WO2016006543A1 - 擬似等方補強シート材及びその製造方法 - Google Patents

擬似等方補強シート材及びその製造方法 Download PDF

Info

Publication number
WO2016006543A1
WO2016006543A1 PCT/JP2015/069251 JP2015069251W WO2016006543A1 WO 2016006543 A1 WO2016006543 A1 WO 2016006543A1 JP 2015069251 W JP2015069251 W JP 2015069251W WO 2016006543 A1 WO2016006543 A1 WO 2016006543A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet material
prepreg sheet
pseudo
semi
chopped
Prior art date
Application number
PCT/JP2015/069251
Other languages
English (en)
French (fr)
Inventor
和正 川邊
慶一 近藤
寛史 伊與
Original Assignee
福井県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福井県 filed Critical 福井県
Priority to US15/324,008 priority Critical patent/US11332586B2/en
Priority to EP15818313.7A priority patent/EP3168257B1/en
Publication of WO2016006543A1 publication Critical patent/WO2016006543A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/22Fibres of short length
    • B32B2305/28Fibres of short length in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/708Isotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to a composite material comprising a reinforcing fiber and a thermoplastic resin. Specifically, a reinforcing fiber such as carbon fiber or glass fiber and a thermoplastic resin such as polypropylene resin, polyamide resin, or polyetherimide resin are used.
  • the present invention relates to a pseudo isotropic reinforcing sheet material obtained by laminating and integrating a composite chopped semi-prepreg sheet material so that the fiber direction is randomly oriented in a two-dimensional direction, and a method for producing the same.
  • the fiber reinforced composite material is a combination of a reinforced fiber material and a resin material serving as a matrix, and is a material that is lightweight, rigid and capable of various functional designs. Therefore, it is used in a wide range of fields such as the aerospace field, the transportation field, the civil engineering field, and the exercise equipment field.
  • a sheet-shaped material is impregnated with a thermoplastic resin to create a prepreg sheet, and the prepreg sheet is laminated in various directions according to design to create a laminate.
  • a typical molding method is to obtain a molded product by heating and pressing the laminate to form a desired shape.
  • a chopped prepreg sheet material having a required width and length impregnated with a thermoplastic resin in a fiber bundle is pseudo-isotropic.
  • a method of obtaining a molded article using a pseudo-isotropic reinforcing sheet material produced by orienting to the above is advantageous in that fluidity during molding is improved because fibers are discontinuous, and a complex shape can be molded in a relatively short time.
  • Patent Document 1 for example, a chopped strand prepreg having a required length (15 to 100 mm) and thickness (0.13 mm or less) is used as a pseudo isotropic reinforcing sheet material having excellent mechanical properties and uniformity.
  • a fiber reinforced thermoplastic resin sheet is described which is layered randomly in a sheet shape and integrated by spot welding.
  • FIG. 6 is an explanatory view showing a basic process of molding in which a reinforcing fiber bundle is impregnated with a resin material to form a composite material.
  • a circle indicates a cross section of the reinforcing fiber, and a hatched portion indicates a resin material.
  • FIG. 6 (a) when the reinforcing fiber bundle and the resin material are set in a pressurized state (FIG. 6 (a)), the molding process is roughly divided into intimate contact (consolidation; FIG. 6 (b)) ⁇ impregnation (impregnation; FIG. 6 (c)) ⁇ fusion (fusion; FIG. 6 (d)).
  • a consolidation process is performed in which the reinforcing fiber bundle is compressed by pressure. If there is a large gap in the reinforcing fiber bundle, it is considered that the reinforcing fibers are pushed into the gap and the reinforcing fibers are brought closer to each other.
  • an impregnation process is performed in which the molten resin material enters the gap between the fibers by pressure. Then, the resin material is infiltrated into the reinforcing fiber bundle, and the impregnation process of the resin material is completed when the resin material penetrates the entire reinforcing fiber bundle.
  • the reinforcing fibers are rearranged in the resin material impregnated as a whole and are uniformly spread in the resin material to form a fusion process in which the fibers are dispersed in the resin.
  • the resin material when the resin material penetrates the entire reinforcing fiber bundle, the resin material is partially contained in the reinforcing fiber bundle in the previous stage of the impregnation state.
  • the reinforcing fiber bundle In the unimpregnated state, the reinforcing fiber bundle has a part of the converged portion where the resin material does not permeate, and the resin material partially includes the resin portion which does not permeate the reinforcing fiber bundle.
  • the conventional prepreg sheet material as described in Patent Document 1 is set in a state in which the resin penetrates into the reinforcing fiber bundle and the fibers are dispersed in the resin through a fusion process as shown in FIG. It is thought that.
  • a chopped prepreg sheet material used in a conventional molding method is usually prepared by cutting a prepreg sheet material impregnated with a thermoplastic resin into a reinforcing fiber bundle such as a carbon fiber bundle into a required width and length. . Since a thermoplastic resin has a high viscosity in a molten state, a prepreg sheet material in which a thermoplastic resin is set in an impregnated state in advance is used. By using such a prepreg sheet material, a molded product finally formed can be stably manufactured with a good quality without voids (voids).
  • the conventional chopped prepreg sheet material in which the thermoplastic fiber is impregnated in the reinforcing fiber bundle has a high rigidity because the thermoplastic resin has permeated the entire reinforcing fiber bundle.
  • the thickness of the sheet is 0.1 mm or more, it looks like a plate with poor flexibility.
  • the chopped prepreg sheet materials are difficult to be adhered to each other when they are dispersed and laminated and spot welded. Therefore, the chopped prepreg sheet material may fall off after spot welding. In order to prevent falling off, spot welding is performed in many places, and it is considered that the chopped prepreg sheet material is firmly welded, but the rigidity of the fiber reinforced thermoplastic resin sheet itself obtained after spot welding is also increased. As a result, the drapability is lost and handling during molding becomes worse.
  • the pseudo-isotropic reinforcing sheet material described above is formed to have a required thickness by superimposing one or a plurality of chopped prepreg sheet materials, and is finally molded by heating and pressing to obtain a molded product. Intermediate material. Therefore, if it becomes possible to handle the manufactured pseudo-isotropic reinforcing sheet material in a roll shape, it is possible to efficiently produce a molded product of good quality. That is, by using a pseudo-isotropic reinforcing sheet material wound in a roll shape, a process of drawing out a required length, a process of cutting to a required size, and a process of creating a laminate by stacking the cut sheets Can be easily automated, and an improvement in productivity and a reduction in manufacturing costs can be expected.
  • the chopped prepreg sheet material becomes flexible as the thickness decreases, but the chopped prepreg sheet material in which a thermoplastic resin is set in an impregnated state in a reinforcing fiber bundle aligned in one direction.
  • tears tend to occur in the fiber direction.
  • the thermoplastic resin enters between the reinforcing fiber and the reinforcing fiber, and if the thickness is thin, even if it is weak, it may be easily separated and a tear will occur. become.
  • a prepreg sheet material (thickness 50 ⁇ m and fiber volume content 50%) set in an impregnated state with polyamide 6 resin (PA6) in a carbon fiber bundle aligned in one direction was cut in a direction perpendicular to the fibers.
  • PA6 polyamide 6 resin
  • many tears were generated in the fiber direction due to the impact at the time of cutting. That is, it is difficult to use a prepreg sheet material having a thickness of 0.1 mm or less and a high fiber volume content to produce a large number of chopped prepreg sheet materials of good quality in a short time.
  • the chopped prepreg sheet material may be split due to impact and may be narrowed.
  • the pseudo-isotropic reinforcing sheet material having a width different from the design is provided with uneven mechanical characteristics different from the design, and there is a problem that a stable quality sheet material cannot be obtained.
  • the quality of the obtained molded product may be non-uniform.
  • the number of laminated thin chopped prepreg sheet materials is much larger than that of a thick chopped prepreg sheet material.
  • the average number of laminated sheets is 50 for a chopped sheet material having a thickness of 40 ⁇ m, but about three times the number of laminated sheets for a chopped sheet material having a thickness of 120 ⁇ m.
  • the increase in the number of laminated layers in the thickness direction is, as described in Patent Document 1, it becomes easy to arrange the fiber directions of the chopped sheet material so as to vary evenly, and the pseudo-isotropic property of the resulting reinforcing sheet material is increased. There is a further improvement effect.
  • the present invention can achieve good flexibility and fluidity during molding using a thin-layer chopped semi-prepreg sheet material, and can simulate a molding material having excellent mechanical properties. It aims at providing an isotropic reinforcement sheet material and its manufacturing method.
  • the pseudo-isotropic reinforcing sheet material according to the present invention is substantially formed by integrating a plurality of chopped semi-prepreg sheet materials which are made of a reinforcing fiber material and a thermoplastic resin material and are set in an unimpregnated state with the thermoplastic resin material.
  • the formed quasi-isotropic reinforcing sheet material wherein the chopped semi-prepreg sheet material has an average number of fibers in the thickness direction in the range of 2 to 10 and a thickness t in the impregnated state the thickness t p is set to a range of t p ⁇ t ⁇ 2 ⁇ t p with respect, with a plurality of said chopped semi prepreg sheet material fiber direction of the reinforcing fiber material is randomly oriented in two dimensions
  • a layered body is provided that is bonded and integrated in an overlapped state so that the average number in the thickness direction is in the range of 2 to 10.
  • the chopped semi-prepreg sheet material has a fiber volume content in an impregnated state set in a range of 30% to 70%.
  • the chopped semi-prepreg sheet materials are partially bonded to each other by heat fusion of the thermoplastic resin material.
  • a plurality of the layered bodies are laminated and integrated.
  • the layered bodies are different from each other in the bonding state of the chopped semi-prepreg sheet material inside.
  • a resin layer portion is formed at least partially between the adjacent layered bodies.
  • the method for producing a quasi-isotropic reinforcing sheet material comprises a quasi-isotropic reinforcement using a semi-prepreg sheet material which is made of a reinforcing fiber material and a thermoplastic resin material and is set in an unimpregnated state with the thermoplastic resin material.
  • a cutting step of forming a chopped semi prepreg sheet material the semi prepreg sheet material is set in a range to cut at the required width and length of p, a plurality of said chopped semi prepreg sheet material the reinforcing fiber material
  • a layered body is formed by bonding and integrating the fibers so that the fiber directions are randomly oriented in a two-dimensional direction and the average number in the thickness direction is in the range of 2 to 10 sheets.
  • the semi-prepreg sheet material has a fiber volume content in an impregnated state set in a range of 30% to 70%.
  • the layered body is formed by overlapping the chopped semi-prepreg sheet materials and partially adhering them to each other by thermal fusion of the thermoplastic resin material. Furthermore, the integration step stacks and integrates the plurality of layered bodies. Furthermore, in the integration step, the chopped semi-prepreg sheet material is superimposed on the formed layered body so that the fiber direction of the reinforcing fiber material is randomly oriented in a two-dimensional direction, and the next layered body is formed. By forming, a plurality of the layered bodies are sequentially stacked and integrated. Furthermore, in the integration step, the resin material is arranged in a layer form at least at a part between the adjacent layered bodies, and the layers are integrated.
  • the pseudo-isotropic reinforcing sheet material according to the present invention has the above-described configuration, and can achieve good flexibility and fluidity at the time of molding using a thin-layer chopped semi-prepreg sheet material.
  • a molding material having mechanical properties can be obtained.
  • the pseudo-isotropic reinforcing sheet material according to the present invention comprises a plurality of chopped semi-prepreg sheet materials which are made of a reinforcing fiber material and a thermoplastic resin material and are set in an unimpregnated state of the thermoplastic resin material, and fibers of the reinforcing fiber material. They are integrally formed so that the directions are randomly oriented in a two-dimensional direction. Since the fiber direction of the reinforcing fiber material is randomly oriented in the two-dimensional direction, the mechanical characteristics in the two-dimensional direction have pseudo-isotropic properties.
  • the pseudo-isotropic reinforcing sheet material integrates a plurality of chopped semi-prepreg sheet materials so that the fiber directions of the reinforcing fiber materials are randomly oriented in a two-dimensional direction and averages the thickness direction of the chopped semi-prepreg sheet materials
  • One or a plurality of layered bodies whose number is set in the range of 2 to 10 are provided.
  • the pseudo-isotropic reinforcing sheet material is designed to maintain the form of the sheet material by integrating the chopped semi-prepreg sheet material in an overlapped state, and the sheet material is substantially made up of the chopped semi-prepreg sheet material. If formed, materials other than the above-described chopped semi-prepreg sheet material can be mixed.
  • a resin layer portion may be disposed at least at a part between adjacent layered bodies.
  • the resin layer portion only needs to be formed in a layered manner in whole or in part between the layered bodies, and by including such a resin layer portion, the fiber deposition content of the pseudo isotropic reinforcing sheet material can be adjusted. .
  • the chopped semi-prepreg sheet material is prepared by cutting a semi-prepreg sheet material, which is set in an unimpregnated state with a thermoplastic resin material, with a required width and length.
  • the reinforcing fiber material has some concentrated parts that are not penetrated by the thermoplastic resin material, and the thermoplastic resin material is partly resin parts that are not penetrated between the reinforcing fiber materials. Existing. Due to the presence of such a resin portion, the chopped semi-prepreg sheet material has flexibility and strength that does not easily tear in the fiber direction.
  • Reinforcing fiber materials used for chopped semi-prepreg sheet materials include carbon fiber, glass fiber, ceramic fiber, aramid fiber, PBO (polyparaphenylene benzobisoxazole) fiber, and high strength and high elastic modulus used for FRP such as metal fiber.
  • the thermoplastic resin material used for the chopped semi-prepreg sheet material is a base material (matrix) resin, such as polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, etc.), polyacetal, polycarbonate, acrylonitrile- A butadiene-styrene copolymer (ABS), polyethylene terephthalate, polybutylene terephthalate, polyetherimide, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetheretherketone and the like are used. Further, two or more of these thermoplastic resins may be mixed to form a polymer alloy and used as a base material (matrix) resin.
  • matrix resin such as polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, etc.), polyacetal, polycarbonate, acrylonitrile- A butadiene-styrene copolymer (ABS), poly
  • the semi-prepreg sheet material is set in an unimpregnated state in which the thermoplastic resin material does not completely penetrate into the entire reinforcing fiber material
  • FIG. 1 is an explanatory view showing a specific example of the unimpregnated state.
  • indicates a cross section of the reinforcing fiber material
  • a hatched portion indicates the thermoplastic resin material.
  • thermoplastic resin material there are sheet-like thermoplastic resin materials on both surfaces of the bundled reinforcing fiber material, a part of the thermoplastic resin material penetrates between the reinforcing fiber materials of the surface portion, The thermoplastic resin material does not permeate between the reinforcing fiber materials in the central portion, and remains in a concentrated state. The thermoplastic resin material also does not partially penetrate on both surface sides of the reinforcing fiber material.
  • Such an unimpregnated state can be realized by bringing a thermoplastic resin sheet material into contact with both surfaces of the reinforcing fiber bundle and then applying heat and pressure.
  • thermoplastic resin material is discretely present inside the bundled reinforcing fiber material, and the thermoplastic resin material partially penetrates between the reinforcing fiber materials.
  • a powdered or short fiber thermoplastic resin material is dispersed between reinforcing fiber materials and then heated and pressurized to melt the thermoplastic resin material, thereby partially reinforcing fibers. It can be realized by penetrating between materials.
  • the reinforcing fiber material is present on both surfaces of the sheet-like thermoplastic resin material, and the surface portion of the thermoplastic resin material partially penetrates between the reinforcing fiber materials.
  • the reinforced fiber material there is a portion where the thermoplastic resin material is not permeated.
  • Such an unimpregnated state can be realized by bringing the reinforcing fiber bundle into contact with both surfaces of the thermoplastic resin sheet material and then applying heat and pressure.
  • a semi-prepreg sheet material with good quality can be obtained by using the reinforcing fiber material by forming it into a wide and thin sheet material by a fiber opening process.
  • the semi-prepreg sheet material may be in any of the three patterns shown as specific examples, or may be in a state where a plurality of patterns among the three patterns are mixed.
  • the average number of fibers in the thickness direction is preferably set in the range of 2 to 10.
  • the average number of fibers in the thickness direction is set in the range of 2 to 10.
  • this semi-prepreg sheet material is molded from an unimpregnated state to an impregnated state by heating and pressing. It is possible to achieve an impregnation state with a small amount of voids and a short void, and it is possible to obtain a composite material molded article of good quality in a short time.
  • the average number of fibers in the thickness direction can be calculated based on the thickness in the impregnated state, the fiber volume content, and the single yarn diameter of the reinforcing fiber material.
  • the semi-prepreg sheet material in the unimpregnated state includes a resin portion that does not penetrate into the reinforcing fiber material in the thermoplastic resin material, and therefore, the fissure in the fiber direction of the reinforcing fiber is less likely to occur. Since the semi-prepreg sheet material in the unimpregnated state is compressed in the thickness direction to be in the impregnated state, it is thicker than the impregnated state. Therefore, the degree of the unimpregnated state can be quantitatively set by comparing with the thickness of the impregnated state.
  • the thickness t of the semi prepreg sheet material is preferably set to satisfy the following equation. t p ⁇ t ⁇ 2 ⁇ t p
  • the semi-prepreg sheet material is set in a thin state where the average number of fibers in the thickness direction is as small as 2 to 10 fibers.
  • the semi-prepreg sheet material is aligned along the fiber direction of the reinforcing fiber material when creating the chopped semi-prepreg sheet material. Even if cut, the fluff of the reinforcing fiber material hardly occurs on the cut surface.
  • the thermoplastic resin material is small unimpregnated portions to penetrate between the reinforcing fiber material is increased, the cut along the fiber direction,
  • the fluff of the reinforcing fiber material increases on the cut surface.
  • the chopped semi-prepreg sheet material becomes a reinforcing sheet material in which the chopped semi-prepreg sheet material is dispersed non-uniformly, which causes a decrease in mechanical properties of the molded product.
  • molding using a reinforcement sheet material there exists a possibility that a fluid characteristic may worsen under the influence of the fluff of a chopped semi-prepreg sheet material.
  • the thickness t of the semi-prepreg sheet material or the chopped semi-prepreg sheet material can be obtained by actual measurement. For example, using an outer micrometer with a minimum display amount of 0.001 mm defined in JIS B 7502 (corresponding to international standard ISO 3611), an average value of thicknesses measured at a plurality of locations can be calculated and obtained.
  • the thickness t p in the impregnated state can be obtained by the following two methods.
  • the target sheet material is heated and pressed to create an impregnated prepreg sheet material in which the thermoplastic fiber material is infiltrated into the entire reinforcing fiber material, and the prepared prepreg sheet material is formed at a plurality of locations in the same manner as the target sheet material.
  • the thickness is measured and the average value is calculated as the thickness t p .
  • W 2 g / m 2
  • the thickness t p in the impregnated state is obtained by the following equation.
  • t p (mm) ((W 1 / ⁇ 1 ) + (W 2 / ⁇ 2 )) / 1000
  • the fiber volume content in the impregnated state of the target sheet material is preferably set to 30% to 70%.
  • the fiber volume content is lower than 30%, the reinforcing effect of long fibers is reduced, and when the fiber volume content exceeds 70%, resin impregnation into the reinforcing fiber bundle becomes difficult and voids are likely to occur. Quality deteriorates.
  • the thickness t p in the case where the target sheet material using the carbon fiber as the reinforcing fiber material and impregnation conditions is preferably set in the range of 20 [mu] m ⁇ 80 [mu] m.
  • the single yarn diameter of the carbon fiber is 5 ⁇ m to 7 ⁇ m and the fiber volume content is 30% to 70%, considering that the average number of fibers in the thickness direction in the impregnated state is set in the range of 2 to 10,
