WO2016006180A1 - 光スイッチングデバイス及びその製造方法、並びに建材 - Google Patents

光スイッチングデバイス及びその製造方法、並びに建材 Download PDF

Info

Publication number
WO2016006180A1
WO2016006180A1 PCT/JP2015/003152 JP2015003152W WO2016006180A1 WO 2016006180 A1 WO2016006180 A1 WO 2016006180A1 JP 2015003152 W JP2015003152 W JP 2015003152W WO 2016006180 A1 WO2016006180 A1 WO 2016006180A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
variable
state
switching device
Prior art date
Application number
PCT/JP2015/003152
Other languages
English (en)
French (fr)
Inventor
裕子 鈴鹿
伊藤 宜弘
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/317,260 priority Critical patent/US20170101819A1/en
Priority to JP2016532417A priority patent/JP6351001B2/ja
Priority to DE112015003215.0T priority patent/DE112015003215T5/de
Publication of WO2016006180A1 publication Critical patent/WO2016006180A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • An optical switching device, a method of manufacturing the same, and an invention of a building material are disclosed. More specifically, an optical switching device whose degree of light transmission can be changed by power, a method of manufacturing the same, and a building material are disclosed.
  • the member whose light transmittance is changed can be used for building materials such as windows.
  • the light transmittance changes between the light emitting state and the non-light emitting state.
  • An organic EL element whose optical characteristics change is exemplified in, for example, Patent Document 1.
  • the optical characteristic which changes the advancing direction of light is provided, and the optical characteristic of an organic EL element is changed.
  • a variation in the change between the transparent state and the non-transparent state is expected to further improve the optical characteristics.
  • the invention disclosed below aims to provide an optical switching device stably manufactured and having excellent optical characteristics, a method of manufacturing the same, and a building material.
  • the optical switching device of the present disclosure is planar, and a plurality of optical variable bodies whose degree of optical state can be changed by electric power, and an optical adjustment layer disposed between the plurality of optical variable bodies. And have.
  • the optical variable body includes a pair of substrates, a pair of electrodes disposed between the pair of substrates, and an optical variable layer which is disposed between the pair of electrodes and whose degree of optical state can be changed; Is equipped.
  • the optical adjustment layer adheres the plurality of optical variable bodies in a plane in the thickness direction, and adjusts the refractive index between the substrates of the adjacent optical variable bodies in the visible light wavelength range.
  • the electrode has an exposed surface for supplying power.
  • the adhesion of the optical adjustment layer to the substrate is larger than the adhesion of the optical variable layer to the electrode.
  • One aspect of the building material of the present disclosure includes the above-described optical switching device and a wiring.
  • a step of bonding the plurality of optical variable bodies with the optical adjustment layer, and one end in the thickness direction at a side end of the plurality of optical variable bodies Cutting from the substrate disposed at the other end to the optically variable layer disposed at the other end in the thickness direction, and removing the side end of the optically variable body along the incision; Exposing the electrode.
  • the optical switching device of the present disclosure is stably manufactured and has excellent optical characteristics.
  • the building materials of the present disclosure are excellent in optical properties.
  • the method of manufacturing an optical switching device of the present disclosure can easily manufacture an optical switching device having excellent optical characteristics.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical switching device.
  • FIG. 2 is a schematic cross-sectional view showing an example of the optical switching device.
  • FIG. 3 is a schematic cross-sectional view showing an example of the optical switching device.
  • FIG. 4 is a schematic cross-sectional view showing an example of a method of manufacturing an optical switching device.
  • FIG. 4A shows a plurality of optical variable bodies before bonding.
  • B of FIG. 4 shows a state after bonding a plurality of optical variable bodies.
  • C of FIG. 4 shows the state after making a cut.
  • D of FIG. 4 shows the state after removing the side end.
  • E of FIG. 4 shows the state after connecting wiring.
  • FIG. 4A shows a plurality of optical variable bodies before bonding.
  • B of FIG. 4 shows a state after bonding a plurality of optical variable bodies.
  • C of FIG. 4 shows the state after making a cut.
