WO2017143810A1 - 一种波束间协同传输方法、装置及系统、设备、存储介质 - Google Patents

一种波束间协同传输方法、装置及系统、设备、存储介质 Download PDF

Info

Publication number
WO2017143810A1
WO2017143810A1 PCT/CN2016/106960 CN2016106960W WO2017143810A1 WO 2017143810 A1 WO2017143810 A1 WO 2017143810A1 CN 2016106960 W CN2016106960 W CN 2016106960W WO 2017143810 A1 WO2017143810 A1 WO 2017143810A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
wireless access
channel sounding
access point
feedback information
Prior art date
Application number
PCT/CN2016/106960
Other languages
English (en)
French (fr)
Inventor
刁心玺
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017143810A1 publication Critical patent/WO2017143810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of radio communications, and in particular, to a method, device, system, device, and storage medium for inter-beam coordinated transmission.
  • the fifth generation mobile communication system gradually extended the communication spectrum to the millimeter wave band.
  • the high-density deployment of wireless access points and the use of large-bandwidth narrow-beam millimeter waves are the main technical means to solve 5G (5Generation) broadband transmission.
  • the millimeter-wave access network has the following characteristics: 1) Intensive deployment of access points results in large opportunities for inter-millimeter-wave inter-beam interference from different access points (same or different operators), and large opportunities for collaboration; 2) large loss of millimeter-wave propagation path.
  • the above-mentioned usage mode and propagation loss characteristics of the millimeter wave require the fifth generation mobile communication system to adopt an inter-beam interference coordination technique and an inter-beam coordinated transmission technique.
  • the inter-beam interference coordination technology is an extension of the existing Inter Cell Interference Coordination (ICIC) technology, and the inter-beam coordinated transmission technology is a development of the existing CoMP (Coordinated Multi-Point) technology.
  • ICIC Inter Cell Interference Coordination
  • CoMP Coordinated Multi-Point
  • the inter-cell interference coordination technique is the same-frequency multi-cell interference coordination implemented in the frequency domain.
  • the basic technologies of ICIC are divided into two categories: FFR: Fractional Frequency Reuse and Soft Frequency Reuse (SFR).
  • Enhanced Inter-Cell Interference Coordination is the same-frequency multi-cell interference coordination implemented in the time domain.
  • the core idea of eICIC is to stagger the interference in time.
  • the macro cell configures one or more subframes as "Almost Blank SubFrame" (ABS), and the micro cell provides service for the cell edge terminal (UE) on the ABS subframe, thereby avoiding the macro cell.
  • ABS Almost Blank SubFrame
  • UE cell edge terminal
  • Major disturbances improved the side of the community
  • FeICIC Frether Enhanced Inter Cell Interference Coordination
  • a macro station can schedule a UE-dedicated PDCCH (Physical Downlink Control Channel) on an ABS subframe. Channel) or PDSCH (Physical Downlink Shared Channel); therefore, in general, in this case, the macro station can schedule UEs with good channel conditions with very low transmission power to avoid micro-location.
  • the station generates interference.
  • channels such as PDCCH/PDSCH/PUSCH (Physical Uplink Shared Channel) can be transmitted with little power, but these channels can be reliably decoded.
  • the macro station may transmit a UE-dedicated PDCCH or PDSCH, provided that the macro station needs to reduce the transmission power on the ABS subframe to reduce interference to the micro station, and needs to transmit the transmission power size related signaling on the ABS subframe. Tell the micro station. This is the fundamental difference between eICIC and FeICIC.
  • the macro station can schedule the UE on the ABS subframe; therefore, FeICIC can be used more effectively with CoMP (Multipoint Cooperative Transmission/Reception) than eICIC.
  • CoMP Multipoint Cooperative Transmission/Reception
  • the multi-point coordinated transmission is proposed to improve the transmission rate of the cell edge terminal, specifically to improve the signal strength received by the terminal in the edge region.
  • Multi-point coordinated transmission (CoMP) is implemented on the premise of inter-cell interference coordination. Multi-point coordinated transmission must be implemented in the case of multi-point interference being circumvented.
  • MIMO Multiple-Input Multiple-Output, multiple Input multi-output
  • CS/CB Coordinated Scheduling and Beamforming
  • the data of the UE can only be obtained from the serving node, and the scheduling and beamforming of the user are based on the coordination result between the eNodeBs (evolved base stations) in the CoMP cluster.
  • the core technology of downlink CoMP is JPT (Joint processing and transmission, joint Processing and transmission), the JPT includes two implementation modes: dynamic node selection, dynamically selecting an eNodeB from a cluster of eNodeBs participating in coordinated transmission according to CSI (Channel State Information) for transmitting data to the UE; Joint transmission, according to CSI, dynamically selects two or more eNodeBs from a cluster of eNodeBs participating in coordinated transmission and simultaneously transmits data to the UE.
  • CSI Channel State Information
  • non-coherent transmission For multiple eNodeBs to simultaneously transmit data to the UE, there are two cases: non-coherent transmission and coherent transmission.
  • the typical mode of the non-coherent transmission is transmit diversity, and the typical manner of the coherent transmission is MIMO transmission.
  • the disadvantages of the prior art are that beam-to-beam interference coordination and inter-beam coordinated transmission based on beam pointing or terminal orientation, pointing information of the beam cannot be obtained in real time, or orientation information of the terminal, and real-time determination of between different access point beams Potential interference relationship or potential coordinated transmission relationship.
  • the invention provides an inter-beam coordinated transmission method, device and system, device and storage medium, which can realize real-time acquisition of beam pointing information or terminal orientation information, and determine potential interference relationship or potential coordinated transmission relationship between different access point beams.
  • an embodiment of the present invention provides a method for inter-beam coordinated transmission, which is applied to a wireless access point, and includes:
  • the service area is covered by one or more wireless access points.
  • the embodiment of the present invention further provides an inter-beam coordinated transmission method, which is applied to a user terminal, and includes:
  • the feedback information is used by the wireless access point to determine at least one of the following:
  • the embodiment of the present invention further provides an inter-beam coordinated transmission device, which is disposed on a wireless access point, and includes:
  • a first transmitting module configured to transmit a channel sounding beam with different beam directions to the service area
  • a first receiving module configured to receive feedback information of the channel sounding beams with different beam directions from one or more terminals located in the service area and/or located in adjacent areas of the service area;
  • the first processing module is configured to determine at least one of the following according to the feedback information:
  • the service area is covered by one or more wireless access points.
  • the embodiment of the present invention further provides an inter-beam coordinated transmission device, which is disposed on a user terminal, and includes:
  • a second receiving module configured to receive a channel sounding beam transmitted by the wireless access point
  • a second transmitting module configured to send feedback information of the channel sounding beam to the wireless access point
  • the feedback information is used by the wireless access point to determine at least one of the following:
  • an embodiment of the present invention further provides an inter-beam coordinated transmission system, including the foregoing wireless access point and user terminal.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions configured to perform the beam provided by the first aspect or the second aspect of the present invention. Inter-cooperative transmission method.
  • a seventh aspect is a wireless access point, a storage medium and a processor for storing executable instructions, wherein the processor is configured to execute the stored executable instructions, the executable instructions comprising:
  • the service area is covered by one or more wireless access points.
  • a user terminal is a storage medium and a processor for storing executable instructions, wherein the processor is configured to execute the stored executable instructions, the executable instructions comprising:
  • the feedback information is used by the wireless access point to determine at least one of the following:
  • the embodiment of the present invention has the following beneficial effects: the solution provided by the present invention can obtain the direction information of the beam or the orientation information of the terminal in real time, determine the potential interference relationship between different access point beams or the potential coordinated transmission relationship.
  • the inter-beam interference coordination and the inter-beam coordinated transmission based on beam pointing or terminal orientation improve system throughput and spectrum efficiency.
  • FIG. 1 is a flowchart of a method for inter-beam coordinated transmission according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another inter-beam coordinated transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an inter-beam coordinated transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another inter-beam coordinated transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a network side implementation step of an inter-beam coordinated transmission method according to an embodiment of the present invention.
  • FIG. 6 is a network side implementation step of an inter-beam coordinated transmission method according to an embodiment of the present invention.
  • FIG. 7 is a terminal side implementation step of an inter-beam coordinated transmission method according to an embodiment of the present invention.
  • FIG. 8 is a terminal side implementation step of an inter-beam coordinated transmission method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a channel detection method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of network measurement of an inter-beam coordinated transmission device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of network measurement of an inter-beam coordinated transmission device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal side of an inter-beam coordinated transmission apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal side of an inter-beam coordinated transmission apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an inter-beam coordinated transmission system according to an embodiment of the present invention.
  • the base station works by searching (detecting a potential interference channel or a coordinated transmission channel) while tracking (traffic transmission), and can solve interference coordination between beams of different base stations, and can also implement beam between different base stations. Coordinated transmission.
  • a channel sounding beam is introduced into the air interface of the base station, the channel sounding beam and the communication beam operating in the following manner:
  • the channel sounding beam and the communication beam operate in a time division (time serial) manner: or,
  • the channel sounding beam and the communication beam work in parallel:
  • Channel sounding beams between different base stations operate in a synchronous manner
  • Channel sounding beams between different base stations operate in an asynchronous manner
  • an inter-beam correlation matrix of different access points may be constructed, and the correlation evidence may be used for inter-beam inter-beam interference coordination and coordinated transmission;
  • the inter-beam channel correlation matrix includes two beams. , three beams, four beams, and channel correlation matrices between N beams;
  • the channel sounding beam and the traffic channel beam are directed to different beams, and the channel sounding beam and the traffic channel beam use different frequency bands or the frequency bands used are not completely the same;
  • the channel sounding beam is the same or different from the beam shape of the communication beam
  • Both the channel sounding beam and the communication beam use electromechanical servoing to adjust the beam direction or both use beamforming techniques to adjust the beam direction.
  • an embodiment of the present invention provides a method for inter-beam coordinated transmission, which is applied to a wireless access point, and includes:
  • S102 Receive feedback information about the channel sounding beams with different beam directions from one or more terminals located in the service area and/or located in adjacent areas of the service area.
  • the service area is covered by one or more wireless access points.
  • the user terminal includes a terminal located in a service area of the wireless access point, and/or located in an area adjacent to the service area and covered by other wireless access points.
  • the first wireless access point transmits a channel sounding beam having a different beam direction to the first terminal it serves;
  • the third terminal is currently served by a first wireless access point or by a second wireless access point;
  • the fourth terminal is currently served by a first wireless access point or by a second wireless access point;
  • Step S101 includes:
  • the channel sounding beam has a different beam direction than the communication beam transmitted by the wireless access point.
  • channel sounding beam and the communication beam transmitted by the wireless access point use different frequencies or use different frequencies or other wireless access areas of the channel sounding beam adjacent to or overlapping the service area
  • the communication beams transmitted by the points use different frequencies or use frequencies that are not identical.
  • Step S102 includes:
  • Feedback information for the channel sounding beams having different beam directions is received from the user terminal through a channel sounding feedback channel of the wireless access point.
  • channel sounding feedback channel uses different frequencies or uses the communication beam Not exactly the same frequency.
  • the feedback information includes at least one of the following:
  • Determining, according to the feedback information, the pointing of the communication beam sent from one or more of the terminals according to the feedback information includes:
  • the offset of the position relative to the predetermined channel sounding beam, the direction of the communication beam of each of the terminals is determined based on the offset angle.
  • Determining, according to the feedback information, the potential interference of the channel sounding beam to a specific terminal under a specific beam direction includes:
  • the channel detection beam directed to the beam is determined to generate potential interference to the terminal that sends the feedback information
  • the channel detection beam directed downward is judged as not causing potential interference to the terminal transmitting the feedback information.
  • step S101 further includes:
  • the direction of the channel sounding beam is determined as a terminal served by another wireless access point of the service area adjacent or overlapping area No interference direction or interference isolation direction.
  • an embodiment of the present invention further provides an inter-beam coordinated transmission method, which is applied to a user terminal, and includes:
  • the feedback information is used by the wireless access point to determine at least one of the following:
  • the user terminal includes a terminal located within a service area of the wireless access point and/or located in an area adjacent to the service area that is covered by other wireless access points.
  • the first terminal receives a channel sounding beam from the first wireless access point
  • the first terminal Transmitting, by the first terminal, the feedback information of the channel sounding beams with different beam directions to the first wireless access point; or, the first terminal and the third terminal send, to the first wireless access point, the different beam pointing directions Feedback information of the channel sounding beam, the third terminal is currently served by the first wireless access point or by the second wireless access point;
  • the first terminal receives, from the first wireless access point, the feedback information sent by the first wireless access point to determine a signal carried by the beam directed by the communication beam; or the potential interference relationship between the first terminal and the third terminal is sent by the third terminal Determining feedback information for the channel sounding beam of the first wireless access point;
  • the second terminal receives the channel sounding beam from the first wireless access point
  • Determining, by the second terminal, the communication beam received signal that is directed by the beam from the feedback information sent by the second terminal; or using a potential interference relationship between the second terminal and the fourth terminal using feedback of the channel sounding beam received from the fourth terminal Information is determined.
  • Step S202 includes:
  • the channel sounding feedback channel uses a different frequency or uses a frequency that is not exactly the same as the communication beam.
  • the feedback information includes at least one of the following:
  • the method further includes:
  • the wireless access point or the area located adjacent to or overlapping with the service area by two other wireless access points receives, by the channel sounding channel of the user terminal, the wireless access point or the area located adjacent to or overlapping with the service area by two other wireless access points according to the determined direction of the communication beam of the terminal One or more signals with different pointing channel probe beams.
  • the time-frequency resource orthogonal to the terminal served by the other wireless access point is located in communication with the wireless access point in a region adjacent to or overlapping the service area.
  • an embodiment of the present invention further provides an inter-beam coordinated transmission device, which is configured on Wireless access points, including:
  • a first transmitting module configured to transmit a channel sounding beam with different beam directions to the service area
  • a first receiving module configured to receive feedback information of the channel sounding beams with different beam directions from one or more terminals located in the service area and/or located in adjacent areas of the service area;
  • the first processing module is configured to determine at least one of the following according to the feedback information:
  • the service area is covered by one or more wireless access points.
  • the channel sounding beam has a different beam direction than the communication beam transmitted by the wireless access point.
  • Feedback information for the channel sounding beams having different beam directions is received from the one or more terminals through a channel sounding feedback channel of the wireless access point.
  • the direction of the transmitted communication beam refers to:
  • the offset of the position relative to the predetermined channel sounding beam, the direction of the communication beam of each of the terminals is determined based on the offset angle.
  • Determining, by the first processing module, the potential interference of the channel sounding beam to a specific terminal under a specific beam pointing according to the feedback information including:
  • the channel detection beam directed to the beam is determined to generate potential interference to the terminal that sends the feedback information
  • the channel detection beam directed downward is judged as not causing potential interference to the terminal transmitting the feedback information.
  • the first processing module is further configured to:
  • the direction of the channel sounding beam is determined to be the interference-free direction or the interference isolation direction of the terminal served by other wireless access points in the service area adjacent or overlapping areas.
  • an embodiment of the present invention further provides an inter-beam coordinated transmission device, which is disposed on a user terminal, and includes:
  • a second receiving module configured to receive a channel sounding beam transmitted by the wireless access point
  • a second transmitting module configured to send feedback information of the channel sounding beam to the wireless access point
  • the feedback information is used by the wireless access point to determine at least one of the following:
  • the user terminal includes a terminal located within a service area of the wireless access point and/or located within an area adjacent to the service area that is covered by other wireless access points.
  • the sending, by the second transmitting module, the feedback information of the channel sounding beam to the wireless access point refers to:
  • the device further includes: a second processing module, configured to receive the wireless access point or be adjacent to the service area by using a channel sounding channel of the user terminal according to the determined direction of the communication beam of the terminal There are overlapping regions of two or more signals with different pointing channel sounding beams transmitted by other wireless access points.
  • a second processing module configured to receive the wireless access point or be adjacent to the service area by using a channel sounding channel of the user terminal according to the determined direction of the communication beam of the terminal There are overlapping regions of two or more signals with different pointing channel sounding beams transmitted by other wireless access points.
  • the second processing module is further configured to:
  • the time-frequency resource orthogonal to the terminal served by the other wireless access point is located in communication with the wireless access point in a region adjacent to or overlapping the service area.
  • An embodiment of the present invention further provides an inter-beam coordinated transmission system, including the foregoing wireless access point and user terminal.
  • An example of an inter-beam coordinated transmission method is provided on the network side, including an inter-beam interference coordination and/or an inter-beam coordinated transmission step, where
  • the inter-beam interference coordination step includes:
  • Step S110 the first wireless access point transmits a channel sounding beam with different beam directions to the first terminal it serves;
  • Step S120 The first wireless access point receives feedback information of the channel sounding beams with different beam directions from the first terminal; or, the first wireless access point receives from the first terminal and the third terminal For the feedback information of the channel sounding beams with different beam directions, the third terminal is currently served by the first wireless access point or by the second wireless access point;
  • Step S130 determining, by using feedback information of the channel sounding beam received from the first terminal, a direction of a communication beam serving the first terminal; or using feedback of the channel sounding beam received from the third terminal The information determines a potential interference relationship between the first terminal and the third terminal;
  • the inter-beam coordinated transmission step includes:
  • Step S210 The first wireless access point transmits a channel sounding beam with different beam directions to the second terminal served by the second wireless access point.
  • Step S220 the first wireless access point receives feedback information of the channel sounding beams with different beam directions from the second terminal; or, the first wireless access point receives from the second terminal and the fourth terminal Feedback information for the channel sounding beams having different beam directions; the fourth terminal is currently served by the first wireless access point or by the second wireless access point;
  • Step S230 determining, by using feedback information of the channel sounding beam received from the second terminal, a direction of a communication beam serving the second terminal; or determining, by using feedback information of the channel sounding beam received from the fourth terminal.
  • the first wireless access point transmits a channel sounding beam with different beam directions to the first terminal it serves, including:
  • the first terminal to which the first wireless access point serves in an instantaneous multi-beam or instantaneous single beam manner Transmitting two or more channel sounding beams with different beam directions;
  • the channel sounding beam has a different beam direction from a communication beam transmitted by the first wireless access point
  • the channel sounding beam uses a different frequency or a frequency that is not identical to the communication beam transmitted by the first wireless access point;
  • the first wireless access point transmits a channel sounding beam with different beam directions to a second terminal served by the second wireless access point, including:
  • the first wireless access point transmits two or more channel sounding beams with different beam directions to the second terminal served by the second wireless access point in an instantaneous multi-beam or instantaneous single beam manner;
  • the channel sounding beam uses a different frequency than the communication beam transmitted by the second wireless access point or uses a frequency that is not exactly the same.
  • an implementation manner in which the first wireless access point according to step S110 transmits a channel sounding beam with different beam directions to the first terminal served by the first wireless access point is as follows:
  • the first wireless access point 501 transmits four channel sounding beams 511, 512, 513 and 514 having different beam directions to the first terminal 551 served by it in an instantaneous single beam manner, the four channel detecting beams having different beam directions Four illumination regions 511', 512', 513' and 514' which are different in position and overlap each other are formed around the first terminal 551;
  • the channel sounding beams 511, 512, 513, and 514 used herein have different beam directions from the communication beam 520 transmitted by the first wireless access point 501; in an ideal state, the visual axis direction of the communication beam 520 is directed to the first terminal 551. Receiving the point where the antenna is located, and the visual axis direction of the channel detecting beams 511, 512, 513, and 514 is offset from the point of the receiving antenna of the first terminal 551 by an offset angle value;
  • the channel sounding beams 511, 512, 513, and 514 used herein use different or not identical frequencies to the communication beam 520 transmitted by the first wireless access point 501; the first wireless access point 501
  • the transmitted communication beam 520 transmits communication data using a first sub-band within a 60 GHz millimeter wave band, and the channel detection beams 511, 512, 513, and 514 transmit communication data using a second sub-band within a 60 GHz millimeter wave band; or, first
  • the communication beam 520 transmitted by the wireless access point 501 transmits communication data using a first sub-band within a 60 GHz millimeter wave band, and the channel detection beams 511, 512, 513, and 514 transmit channel detection signals using sub-bands in the first sub-band;
  • the channel sounding beams 511, 512, 513 and 514 used herein use different frequencies than the communication beam 520 transmitted by the first wireless access point 501;
  • the channel sounding signal includes at least one of the following signals:
  • Beam identification signal or beam number signal
  • the identification signal of the wireless node to which the beam belongs
  • the beam transmits a power signal.
  • the first wireless access point given in step S210 transmits a channel probe beam with different beam directions to the second terminal served by the second wireless access point.
  • the implementation is as follows:
  • the first wireless access point 501 transmits a channel sounding beam with different beam directions to the second terminal served by the second wireless access point 502, including:
  • the first wireless access point 501 transmits four channel sounding beams 511, 512, 513, and 514 having different beam directions to the second terminal 552 serving the second wireless access point 502 in an instantaneous multi-beam manner;
  • the beam-directed channel detecting beam forms four differently spaced and overlapping overlapping areas 511', 512', 513' and 514' around the second terminal 552;
  • the channel detecting beams 511, 512, 513 and 514 and the communication beam 530 transmitted by the second wireless access point 502 use different frequencies or use different frequencies; one way to use different frequencies is: second wireless connection
  • the communication beam 530 transmitted by the ingress 502 transmits communication data using the first sub-band within the 60 GHz millimeter wave band
  • the channel detection beams 511, 512, 513 and 514 transmits communication data using a second sub-band within the 60 GHz millimeter wave band.
  • the downlink synchronization control channel is configured on a single frequency network SFN (Single Frequency Network) or configured on a macro cell base station; or, by using a terminal to measure a communication beam transmitted by different wireless access points, a synchronization error between communication beams is obtained.
  • Information the terminal reports the synchronization error information to the network measurement, and the network measurement uses the error information to adjust the transmission time of the corresponding beam;
  • the first wireless access point receives, from the first terminal, feedback information about the channel sounding beams with different beam directions, including:
  • the first wireless access point uses its communication beam to receive feedback information from the first terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the first terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first wireless access point receives, from the first terminal and the third terminal, feedback information about the channel sounding beams with different beam directions, including:
  • the first wireless access point uses its communication beam to receive feedback information from the first terminal and the third terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the first terminal and the third terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first wireless access point receives, from the second terminal, feedback information about the channel sounding beams with different beam directions, including:
  • the first wireless access point uses its communication beam to receive feedback information from the second terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the second terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first wireless access point receives, from the second terminal and the fourth terminal, feedback information about the channel sounding beams with different beam directions, including:
  • the first wireless access point uses its communication beam to receive feedback information from the second terminal and the fourth terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the second terminal and the fourth terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not identical to the communication beam of the first wireless access point.
  • the feedback information of the channel sounding beam sent by the terminal includes at least one of the following information:
  • the uplink feedback channel uses the same or different frequency as the communication beam.