  • the thickness t p is in the range of 20 ⁇ m to 80 ⁇ m. Therefore, the thickness t in the unimpregnated state is set to 20 ⁇ m ⁇ t ⁇ 160 ⁇ m.
  • the chopped semi-prepreg sheet material is obtained by cutting the semi-prepreg sheet material into a required width and length. Specifically, it is preferable to set the width in the range of 1 mm to 30 mm and the length in the range of 5 mm to 100 mm.
  • the width is smaller than 1 mm, the amount of fluff is increased when the semi-prepreg sheet material is cut, the fluidity is deteriorated as a pseudo-isotropic reinforcing sheet material, and the mechanical properties of the obtained composite material molded product are deteriorated.
  • the width is larger than 30 mm, the pseudo-isotropic property, which is a mechanical characteristic of the pseudo-isotropic reinforcing sheet material, is lowered.
  • the length is less than 5 mm, the tensile properties of the reinforcing fiber material cannot be sufficiently obtained, and the mechanical properties of the resulting composite material molded product are deteriorated.
  • the length is greater than 100 mm, the overlap between the chopped semi-prepreg sheet materials increases, the degree of influence at the time of flow increases, and the fluidity as a pseudo isotropic reinforcing sheet material deteriorates.
  • FIG. 2 is a schematic cross-sectional view regarding a pseudo isotropic reinforcing sheet material manufactured using the above-described chopped semi-prepreg sheet material.
  • the quasi-isotropic reinforcing sheet material T has a plurality of chopped semi-prepreg sheet materials C dispersed by natural dropping or the like and randomly stacked so that the fiber direction of the reinforcing fiber material is randomly in a two-dimensional direction. It is in a state of being superposed so as to be oriented. And the chopped semi-prepreg sheet material C adhere
  • the layered body M is integrated so as to maintain a substantially sheet-like form by the chopped semi-prepreg sheet material C, and the substantially sheet-like form is maintained by the chopped semi-prepreg sheet material C. If it is, it is also possible to mix materials other than the chopped semi-prepreg sheet material mentioned above.
  • the average number of chopped semi-prepreg sheet materials C in the thickness direction is preferably set in the range of 2 to 10, more preferably in the range of 3 to 7 sheets. Set.
  • the thickness of the chopped semi-prepreg sheet material C is thinner than 0.1 mm, and by superposing such thin chopped semi-prepreg sheet material C, the thickness of the entire pseudo-isotropic reinforcing sheet material T is thin. As a result, the internal gap is reduced, and flexibility and drape are provided. Therefore, it can be wound into a roll shape, and the handling is greatly improved.
  • the pseudo isotropic reinforcing sheet material T when the pseudo isotropic reinforcing sheet material T is laminated and formed, the pseudo isotropic reinforcing sheet material T is formed in a thin plate shape, so that it can sufficiently handle the curved shape even in the laminated state. can do.
  • the surface of the pseudo isotropic reinforcing sheet material T In a laminated state in which thin chopped semi-prepreg sheet materials C are laminated in an average number of 2 to 10 sheets, the surface of the pseudo isotropic reinforcing sheet material T is formed in a substantially planar shape.
  • the edges of the chopped semi-prepreg sheet material C project on the contact surface of the pseudo isotropic reinforcing sheet material T to prevent flow. It can flow smoothly and good fluidity can be realized.
  • the chopped semi-prepreg sheet material obtained using the semi-prepreg sheet material has exposed fiber portions that are not penetrated by the thermoplastic resin material on both surfaces. Yes.
  • the exposed fiber parts rub against each other when the chopped semi-prepreg sheet materials come into contact with each other, contact resistance due to the rubbing of the fiber parts occurs, and when the chopped semi-prepreg sheet materials are stacked, it becomes difficult to separate in random directions. . Therefore, by setting the average number of chopped semi-prepreg sheet materials to be overlapped in the thickness direction in the range of 2 to 10, the contact resistance due to rubbing of the fiber portion is reduced, and the chopped semi-prepreg sheet material is in a random direction. It becomes easy to scatter.
  • FIG. 3 is a schematic cross-sectional view of another pseudo-isotropic reinforcing sheet material manufactured using the above-described chopped semi-prepreg sheet material.
  • the quasi-isotropic reinforcing sheet material T ′ is a two-dimensional direction in which the fiber direction of the reinforcing fiber material is randomly distributed by a plurality of chopped semi-prepreg sheet materials C being dispersed by natural dropping or the like.
  • a plurality of layered bodies M1 to M3 in which the chopped semi-prepreg sheet materials C are bonded and integrated by heating and pressurizing in the superimposed state are laminated and integrated.
  • the pseudo-isotropic reinforcing sheet material T ′ is formed in a three-layer structure by a boundary surface K1 on the upper surface of the layered body M1 and a boundary surface K2 on the upper surface of the layered body M2, and the layered body divided by the boundary surfaces K1 and K2.
  • M1 to M3 are formed by bonding and integrating the chopped semi-prepreg sheet material C in an overlapping state.
  • the chopped semi-prepreg sheet material C is bonded to the adjacent chopped semi-prepreg sheet material C while maintaining the form before bonding, and a gap is formed between the chopped semi-prepreg sheet materials C.
  • the adhesion state (adhesion position, adhesive force, etc.) in the layered body is different from the adjacent layered body, and the upper surface of the layered body formed on the surface with less unevenness by heating and pressing.
  • the chopped semi-prepreg sheet material C is superposed on each other, the gap between the layered bodies is more easily displaced than in the layered body. Therefore, the degree of freedom between the layered bodies is greater than that of the layered bodies, and the flexibility and draping property of the pseudo isotropic reinforcing sheet material T ′ can be increased, and the rolls can be wound up and handled. Is significantly improved.
  • the chopped semi-prepreg sheet material is formed at the boundary surface and the contact surface between the sheet materials in the pseudo isotropic reinforcing sheet material T ′. Cs are less likely to engage and become difficult to flow, flow smoothly, and good fluidity can be realized.
  • a resin layer portion can be disposed at least at a part between adjacent layered bodies.
  • a resin layer portion may be disposed entirely between portions where two or more layered bodies are laminated, or a resin layer portion may be partially disposed between adjacent layered bodies.
  • the resin layer portion is formed in a portion where only the resin is formed in a layer shape or a layer-like resin rich portion where the fiber volume content is lower than the surroundings.
  • Such a resin layer portion exists between the layered bodies, so that in the composite material molded article using the pseudo isotropic reinforcing sheet material, the fiber volume content can be reduced and the mechanical properties can be changed.
  • the resin layer portion is easily deformed by bending due to shear deformation.
  • a resin material in the form of a film, sheet, granule or short fiber is placed between the layers and heated and pressed together with the layer to fuse the resin material. It can be a resin layer portion.
  • the same thermoplastic resin material used for the chopped semi-prepreg sheet material can be used, but a different thermoplastic resin material can also be used.
  • FIG. 4 is a schematic configuration diagram relating to a manufacturing apparatus for a pseudo isotropic reinforcing sheet material.
  • the manufacturing apparatus includes a sheet material supply mechanism 1, a sheet material cutting mechanism 2, a chop material transport mechanism 3, a sheet integration mechanism 4, and a sheet winding mechanism 5.
  • the sheet material supply mechanism 1 feeds and supplies the semi-prepreg sheet material S wound around a 3-inch paper tube or the like.
  • the sheet material supply mechanism 1 supplies the semi-prepreg sheet material S while applying a required tension so that the cutting operation in the sheet material cutting mechanism 2 is performed smoothly.
  • the semi-prepreg sheet material S may be sent out at a predetermined supply speed by driving means such as a motor, and the semi-prepreg sheet material S drawn out by the sheet material cutting mechanism 2 has a predetermined supply speed.
  • driving means such as a motor
  • the semi-prepreg sheet material S drawn out by the sheet material cutting mechanism 2 has a predetermined supply speed.
  • a brake mechanism can also be provided.
  • the sheet material cutting mechanism 2 includes a vertical direction cutting unit 6 and a horizontal direction cutting unit 7, and the vertical direction cutting unit 6 cuts the semi-prepreg sheet material S into a strip shape with a predetermined width along the supply direction.
  • a known sheet cutting means such as a gang cut method, a shear cut method, or a score cut method can be used.
  • gang cutting method an upper blade and a lower blade, which are rotating round blades, are wrapped, a minute clearance is provided therebetween, the semi-prepreg sheet material S is sandwiched, and cutting is performed by shearing force.
  • the upper blade of a rotating round blade with a sharp edge with a clearance angle is set so that its tip is pressed against the side of the lower blade (rotating round blade). Run S and cut. It is similar to a mechanism for cutting with a scissors, and can be cut without escaping the sheet material.
  • the score cut method the semi-prepreg sheet material S is run while the semi-prepreg sheet material S is brought into contact with the lower blade roll formed with high hardness by heat treatment or the like, and the upper blade roll of the rotating round blade is pressed to the portion. Disconnect.
  • the semi-prepreg sheet material S is wound and supplied in a paper tube or the like in the form of being cut in the same width as the chopped semi-prepreg sheet material C in advance, it is not necessary to use the longitudinal direction cutting unit 6. .
  • the lateral cutting unit 7 cuts the semi-prepreg sheet material S cut to a predetermined width in the supply direction in a direction perpendicular to the supply direction, thereby creating a chopped semi-prepreg sheet material C having a predetermined length.
  • Examples of the lateral cutting unit 7 include a cutting device in which a plurality of cutting blades around the cutting roll are arranged so as to be along the axial direction at a predetermined interval so as to be opposed to a high-hardness rotating roll.
  • the chopped semi-prepreg sheet material C having a predetermined length can be created by sequentially pressing the cutting blades of the cut roll while cutting the semi-prepreg sheet material S in contact with the rotating roll.
  • the chopped semi-prepreg sheet material C of different length can also be created by using a cut roll having different cutting blade attachment intervals. For example, by setting the attachment intervals of the cutting blades to 10 mm, 50 mm, and 100 mm, the chopped semi-prepreg sheet material C having the same length as the intervals can be produced at the same rate. Moreover, the ratio of the chopped semi-prepreg sheet material C having a length of 100 mm can be increased by setting the attachment intervals of the cutting blades to 10 mm, 50 mm, 100 mm, and 100 mm. By using the chopped semi-prepreg sheet material C having different lengths, it is possible to control the mechanical properties and fluidity of the obtained pseudo-isotropic reinforcing sheet material T.
  • the laminated molded product using the pseudo isotropic reinforcing sheet material T has improved mechanical properties, but the fluidity during molding is reduced.
  • the mechanical properties of the laminated molded article using the pseudo isotropic reinforcing sheet material T are lowered, but the fluidity is improved.
  • the chopping material transport mechanism 3 includes three distribution conveyors 8 to 10, and distributes the cut chopped semi-prepreg sheet material C into three for conveyance. It is preferable that the amount distributed to each distribution conveyor is set to be equal.
  • the carry-out position of each distribution conveyor is set to be shifted at a predetermined interval in the conveyance direction.
  • the chopped semi-prepreg sheet material C is continuously conveyed by each distribution conveyor and continuously falls at the unloading position.
  • the amount of the chopped semi-prepreg sheet material C that is dropped per unit time is set based on the supply amount of the chopped semi-prepreg sheet material C per unit time and the conveying speed of the distribution conveyor.
  • the sheet integration mechanism 4 includes a transport conveyor 11 that receives and transports the dropped chopped semi-prepreg sheet material C by the transport belt 12, and three adhesive rolls 13 to 15 that integrate the transported chopped semi-prepreg sheet material C.
  • a plurality of chopped semi-prepreg sheet materials are integrated with each adhesive roll in a state where the fiber directions of the reinforcing fiber material are randomly oriented in a two-dimensional direction and overlapped to form a layered body. Layered bodies are laminated and integrated.
  • the conveyor 11 is arranged below the three unloading positions of the chopped semi-prepreg sheet material C, and an endless conveyor belt 12 is stretched between a pair of conveyor rollers. Is set along three carry-out positions.
  • the conveyor belt 12 is made of a heat-resistant material such as a heat-resistant rubber material or a metal material, and is set so as to receive the chopped semi-prepreg sheet material C falling from the three carry-out positions at three stack positions.
  • the three lamination positions are arranged with a predetermined interval, and the adhesive rolls 13 to 15 are arranged on the downstream side of each lamination position.
  • Each adhesive roll includes a heating roller arranged on the conveyance surface side of the conveyance belt 12 and a pressing roller arranged on the opposite side to the conveyance surface.
  • the chopped semi-prepreg sheet material C conveyed in a state of being overlapped by the conveyance belt 12 is sandwiched between the heating roller and the pressing roller and heated and pressed, thereby bonding and integrating the chopped semi-prepreg sheet material C in layers.
  • the chopped semi-prepreg sheet material C falling from each unloading position to each lamination position falls so that the fiber direction is scattered in a random direction, and the fiber direction is randomly oriented in the two-dimensional direction on the conveyor belt 12. It will overlap.
  • the overlapping chopped semi-prepreg sheet material C is preferably uniformly dispersed and overlapped, and the average number of overlapping sheets in the thickness direction is preferably set in the range of 2 to 10. More preferably, the average number is set to be in the range of 3 to 7.
  • the chopped semi-prepreg sheet material C is configured when performing adhesion integration with an adhesive roll. It is possible to minimize the alignment disorder in the fiber direction. Further, the production speed of the pseudo isotropic reinforcing sheet material is increased by reducing the number of sheets in the thickness direction at one lamination position and arranging the chopped semi-prepreg sheet material C in parallel at a plurality of lamination positions. It becomes possible. And the dispersion
  • the pressurizing force needs to be increased in order to bond all the overlapping chopped semi-prepreg sheet materials C by thermal fusion or the like.
  • the reinforcing fibers in the chopped semi-prepreg sheet material C may meander or be cut in some cases. Further, if the number of sheets in the thickness direction exceeds 10, it takes time for all the overlapping chopped semi-prepreg sheet materials C to reach a predetermined heating temperature, and in order to securely bond and integrate, the conveyance speed is increased. Cannot be converted.
  • the chopped semi-prepreg sheet material can be overlapped with no gap at the stacking position, and the average number in the thickness direction is set to 7 or less.
  • the average number in the thickness direction is set to 7 or less.
  • the average number of sheets in the thickness direction can be adjusted by controlling the transport speed of the transport conveyor 11 with respect to the transport amount per unit time of the dropped chopped semi-prepreg sheet material C.
  • the fiber direction may be scattered by rotating blades or may be scattered by blowing air so that the fiber direction becomes a random direction.
  • the chopped semi-prepreg sheet material C that has fallen from the delivery position of the distribution conveyor 8 and overlapped with the most upstream stacking position is heated and pressurized by the heating roller 13a and the pressing roller 13b of the adhesive roll 13 while being conveyed by the conveyance belt 12.
  • the thermoplastic resin material contained in the chopped semi-prepreg sheet material C is partially melted by heating and bonded to each other, so that the layered body M1 is formed in a layered manner.
  • the heating temperature of the heating roller 13a is set to a temperature at which the transported and overlapped chopped semi-prepreg sheet material C is securely bonded and integrated.
  • the pressure applied by the pressing roller 13b is such that the chopped semi-prepreg sheet material C in an overlapping state is brought into close contact with each other and pressed against the heating roller 13a, and the reinforcing fiber material in the chopped semi-prepreg sheet material C is not affected. Is set.
  • the heating roller 13a shown in FIG. 4 has a concavo-convex shape on the peripheral surface, and the chopped semi-prepreg sheet material C is brought into contact with the convex portion to be partially heated and thermally fused to be bonded and integrated. I am letting.
  • the position and number of partial bonding may be set so that the chopped semi-prepreg sheet material C does not fall off. Specifically, about 1 to 5 places on one chopped semi-prepreg sheet material C. It only needs to be partially bonded.
  • the layered body M1 in which the chopped semi-prepreg sheet material C overlapped by the adhesive roll 13 is integrated in layers is conveyed by the conveying belt 12 and is chopped semi-prepreg from the distribution conveyor 9 on the upper surface at the next stacking position.
  • the sheet material C is placed so as to fall and overlap.
  • the chopped semi-prepreg sheet material C is superposed on the upper surface of the layered body M1 and is heated and pressed by the heating roller 14a and the pressing roller 14b of the adhesive roll 14 while being conveyed by the conveying belt 12.
  • the chopped semi-prepreg sheet material C in a state of being overlapped by the heating roller 14a is partially melted and bonded to each other by heating so that the layered body M2 is formed.
  • the heating temperature of the heating roller 14a is such that the chopped semi-prepreg sheet material C in an overlapped state is securely bonded and integrated, but further, at the boundary surface between the chopped semi-prepreg sheet material C in an overlapped state with the layered body M1. Is also set to a heating temperature at which the layered bodies M1 and M2 become integrated with each other.
  • the layered bodies M1 and M2 integrated in layers by the adhesive roll 14 are transported by the transport belt 12, and the chopped semi-prepreg sheet material C falls on the upper surface from the distribution conveyor 10 and overlaps at the next stacking position. Placed on. Then, the chopped semi-prepreg sheet material C is overlapped on the upper surface of the layered body M2 and is heated and pressed by the heating roller 15a and the pressing roller 15b of the adhesive roll 15 while being conveyed by the conveying belt 12.
  • the chopped semi-prepreg sheet material C in a state of being overlapped by the heating of the heating roller 15a is partially melted and bonded to each other by heating, so that the layered body M3 is formed.
  • the heating temperature of the heating roller 15a is such that the chopped semi-prepreg sheet material C in an overlapping state is securely bonded and integrated, but further, at the boundary surface between the chopped semi-prepreg sheet material C in an overlapping state with the layered body M2. Is also set to a heating temperature at which the layered bodies M1 to M3 are integrated together.
  • the pseudo isotropic reinforcing sheet material T in which the layered bodies M1 to M3 are integrated is formed by the adhesive roll 15.
  • the quasi-isotropic reinforcing sheet material T is bonded and integrated with the chopped semi-prepreg sheet material C in an overlapped state.
  • Three layers of layered bodies are laminated and integrated.
  • the sheet winding mechanism 5 winds the pseudo-isotropic reinforcing sheet material T formed integrally with the adhesive roll 15 around a paper tube or the like and winds it into a roll shape.
  • the pseudo-isotropic reinforcing sheet material T has flexibility and drapeability, it has a diameter of 3 inches (like the conventional thermosetting resin prepreg sheet material or thermoplastic resin prepreg sheet material). It can be wound around a paper tube of about 76 mm) to 12 inches (about 305 mm) and can be easily handled in the same manner as a conventional prepreg sheet material.
  • FIG. 5 is a schematic configuration diagram regarding a modification of the manufacturing apparatus shown in FIG.
  • three sheet material supply mechanisms 1A to 1C and three sheet material cutting mechanisms 2A to 2C are installed, and the chopped semi-prepreg sheet material C is created in each mechanism, and the stacking position of the sheet integration mechanism 4 To supply. Since the production speed of the chopped semi-prepreg sheet material C is tripled, the production speed of the pseudo isotropic reinforcing sheet material can be increased.
  • a quasi-isotropic reinforcing sheet material in which three layers of layered bodies are laminated is manufactured, but the number of heating rolls of the sheet integration mechanism is appropriately set and each chopped semi-prepreg is set for each heating roll.
  • a pseudo isotropic reinforcing sheet material in which two or more layers are laminated can be manufactured.
  • the quasi-isotropic reinforcement sheet material which consists of one layered body shown in FIG. 2 can also be manufactured by supplying the chopped semi-prepreg sheet material C only for one layer to the sheet integration mechanism.
  • a resin layer portion may be formed by arranging a resin material in a layer form at least at a part between adjacent layered bodies. For example, after creating a layered body with a chopped semi-prepreg sheet material, supply a film-like, sheet-like, granular, or short fiber-like resin material on the upper surface and arrange it in layers to create the next layered body and laminate By doing so, a pseudo isotropic reinforcing sheet material including a resin layer portion can be manufactured.
  • the composite material is formed by stacking one or more pseudo-isotropic reinforcement sheet materials in the thickness direction and molding by heating and pressing.