  • D of FIG. 4 shows the state after
  • FIG. 5 is a schematic diagram which shows the effect
  • a of FIG. 5 shows the state in which the light scattering property is functioning.
  • B of FIG. 5 shows a state in which light is emitted.
  • C in FIG. 5 shows a state in which the light reflectivity is functioning.
  • D of FIG. 5 shows a state in which the light absorbing function is functioning.
  • E in FIG. 5 shows a state in which light scattering functions and emits light.
  • F in FIG. 5 shows a state in which the light scattering property and the light reflectivity function.
  • G in FIG. 5 shows a state in which the light scattering property and the light absorption property are functioning.
  • H in FIG. 5 shows a state in which the light reflectivity functions and emits light.
  • FIG. 5 shows a state in which light absorption functions and light is emitted.
  • J in FIG. 5 shows a state in which the light reflectivity and the light absorbency are functioning.
  • K in FIG. 5 indicates a state in which the light scattering property and the light reflectivity function and emit light.
  • L in FIG. 5 shows a state in which the light scattering property and the light absorption function and light is emitted.
  • M of FIG. 5 shows the state in which the light scattering property, the light reflectivity and the light absorption function.
  • N in FIG. 5 indicates a state in which the light reflectivity and the light absorption function and emit light.
  • P in FIG. 5 indicates a state in which the light scattering property, the light reflectivity, and the light absorption function and emit light.
  • Q in FIG. 5 indicates a state in which all of the light scattering property, the light reflectivity, and the light absorbing property are not functioned, and light is not emitted.
  • FIG. 6 is a schematic view showing an example of
  • FIG. 1 is an example of an optical switching device 100.
  • FIG. 2 is another example of the optical switching device 100.
  • FIG. 3 is another example of the optical switching device 100.
  • the optical switching device 100 includes a plurality of optical variable bodies 1.
  • the plurality of optical variable bodies 1 are configured by the first optical variable body 1A and the second optical variable body 1B.
  • the plurality of optical variable bodies 1 are configured by the first optical variable body 1A, the second optical variable body 1B, and the third optical variable body 1C.
  • the plurality of optical variable bodies 1 are configured by a first optical variable body 1A, a second optical variable body 1B, a third optical variable body 1C, and a fourth optical variable body 1D. The presence of the plurality of optical variable bodies 1 improves the optical characteristics.
  • the optical variable body 1 is planar.
  • the optical variable 1 can change the degree of the optical state by the power.
  • the optical state means any of a transparency, a light emitting property, a light scattering property, a light reflectivity and a light absorbing property.
  • the optical variable body 1 includes a pair of substrates 6 and 6, a pair of electrodes 5 and 5, and an optical variable layer 2.
  • the pair of electrodes 5, 5 is disposed between the pair of substrates 6, 6.
  • the optical variable layer 2 is disposed between the pair of electrodes 5 and 5.
  • the optical variable layer 2 can change the degree of the optical state.
  • the electrode 5 has an exposed surface 5s for supplying power in plan view. The exposed surface 5s facilitates the supply of power.
  • the optical switching device 100 includes an optical adjustment layer 3.
  • the optical adjustment layer 3 is disposed between the plurality of optical variable bodies 1.
  • the optical adjustment layer 3 adheres the plurality of optical variable bodies 1 in a plane in the thickness direction.
  • the optical adjustment layer 3 adjusts the refractive index between the substrates 6 of the adjacent optical variable bodies 1 in the visible light wavelength range.
  • the adhesion of the optical adjustment layer 3 to the substrate 6 is larger than the adhesion of the optical variable layer 2 to the electrode 5. Since the refractive index difference between the substrates is adjusted by the optical adjustment layer 3, the optical characteristics are improved. Furthermore, the adhesiveness to the adjacent board
  • the thickness direction is the direction of the thickness of the optical switching device 100.
  • the thickness direction is indicated by an arrow DT.
  • the thickness direction may be a direction perpendicular to the surface of the substrate 6.
  • each layer of the optical switching device 100 can be considered to extend in a direction perpendicular to the thickness direction.
  • “in a plan view” means that it is viewed along a direction (thickness direction DT) perpendicular to the surface of the substrate 6.
  • the optical switching device 100 is planar.
