WO2016006864A1 - 후막 패턴 구조 및 그의 형성 방법 - Google Patents

후막 패턴 구조 및 그의 형성 방법 Download PDF

Info

Publication number
WO2016006864A1
WO2016006864A1 PCT/KR2015/006780 KR2015006780W WO2016006864A1 WO 2016006864 A1 WO2016006864 A1 WO 2016006864A1 KR 2015006780 W KR2015006780 W KR 2015006780W WO 2016006864 A1 WO2016006864 A1 WO 2016006864A1
Authority
WO
WIPO (PCT)
Prior art keywords
thick film
film pattern
pattern
forming
coating
Prior art date
Application number
PCT/KR2015/006780
Other languages
English (en)
French (fr)
Inventor
김용환
윤억근
최용석
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to CN201580035941.1A priority Critical patent/CN106471453B/zh
Priority to US15/324,023 priority patent/US10152183B2/en
Publication of WO2016006864A1 publication Critical patent/WO2016006864A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a thick film pattern formed by repeating a lamination process.
  • the thick film pattern is formed by gradually reducing the pattern width to stack the same material layer so as to reduce the taper angle in the pattern edge region after all the layers are stacked.
  • a pattern structure and its formation method are related.
  • touch sensors have been widely applied in various electronic products such as mobile phones, personal digital assistants (PDAs), and handheld personal computers, where the technology of manufacturing capacitive touch sensors is most widely used.
  • the structure of a single glass type capacitive touch sensor is the main structure used for touch sensors.
  • the material for forming the touch sensing electrode layer is usually indium tin oxide (ITO).
  • the ITO layer is formed directly on the glass substrate by sputtering and then patterned to form the pattern of the touch sensing electrode layer.
  • the pattern of the touch sensing electrode layer includes an X-axis sensing electrode pattern and a Y-axis sensing electrode pattern, in which one axis of the sensing electrode pattern crosses another axis of the sensing electrode pattern.
  • a conductive layer is used to form
  • the insulating layer is formed at the position of the X-axis sensing electrode pattern and the Y-axis sensing electrode pattern crisscross each other to electrically insulate the X-axis sensing electrode pattern from the Y-axis sensing electrode pattern.
  • Such a touch sensor is formed on one surface of the transparent substrate 10 and the transparent substrate 10 partitioned into the active region 11 and the inactive region 12 which is an edge of the active region 11. It includes an electrode portion.
  • the transparent substrate 10 may serve to provide a region in which an electrode unit for detecting a touch position is formed.
  • the transparent substrate 10 should have a supporting force capable of supporting such an electrode portion and transparency to enable a user to recognize an image provided by the image display apparatus.
  • the touch sensor may be divided into an active region 11 and an inactive region 12 that is an edge region of the active region 11.
  • the active area 11 is an area where a touch action by the user is made, and is a screen area where the user visually checks the operation scene of the device.
  • the inactive region 12 is a region that is not covered by the bezel formed on the transparent substrate 10 and exposed to the outside.
  • a shielding layer for blocking backlight light located at the periphery of the active region 11 a protective layer for protecting the lower pattern, and an insulating layer for insulating the upper electrode lines are formed to have a predetermined thickness or more. do.
  • the thick film pattern formed to have a predetermined thickness or more generally has a thickness of 10 to 20 ⁇ m or more, and is not formed by a single coating process, and a thick film pattern having a desired thickness is formed by a repeated coating process to form a predetermined thickness or more. do.
  • the same coating width is used to perform the lamination coating process more than 1, 2, 3 times.
  • problems such as the flow of the photosensitive liquid occur as in (b).
  • a large inclination angle in the tapered portion (a) causes a problem of poor quality of the device due to a change in the film thickness of the thick film pattern and a change in the pattern width, thereby greatly reducing the yield.
  • Figure 3 illustrates a disconnection problem that occurs during the process progress after the thick film pattern formation in the prior art.
  • the present invention is to solve this problem of the thick film pattern of the prior art, a thick film to reduce the taper angle in the pattern edge region after all the layers are laminated by laminating the same material layer by gradually reducing the pattern width Its purpose is to provide a pattern structure and a method of forming the same.
  • the taper angle in the edge region of the thick film pattern used as the protective layer and the insulating layer is reduced to solve problems such as film thickness change, pattern width change, and disconnection occurring during the subsequent process. And a method for forming the same.
  • An object of the present invention is to provide a thick film pattern structure and a method of forming the same, wherein the photoresist is suppressed from flowing during a photolithography process on a thick film pattern by performing a coating process in a step-lamination method in which a pattern width is gradually reduced.
  • the thick film pattern structure according to the present invention for achieving the above object is a thick film pattern coating layer having any one pattern width; the size of the pattern width on the thick film pattern coating layer is gradually reduced in the edge region of the thick film pattern coating layer is sequentially stacked Other thick film pattern coating layers; and the thick film pattern formed of these thick film coating layers has a step shape.
  • the size of the reduced width gradually reduced in the edge region of the thick film pattern is the same, or characterized in that the size of the reduced width is gradually smaller or gradually larger as stacked.
  • the formation thickness of the thick film coating layers constituting the thick film pattern is the same, or as the laminated thickness is characterized in that the coating thickness is gradually increased or decreased.
  • the thick film pattern is formed by changing the size of the reduced width in which the pattern width of the thick film pattern coating layers is gradually reduced and changing the thickness of the thick film pattern coating layers.
  • taper angle in the edge region of the thick film pattern consisting of a thick film coating layer is characterized in that 5 ⁇ 10 °.
  • the total thickness of the thick film pattern consisting of a thick film coating layer is characterized in that 30 ⁇ 35 ⁇ m.
  • the portion having the step shape of the thick film pattern is positioned in the bezel area of the touch sensor.
  • the thick film pattern may be any one of a shielding layer for blocking backlight light, a protective layer for protecting a lower pattern, and an insulating layer for insulating the upper electrode lines.
  • a method of forming a thick film pattern comprising: coating a material for forming a thick film pattern using a mask having any one pattern width; sequentially using masks in which the size of the pattern width is gradually reduced And repeatedly coating the thick film pattern forming material to form a thick film pattern having a step shape in the edge region.
  • the reduced size of the pattern width of the mask which is reduced so that the thick film pattern has a step shape may be the same or different.
  • the thick film pattern forming material may be coated such that the thickness of each coating layer to be laminated is the same, or the thickness of each coating layer is changed.
  • the gradually decreasing pattern width size is characterized in that the taper angle in the edge region of the entire thick film pattern coated with the material for thick film pattern formation is repeated 5 ⁇ 10 °.
  • the overall thickness of the thick film pattern is characterized in that 30 ⁇ 35 ⁇ m.
  • the thick film pattern forming material may be any one of a material for forming a shielding layer for blocking light, a material for forming a protective layer for protecting a lower pattern, and an insulating material for insulating from electrode lines.
  • Such a thick film pattern structure and its formation method according to the present invention has the following effects.
  • the taper angle at the edge region of the thick film pattern after all the layers are laminated can be reduced.
  • the thick film pattern is formed by a step-lamination method in which the pattern width is gradually reduced to suppress the flow of the photoresist during the photolithography process on the thick film pattern.
  • the taper angle in the edge region of the thick film pattern can be reduced to solve problems such as film thickness change, pattern width change, and disconnection that occur during the subsequent process.
  • 1 is a plan view of a typical touch sensor
  • FIG. 2 is a block diagram showing a thick film pattern cross-sectional structure of the prior art
  • Figure 3 is a cross-sectional view showing a disconnection region that occurs during the formation of the thick film pattern of the prior art and subsequent process
  • FIG. 4 is a configuration diagram of a touch sensor showing an example applied to the present invention
  • FIG. 6 is a flowchart illustrating a process sequence for forming a thick film pattern according to the present invention.
  • FIG. 7A and 7B are cross-sectional photographs of a thick film pattern formation and subsequent processes according to the present invention.
  • FIG. 4 is a configuration diagram of a touch sensor showing an example applied to the present invention
  • Figure 5 is a cross-sectional configuration diagram of a thick film pattern according to the present invention.
  • the present invention is to reduce the taper angle in the edge region of the thick film pattern used as the protective layer and the insulating layer to solve problems such as film thickness change, pattern width change and disconnection occurring during the subsequent process,