  • a molded product can be obtained. Since the pseudo-isotropic reinforcing sheet material has flexibility and draping properties as described above, it can be molded along a shape such as a curved surface shape other than a flat plate shape or an uneven shape. Is possible.
  • a resin layer is formed on at least a part of the interior of the composite material molding by molding the composite material with the resin material in between. can do.
  • the resin layer part should just be formed in a layer form in whole or in part between the pseudo isotropic reinforcing sheet materials.
  • a film-like, sheet-like, granular or short fiber-like resin material may be supplied and arranged in a layered manner.
  • the resin material a resin different from the resin contained in the pseudo isotropic reinforcing sheet material may be used.
  • the formed resin layer part is formed in a part where only the resin is formed in a layered form or a layered resin-rich part where the fiber volume content is lower than the surroundings. The presence of such a resin-enriched portion improves the fluidity and improves the formability during molding.
  • the thermoplastic resin material can be used as the reinforcing fiber material when molding by heating and pressing. It becomes easy to impregnate in the middle, and generation of voids can be suppressed.
  • the pseudo-isotropic reinforcing sheet material is composed of a layered body in which a thin layer of chopped semi-prepreg sheet material is laminated in the range of 2 to 10 on the average in the thickness direction. Can be increased. For example, when the pseudo-isotropic reinforcing sheet material having a three-layer structure shown in FIG.
  • the pseudo-isotropic reinforcing sheet material is pressurized and heated to be in an impregnated state, and the heat in the chopped semi-prepreg sheet material
  • the plastic resin material melts and the reinforcing fiber material flows. Since the chopped semi-prepreg sheet material is easily displaced between the layered bodies in the pseudo-isotropic reinforcing sheet material, the fluidity of the reinforcing fiber material along the boundary surface of the layered body is enhanced and uniformized. Therefore, even when a plurality of pseudo-isotropic reinforcing sheet materials are laminated, the fluidity of the entire laminate is increased and unevenness is eliminated, and a molded product with good quality can be obtained.
  • the thickness of the chopped prepreg sheet material is preferably thinner than 0.1 mm. More specifically, a thickness of 20 ⁇ m to 80 ⁇ m is preferable.
  • the quasi-isotropic reinforcing sheet material according to the present invention uses an unimpregnated chopped semi-prepreg sheet material, and the chopped semi-prepreg sheet material includes a converging portion of reinforcing fiber material and thermoplasticity inside. Since part of the resin portion of the resin material exists, it has flexibility and drape. And, since the chopped semi-prepreg sheet material having such characteristics is set in the range of the average number in the thickness direction in the range of 2 to 10 and bonded and integrated, a layered body is formed.
  • the layered body itself also has flexibility and drape, and even when a plurality of layered bodies are laminated, the layered body easily shifts between the layered bodies and increases the degree of freedom, so the pseudo-isotropic reinforcing sheet material has flexibility and drape. Can have sex. Furthermore, the ease of shifting between the layered bodies can be improved as an effect of shifting the bonded portions of the layered bodies and the bonded portions between the layered bodies.
  • the pseudo-isotropic reinforcing sheet material when producing the pseudo-isotropic reinforcing sheet material according to the present invention, by using an unimpregnated semi-prepreg sheet material, a good quality chopped semi-prepreg sheet is produced without causing a tear due to an impact at the time of cutting. A material can be obtained.
  • the average number of fibers in the thickness direction of the semi-prepreg sheet material is set in the range of 2 to 10, and the thickness t is t p ⁇ t ⁇ 2 ⁇ t with respect to the thickness t p in the impregnated state.
  • the range of p the number of fibers in the converging portion where the thermoplastic resin material is not permeated is reduced, and the length in the fiber direction of the portion not impregnated with the resin is shortened. In the converging portion in such a state, fluff due to cutting is less likely to occur, and the length of the fiber that pops out as a fluff is shortened, so that the influence on manufacturing can be suppressed.
  • the pseudo isotropic reinforcing sheet material according to the present invention is composed of a layered body in which the chopped semi-prepreg sheet material is laminated and adhered and integrated in the range of 2 to 10 sheets in the thickness direction.
  • the pseudo-isotropic reinforcing sheet material is heated and pressed to form, uniform fluidity can be obtained in the layered body, and when a plurality of layered bodies are laminated and integrated, the boundary surface of the layered body is formed.
  • the fluidity in the direction along can be made uniform. Therefore, the chopped semi-prepreg sheet material flows smoothly along the boundary surface, the disorder of the orientation of the reinforcing fiber material is suppressed and straightness is maintained, and molding is performed with pseudo isotropic property maintained It becomes possible to do.
  • the pseudo-isotropic reinforcing sheet material according to the present invention uses a chopped semi-prepreg sheet material in which the average number of fibers in the thickness direction is set in the range of 2 to 10, and the average number in the thickness direction is 2 Overlapping and integrating in the range of 10 to 10 sheets.
  • a thin layer of chopped semi-prepreg sheet material By using a thin layer of chopped semi-prepreg sheet material, the meandering of the fibers due to the overlap of the chopped semi-prepreg sheet materials can be minimized, and the chopped semi-prepreg sheet material is bonded and integrated in a plane. be able to. Therefore, the chopped semi-prepreg sheet material flows smoothly along the surface direction when forming by heating and pressing the pseudo isotropic reinforcing sheet material, and the fluidity of the pseudo isotropic reinforcing sheet material can be improved. it can.
  • the pseudo-isotropic reinforcing sheet material according to the present invention uses a thin chopped semi-prepreg sheet material in which the average number of fibers in the thickness direction is set in the range of 2 to 10, and the average number of sheets in the thickness direction Can be configured by laminating and laminating a plurality of such layered bodies.
  • the thin chopped semi-prepreg sheet material is randomly laminated in the two-dimensional direction and is also uniformly dispersed in the thickness direction. For this reason, the mechanical characteristic value of the composite material molded product is improved, and variation can be reduced.
  • Example 1 A pseudo isotropic reinforcing sheet material was manufactured using the following materials. ⁇ Materials used> Reinforcing fiber material Carbon fiber bundle (Mitsubishi Rayon Co., Ltd .; TR50S-15K-JJ 15000 pieces / bundle, single yarn diameter 7 ⁇ m) Thermoplastic resin material PA6 resin film (Mitsubishi Resin Co., Ltd .; Diamilon thickness 20 ⁇ m)
  • ⁇ Method for producing semi-prepreg sheet material> Using a known fiber bundle opening method (for example, see Japanese Patent Application Laid-Open No. 2010-270420), four carbon fiber bundles are each opened to a width of 48 mm and arranged in the width direction into a sheet shape, and the opening is 192 mm in width. Two carbon fiber sheets were prepared. Then, two sheets of the spread carbon fiber sheet are bonded together, and at the same time, a PA6 resin film having a width of 200 mm is inserted between them, and is continuously run between heating and pressing rolls set at a heating temperature of 280 ° C. FIG. A semi-prepreg sheet material having a width of 180 mm was prepared by continuously cutting the both ends of the resin layer as shown in FIG.
  • the obtained semi-prepreg sheet material has a fiber basis weight of about 43 g / m 2 and a resin basis weight of about 23 g / m 2 .
  • the thickness in the impregnated state is calculated to be about 0.044 mm, and the fiber volume content is about 55%.
  • the average number of fibers in the thickness direction in the impregnated state of the semi-prepreg sheet material is about 3.5 in calculation.
  • the thickness of the obtained semi-prepreg sheet material was measured at 10 locations using an outer micrometer (manufactured by Mitutoyo Corporation) with a minimum display scale of 0.001 mm, and the average value of the measurement results was about 0.073 mm. . It was within twice the thickness of 0.044 mm in the impregnated state.
  • the minimum value of the measured value of 10 places was 0.060 mm, and the maximum value was 0.081 mm.
  • a layered body of pseudo-isotropic reinforcing sheet material was created using one sheet material supply mechanism and sheet material cutting mechanism of the manufacturing apparatus shown in FIG.
  • the obtained semi-prepreg sheet material having a width of 180 mm was cut into a width of 25 mm along the fiber direction, and cut into a length of 30 mm along a direction orthogonal to the fiber direction to prepare a chopped prepreg sheet material.
  • the supply speed of the semi-prepreg sheet material was set to about 34 m / min, and the remaining cut semi-prepreg sheet material having a width of 5 mm was separately wound as an ear part.
  • the obtained chopped semi-prepreg sheet material having a width of 25 mm and a length of 30 mm was naturally dropped on a conveyor belt made of wire mesh and dispersed.
  • the conveyor belt traveled at a conveyance speed of 3 m / min, and the chopped semi-prepreg sheet material was dispersed in a range of 400 mm in width.
  • a chopped semi-prepreg sheet material is prepared from a semi-prepreg sheet material having a width of 175 mm at a processing speed of 34 m / min, and a pseudo-isotropic reinforcing sheet material having a width of 400 mm is manufactured at a processing speed of 3 m / min.
  • the average number of chopped semi-prepreg sheet materials in the thickness direction was about 5.
  • a heating roller having a large number of 5 mm square projections on the surface is set to a heating temperature of 280 ° C., and the chopped semi-prepreg sheet material in a superposed state is partially bonded and integrated, A reinforced sheet material was obtained.
  • the basis weight of the obtained pseudo isotropic reinforcing sheet material was about 330 g / m 2 .
  • the obtained pseudo-isotropic reinforcing sheet material has a chopped semi-prepreg sheet material having a width of 25 mm and a length of 30 mm that is randomly oriented in the two-dimensional direction while maintaining the form before bonding, and the average number of sheets in the thickness direction is It was a layered body laminated with about 5 sheets. There was no chopped semi-prepreg sheet material to drop off, and it was possible to wind up a 3-inch paper tube with tension applied. When pulling out the pseudo-isotropic reinforcing sheet material from the state wound around the 3-inch paper tube, there was no trouble such as the chopped semi-prepreg sheet material coming off.
  • Example 2 A pseudo isotropic reinforcing sheet material was manufactured using the following materials. ⁇ Materials used> The same material as in Example 1 was used. ⁇ Method for producing semi-prepreg sheet material> The same production as in Example 1 was carried out.
  • a pseudo isotropic reinforcing sheet material was manufactured using the manufacturing apparatus shown in FIG.
  • a prepreg sheet material having a width of 180 mm was cut into a width of 5 mm along the fiber direction, and cut into a length of 30 mm along a direction orthogonal to the fiber direction to prepare a chopped prepreg sheet material.
  • the supply speed of the semi-prepreg sheet material was set to about 70 m / min.
  • the obtained chopped semi-prepreg sheet material having a width of 5 mm and a length of 30 mm was distributed into three and naturally dropped and dispersed at three lamination positions on a wire mesh transport belt.
  • the conveyance belt traveled at a conveyance speed of 3 m / min, and the chopped semi-prepreg sheet material was dispersed in a range of 400 mm in width at each lamination position.
  • a chopped semi-prepreg sheet material is prepared from a semi-prepreg sheet material having a width of 180 mm at a processing speed of 70 m / min and distributed to three, and a pseudo-isotropic reinforcing sheet material having a width of 400 mm is manufactured at a processing speed of 2 m / min,
  • the average number of layers in the thickness direction of the layered body formed by laminating the chopped semi-prepreg sheet materials at each lamination position and bonding and integration was about 5.2 sheets.
  • a heating roller having a large number of 5 mm square protrusions on the surface is set to a heating temperature of 280 ° C., and the chopped semi-prepreg sheet material in a superposed state is partially Were bonded and integrated to obtain a pseudo isotropic reinforcing sheet material.
  • the basis weight of the obtained pseudo isotropic reinforcing sheet material was about 1030 g / m 2 .
  • the obtained pseudo-isotropic reinforcing sheet material has a chopped semi-prepreg sheet material having a width of 5 mm and a length of 30 mm that is randomly oriented in the two-dimensional direction while maintaining the form before bonding, and the average number of sheets in the thickness direction is About 5 layered bodies were formed by laminating three layers. There was no chopped semi-prepreg sheet material to drop off, and it was possible to wind it around a 12-inch paper tube with tension. When pulling out the pseudo isotropic reinforcing sheet material from the state wound around the 12-inch paper tube, there was no trouble such as the chopped semi-prepreg sheet material coming off.
  • Example 3 A pseudo isotropic reinforcing sheet material was manufactured using the following materials, and a plate-shaped molded product was formed using the obtained pseudo isotropic reinforcing sheet material.
  • a chopped semi-prepreg sheet material with a width of 5 mm and a length of 30 mm is randomly oriented in the two-dimensional direction, and three layers of about 5.2 sheets in the thickness direction are laminated for partial adhesion.
  • From the integrated pseudo-isotropic reinforcing sheet material three 150 mm square sheet pieces were cut out, and a laminate was formed by stacking the cut sheet pieces in the thickness direction.
  • the obtained laminate was heated and pressurized in the thickness direction at a heating temperature of 280 ° C. and an applied pressure of 2 MPa, the molding time was set to 5 minutes, and the PA6 resin was infiltrated between the carbon fibers to be in an impregnated state.
  • a plate-like body was formed by cooling to 1.
  • the obtained plate-like molded body was molded to a thickness of 2.06 mm at 150 mm square, and was molded with a good quality while maintaining the orientation state of the carbon fibers of the chopped semi-prepreg sheet material before bonding.
  • ⁇ Flow test method for plate-shaped molded body> A 75-mm square plate-shaped piece was cut out from the obtained plate-shaped molded body, set in a flat plate mold set at a heating temperature of 280 ° C., the plate-shaped piece was heated at contact pressure for 3 minutes, and then a pressure of 5 MPa. For 1 minute. The plate-like molded body obtained by heating and pressurizing was taken out and set in a cooled flat plate mold to quench the plate-shaped molded body.
  • Example 4 A pseudo isotropic reinforcing sheet material was manufactured using the following materials, and a plate-shaped molded product was formed using the obtained pseudo isotropic reinforcing sheet material.
  • the obtained plate-like molded body was molded in a 300 mm square to a thickness of 2.06 mm, and was molded with good quality while maintaining the orientation state of the carbon fibers of the chopped semi-prepreg sheet material before bonding.
  • ⁇ Tensile test of plate-shaped molded product> A tensile test was performed using five test pieces cut into a strip shape having a width of 25 mm and a length of 250 mm from the obtained plate-like molded body.
  • a universal material testing machine manufactured by Shimadzu Corporation; AUTOGRAPH; load cell 10 tons
  • the strain of the test piece was measured using an axial extensometer (manufactured by MTS Japan Co., Ltd .; gauge length 100 mm). Measured.
  • Example 5 A pseudo isotropic reinforcing sheet material was manufactured using the following materials, and a plate-shaped molded product was formed using the obtained pseudo isotropic reinforcing sheet material. ⁇ Materials used> The same material as in Example 1 was used. ⁇ Method for producing semi-prepreg sheet material> The same production as in Example 1 was carried out.
  • a layered body of pseudo-isotropic reinforcing sheet material was created using one sheet material supply mechanism and sheet material cutting mechanism of the manufacturing apparatus shown in FIG.
  • the obtained semi-prepreg sheet material having a width of 180 mm was cut into a width of 5 mm along the fiber direction, and cut into a length of 30 mm along a direction orthogonal to the fiber direction to prepare a chopped prepreg sheet material.
  • the supply speed of the semi-prepreg sheet material was set to about 34 m / min.
  • the obtained chopped semi-prepreg sheet material having a width of 5 mm and a length of 30 mm was naturally dropped onto a conveyor belt made of wire mesh and dispersed.
  • the conveyor belt traveled at a conveyance speed of 3 m / min, and the chopped semi-prepreg sheet material was dispersed in a range of 400 mm in width.
  • a chopped semi-prepreg sheet material was prepared from a semi-prepreg sheet material having a width of 180 mm at a processing speed of 34 m / min, and a quasi-isotropic reinforcing sheet material having a width of 400 mm was produced at a processing speed of 3 m / min.
  • the average number of chopped semi-prepreg sheet materials superimposed on the conveyor belt in the thickness direction was about 5.1.
  • a heating roller having a large number of 5 mm square projections on the surface is set to a heating temperature of 280 ° C., and the chopped semi-prepreg sheet material in a superposed state is partially bonded and integrated, A reinforced sheet material was obtained.
  • the basis weight of the obtained pseudo isotropic reinforcing sheet material was about 337 g / m 2 .
  • a chopped semi-prepreg sheet material having a width of 5 mm and a length of 30 mm is randomly oriented in a two-dimensional direction, and an average number of sheets in the thickness direction is about 5.1 mm from a pseudo-isotropic reinforcing sheet material of about 5.1 sheets.
  • Eight square sheet pieces were prepared. In addition, seven 150 mm square sheet pieces were cut out from a 100 ⁇ m thick resin sheet material formed by stacking five 20 ⁇ m thick PA6 resin films.
  • the created pseudo isotropic reinforcing sheet material and resin sheet material are used as a pseudo isotropic reinforcing sheet material, a resin sheet material, a pseudo isotropic reinforcing sheet material, a resin sheet material, a resin sheet material, a pseudo isotropic reinforcing sheet.
  • a laminate was prepared by alternately laminating materials. The obtained laminate was heated and pressurized in the thickness direction at a heating temperature of 280 ° C. and an applied pressure of 2 MPa, the molding time was set to 5 minutes, and the PA6 resin was infiltrated between the carbon fibers to be in an impregnated state. A plate-like body was formed by cooling to 1.
  • the obtained plate-like molded body was molded to 150 mm square and 2.5 mm in thickness, and was molded with good quality while maintaining the orientation state of the carbon fibers of the chopped semi-prepreg sheet material.
  • the obtained plate-shaped molded article uses a semi-prepreg sheet having a fiber volume content of 55%, the fiber volume content (Vf) of the entire plate is calculated to be about 40%. .
  • a resin layer portion such as a layered portion made of resin alone or a layered resin-rich portion was present between the layers corresponding to the pseudo isotropic reinforcing sheet material. It could be confirmed. The presence of such a resin layer portion is considered to improve the fluidity when molding a plate-shaped molded body.
  • Example 1 A composite material molded article was molded using the following materials. ⁇ Materials used> The same material as in Example 1 was used. ⁇ Method for producing semi-prepreg sheet material> The same production as in Example 1 was carried out.
  • a prepreg sheet material having a width of 180 mm was cut into a width of 5 mm along the fiber direction, and cut into a length of 30 mm along a direction orthogonal to the fiber direction to prepare a chopped prepreg sheet material.
  • Example 3 a 75 mm square plate-shaped piece was cut out from the obtained plate-shaped molded body, set in a flat plate mold set at a heating temperature of 280 ° C., and the plate-shaped piece was subjected to contact pressure 3. After heating for 5 minutes, it was pressurized for 1 minute at a pressure of 5 MPa. The plate-like molded body obtained by heating and pressurizing was taken out and set in a cooled flat plate mold to quench the plate-shaped molded body.
  • a 75 mm square plate-shaped piece was molded so as to spread over a rectangular plate-shaped molded body having a width of about 130 mm and a length of about 120 mm.
  • the resin flow due to pressurization is non-uniform, and many carbon fibers flowed in the direction of easy flow, resulting in many meandering of carbon fibers due to flow, and the shape of the chopped semi-prepreg sheet material collapsed It was confirmed visually.
  • Example 2 A composite material molded article was molded using the following materials. ⁇ Materials used> The same material as in Example 1 was used. ⁇ Method for producing semi-prepreg sheet material> The same production as in Example 1 was carried out.
  • a prepreg sheet material having a width of 180 mm was cut into a width of 5 mm along the fiber direction, and cut into a length of 30 mm along a direction orthogonal to the fiber direction to prepare a chopped prepreg sheet material.
  • Approx. 66 g of chopped semi-prepreg sheet material was charged at once while being dispersed in a 300 mm square square mold by natural dropping to create a laminate.
  • a heating temperature of 280 ° C. and an applied pressure of 2 MPa By heating and pressurizing the prepared laminate at a heating temperature of 280 ° C. and an applied pressure of 2 MPa, setting the molding time to 5 minutes and setting the impregnated state in which the PA6 resin penetrated between the carbon fibers, and gradually cooling, A plate-like molded body having a thickness of 300 mm and a thickness of 1.97 mm was molded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本発明は、薄層のチョップドセミプリプレグシート材を用いて成形時における良好な流動性を実現することができる擬似等方補強シート材及びその製造方法を提供することを目的としている。擬似等方補強シート材Tは、強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されている複数のチョップドセミプリプレグシート材Cを、強化繊維材料の繊維方向が二次元方向にランダムに配向するように一体化して構成されており、チョップドセミプリプレグシート材Cは、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとともに厚さtが含浸状態における厚さtpに対してtp<t≦2×tpの範囲に設定されており、複数のチョップドセミプリプレグシート材Cを強化繊維材料の繊維方向が二次元方向にランダムに配向するとともに厚さ方向の平均枚数が2枚~10枚の範囲となるように重ね合せた状態で接着一体化された層状体Mを備えている。