  • the optical switching device 100 may be panel-shaped.
  • the optical switching device 100 switches the state of light.
  • the optical switching device 100 has a first surface F1 and a second surface F2 disposed on the opposite side of the first surface F1.
  • the first surface F1 and the second surface F2 are outer surfaces. These faces may be exposed. Alternatively, the first surface F1 and the second surface F2 may be covered with another transparent planar member.
  • the surface of the optical switching device 100 includes a flat surface and a curved surface.
  • the surface may be composed of only a plane.
  • the surface may be composed of only a curved surface.
  • the surface may be arcuate.
  • the surface may include both flat and curved surfaces.
  • FIG. 1 to 3 are examples of the optical switching device 100, and the aspect of the optical switching device is not limited thereto.
  • the optical switching device 100 and the respective components therein are schematically illustrated, and the actual dimensional relationships and the like of these may be different from the drawings.
  • the configurations given the same reference numerals indicate the same configurations, and the description given regarding the configuration of the reference numbers can be applied in common.
  • the pair of electrodes 5 and 5 and the optically variable layer 2 disposed therebetween constitute an optically variable portion.
  • the optical variable part is a main part in the optical variable body 1.
  • the optical variable part may be obtained by removing the substrate 6 from the optical variable body 1.
  • the optical switching device 100 has a plurality of optical variable parts.
  • the plurality of optical variable units are supported by the plurality of substrates 6.
  • the optical variable unit is disposed between the pair of substrates 6. Thereby, the optical variable part is protected.
  • the optical variable part can be easily manufactured and stabilized by being supported by the substrate 6.
  • the plurality of substrates 6 are, in order from the first surface F1 side, the substrates 6a, 6b, 6c, 6d, 6e, 6e, 6f, 6g, 6h, It is attached.
  • the optical switching device 100 may have a plurality of substrates 6.
  • the plurality of substrates 6 have optical transparency. Thereby, the optical switching device 100 with high optical characteristics can be obtained.
  • the substrate 6 can function as a substrate for supporting each layer of the optical switching device 100.
  • the substrate 6 can function as a substrate for sealing each layer of the optical switching device 100.
  • the plurality of substrates 6 are arranged in the thickness direction.
  • the optical switching device 100 may have a plurality of optical variable portions disposed between two substrates 6 disposed outside of the plurality of substrates 6. Thereby, the plurality of optical variable portions can be protected by the substrate 6.
  • a glass substrate, a resin substrate, or the like can be used as the substrate 6, a glass substrate, a resin substrate, or the like.
  • the glass has high transparency, so that the optical switching device 100 with excellent optical characteristics can be obtained.
  • glass has low moisture permeability, moisture can be suppressed from entering the inside of the sealed region.
  • Glass can have ultraviolet absorptivity, so that degradation of the device can be suppressed. Examples of the glass include soda glass, alkali-free glass and high refractive index glass. Thin film glass can be used as the substrate 6. In that case, in addition to high transparency and high moisture resistance, it is possible to obtain a flexible optical switching device 100.
  • the resin substrate may be in the form of a film.
  • the resin include PET (polyethylene terephthalate) and PEN (polyethylene naphthalate).
  • the two substrates 6 disposed outside may be glass substrates.
  • the optical switching device 100 with excellent optical characteristics can be obtained.
  • All of the plurality of substrates 6 may be glass substrates. In that case, the optical conditions can be easily controlled, and the optical characteristics can be enhanced.
  • One or more of the inner substrates 6 may be a resin substrate. In that case, scattering at the time of destruction can be suppressed, and a safe optical switching device 100 can be obtained.
  • the surface of the substrate 6 may be coated with any one or more of an antifouling material, an ultraviolet blocking material, an ultraviolet absorbing material, and a moistureproof material. In that case, the protection is enhanced.
  • the electrode 5 can be constituted by a transparent conductive layer.
  • a transparent conductive layer a transparent metal oxide, electroconductive particle containing resin, a metal thin film etc. can be used.
  • the electrode 5 may use a conductive material optimized at each place.
  • transparent metal oxides such as ITO and IZO are exemplified.
