链路信道信息来进行最大比合并。
对于在用户设备侧对随机接入响应RAR的接收,可以考虑两种选择以进一步增强所接收的信令。第一种选择是,经由在预定义的码本中搜索最佳波束来进行接收器波束赋形。第二种选择是,基于波束赋形或非波束赋形参考信号RS,基于用户设备所检测的下行链路DL信道的最大比合并MRC。
在一些实施例中,方法200可以进一步包括:向基站发射下行链路信道状态的反馈信息。在一些实施例中,向基站发射下行链路信道状态的反馈信息可以包括:在随机接入前导码中发射下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在这些实施例中,在进行RACH过程之前,用户设备可能得到了 近期的下行链路DL信道状态信息,例如,这可能是基于对嵌入在下行链路DL物理广播信道PBCH中的下行链路DL参考信号RS的测量等等。如果该信道状态信息对于紧随的RACH过程仍然是有效的,则下行链路DL信道状态信息(CSI),例如波束ID信息、LTE中的最佳预编码矩阵指示符PMI等,能够被反馈给基站。
在一些实施例中,用户设备可以将信道状态信息CSI附加到前导码以用于向基站反馈。具体的信令方式可以包括:第一,显式方式,例如,将信道状态信息CSI附加到前导码并且将它们发送给基站;第二,隐式方式,例如,波束ID信息可以通过前导码的位置或群组来隐含表示。本领域的技术人员可以理解,此处所讨论的信令方式也能够适合用于本公开的实施例中的其他步骤中提到的其他反馈信息。
在一些实施例中,方法200可以进一步包括:从基站接收上行链路信道状态的反馈信息。在一些实施例中,从基站接收上行链路信道状态的反馈信息可以包括:在随机接入响应中接收上行链路信道状态的反馈信息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在这些实施例中,在接收到多个用户设备的前导码之后,基站可以测量上行链路UL信道并且使得能够向具有不同前导码的用户设备反馈最佳波束方向或者波束索引。这对于用户设备进一步增强消息3的发射性能是非常有用的。基站可以将这一波束赋形信息嵌入在针对每个所期望用户设备的随机接入响应RAR中。
在一些实施例中,方法200可以进一步包括:通过发射波束赋形向基站发射消息3。在一些实施例中,通过发射波束赋形向基站发射消息3可以包括:基于下行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息3的发射波束赋形;或者基于下行链路信道测量进行计算来导出消息3的发射波束。在后一种情况中,假设上行链路与下行链路是互易的,从而可以导出上行链路发射波束。在一些实施例中,通过发射波束赋形向基站发射消息3可以包括:从基站接收上行链路信道的最佳波束方向或者波束索引;以及基于最佳波 束方向或者波束索引来进行发射波束赋形。在一些实施例中,从基站接收上行链路信道的最佳波束方向或者波束索引可以包括:在随机接入响应中接收上行链路信道的最佳波束方向或者波束索引。
在接收到来自基站的随机接入响应RAR之后,按照随机接入信号的过程,用户设备可以向基站发射消息3。基于以下的方法,用户设备能够进一步执行消息3的波束赋形发射。
为了上行链路UL波束赋形发射的简单性,一种方法是使用最大比发射(MRT)。当接收到RAR时,用户设备可以检测下行链路DL波束赋形的等效信道,例如
Figure PCTCN2016079490-appb-000003
则对应的MRT预编码矢量可以是
Figure PCTCN2016079490-appb-000004
另一种方法是利用基站在随机接入响应中所包括的上行链路信道反馈信息,例如,波束方向或者波束索引。如此,给定所反馈的波束索引或者所计算的MRT预编码矩阵,用户设备能够在所调度的资源上通过发射波束赋形向基站发出消息3。
在一些情况中,在基站向用户设备发射随机接入响应RAR的步骤中,用户设备可能已经进行了下行链路DL同步并且可以接收到主信息块MIB、系统信息块SIB的一部分、以及甚至广播的随机接入响应RAR。因此,用户设备具有得到下行链路DL波束赋形信息的机会。这对于增强随机接入信道RACH中的进一步的竞争解决的消息4是有用的。
为了得到近期的下行链路DL波束信息,在用户设备侧,用户设备可以具有下行链路DL波束赋形码本。如果下行链路DL参考信号RS发射基于非预编码的方案,则作为预编码矩阵指示符PMI反馈,最佳波束ID能够被反馈给基站。否则,如果下行链路DL发射基于波束赋形的发射方案,则可以提前知道用于下行链路DL广播信息所使用的码本、波束搜索图案,例如,定时和时段。基于这一预定义的知识,用户设备能够向基站反馈最佳的下行链路DL波束方向或波束索引。用户设备可以将这一信息嵌入在消息3中。
因此,在一些实施例中,方法200可以进一步包括:响应于从基站接收到随机接入响应,向基站反馈下行链路信道的最佳波束方向或 者波束索引。在一些实施例中,向基站反馈下行链路信道的最佳波束方向或者波束索引可以包括:将下行链路信道的最佳波束方向或者波束索引包括在消息3中进行发射。在一些实施例中,该方法可以进一步包括:基于下行链路信道信息在码本中搜索最佳接收码字,或者基于上行链路信道测量进行计算导出接收波束,而通过接收波束赋形从基站接收消息4。
在一些实施例中,步骤201可以包括:通过发射波束赋形向基站发射随机接入前导码。在这些实施例中,发射波束赋形可以包括基于下行链路信道测量导出的到达方向所对应的离开方向的发射波束赋形。在一些实施例中,该方法可以进一步包括:使用在下行链路同步过程或者下行链路控制信号接收过程中获知的下行链路参考信号来估算用户设备的到达方向信息,进而导出用户设备的离开方向信息。在一些实施例中,通过接收波束赋形从基站接收随机接入响应可以包括:使用与发射波束赋形码字相对应的接收波束赋形码字来进行接收波束赋形;或者在预定义的接收码本中搜索最佳波束来进行接收波束赋形。
在一些实施例中,方法200可以进一步包括:基于下行链路信道测量导出的到达方向所对应的离开方向来向基站发射消息3;或者基于下行链路信道测量导出的到达方向从基站接收消息4。
在这些实施例中,在进行随机接入信道RACH过程之前,用户设备可能已经进行了下行链路DL同步并且知晓下行链路DL参考信令配置。因此,它们能够测量下行链路DL信道,并且能够进行到达方向(DoA)的测量。基于所获得的DoA信息,即从用户设备到基站的离开方向(DoD)信息,用户设备可以从码本中搜索发射波束赋形矢量来发射上行链路UL前导码,例如,搜索与DoD之间的具有最小角度的码字。