Description

擬似等方補強シート材及びその製造方法
 本発明は、強化繊維と熱可塑性樹脂からなる複合材料に係るもので、詳しくは、炭素繊維またはガラス繊維等の強化繊維と、ポリプロピレン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂等の熱可塑性樹脂とを複合化させたチョップドセミプリプレグシート材を、繊維方向が二次元方向にランダムに配向するように積層一体化させた擬似等方補強シート材及びその製造方法に関する。
 繊維強化複合材料は、強化繊維材料とマトリクスとなる樹脂材料とを組み合せたもので、軽量で剛性が高く多様な機能設計が可能な材料である。そのため、航空宇宙分野、輸送分野、土木建築分野、運動器具分野等の幅広い分野で用いられている。
 炭素繊維、ガラス繊維等の強化繊維と、ポリプロピレン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂等の熱可塑性樹脂とを複合化させた繊維強化複合材料に関する成形方法については、種々の方法が提案されている。こうした成形方法では、強化繊維の特性を最大限に活かすために長繊維の形態で使用することが望ましく、具体的には、強化繊維を長繊維の形態でシート状に配列した素材(例えば、強化繊維を一方向に引き揃えた一方向強化シート材又はこうした一方向強化シート材により織成した織物等)が用いられる。そして、シート状の素材に熱可塑性樹脂を含浸させてプリプレグシートを作成し、プリプレグシートを設計に応じて種々の方向に積層して積層物を作成する。その後、積層物を加熱加圧して所望の形状に成形することで成形品を得る、といった成形方法が代表的である。
 しかし、こうした成形方法では、プリプレグシート材を種々の方向に積層する装置が高価であり、また、成形品の大きさによっては積層工程が非常に時間のかかる工程となってしまう。このため、得られる成形品は機械的特性には優れるが、一つの成形品を得る時間は長くなるため、製造コストが大きくなる。航空機関連部材等の高精度で信頼性を有する機械的特性が求められる成形品を製造する場合には好適な成形方法であるが、自動車、機械部品、建築部材関連等の分野の成形品を製造する場合には、製造コストを抑える必要があるため適当な成形方法とはいえない。
 成形品の形状に対する適応性が高く、比較的安価な成形品が得られる成形方法としては、例えば、繊維束中に熱可塑性樹脂が含浸した所要幅及び長さのチョップドプリプレグシート材を擬似等方に配向して作成した擬似等方補強シート材を用いて成形品を得る方法が提案されている。こうした方法は、繊維が非連続になっているため成形時の流動性が向上し、複雑な形状のものが比較的短時間で成形できる利点がある。特許文献1では、機械的物性と均一性に優れる擬似等方補強シート材として、例えば、所要の長さ(15~100mm)及び厚さ(0.13mm以下)のチョップドストランドプリプレグを繊維配向が二次元ランダムにシート状に積層させ点溶着にて一体化させた繊維強化熱可塑性樹脂シートが記載されている。
 図6は、強化繊維束中に樹脂材料が含浸して複合材料となる成形の基礎過程を示す説明図である。○印は強化繊維の断面を示しており、ハッチング部分は樹脂材料を示している。非特許文献1に説明されているように、強化繊維束及び樹脂材料を加圧状態に設定した場合に(図6(a))、成形過程では、大別すると、intimate contact(圧密化;図6(b))→impregnation(含浸;図6(c))→fusion(融合;図6(d))の三つの過程を経て進行すると考えられている。
 強化繊維束及び樹脂材料を加圧すると、まず、図6(b)に示すように、強化繊維束が圧力により圧縮される圧密化過程となる。もし、強化繊維束内に大きな隙間があれば、その隙間には強化繊維が押し込まれて強化繊維同士がより接近した状態になると考えられる。次に、圧密化が所定のレベルに到達すると、溶融した樹脂材料が圧力によって繊維の隙間に入り込んでいく含浸過程となる。そして、樹脂材料が強化繊維束内を浸透していき、強化繊維束全体に浸透した段階で樹脂材料の含浸過程が完了する。樹脂材料の含浸過程が完了した後、各強化繊維は、全体に含浸した状態の樹脂材料内において再配列して樹脂材料内に均一に広がり樹脂中に繊維が分散したる融合過程となる。
 強化繊維束中への樹脂材料の含浸過程に着目すると、強化繊維束全体に樹脂材料が浸透した状態を含浸状態とした場合に、含浸状態の前段階において強化繊維束中に樹脂材料が部分的に浸透してまだ完全に全体に浸透していない未含浸状態が存在する。未含浸状態では、強化繊維束には樹脂材料が浸透していない集束した部分が一部存在するとともに樹脂材料には強化繊維束内に浸透していない樹脂部分が一部存在している。特許文献1に記載のような従来のプリプレグシート材は、図6(c)で示すような融合過程を経て、強化繊維束中に樹脂が浸透し、かつ樹脂中に繊維が分散した状態に設定されていると考えられる。
特開2007-262360号公報
川邊和正他、「熱可塑性樹脂プリプレグ装置を開発するための熱可塑性樹脂含浸シミュレーション」、福井県工業技術センター、平成12年度研究報告書、No.17
 従来の成形方法で用いられるチョップドプリプレグシート材は、通常炭素繊維束等の強化繊維束中に熱可塑性樹脂が含浸状態となったプリプレグシート材を所要の幅及び長さに切断して作成される。熱可塑性樹脂は、溶融状態における粘度が高いため、予め熱可塑性樹脂を含浸状態に設定したプリプレグシート材が用いられている。こうしたプリプレグシート材を用いることで、最終的に成形される成形品をボイド(空隙)のない良好な品質で安定して製造することができる。
 一方、強化繊維束中に熱可塑性樹脂が含浸状態に設定された従来のチョップドプリプレグシート材は、強化繊維束全体に熱可塑性樹脂が浸透した状態となっているため、剛性が高くなる。具体的には、シートの厚さが0.1mm以上では、柔軟性の乏しい板状体のようになる。こうしたチョップドプリプレグシート材は、特許文献1に記載されているように、分散させて積層し点溶着させる場合、重ね合せたシート材同士が密着しにくく点溶着が不十分になりやすい。そのため、点溶着をした後にチョップドプリプレグシート材が脱落してしまうおそれがある。脱落を防止するために、点溶着を多数の箇所で行い、チョップドプリプレグシート材をしっかりと溶着することが考えられるが、点溶着した後に得られる繊維強化熱可塑性樹脂シート自体の剛性も高くなってしまい、ドレープ性がなくなって成形時の取扱いが悪くなる。
 上述した擬似等方補強シート材は、1枚又は複数枚のチョップドプリプレグシート材を重ね合せて所要の厚さに形成されており、加熱加圧により成形して最終的に成形品を得るための中間材料である。そのため、製造された擬似等方補強シート材をロール状に巻いて取り扱うことが可能になれば、良好な品質の成形品を効率よく生産することができる。すなわち、ロール状に巻かれた擬似等方補強シート材を用いることで、所要の長さ分を引き出す工程、所要の大きさに切断する工程、切断したシートを積層して積層物を作成する工程を容易に自動化することができ、生産性の向上及び製造コストの低減が期待できる。
 しかし、上述したように、剛性が高くドレープ性のほとんどない繊維強化熱可塑性樹脂シートからなる擬似等方補強シート材の場合には、ロール状の巻き形態での搬送が難しく、板状のカット品としての搬送にならざるを得ず、取り扱い性及び生産性が悪くなることは避けられない。
 また、チョップドプリプレグシート材は、厚さが薄くなると柔軟性が得られるようになるが、一方向に引き揃えられた強化繊維束中に熱可塑性樹脂が含浸状態に設定されたチョップドプリプレグシート材の場合には、厚さが薄くなるに従い、また樹脂の含有率が下がるに従い、繊維方向に裂け目を生じやすくなる。すなわち、強化繊維束全体に熱可塑性樹脂が浸透した含浸状態では、強化繊維と強化繊維との間に熱可塑性樹脂が入り込み、厚さが薄いと、弱い衝撃でも簡単に分離して裂け目が生じるようになる。
 例えば、一方向に引き揃えられた炭素繊維束中にポリアミド6樹脂(PA6)を含浸状態に設定したプリプレグシート材(厚さ50μm及び繊維体積含有率50%)を繊維と直交する方向に切断した場合、切断時の衝撃で繊維方向に裂け目が多数生じていた。つまり、厚さ0.1mm以下で繊維体積含有率の高いプリプレグシート材を使用して、良好な品質のチョップドプリプレグシート材を短時間のうちに多数作成することは困難である。また、得られたチョップドプリプレグシート材を分散させる際にも、チョップドプリプレグシート材に衝撃が加わって裂けてしまい、幅が細くなるおそれがある。こうした設計とは異なる幅のものが混在した擬似等方補強シート材は、設計とは異なるムラのある力学的特性を備えるようになり、安定した品質のシート材が得られないといった課題もある。
 一方、薄層の一方向強化プリプレグシート材を積層した擬似等方積層板の力学的特性に関して良好なデータが得られており(S. Shin, R. Y. Kim, K. Kawabe, Stephen W. Tsai, “Experimental studies of thin-ply laminated composites”, Composite Science and Technology Vol.67, pp.996-1008, 2007.)、こうした結果から、薄層のチョップドプリプレグシート材を用いた擬似等方補強シート材についても、力学的物性の向上が期待される。しかし、薄層のチョップドプリプレグシート材の場合、チョップドプリプレグシート材が積層された状態では、隣接する他のチョップドプリプレグシート材の影響を受けやすくなる。例えば、擬似等方補強シート材を加熱加圧して成形する場合、チョップドプリプレグシート材が流動するようになるが、チョップドプリプレグシート材同士の接触状態はそれぞれ異なった状態となっているため、流動性が悪くなりやすく、また全体的に流動性が不均一になりやすくなる。そのため、得られた成形品の品質が不均一となるおそれがある。
 また、薄層のチョップドプリプレグシート材を用いて所要厚みの成形材を得ようとした場合、薄層のチョップドプリプレグシート材の積層枚数は、厚いチョップドプリプレグシート材に比べて大変多くなる。例えば、厚さ2mmの成形材を得ようとする場合、厚さ40μmのチョップドシート材では平均50枚の積層枚数となるが、厚さ120μmのチョップドシート材の積層枚数に比べて約3倍となる。厚さ方向の積層枚数が増えることは、特許文献1にも記載されているように、チョップドシート材の繊維方向を満遍なくばらつくように配列させやすくなり、得られる補強シート材の擬似等方性がより向上する効果がある。
 しかし、チョップドシート材を厚さ方向に50枚積層する際に、繊維方向が満遍なくばらつくように配向させて積層させることは非常に難しい。チョップドシート材が同じような方向に偏向して配向されて積層すると薄層のチョップドシート材を用いた効果は損なわれ、また、積層枚数のムラも生じ易くなってしまうおそれがある。このような積層時の配向のムラや積層枚数のムラが存在する状態で成形する場合、チョップドシート材の流動性が不均一になるとともに、得られた成形材の力学的特性の低下やムラの原因ともなる。
 そこで、本発明は、薄層のチョップドセミプリプレグシート材を用いて成形時における良好な柔軟性及び流動性を実現することができ、優れた力学的特性を有する成形材を得ることが可能な擬似等方補強シート材及びその製造方法を提供することを目的としている。
 本発明に係る擬似等方補強シート材は、強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されている複数のチョップドセミプリプレグシート材を一体化して実質的に形成されている擬似等方補強シート材であって、前記チョップドセミプリプレグシート材は、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとともに厚さtが含浸状態における厚さtpに対してtp<t≦2×tpの範囲に設定されており、複数の前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するとともに厚さ方向の平均枚数が2枚~10枚の範囲となるように重ね合せた状態で接着一体化された層状体を備えている。さらに、前記チョップドセミプリプレグシート材は、含浸状態における繊維体積含有率が30%~70%の範囲に設定されている。さらに、前記チョップドセミプリプレグシート材は、前記熱可塑性樹脂材料の熱融着により互いに部分的に接着している。さらに、複数の前記層状体を積層一体化している。さらに、前記層状体は、内部における前記チョップドセミプリプレグシート材の接着状態が互いに異なっている。さらに、隣接する前記層状体の間には、少なくとも一部に樹脂層部分が形成されている。
 本発明に係る擬似等方補強シート材の製造方法は、強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されているセミプリプレグシート材を用いた擬似等方補強シート材の製造方法であって、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとともに厚さtが含浸状態における厚さtpに対してtp<t≦2×tpの範囲に設定されている前記セミプリプレグシート材を所要幅及び長さで切断してチョップドセミプリプレグシート材を形成する切断工程と、複数の前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するとともに厚さ方向の平均枚数が2枚~10枚の範囲となるように重ね合せた状態で接着一体化して層状体を形成する一体化工程とを備えている。さらに、前記セミプリプレグシート材は、含浸状態における繊維体積含有率が30%~70%の範囲に設定されている。さらに、前記一体化工程では、前記チョップドセミプリプレグシート材を重ね合せて前記熱可塑性樹脂材料の熱融着により互いに部分的に接着させることで前記層状体を形成する。さらに、前記一体化工程は、複数の前記層状体を積層一体化する。さらに、前記一体化工程では、形成された前記層状体上に前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するように重ね合せて次の前記層状体を形成することで複数の前記層状体を順次積層一体化する。さらに、前記一体化工程では、隣接する前記層状体の間の少なくとも一部に樹脂材料を層状に配置して積層一体化する。
 本発明に係る擬似等方補強シート材は、上記の構成を備えることで、薄層のチョップドセミプリプレグシート材を用いて成形時における良好な柔軟性及び流動性を実現することができ、優れた力学的特性を有する成形材を得ることが可能となる。
未含浸状態の具体例を示す説明図である。 チョップドセミプリプレグシート材を用いて製造された擬似等方補強シート材に関する概略断面図である。 チョップドセミプリプレグシート材を用いて製造された別の擬似等方補強シート材に関する概略断面図である。 擬似等方補強シート材の製造装置に関する概略構成図である。 図4に示す製造装置の変形例に関する概略構成図である。 強化繊維束中に樹脂材料が含浸して複合材料となる成形の基礎過程を示す説明図である。
 以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。
 本発明に係る擬似等方補強シート材は、強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されている複数のチョップドセミプリプレグシート材を、強化繊維材料の繊維方向が二次元方向にランダムに配向するように一体化して形成されている。強化繊維材料の繊維方向が二次元方向にランダムに配向されているので、二次元方向の力学特性が擬似等方性を有するようになる。そして、擬似等方補強シート材は、複数のチョップドセミプリプレグシート材を強化繊維材料の繊維方向が二次元方向にランダムに配向するように一体化するとともにチョップドセミプリプレグシート材の厚さ方向の平均枚数が2枚~10枚の範囲に設定された層状体を1層又は複数層備えている。
 擬似等方補強シート材は、チョップドセミプリプレグシート材を重ね合せた状態で一体化することで、シート材の形態を保持するようになっており、チョップドセミプリプレグシート材により実質的にシート材が形成されているのであれば、上述したチョップドセミプリプレグシート材以外の素材を混在させることも可能である。
 疑似等方補強シート材が複数層の層状体を積層一体化している場合には、隣接する層状体の間の少なくとも一部に樹脂層部分を配置するようにしてもよい。樹脂層部分は、層状体の間において全部又は一部に層状に形成されていればよく、こうした樹脂層部分を含むことで、疑似等方補強シート材の繊維堆積含有率を調整することができる。
 チョップドセミプリプレグシート材は、熱可塑性樹脂材料が未含浸状態に設定されているセミプリプレグシート材を所要の幅及び長さで切断して作成される。セミプリプレグシート材は、強化繊維材料には熱可塑性樹脂材料が浸透していない集束した部分が一部存在するとともに熱可塑性樹脂材料には強化繊維材料の間に浸透していない樹脂部分が一部存在している。こうした樹脂部分が存在することで、チョップドセミプリプレグシート材は柔軟性を備えるとともに繊維方向に容易に裂けることのない強度を備えている。
 チョップドセミプリプレグシート材に用いる強化繊維材料としては、炭素繊維、ガラス繊維、セラミック繊維、アラミド繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、金属繊維等のFRPに用いられる高強度・高弾性率の無機繊維や有機繊維等が挙げられる。