  • the determining, by using the feedback information of the channel sounding beam received from the first terminal, the direction of the communication beam serving the first terminal includes:
  • the signal amplitude/power ratio of two or more channel sounding beams with different beam directions, combined with the pointing angle of the corresponding channel sounding beam, is determined by the amplitude lateral method. Determining the direction of the communication beam of the first terminal with respect to the offset angle of the position of the terminal relative to the specific channel detection beam;
  • the first wireless node 501 acquires signal strength measurement information for four channel sounding beams 511, 512, 513, and 514 having different beam directions from the terminal 551, using the channel.
  • the difference between the signal strengths of the probe beams 511 and 512 and the beam shape information of the two channel sounding beams are calculated, and the first-dimensional offset angle of the receiving antenna 551 with respect to the channel sounding beam 511 is calculated, and the channel detecting beams 513 and 514 are used.
  • the second-dimensional offset angle of the receiving antenna 551 with respect to the channel detecting beam 513 is calculated; the beam pointing of the channel detecting beams 511 and 513 is used.
  • the first and second dimensional offset angles determine the azimuth angle of the terminal 551 relative to the first wireless access point 501.
  • the signal amplitude value of the channel sounding beam 514 included in the feedback information of the channel sounding beam 514 sent by the terminal 553 is compared with a predetermined inter-beam interference threshold I_thr, and the comparison result is greater than a predetermined one.
  • the inter-beam interference threshold I_thr is then determined that the first terminal 551 and the third terminal 553 are terminals with potential interference; and the direction of the channel sounding beam 514 is determined as a potential interference-free direction to the third terminal 553;
  • the determining, by using the feedback information of the channel sounding beam received from the second terminal, the direction of the communication beam serving the second terminal including:
  • the signal amplitude/power ratio of two or more channel sounding beams with different beam directions, combined with the pointing angle of the corresponding channel sounding beam, is determined by the amplitude lateral method. Determining, by the offset angle, the direction of the communication beam serving the second terminal, with respect to the offset angle of the location of the second terminal relative to the specific channel detection beam;
  • the first wireless node 501 acquires signal strength measurement information for four channel sounding beams 511, 512, 513, and 514 having different beam directions from the second terminal 552, Using the difference in signal strength between the channel sounding beams 511, 512 and the beam shape information of the two channel sounding beams, the first dimension offset angle of the receiving antenna relative to the channel sounding beam 511 is calculated using the channel sounding.
  • the orientation of the communication beam 520 of the first wireless access point is adjusted to the azimuth angle, and the second is at the azimuth angle
  • the terminal performs illumination.
  • the determining, by using feedback information of the channel sounding beam received from the fourth terminal, a potential interference relationship between the second terminal and the fourth terminal including:
  • the signal amplitude value of the channel sounding beam 513 included in the feedback information of the channel sounding beam 513 sent by the terminal 554 is compared with a predetermined inter-beam interference threshold I_thr, and the comparison result is greater than a predetermined one.
  • the inter-beam interference threshold I_thr determines the fourth terminal 554 and the second terminal 552 as terminals with potential interference; and determines the direction of the channel sounding beam 513 as a potential interference-free direction to the fourth terminal 554.
  • FIG. 9 there is an overlapping area between the service area 503 of the first wireless access point 501 and the service area 504 of the second wireless access point 502. In the overlapping area, there is a simultaneous use of the first wireless access point 501 and The second wireless access point 502 is capable of transmitting to the same wireless terminal.
  • the first wireless access point 501 transmits the beam 540 to the terminal 552, the beam 540 and the second wireless access.
  • Beam 530 transmitted by point 502 transmits data to terminal 552 in a transmit diversity or inter-frequency parallel transmission.
  • An example of an inter-beam coordinated transmission method according to an embodiment of the present invention is used for a terminal side, and a packet Including inter-beam interference coordination and/or inter-beam coordinated transmission steps, wherein
  • the inter-beam interference coordination step includes:
  • Step S310 the first terminal receives, from the first wireless access point, a channel sounding beam with different beam directions;
  • Step S320 the first terminal sends the feedback information of the channel sounding beams with different beam directions to the first wireless access point; or the first terminal and the third terminal send the same to the first wireless access point.
  • the feedback information of the channel-aiding beam of the beam, the third terminal is currently served by the first wireless access point or by the second wireless access point;
  • Step S330 the first terminal receives, from the first wireless access point, the feedback information sent by the first wireless access point to determine a signal carried by the beam directed by the communication beam; or the potential interference relationship between the first terminal and the third terminal is performed by the first The feedback information of the channel sounding beam sent by the three terminals to the first wireless access point is determined;
  • the inter-beam coordinated transmission step includes:
  • Step S410 the second terminal receives, from the first wireless access point, a channel sounding beam with different beam directions;
  • Step S420 The second terminal sends, to the first wireless access point, feedback information about the channel sounding beams with different beam directions; or the second terminal and the fourth terminal send the first wireless access point to the first wireless access point. Feedback information of a channel sounding beam pointed by different beams; the fourth terminal is currently served by the first wireless access point or by the second wireless access point;
  • Step S430 the second terminal determines a communication beam receiving signal that is directed by the beam from the feedback information sent by the second terminal; or the potential interference relationship between the second terminal and the fourth terminal uses the channel sounding received from the fourth terminal.
  • the feedback information of the beam is determined.
  • the first terminal receives a channel sounding beam with different beam directions from the first wireless access point, including:
  • the channel sounding beam has a different beam direction from a communication beam transmitted by the first wireless access point
  • the channel sounding beam uses a different frequency or a frequency that is not identical to the communication beam transmitted by the first wireless access point;
  • the second terminal receives a channel sounding beam with different beam directions from the first wireless access point, including:
  • the channel sounding beam uses a different frequency than the communication beam transmitted by the second wireless access point or uses a frequency that is not exactly the same.
  • the first terminal sends the feedback information of the channel sounding beams with different beam directions to the first wireless access point, including:
  • the channel sounding feedback channel of the first terminal uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first terminal and the third terminal send, to the first wireless access point, feedback information about the channel sounding beams with different beam directions, including:
  • the channel sounding feedback channel used by the first terminal and the third terminal uses a different frequency or a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the second terminal sends, to the first wireless access point, feedback information about the channel sounding beams with different beam directions, including:
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the second terminal and the fourth terminal send, to the first wireless access point, feedback information about the channel sounding beams with different beam directions, including:
  • the channel sounding feedback channel of the second terminal and the fourth terminal uses different frequencies or uses different frequencies than the communication beam of the first wireless access point.
  • the first terminal receives, from the first wireless access point, the signal that is transmitted by using the feedback information sent by the first wireless access point to determine the beam-directed communication beam, including:
  • the first terminal After receiving, by the first wireless access point, the first wireless access point, using the feedback information sent by the first wireless access point to determine the signal of the communication beam carried by the beam, the first terminal receives two signals sent by the second wireless access point through its channel sounding channel. One or more signals carried by channel sounding beams with different directions;
  • the potential interference relationship between the first terminal and the third terminal is determined by the feedback information of the channel sounding beam sent by the third terminal to the first wireless access point, including:
  • the first terminal After the potential interference relationship between the first terminal and the third terminal is determined, the first terminal communicates with the first wireless access point using a time-frequency resource orthogonal to the third terminal.
  • the determining, by using the feedback information of the channel sounding beam received from the second terminal, the direction of the communication beam serving the second terminal including:
  • the second terminal receives signals from the communication beams of the first wireless access point and the second wireless access point in a simultaneous or time-sharing manner;
  • the determining, by using feedback information of the channel sounding beam received from the fourth terminal, a potential interference relationship between the second terminal and the fourth terminal including:
  • the second terminal After the potential interference relationship between the second terminal and the fourth terminal is determined, the second terminal communicates with the first or second wireless access point using a time-frequency resource orthogonal to the fourth terminal.
  • An example of an inter-beam coordinated transmission apparatus is provided for the network side, and the apparatus includes an inter-beam interference coordination module 600 and/or an inter-beam coordinated transmission module 700, where
  • the inter-beam interference coordination module 600 includes:
  • a channel detection beam transmission control sub-module 610 a channel detection beam feedback information processing sub-module 620, and an interference coordination sub-module 630;
  • the channel sounding beam transmission control sub-module 610 is configured to transmit, by the first wireless access point, a channel sounding beam with different beam directions to the first terminal served by the first wireless access point, including a beam pointing control unit and a beam identification number generating unit;
  • the channel sounding beam feedback information processing sub-module 620 is configured to receive, by the first wireless access point, feedback information of the channel sounding beams with different beam directions from the first terminal; or, the first wireless access point Receiving feedback information from the first terminal and the third terminal for the channel sounding beams having different beam directions, the third terminal is currently served by the first wireless access point or by the second wireless access point; Terminal orientation identification unit;
  • the interference coordination sub-module 630 determines, by using feedback information of the channel sounding beam received from the first terminal, a direction of a communication beam serving the first terminal; or, using the received from the third terminal
  • the feedback information of the channel sounding beam determines a potential interference relationship between the first terminal and the third terminal;
  • the module includes a communication beam direction determining unit or an inter-beam interference relationship determining unit;
  • the inter-beam coordinated transmission module 700 includes:
  • a channel detection beam transmission control sub-module 710 a channel detection beam feedback information processing sub-module 720, and a coordinated transmission sub-module 730;
  • the channel sounding beam transmission control sub-module 710 is configured to: the first wireless access point transmits a channel sounding beam with different beam directions, including a beam pointing control unit and a beam identification number, to a second terminal served by the second wireless access point. Generating unit
  • the channel sounding beam feedback information processing sub-module 720 the first wireless access point receives feedback information of the channel sounding beams with different beam directions from the second terminal; or the first wireless access point The second terminal and the fourth terminal receive feedback information on the channel sounding beams with different beam directions; the fourth terminal is currently served by the first wireless access point or a second wireless access point service; the sub-module includes a terminal orientation identifying unit;
  • the cooperative transmission sub-module 730 which uses the feedback information of the channel sounding beam received from the second terminal to determine the direction of the communication beam serving the second terminal; or, using the received from the fourth terminal
  • the feedback information of the channel sounding beam determines a potential interference relationship between the second terminal and the fourth terminal;
  • the submodule includes a communication beam direction determining unit or an inter-beam interference relationship determining unit.
  • the channel sounding beam emission control sub-module 610 included is configured to:
  • the first wireless access point transmits two or more channel sounding beams with different beam directions to the first terminal it serves in an instantaneous multi-beam or instantaneous single beam manner;
  • the channel sounding beam has a different beam direction from a communication beam transmitted by the first wireless access point
  • the channel sounding beam uses a different frequency or a frequency that is not identical to the communication beam transmitted by the first wireless access point;
  • the channel sounding beam emission control sub-module 710 included is configured to:
  • the first wireless access point transmits two or more channel sounding beams with different beam directions to the second terminal served by the second wireless access point in an instantaneous multi-beam or instantaneous single beam manner;
  • the channel sounding beam uses a different frequency than the communication beam transmitted by the second wireless access point or uses a frequency that is not exactly the same.
  • the processing submodule 620 is configured to:
  • the first wireless access point uses its communication beam to receive feedback information from the first terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the first terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first wireless access point uses its communication beam to receive feedback information from the first terminal and the third terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the first terminal and the third terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the channel detection beam feedback information processing sub-module 710 included is configured to:
  • the first wireless access point uses its communication beam to receive feedback information from the second terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the second terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the first wireless access point uses its communication beam to receive feedback information from the second terminal and the fourth terminal for the channel sounding beams having different beam directions;
  • the first wireless access point uses its channel sounding feedback channel to receive feedback information from the second terminal and the fourth terminal for the channel sounding beams having different beam directions;
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not identical to the communication beam of the first wireless access point.
  • the interference coordination sub-module 630 included is configured to:
  • the signal amplitude/power ratio of two or more channel sounding beams with different beam directions, combined with the pointing angle of the corresponding channel sounding beam, is determined by the amplitude lateral method. Determining the direction of the communication beam of the first terminal with respect to the offset angle of the position of the terminal relative to the specific channel detection beam;
  • the coordinated transmission sub-module 730 included is configured to:
  • the signal amplitude/power ratio of two or more channel sounding beams with different beam directions combined with the corresponding channel sounding beam Pointing angle, using an amplitude lateral method to determine an offset angle of a location of the second terminal relative to a specific channel probe beam, and using the offset angle to determine a direction of a communication beam serving the second terminal;
  • An example of an inter-beam coordinated transmission apparatus is provided for the terminal side, and the apparatus includes: an inter-beam interference coordination module 800 and/or an inter-beam coordinated transmission module 900, where
  • the inter-beam interference coordination module 800 includes:
  • a channel sounding beam receiving processing sub-module 810 a channel sounding beam feedback sub-module 820, and a communication beam receiving control sub-module 830;
  • the channel sounding beam receiving processing sub-module 810 is configured to receive, by the first terminal, a channel sounding beam having different beam directions from the first wireless access point, including an amplitude or power measuring unit, and a beam number identifying unit;
  • the channel detection beam feedback sub-module 820 is configured to: the first terminal sends the feedback information of the channel detection beam with different beam directions to the first wireless access point; or the first terminal and the third terminal are to the first wireless
  • the access point sends feedback information about the channel sounding beam with different beam pointing, the third terminal is currently served by the first wireless access point or by the second wireless access point; and includes a channel sounding beam feedback information sending unit ;
  • the communication beam receiving control sub-module 830 is configured to receive, by the first terminal, the signal transmitted by using the feedback information sent by the first wireless access point to determine a beam-directed communication beam; or the first terminal and the third terminal The potential interference relationship is determined by the feedback information of the channel sounding beam sent by the third terminal to the first wireless access point; and includes a communication beam time-frequency position configuration unit;
  • the inter-beam coordinated transmission module 900 includes:
  • a channel sounding beam receiving processing sub-module 910 a channel detecting beam feedback sub-module 920, and a communication beam receiving control sub-module 930;
  • the channel sounding beam receiving processing sub-module 910 is configured to receive, by the second terminal, a channel detecting beam having different beam directions from the first wireless access point;
  • the channel detection beam feedback sub-module 920 is configured to: the second terminal sends feedback information to the first wireless access point to the channel detection beam with different beam directions; or the second terminal and the fourth terminal are first The wireless access point transmits feedback information for the channel sounding beams with different beam directions; the fourth terminal is currently served by the first wireless access point or by the second wireless access point;
  • the communication beam receiving control sub-module 930 is configured to determine, by the second terminal, the communication beam receiving signal that is directed by the beam from the feedback information sent by the second terminal; or the potential interference relationship between the second terminal and the fourth terminal is used
  • the feedback information of the channel sounding beam received by the four terminals is determined; and includes a communication beam time-frequency position configuration unit.
  • the channel sounding beam receiving processing submodule included therein is configured to:
  • the channel sounding beam has a different beam from the communication beam transmitted by the first wireless access point direction;
  • the channel sounding beam uses a different frequency or a frequency that is not identical to the communication beam transmitted by the first wireless access point;
  • the channel detection beam receiving processing submodule included therein is configured to:
  • the channel sounding beam uses a different frequency than the communication beam transmitted by the second wireless access point or uses a frequency that is not exactly the same.
  • the channel detection beam feedback submodule included therein is configured to:
  • the channel sounding feedback channel of the first terminal uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the channel sounding feedback channel used by the first terminal and the third terminal uses a different frequency or a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the channel detection beam feedback submodule included therein is configured to:
  • the channel sounding feedback channel of the first wireless access point uses a different frequency or uses a frequency that is not exactly the same as the communication beam of the first wireless access point;
  • the channel sounding feedback channel of the second terminal and the fourth terminal uses different frequencies or uses different frequencies than the communication beam of the first wireless access point.
  • An example of an inter-beam coordinated transmission system according to an embodiment of the present invention includes: wireless access point devices 501 and 502, and a coordinated transmission control device 100;
  • the wireless access point devices 501 and 502 include an inter-beam interference coordination module and/or an inter-beam coordinated transmission module, where
  • the inter-beam interference coordination module includes the following sub-modules:
  • a channel sounding beam transmission control sub-module configured to transmit, by the first wireless access point, a channel sounding beam having a different beam direction to a first terminal served by the first wireless access point, including a beam pointing control unit and a beam identification number generating unit;
  • a channel detection beam feedback information processing sub-module configured to: the first wireless access point receives, from the first terminal, feedback information about the channel sounding beams with different beam directions; or, the first wireless access point from the The first terminal and the third terminal receive feedback information about the channel sounding beams with different beam directions, the third terminal is currently served by the first wireless access point or by the second wireless access point; unit;
  • An interference coordination sub-module that uses the feedback information received from the first terminal for the channel sounding beam to determine a direction of a communication beam serving the first terminal; or, using a pair of channels received from the third terminal
  • the feedback information of the probe beam determines a potential interference relationship between the first terminal and the third terminal;
  • the module includes a communication beam direction determining unit or an inter-beam interference relationship determining unit;
  • the inter-beam coordinated transmission module includes:
  • a channel sounding beam transmission control sub-module configured to transmit, by the first wireless access point to the second terminal served by the second wireless access point, a channel sounding beam having a different beam direction, including a beam pointing control unit and a beam identification number generating unit;
  • the first wireless access point receiving feedback information of the channel sounding beams with different beam directions from the second terminal; or, the first wireless access point is from the second The terminal and the fourth terminal receive feedback information about the channel sounding beams with different beam directions; the fourth terminal is currently served by the first wireless access point or by the second wireless access point; the sub-module includes the terminal orientation Identification unit
  • the module determining, by using feedback information of the channel sounding beam received from the second terminal, a direction of a communication beam serving the second terminal; or using the channel sounding beam received from the fourth terminal Feedback information determines the potential between the second terminal and the fourth terminal In the interference relationship; the sub-module includes a communication beam direction determining unit or an inter-beam interference relationship determining unit.
  • the cooperative transmission control apparatus 100 is configured to perform data stream allocation between the wireless access point devices, including a data stream distribution module and a coordinated transmission control signal receiving or transmitting module.
  • the system provided in this embodiment further includes a mobile terminal device 552, where the device includes an inter-beam interference coordination module and/or an inter-beam coordinated transmission module, where
  • the inter-beam interference coordination module includes:
  • a channel sounding beam receiving processing sub-module configured to receive, by the first terminal, a channel detecting beam having different beam directions from the first wireless access point, including an amplitude or power measuring unit, and a beam number identifying unit;
  • a channel detection beam feedback sub-module configured to: the first terminal sends the feedback information of the channel detection beam with different beam directions to the first wireless access point; or the first terminal and the third terminal to the first wireless access point Sending feedback information about the channel sounding beams with different beam directions, the third terminal is currently served by the first wireless access point or by the second wireless access point; and includes a channel sounding beam feedback information sending unit;
  • a communication beam receiving control sub-module configured to receive, by the first terminal, the signal transmitted by using the feedback information sent by the first wireless access point to determine a signal carried by the beam, or a potential between the first terminal and the third terminal
  • the interference relationship is determined by the feedback information of the channel sounding beam sent by the third terminal to the first wireless access point; and includes a communication beam time-frequency position configuration unit;
  • the inter-beam coordinated transmission module includes:
  • a channel sounding beam receiving processing sub-module configured to receive, by the second terminal, a channel detecting beam having different beam directions from the first wireless access point
  • a channel detection beam feedback sub-module configured to: the second terminal sends feedback information to the first radio access point to the channel detection beam with different beam directions; or the second terminal and the fourth terminal are to the first radio access Point transmitting to the channel probe beam having different beam directions Feedback information; the fourth terminal is currently served by the first wireless access point or by the second wireless access point;
  • a communication beam receiving control submodule configured to determine, by the second terminal, the communication beam receiving signal that is directed by the beam from the feedback information sent by the second terminal; or the potential interference relationship between the second terminal and the fourth terminal is received from the fourth terminal
  • the feedback information of the channel sounding beam is determined; and includes a communication beam time-frequency position configuration unit.
  • the first wireless access point 501 transmits channel sounding beams 511, 512, 513, and 514 having different beam directions, and the first wireless access point 501 passes Transmitting the channel sounding beams to obtain the channel environment and the interference environment in which the terminals in the service area are located; the second wireless access point 502 transmitting the channel sounding beams 531 and 532, the channel sounding beams having different beam directions, configured as the second The wireless access point 502 acquires the channel environment and interference environment in which the terminals within its service area are located.
  • the first wireless node 501 and the second wireless node 502 autonomously decide whether to implement coordinated transmission to the terminal 552 according to the measurement and feedback of the channel sounding beam by the terminal; or, the first wireless node 501 and the second wireless node 502 connect the terminal to the channel.
  • the measurement and feedback information of the probe beam is reported to the coordinated transmission control device 100, and the coordinated transmission control device 100 determines whether or not the coordinated transmission is performed to the terminal 552.
  • the embodiment provided by the present invention overcomes the existing information of the ICIC technology and the CoMP technology that cannot obtain the direction information of the beam or the orientation information of the terminal in real time, and cannot determine the potential interference relationship or the potential coordinated transmission relationship between different access point beams in real time. At least one of these disadvantages can support inter-beam interference coordination and inter-beam coordinated transmission based on beam pointing or terminal orientation, improving system throughput and spectral efficiency.
  • Each module included in the inter-beam coordinated transmission apparatus provided by the embodiment of the present invention may be implemented by a processor in a corresponding device (for example, a wireless access point, a user terminal); of course, the function implemented by the processor may also be implemented by a logic circuit.
  • the processor can be central Processor (CPU), microprocessor (MPU), digital signal processor (DSP) or field programmable gate array (FPGA).
  • the inter-beam coordinated transmission method is implemented in the form of a software function module, and is sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are configured to perform the inter-beam coordinated transmission method in the embodiment of the present invention.
  • the solution provided by the invention can acquire the direction information of the beam or the orientation information of the terminal in real time, determine the potential interference relationship or the potential coordinated transmission relationship between the beams of different access points, and maintain the inter-beam interference coordination and the inter-beam based on the beam direction or the terminal orientation. Coordinated transmission to improve system throughput and spectrum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种波束间协同传输方法、装置及系统、设备、存储介质,涉及无线电通信领域,包括:向服务区域内发射具有不同波束指向的信道探测波束;从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;根据所述反馈信息确定以下至少之一:从一个或多个所述终端发送的通信波束的指向;向一个或多个所述终端发送的通信波束的指向;在特定波束指向下所述信道探测波束对特定终端的潜在干扰;所述服务区域由一个或者多个无线接入点覆盖。