如果DoA测量基于波束赋形的信道,则当基站经由与用于下行链路DL波束赋形发射所使用的波束相类似的波束接收上行链路UL信令时,应用基于DoD所导出的用户设备的发射波束赋形矢量。一 般而言,基于DoD的上行链路UL发射波束赋形主要是在上行链路UL的DoD和了下行链路DL的DoA基本一致的场景中。
对于在基站侧的随机接入响应RAR发射,如前文所描述的,可以采用关于广播信令的非波束赋形的方式。另外,基于预定义码本或者从基站到前导码成功被接收的用户设备的DoD的波束赋形发射也可以被支持以用于信令增强。
对于在用户设备侧的随机接入响应RAR接收,在发射端和接收端共享相同码本的情况中(这在许多情况中是成立的),类似的发射波束可以被使用用于接收波束。如果发射端和接收端采用了不同的码本,则从基站接收RAR时,用户设备可以经由在预定义接收码本中对码字进行循环来搜索最佳波束。
在随机接入信道过程的后续操作中,基于根据所测量的DoD或者波束方向反馈对波束的更新,基站和用户设备可以经由波束赋形的发射和接收来进行通信。
在一些实施例中,步骤201可以包括:多次向基站发射相同的随机接入前导码。在一些实施例中,多次向基站发射相同的随机接入前导码可以包括:按照预定义的定时多次向基站发射相同的随机接入前导码;或者仅在没有成功接收到随机接入响应时,才多次向基站发射相同的随机接入前导码。
在这些实施例中,为了增强随机接入信道RACH过程中的前导码发射,用户设备可以在时域中发射多次的前导码以得到时间分集。在基站侧,可以采用信号合并以用于信号改进。
在一些实施例中,方法200可以进一步包括:在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。在这些实施例中,考虑到TDD操作的成本有效性以及利用大型不成对频带的可能性,设想到TDD操作对于未来的5G解决方案具有显著的优点。使用TDD模式还允许利用UL与DL之间的信道互易性以便减少反馈开销,这对于要求广泛的信道状态信息的大型多输入多输出MIMO技术而言是非常有益的。如果信道互 易性成立,则基站侧或者用户设备侧的发射波束与接收波束可以被关联,它们来自相同的码本或者通过相同的信道所导出。
在这种情况中,在随机接入信道RACH过程之前,用户设备可以接收用于波束赋形的信号或者非波束赋形的信道的下行链路DL的参考信号RS。基于这一信道信息和信道互易性,用户设备能够利用最佳波束方向来发射上行链路UL前导码,并且获得更高的性能增益。
图3示意性地示出了根据本公开的实施例的在用户设备与基站之间的信令交互示图300。应当理解,图3通过仅为示例的方式示出了根据本公开的实施例的在用户设备310与基站320之间的一种可能的信令交互过程。本公开的实施例可以不具有图3中所示出的细节而被实施。本公开的范围不被图3中所描述的具体细节所限制。
如图3中所示出的,在步骤301中,用户设备310可以向基站320发射随机接入前导码,以发起随机接入信道RACH过程。在图3所示出的具体示例中,用户设备310没有使用发射波束赋形来发射随机接入前导码。此外,基站320可以从多个基站310接收到随机接入前导码,并且可能存在多个用户设备310向基站320发射了相同的随机接入前导码。在基站320处,可以通过接收波束赋形从用户设备310接收随机接入前导码。例如,基站320可以使用基于码本的接收波束赋形,或者可以基于用户设备310在随机接入前导码中所反馈的上行链路DL信道信息(例如,波束ID)来进行接收波束赋形。
在步骤302中,基站320可以采用波束赋形的广播方式、非波束赋形的广播方式、或者利用波束ID反馈信息的发射波束赋形方式向用户设备310发射随机接入响应。在利用利用波束ID反馈信息进行发射波束赋形的情况中,基站320是针对特定的用户设备310或者特定的用户设备310群组发射随机接入响应。可选地,基站320可以在随机接入响应中包括上行链路UL信道状态信息CSI或者波束方向信息的反馈。在用户设备310处,在接收随机接入响应的过程中,可以通过计算波束赋形权重的方式进行接收波束赋形,或者通过搜索码本的方式来进行接收波束赋形。
在步骤303中,用户设备310可以基于从基站的反馈信息中导出的波束方向等信息来进行消息3的发射波束赋形。可选地,用户设备310可以在消息3中包括下行链路UL信道状态信息CSI或者波束方向信息的反馈。在基站320处,可以通过使用在步骤301中所使用的波束方向来进行对消息3的接收波束赋形。在另一些情况下,为了进行更准确的接收,基站320也可以基于所使用的波束赋形的上行链路UL信道在码本中寻找最佳码本来对消息3进行接收波束赋形。
在步骤304中,基站320可以使用发射随机接入响应的相同或相似的码字来进行消息4的发射波束赋形,或者也可以基于用户设备310的反馈信息来进行消息4的发射波束赋形。对应地,用户设备310可以使用接收随机接入响应的相同或相似的码字来进行消息4的接收波束赋形,或者也可以基于基站320的反馈信息来进行消息4的接收波束赋形。
图4示意性地示出了根据本公开的另一实施例的在用户设备与基站之间的信令交互示图400。应当理解,图4通过仅为示例的方式示出了根据本公开的实施例的在用户设备410与基站420之间的一种可能的信令交互过程。本公开的实施例可以不具有图4中所示出的细节而被实施。本公开的范围不被图4中所描述的具体细节所限制。
如图4中所示出的,其与图3的交互过程的不同之处在于用户设备410使用发射波束赋形来向基站420发射随机接入前导码。在进行随机接入信道RACH过程之前,用户设备410可能已经进行了下行链路DL同步并且知晓下行链路DL参考信令配置。因此,它们能够测量下行链路DL信道,并且能够进行到达方向(DoA)的测量。
因此,在步骤401中,基于所获得的DoA信息,即从用户设备到基站的离开方向DoD信息,用户设备410可以从码本中搜索发射波束赋形矢量来发射上行链路UL前导码,例如,搜索与DoD之间的具有最小角度的码字。
在后续的步骤402、402、404中,用户设备410与基站420的大致的交互过程与图3中相类似。不同之处在于,用户设备410与基站 420可以使用各自的离开方向DoD信息来进行发射波束赋形,并且使用各自的到达方向DoA信息来进行接收波束赋形。
图5示意性地示出了根据本公开的又另一实施例的在用户设备与基站之间的信令交互示图500。应当理解,图5通过仅为示例的方式示出了根据本公开的实施例的在用户设备510与基站520之间的一种可能的信令交互过程。本公开的实施例可以不具有图5中所示出的细节而被实施。本公开的范围不被图5中所描述的具体细节所限制。