  • the thick film pattern is formed by a step lamination method in which the pattern width is gradually reduced during the repeated coating process for forming the pattern.
  • the touch sensor described as an example to which the thick film pattern structure and the method of forming the same according to the present invention is applied, as shown in FIG. 4, has an active region 11 in which an electrode part is located and an inactive region that is an edge region of the active region 11. 12).
  • the non-active area 12 is an area that is not covered by the bezel portion formed on the transparent substrate 10 and is not exposed to the outside.
  • the bezel portion has a shielding layer and a lower portion for blocking backlight light located at the periphery of the active region 11.
  • a protective layer for protecting the pattern and an insulating layer for insulating the upper electrode lines are formed to a predetermined thickness or more.
  • the transparent substrate 10 includes polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene naphthalate (PEN), polyether sulfone (PES), cyclic olefin polymer (COC), It is preferable to form with TAC (Triacetylcellulose), polyvinyl alcohol (PVA), polyimide (PI), polystyrene (PS), biaxially oriented polystyrene (K resin-containing biaxially oriented PS; BOPS),
  • TAC Triacetylcellulose
  • PVA polyvinyl alcohol
  • PI polyimide
  • PS polystyrene
  • BOPS biaxially oriented PS
  • the present invention is not limited thereto.
  • the electrode unit may be formed on one surface of the transparent substrate 10.
  • the electrode part may include an electrode formed in the active region 11 of one surface of the transparent substrate 10 and an electrode wiring formed in the inactive region 12 and connected to the edge of the electrode.
  • the portion where the electrode portion of the touch sensor is formed is not necessarily limited to one surface of the transparent substrate 10, for example, the electrode portion may be formed on the other surface or both sides of the transparent substrate 10, of course.
  • the electrode may be made of a conductive polymer or a metal oxide.
  • the conductive polymer may be made of any one or more of poly-3,4-ethylenedioxythiophene / polystyrenesulfonate (PEDOT / PSS), polyaniline, polyacetylene or polyphenylenevinylene.
  • PEDOT / PSS poly-3,4-ethylenedioxythiophene / polystyrenesulfonate
  • polyaniline polyaniline
  • polyacetylene polyacetylene or polyphenylenevinylene.
  • the metal oxide may be formed of indium-tin oxide.
  • the electrode is not limited to a conductive polymer or a metal oxide, and for example, the electrode may be formed of metal silver formed by exposing / developing a metal or silver salt emulsion layer formed in a mesh pattern.
  • the electrode wiring may be made of at least one of copper (Cu), aluminum (Al), gold (Au), silver (Ag), titanium (Ti), palladium (Pd) or chromium (Cr). It is not limited to this.
  • the electrode may be formed by a dry process, a wet process, or a direct patterning process.
  • the dry process means sputtering, evaporation, and the like
  • the wet process includes dip coating, spin coating, roll coating, spray coating, and the like.
  • the direct patterning process means screen printing, gravure printing, inkjet printing, or the like.
  • the regions (C), (D), and (B) of FIG. 4 are located at the periphery of the active region, and provide a shielding layer for blocking backlight light, a protective layer for protecting the lower pattern, and insulation from the upper electrode lines. It shows the area where the insulating layers are mainly formed.
  • the thick film pattern structure according to the present invention can be applied even when the thick film pattern is formed outside these areas.
  • the thick film pattern according to the present invention has a thick film pattern primary coating layer 50 having a first pattern width, as shown in FIG. 5, and a thick film pattern 1 having a second pattern width reduced by a predetermined size from the first pattern width in the edge region.
  • the pattern tertiary coating layer 52 is included.
  • the number of coating layers to be laminated may be different.
  • the size of the reduction widths A, B, and C that are gradually reduced in the edge region of the thick film pattern is preferably the same, but the size of the reduction width is gradually reduced (A> B> C) or gradually increased (A ⁇ B ⁇ C). )can do.
  • the coating thicknesses a, b, and c of the material layer for forming the thick film pattern are preferably the same, but the coating thickness may be gradually increased (a> b> c), or the coating thickness may be gradually decreased (a ⁇ b ⁇ c). Can be.
  • One of the other methods may form a thick film pattern structure by combining the size of the shrinking width gradually reduced in the edge region of the thick film pattern and the change in the coating thickness of the material layer for forming the thick film pattern.
  • the thick film pattern formed by such a process may have a taper angle of 5 to 10 ° to prevent the material 53 deposited in a subsequent process from flowing down.
  • the required thickness of the thick film pattern has a thickness of 10 ⁇ m or more, the problem is prevented from occurring in a subsequent process, and even when the thickness of the thick film pattern is very thick where the total thickness of the thick film pattern is 30 to 35 ⁇ m, the edge portion of the thick film pattern is prevented. Can effectively reduce the taper angle.
  • the thick film pattern may be any one of a shielding layer for blocking backlight light, a protective layer for protecting the lower pattern, and an insulating layer for insulating the upper electrode lines.
  • the shielding layer may be formed of a light absorbing material or a material having a color correction function, but is not limited to these materials, and it is obvious that other materials may be used to form a thick film pattern for shielding.
  • a dielectric thin film or the like may be used. It is natural that a thick film pattern for lower pattern protection may be formed using other materials without being limited to these materials.
  • the insulating layer may be formed of a material such as an oxide film or a nitride film, but is not limited to these materials, and it is natural that a thick film pattern for insulation may be formed using other materials.
  • Such a thick film pattern according to the present invention reduces the taper angle at the thick film pattern edge region by varying the pattern width in the process of coating the material for forming the thick film pattern many times to prevent the material deposited in the subsequent process from flowing down. It can prevent the occurrence of a change in the film thickness, a decrease in the pattern width and disconnection.
  • Such a coating process for forming a thick film pattern according to the present invention is made as follows.
  • FIG. 6 is a flowchart illustrating a process sequence for forming a thick film pattern according to the present invention.
  • the first mask having the first pattern width for forming the thick film pattern is aligned (S602).
  • the material for forming the thick film pattern is first coated by using the aligned first mask (S603).
  • the second mask having the pattern width reduced in the edge region than the first pattern width is aligned with the region where the thick film pattern forming material is first coated.
  • the material for forming the thick film pattern is secondarily coated using the aligned second mask.
  • the third mask having the pattern width reduced in the edge region than the second pattern width is aligned with the regions in which the thick film pattern forming material is coated first and second (S606).
  • a thick film pattern is formed by tertiary coating of the material for forming a thick film pattern using a third mask (S607).
  • the formation of the thick film pattern forming material layer by using the 1,2,3rd coating process is described as an example, but the number of coating processes is not limited and may be different.
  • the thick film pattern according to the present invention to which such a process is applied may be any one of a shielding layer for blocking backlight light, a protective layer for protecting a lower pattern, and an insulating layer for insulating from upper electrode lines. .
  • the reduced widths of the first, second, and third masks gradually reduced in the edge region of the thick film pattern may be the same or different.
  • the coating thickness of the material layer for forming the thick film pattern may be coated with the same thickness, or may be formed by varying the thickness of each coating layer.
  • the method of coating the layer of the formation material for the thick film pattern may include dip coating, spin coating, roll coating, spray coating, and the like, but is not limited thereto. It is also possible to use other lamination methods.
  • the thick film pattern by the thick film pattern structure and the formation method according to the present invention is formed in a step lamination method in which the pattern width is reduced and laminated in the case of forming a thick film pattern having a thickness of 10 ⁇ m or more, and then, during the photolithography process for forming electrodes thereafter. It prevents poor quality and poor appearance by disconnection and peeling of the electrode and protective layer.
  • 7A and 7B are cross-sectional photographs of the thick film pattern formation and the subsequent process according to the present invention.
  • Such a thick film pattern structure and a method of forming the same according to the present invention form a thick film pattern in a step-lamination method in which the pattern width is gradually reduced during the repeated coating process for forming the thick film pattern to reduce the taper angle in the edge region of the thick film pattern. In other words, it is possible to suppress the occurrence of changes in film thickness, pattern width, and disconnection occurring in subsequent process steps.