 また、チョップドセミプリプレグシート材に用いる熱可塑性樹脂材料は母材(マトリックス)樹脂となるもので、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12等)、ポリアセタール、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルエーテルケトン等が使用される。また、これらの熱可塑性樹脂を2種類以上混合して、ポリマーアロイにして母材(マトリックス)樹脂として使用してもよい。
 セミプリプレグシート材は、強化繊維材料全体に熱可塑性樹脂材料が完全に浸透していない未含浸状態に設定されており、図1は、未含浸状態の具体例を示す説明図である。図1では、○印は強化繊維材料の断面を示しており、ハッチングで示す部分が熱可塑性樹脂材料を示している。
 図1(a)に示す例では、集束した強化繊維材料の両表面にシート状の熱可塑性樹脂材料が存在し、熱可塑性樹脂材料の一部が表面部分の強化繊維材料の間に浸透し、中心部分の強化繊維材料の間には熱可塑性樹脂材料が浸透せずに集束した状態のままとされている。熱可塑性樹脂材料についても強化繊維材料の両表面側において一部浸透しないままとなっている。このような未含浸状態は、強化繊維束の両面に熱可塑性樹脂シート材を当接させた後加熱加圧して実現することができる。
 図1(b)に示す例では、集束した強化繊維材料の内部に熱可塑性樹脂材料が離散的に存在しており、熱可塑性樹脂材料は部分的に強化繊維材料の間に浸透している。このような未含浸状態は、粉体状又は短繊維状の熱可塑性樹脂材料を強化繊維材料の間に分散させた後加熱加圧して熱可塑性樹脂材料を溶融させることで、部分的に強化繊維材料の間に浸透させて実現することができる。
 図1(c)に示す例では、シート状の熱可塑性樹脂材料の両面に強化繊維材料が存在しており、熱可塑性樹脂材料の表面部分が強化繊維材料の間に部分的に浸透しており、強化繊維材料には熱可塑性樹脂材料が浸透していない部分が存在している。このような未含浸状態は、熱可塑性樹脂シート材の両面に強化繊維束を当接させた後加熱加圧して実現することができる。
 図1に示す具体例では、強化繊維材料については、開繊処理により幅広で薄層のシート材に形成して用いることで、品質の良好なセミプリプレグシート材を得ることができる。また、セミプリプレグシート材は、具体例として示した3パターンのいずれかの状態であってもよいし、3パターンのうち複数のパターンが混在した状態であってもよい。
 セミプリプレグシート材は、厚さ方向の平均繊維本数が2本~10本の範囲に設定されていることが好ましい。未含浸状態にあるセミプリプレグシート材において、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとき、熱可塑性樹脂材料が浸透していない繊維は数本単位となる。そのため、本セミプリプレグシート材をチョップドセミプリプレグシート材として作成される擬似等方補強シート材から複合材料成形品を得るとき、加熱加圧により未含浸状態から含浸状態と成形するが、含浸状態に至る時間が短時間となり、かつボイドの少ない含浸状態とすることができ、良好な品質の複合材料成形品を短時間で得ることが可能となる。
 厚さ方向の平均繊維本数は、後述するように、含浸状態における厚さ、繊維体積含有率及び強化繊維材料の単糸直径に基づいて算出することができる。
 上述したように、未含浸状態のセミプリプレグシート材は、熱可塑性樹脂材料において強化繊維材料に浸透していない樹脂部分が存在しているので、強化繊維の繊維方向の裂け目が生じにくくなる。未含浸状態のセミプリプレグシート材は、厚さ方向に圧縮して含浸状態となるため、含浸状態に比べて厚くなっている。そのため、含浸状態の厚さと比較することで未含浸状態の程度を定量的に設定することができる。
 具体的には、セミプリプレグシート材の厚さtは、含浸状態の厚さをtpとすると、以下の式を満たすように設定することが好ましい。
p<t≦2×tp
当該セミプリプレグシート材は厚さ方向の平均繊維本数が2本~10本と少ない、つまり薄い状態に設定されている。このような状態にあるセミプリプレグシート材において、厚さtが設定範囲内である場合には、セミプリプレグシート材は、チョップドセミプリプレグシート材を作成する際に強化繊維材料の繊維方向に沿って切断しても、切断面に強化繊維材料の毛羽等がほとんど発生しなくなる。厚さtが含浸状態の厚さtpの2倍を超える場合には、強化繊維材料の間に浸透する熱可塑性樹脂材料が少なく未含浸部分が多くなるため、繊維方向に沿って切断すると、切断面において強化繊維材料の毛羽が多くなる。チョップドプリプレグシート材の端面に毛羽が多くなると、後述するようにチョップドセミプリプレグシート材を分散する際に毛羽によって均一な分散がしにくくなる。そのため、チョップドセミプリプレグシート材が不均一に分散した補強シート材になり、成形品の力学的特性低下の原因になる。また、補強シート材を用いて成形する際に、チョップドセミプリプレグシート材の毛羽の影響で流動特性が悪くなるおそれがある。
 セミプリプレグシート材又はチョップドセミプリプレグシート材(以下「対象シート材」という。)の厚さtは、実測により求めることができる。例えば、JIS B 7502(国際規格ISO 3611に対応)に規定する最小表示量0.001mmの外側マイクロメータを用い、複数箇所で実測した厚さの平均値を算出して求めることができる。含浸状態における厚さtpは、以下の2通りの方法で求めることができる。
(1)対象シート材を加熱加圧して強化繊維材料全体に熱可塑性樹脂材料を浸透させた含浸状態のプリプレグシート材を作成し、作成されたプリプレグシート材を対象シート材と同様に複数個所で厚さを実測し、その平均値を算出して厚さtpとする。
(2)対象シート材に使用されている強化繊維材料の比重ρ1(g/cm3)及び目付けW1(g/m2)、熱可塑性樹脂材料の比重ρ2(g/cm3)及び目付けW2(g/m2)である場合に、含浸状態の厚さtpは、以下の式で求める。
p(mm)=((W1/ρ1)+(W2/ρ2))/1000
 また、対象シート材の含浸状態における繊維体積含有率は、30%~70%に設定することが好ましい。繊維体積含有率が30%より低くなると、長繊維の補強効果が小さくなり、繊維体積含有率が70%を超えると、強化繊維束中への樹脂含浸が難しくなり、ボイドが発生しやすくなって品質が劣化する。
 含浸状態における厚さtp(mm)、繊維体積含有率Vf(%)及び単糸直径をφ(mm)である場合に、厚さ方向の平均繊維本数nは、以下の式で算出される。
n(本)=(tp×(Vf/100))/φ
例えば、含浸状態における厚さ0.05mm、繊維体積含有率60%及び単糸直径7μmの場合、厚さ方向の平均繊維本数nは、
(0.05×(60/100))/0.007=4.29
で、約4.3本と計算される。
 なお、強化繊維材料として炭素繊維を用いた対象シート材を含浸状態とした場合における厚さtpは、20μm~80μmの範囲に設定することが好ましい。炭素繊維の単糸直径が5μm~7μm、繊維体積含有率が30%~70%である場合、含浸状態における厚さ方向の平均繊維本数が2~10本の範囲に設定することを考えると、厚さtpは、20μm~80μmの範囲となる。したがって、未含浸状態における厚さtは、20μm<t≦160μmに設定される。
 チョップドセミプリプレグシート材において、樹脂含浸後の厚さtpが20μm~80μmと薄層であるとき、複合材料成形品になった際、チョップドセミプリプレグシート材が重なった部分の隙間を狭くすることができる。これにより、繊維の蛇行を少なくして繊維本来の特性を十分に活かすことが可能となったり、また、隙間空間に生じ易いボイドを防止できたりする。
 チョップドセミプリプレグシート材は、セミプリプレグシート材を所要の幅及び長さに切断することによって得られる。具体的には、幅を1mm~30mm及び長さを5mm~100mmの範囲に設定することが好ましい。幅が1mmより小さくなるとセミプリプレグシート材を切断する際に毛羽の量が多くなり、擬似等方補強シート材として流動性が悪くなって、得られる複合材料成形品の力学的特性が低下する。幅30mmより大きくなると擬似等方補強シート材の力学的特性である擬似等方性が低下してしまう。長さが5mmより小さくなると強化繊維材料の引張特性が十分に得られず、得られる複合材料成形品の力学的特性が低下する。長さが100mmより大きくなると、チョップドセミプリプレグシート材同士の重なりが多くなり流動する際の影響度合いが大きくなり、擬似等方補強シート材としての流動性が悪くなる。
 図2は、上述したチョップドセミプリプレグシート材を用いて製造された擬似等方補強シート材に関する概略断面図である。この例では、擬似等方補強シート材Tは、複数のチョップドセミプリプレグシート材Cが、自然落下等により分散させてランダムに重ね合せることで、強化繊維材料の繊維方向が二次元方向にランダムに配向するように重ね合せた状態となっている。そして、重ね合せた状態で加熱加圧することでチョップドセミプリプレグシート材C同士が接着して全体が層状体Mとして一体化されている。
 なお、層状体Mは、チョップドセミプリプレグシート材Cにより実質的にシート状の形態を維持するように一体化しており、チョップドセミプリプレグシート材Cにより実質的にシート状の形態が維持されているのであれば、上述したチョップドセミプリプレグシート材以外の素材を混在させることも可能である。
 擬似等方補強シート材Tは、チョップドセミプリプレグシート材Cの厚さ方向の平均枚数が2枚~10枚の範囲に設定されていることが好ましく、さらに好ましくは3枚~7枚の範囲に設定する。こうした枚数範囲に設定することで、加熱加圧する際の加圧力が小さくても確実に接着一体化することができ、強化繊維材料へのダメージを極力小さくすることが可能となる。そして、チョップドセミプリプレグシート材Cの厚さを0.1mmより薄く設定することが好ましく、こうした薄いチョップドセミプリプレグシート材Cを重ね合せることで、擬似等方補強シート材T全体の厚さが薄くなって内部の隙間が小さくなり、柔軟性及びドレープ性を備えるようになる。そのため、ロール状に巻き取ることも可能となり、取扱いが格段に向上する。
 また、擬似等方補強シート材Tを積層して成形する場合には、擬似等方補強シート材Tが薄く板状に形成されているため、積層した状態でも曲面状の成形に対して十分対応することができる。薄層のチョップドセミプリプレグシート材Cが平均枚数2枚~10枚の範囲で重ね合せた積層状態では、擬似等方補強シート材Tの表面はほぼ平面状に形成されている。そして、擬似等方補強シート材Tを積層した後加熱加圧して成形する場合に、擬似等方補強シート材Tの接触面では、チョップドセミプリプレグシート材Cの端縁等が突出して流動を妨げることがなく、スムーズに流動するようになり、良好な流動性を実現することができる。
 また、セミプリプレグシート材を用いて得られるチョップドセミプリプレグシート材は、図1(b)及び(c)に示すように、両表面に熱可塑性樹脂材料が浸透していない繊維部分が露出している。チョップドセミプリプレグシート材同士が接触して露出した繊維部分が擦れると、繊維部分の擦れによる接触抵抗が生じるようになり、チョップドセミプリプレグシート材を重ね合せていくとランダムな方向にばらけにくくなる。そのため、チョップドセミプリプレグシート材を厚さ方向に重ね合せる平均枚数を2枚~10枚の範囲とすることで、繊維部分の擦れによる接触抵抗が軽減されて、チョップドセミプリプレグシート材がランダムな方向にばらけやすくなる。
 図3は、上述したチョップドセミプリプレグシート材を用いて製造された別の擬似等方補強シート材に関する概略断面図である。この例では、擬似等方補強シート材T’は、複数のチョップドセミプリプレグシート材Cが、自然落下等により分散させてランダムに重ね合せることで、強化繊維材料の繊維方向が二次元方向にランダムに配向するように重ね合せた状態とし、重ね合せた状態で加熱加圧することでチョップドセミプリプレグシート材C同士を接着一体化した複数の層状体M1~M3を積層一体化して構成されている。
 擬似等方補強シート材T’は、層状体M1の上面の境界面K1及び層状体M2の上面の境界面K2により3層構造に形成されており、境界面K1及びK2により区分された層状体M1~M3は、それぞれ重なり合った状態のチョップドセミプリプレグシート材Cを接着一体化して構成されている。そして、チョップドセミプリプレグシート材Cは、接着前の形態を維持したまま隣接するチョップドセミプリプレグシート材Cと接着しており、チョップドセミプリプレグシート材Cの間には隙間が形成されている。
 また、境界面K1及びK2では、層状体内の接着状態(接着位置、接着力等)が隣接する層状体とは異なっており、加熱・加圧により凹凸の少ない表面に形成された層状体の上面にチョップドセミプリプレグシート材Cを重ね合せているため層状体間が層状体内に比べてずれやすくなっている。そのため、層状体間の自由度が層状体内よりも大きくなって、擬似等方補強シート材T’の柔軟性及びドレープ性を高めることができ、ロール状に巻き取ることができるようになり、取扱いが格段に向上する。また、擬似等方補強シート材T’を積層した後加熱加圧して成形する場合に、擬似等方補強シート材T’内の境界面及びシート材同士の接触面では互いのチョップドセミプリプレグシート材C同士が係合して流動しにくくなることが少なくなり、スムーズに流動するようになり、良好な流動性を実現することができる。
 従来技術のように、チョップドセミプリプレグシート材Cを上述した3層分と同量だけ重ね合せ、加熱・加圧により一度に接着一体化した場合には、全体が同じ接着状態となるため、板状に形成されて柔軟性及びドレープ性が失われるが、厚さ方向の平均枚数を2枚~10枚の範囲となるように重ね合せた状態で順次接着一体化して複数の層状体を積層することで柔軟性及びドレープ性を維持した擬似等方補強シート材を得ることができる。
 また、複数の層状体を重ね合せた状態に積層一体化する場合に、隣接する層状体の間の少なくとも一部に樹脂層部分を配置することもできる。例えば、2層以上の層状体が積層された部分の間全体に樹脂層部分を配置してもよく、また、隣接する層状体の間に部分的に樹脂層部分を配置するようにしてもよい。樹脂層部分は、樹脂のみが層状に形成されている部分や繊維体積含有率が周囲より低下した層状の樹脂リッチな部分に形成されている。
 こうした樹脂層部分が層状体の間に存在することで、疑似等方補強シート材を用いた複合材料成形品では、繊維体積含有率を低下させるとともに力学特性を変化させることができる。例えば、成形品に対して曲げ変形が加えられた場合には、樹脂層部分がせん断変形することで湾曲変形しやすくなる。樹脂層部分を形成する場合には、フィルム状、シート状、粒状又は短繊維状の樹脂材料を層状体の間に配置して層状体とともに加熱・加圧することで、樹脂材料を融着させて樹脂層部分とすることができる。樹脂層部分には、チョップドセミプリプレグシート材に用いる熱可塑性樹脂材料と同じものを使用することができるが、異なる熱可塑性樹脂材料を使用することも可能である。
 図4は、擬似等方補強シート材の製造装置に関する概略構成図である。製造装置は、シート材供給機構1、シート材切断機構2、チョップ材搬送機構3、シート一体化機構4及びシート巻取機構5を備えている。シート材供給機構1は、3インチ紙管等に巻回されたセミプリプレグシート材Sを繰り出して供給する。シート材供給機構1は、シート材切断機構2における切断動作がスムーズに行われるようにセミプリプレグシート材Sに所要の張力を付与しながら供給する。例えば、モータ等の駆動手段によりセミプリプレグシート材Sを所定の供給速度で送り出すようにしてもよく、また、シート材切断機構2により引き出されるセミプリプレグシート材Sが所定の供給速度となるようにブレーキ機構を備えるようにすることもできる。
 シート材切断機構2は、縦方向切断部6及び横方向切断部7を備えており、縦方向切断部6は、供給方向に沿ってセミプリプレグシート材Sを所定幅で帯状に切断する。縦方向切断部6としては、ギャングカット方式、シャーカット方式、スコアーカット方式といった公知のシート切断手段を用いることができる。ギャングカット方式は、回転丸刃である上刃と下刃をラップさせ、その間に微小なクリアランスを設けてセミプリプレグシート材Sを挟み、せん断力により切断する。シャーカット方式は、逃げ角がついた鋭角な刃先を持つ回転丸刃の上刃が、その先端を下刃(回転丸刃)側面に押し付けられるようにしてセットされ、その部分にセミプリプレグシート材Sを走行させて切断する。鋏で切断する機構に類似しており、シート材を逃がすことなく切断することができる。スコアーカット方式は、熱処理等により高硬度に形成された下刃ロールにセミプリプレグシート材Sを接触させながら走行させ、その部分に回転丸刃の上刃ロールを押さえ付けながら、セミプリプレグシート材Sを切断する。なお、セミプリプレグシート材Sが予めチョップドセミプリプレグシート材Cと同幅に切断された形態で紙管等に巻回されて供給される場合には、縦方向切断部6を使用する必要はない。
 横方向切断部7は、供給方向に所定幅に切断されたセミプリプレグシート材Sを供給方向と直交する方向に切断して、所定長さのチョップドセミプリプレグシート材Cを作成する。横方向切断部7としては、例えば、周囲に複数の切断用刃物を所定間隔を置いて軸方向に沿うように配列されたカットロールを高硬度の回転ロールに対向配置した切断装置が挙げられる。回転ロールにセミプリプレグシート材Sを接触させて走行させながら、カットロールの切断用刃物を順次押し付けて切断することで、所定長さのチョップドセミプリプレグシート材Cを作成することができる。また、切断用刃物の取り付け間隔が異なるカットロールを用いることで、異なる長さのチョップドセミプリプレグシート材Cを作成することもできる。例えば、切断用刃物の取り付け間隔を10mm、50mm、100mmに設定することで、その間隔と同じ長さのチョップドセミプリプレグシート材Cを同じ割合で作成することができる。また、切断用刃物の取り付け間隔を10mm、50mm、100mm、100mmと設定することで、100mm長さのチョップドセミプリプレグシート材Cの割合を多くすることができる。異なる長さのチョップドセミプリプレグシート材Cを用いることで、得られる擬似等方補強シート材Tの力学的特性及び流動性をコントロールすることも可能となる。例えば、チョップドセミプリプレグシート材Cの長さが長い場合には、擬似等方補強シート材Tを用いた積層成形品は力学的特性が向上するが、成形時の流動性は低下する。逆に、チョップドセミプリプレグシート材Cの長さが短い場合には、擬似等方補強シート材Tを用いた積層成形品の力学的特性が低下するが、流動性は向上する。異なる長さのチョップドセミプリプレグシート材Cを混在させることで、力学的特性及び流動性のバランスが最適化された擬似等方補強シート材を得ることが可能となる。