如图5中所示出的,其与图3的交互过程的不同之处在于用户设备510使用时间分集的方式多次向基站520发射随机接入前导码。例如,在步骤501中,用户设备510可以向基站520发射随机接入前导码。在步骤502中,用户设备510可以向基站520再次发射相同的随机接入前导码。在基站520处,可以对多次接收的随机接入前导码进行信号合并。
在具体的实现中,用户设备510可以使用两种重发的方式。第一种方式在图5中使用标记5021表示,其中用户设备510按照预定义的定时进行对随机接入前导码的多次传输,而不论是否从基站520接收到随机接入响应。另一种方式在图5中使用标记5022表示,其中用户设备510如果从基站520接收到随机接入响应,则不再进行随机接入前导码的重发。图5中的后续步骤503、504、505与图3中的对应步骤相类似,此处不再赘述。
图6示意性地示出了根据本公开的再另一实施例的在用户设备与基站之间的信令交互示图600。应当理解,图6通过仅为示例的方式示出了根据本公开的实施例的在用户设备610与基站620之间的一种可能的信令交互过程。本公开的实施例可以不具有图6中所示出的细节而被实施。本公开的范围不被图6中所描述的具体细节所限制。
如图6中所示出的,其与图3的交互过程的不同之处在于描绘了信道互易性成立的情况(例如,在时分双工TDD传输模式中),用户设备610和基站620可以使用信道的互易性来优化发射波束赋形和接收波束赋形。
在这种情况中,在随机接入信道RACH过程之前,用户设备610可以接收用于波束赋形的信号或者非波束赋形的信道的下行链路DL的参考信号RS。基于这一信道信息和信道互易性,用户设备610能够利用最佳波束方向来发射上行链路UL前导码,并且获得更高的性能增益。假设用户设备610可以得到近期的下行链路DL信道状态信息,其对于紧随的随机接入信道RACH过程是有效的。基于信道互易性,用户设备610可以在预定义码本内搜索最佳波束赋形权重,或者针对随后的波束赋形的前导码发射计算预编码权重,这可以进一步增强随机接入信道RACH过程的成功概率。
在基站620处,用于下行链路DL发射的最佳波束也可以用于上行链路UL接收,这可以简化关于用户设备随机接入信道RACH过程的波束配对。对于更新了波束赋形的发射信道的后续步骤,对应的接收波束和稍后用于下一步骤的发射波束可以被优化以获得最佳性能。图6中的其他步骤与图3中的对应步骤相类似,此处不再赘述。
图7示意性地示出了根据本公开的实施例的基站700的框图。本领域的技术人员可以理解,图7中仅示出了基站700中的与本公开的实施例紧密相关的单元或组件,在具体的实践中,基站700可以包括使其能够正常操作的其他功能单元或组件。此外,图7中所示出的各个单元或组件之间可以存在必要的连接关系,但是出于简洁的考虑,图7中并没有描绘出这些连接关系。在图7中,使用虚线框表示可选的单元或组件。
如图7中所示出的,基站700包括接收单元701和发射单元702。接收单元701被配置为通过接收波束赋形从用户设备接收随机接入前导码,并且发射单元702被配置为向用户设备发射随机接入响应。
在一些实施例中,接收单元701可以进一步被配置为:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出接收波束。在一些实施例中,接收单元701可以进一步被配置为:迭代地使用码本中的每个码字来处理从用户设备接收的随机接入前导码;以及将与最佳码字相对应的经处理的随机接入前导码作为通过接收 波束赋形接收的随机接入前导码。
在一些实施例中,发射单元702可以进一步被配置为:通过波束赋形的广播或者非波束赋形的广播来发射随机接入响应。在一些实施例中,发射单元702可以进一步被配置为:通过发射波束赋形以非广播方式向用户设备发射随机接入响应。在一些实施例中,发射单元702可以进一步被配置为:基于从用户设备接收的下行链路信道状态的反馈信息来进行随机接入响应的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行随机接入响应的发射波束赋形;或者基于上行链路信道测量进行计算来导出随机接入响应的发射波束。
在一些实施例中,接收单元701可以进一步被配置为:在随机接入前导码中接收下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在一些实施例中,基站700可以进一步包括:测量单元703,被配置为响应于从用户设备接收到随机接入前导码,测量针对用户设备的上行链路信道状态的反馈信息;并且发射单元702可以进一步被配置为:向用户设备发射所测量的上行链路信道状态的反馈信息。
在一些实施例中,发射单元702可以进一步被配置为:在随机接入响应中发射上行链路信道状态的反馈信息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在一些实施例中,接收单元701可以进一步被配置为:通过接收波束赋形从用户设备接收消息3。在一些实施例中,接收单元701可以进一步被配置为:使用与随机接入前导码的接收波束赋形相同或相似的码字来进行消息3的接收波束赋形。在一些实施例中,接收单元701可以进一步被配置为:基于上行链路信道信息在码本中搜索最佳 接收码字来进行接收波束赋形;或者基于上行链路信道测量进行计算来导出消息3的接收波束。在一些实施例中,接收单元701可以进一步被配置为:在消息3中接收由用户设备反馈的下行链路的最佳波束方向或者波束索引。
在一些实施例中,发射单元702可以进一步被配置为:响应于从用户设备接收到消息3,通过发射波束赋形向用户设备发射消息4。在一些实施例中,发射单元702可以进一步被配置为:使用与随机接入响应的发射波束赋形相同或相似的码字来进行消息4的发射波束赋形。在一些实施例中,发射单元702可以进一步被配置为:基于由用户设备反馈的下行链路的最佳波束方向或者波束索引来进行消息4的发射波束赋形;或者基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息4的发射波束赋形;或者基于上行链路信道测量进行计算来导出消息4的发射波束。
在一些实施例中,随机接入前导码可以由用户设备通过发射波束赋形来发射。在一些实施例中,发射波束赋形可以包括用户设备基于下行链路信道测量导出的离开方向所进行的发射波束赋形。在一些实施例中,发射单元702可以进一步被配置为:通过基于基站的离开方向信息的发射波束赋形向用户设备发射随机接入响应。在一些实施例中,接收单元701可以进一步被配置为:基于上行链路信道测量导出的到达方向从用户设备接收消息3;或者发射单元702可以进一步被配置为:基于上行链路信道测量导出的到达方向所对应的离开方向来向用户设备发射消息4。