Abstract

본 발명은 적층 공정을 반복하여 형성되는 후막 패턴 형성시에 패턴 폭을 점차 축소시켜 동일 물질층을 적층하여 모든 층이 적층된 이후의 패턴 에지 영역에서의 테이퍼 각도를 줄일 수 있도록 한 후막 패턴 구조 및 그의 형성 방법에 관한 것으로, 어느 하나의 패턴 폭을 갖는 후막 패턴 코팅층;상기 후막 패턴 코팅층 상에 패턴 폭의 크기가 후막 패턴 코팅층의 에지 영역에서 점차 축소되어 차례로 적층되는 다른 후막 패턴 코팅층들;을 포함하고, 이들 후막 코팅층들로 이루어진 후막 패턴이 스텝 형상을 갖는 것이다.

Description

후막 패턴 구조 및 그의 형성 방법
본 발명은 적층 공정을 반복하여 형성되는 후막 패턴에 관한 것으로, 구체적으로 패턴폭을 점차 축소시켜 동일 물질층을 적층하여 모든 층이 적층된 이후의 패턴 에지 영역에서의 테이퍼 각도를 줄일 수 있도록 한 후막 패턴 구조 및 그의 형성 방법에 관한 것이다.
최근, 터치 센서들은, 용량성 터치 센서들의 제작 기술이 가장 널리 이용되는 모바일 폰, PDA(personal digital assistant) 및 핸드헬드(handheld) 퍼스널 컴퓨터와 같은 여러 전자적 제품에서 널리 적용되고 있다.
현재, 단일 유리 유형의 용량성 터치 센서의 구조가 터치 센서들에 대해 이용되는 주요 구조이다.
종래 기술의 단일 유리 유형의 용량성 터치 센서들에 대해, 터치 감지 전극 층을 형성하기 위한 재료는 보통 산화 인듐 주석(ITO: indium tin oxide)이다.
ITO 층은 스퍼터링에 의해 유리 기판상에 직접 형성된 다음 패터닝되어 터치 감지 전극 층의 패턴을 형성한다.
터치 감지 전극 층의 패턴은 X축 감지 전극 패턴 및 Y축 감지 전극 패턴을 포함하는데, 이 패턴에서, 감지 전극 패턴의 일 축은 감지 전극 패턴의 또 다른 축을 가로지르는(across) 브릿지 구조(bridge structure)를 형성하기 위해 도전성 층을 이용한다.
절연층은 X축 감지 전극 패턴을 Y축 감지 전극 패턴으로부터 전기적으로 절연시키기 위해 서로 십자로 교차하는(crisscross), X축 감지 전극 패턴 및 Y축 감지 전극 패턴의 위치에서 형성된다.
이와 같은 터치 센서는 도 1에서와 같이, 활성 영역(11)과 상기 활성 영역(11)의 테두리인 비활성 영역(12)으로 구획되는 투명기판(10)과, 투명기판(10) 일면에 형성되는 전극부를 포함한다.
투명기판(10)은 터치 위치 검출을 위한 전극부가 형성되는 영역을 제공하는 역할을 수행할 수 있다. 투명기판(10)은 이러한 전극부를 지지할 수 있는 지지력과 화상표시장치에서 제공되는 화상을 사용자가 인식할 수 있도록 하는 투명성을 갖추어야 한다.
이와 같이 터치 센서는 활성 영역(11)과 이 활성 영역(11)의 테두리 영역인 비활성 영역(12)으로 구획될 수 있다.
활성 영역(11)은 사용자에 의한 터치작용이 이루어지는 영역이며, 사용자가 기기의 동작 장면을 시각적으로 확인하는 화면 영역이다.
그리고 비활성 영역(12)은 투명기판(10)에 형성되는 베젤부에 의해 가려져 외부로 노출되지 않는 영역이다.
이와 같은 베젤부에는 활성 영역(11)의 주변부에 위치하는 백라이트 빛을 차단하기 위한 차폐층 및 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층들이 일정 두께 이상으로 형성된다.
이와 같이 일정 두께 이상 형성되는 후막 패턴은 통상적으로 10 ~ 20㎛ 이상의 두께를 갖는 것으로, 한 번의 코팅 공정으로 형성되는 것이 아니고, 일정 두께 이상을 형성하기 위하여 반복 코팅 공정으로 원하는 두께의 후막 패턴을 형성한다.
그러나 도 2에서와 같이 후막 패턴을 형성하기 위하여 동일 패턴폭을 갖고 1,2,3번 이상 적층 코팅 공정을 진행하는데, 이 경우에는 후막 패턴의 테이퍼부(가)에서의 경사각이 20°이상이 되어 이후의 포토리소그래피 공정 등을 진행하는 경우에 (나) 부분에서와 같이 감광액의 흘러 내림 등의 문제가 발생한다.
이와 같은 감광액의 흘러 내림에 의해 이후의 공정 진행에서 단선 및 패턴 불량의 문제를 발생시킨다.
특히, 테이퍼부(가)에서의 큰 경사각에 의해 후막 패턴의 막 두께의 변화 및 패턴 폭의 변화에 의해 소자의 품질 불량을 야기하여 수율을 크게 저하시키는 문제가 있다.
도 3은 이와 같은 종래 기술에서의 후막 패턴 형성 이후의 공정 진행시에 발생하는 단선 문제를 나타낸 것이다.
따라서, 이와 같은 종래 기술의 후막 패턴 형성의 문제를 해결하기 위한 새로운 후막 패턴 구조 및 공정 방법의 개발이 요구되고 있다.
본 발명은 이와 같은 종래 기술의 후막 패턴의 문제를 해결하기 위한 것으로, 패턴 폭을 점차 축소시켜 동일 물질층을 적층하여 모든 층이 적층된 이후의 패턴 에지 영역에서의 테이퍼 각도를 줄일 수 있도록 한 후막 패턴 구조 및 그의 형성 방법을 제공하는데 그 목적이 있다.
본 발명은 보호층 및 절연층으로 사용되는 후막 패턴의 에지 영역에서의 테이퍼 각도를 줄여 이후의 공정 진행시에 발생하는 막 두께 변화, 패턴 폭 변화 및 단선 등의 문제를 해결할 수 있도록 한 후막 패턴 구조 및 그의 형성 방법을 제공하는데 그 목적이 있다.