Description

一种波束间协同传输方法、装置及系统、设备、存储介质 技术领域
本发明涉及无线电通信领域,具体涉及一种波束间协同传输方法、装置及系统、设备、存储介质。
背景技术
第五代移动通信系统逐步将通信频谱拓展至毫米波频段。无线接入点的高密度部署及大带宽窄波束毫米波的使用是解决5G(5Generation)宽带传输的主要技术手段,从接入点部署方式上看,毫米波接入网具有如下特点:1)接入点密集部署导致不同接入点(相同或不同运营商)发送的毫米波波束间干扰机会大,协作机会大;2)毫米波传播路径损耗大。毫米波上述使用方式和传播损耗特性要求第五代移动通信系统采用波束间干扰协调技术和波束间协同传输技术。
波束间干扰协调技术是对现有小区间干扰协调(ICIC:Inter Cell Interference Coordination)技术的发展,波束间协同传输技术是对现有多点协同传输(CoMP:Coordinated Multi-Point)技术的发展。
小区间干扰协调技术为频域上的实施的同频多小区间干扰协调。ICIC的基本技术分为两类:部分频率复用技术(FFR:Fractional Frequency Reuse)和软频率复用技术(SFR:Soft Frequency Reuse)。
增强的小区间干扰协调(eICIC:Enhanced Inter Cell Interference Coordination)为时域上实施的同频多小区间干扰协调,eICIC的核心思路是在时间上把干扰错开。通过宏小区把一个或多个子帧配置为“几乎空白的子帧(ABS:Almost Blank SubFrame)”,微小区在ABS子帧上为小区边缘终端(UE)提供服务,从而避免了来自宏小区的主要干扰,提升了小区边 缘UE的服务速率。
FeICIC(Further Enhanced Inter Cell Interference Coordination:进一步增强的小区间干扰协调)是对eICIC技术的增强,在FeICIC下,宏站可以在ABS子帧上调度UE专用的PDCCH(Physical Downlink Control Channel,物理下行控制信道)或PDSCH(Physical Downlink Shared Channel,物理下行共享信道);因此,一般来说,在这种情况下,宏站能够以很低的发射功率来调度其信道条件好的UE,以避免对微站产生干扰。此时,PDCCH/PDSCH/PUSCH(Physical Uplink Shared Channel,物理上行共享信道)等信道都能够以很小的功率来发射,但又要使得这些信道能被可靠地解码。宏站可以发射UE专用的PDCCH或PDSCH,但前提条件是,宏站需要在ABS子帧上降低发射功率以减少对微站的干扰,并且需要把在ABS子帧上的发射功率大小相关信令告诉微站。这一点是eICIC与FeICIC的根本区别。
在FeICIC下,宏站可以在ABS子帧上调度UE;因此,相对于eICIC,FeICIC能更为有效地跟CoMP(多点协作发射/接收)结合起来使用。
多点协同传输的提出是为了提升小区边缘终端的传输速率,具体地就是提升边缘区域内的终端接收到的信号强度。多点协同传输(CoMP)的实现是以小区间干扰协调为前提的,多点协同传输必须是在多点间干扰被规避的情况下实现的发射分集,MIMO(Multiple-Input Multiple-Output,多输入多输出)的传输方式。
CS/CB(Coordinated scheduling and beamforming,协调调度和波束赋形)是一种波束间协调技术,该技术可以动态降低来自其他小区的干扰。UE的数据只能从服务节点得到,用户的调度和波束赋形是基于CoMP簇内eNodeBs(演进型基站)间的协调结果。
下行CoMP的核心技术是JPT(Joint processing and transmission,联合 处理和传输),JPT包括两种实现方式:动态节点选择,根据CSI(Channel State Information,信道状态信息),动态地从一簇参与协同发射的eNodeBs中选出一个eNodeB用于向UE发送数据;联合发送,根据CSI,动态地从一簇参与协同发射的eNodeBs中选出两个或多个eNodeB同时用于向UE发送数据。
对于多个eNodeB同时用于向UE发送数据,分为两种情况:非相干发射和相干发射,所述非相干发射典型方式是发射分集,所述相干发射的典型方式是MIMO传输。
现有技术的缺点是:不支持基于波束指向或终端方位的波束间干扰协调和波束间协同传输、不能实时获取波束的指向信息或终端的方位信息,以及不能实时确定不同接入点波束间的潜在干扰关系或潜在协同传输关系。
发明内容
本发明提供一种波束间协同传输方法、装置及系统、设备、存储介质,实现实时获取波束的指向信息或终端的方位信息、确定不同接入点波束间的潜在干扰关系或潜在协同传输关系。
为了实现上述发明目的,本发明实施例采取的技术方案如下:
第一方面,本发明实施例提供一种波束间协同传输方法,应用于无线接入点,包括:
向服务区域内发射具有不同波束指向的信道探测波束;
从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
根据所述反馈信息确定以下至少之一:
从一个或多个所述终端发送的通信波束的指向;
向一个或多个所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
所述服务区域由一个或者多个无线接入点覆盖。
第二方面,本发明实施例还提供一种波束间协同传输方法,应用于用户终端,包括:
接收无线接入点发射的信道探测波束;
向所述无线接入点发送所述信道探测波束的反馈信息;
所述反馈信息用于所述无线接入点确定以下至少之一:
从所述终端发送的通信波束的指向;
向所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
第三方面,本发明实施例还提供一种波束间协同传输装置,设置于无线接入点,包括:
第一发射模块,配置为向服务区域内发射具有不同波束指向的信道探测波束;
第一接收模块,配置为从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
第一处理模块,配置为根据所述反馈信息确定以下至少之一:
从一个或多个所述终端发送的通信波束的指向;
向一个或多个所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
所述服务区域由一个或者多个无线接入点覆盖。
第四方面,本发明实施例还提供一种波束间协同传输装置,设置于用户终端,包括:
第二接收模块,配置为接收无线接入点发射的信道探测波束;
第二发射模块,配置为向所述无线接入点发送所述信道探测波束的反馈信息;
所述反馈信息用于所述无线接入点确定以下至少之一:
从所述终端发送的通信波束的指向;
向所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
第五方面,本发明实施例还提供一种波束间协同传输系统,包括上述的无线接入点和用户终端。
第六方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行本发明第一方面或第二方面实施例提供的波束间协同传输方法。
第七方面,一种无线接入点,用于存储可执行指令的存储介质和处理器,其中处理器配置为执行存储的可执行指令,所述可执行指令包括:
向服务区域内发射具有不同波束指向的信道探测波束;
从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
根据所述反馈信息确定以下至少之一:
从一个或多个所述终端发送的通信波束的指向;
向一个或多个所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
所述服务区域由一个或者多个无线接入点覆盖。
第八方面,一种用户终端,用于存储可执行指令的存储介质和处理器,其中处理器配置为执行存储的可执行指令,所述可执行指令包括:
接收无线接入点发射的信道探测波束;
向所述无线接入点发送所述信道探测波束的反馈信息;
所述反馈信息用于所述无线接入点确定以下至少之一:
从所述终端发送的通信波束的指向;
向所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
本发明实施例和现有技术相比,具有如下有益效果:本发明提供的方案可以实时获取波束的指向信息或终端的方位信息、确定不同接入点波束间的潜在干扰关系或潜在协同传输关系,持基于波束指向或终端方位的波束间干扰协调和波束间协同传输,提高系统吞吐量和频谱效率。
附图说明
图1是本发明实施例的一种波束间协同传输方法的流程图;
图2是本发明实施例的另一种波束间协同传输方法的流程图;
图3是本发明实施例的一种波束间协同传输装置的结构示意图;
图4是本发明实施例的另一种波束间协同传输装置的结构示意图;
图5本发明实施例给出的一种波束间协同传输方法网络侧实现步骤;
图6本发明实施例给出的一种波束间协同传输方法网络侧实现步骤;
图7本发明实施例给出的一种波束间协同传输方法终端侧实现步骤;
图8本发明实施例给出的一种波束间协同传输方法终端侧实现步骤;
图9本发明实施例给出的一种信道探测方法示意图;
图10本发明实施例给出的一种波束间协同传输装置网络测构成示意图;
图11本发明实施例给出的一种波束间协同传输装置网络测构成示意图;
图12本发明实施例给出的一种波束间协同传输装置终端侧构成示意图;
图13本发明实施例给出的一种波束间协同传输装置终端侧构成示意图;
图14本发明实施例给出的一种波束间协同传输系统构成示意图。
具体实施方式
为使本发明的发明目的、技术方案和有益效果更加清楚明了,下面结合附图对本发明的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
本发明实施例通过基站以边跟踪(业务传输)边搜索(探测潜在的干扰信道或协同传输信道)的方式工作,既可以解决不同基站的波束间的干扰协调,也可以实现不同基站间波束的协同传输。
在本发明的其他实施例中,在基站空口中引入信道探测波束,该信道探测波束与通信波束以如下方式工作:
信道探测波束与通信波束以时分(时间串行)方式工作:或者,
信道探测波束与通信波束以并行方式工作:
不同基站间的信道探测波束以同步方式工作;或者,
不同基站间的信道探测波束以异步方式工作;
所述信道探测波束
为了降低用于信道探测的时间或降低信道探测次数,可以构建不同接入点的波束间关联矩阵,将该关联举证用于异站点波束间干扰协调,协同传输;波束间信道关联矩阵包括两波束,三波束,四波束,N波束间的信道关联矩阵;
信道探测波束与业务信道波束是指向不同的波束,信道探测波束与业务信道波束使用不同的频带或使用的频带不完全相同;
使用同一个天线端口或不同的天线端口发射信道探测波束和通信波束;信道探测波束与通信波束的波束形状相同或不同;
信道探测波束与通信波束都采用机电伺服方式调整波束方向或都使用波束赋形技术调整波束方向。
如图1所示,本发明实施例提供一种波束间协同传输方法,应用于无线接入点,包括:
S101、向服务区域内发射具有不同波束指向的信道探测波束;
S102、从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端,接收对所述具有不同波束指向的信道探测波束的反馈信息;
S103、根据所述反馈信息确定以下至少之一:
从一个或多个所述终端发送的通信波束的指向;
向一个或多个所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
所述服务区域由一个或者多个无线接入点覆盖。
其中,所述用户终端包括位于所述无线接入点的服务区域内、和/或、位于与该服务区域相邻的由其它无线接入点覆盖的区域内的终端。
本发明实施例的方法还包括:
第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束;
第一无线接入点从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;
使用从第一终端接收到的对所述信道探测波束的反馈信息确定服务于第一终端的通信波束的指向;或者,使用从所述第三终端接收到的对信道探测波束的反馈信息确定第一终端与第三终端间的潜在干扰关系;
或者,
第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束;
第一无线接入点从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向;或者,使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜在干扰关系。
步骤S101包括:
以瞬时多波束或瞬时单波束方式向所述服务区域内的终端发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与所述无线接入点发射的通信波束具有不同的波束指向。
其中,所述信道探测波束与无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率或者所述信道探测波束与所述服务区域相邻或存在重叠的区域的其他无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
步骤S102包括:
通过所述无线接入点的通信波束从所述用户终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
通过所述无线接入点的信道探测反馈信道从所述用户终端接收对所述具有不同波束指向的信道探测波束的反馈信息。
其中,所述信道探测反馈信道与所述通信波束使用不同的频率或使用 不完全相同的频率。
所述反馈信息包括以下至少之一:
具有预定波束编号的波束的信号接收强度信息;
具有预定波束识别号的波束的信号接收强度信息;
发送所述反馈信息的用户终端的识别信息。
步骤S103中根据所述反馈信息确定从一个或者多个所述终端发送的通信波束的指向包括:
根据所述反馈信息中的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度和/或功率的比值,并根据所述信道探测波束的指向角度,确定每个所述终端所在位置相对于预定信道探测波束指向的偏移角度,根据所述偏移角度确定每个所述终端的通信波束的指向。
步骤S103中根据所述反馈信息确定在特定波束指向下所述信道探测波束对特定终端的潜在干扰包括:
将所述反馈信息中的至少一个信道探测波束的信号幅度和/或功率值与预定的波束间干扰门限相比较;
若大于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为对所述发送反馈信息的终端产生潜在干扰;
若小于或者等于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为不对所述发送反馈信息的终端产生潜在干扰。
步骤S101之后所述方法还包括:
若大于预定的波束间干扰门限,将所述信道探测波束的指向确定为对所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端的潜在干扰方向;
若小于或者等于预定的波束间干扰门限,将所述信道探测波束的指向确定为所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端 无干扰方向或干扰隔离方向。
如图2所示本发明实施例还提供一种波束间协同传输方法,应用于用户终端,包括:
S201、接收无线接入点发射的信道探测波束;
S202、向所述无线接入点发送所述信道探测波束的反馈信息;
所述反馈信息用于所述无线接入点确定以下至少之一:
从所述终端发送的通信波束的指向;
向所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
所述用户终端包括位于所述无线接入点的服务区域内和/或、位于与该服务区域相邻的由其它无线接入点覆盖的区域内的终端。
在本发明的其他实施例中,第一终端从第一无线接入点接收信道探测波束;
第一终端向第一无线接入点发送所述具有不同波束指向的信道探测波束的反馈信息;或者,第一终端和第三终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;
第一终端从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号;或者,第一终端与第三终端间的潜在干扰关系由所述第三终端发送给第一无线接入点的对信道探测波束的反馈信息确定;
或者,
第二终端从第一无线接入点接收信道探测波束;
第二终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或者,第二终端和第四终端向第一无线接入点发送对所 述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
第二终端从使用其发送的所述反馈信息确定波束指向的通信波束接收信号;或者,第二终端与第四终端间的潜在干扰关系使用从第四终端接收到的所述信道探测波束的反馈信息确定。
步骤S202包括:
通过上行通信波束向所述无线接入点发送对所述信道探测波束的反馈信息;或
通过所述终端的信道探测反馈信道向所述无线接入点发送对所述信道探测波束的反馈信息。
其中,所述信道探测反馈信道与所述通信波束使用不同的频率或使用不完全相同的频率。
所述反馈信息包括以下至少之一:
具有预定波束编号的波束的信号接收强度信息;
具有预定波束识别号的波束的信号接收强度信息;
发送所述反馈信息的用户终端的识别信息。
所述方法之后还包括:
根据确定的所述终端的通信波束的指向,通过所述用户终端的信道探测信道接收所述无线接入点或位于所述服务区域相邻或存在重叠的区域由其他无线接入点发送的两个或两个以上的具有不同指向的信道探测波束承载的信号。
根据确定的潜在干扰关系,使用与位于所述服务区域相邻或存在重叠的区域由其他无线接入点服务的终端相正交的时频资源与所述无线接入点通信。
如图3所示,本发明实施例还提供一种波束间协同传输装置,设置于 无线接入点,包括:
第一发射模块,配置为向服务区域内发射具有不同波束指向的信道探测波束;
第一接收模块,配置为从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端,接收对所述具有不同波束指向的信道探测波束的反馈信息;
第一处理模块,配置为根据所述反馈信息确定以下至少之一:
从一个或多个所述终端发送的通信波束的指向;
向一个或多个所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
所述服务区域由一个或者多个无线接入点覆盖。
所述第一发射模块向服务区域内发射具有不同波束指向的信道探测波束是指:
以瞬时多波束或瞬时单波束方式向所述服务区域内的终端发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与所述无线接入点发射的通信波束具有不同的波束指向。
所述第一接收模块从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端,接收对所述具有不同波束指向的信道探测波束的反馈信息是指:
通过所述无线接入点的通信波束从所述一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
通过所述无线接入点的信道探测反馈信道从所述一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息。
所述第一处理模块根据所述反馈信息确定从一个或者多个所述终端发 送的通信波束的指向是指:
根据所述反馈信息中的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度和/或功率的比值,并根据所述信道探测波束的指向角度,确定每个所述终端所在位置相对于预定信道探测波束指向的偏移角度,根据所述偏移角度确定每个所述终端的通信波束的指向。
所述第一处理模块根据所述反馈信息确定在特定波束指向下所述信道探测波束对特定终端的潜在干扰包括:
将所述反馈信息中的至少一个信道探测波束的信号幅度和/或功率值与预定的波束间干扰门限相比较;
若大于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为对所述发送反馈信息的终端产生潜在干扰;
若小于或者等于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为不对所述发送反馈信息的终端产生潜在干扰。
所述第一处理模块还配置为:
若大于预定的波束间干扰门限,将所述信道探测波束的指向确定为对所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端的潜在干扰方向;
若小于或者等于预定的波束间干扰门限,将所述信道探测波束的指向确定为所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端无干扰方向或干扰隔离方向。
如图4所示,本发明实施例还提供一种波束间协同传输装置,设置于用户终端,包括:
第二接收模块,配置为接收无线接入点发射的信道探测波束;
第二发射模块,配置为向所述无线接入点发送所述信道探测波束的反馈信息;
所述反馈信息用于所述无线接入点确定以下至少之一:
从所述终端发送的通信波束的指向;
向所述终端发送的通信波束的指向;
在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
所述用户终端包括位于所述无线接入点的服务区域内和/或位于与该服务区域相邻的由其它无线接入点覆盖的区域内的终端。
所述第二发射模块向所述无线接入点发送所述信道探测波束的反馈信息是指:
通过上行通信波束向所述无线接入点发送对所述信道探测波束的反馈信息;或
通过所述终端的信道探测反馈信道向所述无线接入点发送对所述信道探测波束的反馈信息。
所述装置还包括:第二处理模块,配置为根据确定的所述终端的通信波束的指向,通过所述用户终端的信道探测信道接收所述无线接入点或位于所述服务区域相邻或存在重叠的区域由其他无线接入点发送的两个或两个以上的具有不同指向的信道探测波束承载的信号。
所述第二处理模块还配置为:
根据确定的潜在干扰关系,使用与位于所述服务区域相邻或存在重叠的区域由其他无线接入点服务的终端相正交的时频资源与所述无线接入点通信。
本发明实施例还提供一种波束间协同传输系统,包括上述无线接入点和用户终端。
实施例1
本发明实施例给出的一种波束间协同传输方法举例,用于网络侧,包括波束间干扰协调和/或波束间协同传输步骤,其中,
所述波束间干扰协调步骤,参见图5所示,包括:
步骤S110,第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束;
步骤S120,第一无线接入点从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;
步骤S130,使用从第一终端接收到的对所述信道探测波束的反馈信息确定服务于第一终端的通信波束的指向;或者,使用从所述第三终端接收到的对信道探测波束的反馈信息确定第一终端与第三终端间的潜在干扰关系;
所述波束间协同传输步骤,参见图6所示,包括:
步骤S210,第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束;
步骤S220,第一无线接入点从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
步骤S230,使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向;或者,使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜在干扰关系。
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束,包括:
第一无线接入点以瞬时多波束或瞬时单波束方式向其服务的第一终端 发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第一无线接入点发射的通信波束具有不同的波束指向;
所述信道探测波束与第一无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束,包括:
第一无线接入点以瞬时多波束或瞬时单波束方式向第二无线接入点服务的第二终端发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第二无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
在本发明的其他实施例中,参见图9所示,步骤S110给出的第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束的一种实现方式如下:
第一无线接入点501以瞬时单波束方式向其服务的第一终端551发射四个具有不同波束指向的信道探测波束511、512、513和514,这四个具有不同波束指向的信道探测波束在第一终端551周围形成四个位置不同的且互相交叠的照射区域511’、512’、513’和514’;
这里使用的信道探测波束511、512、513和514与第一无线接入点501发射的通信波束520具有不同的波束指向;在理想状态下,通信波束520的视轴方向指向第一终端551的接收天线所在点,而信道探测波束511、512、513和514的视轴方向则偏离第一终端551的接收天线所在点一个偏移角度值;
这里使用的信道探测波束511、512、513和514与第一无线接入点501发射的通信波束520使用不同或不完全相同的频率;第一无线接入点501 发射的通信波束520使用60GHz毫米波频带内的第一子频带发射通信数据,而信道探测波束511、512、513和514使用60GHz毫米波频带内的第二子频带发射通信数据;或者,第一无线接入点501发射的通信波束520使用60GHz毫米波频带内的第一子频带发射通信数据,而信道探测波束511、512、513和514使用第一子频带中的子频带发送信道探测信号;
优选地,这里使用的信道探测波束511、512、513和514与第一无线接入点501发射的通信波束520使用不同的频率;
所述信道探测信号包括如下至少一种信号:
波束识别信号或波束编号信号;
波束所属无线节点的标识信号;
波束指向信号;以及
波束发射功率信号。
在本发明的其他实施例中,参见图9所示,步骤S210给出的第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束的一种实现方式如下:
所述第一无线接入点501向第二无线接入点502服务的第二终端发射具有不同波束指向的信道探测波束,包括:
第一无线接入点501以瞬时多波束方式向第二无线接入点502服务的第二终端552发射四个具有不同波束指向的信道探测波束511、512、513和514;这四个具有不同波束指向的信道探测波束在第二终端552周围形成四个位置不同的且互相交叠的照射区域511’、512’、513’和514’;
所述信道探测波束511、512、513及514与第二无线接入点502发射的通信波束530使用不同的频率或使用不完全相同的频率;一种使用不同频率的方式为:第二无线接入点502发射的通信波束530使用60GHz毫米波频带内的第一子频带发射通信数据,而信道探测波束511、512、513和 514使用60GHz毫米波频带内的第二子频带发射通信数据。
发射同步,使用下行同步信道控制终端的接收;包括,波束识别信息;波束编号信息;指向信息等;
所述下行同步控制信道,配置在单频网SFN(Single Frequency Network)上或配置在宏小区基站上;或者,借助终端对不同无线接入点发射的通信波束的测量获得通信波束间的同步误差信息,终端将该同步误差信息上报给网络测,网络测使用所述误差信息调整相应波束的发射时间;
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述第一无线接入点从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一无线接入点使用其通信波束从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间干扰协调步骤,所述第一无线接入点从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一无线接入点使用其通信波束从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第一无线接入点从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一无线接入点使用其通信波束从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第一无线接入点从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一无线接入点使用其通信波束从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率。
进一步地,终端发送的信道探测波束的反馈信息包括如下至少一种信息:
具有特定波束编号/波束些别号的波束的信号接收强度信息;以及
发送信道探测波束的反馈信息的终端的识别信息;
接收同步,使用下行同步信道控制终端的接收;从不同接入点接收其服务的终端的发射信号;
通过无线接入点上配置的探测波束上行反馈信道接收,该上行反馈信道使用与通信波束相同或不同的频率。
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述使用从第一终端接收到的对所述信道探测波束的反馈信息确定服务于第一终端的通信波束的指向,包括:
使用信道探测波束的反馈信息包含的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度/功率间的比值,结合相应信道探测波束的指向角度,使用比幅侧向法确定第一终端所在位置相对于特定信道探测波束指向的偏移角度,使用该偏移角度确定服务于第一终端的通信波束的指向;
在本发明的其他实施例中,如图9所示,第一无线节点501从终端551获取对四个具有不同波束指向的信道探测波束511、512、513和514的信号强度测量信息,使用信道探测波束511、512间的信号强度之差及这两个信道探测波束的波束形状信息,计算出终端551接收天线相对于信道探测波束511的第一维偏移角度,使用信道探测波束513、514间的信号强度之差及这两个信道探测波束的波束形状信息,计算出终端551接收天线相对于信道探测波束513的第二维偏移角度;使用信道探测波束511和513的波束指向以及所述第一和第二维偏移角度确定终端551相对于第一无线接入点501的方位角度。
对应于所述波束间干扰协调步骤,所述使用从所述第三终端接收到的对信道探测波束的反馈信息确定第一终端与第三终端间的潜在干扰关系,包括:
将信道探测波束的反馈信息包含的至少一个信道探测波束的信号幅度/功率值与预定的波束间干扰门限相比较,若大于预定的波束间干扰门限,则将第一终端与第三终端判为存在潜在干扰的终端,或,将所述信道探测波束的指向确定为对第三终端的潜在干扰方向;若小于或等于预定的波束间干扰门限,则将第一终端与第三终端判为非潜在干扰的终端,或,将所 述信道探测波束的指向确定为对第三终端的无干扰方向或干扰隔离方向;
在本发明的其他实施例中,将终端553发送的对信道探测波束514的反馈信息中包含的信道探测波束514的信号幅度值与预定的波束间干扰门限I_thr相比较,比较结果是大于预定的波束间干扰门限I_thr,于是将第一终端551与第三终端553判为存在潜在干扰的终端;并且,将所述信道探测波束514的指向确定为对第三终端553的潜在无干扰方向;
对应于所述波束间协同传输步骤,所述使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向,包括:
使用信道探测波束的反馈信息包含的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度/功率间的比值,结合相应信道探测波束的指向角度,使用比幅侧向法确定第二终端所在位置相对于特定信道探测波束指向的偏移角度,使用该偏移角度确定服务于第二终端的通信波束的指向;
在本发明的其他实施例中,如图9所示,第一无线节点501从第二终端552获取对四个具有不同波束指向的信道探测波束511、512、513和514的信号强度测量信息,使用信道探测波束511、512间的信号强度之差及这两个信道探测波束的波束形状信息,计算出第二终端552接收天线相对于信道探测波束511的第一维偏移角度,使用信道探测波束513、514间的信号强度之差及这两个信道探测波束的波束形状信息,计算出第二终端552接收天线相对于信道探测波束513的第二维偏移角度;使用信道探测波束511和513的波束指向以及所述第一和第二维偏移角度确定第二终端552相对于第一无线接入点501的方位角度;
更进一步地,使用第二终端552相对于第一无线接入点501的方位角度,将第一无线接入点的通信波束520的指向调整到该方位角度上,在该方位角度上对第二终端进行照射。
对应于所述波束间协同传输步骤,所述使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜在干扰关系,包括:
将信道探测波束的反馈信息包含的至少一个信道探测波束的信号幅度/功率值与预定的波束间干扰门限相比较,若大于预定的波束间干扰门限,则将第二终端与第四终端判为存在潜在干扰的终端,或,将所述信道探测波束的指向确定为对第四终端的潜在干扰方向;若小于或等于预定的波束间干扰门限,则将第二终端与第四终端判为非潜在干扰的终端,或,将所述信道探测波束的指向确定为对第四终端的无干扰方向或干扰隔离方向。
在本发明的其他实施例中,将终端554发送的对信道探测波束513的反馈信息中包含的信道探测波束513的信号幅度值与预定的波束间干扰门限I_thr相比较,比较结果是大于预定的波束间干扰门限I_thr,于是将第四终端554与第二终端552判为存在潜在干扰的终端;并且,将所述信道探测波束513的指向确定为对第四终端554的潜在无干扰方向。
图9中,第一无线接入点501的服务区域503与第二无线接入点502的服务区域504之间存在重叠区域,在该重叠区域内,存在同时使用第一无线接入点501及第二无线接入点502向同一个无线终端实施传输的可能。
在本发明的其他实施例中,当终端552向第一无线接入点501发送的信道探测波束对应的照射区域511’、512’、513’和514’的信号强度超出预定的协同发射门限,并且没有其它终端反馈指示其受到照射区域511’、512’、513’和514’的信号干扰时,第一无线接入点501发送照向终端552的波束540,波束540与第二无线接入点502发送的波束530以发射分集或异频并行传输的方式向终端552传输数据。
实施例2
本发明实施例给出的一种波束间协同传输方法举例,用于终端侧,包 括波束间干扰协调和/或波束间协同传输步骤,其中,
所述波束间干扰协调步骤,参见图7所示,包括:
步骤S310,第一终端从第一无线接入点接收具有不同波束指向的信道探测波束;
步骤S320,第一终端向第一无线接入点发送所述具有不同波束指向的信道探测波束的反馈信息;或者,第一终端和第三终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;
步骤S330,第一终端从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号;或者,第一终端与第三终端间的潜在干扰关系由所述第三终端发送给第一无线接入点的对信道探测波束的反馈信息确定;
所述波束间协同传输步骤,参见图8所示,包括:
步骤S410,第二终端从第一无线接入点接收具有不同波束指向的信道探测波束;
步骤S420,第二终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或者,第二终端和第四终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
步骤S430,第二终端从使用其发送的所述反馈信息确定波束指向的通信波束接收信号;或者,第二终端与第四终端间的潜在干扰关系使用从第四终端接收到的所述信道探测波束的反馈信息确定。
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述第一终端从第一无线接入点接收具有不同波束指向的信道探测波束,包括:
第一终端接收第一无线接入点以瞬时多波束或瞬时单波束方式发射的两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第一无线接入点发射的通信波束具有不同的波束指向;
所述信道探测波束与第一无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第二终端从第一无线接入点接收具有不同波束指向的信道探测波束,包括:
第二终端接收第一无线接入点以瞬时多波束或瞬时单波束方式发射的两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第二无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
发射同步,使用下行同步信道控制终端的接收;包括,波束识别信息;波束编号信息;指向信息等;
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述第一终端向第一无线接入点发送所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一终端使用上行通信波束向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第一终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一终端的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间干扰协调步骤,所述第一终端和第三终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第一终端和第三终端通过第一无线接入点上行通信波束发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第一终端和第三终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一终端和第三终端使用的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第二终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第二终端通过第一无线接入点的上行通信波束发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第二终端通过第一无线接入点的信道探测反馈信道发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输步骤,所述第二终端和第四终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,包括:
第二终端和第四终端通过上行通信波束向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第二终端和第四终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第二终端和第四终端的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率。
接收同步,使用下行同步信道控制终端的接收;从不同接入点接收其服务的终端的发射信号。
本实施例给出的方法,其中,
对应于所述波束间干扰协调步骤,所述第一终端从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号,包括:
第一终端在从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号之后或与之同时,通过其信道探测信道接收第二无线接入点发送的两个或两个以上的具有不同指向的信道探测波束承载的信号;
对应于所述波束间干扰协调步骤,所述第一终端与第三终端间的潜在干扰关系由所述第三终端发送给第一无线接入点的对信道探测波束的反馈信息确定,包括:
在第一终端与第三终端间的潜在干扰关系被确定后,第一终端使用与第三终端相正交的时频资源与第一无线接入点通信。
对应于所述波束间协同传输步骤,所述使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向,包括:
第二终端以同时或分时的方式从第一无线接入点和第二无线接入点的通信波束接收信号;
对应于所述波束间协同传输步骤,所述使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜在干扰关系,包括:
在第二终端与第四终端间的潜在干扰关系被确定后,第二终端使用与第四终端相正交的时频资源与第一或第二无线接入点通信。
实施例3
本发明实施例给出的一种波束间协同传输装置举例,用于网络侧,该装置包括波束间干扰协调模块600和/或波束间协同传输模块700,其中,
所述波束间干扰协调模块600,参见图10所示,包括:
信道探测波束发射控制子模块610,信道探测波束反馈信息处理子模块620,干扰协调子模块630;其中,
所述信道探测波束发射控制子模块610,配置为第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束,包括波束指向控制单元和波束识别号生成单元;
所述信道探测波束反馈信息处理子模块620,配置为第一无线接入点从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;包括终端方位识别单元;
所述干扰协调子模块630,该模块使用从第一终端接收到的对所述信道探测波束的反馈信息确定服务于第一终端的通信波束的指向;或者,使用从所述第三终端接收到的对信道探测波束的反馈信息确定第一终端与第三终端间的潜在干扰关系;该模块包括通信波束方向确定单元或波束间干扰关系确定单元;
所述波束间协同传输模块700,参见图11所示,包括:
信道探测波束发射控制子模块710,信道探测波束反馈信息处理子模块720,协同发射子模块730;其中,
所述信道探测波束发射控制子模块710,配置为第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束,包括波束指向控制单元和波束识别号生成单元;
所述信道探测波束反馈信息处理子模块720,第一无线接入点从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由 第二无线接入点服务;该子模块包括终端方位识别单元;
所述协同发射子模块730,该模块使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向;或者,使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜在干扰关系;该子模块包括通信波束方向确定单元或波束间干扰关系确定单元。
本实施例给出的装置,其中,
对应于所述波束间干扰协调模块600,其包含的信道探测波束发射控制子模块610配置为:
第一无线接入点以瞬时多波束或瞬时单波束方式向其服务的第一终端发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第一无线接入点发射的通信波束具有不同的波束指向;
所述信道探测波束与第一无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输模块700,其包含的信道探测波束发射控制子模块710配置为:
第一无线接入点以瞬时多波束或瞬时单波束方式向第二无线接入点服务的第二终端发射两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第二无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
发射同步,使用下行同步信道控制终端的接收;包括,波束识别信息;波束编号信息;指向信息等;
本实施例给出的装置,其中,
对应于所述波束间干扰协调模块600,其包含的信道探测波束反馈信息 处理子模块620配置为:
第一无线接入点使用其通信波束从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
第一无线接入点使用其通信波束从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于所述波束间协同传输模块700,其包含的信道探测波束反馈信息处理子模块710配置为:
第一无线接入点使用其通信波束从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
第一无线接入点使用其通信波束从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或
第一无线接入点使用其信道探测反馈信道从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率。
接收同步,使用下行同步信道控制终端的接收;从不同接入点接收其服务的终端的发射信号。
本实施例给出的装置,其中,
对应于所述波束间干扰协调模块600,其包含的干扰协调子模块630配置为:
使用信道探测波束的反馈信息包含的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度/功率间的比值,结合相应信道探测波束的指向角度,使用比幅侧向法确定第一终端所在位置相对于特定信道探测波束指向的偏移角度,使用该偏移角度确定服务于第一终端的通信波束的指向;
将信道探测波束的反馈信息包含的至少一个信道探测波束的信号幅度/功率值与预定的波束间干扰门限相比较,若大于预定的波束间干扰门限,则将第一终端与第三终端判为存在潜在干扰的终端,或,将所述信道探测波束的指向确定为对第三终端的潜在干扰方向;若小于或等于预定的波束间干扰门限,则将第一终端与第三终端判为非潜在干扰的终端,或,将所述信道探测波束的指向确定为对第三终端的无干扰方向或干扰隔离方向;
对应于所述波束间协同传输模块700,其包含的协同传输子模块730配置为:
使用信道探测波束的反馈信息包含的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度/功率间的比值,结合相应信道探测波束的 指向角度,使用比幅侧向法确定第二终端所在位置相对于特定信道探测波束指向的偏移角度,使用该偏移角度确定服务于第二终端的通信波束的指向;
将信道探测波束的反馈信息包含的至少一个信道探测波束的信号幅度/功率值与预定的波束间干扰门限相比较,若大于预定的波束间干扰门限,则将第二终端与第四终端判为存在潜在干扰的终端,或,将所述信道探测波束的指向确定为对第四终端的潜在干扰方向;若小于或等于预定的波束间干扰门限,则将第二终端与第四终端判为非潜在干扰的终端,或,将所述信道探测波束的指向确定为对第四终端的无干扰方向或干扰隔离方向。
实施例4
本发明实施例给出的一种波束间协同传输装置举例,用于终端侧,该装置包括:波束间干扰协调模块800和/或波束间协同传输模块900,其中,
所述波束间干扰协调模块800,参见图12所示,包括:
信道探测波束接收处理子模块810,信道探测波束反馈子模块820,通信波束接收控制子模块830;其中,
所述信道探测波束接收处理子模块810,配置为第一终端从第一无线接入点接收具有不同波束指向的信道探测波束,包括幅度或功率测量单元,波束编号识别单元;
所述信道探测波束反馈子模块820,配置为第一终端向第一无线接入点发送所述具有不同波束指向的信道探测波束的反馈信息;或者,第一终端和第三终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;包括信道探测波束反馈信息发送单元;
所述通信波束接收控制子模块830,配置为第一终端从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号;或者,第一终端与第三终端间的潜在干扰关系由所述第三终端发送给第一无线接入点的对信道探测波束的反馈信息确定;包括通信波束时频位置配置单元;
所述波束间协同传输模块900,参见图13所示,包括:
信道探测波束接收处理子模块910,信道探测波束反馈子模块920,通信波束接收控制子模块930;其中,
所述信道探测波束接收处理子模块910,配置为第二终端从第一无线接入点接收具有不同波束指向的信道探测波束;
所述信道探测波束反馈子模块920,配置为第二终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或者,第二终端和第四终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
所述通信波束接收控制子模块930,配置为第二终端从使用其发送的所述反馈信息确定波束指向的通信波束接收信号;或者,第二终端与第四终端间的潜在干扰关系使用从第四终端接收到的所述信道探测波束的反馈信息确定;包括通信波束时频位置配置单元。
本实施例给出的装置,其中,
对应于波束间干扰协调模块,其包含的信道探测波束接收处理子模块配置为:
第一终端接收第一无线接入点以瞬时多波束或瞬时单波束方式发射的两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第一无线接入点发射的通信波束具有不同的波束 指向;
所述信道探测波束与第一无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率;
对应于波束间协同传输模块,其包含的信道探测波束接收处理子模块配置为:
第二终端接收第一无线接入点以瞬时多波束或瞬时单波束方式发射的两个或两个以上的具有不同波束指向的信道探测波束;
所述信道探测波束与第二无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
发射同步,使用下行同步信道控制终端的接收;包括,波束识别信息;波束编号信息;指向信息等;
本实施例给出的装置,其中,
对应于波束间干扰协调模块,其包含的信道探测波束反馈子模块,配置为:
第一终端使用上行通信波束向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第一终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一终端的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
或,
第一终端和第三终端通过第一无线接入点上行通信波束发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第一终端和第三终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一终端和第三终端使用的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
对应于波束间协同传输模块,其包含的信道探测波束反馈子模块,配置为:
第二终端通过第一无线接入点的上行通信波束发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第二终端通过第一无线接入点的信道探测反馈信道发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第一无线接入点的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率;
或,
第二终端和第四终端通过上行通信波束向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或
第二终端和第四终端通过其信道探测反馈信道向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;
所述第二终端和第四终端的信道探测反馈信道与第一无线接入点的通信波束使用不同的频率或使用不完全相同的频率。
接收同步,使用下行同步信道控制终端的接收;从不同接入点接收其服务的终端的发射信号。
实施例5
本发明实施例给出的一种波束间协同传输系统举例,参见图14所示,包括:无线接入点装置501和502,协同传输控制装置100;其中,
所述的无线接入点装置501和502,包括波束间干扰协调模块和/或波束间协同传输模块,其中,
所述波束间干扰协调模块,包括如下子模块:
信道探测波束发射控制子模块,配置为第一无线接入点向其服务的第一终端发射具有不同波束指向的信道探测波束,包括波束指向控制单元和波束识别号生成单元;
信道探测波束反馈信息处理子模块,配置为第一无线接入点从所述第一终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第一终端和第三终端接收对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;包括终端方位识别单元;
干扰协调子模块,该模块使用从第一终端接收到的对所述信道探测波束的反馈信息确定服务于第一终端的通信波束的指向;或者,使用从所述第三终端接收到的对信道探测波束的反馈信息确定第一终端与第三终端间的潜在干扰关系;该模块包括通信波束方向确定单元或波束间干扰关系确定单元;
所述波束间协同传输模块,包括:
信道探测波束发射控制子模块,配置为第一无线接入点向第二无线接入点服务的第二终端发射具有不同波束指向的信道探测波束,包括波束指向控制单元和波束识别号生成单元;
信道探测波束反馈信息处理子模块,第一无线接入点从所述第二终端接收对所述具有不同波束指向的信道探测波束的反馈信息;或者,第一无线接入点从所述第二终端和第四终端接收对所述具有不同波束指向的信道探测波束的反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;该子模块包括终端方位识别单元;
协同发射子模块,该模块使用从第二终端接收到的所述信道探测波束的反馈信息确定服务于第二终端的通信波束的指向;或者,使用从第四终端接收到的所述信道探测波束的反馈信息确定第二终端与第四终端间的潜 在干扰关系;该子模块包括通信波束方向确定单元或波束间干扰关系确定单元。
所述协同传输控制装置100,配置为在无线接入点装置之间进行数据流分配,包括数据流分配模块和协同传输控制信号接收或发送模块。
本实施例给出的系统,还包括移动终端装置552,该装置包含波束间干扰协调模块和/或波束间协同传输模块,其中,
所述波束间干扰协调模块,包括:
信道探测波束接收处理子模块,配置为第一终端从第一无线接入点接收具有不同波束指向的信道探测波束,包括幅度或功率测量单元,波束编号识别单元;
信道探测波束反馈子模块,配置为第一终端向第一无线接入点发送所述具有不同波束指向的信道探测波束的反馈信息;或者,第一终端和第三终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息,该第三终端当前由第一无线接入点服务或由第二无线接入点服务;包括信道探测波束反馈信息发送单元;
通信波束接收控制子模块,配置为第一终端从第一无线接入点接收使用其发送的所述反馈信息确定波束指向的通信波束承载的信号;或者,第一终端与第三终端间的潜在干扰关系由所述第三终端发送给第一无线接入点的对信道探测波束的反馈信息确定;包括通信波束时频位置配置单元;
所述波束间协同传输模块,包括:
信道探测波束接收处理子模块,配置为第二终端从第一无线接入点接收具有不同波束指向的信道探测波束;
信道探测波束反馈子模块,配置为第二终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的反馈信息;或者,第二终端和第四终端向第一无线接入点发送对所述具有不同波束指向的信道探测波束的 反馈信息;该第四终端当前由第一无线接入点服务或由第二无线接入点服务;
通信波束接收控制子模块,配置为第二终端从使用其发送的所述反馈信息确定波束指向的通信波束接收信号;或者,第二终端与第四终端间的潜在干扰关系使用从第四终端接收到的所述信道探测波束的反馈信息确定;包括通信波束时频位置配置单元。
在图10所示的波束间协同传输系统中,第一无线接入点501发送信道探测波束511、512、513和514,这些信道探测波束具有不同的波束指向,第一无线接入点501通过发送这些信道探测波束获取其服务区域内的终端所处的信道环境和干扰环境;第二无线接入点502发送信道探测波束531和532,这些信道探测波束具有不同的波束指向,配置为第二无线接入点502获取其服务区域内的终端所处的信道环境和干扰环境。
根据终端对信道探测波束的测量和反馈,第一无线节点501和第二无线节点502自主地决定是否对终端552实施协同传输;或者,第一无线节点501和第二无线节点502将终端对信道探测波束的测量和反馈信息上报给协同传输控制装置100,有协同传输控制装置100确定是否对终端552实施协同传输。
本发明给出的实施例,克服了现有ICIC技术和CoMP技术存在的不能实时获取波束的指向信息或终端的方位信息、不能实时确定不同接入点波束间的潜在干扰关系或潜在协同传输关系这些缺点中的至少一种,可以支持基于波束指向或终端方位的波束间干扰协调和波束间协同传输,提高系统吞吐量和频谱效率。
本发明实施例提供的波束间协同传输装置所包括的各模块都可以通过对应设备(例如无线接入点、用户终端)中的处理器来实现;当然处理器实现的功能也可通过逻辑电路实现;在实施的过程中,处理器可以为中央 处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的波束间协同传输方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。相应地,本发明实施例再提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行本发明实施例中波束间协同传输方法。
虽然本发明所揭示的实施方式如上,但其内容只是为了便于理解本发明的技术方案而采用的实施方式,并非用于限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本发明所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
本发明提供的方案可以实时获取波束的指向信息或终端的方位信息、确定不同接入点波束间的潜在干扰关系或潜在协同传输关系,持基于波束指向或终端方位的波束间干扰协调和波束间协同传输,提高系统吞吐量和频谱效率。