  • the electrode 5 made of a transparent metal oxide is preferably used for the electrode 5 of the optical variable body 1.
  • the electrode 5 may be a layer containing silver nanowires or a transparent metal layer such as thin film silver.
  • the electrode 5 may be one in which a layer of a transparent metal oxide and a metal layer are laminated.
  • the electrode 5 may be provided with a wiring for electrically assisting the transparent conductive layer.
  • the electrode 5 may have a heat shielding effect. Thereby, the heat insulation may be enhanced.
  • a moisture-proof layer may be formed between the substrate 6 and the electrode 5. The moisture-proof layer suppresses the entry of moisture into the optical switching device 100, so that the deterioration of the optical switching device 100 can be suppressed.
  • the pair of electrodes 5 and 5 are two electrodes 5 that are electrically paired.
  • One of the pair of electrodes 5 and 5 constitutes an anode, and the other constitutes a cathode.
  • One of the pair of electrodes 5 and 5 may be disposed on the first surface F1 side, and the other may be disposed on the second surface F2 side.
  • the pair of electrodes 5 and 5 may be disposed only on the first surface F1 side or only on the second surface F2 side.
  • the plurality of electrodes 5 may be configured to allow electrical connection with a power supply.
  • the optical switching device 100 may have an electrode pad, an electrical connection portion in which the electrode pad is electrically integrated, and the like in order to connect to the power supply.
  • the electrical connection may be configured by a plug or the like.
  • the electrode 5 has an exposed surface 5s.
  • the exposed surface 5s is a surface for supplying power to the electrode 5.
  • the exposed surface 5s of the electrode 5 is disposed at the side end of the optical switching device 100.
  • the exposed surface 5 s is formed of a portion of the electrode 5 not in contact with the optical variable layer 2.
  • the exposed surface 5s may be exposed from the optical variable layer 2.
  • the exposed surface 5s may not be exposed to the outside.
  • the exposed surface 5s is provided by the electrode 5 protruding beyond the optically variable layer 2 in plan view.
  • the exposed surface 5 s may be covered by the connection wiring 4.
  • the connection wiring 4 for electrically connecting to the power supply is connected to the exposed surface 5s.
  • the optical switching device 100 may include the connection wiring 4. Since the electrode 5 has the exposed surface 5s, the electrical connection with the power supply is facilitated, and the power supply to the plurality of optical variable units can be favorably performed. Also, the connection wiring 4 makes electrical connection easier.
  • the plurality of electrodes 5 are sequentially denoted by the electrodes 5 a, 5 b, 5 5 c, 5 d, 5 e, 5 f, 5 g, and 5 h, sequentially from the first surface F1 side. It is attached.
  • the optical variable part has an optical variable layer 2.
  • the optical variable layer 2 is disposed between the pair of electrodes 5 and 5.
  • the optical variable layer 2 is supplied with power via the pair of electrodes 5 and 5 to change the degree of the optical state.
  • the pair of electrodes 5 and 5 function as electrodes for driving the optical variable layer 2.
  • the optically variable layer 2 in the first optically variable body 1A is defined as a first optically variable layer 2A.
  • the second optically variable layer 2B, the third optically variable layer 2C, and the fourth optically variable layer 2D are defined as the optically variable layer 2 in the second to fourth optically variable bodies 1B to 1D, respectively.
  • the plurality of optical variable units are configured by one selected from a planar light emitting unit, a light scattering variable unit, a light reflection variable unit, and a light absorption variable unit.
  • the planar light emitting unit can be configured by an element that emits light planarly by the supply of power.
  • the light scattering variable part may be configured by an element whose degree of light scattering can be changed by power.
  • the light reflection variable part may be configured by an element whose degree of light reflection can be changed by power.
  • the light absorption variable part may be configured by an element whose degree of light absorption can be changed by power.
  • the optical variable 1 having a planar light emitting portion is defined as a planar light emitter.
  • the optical variable 1 having the light scattering variable part is defined as a light scattering variable.
  • the optical variable 1 having the light reflection variable part is defined as a light reflection variable.
  • the optical variable 1 having the light absorption variable part is defined as a light absorption variable.