본 발명은 패턴 폭이 점차 축소되는 스텝 적층 방식으로 코팅 공정을 진행하여 후막 패턴 상에서 이루어지는 포토리소그래피 공정시에 감광액이 흘러내리는 것을 억제한 후막 패턴 구조 및 그의 형성 방법을 제공하는데 그 목적이 있다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
이와 같은 목적을 달성하기 위한 본 발명에 따른 후막 패턴 구조는 어느 하나의 패턴 폭을 갖는 후막 패턴 코팅층;상기 후막 패턴 코팅층 상에 패턴 폭의 크기가 후막 패턴 코팅층의 에지 영역에서 점차 축소되어 차례로 적층되는 다른 후막 패턴 코팅층들;을 포함하고, 이들 후막 코팅층들로 이루어진 후막 패턴이 스텝 형상을 갖는 것을 특징으로 한다.
여기서, 후막 패턴의 에지 영역에서 점차 축소되는 축소 폭의 크기는 동일하거나, 적층 될수록 축소되는 폭의 크기가 점차 작아지거나 점차 커지는 것을 특징으로 한다.
그리고 후막 패턴을 구성하는 후막 코팅층들의 형성 두께는 동일하거나, 적층 될수록 코팅되는 두께가 점차 증가되거나 감소되는 것을 특징으로 한다.
그리고 후막 패턴은, 후막 패턴 코팅층들의 패턴 폭이 점차 축소되는 축소 폭의 크기를 변화시키는 것과 후막 패턴 코팅층들의 두께를 변화시키는 것을 조합하여 형성된 것을 특징으로 한다.
그리고 후막 코팅층들로 이루어진 후막 패턴의 에지 영역에서의 테이퍼 각은 5 ~ 10°인 것을 특징으로 한다.
그리고 후막 코팅층들로 이루어진 후막 패턴의 전체 두께는 30 ~ 35㎛인 것을 특징으로 한다.
그리고 상기 후막 패턴의 스텝 형상을 갖는 부분은 터치 센서의 베젤 영역에 위치한 것을 특징으로 한다.
그리고 상기 후막 패턴은, 백라이트 빛을 차단하기 위한 차폐층, 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층의 어느 하나인 것을 특징으로 한다.
다른 목적을 달성하기 위한 본 발명에 따른 후막 패턴의 형성 방법은 어느 하나의 패턴 폭을 갖는 마스크를 이용하여 후막 패턴 형성용 물질을 코팅하는 단계;패턴 폭의 크기가 점차 축소되는 마스크들을 순차적으로 이용하여 후막 패턴 형성용 물질을 반복하여 코팅하여 에지 영역에서 스텝 형상을 갖는 후막 패턴을 형성하는 단계;를 포함하는 것을 특징으로 한다.
여기서, 후막 패턴이 스텝 형상을 갖도록 축소되는 마스크의 패턴 폭의 축소 크기를 동일하게 하거나, 다르게 하는 것을 특징으로 한다.
그리고 상기 후막 패턴 형성용 물질을, 적층되는 각각의 코팅층의 두께가 동일하도록 코팅하거나, 각각의 코팅층의 두께가 달라지도록 코팅하는 것을 특징으로 한다.
그리고 점차 축소되는 패턴 폭 크기는, 후막 패턴 형성용 물질이 반복되어 코팅된 전체 후막 패턴의 에지 영역에서의 테이퍼 각이 5 ~ 10°가 되는 크기인 것을 특징으로 한다.
그리고 후막 패턴의 전체 두께는 30 ~ 35㎛인 것을 특징으로 한다.
그리고 후막 패턴 형성용 물질은, 빛을 차단하기 위한 차폐층 형성용 물질, 하부 패턴을 보호하기 위한 보호층 형성용 물질, 전극 라인들과의 절연을 위한 절연 물질의 어느 하나인 것을 특징으로 한다.
이와 같은 본 발명에 따른 후막 패턴 구조 및 그의 형성 방법은 다음과 같은 효과를 갖는다.
첫째, 모든 층이 적층된 이후의 후막 패턴의 에지 영역에서의 테이퍼 각도를 줄일 수 있다.
둘째, 패턴 폭이 점차 축소되는 스텝 적층 방식으로 후막 패턴을 형성하여 후막 패턴 상에서 이루어지는 포토리소그래피 공정시에 감광액이 흘러내리는 것을 억제한다.
셋째, 후막 패턴의 에지 영역에서의 테이퍼 각도를 줄여 이후의 공정 진행시에 발생하는 막 두께 변화, 패턴 폭 변화 및 단선 등의 문제를 해결할 수 있다.
넷째, 후막 패턴의 테이퍼부에서의 경사각을 줄여 후막 패턴의 막 두께의 변화 및 패턴 폭의 변화를 억제하여 제품 수율을 향상시킬 수 있다.
도 1은 일반적인 터치 센서의 평면 구성도
도 2는 종래 기술의 후막 패턴 단면 구조를 나타낸 구성도
도 3은 종래 기술의 후막 패턴 형성 및 이후의 공정 진행시에 발생하는 단선 영역을 나타낸 단면 사진
도 4는 본 발명에 적용되는 일 예를 나타낸 터치 센서의 구성도
도 5는 본 발명에 따른 후막 패턴의 단면 구성도
도 6은 본 발명에 따른 후막 패턴 형성을 위한 공정 순서를 나타낸 플로우 차트
도 7a와 도 7b는 본 발명에 따른 후막 패턴 형성 및 이후의 공정 진행시의 단면 사진
이하, 본 발명에 따른 후막 패턴 구조 및 그의 형성 방법의 바람직한 실시 예에 관하여 상세히 설명하면 다음과 같다.
본 발명에 따른 후막 패턴 구조 및 그의 형성 방법의 특징 및 이점들은 이하에서의 각 실시 예에 대한 상세한 설명을 통해 명백해질 것이다.
도 4는 본 발명에 적용되는 일 예를 나타낸 터치 센서의 구성도이고, 도 5는 본 발명에 따른 후막 패턴의 단면 구성도이다.
본 발명은 보호층 및 절연층으로 사용되는 후막 패턴의 에지 영역에서의 테이퍼 각도를 줄여 이후의 공정 진행시에 발생하는 막 두께 변화, 패턴 폭 변화 및 단선 등의 문제를 해결할 수 있도록 한 것으로, 후막 패턴을 형성하기 위한 반복 코팅 공정시에 패턴 폭이 점차 축소되는 스텝 적층 방식으로 후막 패턴을 형성하는 것이다.
이하의 설명에서는 본 발명에 따른 후막 패턴 구조 및 그의 형성 방법이 적용되는 일 예로 터치 센서를 들어 설명하였으나, 본 발명의 기술적 사상이 적용되는 소자가 터치 센서로 제한되는 것이 아님은 명백하다.