在一些实施例中,接收单元701可以进一步被配置为:通过接收波束赋形多次从用户设备接收相同的随机接入前导码;以及将多次接收的相同的随机接入前导码进行信号合并。
在一些实施例中,基站700可以进一步包括:优化单元704,被配置为在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
图8示意性地示出了根据本公开的实施例的用户设备800的框 图。本领域的技术人员可以理解,图8中仅示出了用户设备800中的与本公开的实施例紧密相关的单元或组件,在具体的实践中,用户设备800可以包括使其能够正常操作的其他功能单元或组件。此外,图8中所示出的各个单元或组件之间可以存在必要的连接关系,但是出于简洁的考虑,图8中并没有描绘出这些连接关系。在图8中,使用虚线框表示可选的单元或组件。
如图8中所示出的,用户设备800包括发射单元801和接收单元802。发射单元801被配置为向基站发射随机接入前导码,并且接收单元802被配置为通过接收波束赋形从基站接收随机接入响应。
在一些实施例中,接收单元802可以进一步被配置为:基于码本来进行接收波束赋形;或者基于下行链路信道测量进行计算来导出随机接入响应的接收波束。在一些实施例中,接收单元802可以进一步被配置为:迭代地使用码本中的每个码字来处理从基站接收的随机接入响应;以及将与最佳码字相对应的经处理的随机接入响应作为通过接收波束赋形接收的随机接入响应。
在一些实施例中,用户设备800可以进一步包括:计算单元803,被配置为基于用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重;并且接收单元802可以进一步被配置为使用所计算的波束赋形权重来进行接收波束赋形。在一些实施例中,接收单元802可以进一步被配置为:基于下行链路信道信息来进行最大比合并。
在一些实施例中,发射单元801可以进一步被配置为:向基站发射下行链路信道状态的反馈信息。在一些实施例中,发射单元801可以进一步被配置为:在随机接入前导码中发射下行链路信道状态的反馈信息。在一些实施例中,下行链路信道状态的反馈信息可以显式地被附加到随机接入前导码。在一些实施例中,下行链路信道状态的反馈信息可以隐式地通过随机接入前导码的位置或群组来表示。在一些实施例中,下行链路信道状态的反馈信息可以至少包括波束标识符。
在一些实施例中,接收单元802可以进一步被配置为:从基站接收上行链路信道状态的反馈信息。在一些实施例中,接收单元802可 以进一步被配置为:在随机接入响应中接收上行链路信道状态的反馈信息。在一些实施例中,上行链路信道状态的反馈信息可以至少包括上行链路的最佳波束方向或者波束索引。
在一些实施例中,发射单元801可以进一步被配置为:通过发射波束赋形向基站发射消息3。在一些实施例中,发射单元801可以进一步被配置为:基于下行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行消息3的发射波束赋形;或者基于下行链路信道测量进行计算来导出消息3的发射波束。在一些实施例中,发射单元801可以进一步被配置为:从基站接收上行链路信道的最佳波束方向或者波束索引;以及基于最佳波束方向或者波束索引来进行发射波束赋形。
在一些实施例中,接收单元802可以进一步被配置为:在随机接入响应中接收上行链路信道的最佳波束方向或者波束索引。在一些实施例中,发射单元801可以进一步被配置为:响应于从基站接收到随机接入响应,向基站反馈下行链路信道的最佳波束方向或者波束索引。在一些实施例中,发射单元801可以进一步被配置为:将下行链路信道的最佳波束方向或者波束索引包括在消息3中进行发射。在一些实施例中,接收单元802可以进一步被配置为:基于下行链路信道信息在码本中搜索最佳接收码字,或者基于上行链路信道测量进行计算导出接收波束,而通过接收波束赋形从基站接收消息4。
在一些实施例中,发射单元801可以进一步被配置为:通过发射波束赋形向基站发射随机接入前导码。在一些实施例中,发射波束赋形可以包括基于下行链路信道测量导出的到达方向所对应的离开方向的发射波束赋形。在一些实施例中,用户设备800可以进一步包括:估算单元804,被配置为使用在下行链路同步过程或者下行链路控制信号接收过程中获知的下行链路参考信号来估算用户设备的到达方向信息,进而导出用户设备的离开方向信息。
在一些实施例中,接收单元802可以进一步被配置为:使用与发射波束赋形码字相对应的接收波束赋形码字来进行接收波束赋形;或 者在预定义的接收码本中搜索最佳波束来进行接收波束赋形。在一些实施例中,发射单元801可以进一步被配置为:基于下行链路信道测量导出的到达方向所对应的离开方向来向基站发射消息3;或者接收单元802可以进一步被配置为,基于上行链路信道测量导出的到达方向从基站接收消息4。
在一些实施例中,发射单元801可以进一步被配置为:多次向基站发射相同的随机接入前导码。在一些实施例中,发射单元801可以进一步被配置为:按照预定义的定时多次向基站发射相同的随机接入前导码;或者仅在没有成功接收到随机接入响应时,才多次向基站发射相同的随机接入前导码。
在一些实施例中,用户设备800可以进一步包括:优化单元805,被配置为在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
在对本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。
应当注意,本公开的实施例可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。 还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
虽然已经参考若干具体实施例描述了本公开,但是应当理解,本公开不限于所公开的具体实施例。本公开旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等效布置。

Claims (56)

  1. 一种用于基站的方法,包括:
    通过接收波束赋形从用户设备接收随机接入前导码;以及
    向所述用户设备发射随机接入响应。
  2. 根据权利要求1所述的方法,其中通过接收波束赋形从用户设备接收随机接入前导码包括:
    基于码本来进行所述接收波束赋形;或者