  • the light switching device 100 may include two or more optical variable bodies 1 selected from a planar light emitter, a light scattering variable, a light reflection variable, and a light absorption variable.
  • the plurality of optical variable units may include planar light emitting units.
  • the planar light emitting unit can emit light in a planar manner.
  • the planar light emitting unit may be an organic electroluminescent element (organic EL element). Thus, light emission with a thin and large area can be obtained.
  • the planar light emitting unit may be transparent.
  • the optical variable layer 2 can be composed of an organic light emitting layer.
  • the organic EL element is an element having a configuration in which an organic light emitting layer is disposed between a pair of electrodes 5 and 5.
  • the optical switching device can perform surface light emission.
  • the organic light emitting layer is light transmissive. Therefore, at the time of light emission, light emitted from the organic light emitting layer can be emitted to both sides in the thickness direction. In addition, when not emitting light, light can be transmitted from one side to the other side.
  • the organic light emitting layer is a layer having a function of causing light emission, and is constituted of a plurality of functional layers appropriately selected from a hole injection layer, a hole transport layer, a light emitting material containing layer, an electron transport layer, an electron injection layer, and an intermediate layer. It can be done. Of course, the organic light emitting layer may be composed of a single layer of the light emitting material containing layer. In the organic EL element, by causing electricity to flow between the pair of electrodes 5 and 5, holes and electrons are combined in the light emitting material containing layer to cause light emission.
  • the direction of the current is one direction. Therefore, a DC power supply can be connected. Of course, direct current converted from alternating current may be used. Stable light emission can be obtained by a DC power supply.
  • the emission color of the organic EL element may be white, blue, green or red. Of course, it may be an intermediate color between blue and green or green and red. Further, the color may be adjusted by an applied current.
  • the plurality of optical variable parts may include a light scattering variable part.
  • the light scattering variable part is configured to be able to change the degree of light scattering.
  • the variable degree of light scattering may be adjustable between the high scattering state and the low scattering state. Alternatively, that the degree of light scattering can be changed may be adjustable between a state having light scattering and a state not having light scattering. When the degree of light scattering is adjustable, the optical state can be changed, and the light switching device 100 with excellent optical characteristics can be obtained.
  • the light scattering variable part may be formed in a layer.
  • the high scattering state is a state in which the light scattering property is high.
  • the high scattering state is, for example, a state in which light incident from one surface changes its traveling direction to various directions by scattering, and is dispersed and emitted to the other surface.
  • the high scattering state may be a state in which the object appears blurry when looking at the object present on the other surface side from one surface side.
  • High scattering states can be translucent states. When the light scattering variable part exhibits light scattering properties, the light scattering variable part functions as a scattering layer that scatters light.
  • the low scattering state is a state in which the light scattering property is low or not.
  • the low scattering state is, for example, a state in which light incident from one surface maintains the traveling direction as it is and is emitted to the other surface.
  • the low scattering state may be a state in which the object can be clearly viewed when the object present on the other surface side is viewed from one surface side.
  • the low scattering state may be a transparent state.
  • the light scattering variable portion exhibits a light scattering property between a high scattering state and a high scattering state, a low scattering state with low light scattering property or a low scattering state, and a high scattering state with high light scattering property. And may be configured to be capable of.
  • the ability to exhibit light scattering between the high scattering state and the low scattering state can impart moderate light scattering properties, so that the optical state can be changed at high variation, and optical The characteristics can be further improved.
  • a state exhibiting light scattering between a high scattering state and a low scattering state is referred to as a medium scattering state.
  • the medium scattering state may have at least one scattering state between the high scattering state and the low scattering state.
  • the medium scattering state is a preferred embodiment between the high scattering state and the low scattering state, having a plurality of states in which the degree of scattering is in a plurality of stages. As a result, the degree of scattering becomes a plurality of stages, so that the optical characteristics can be further enhanced.
  • the optical characteristics are improved.
  • the medium scattering state is a preferable embodiment that is configured to continuously change from the high scattering state to the low scattering state between the high scattering state and the low scattering state.
  • the degree of scattering changes continuously, so that the optical state can be changed at high variation, and the optical characteristics can be further enhanced.
  • an intermediate state can be created, and thus the optical characteristics are improved.