즉, 반복 코팅 공정에 의해 후막 패턴을 형성하는 다른 모든 소자의 제조에 적용될 수 있다.
본 발명에 따른 후막 패턴 구조 및 그의 형성 방법이 적용되는 일 예로 설명하는 터치 센서는 도 4에서와 같이, 전극부가 위치하는 활성 영역(11)과 이 활성 영역(11)의 테두리 영역인 비활성 영역(12)으로 구분된다.
비활성 영역(12)은 투명기판(10)에 형성되는 베젤부에 의해 가려져 외부로 노출되지 않는 영역으로, 베젤부에는 활성 영역(11)의 주변부에 위치하는 백라이트 빛을 차단하기 위한 차폐층 및 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층들이 일정 두께 이상으로 형성된다.
투명기판(10)은 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌나프탈레이트(PEN), 폴리에테르술폰(PES), 고리형 올레핀 고분자(COC), TAC(Triacetylcellulose), 폴리비닐알코올(Polyvinyl alcohol; PVA), 폴리이미드(Polyimide; PI), 폴리스틸렌(Polystyrene; PS), 이축연신폴리스틸렌(K레진 함유 biaxially oriented PS;BOPS) 등으로 형성하는 것이 바람직하지만, 반드시 이에 한정되는 것은 아니다.
그리고 전극부는 투명기판(10)의 일면에 형성될 수 있다. 이때, 전극부는 투명기판(10)의 일면의 활성 영역(11)에 형성되는 전극 및 비활성 영역(12)에 형성되어 전극의 테두리와 연결되는 전극배선을 포함하여 이루어질 수 있다.
여기서, 터치센서의 전극부가 형성되는 부분이 투명기판(10)의 일면으로 반드시 한정되는 것은 아니며, 예를 들어 투명기판(10)의 타면 또는 양면에 전극부가 형성될 수 있음은 물론이다.
그리고 전극은 전도성 고분자 또는 금속 산화물로 이루어질 수 있다.
전도성 고분자는 폴리-3,4-에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS), 폴리아닐린, 폴리아세틸렌 또는 폴리페닐렌비닐렌 중에서 어느 하나 이상으로 이루어질 수 있다.
또한, 금속 산화물은 인듐-주석 산화물(Indum-Thin Oxide)로 이루어질 수 있다.
여기서, 전극이 전도성 고분자 또는 금속 산화물로 이루어지는 것으로 한정되는 것은 아니며, 예를 들어 메시 패턴으로 형성된 금속 또는 은염유제층을 노광/현상하여 형성되는 금속 은으로 이루어질 수 있다.
또한, 전극배선은 예를 들어, 구리(Cu), 알루미늄(Al), 금(Au), 은(Ag), 티타늄(Ti), 팔라듐(Pd) 또는 크롬(Cr) 어느 하나 이상으로 이루어질 수 있지만, 여기에 한정되는 것은 아니다.
아울러, 전극은 건식 공정, 습식 공정 또는 다이렉트(direct) 패터닝 공정으로 형성할 수 있다.
여기서, 건식공정은 스퍼터링(Sputtering), 증착(Evaporation) 등을 의미하고, 습식 공정은 딥 코팅(Dip coating), 스핀 코팅(Spin coating), 롤 코팅(Roll coating), 스프레이 코팅(Spray coating) 등을 의미하며, 다이렉트 패터닝 공정은 스크린 인쇄법(Screen Printing), 그라비아 인쇄법(Gravure Printing), 잉크젯 인쇄법(Inkjet Printing) 등을 의미하는 것이다.
도 4의 (다)(라)(마)(바) 영역은 활성 영역의 주변부에 위치하여 백라이트 빛을 차단하기 위한 차폐층 및 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층들이 주로 형성되는 영역을 나타낸 것이다.
물론, 이들 영역 이외에서 후막 패턴이 형성되는 경우에도 본 발명에 따른 후막 패턴 구조가 적용될 수 있다.
도 4의 (다)(라)(마)(바)의 어느 하나의 영역에서 형성되는 후막 패턴의 단면 구조는 도 5에서와 같다.
본 발명에 따른 후막 패턴은 도 5에서와 같이, 제 1 패턴 폭을 갖는 후막 패턴 1차 코팅층(50)과, 에지 영역에서 제 1 패턴 폭에서 일정 크기 축소된 제 2 패턴 폭을 갖고 후막 패턴 1차 코팅층(50)상에 형성되는 후막 패턴 2차 코팅층(51)과, 에지 영역에서 제 2 패턴 폭에서 일정 크기 축소된 제 3 패턴 폭을 갖고 후막 패턴 2차 코팅층(51)상에 형성되는 후막 패턴 3차 코팅층(52)을 포함한다.
여기서, 후막 패턴 구조를 후막 패턴용 형성 물질층을 1,2,3차 코팅 공정으로 형성하는 것을 일 예로 설명하였으나, 적층되는 코팅층 개수는 제한되지 않고 다르게 할 수 있다.
그리고 후막 패턴의 에지 영역에서 점차 축소되는 축소 폭의 크기 A,B,C는 동일한 것이 바람직하나, 축소되는 폭의 크기를 점차 작게(A > B > C)하거나, 점차 크게(A < B < C)할 수 있다.
그리고 후막 패턴 형성을 위한 물질층의 코팅 두께 a,b,c는 동일한 것이 바람직하나, 코팅 두께를 점차 증가(a > b > c)시키거나, 코팅 두께를 점차 감소(a < b < c)시킬 수 있다.
다른 방법의 하나는 후막 패턴의 에지 영역에서 점차 축소되는 축소 폭의 크기 및 후막 패턴 형성을 위한 물질층의 코팅 두께 변화를 조합하여 후막 패턴 구조를 형성할 수도 있다.