    基于下行链路信道测量进行计算来导出接收波束。
  3. 根据权利要求2所述的方法,其中基于码本来进行所述接收波束赋形包括:
    迭代地使用所述码本中的每个码字来处理从所述用户设备接收的随机接入前导码;以及
    将与最佳码字相对应的经处理的随机接入前导码作为通过接收波束赋形接收的随机接入前导码。
  4. 根据权利要求1所述的方法,其中向所述用户设备发射随机接入响应包括:
    通过波束赋形的广播或者非波束赋形的广播来发射所述随机接入响应。
  5. 根据权利要求1所述的方法,进一步包括:
    通过发射波束赋形以非广播方式向所述用户设备发射随机接入响应。
  6. 根据权利要求5所述的方法,其中通过发射波束赋形向所述用户设备发射随机接入响应包括:
    基于从所述用户设备接收的下行链路信道状态的反馈信息来进行所述随机接入响应的发射波束赋形;或者
    基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行所述随机接入响应的发射波束赋形;或者
    基于上行链路信道测量进行计算来导出所述随机接入响应的发射波束。
  7. 根据权利要求5所述的方法,其中从所述用户设备接收下行 链路信道状态的反馈信息包括:
    在所述随机接入前导码中接收所述下行链路信道状态的反馈信息。
  8. 根据权利要求7所述的方法,其中所述下行链路信道状态的反馈信息显式地被附加到所述随机接入前导码。
  9. 根据权利要求7所述的方法,其中所述下行链路信道状态的反馈信息隐式地通过所述随机接入前导码的位置或群组来表示。
  10. 根据权利要求5所述的方法,其中所述下行链路信道状态的反馈信息至少包括波束标识符。
  11. 根据权利要求1所述的方法,进一步包括:
    响应于从所述用户设备接收到所述随机接入前导码,测量针对所述用户设备的上行链路信道状态的反馈信息;以及
    向所述用户设备发射所测量的上行链路信道状态的反馈信息。
  12. 根据权利要求11所述的方法,其中向所述用户设备发射所测量的上行链路信道状态的反馈信息包括:
    在所述随机接入响应中发射所述上行链路信道状态的反馈信息。
  13. 根据权利要求11所述的方法,其中所述上行链路信道状态的反馈信息至少包括上行链路的最佳波束方向或者波束索引。
  14. 根据权利要求1所述的方法,进一步包括:
    通过接收波束赋形从所述用户设备接收消息3。
  15. 根据权利要求14所述的方法,其中通过接收波束赋形从所述用户设备接收消息3包括:
    使用与所述随机接入前导码的接收波束赋形相同或相似的码字来进行所述消息3的接收波束赋形。
  16. 根据权利要求14所述的方法,其中通过接收波束赋形从所述用户设备接收消息3包括:
    基于上行链路信道信息在码本中搜索最佳接收码字来进行所述接收波束赋形;或者
    基于上行链路信道测量进行计算来导出所述消息3的接收波束。
  17. 根据权利要求14所述的方法,进一步包括:
    在所述消息3中接收由所述用户设备反馈的下行链路的最佳波束方向或者波束索引。
  18. 根据权利要求14所述的方法,进一步包括:
    响应于从所述用户设备接收到消息3,通过发射波束赋形向所述用户设备发射消息4。
  19. 根据权利要求18所述的方法,其中通过发射波束赋形向所述用户设备发射消息4包括:
    使用与所述随机接入响应的发射波束赋形相同或相似的码字来进行所述消息4的发射波束赋形。
  20. 根据权利要求18所述的方法,进一步包括:
    基于由所述用户设备反馈的下行链路的最佳波束方向或者波束索引来进行所述消息4的发射波束赋形;或者
    基于上行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行所述消息4的发射波束赋形;或者
    基于上行链路信道测量进行计算来导出所述消息4的发射波束。
  21. 根据权利要求1所述的方法,其中所述随机接入前导码由所述用户设备通过发射波束赋形来发射。
  22. 根据权利要求21所述的方法,其中所述发射波束赋形包括用户设备基于下行链路信道测量导出的离开方向所进行的发射波束赋形。
  23. 根据权利要求22所述的方法,其中向所述用户设备发射随机接入响应包括:
    通过基于所述基站的离开方向信息的发射波束赋形向所述用户设备发射所述随机接入响应。
  24. 根据权利要求21所述的方法,进一步包括:
    基于上行链路信道测量导出的到达方向从所述用户设备接收消息3;或者
    基于上行链路信道测量导出的到达方向所对应的离开方向来向所述用户设备发射消息4。
  25. 根据权利要求1所述的方法,其中通过接收波束赋形从用户 设备接收随机接入前导码包括:
    通过接收波束赋形多次从所述用户设备接收相同的随机接入前导码;以及
    将多次接收的相同的随机接入前导码进行信号合并。
  26. 根据权利要求1所述的方法,进一步包括:
    在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
  27. 一种用于用户设备的方法,包括:
    向基站发射随机接入前导码;以及
    通过接收波束赋形从所述基站接收随机接入响应。
  28. 根据权利要求27所述的方法,其中通过接收波束赋形从所述基站接收随机接入响应包括:
    基于码本来进行所述接收波束赋形;或者
    基于下行链路信道测量进行计算来导出所述随机接入响应的接收波束。
  29. 根据权利要求28所述的方法,其中基于码本来进行所述接收波束赋形包括:
    迭代地使用所述码本中的每个码字来处理从所述基站接收的随机接入响应;以及
    将与最佳码字相对应的经处理的随机接入响应作为通过接收波束赋形接收的随机接入响应。
  30. 根据权利要求27所述的方法,其中通过接收波束赋形从所述基站接收随机接入响应包括:
    基于所述用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重;以及
    使用所计算的波束赋形权重来进行所述接收波束赋形。
  31. 根据权利要求30所述的方法,其中基于所述用户设备所检测的下行链路信道状态的反馈信息来计算波束赋形权重包括:
    基于所述下行链路信道信息来进行最大比合并。
  32. 根据权利要求27所述的方法,进一步包括:
    向所述基站发射下行链路信道状态的反馈信息。