  • the light scattering variable part may be configured to be able to maintain the medium scattering state.
  • the light scattering variable part may scatter at least a part of visible light.
  • the light scattering variable part may scatter all visible light.
  • the light scattering variable part may scatter infrared light or scatter ultraviolet light.
  • the optical variable layer 2 may be configured of a light scattering variable layer.
  • the light scattering variable layer is disposed between the pair of electrodes 5 and 5. By applying a voltage between the pair of electrodes 5 and 5, the degree of light scattering in the light scattering variable layer changes.
  • the light scattering variable may be connected to an alternating current source.
  • materials in which the light scattering property is changed by an electric field there are many materials in which it is not possible to maintain the light scattering state at the time of voltage application as time passes from the start of voltage application.
  • an alternating current power supply With an alternating current power supply, voltages can be alternately applied in both directions, and it is possible to apply a voltage substantially continuously by changing the direction of the voltage. Therefore, stable light scattering can be obtained by the AC power supply.
  • the alternating current waveform may be a square wave. As a result, the amount of voltage to be applied is likely to be constant, and it becomes possible to stabilize the light scattering property.
  • the alternating current may be a pulse.
  • the medium scattering state can be formed by controlling the amount of applied voltage.
  • a material of the light scattering variable layer a material whose molecular orientation is changed by electric field modulation can be used.
  • a liquid crystal material may be mentioned.
  • a polymer dispersed liquid crystal may be used. In the polymer dispersed liquid crystal, since the liquid crystal is held by the polymer, a stable light scattering variable layer can be formed.
  • the polymer dispersed liquid crystal is called PDLC (Polymer Dispersed Liquid Crystal).
  • the solid substance from which scattering property changes with an electric field is also used preferably.
  • the polymer dispersed liquid crystal may be composed of a resin part and a liquid crystal part.
  • the resin portion is formed of a polymer.
  • the resin portion may have light transparency. Thereby, the light scattering variable portion can be made to be light transmissive.
  • the resin portion may be formed of a thermosetting resin, an ultraviolet curable resin, or the like.
  • the liquid crystal portion is a portion where the liquid crystal structure is changed by an electric field. A nematic liquid crystal or the like is used for the liquid crystal portion.
  • the polymer-dispersed liquid crystal is a preferred embodiment in which the liquid crystal portion is present in the form of dots in the resin portion.
  • the resin part may have a sea, and the liquid crystal part may have a sea-island structure forming an island.
  • the polymer-dispersed liquid crystal is a preferred embodiment in which the liquid crystal portion is irregularly connected in a mesh shape in the resin portion.
  • the polymer dispersed liquid crystal may have a structure in which a resin portion is present in a dot shape in the liquid crystal portion or in which the resin portions are irregularly connected in a mesh shape in the liquid crystal portion.
  • the light scattering variable part is in a light scattering state when no voltage is applied, and it is an aspect preferably in a light transmitting state when a voltage is applied.
  • polymer dispersed liquid crystals such control can be achieved. This is because in liquid crystals, alignment can be made uniform by application of a voltage.
  • the polymer dispersed liquid crystal it is possible to form a thin light scattering variable portion having a high light scattering property.
  • the light scattering variable part may be in a light transmitting state when no voltage is applied, and may be in a light scattering state when a voltage is applied.
  • the light scattering variable layer preferably maintains the light scattering state when a voltage is applied. Power efficiency is thereby increased.
  • the property of maintaining the light scattering state is called hysteresis.
  • the time during which the light scattering state is maintained is preferably longer, for example, one hour or more.
  • the plurality of optical variable units may include a light reflection variable unit.
  • the light reflection variable part is configured to be capable of changing the degree of light reflection.
  • the variable degree of light reflectivity may be adjustable between the high reflection state and the low reflection state. Alternatively, that the degree of light reflectivity can be changed may be adjustable between a state having light reflectivity and a state not having light reflectivity. When the degree of light reflectivity is adjustable, the optical state can be changed, and the optical switching device 100 with excellent optical characteristics can be obtained.
  • the light reflection variable part may be formed in a layer.
  • the high reflection state is a state in which light reflectivity is high.