이와 같은 공정으로 형성된 후막 패턴은 테이퍼 각도가 5 ~ 10°가 되어 이후의 공정에서 증착되는 물질(53)이 흘러내리는 것을 방지할 수 있다.
예를 들어, 포토리소그래피 공정으로 패터닝을 하는 경우에 감광액이 흘러 내려 발생하는 패턴 폭의 감소 및 단선 등의 문제를 해결할 수 있다.
또한, 요구되는 후막 패턴의 전체 두께가 10㎛ 이상의 두께를 갖는 경우에도 이후의 공정에서 문제가 발생하는 것을 억제하고, 후막 패턴의 전체 두께가 30 ~ 35㎛인 아주 두꺼운 경우에도 후막 패턴의 에지 부분의 테이퍼 각을 효과적으로 줄일 수 있다.
이와 같은 후막 패턴은 백라이트 빛을 차단하기 위한 차폐층 및 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층의 어느 하나일 수 있다.
차폐층의 경우에는 광 흡수 물질, 색보정 기능을 갖는 물질로 형성될 수 있는데, 이들 물질로 제한되지 않고 다른 물질을 사용하여 차폐를 위한 후막 패턴을 형성할 수 있음은 당연하다.
그리고 보호층의 경우에는 하부의 패턴을 보호하기 위한 것으로, 유전체 박막 등이 사용될 수 있는데, 이들 물질로 제한되지 않고 다른 물질을 사용하여 하부 패턴 보호를 위한 후막 패턴을 형성할 수 있음은 당연하다.
그리고 절연층은 산화막, 질화막 등의 물질로 형성될 수 있는데, 이들 물질로 제한되지 않고 다른 물질을 사용하여 절연을 위한 후막 패턴을 형성할 수 있음은 당연하다.
이와 같은 본 발명에 따른 후막 패턴은 여러 번 후막 패턴 형성용 물질을 코팅하는 공정시에 패턴 폭을 다르게 하여 후막 패턴 에지 영역에서의 테이퍼 각을 줄여 이후의 공정에서 증착되는 물질이 흘러내리는 것을 방지할 수 있어 막 두께의 변화, 패턴 폭의 감소 및 단선 등의 발생을 방지한다.
이와 같은 본 발명에 따른 후막 패턴의 형성을 위한 코팅 공정은 다음과 같이 이루어진다.
도 6은 본 발명에 따른 후막 패턴 형성을 위한 공정 순서를 나타낸 플로우 차트이다.
먼저, 하부 패턴이 형성된 이후에(S601), 후막 패턴을 형성하기 위한 제 1 패턴 폭을 갖는 제 1 마스크를 정렬한다.(S602)
그리고 정렬된 제 1 마스크를 이용하여 후막 패턴 형성용 물질을 1차 코팅한다.(S603)
이어, 후막 패턴 형성용 물질이 1차 코팅된 영역에 제 1 패턴 폭보다 에지 영역에서 패턴 폭이 축소된 제 2 마스크를 정렬한다.(S604)
그리고 정렬된 제 2 마스크를 이용하여 후막 패턴 형성용 물질을 2차 코팅한다.(S605)
이어, 후막 패턴 형성용 물질이 1,2차 코팅된 영역에 제 2 패턴 폭보다 에지 영역에서 패턴 폭이 축소된 제 3 마스크를 정렬한다.(S606)
그리고 제 3 마스크를 이용하여 후막 패턴 형성용 물질을 3차 코팅하여 후막 패턴을 형성한다.(S607)
여기서, 후막 패턴을 형성하기 위하여 후막 패턴용 형성 물질층을 1,2,3차 코팅 공정으로 형성하는 것을 일 예로 설명하였으나, 코팅 공정의 횟수는 제한되지 않고 다르게 할 수 있다.
그리고 마찬가지로 이와 같은 공정이 적용되는 본 발명에 따른 후막 패턴은 백라이트 빛을 차단하기 위한 차폐층 및 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층의 어느 하나일 수 있다.
그리고 후막 패턴의 에지 영역에서 점차 축소되는 제 1,2,3 마스크의 축소 폭의 크기는 동일하거나, 다르게 할 수 있다.
그리고 후막 패턴 형성을 위한 물질층의 코팅 두께를 동일한 두께로 코팅하거나, 각각의 코팅층의 두께를 다르게 하여 형성할 수도 있다.
그리고 후막 패턴용 형성 물질층을 코팅하는 방식은 딥 코팅(Dip coating), 스핀 코팅(Spin coating), 롤 코팅(Roll coating), 스프레이 코팅(Spray coating) 등이 사용될 수 있고, 이들 방법으로 제한되지 않고 다른 적층 방법을 사용할 수도 있다.
이와 같은 본 발명에 따른 후막 패턴 구조 및 형성 방법에 의한 후막 패턴은 10㎛ 이상의 후막 패턴을 형성하는 경우에 패턴 폭을 감소시켜 적층하는 스텝 적층 방식으로 형성하여 이후의 전극 형성을 위한 포토리소그래피 공정시 전극 및 보호층의 단선 및 벗겨짐에 의한 품질 불량 및 외관 불량을 방지한다.
도 7a와 도 7b는 본 발명에 따른 후막 패턴 형성 및 이후의 공정 진행시의 단면 사진이다.
그리고 여러 가지 코팅 방식 및 후막/박막 패턴이 혼재하는 공정의 경우에 두께가 두꺼워 발생하는 패턴의 단선 및 적층 패턴의 끊어짐 문제를 해결할 수 있다.
이와 같은 본 발명에 따른 후막 패턴 구조 및 그의 형성 방법은 후막 패턴을 형성하기 위한 반복 코팅 공정시에 패턴 폭이 점차 축소되는 스텝 적층 방식으로 후막 패턴을 형성하여 후막 패턴의 에지 영역에서의 테이퍼 각도를 줄여 이후의 공정 진행시에 발생하는 막 두께 변화, 패턴 폭 변화 및 단선 등의 발생을 억제한다.
이상에서의 설명에서와 같이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명이 구현되어 있음을 이해할 수 있을 것이다.
그러므로 명시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
[부호의 설명]
50. 후막 패턴 1차 코팅층 51. 후막 패턴 2차 코팅층
52. 후막 패턴 3차 코팅층