Claims (23)

  1. 一种波束间协同传输方法,应用于无线接入点,包括:
    向服务区域内发射具有不同波束指向的信道探测波束;
    从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
    根据所述反馈信息确定以下至少之一:
    从一个或多个所述终端发送的通信波束的指向;
    向一个或多个所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
    所述服务区域由一个或者多个无线接入点覆盖。
  2. 如权利要求1所述的方法,其中,向服务区域内发射具有不同波束指向的信道探测波束包括:
    以瞬时多波束或瞬时单波束方式向所述服务区域内的终端发射两个或两个以上的具有不同波束指向的信道探测波束;
    所述信道探测波束与所述无线接入点发射的通信波束具有不同的波束指向。
  3. 如权利要求2所述的方法,其中,所述信道探测波束与无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率或者所述信道探测波束与所述服务区域相邻或存在重叠的区域的其他无线接入点发射的通信波束使用不同的频率或使用不完全相同的频率。
  4. 如权利要求1所述的方法,其中,从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息包括:
    通过所述无线接入点的通信波束从所述一个或者多个终端接收对所 述具有不同波束指向的信道探测波束的反馈信息;或
    通过所述无线接入点的信道探测反馈信道从所述一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息。
  5. 如权利要求4所述的方法,其中,所述信道探测反馈信道与所述通信波束使用不同的频率或使用不完全相同的频率。
  6. 如权利要求1所述的方法,其中,所述反馈信息包括以下至少之一:
    具有预定波束编号的波束的信号接收强度信息;
    具有预定波束识别号的波束的信号接收强度信息;
    发送所述反馈信息的用户终端的识别信息。
  7. 如权利要求1所述的方法,其中,根据所述反馈信息确定从一个或者多个所述终端发送的通信波束的指向包括:
    根据所述反馈信息中的两个或两个以上的具有不同波束指向的信道探测波束的信号幅度和/或功率的比值,并根据所述信道探测波束的指向角度,确定每个所述终端所在位置相对于预定信道探测波束指向的偏移角度,根据所述偏移角度确定每个所述终端的通信波束的指向。
  8. 如权利要求1所述的方法,其中,根据所述反馈信息确定在特定波束指向下所述信道探测波束对特定终端的潜在干扰包括:
    将所述反馈信息中的至少一个信道探测波束的信号幅度和/或功率值与预定的波束间干扰门限相比较;
    若大于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为对所述发送反馈信息的终端产生潜在干扰;
    若小于或者等于预定的波束间干扰门限,则将该波束指向下的信道探测波束判为不对所述发送反馈信息的终端产生潜在干扰。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    若大于预定的波束间干扰门限,将所述信道探测波束的指向确定为对所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端的潜在干扰方向;
    若小于或者等于预定的波束间干扰门限,将所述信道探测波束的指向确定为所述服务区域相邻或存在重叠的区域的其他无线接入点服务的终端无干扰方向或干扰隔离方向。
  10. 一种波束间协同传输方法,应用于用户终端,包括:
    接收无线接入点发射的信道探测波束;
    向所述无线接入点发送所述信道探测波束的反馈信息;
    所述反馈信息用于所述无线接入点确定以下至少之一:
    从所述终端发送的通信波束的指向;
    向所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
  11. 如权利要求10所述的方法,其中,所述用户终端包括位于所述无线接入点的服务区域内和/或位于与该服务区域相邻的由其它无线接入点覆盖的区域内的终端。
  12. 如权利要求10所述的方法,其中,向所述无线接入点发送所述信道探测波束的反馈信息包括:
    通过上行通信波束向所述无线接入点发送对所述信道探测波束的反馈信息;或
    通过所述终端的信道探测反馈信道向所述无线接入点发送对所述信道探测波束的反馈信息。
  13. 如权利要求12所述的方法,其中,所述信道探测反馈信道与所述通信波束使用不同的频率或使用不完全相同的频率。
  14. 如权利要求10所述的方法,其中,所述反馈信息包括以下至少 之一:
    具有预定波束编号的波束的信号接收强度信息;
    具有预定波束识别号的波束的信号接收强度信息;
    发送所述反馈信息的用户终端的识别信息。
  15. 如权利要求10所述的方法,其中,所述方法之后还包括:
    根据确定的所述终端的通信波束的指向,通过所述用户终端的信道探测信道接收所述无线接入点或位于所述服务区域相邻或存在重叠的区域由其他无线接入点发送的两个或两个以上的具有不同指向的信道探测波束承载的信号。
  16. 如权利要求10所述的方法,其中,所述方法之后还包括:
    根据确定的潜在干扰关系,使用与位于所述服务区域相邻或存在重叠的区域由其他无线接入点服务的终端相正交的时频资源与所述无线接入点通信。
  17. 一种波束间协同传输装置,设置于无线接入点,包括:
    第一发射模块,配置为向服务区域内发射具有不同波束指向的信道探测波束;
    第一接收模块,配置为从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
    第一处理模块,配置为根据所述反馈信息确定以下至少之一:
    从一个或多个所述终端发送的通信波束的指向;
    向一个或多个所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
    所述服务区域由一个或者多个无线接入点覆盖。
  18. 一种波束间协同传输装置,设置于用户终端,包括:
    第二接收模块,配置为接收无线接入点发射的信道探测波束;
    第二发射模块,配置为向所述无线接入点发送所述信道探测波束的反馈信息;
    所述反馈信息配置为所述无线接入点确定以下至少之一:
    从所述终端发送的通信波束的指向;
    向所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
  19. 一种波束间协同传输系统,包括权利要求17所述的无线接入点的波束间协同传输装置和权利要求18所述的用户终端的波束间协同传输装置。
  20. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至9任一项所述的波束间协同传输方法。
  21. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求10至16任一项所述的波束间协同传输方法。
  22. 一种无线接入点,用于存储可执行指令的存储介质和处理器,其中处理器配置为执行存储的可执行指令,所述可执行指令包括:
    向服务区域内发射具有不同波束指向的信道探测波束;
    从位于所述服务区域内和/或位于所述服务区域的相邻区域内的一个或者多个终端接收对所述具有不同波束指向的信道探测波束的反馈信息;
    根据所述反馈信息确定以下至少之一:
    从一个或多个所述终端发送的通信波束的指向;
    向一个或多个所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰;
    所述服务区域由一个或者多个无线接入点覆盖。
  23. 一种用户终端,用于存储可执行指令的存储介质和处理器,其中处理器配置为执行存储的可执行指令,所述可执行指令包括:
    接收无线接入点发射的信道探测波束;
    向所述无线接入点发送所述信道探测波束的反馈信息;
    所述反馈信息用于所述无线接入点确定以下至少之一:
    从所述终端发送的通信波束的指向;
    向所述终端发送的通信波束的指向;
    在特定波束指向下所述信道探测波束对特定终端的潜在干扰。
PCT/CN2016/106960 2016-02-22 2016-11-23 一种波束间协同传输方法、装置及系统、设备、存储介质 WO2017143810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610097074.0 2016-02-22
CN201610097074.0A CN107105439B (zh) 2016-02-22 2016-02-22 一种波束间协同传输方法,装置及系统

Publications (1)

Publication Number Publication Date
WO2017143810A1 true WO2017143810A1 (zh) 2017-08-31

Family

ID=59658615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106960 WO2017143810A1 (zh) 2016-02-22 2016-11-23 一种波束间协同传输方法、装置及系统、设备、存储介质

Country Status (2)

Country Link
CN (1) CN107105439B (zh)
WO (1) WO2017143810A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124589A1 (en) * 2018-12-21 2020-06-25 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN111491304B (zh) * 2019-01-28 2021-10-22 华为技术有限公司 一种广播波束处理的方法及通信装置
CN111149389B (zh) * 2019-12-09 2023-06-09 北京小米移动软件有限公司 信息处理方法、装置、通信设备及存储介质
CN114980146B (zh) * 2021-12-15 2023-05-19 广州市苏纳米实业有限公司 一种基于智能通信箱的波束增强方法、装置及智能通信箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710395A (zh) * 2012-06-06 2012-10-03 西安电子科技大学 基于联合波束赋形的协同传输方法
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
WO2016006964A1 (ko) * 2014-07-10 2016-01-14 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974273B (zh) * 2013-02-06 2018-11-13 中兴通讯股份有限公司 干扰关系的获取方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
CN102710395A (zh) * 2012-06-06 2012-10-03 西安电子科技大学 基于联合波束赋形的协同传输方法
WO2016006964A1 (ko) * 2014-07-10 2016-01-14 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템

Also Published As

Publication number Publication date
CN107105439B (zh) 2021-08-20
CN107105439A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US10212629B2 (en) User apparatus, base station, and communication method
US11374706B2 (en) Method and apparatus for transmitting and receiving a synchronization signal and transmission system
US11412569B2 (en) Opportunistic beamforming
EP3652870B1 (en) Frequency-selective beam management
EP3018927B1 (en) Communication method and device
CN110521135A (zh) 用于通信波束恢复的系统和方法
CA2979428C (en) System and method for interference coordination in wireless communications systems
WO2017143810A1 (zh) 一种波束间协同传输方法、装置及系统、设备、存储介质
CN114026794B (zh) 毫米波无线系统中的虚拟服务波束跟踪
US11638256B2 (en) Method and system for performing beam sweeping using multiple polarization
CN111385812B (zh) 一种波束管理方法及装置
Liu et al. Traffic-aware resource allocation for multi-user beamforming
WO2018064986A1 (zh) 在多天线系统中实现信道测量的方法、装置和存储介质
US20230056592A1 (en) User Equipment-Autonomously Triggered-Sounding Reference Signals
US10448417B2 (en) System and method for device random access in a beamformed communications system
CN117941280A (zh) 使用具有多个空间流的窄波束的定向信道接入

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891258

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891258

Country of ref document: EP

Kind code of ref document: A1