  33. 根据权利要求32所述的方法,其中向所述基站发射下行链路信道状态的反馈信息包括:
    在所述随机接入前导码中发射所述下行链路信道状态的反馈信息。
  34. 根据权利要求33所述的方法,其中所述下行链路信道状态的反馈信息显式地被附加到所述随机接入前导码。
  35. 根据权利要求33所述的方法,其中所述下行链路信道状态的反馈信息隐式地通过所述随机接入前导码的位置或群组来表示。
  36. 根据权利要求32所述的方法,其中所述下行链路信道状态的反馈信息至少包括波束标识符。
  37. 根据权利要求27所述的方法,进一步包括:
    从所述基站接收上行链路信道状态的反馈信息。
  38. 根据权利要求37所述的方法,其中从所述基站接收上行链路信道状态的反馈信息包括:
    在所述随机接入响应中接收所述上行链路信道状态的反馈信息。
  39. 根据权利要求37所述的方法,其中所述上行链路信道状态的反馈信息至少包括上行链路的最佳波束方向或者波束索引。
  40. 根据权利要求27所述的方法,进一步包括:
    通过发射波束赋形向所述基站发射消息3。
  41. 根据权利要求40所述的方法,其中通过发射波束赋形向基站发射消息3包括:
    基于下行链路信道信息在码本中搜索最佳接收码字所对应的发射码字来进行所述消息3的发射波束赋形;或者
    基于下行链路信道测量进行计算来导出所述消息3的发射波束。
  42. 根据权利要求40所述的方法,其中通过发射波束赋形向基站发射消息3包括:
    从所述基站接收上行链路信道的最佳波束方向或者波束索引;以及
    基于所述最佳波束方向或者波束索引来进行所述发射波束赋形。
  43. 根据权利要求42所述的方法,其中从所述基站接收上行链路信道的最佳波束方向或者波束索引包括:
    在所述随机接入响应中接收所述上行链路信道的最佳波束方向或者波束索引。
  44. 根据权利要求40所述的方法,进一步包括:
    响应于从所述基站接收到所述随机接入响应,向所述基站反馈下行链路信道的最佳波束方向或者波束索引。
  45. 根据权利要求44所述的方法,其中向所述基站反馈下行链路信道的最佳波束方向或者波束索引包括:
    将下行链路信道的最佳波束方向或者波束索引包括在所述消息3中进行发射。
  46. 根据权利要求40所述的方法,进一步包括:
    基于下行链路信道信息在码本中搜索最佳接收码字,或者基于上行链路信道测量进行计算导出接收波束,而通过接收波束赋形从所述基站接收消息4。
  47. 根据权利要求27所述的方法,其中向基站发射随机接入前导码包括:
    通过发射波束赋形向基站发射随机接入前导码。
  48. 根据权利要求47所述的方法,其中所述发射波束赋形包括基于下行链路信道测量导出的到达方向所对应的离开方向的发射波束赋形。
  49. 根据权利要求48所述的方法,进一步包括:
    使用在下行链路同步过程或者下行链路控制信号接收过程中获知的下行链路参考信号来估算用户设备的到达方向信息,进而导出用户设备的离开方向信息。
  50. 根据权利要求47所述的方法,其中通过接收波束赋形从所述基站接收随机接入响应包括:
    使用与所述发射波束赋形码字相对应的接收波束赋形码字来进行所述接收波束赋形;或者
    在预定义的接收码本中搜索最佳波束来进行所述接收波束赋形。
  51. 根据权利要求47所述的方法,进一步包括:
    基于下行链路信道测量导出的到达方向所对应的离开方向来向所述基站发射消息3;或者
    基于上行链路信道测量导出的到达方向从所述基站接收消息4。
  52. 根据权利要求27所述的方法,其中向基站发射随机接入前导码包括:
    多次向所述基站发射相同的随机接入前导码。
  53. 根据权利要求52所述的方法,其中多次向所述基站发射相同的随机接入前导码包括:
    按照预定义的定时多次向所述基站发射相同的随机接入前导码;或者
    仅在没有成功接收到所述随机接入响应时,才多次向所述基站发射相同的随机接入前导码。
  54. 根据权利要求27所述的方法,进一步包括:
    在信道互易性成立的情况下,使用发射波束与接收波束之间的关联性来优化发射波束赋形和接收波束赋形。
  55. 一种基站,包括:
    接收单元,被配置为通过接收波束赋形从用户设备接收随机接入前导码;以及
    发射单元,被配置为向所述用户设备发射随机接入响应。
  56. 一种用户设备,包括:
    发射单元,被配置为向基站发射随机接入前导码;以及
    接收单元,被配置为通过接收波束赋形从所述基站接收随机接入响应。
PCT/CN2016/079490 2016-04-15 2016-04-15 用于基站的方法、用于用户设备的方法、基站、以及用户设备 WO2017177459A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/079490 WO2017177459A1 (zh) 2016-04-15 2016-04-15 用于基站的方法、用于用户设备的方法、基站、以及用户设备
EP16898277.5A EP3445124A4 (en) 2016-04-15 2016-04-15 BASIC STATION PROCEDURE, USER DEVICE, BASIC STATION AND USER DEVICE METHOD
US16/093,810 US20190132850A1 (en) 2016-04-15 2016-04-15 Method for base station, method for user device, base station, and user device
CN201680084078.3A CN108886813B (zh) 2016-04-15 2016-04-15 用于基站的方法、用于用户设备的方法、基站、以及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079490 WO2017177459A1 (zh) 2016-04-15 2016-04-15 用于基站的方法、用于用户设备的方法、基站、以及用户设备

Publications (1)

Publication Number Publication Date
WO2017177459A1 true WO2017177459A1 (zh) 2017-10-19

Family