Claims (14)

  1. 어느 하나의 패턴 폭을 갖는 후막 패턴 코팅층;
    상기 후막 패턴 코팅층 상에 패턴 폭의 크기가 후막 패턴 코팅층의 에지 영역에서 점차 축소되어 차례로 적층되는 다른 후막 패턴 코팅층들;을 포함하고,
    이들 후막 코팅층들로 이루어진 후막 패턴이 스텝 형상을 갖는 것을 특징으로 하는 후막 패턴 구조.
  2. 제 1 항에 있어서, 후막 패턴의 에지 영역에서 점차 축소되는 축소 폭의 크기는 동일하거나,
    적층 될수록 축소되는 폭의 크기가 점차 작아지거나 점차 커지는 것을 특징으로 하는 후막 패턴 구조.
  3. 제 1 항에 있어서, 후막 패턴을 구성하는 후막 코팅층들의 형성 두께는 동일하거나,
    적층 될수록 코팅되는 두께가 점차 증가되거나 감소되는 것을 특징으로 하는 후막 패턴 구조.
  4. 제 1 항에 있어서, 후막 패턴은,
    후막 패턴 코팅층들의 패턴 폭이 점차 축소되는 축소 폭의 크기를 변화시키는 것과 후막 패턴 코팅층들의 두께를 변화시키는 것을 조합하여 형성된 것을 특징으로 하는 후막 패턴 구조.
  5. 제 1 항에 있어서, 후막 코팅층들로 이루어진 후막 패턴의 에지 영역에서의 테이퍼 각은 5 ~ 10°인 것을 특징으로 하는 후막 패턴 구조.
  6. 제 1 항에 있어서, 후막 코팅층들로 이루어진 후막 패턴의 전체 두께는 30 ~ 35㎛인 것을 특징으로 하는 후막 패턴 구조.
  7. 제 1 항에 있어서, 상기 후막 패턴의 스텝 형상을 갖는 부분은 터치 센서의 베젤 영역에 위치한 것을 특징으로 하는 후막 패턴 구조.
  8. 제 7 항에 있어서, 상기 후막 패턴은,
    백라이트 빛을 차단하기 위한 차폐층, 하부 패턴을 보호하기 위한 보호층, 상부 전극 라인들과의 절연을 위한 절연층의 어느 하나인 것을 특징으로 하는 후막 패턴 구조.
  9. 어느 하나의 패턴 폭을 갖는 마스크를 이용하여 후막 패턴 형성용 물질을 코팅하는 단계;
    패턴 폭의 크기가 점차 축소되는 마스크들을 순차적으로 이용하여 후막 패턴 형성용 물질을 반복하여 코팅하여 에지 영역에서 스텝 형상을 갖는 후막 패턴을 형성하는 단계;를 포함하는 것을 특징으로 하는 후막 패턴의 형성 방법.
  10. 제 9 항에 있어서, 후막 패턴이 스텝 형상을 갖도록 축소되는 마스크의 패턴 폭의 축소 크기를 동일하게 하거나, 다르게 하는 것을 특징으로 하는 후막 패턴의 형성 방법.
  11. 제 9 항에 있어서, 상기 후막 패턴 형성용 물질을,
    적층되는 각각의 코팅층의 두께가 동일하도록 코팅하거나, 각각의 코팅층의 두께가 달라지도록 코팅하는 것을 특징으로 하는 후막 패턴의 형성 방법.
  12. 제 9 항에 있어서, 점차 축소되는 패턴 폭 크기는,
    후막 패턴 형성용 물질이 반복되어 코팅된 전체 후막 패턴의 에지 영역에서의 테이퍼 각이 5 ~ 10°가 되는 크기인 것을 특징으로 하는 후막 패턴의 형성 방법.
  13. 제 9 항에 있어서, 후막 패턴의 전체 두께는 30 ~ 35㎛인 것을 특징으로 하는 후막 패턴의 형성 방법.
  14. 제 9 항에 있어서, 후막 패턴 형성용 물질은,
    빛을 차단하기 위한 차폐층 형성용 물질, 하부 패턴을 보호하기 위한 보호층 형성용 물질, 전극 라인들과의 절연을 위한 절연 물질의 어느 하나인 것을 특징으로 하는 후막 패턴의 형성 방법.
PCT/KR2015/006780 2014-07-09 2015-07-01 후막 패턴 구조 및 그의 형성 방법 WO2016006864A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580035941.1A CN106471453B (zh) 2014-07-09 2015-07-01 厚膜图案结构及其形成方法
US15/324,023 US10152183B2 (en) 2014-07-09 2015-07-01 Thick-film pattern structure and method of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0086245 2014-07-09
KR1020140086245A KR102202975B1 (ko) 2014-07-09 2014-07-09 후막 패턴 구조 및 그의 형성 방법

Publications (1)

Publication Number Publication Date
WO2016006864A1 true WO2016006864A1 (ko) 2016-01-14

Family

ID=55064435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006780 WO2016006864A1 (ko) 2014-07-09 2015-07-01 후막 패턴 구조 및 그의 형성 방법

Country Status (5)