 チョップ材搬送機構3は、3つの分配コンベヤ8~10を備えており、切断されたチョップドセミプリプレグシート材Cを3つに分配して搬送する。各分配コンベヤに分配される量は、等量ずつとなるように設定することが好ましい。各分配コンベヤの搬出位置は、搬送方向に所定間隔を置いてずらして設定されている。チョップドセミプリプレグシート材Cは、各分配コンベヤにより連続搬送されて搬出位置において連続落下するようになる。落下するチョップドセミプリプレグシート材Cの単位時間当たりの搬出量は、チョップドセミプリプレグシート材Cの単位時間当たりの供給量及び分配コンベヤの搬送速度に基づいて設定される。
 シート一体化機構4は、落下したチョップドセミプリプレグシート材Cを搬送ベルト12により受けて搬送する搬送コンベヤ11及び搬送されるチョップドセミプリプレグシート材Cを一体化する3つの接着ロール13~15を備えており、複数のチョップドセミプリプレグシート材を強化繊維材料の繊維方向が二次元方向にランダムに配向させて重ね合せた状態で各接着ロールにより一体化して層状体を形成し、形成された3つの層状体を積層一体化する。
 搬送コンベヤ11は、チョップドセミプリプレグシート材Cの3つの搬出位置の下方に配置されて、無端状の搬送ベルト12が一対の搬送ローラに張架されて構成されており、搬送ベルト12の搬送方向が3つの搬出位置に沿うように設定されている。搬送ベルト12は、耐熱ゴム材料、金属材料等の耐熱性を有する材料からなり、3つの搬出位置から落下するチョップドセミプリプレグシート材Cをそれぞれ3つの積層位置で受けるように設定されている。3つの積層位置は所定間隔を空けて配置されており、各積層位置の下流側に接着ロール13~15がそれぞれ配置されている。各接着ロールは、搬送ベルト12の搬送面側に配置された加熱ローラ及び搬送面とは反対側に配置された押圧ローラを備えている。そして、搬送ベルト12により重なり合った状態で搬送されるチョップドセミプリプレグシート材Cを加熱ローラ及び押圧ローラで挟持して加熱加圧することで、チョップドセミプリプレグシート材Cを層状に接着一体化する。
 各搬出位置から各積層位置に落下するチョップドセミプリプレグシート材Cは、繊維方向がランダムな方向に向きながら散るように落下し、搬送ベルト12上において繊維方向が2次元方向にランダムに配向して重なり合うようになる。重なり合うチョップドセミプリプレグシート材Cは、均一に分散して重なり合っていることが好ましく、重なり合う厚さ方向の平均枚数を2枚~10枚の範囲となるように設定することが好ましい。さらに好ましくは、平均枚数を3枚~7枚の範囲となるように設定するとよい。
 チョップドセミプリプレグシート材Cの厚さ方向の平均枚数を2枚~10枚の範囲となるように設定することで、接着ロールによる接着一体化を行う際に、チョップドセミプリプレグシート材Cを構成する繊維方向の配向乱れを極力小さくすることが可能となる。また、1箇所の積層位置における厚さ方向の枚数を小さくして複数の積層位置で並行してチョップドセミプリプレグシート材Cを配置することで、擬似等方補強シート材の製造速度を高速化させることが可能となる。そして、チョップドセミプリプレグシート材Cの分散が均一となっており、加熱加圧して接着する際に均一な接着状態を実現することができる。
 厚さ方向に重なり合うチョップドセミプリプレグシート材Cの平均枚数が10枚より多くなると、重なり合うすべてのチョップドセミプリプレグシート材Cを熱融着等により接着させるために加圧力を高める必要があるが、加圧力が高くなるとチョップドセミプリプレグシート材C内の強化繊維が蛇行したり、場合によっては切断されてしまうおそれがある。また、厚さ方向の枚数が10枚を超えると、重なり合うすべてのチョップドセミプリプレグシート材Cが所定の加熱温度まで到達するのに時間がかかり、確実に接着一体化するためには搬送速度を高速化することができなくなる。
 また、厚さ方向の平均枚数を3枚以上に設定することで、積層位置においてチョップドセミプリプレグシート材で隙間なく重なり合うようにすることができ、厚さ方向の平均枚数を7枚以内に設定することで、重なり合ったチョップドセミプリプレグシート材Cを熱融着等により部分接着させる場合でも短時間で確実に接着一体化することが可能となる。
 そして、厚さ方向の平均枚数は、落下するチョップドセミプリプレグシート材Cの単位時間当たりの搬出量に対して搬送コンベヤ11の搬送速度を制御することで調整することができる。チョップドセミプリプレグシート材Cが落下する際に繊維方向がランダムな方向となるように、回転羽根により散らしたり、エアを吹き付けて散らすようにしてもよい。
 分配コンベヤ8の搬出位置から落下して最も上流側の積層位置に重なり合ったチョップドセミプリプレグシート材Cは、搬送ベルト12により搬送されながら接着ロール13の加熱ローラ13a及び押圧ローラ13bにより加熱加圧され、チョップドセミプリプレグシート材Cに含まれる熱可塑性樹脂材料が加熱により部分的に溶融して互いに接着することで、層状に一体化して層状体M1が形成される。加熱ローラ13aの加熱温度は、搬送される重なり合った状態のチョップドセミプリプレグシート材Cが確実に接着一体化する温度に設定されている。また、押圧ローラ13bによる加圧力は、重なり合った状態のチョップドセミプリプレグシート材Cを互いに密着させて加熱ローラ13aに押し付けるとともに、チョップドセミプリプレグシート材C内の強化繊維材料に影響が及ばない程度に設定されている。
 図4に示す加熱ローラ13aは、周面が凹凸形状に形成されており、チョップドセミプリプレグシート材Cに凸部分を接触させて部分的に加熱し、熱融着させることで接着させて一体化させている。部分接着させる場合には、部分接着位置及び数は、チョップドセミプリプレグシート材Cが脱落しないように設定すればよく、具体的には、1つのチョップドセミプリプレグシート材Cに1~5カ所程度の部分接着がされていればよい。なお、周面を円筒面として全面的に加熱してチョップドプリプレグシート材C同士を全面的に接着させることも可能で、また、加熱温度や加圧力をコントロールすることでチョップドセミプリプレグシート材Cを部分的に接着できるようにもなり、その部分的な範囲も制御できるようになる。
 接着ロール13により重なり合った状態のチョップドセミプリプレグシート材Cが層状に一体化された層状体M1は、搬送ベルト12により搬送されていき、次の積層位置において、上面に分配コンベヤ9よりチョップドセミプリプレグシート材Cが落下して重なり合うように載置される。そして、層状体M1の上面にチョップドセミプリプレグシート材Cが重なり合った状態で搬送ベルト12により搬送されながら接着ロール14の加熱ローラ14a及び押圧ローラ14bにより加熱加圧される。加熱ローラ14aの加熱により重なり合った状態のチョップドセミプリプレグシート材Cは、熱可塑性樹脂材料が加熱により部分的に溶融して互いに接着することで、層状に一体化して層状体M2が形成される。加熱ローラ14aの加熱温度は、重なり合った状態のチョップドセミプリプレグシート材Cが確実に接着一体化するが、さらに、層状体M1と重なり合った状態のチョップドセミプリプレグシート材Cとの間の境界面においても接着状態となって層状体M1及びM2が一体化するようになる加熱温度に設定されている。
 接着ロール14により層状に一体化された層状体M1及びM2は、搬送ベルト12により搬送されていき、次の積層位置において、上面に分配コンベヤ10よりチョップドセミプリプレグシート材Cが落下して重なり合うように載置される。そして、層状体M2の上面にチョップドセミプリプレグシート材Cが重なり合った状態で搬送ベルト12により搬送されながら接着ロール15の加熱ローラ15a及び押圧ローラ15bにより加熱加圧される。加熱ローラ15aの加熱により重なり合った状態のチョップドセミプリプレグシート材Cは、熱可塑性樹脂材料が加熱により部分的に溶融して互いに接着することで、層状に一体化して層状体M3が形成される。加熱ローラ15aの加熱温度は、重なり合った状態のチョップドセミプリプレグシート材Cが確実に接着一体化するが、さらに、層状体M2と重なり合った状態のチョップドセミプリプレグシート材Cとの間の境界面においても接着状態となって層状体M1~M3が一体化するようになる加熱温度に設定されている。
 こうして接着ロール15により層状体M1~M3が一体化された擬似等方補強シート材Tが形成される。上述したように、チョップドセミプリプレグシート材Cを3回に分けて順次重ね合せて接着一体化しているため、擬似等方補強シート材Tは、重なり合った状態のチョップドセミプリプレグシート材Cを接着一体化した層状体が3層積層して一体化している。
 シート巻取機構5は、接着ロール15により一体化されて形成された擬似等方補強シート材Tを紙管等に巻き付けてロール状に巻き取る。上述したように、擬似等方補強シート材Tは、柔軟性及びドレープ性を有しているため、従来の熱硬化性樹脂プリプレグシート材又は熱可塑性樹脂プリプレグシート材と同様に、直径3インチ(約76mm)~12インチ(約305mm)の紙管等に巻き取ることができ、従来のプリプレグシート材と同様に容易に取り扱うことが可能となる。
 図5は、図4に示す製造装置の変形例に関する概略構成図である。この例では、3つのシート材供給機構1A~1C及び3つのシート材切断機構2A~2Cを設置し、それぞれの機構においてチョップドセミプリプレグシート材Cを作成して、シート一体化機構4の積層位置に供給するようにしている。チョップドセミプリプレグシート材Cの作成速度が3倍となるため、擬似等方補強シート材の製造速度を高速化することが可能となる。
 以上説明した例では、層状体を3層積層した擬似等方補強シート材を製造しているが、シート一体化機構の加熱ロールの設置数を適宜設定して各加熱ロールに対してチョップドセミプリプレグシート材を供給することで、2層以上の層状体を積層した擬似等方補強シート材を製造することができる。また、シート一体化機構に1層分のみチョップドセミプリプレグシート材Cを供給することで、図2に示す1つの層状体からなる擬似等方補強シート材を製造することもできる。
 シート一体化機構では、隣接する層状体の間の少なくとも一部に樹脂材料を層状に配置して樹脂層部分を形成するようにしてもよい。例えば、チョップドセミプリプレグシート材により層状体を作成した後、その上面にフィルム状、シート状、粒状又は短繊維状の樹脂材料を供給して層状に配置して次の層状体を作成して積層することで、樹脂層部分を含む疑似等方補強シート材を製造することができる。
 製造された擬似等方補強シート材を用いて複合材料成形品を成形する場合、擬似等方補強シート材を1枚もしくは厚さ方向に複数枚積層し、加熱加圧して成形することで複合材料成形品を得ることができる。擬似等方補強シート材は、上述したように柔軟性及びドレープ性を有しているため、平板形状以外の曲面形状や凹凸形状等の金型形状に対しても形状に沿わせて成形することが可能となる。
 なお、疑似等方補強シート材を複数枚積層する際に、樹脂材料を間に配置して複合材料成形品を成形することで、複合材料成形品の内部の少なくとも一部に樹脂層部分を形成することができる。樹脂層部分は、疑似等方補強シート材の間において全部又は一部に層状に形成されていればよい。樹脂材料を疑似等方補強シート材の間に配置する場合には、フィルム状、シート状、粒状又は短繊維状の樹脂材料を供給して層状に配置すればよい。樹脂材料は、疑似等方補強シート材に含まれる樹脂とは異なる樹脂を用いてもよい。
 擬似等方補強シート材及び樹脂シート材を必要箇所に必要枚数積層して、加熱加圧して得られる複合材料成形品は、加熱温度及び加圧力を調整することで、層状の樹脂層部分を形成することができる。形成される樹脂層部分は、樹脂のみが層状に形成されている部分や繊維体積含有率が周囲より低下した層状の樹脂リッチな部分に形成される。こうした樹脂が多くなった部分が存在することで、流動性が良くなり、成形時の賦形性が向上する。
 また、チョップドセミプリプレグシート材の厚さを強化繊維材料の単糸直径の2倍~10倍の範囲に設定することで、加熱加圧して成形する際に、熱可塑性樹脂材料が強化繊維材料の間に含浸し易くなって、ボイドの発生を抑止することができる。そして、擬似等方補強シート材は、薄層のチョップドセミプリプレグシート材を厚さ方向の平均枚数2枚~10枚の範囲で重ね合せた層状体により構成されており、成形の際の流動性を高めることができる。例えば、図3に示す3層構造の擬似等方補強シート材を加熱加圧して成形する際に、擬似等方補強シート材が加圧加熱されて含浸状態となり、チョップドセミプリプレグシート材内の熱可塑性樹脂材料が溶融して強化繊維材料が流動するようになる。擬似等方補強シート材内の層状体間では、チョップドセミプリプレグシート材がずれやすくなっているため、層状体の境界面に沿う強化繊維材料の流動性が高められるとともに均一化される。そのため、擬似等方補強シート材を複数枚積層した場合でも、積層体全体の流動性が高くなるとともにムラがなくなり、良好な品質の成形品を得ることができる。
 従来技術のように、チョップドセミプリプレグシート材を厚さ方向に数十枚重ね合せた状態で加熱加圧して成形する場合、2次元方向にランダムに配向された強化繊維材料が互いに影響し合うため、溶融した熱可塑性樹脂材料の流動性にもムラが生じるようになり、強化繊維材料の流動性が低下する。これに対して、上述したように、厚さ方向の平均枚数を2枚~10枚の範囲となるように重ね合せた状態で接着一体化した複数の層状体の層構造とすることで、数十枚重ね合せた場合でも流動性の向上及び均一化を図ることが可能となる。
 また、強化繊維束中に樹脂が含浸したチョップドプリプレグシート材において、0.1mm以上の厚さのチョップドプリプレグシート材を重ね合せた場合、チョップドプリプレグシート材の間の隙間が大きくなり、加熱・加圧して成形する際に、隙間にチョップドプリプレグシート材が押し込まれて強化繊維材料が蛇行するおそれがあり、チョップドプリプレグシート材の変形により層状体の内部及び層状体間の境界面の形状が変化して、上述した流動性の向上及び均一化が得られなくなるおそれがある。そのため、チョップドプリプレグシート材の厚さは0.1mmより薄くすることが好ましい。より具体的には、20μm~80μmの厚さが好ましい。
 以上説明したように、本発明に係る擬似等方補強シート材は、未含浸状態のチョップドセミプリプレグシート材を用いており、チョップドセミプリプレグシート材は、内部に強化繊維材料の集束部分や熱可塑性樹脂材料の樹脂部分が一部存在しているため、柔軟性及びドレープ性を有している。そして、こうした特性を有するチョップドセミプリプレグシート材を厚さ方向の平均枚数が2枚~10枚の範囲に設定して重ね合せた状態で接着一体化することで層状体を形成しているので、層状体自体も柔軟性及びドレープ性を有しており、また層状体を複数積層した場合でも層状体間ではずれやすくなって自由度が大きくなるため、擬似等方補強シート材に柔軟性及びドレープ性を持たせることができる。さらに、層状体の接着部分と層状体同士の接着部分をずらす効果として、層状体間のずれやすさを向上させることができる。
 また、本発明に係る擬似等方補強シート材を製造する場合に、未含浸状態のセミプリプレグシート材を用いることで、切断時の衝撃による裂け目等が生じることなく、良好な品質チョップドセミプリプレグシート材を得ることができる。
 また、セミプリプレグシート材を切断する際に、セミプリプレグシート材は未含浸状態であるため、強化繊維材料の集束部分が切断により毛羽が発生しやすくなる。そのため、セミプリプレグシート材の厚さ方向の平均繊維本数が2本~10本の範囲に設定されるとともに、厚さtが含浸状態の厚さtpに対してtp<t≦2×tpの範囲に設定することで、熱可塑性樹脂材料の浸透していない集束部分の繊維本数を少なくするとともに、樹脂が含浸していない部分の繊維方向の長さを短くしている。このような状態の集束部分では、切断による毛羽が生じにくくなるとともに毛羽となって飛び出す繊維長さが短くなって製造する際の影響が抑えられる。
 また、本発明に係る擬似等方補強シート材は、チョップドセミプリプレグシート材を厚さ方向平均枚数が2枚~10枚の範囲で重ね合せて接着一体化した層状体により構成されているので、擬似等方補強シート材を加熱加圧して成形を行う際に層状体内では均一な流動性が得られるようになり、また複数の層状体を積層一体化している場合には層状体の境界面に沿う方向の流動性を均一化することができる。そのため、チョップドセミプリプレグシート材が境界面に沿ってスムーズに流動して強化繊維材料の配向の乱れが抑えられて真直性が維持されるようになり、擬似等方性が維持された状態で成形することが可能となる。