ID=60041317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079490 WO2017177459A1 (zh) 2016-04-15 2016-04-15 用于基站的方法、用于用户设备的方法、基站、以及用户设备

Country Status (4)

Country Link
US (1) US20190132850A1 (zh)
EP (1) EP3445124A4 (zh)
CN (1) CN108886813B (zh)
WO (1) WO2017177459A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264036A (zh) * 2017-10-23 2020-06-09 三星电子株式会社 在无线通信系统中发送/接收上行链路参考信号或信道的方法和设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015166840A1 (ja) * 2014-04-30 2017-04-20 株式会社Nttドコモ ユーザ装置、基地局、通信アクセス方法、及び通信方法
CN108633006B (zh) * 2017-03-17 2021-03-19 电信科学技术研究院 一种上行发送波束确定方法和装置
US11259320B2 (en) * 2017-07-21 2022-02-22 Qualcomm Incorporated Multiple-beam uplink random access channel messages
WO2019105970A1 (en) * 2017-11-28 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Random access with different tti durations
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
CN110324842B (zh) * 2019-05-23 2021-10-15 华为技术有限公司 一种通信方法及通信装置
US11197171B2 (en) 2020-01-23 2021-12-07 Qualcomm Incorporated Beam configuration of a smart MMW repeater for forwarding RACH message 2
US20220053491A1 (en) * 2020-08-17 2022-02-17 Charter Communications Operating, Llc Methods and apparatus for spectrum utilization coordination between wireline backhaul and wireless systems
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140348051A1 (en) * 2013-05-21 2014-11-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving rach signal in beamforming system
CN104285385A (zh) * 2012-05-10 2015-01-14 三星电子株式会社 在通信系统中执行波束成形的方案
CN105122662A (zh) * 2012-12-26 2015-12-02 三星电子株式会社 在具有大量天线的通信系统中随机接入的方法和装置
CN105379357A (zh) * 2013-03-15 2016-03-02 高通股份有限公司 在lte中采用波束成形来实现改善的随机接入规程
WO2016040782A1 (en) * 2014-09-12 2016-03-17 Interdigital Patent Holdings, Inc. Preamble selection for simultaneous transmissions in wireless local area network (wlan) systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243075A1 (en) * 2009-06-16 2011-10-06 Qualcomm Incorporated Method and apparatus for access procedure in a wireless communication system
US20120147813A1 (en) * 2010-12-13 2012-06-14 Motorola, Inc. Closed-loop feedback during initial ranging procedure
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
US9888509B2 (en) * 2014-07-16 2018-02-06 Innovative Sonic Corporation Method and apparatus for performing a random access (RA) procedure for device to-device (D2D) service in a wireless communication system
CN107534540B (zh) * 2015-04-10 2020-10-23 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN107466446B (zh) * 2015-04-10 2021-02-12 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285385A (zh) * 2012-05-10 2015-01-14 三星电子株式会社 在通信系统中执行波束成形的方案
CN105122662A (zh) * 2012-12-26 2015-12-02 三星电子株式会社 在具有大量天线的通信系统中随机接入的方法和装置
CN105379357A (zh) * 2013-03-15 2016-03-02 高通股份有限公司 在lte中采用波束成形来实现改善的随机接入规程