Country Link
US (1) US10152183B2 (ko)
KR (1) KR102202975B1 (ko)
CN (2) CN111679765A (ko)
TW (1) TW201606809A (ko)
WO (1) WO2016006864A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160028595A (ko) * 2014-09-03 2016-03-14 삼성디스플레이 주식회사 커버 윈도우, 이의 제조 방법 및 이를 포함하는 표시 장치
CN108950548B (zh) * 2018-08-10 2020-08-25 成都极星等离子科技有限公司 铬-氮化铬复合涂层及其在纳米复合刀具的应用
CN111816567B (zh) * 2020-07-17 2021-12-28 绍兴同芯成集成电路有限公司 一种双面厚膜电镀铜散热结构制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030043756A (ko) * 2001-11-27 2003-06-02 후지쯔 가부시끼가이샤 레지스트 패턴 후막화 재료, 레지스트 패턴 및 그의 제조방법, 및 반도체 장치 및 그의 제조 방법
KR20060048762A (ko) * 2004-06-30 2006-05-18 캐논 가부시끼가이샤 후막 유전체 패턴의 제조방법 및 화상 표시 장치의제조방법
US20090023102A1 (en) * 2006-02-02 2009-01-22 Tokyo Ohka Kogyo Co., Ltd Positive resist composition for forming thick-film resist, thick-film resist laminate, and method of forming resist pattern
KR20090103830A (ko) * 2008-03-28 2009-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR20130135051A (ko) * 2012-05-30 2013-12-10 주식회사 엘지화학 감광성 수지 조성물 및 상기 감광성 수지 조성물로 제조된 베젤패턴을 포함하는 터치패널 또는 디스플레이 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW321731B (ko) * 1994-07-27 1997-12-01 Hitachi Ltd
JP2003195513A (ja) * 2001-09-07 2003-07-09 Canon Inc 部材パターンの製造方法と、電子源及び画像表示装置の製造方法
KR100795063B1 (ko) 2006-06-28 2008-01-17 한국전기연구원 경사형 다층박막 증착 장치 및 그 다층박막의 제조방법
US20100053114A1 (en) * 2007-02-08 2010-03-04 Hiroyuki Kaigawa Touch panel apparatus and method for manufacturing the same
KR101068622B1 (ko) * 2009-12-22 2011-09-28 주식회사 엘지화학 기판접착력이 향상된 고차광성 블랙매트릭스 조성물
US8716708B2 (en) * 2011-09-29 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN103186273B (zh) * 2011-12-29 2016-10-05 宸鸿科技(厦门)有限公司 触控装置及其制造方法
CN103631409B (zh) * 2012-08-21 2017-01-11 宸鸿科技(厦门)有限公司 触控装置及其制造方法
CN104619504B (zh) * 2012-09-28 2017-05-03 京瓷株式会社 热敏头以及具备该热敏头的热敏打印机
TW201504880A (zh) * 2013-07-25 2015-02-01 Wintek Corp 面板結構
TWM472243U (zh) * 2013-07-25 2014-02-11 Wintek Corp 面板結構
CN203444458U (zh) * 2013-09-27 2014-02-19 惠州市寰达光电显示科技有限公司 一种电容式触摸屏
CN203561962U (zh) * 2013-10-26 2014-04-23 祥达光学(厦门)有限公司 触控面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030043756A (ko) * 2001-11-27 2003-06-02 후지쯔 가부시끼가이샤 레지스트 패턴 후막화 재료, 레지스트 패턴 및 그의 제조방법, 및 반도체 장치 및 그의 제조 방법
KR20060048762A (ko) * 2004-06-30 2006-05-18 캐논 가부시끼가이샤 후막 유전체 패턴의 제조방법 및 화상 표시 장치의제조방법
US20090023102A1 (en) * 2006-02-02 2009-01-22 Tokyo Ohka Kogyo Co., Ltd Positive resist composition for forming thick-film resist, thick-film resist laminate, and method of forming resist pattern
KR20090103830A (ko) * 2008-03-28 2009-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR20130135051A (ko) * 2012-05-30 2013-12-10 주식회사 엘지화학 감광성 수지 조성물 및 상기 감광성 수지 조성물로 제조된 베젤패턴을 포함하는 터치패널 또는 디스플레이 장치

Also Published As

Publication number Publication date
CN111679765A (zh) 2020-09-18
US20170160834A1 (en) 2017-06-08
KR20160006529A (ko) 2016-01-19
US10152183B2 (en) 2018-12-11
TW201606809A (zh) 2016-02-16
KR102202975B1 (ko) 2021-01-14
CN106471453A (zh) 2017-03-01
CN106471453B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2012169848A2 (ko) 터치 스크린 센서 기판, 터치 스크린 센서 및 이를 포함하는 패널
WO2013162241A1 (en) Touch panel and method of manufacturing the same
WO2015174678A1 (ko) 전도성 구조체 및 이의 제조방법
WO2017188683A1 (ko) 터치센서 일체형 컬러필터 및 그 제조 방법
US10331250B2 (en) Touch panels and touch display devices
WO2014098406A1 (ko) 반사방지층을 포함하는 터치 패널 및 이의 제조 방법
WO2019168303A1 (ko) 터치센서 일체형 디지타이저 및 이를 포함하는 표시 장치
WO2018070789A1 (ko) 윈도우 기판, 이의 제조 방법 및 이를 포함하는 화상 표시 장치
WO2015088110A1 (en) Method for fabricating touch panel, touch panel, and electronic device having the touch panel
WO2013170682A1 (zh) 触控面板及其制作方法
WO2016006864A1 (ko) 후막 패턴 구조 및 그의 형성 방법
WO2016122116A1 (ko) 필름 터치 센서 및 그의 제조 방법
US10921910B2 (en) High resolution touch sensor
WO2016093517A1 (ko) 터치 스크린 패널 및 이를 구비하는 화상표시장치
WO2015069048A1 (ko) 한 장의 필름을 이용한 터치 센서를 구현하는 터치 패널 및 제조 방법
WO2012047014A2 (ko) 정전용량방식 터치 패널 소자 및 이의 제조방법
WO2016006865A1 (ko) 후막 패턴 구조 및 그의 형성 방법
WO2019168362A1 (ko) 디지타이저 및 그 제조 방법
WO2014178546A1 (ko) 터치 패널 및 이의 제조 방법
WO2012053731A1 (en) Touch screen panel and fabricating method for the same
WO2022260396A1 (ko) 표시 장치 및 표시 장치의 검사 방법
WO2015023070A1 (ko) 터치 패널 및 제조 방법
WO2016003160A1 (ko) 터치 패널 전극 구조체 및 그의 제조 방법
WO2022211309A1 (ko) 터치 스크린 패널 및 이의 제조 방법
WO2019160296A1 (ko) 컬러필터 일체형 유연성 터치센서 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324023

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818391

Country of ref document: EP

Kind code of ref document: A1