 また、本発明に係る擬似等方補強シート材は、厚さ方向の平均繊維本数が2本~10本の範囲に設定されるチョップドセミプリプレグシート材を使用して厚さ方向の平均枚数が2枚~10枚の範囲で重ね合せて一体化している。薄層のチョップドセミプリプレグシート材を使用することにより、チョップドセミプリプレグシート材同士の重なりによる繊維の蛇行を極力小さくすることができ、チョップドセミプリプレグシート材を平面的に存在させて接着一体化することができる。そのため、擬似等方補強シート材を加熱加圧して成形を行う際にチョップドセミプリプレグシート材が面方向に沿ってスムーズに流動するようになり、擬似等方補強シート材の流動性を高めることができる。
 本発明に係る擬似等方補強シート材は、厚さ方向の平均繊維本数が2本~10本の範囲に設定される薄層のチョップドセミプリプレグシート材を使用して、厚さ方向の平均枚数が2枚~10枚の範囲で重ね合せて接着一体化した層状体を備えており、こうした層状体を複数積層一体化して構成することもできる。擬似等方補強シート材により得られる複合材料成形品は、薄層のチョップドセミプリプレグシート材が二次元方向にランダムに積層されるとともに、厚さ方向にも均一に分散した状態となる。このため、複合材料成形品の力学的特性値は向上し、バラツキを少なくするこができる。
[実施例1]
 以下の材料を用いて、擬似等方補強シート材を製造した。
<使用材料>
 強化繊維材料 炭素繊維束(三菱レイヨン株式会社製;TR50S-15K-JJ 15000本/束 単糸直径7μm)
熱可塑性樹脂材料 PA6樹脂フィルム(三菱樹脂株式会社製;ダイアミロン 厚さ20μm)
<セミプリプレグシート材の製造方法>
 公知の繊維束の開繊方法(例えば、特開2010-270420号公報参照)を用い、炭素繊維束4本をそれぞれ幅48mmに開繊して幅方向に並べシート状にした幅192mmの開繊炭素繊維シートを2シート作成した。そして、開繊炭素繊維シートを2シート貼り合わせると同時にその間に幅200mmのPA6樹脂フィルムを挿入し、280℃の加熱温度に設定された加熱加圧ロール間を連続走行させ、図1(c)に示すような樹脂層の両面に炭素繊維層が存在する構造にして、両端を連続切断して幅180mmのセミプリプレグシート材を作成した。
 得られたセミプリプレグシート材は、繊維目付け約43g/m2及び樹脂目付け約23g/m2になる。また、含浸状態における厚さは計算上約0.044mmとなり、繊維体積含有率は約55%である。なお、セミプリプレグシート材の含浸状態における厚さ方向の平均繊維本数は、計算上約3.5本となる。得られたセミプリプレグシート材の厚さは、最小表示目盛り0.001mmの外側マイクロメータ(株式会社ミツトヨ製)を用いて10カ所を測定し、測定結果の平均値が約0.073mmであった。含浸状態における厚さ0.044mmの2倍以内であった。なお、10カ所の測定値の最小値は0.060mmで、最大値は0.081mmであった。
<擬似等方補強シート材の製造方法>
 図5に示す製造装置の1つのシート材供給機構及びシート材切断機構を用いて、擬似等方補強シート材の層状体を作成した。得られた幅180mmのセミプリプレグシート材を、繊維方向に沿って幅25mmに切断し、繊維方向と直交する方向に沿って長さ30mmに切断してチョップドプリプレグシート材を作成した。セミプリプレグシート材の供給速度は約34m/分に設定して行い、切断した残りの幅5mmのセミプリプレグシート材は耳部として別に巻き取った。
 次に、得られた幅25mm×長さ30mmのチョップドセミプリプレグシート材を金網製の搬送ベルト上に自然落下させて分散させた。搬送ベルトは搬送速度3m/分で走行し、幅400mmの範囲にチョップドセミプリプレグシート材を分散させた。幅175mmのセミプリプレグシート材からチョップドセミプリプレグシート材を加工速度34m/分で作成して、幅400mmの擬似等方補強シート材を加工速度3m/分で製造することから、搬送ベルト上に重ね合わされたチョップドセミプリプレグシート材の厚さ方向の平均枚数は約5枚であった。
 その後、接着ロールとして、表面に5mm角凸部を多数形成した加熱ローラを加熱温度280℃に設定して、重ね合せた状態のチョップドセミプリプレグシート材を部分的に接着し一体化させ、擬似等方補強シート材を得た。得られた擬似等方補強シート材の目付は、約330g/m2であった。
<擬似等方補強シート材の特性>
 得られた擬似等方補強シート材は、幅25mm×長さ30mmのチョップドセミプリプレグシート材が接着前の形態を維持したまま二次元方向にランダムに配向しており、厚さ方向の平均枚数が約5枚で積層した層状体となっていた。脱落するチョップドセミプリプレグシート材はなく、張力を付与して3インチ紙管に巻き取ることができた。なお、3インチ紙管に巻き取った状態から擬似等方補強シート材を引き出す際に、チョップドセミプリプレグシート材が外れる等のトラブルはなかった。
[実施例2]
 以下の材料を用いて、擬似等方補強シート材を製造した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<擬似等方補強シート材の製造方法>
 図4に示す製造装置にて、擬似等方補強シート材を製造した。幅180mmのセミプリプレグシート材を、繊維方向に沿って幅5mmに切断し、繊維方向と直交する方向に沿って長さ30mmに切断してチョップドプリプレグシート材を作成した。セミプリプレグシート材の供給速度は、約70m/分に設定した。
 次に、得られた幅5mm×長さ30mmのチョップドセミプリプレグシート材を3つに分配して金網製の搬送ベルト上の3箇所の積層位置に自然落下させて分散させた。搬送ベルトは搬送速度3m/分で走行し、各積層位置において幅400mmの範囲にチョップドセミプリプレグシート材を分散させた。幅180mmのセミプリプレグシート材からチョップドセミプリプレグシート材を加工速度70m/分で作成して3つに分配し、幅400mmの擬似等方補強シート材を加工速度2m/分で製造することから、各積層位置においてチョップドセミプリプレグシート材を重ね合せて接着一体化により形成された層状体は厚さ方向の平均枚数は約5.2枚であった。
 その後、各積層位置の下流側に設置された接着ロールとして、表面に5mm角凸部を多数形成した加熱ローラを加熱温度280℃に設定して、重ね合せた状態のチョップドセミプリプレグシート材を部分的に接着し一体化させ、擬似等方補強シート材を得た。得られた擬似等方補強シート材の目付は、約1030g/m2であった。
<擬似等方補強シート材の特性>
 得られた擬似等方補強シート材は、幅5mm×長さ30mmのチョップドセミプリプレグシート材が接着前の形態を維持したまま二次元方向にランダムに配向しており、厚さ方向の平均枚数が約5枚の層状体が3層積層して形成されていた。脱落するチョップドセミプリプレグシート材はなく、張力を付与して12インチ紙管に巻き取ることができた。なお、12インチ紙管に巻き取った状態から擬似等方補強シート材を引き出す際に、チョップドセミプリプレグシート材が外れる等のトラブルはなかった。
[実施例3]
 以下の材料を用いて、擬似等方補強シート材を製造し、得られた擬似等方補強シート材を用いて板状の成形品を成形した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<擬似等方補強シート材の製造方法>
 実施例2と同様に製造した。
<擬似等方補強シート材を用いた複合材料成形品の成形方法>
 幅5mm×長さ30mmのチョップドセミプリプレグシート材を二次元方向にランダムに配向して構成されるとともに、厚さ方向の平均枚数が約5.2枚の層状体が3層積層され部分接着にて一体化された擬似等方補強シート材から、150mm角の正方形状のシート片を3枚切り出し、切り出したシート片を厚さ方向に積層した積層物を作成した。得られた積層物を厚さ方向に加熱温度280℃及び加圧力2MPaで加熱・加圧し、成形時間を5分間に設定して炭素繊維の間にPA6樹脂を浸透させて含浸状態とした後除々に冷却することで板状体を成形した。
 得られた板状成形体は、150mm角で厚さ2.06mmに成形されており、接着前のチョップドセミプリプレグシート材の炭素繊維の配向状態を維持した良好な品質で成形されていた。
<板状成形体の流動試験方法>
 得られた板状成形体から75mm角の板状片を切り出し、加熱温度280℃に設定された平板状金型にセットして、板状片を接圧にて3分間加熱した後加圧力5MPaで1分間加圧した。加熱・加圧して得られた板状成形体を取り出して、冷却された平板状金型にセットして板状成形体を急冷した。
<板状成形体の特性>
 75mm角の板状片は、約120mm角の板状成形体に広がるように成形され、加圧による樹脂流動はほぼ均一であった。また、目視で確認したところ、チョップドセミプリプレグシート材の炭素繊維の蛇行等の流動による配向乱れが生じている部分は少なく、全体として板状体の良好な品質状態がほぼ維持されていた。
[実施例4]
 以下の材料を用いて、擬似等方補強シート材を製造し、得られた擬似等方補強シート材を用いて板状の成形品を成形した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<擬似等方補強シート材の製造方法>
 実施例2と同様に製造した。
<擬似等方補強シート材を用いた複合材料成形品の成形方法>
 実施例3で用いた層状体が3層積層され部分接着にて一体化された擬似等方補強シート材から、300mm角の正方形状のシート片を3枚切り出し、切り出したシート片を厚さ方向に積層した積層物を作成した。得られた積層物を厚さ方向に加熱温度280℃及び加圧力2MPaで加熱加圧し、成形時間を5分間に設定して炭素繊維の間にPA6樹脂を浸透させて含浸状態とした後除々に冷却することで板状体を成形した。
 得られた板状成形体は、300mm角で厚さ2.06mmに成形されており、接着前のチョップドセミプリプレグシート材の炭素繊維の配向状態を維持した良好な品質で成形されていた。
<板状成形体の引張試験>
 得られた板状成形体から、幅25mm×長さ250mmの短冊形状に切り出した5本の試験片を用いて引張試験を行った。引張試験には、万能材料試験機(株式会社島津製作所製;AUTOGRAPH;ロードセル10トン)を用い、試験片のひずみは、軸伸び計(エムティエスジャパン株式会社製;ゲージ長さ100mm)を用いて計測した。
<板状成形体の引張試験結果>
 5本の試験片の引張試験の結果、測定値の平均は、破断応力445MPa(標準偏差;35.0)、破断ひずみ1.29%(標準偏差;0.08)、初期弾性率35.1GPa(標準偏差;2.63)であった。後述する比較例2の試験結果と比較して、破断応力、破断ひずみとも値は高く、また標準偏差値は小さい値を示した。このことから、得られた板状成形は、優れた力学特性を備えるとともに力学的特性のバラツキが小さくなっていることが確認された。
[実施例5]
 以下の材料を用いて、擬似等方補強シート材を製造し、得られた擬似等方補強シート材を用いて板状の成形品を成形した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<擬似等方補強シート材の製造方法>
 図5に示す製造装置の1つのシート材供給機構及びシート材切断機構を用いて、擬似等方補強シート材の層状体を作成した。得られた幅180mmのセミプリプレグシート材を、繊維方向に沿って幅5mmに切断し、繊維方向と直交する方向に沿って長さ30mmに切断してチョップドプリプレグシート材を作成した。セミプリプレグシート材の供給速度は約34m/分に設定した。
 次に、得られた幅5mm×長さ30mmのチョップドセミプリプレグシート材を金網製の搬送ベルト上に自然落下させて分散させた。搬送ベルトは搬送速度3m/分で走行し、幅400mmの範囲にチョップドセミプリプレグシート材を分散させた。幅180mmのセミプリプレグシート材からチョップドセミプリプレグシート材を加工速度34m/分で作成して、幅400mmの擬似等方補強シート材を加工速度3m/分で製造した。搬送ベルト上に重ね合わされたチョップドセミプリプレグシート材の厚さ方向の平均枚数は約5.1枚であった。
 その後、接着ロールとして、表面に5mm角凸部を多数形成した加熱ローラを加熱温度280℃に設定して、重ね合せた状態のチョップドセミプリプレグシート材を部分的に接着し一体化させ、擬似等方補強シート材を得た。得られた擬似等方補強シート材の目付は、約337g/m2であった。
<擬似等方補強シート材を用いた複合材料成形品の成形方法>
 幅5mm×長さ30mmのチョップドセミプリプレグシート材を二次元方向にランダムに配向して構成されるとともに、厚さ方向の平均枚数が約5.1枚の擬似等方補強シート材から150mm角の正方形状のシート片を8枚作成した。また、厚さ20μmのPA6樹脂フィルムを5枚重ねて作成した厚さ100μmの樹脂シート材から150mm角の正方形状のシート片を切り出して7枚作成した。
 そして、作成した擬似等方補強シート材及び樹脂シート材を、擬似等方補強シート材、樹脂シート材、擬似等方補強シート材、樹脂シート材・・・・樹脂シート材、擬似等方補強シート材と交互に積層した積層物を作成した。得られた積層物を厚さ方向に加熱温度280℃及び加圧力2MPaで加熱・加圧し、成形時間を5分間に設定して炭素繊維の間にPA6樹脂を浸透させて含浸状態とした後除々に冷却することで板状体を成形した。
 得られた板状成形体は、150mm角で厚さ2.5mmに成形されており、チョップドセミプリプレグシート材の炭素繊維の配向状態を維持した良好な品質で成形されていた。なお、得られた板状成形体は、繊維体積含有率55%のセミプリプレグシートを使用しているが、板全体としては繊維体積含有率(Vf)が計算上、約40%となっている。
<板状成形体の流動試験方法と断面観察>
 実施例3と同様な方法により流動試験を実施した。また、得られた板状成形体から75mm角の板状片を切り出し、その断面をデジタルマイクロスコープ(株式会社キーエンス製;VHX-5000)で観察した。
<板状成形体の特性>
 75mm角の板状片は、約140mm角の板状成形体に広がるように成形され、加圧による樹脂流動はほぼ均一であった。また、目視で確認したところ、チョップドセミプリプレグシート材の炭素繊維の蛇行等の流動による配向乱れが生じている部分は少なく、全体として板状体の良好な品質状態がほぼ維持されていた。
 また、板状成形体の断面を観察したところ、疑似等方補強シート材に対応する層の間に、樹脂のみからなる層状部分や層状の樹脂リッチ部分といった樹脂層部分が存在していることが確認できた。こうした樹脂層部分の存在によって、板状成形体を成形する際に、流動性が向上したものと考えられる。
[比較例1]
 以下の材料を用いて、複合材料成形品を成形した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<チョップドセミプリプレグシート材を用いた複合材料成形品の成形方法>
 幅180mmのセミプリプレグシート材を、繊維方向に沿って幅5mmに切断し、繊維方向と直交する方向に沿って長さ30mmに切断してチョップドプリプレグシート材を作成した。
 約66gのチョップドセミプリプレグシート材を150mm角の正方形状の金型内に自然落下で分散させながら一度に投入し、積層物を作成した。作成された積層物を加熱温度280℃及び加圧力2MPaで加熱・加圧し、成形時間を5分間に設定して炭素繊維の間にPA6樹脂が浸透した含浸状態とした後徐々に冷却することで、150mm角で厚さ2mmの板状体を成形した。
<板状成形体の流動試験方法>
 実施例3と同様に、得られた板状成形体から75mm角の板状片を切り出し、加熱温度280℃に設定された平板状金型にセットして、板状片を接圧にて3分間加熱した後加圧力5MPaで1分間加圧した。加熱・加圧して得られた板状成形体を取り出して、冷却された平板状金型にセットして板状成形体を急冷した。
<板状成形体の特性>
 75mm角の板状片は、横約130mm×縦約120mmの長方形状の板状成形体に広がるように成形された。板状成形体では加圧による樹脂流動が不均一で、流動し易い方向に多くの炭素繊維が流れたため、流動による炭素繊維の蛇行が多く生じており、チョップドセミプリプレグシート材の形態が崩れていることを目視で確認した。
[比較例2]
 以下の材料を用いて、複合材料成形品を成形した。
<使用材料>
 実施例1と同じ材料を用いた。
<セミプリプレグシート材の製造方法>
 実施例1と同様に製造した。
<チョップドセミプリプレグシート材を用いた複合材料成形品の成形方法>
 幅180mmのセミプリプレグシート材を、繊維方向に沿って幅5mmに切断し、繊維方向と直交する方向に沿って長さ30mmに切断してチョップドプリプレグシート材を作成した。
 約66gのチョップドセミプリプレグシート材を300mm角の正方形状の金型内に自然落下で分散させながら一度に投入し、積層物を作成した。作成された積層物を加熱温度280℃及び加圧力2MPaで加熱加圧し、成形時間を5分間に設定して炭素繊維の間にPA6樹脂が浸透した含浸状態とした後徐々に冷却することで、300mm角で厚さ1.97mmの板状成形体を成形した。
<板状成形品の引張試験>
 得られた板状成形について、実施例4と同様の引張試験を行った。
<板状成形品の引張試験結果>
 5本の試験片の引張試験の結果、測定値の平均は、破断応力320MPa(標準偏差;94.2)、破断ひずみ0.87%(標準偏差;0.14)、初期弾性率38.4GPa(標準偏差;8.09)であった。破断応力及び破断ひずみは低い値となっており、また標準偏差の値により示されるように、同じ板状成形体から試験片を切り出したにもかかわらず、試験結果は大きくばらついている。
C・・・チョップドセミプリプレグシート材、M、M1~M3・・・層状体、S・・・セミプリプレグシート材、T、T’・・・擬似等方補強シート材、1・・・シート材供給機構、2・・・シート材切断機構、3・・・チョップ材搬送機構、4・・・シート一体化機構、5・・・シート巻取機構、6・・・縦方向切断部、7・・・横方向切断部、8~10・・・分配コンベヤ、11・・・搬送コンベヤ、12・・・搬送ベルト、13~15・・・接着ロール