US20140348051A1 (en) * 2013-05-21 2014-11-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving rach signal in beamforming system
WO2016040782A1 (en) * 2014-09-12 2016-03-17 Interdigital Patent Holdings, Inc. Preamble selection for simultaneous transmissions in wireless local area network (wlan) systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3445124A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264036A (zh) * 2017-10-23 2020-06-09 三星电子株式会社 在无线通信系统中发送/接收上行链路参考信号或信道的方法和设备
KR20220103683A (ko) * 2017-10-23 2022-07-22 삼성전자주식회사 무선 통신 시스템에서 상향링크 기준신호 또는 채널의 송수신 방법 및 장치
KR102564490B1 (ko) * 2017-10-23 2023-08-07 삼성전자주식회사 무선 통신 시스템에서 상향링크 기준신호 또는 채널의 송수신 방법 및 장치
US11870731B2 (en) 2017-10-23 2024-01-09 Samsung Electronics Co., Ltd Method and device for transmitting/receiving uplink reference signal or channel in wireless communication system

Also Published As

Publication number Publication date
EP3445124A4 (en) 2019-11-06
CN108886813B (zh) 2022-09-27
CN108886813A (zh) 2018-11-23
US20190132850A1 (en) 2019-05-02
EP3445124A1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2017177459A1 (zh) 用于基站的方法、用于用户设备的方法、基站、以及用户设备
JP7111218B2 (ja) 無線通信システムに用いられる電子機器、方法及び記憶媒体
US10931514B2 (en) System and method for communications beam recovery
JP6798006B2 (ja) 上りリンクの送信方法
CN108886742B (zh) 5g新无线电中的波束成型公共信道
CN106134236B (zh) 跟踪上行链路波束的方法和装置
US20210167837A1 (en) Beam correspondence indication and bitmap for beam reporting for wireless communications
TW201937957A (zh) 預設上行鏈路波束確定方法及使用者設備
US9860041B2 (en) Radio base station, user terminal and radio communication method
US10985829B2 (en) Beam management systems and methods
US11824607B2 (en) Electronic device, method and storage medium for wireless communication system
US10454560B2 (en) Beam management systems and methods
KR20180032619A (ko) 무선 네트워크에서의 빔 검출 및 추적
US11533099B2 (en) Method of selecting reception resource and method of CSI-RS transmission
KR102238768B1 (ko) 무선통신 시스템의 상향링크 동기화 장치 및 방법
US20220124761A1 (en) Systems and methods for signaling pdsch diversity
CN106922033B (zh) 一种在基站中进行上行随机接入的方法和装置
US20200396664A1 (en) Method of performing beam failure recovery procedure and user equipment
US20200195332A1 (en) Method of performing beam reporting and user equipment
CN110651434A (zh) 无线通信系统中波束相关性的反馈方法和用户设备
US20230318690A1 (en) Iterative transmit refinement
CN114503484A (zh) 用于信道质量测量的方法、设备和计算机可读介质
US20240137078A1 (en) Electronic device, method and storage medium for wireless communication system
CN113875163A (zh) 与协调基站进行并行波束成形训练
CN114762420A (zh) 用于在无线通信网络中置空的方法和系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016898277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016898277

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898277

Country of ref document: EP

Kind code of ref document: A1