Claims (16)

  1.  強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されている複数のチョップドセミプリプレグシート材を一体化して実質的に形成されている擬似等方補強シート材であって、前記チョップドセミプリプレグシート材は、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとともに厚さtが含浸状態における厚さtpに対してtp<t≦2×tpの範囲に設定されており、複数の前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するとともに厚さ方向の平均枚数が2枚~10枚の範囲となるように重ね合せた状態で接着一体化された層状体を備えている擬似等方補強シート材。
  2.  前記チョップドセミプリプレグシート材は、含浸状態における繊維体積含有率が30%~70%の範囲に設定されている請求項1に記載の擬似等方補強シート材。
  3.  前記チョップドセミプリプレグシート材は、前記熱可塑性樹脂材料の熱融着により互いに部分的に接着している請求項1又は2に記載の擬似等方補強シート材。
  4.  複数の前記層状体を積層一体化している請求項1から3のいずれかに記載の擬似等方補強シート材。
  5.  前記層状体は、内部における前記チョップドセミプリプレグシート材の接着状態が互いに異なっている請求項4に記載の擬似等方補強シート材。
  6.  隣接する前記層状体の間には、少なくとも一部に樹脂層部分が形成されている請求項4又は5に記載の疑似等方補強シート材。
  7.  請求項1から6のいずれかに記載された擬似等方補強シート材を加熱加圧して形成された層を備えている複合材料成形品。
  8.  複数の前記擬似等方補強シート材を加熱加圧して形成された層の間には、少なくとも一部に樹脂層部分が形成されている請求項7に記載の複合材料成形品。
  9.  強化繊維材料及び熱可塑性樹脂材料からなるとともに熱可塑性樹脂材料が未含浸状態に設定されているセミプリプレグシート材を用いた擬似等方補強シート材の製造方法であって、厚さ方向の平均繊維本数が2本~10本の範囲に設定されているとともに厚さtが含浸状態における厚さtpに対してtp<t≦2×tpの範囲に設定されている前記セミプリプレグシート材を所要幅及び長さで切断してチョップドセミプリプレグシート材を形成する切断工程と、複数の前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するとともに厚さ方向の平均枚数が2枚~10枚の範囲となるように重ね合せた状態で接着一体化して層状体を形成する一体化工程とを備えている擬似等方補強シート材の製造方法。
  10.  前記セミプリプレグシート材は、含浸状態における繊維体積含有率が30%~70%の範囲に設定されている請求項9に記載の擬似等方補強シート材の製造方法。
  11.  前記一体化工程では、前記チョップドセミプリプレグシート材を重ね合せて前記熱可塑性樹脂材料の熱融着により互いに部分的に接着させることで前記層状体を形成する請求項9又は10に記載の擬似等方補強シート材の製造方法。
  12.  前記一体化工程は、複数の前記層状体を積層一体化する請求項9から11のいずれかに記載の擬似等方補強シート材の製造方法。
  13.  前記一体化工程では、形成された前記層状体上に前記チョップドセミプリプレグシート材を前記強化繊維材料の繊維方向が二次元方向にランダムに配向するように重ね合せて次の前記層状体を形成することで複数の前記層状体を順次積層一体化する請求項12に記載の擬似等方補強シート材の製造方法。
  14.  前記一体化工程では、隣接する前記層状体の間の少なくとも一部に樹脂材料を層状に配置して積層一体化する請求項12又は13に記載の疑似等方補強シート材の製造方法。
  15.  請求項9から14のいずれかに記載の製造方法により得られた擬似等方補強シート材を1枚又は複数枚積層した後加熱加圧することで一体化して成形する複合材料成形品の成形方法。
  16.  積層された複数枚の前記擬似等方補強シート材の間の少なくとも一部に樹脂材料を層状に配置して積層一体化する請求項15に記載の複合材料成形品の成形方法。
PCT/JP2015/069251 2014-07-08 2015-07-03 擬似等方補強シート材及びその製造方法 WO2016006543A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/324,008 US11332586B2 (en) 2014-07-08 2015-07-03 Quasi-isotropic reinforced sheet material and production method thereof
EP15818313.7A EP3168257B1 (en) 2014-07-08 2015-07-03 Pseudo-isotropic reinforced sheet material and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-140660 2014-07-08
JP2014140660 2014-07-08
JP2015-126500 2015-06-24
JP2015126500A JP6638131B2 (ja) 2014-07-08 2015-06-24 擬似等方補強シート材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016006543A1 true WO2016006543A1 (ja) 2016-01-14

Family

ID=55064179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069251 WO2016006543A1 (ja) 2014-07-08 2015-07-03 擬似等方補強シート材及びその製造方法

Country Status (4)

Country Link
US (1) US11332586B2 (ja)
EP (1) EP3168257B1 (ja)
JP (1) JP6638131B2 (ja)
WO (1) WO2016006543A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143645A1 (ja) * 2015-03-06 2016-09-15 国立大学法人 東京大学 チョップドテープ繊維強化熱可塑性樹脂シート材及びその製造方法
WO2018167076A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulding method
WO2018167072A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulding method
WO2018167075A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulded part
CN111902466A (zh) * 2018-03-23 2020-11-06 阿科玛法国公司 厚度小于或等于100mm的浸渍有热塑性聚合物的纤维质材料及其生产方法
EP3581353A4 (en) * 2017-02-09 2021-01-06 Toray Industries, Inc. FIBER REINFORCED RESIN SHEET

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100043A1 (en) * 2016-10-07 2018-04-12 Suncorona Oda Co., Ltd. Unidirectional prepreg, fiber-reinforced thermoplastic resin sheet, manufacturing methods of unidirectional prepreg and fiber-reinforced thermoplastic resin sheet, and molded body
JPWO2018079475A1 (ja) * 2016-10-26 2019-09-19 東レ株式会社 プリプレグ積層体、繊維強化複合材料および繊維強化複合材料の製造方法
GB201700913D0 (en) * 2017-01-19 2017-03-08 Univ Leuven Kath Continuous prepregs for natural fibre-reinforced composites
KR20190061662A (ko) 2017-11-28 2019-06-05 다이텍연구원 충격 흡수 및 진동 저감을 위한 준이방성 프리프레그 시트 및 이를 이용한 복합재료의 제조방법
JP6918972B2 (ja) 2017-11-29 2021-08-11 帝人株式会社 複合材料、成形体の製造方法、及び複合材料の製造方法
TWI675052B (zh) * 2018-03-15 2019-10-21 日商福美化學工業股份有限公司 擬等向性補強薄片、frp成形體、以及frp成形體之製造方法
FR3079163B1 (fr) 2018-03-23 2021-10-15 Arkema France Nappe de materiau fibreux impregne, son procede de fabrication et son utilisation pour la fabrication de pieces composites en trois dimensions
WO2019189314A1 (ja) * 2018-03-27 2019-10-03 三菱ケミカル株式会社 複合材料成形品及びその製造方法
ES2975326T3 (es) 2018-10-31 2024-07-04 Toray Industries Material de resina reforzada con fibra y método de producción para el mismo
US10981296B2 (en) * 2019-05-22 2021-04-20 The Boeing Company System and method for preheating a thermoplastic charge
EP4030466A4 (en) 2019-10-23 2023-11-08 Daikin Industries, Ltd. ELEMENT FOR A SEMICONDUCTOR CLEANING DEVICE
WO2021106630A1 (ja) 2019-11-27 2021-06-03 ダイキン工業株式会社 複合材料の製造方法
WO2021124907A1 (ja) * 2019-12-17 2021-06-24 フクビ化学工業株式会社 繊維強化樹脂複合シート、繊維強化樹脂複合材およびそれを備える樹脂成形品
KR20220159937A (ko) 2020-03-26 2022-12-05 후쿠이 켄 복합 재료 성형품의 제조 방법 및 제조 장치
JPWO2021215162A1 (ja) * 2020-04-21 2021-10-28
JP7273785B2 (ja) * 2020-12-28 2023-05-15 フクビ化学工業株式会社 繊維強化樹脂シート及び繊維強化複合材並びに成形品
JP7414297B2 (ja) * 2021-11-04 2024-01-16 スピック株式会社 チョップドシート製造装置及びチョップドシートの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262360A (ja) * 2006-03-30 2007-10-11 Teijin Techno Products Ltd 繊維強化熱可塑性樹脂シートとその製造方法
WO2012165418A1 (ja) * 2011-05-31 2012-12-06 帝人株式会社 等方性を維持した成形体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507565B2 (ja) * 1988-11-24 1996-06-12 東レ株式会社 熱可塑性樹脂と補強繊維との複合板
GB0203823D0 (en) * 2002-02-19 2002-04-03 Hexcel Composites Ltd Moulding materials
ES2837455T3 (es) * 2007-06-04 2021-06-30 Toray Industries Haz de fibras troceadas, material de moldeo y plástico reforzado con fibras, y proceso para producirlos
KR101146612B1 (ko) * 2008-07-31 2012-05-14 도레이 카부시키가이샤 프리프레그, 프리폼, 성형품 및 프리프레그의 제조방법
JP2014098080A (ja) * 2012-11-14 2014-05-29 Dow Corning Toray Co Ltd 光二量化官能基含有オルガノポリシロキサン、それを含む活性エネルギー線硬化型オルガノポリシロキサン組成物、及びその硬化物
JP2015069251A (ja) 2013-09-27 2015-04-13 ブラザー工業株式会社 通信装置のプログラム、及び通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262360A (ja) * 2006-03-30 2007-10-11 Teijin Techno Products Ltd 繊維強化熱可塑性樹脂シートとその製造方法
WO2012165418A1 (ja) * 2011-05-31 2012-12-06 帝人株式会社 等方性を維持した成形体の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143645A1 (ja) * 2015-03-06 2016-09-15 国立大学法人 東京大学 チョップドテープ繊維強化熱可塑性樹脂シート材及びその製造方法
EP3581353A4 (en) * 2017-02-09 2021-01-06 Toray Industries, Inc. FIBER REINFORCED RESIN SHEET
WO2018167076A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulding method
WO2018167072A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulding method
WO2018167075A1 (en) * 2017-03-13 2018-09-20 Gurit (Uk) Ltd Moulded part
GB2560702B (en) * 2017-03-13 2020-09-02 Gurit (Uk) Ltd Moulding using sheet moulding compounds
US11529770B2 (en) 2017-03-13 2022-12-20 Gurit (Uk) Ltd. Moulding method
CN111902466A (zh) * 2018-03-23 2020-11-06 阿科玛法国公司 厚度小于或等于100mm的浸渍有热塑性聚合物的纤维质材料及其生产方法
CN111902466B (zh) * 2018-03-23 2023-04-11 阿科玛法国公司 厚度小于或等于100mm的浸渍有热塑性聚合物的纤维质材料及其生产方法

Also Published As

Publication number Publication date
JP2016027956A (ja) 2016-02-25
US20170183465A1 (en) 2017-06-29
EP3168257B1 (en) 2023-08-30
EP3168257C0 (en) 2023-08-30
US11332586B2 (en) 2022-05-17
JP6638131B2 (ja) 2020-01-29
EP3168257A4 (en) 2018-03-14
EP3168257A1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2016006543A1 (ja) 擬似等方補強シート材及びその製造方法
JP5920690B2 (ja) プリプレグシート材及びその製造方法
CN107735433B (zh) 纤维强化树脂片材的制造方法
KR101391468B1 (ko) 다축 보강 적층 성형품 및 그 제조 방법
KR101411169B1 (ko) 열가소성 수지 보강 시트재, 열가소성 수지 다층 보강 시트재 및 그 제조 방법, 및 열가소성 수지 다층 보강 성형품
JP5223130B2 (ja) 熱可塑性樹脂補強シート材及びその製造方法、並びに熱可塑性樹脂多層補強シート材
US9353231B2 (en) Composite base material
JP6085798B2 (ja) 3次元形状成形用複合材及びその製造方法
US20160039185A1 (en) Laminated molded body
JP2011073436A (ja) 中間製品および中間製品複合体
EP2733161A1 (en) Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
KR20210061305A (ko) 복합 시트의 성형 방법 및 성형 장치
JP5254930B2 (ja) 繊維強化シート及びその製造方法
CN112533984B (zh) 预浸料坯的制造方法、涂布装置及预浸料坯的制造装置
JP2018065999A (ja) 強化繊維基材、強化繊維積層体および繊維強化樹脂
JP4341419B2 (ja) プリフォームの製造方法および複合材料の製造方法
CN112533753A (zh) 增强纤维带材料及其制造方法、使用了增强纤维带材料的增强纤维层叠体及纤维增强树脂成型体
JP2016065349A (ja) 複合物における透過性及び繊維体積率を制御するためのポリマーナノ粒子
JP7196006B2 (ja) 金属箔‐cfrp積層シート
TW202124135A (zh) 碳纖維帶材料、以及使用其之強化纖維積層體及成形體
JP2018066000A (ja) 強化繊維基材および繊維強化樹脂
CN114728439B (zh) 真空成形用树脂一体化纤维片、采用其的成形体和成形体的制造方法
CN111699210B (zh) 纤维铺放用干式带材料及其制造方法、以及使用其的增强纤维层叠体及纤维增强树脂成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015818313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818313

Country of ref document: EP