  • the high reflection state is, for example, a state in which light incident on one surface changes its traveling direction to the opposite direction due to reflection, and is emitted to the incident side.
  • the high reflection state may be a state in which an object present on one surface side can not be viewed from the other surface side.
  • the high reflection state may be a state in which an object present on the same side is viewed when the light reflection variable part is viewed from one side.
  • the high reflection state may be a mirror state. When the light reflection variable portion exhibits light reflectivity, the light reflection variable portion functions as a reflection layer that reflects light.
  • the low reflection state is a state in which the light reflectivity is low or not.
  • the low reflection state is, for example, a state in which light incident from one surface maintains the traveling direction as it is and is emitted to the other surface.
  • the low reflection state may be a state in which the object can be clearly viewed when the object present on the other surface side is viewed from one surface side.
  • the low reflection state may be a transparent state.
  • the light reflection variable part exhibits light reflection between a high reflection state with high light reflectivity, a low reflection state with low light reflectivity or no light reflectivity, and a high reflection state and a low reflection state. And may be configured to be capable of. By being able to exhibit light reflectivity between the high reflection state and the low reflection state, it is possible to impart moderate light reflectivity, so it is possible to change the optical state in high variation, and it is possible to achieve The characteristics can be further improved.
  • a state in which light reflectivity between the high reflection state and the low reflection state is exhibited is referred to as a medium reflection state.
  • the medium reflection state may have at least one reflection state between the high reflection state and the low reflection state.
  • the medium reflection state is a preferable embodiment in which the medium has a plurality of states in which the degree of reflection is in a plurality of stages between the high reflection state and the low reflection state.
  • the degree of reflectivity is a plurality of stages, so that the optical characteristics can be further enhanced.
  • the light reflectivity can be changed stepwise by switching a plurality of states of a high reflection state, a plurality of middle reflection states, and a low reflection state, the optical characteristics are improved.
  • the medium reflection state is a preferred embodiment that is configured to change continuously from the high reflection state to the low reflection state between the high reflection state and the low reflection state.
  • the degree of reflectivity changes continuously, so that the optical state can be changed at high variation, and the optical characteristics can be further enhanced.
  • an intermediate state can be created, so that the optical characteristics are improved.
  • the light reflection variable part may be configured to be able to maintain the medium reflection state.
  • the light reflection variable part may reflect at least a part of visible light.
  • the light reflection variable part may reflect all of visible light.
  • the light reflection variable part may reflect infrared light.
  • the light reflection variable part may reflect ultraviolet light.
  • the light reflection variable part is an aspect that is preferably configured to be able to change the shape of the reflection spectrum.
  • the change of the reflection spectrum may be performed in the middle reflection state.
  • the change in the shape of the reflection spectrum means that the spectrum shapes of the light incident on the light reflection variable portion and the light reflected on the light reflection variable portion are different.
  • the change of the reflection spectrum is effected by the change of the reflection wavelength.
  • the shape of the reflection spectrum is changed by strongly reflecting only blue light, strongly reflecting only green light, or strongly reflecting only red light. As the reflection spectrum changes, the color of the light changes. Therefore, toning (color adjustment) can be performed, and optical characteristics can be improved.
  • the light reflection variable part is an aspect that is preferably configured to be able to reflect light without changing the shape of the reflection spectrum. In that case, since there is no change in the spectrum between the incident light and the reflected light, the degree of reflection can be easily given strength. When it becomes possible to control the level of reflectivity, light adjustment (adjustment of brightness) can be performed, and optical characteristics can be improved.
  • the optical variable layer 2 can be configured by a light reflection variable layer.
  • the light reflection variable layer is disposed between the pair of electrodes 5 and 5. By applying a voltage between the pair of electrodes 5 and 5, the degree of light reflectivity in the light reflection variable layer changes.
  • the light reflection variable part may be connected to an AC power supply.
  • an alternating current power supply voltages can be alternately applied in both directions, and it is possible to apply a voltage substantially continuously by changing the direction of the voltage. Therefore, stable light reflectivity can be obtained by the AC power supply.
  • the alternating current waveform may be a square wave. As a result, the amount of voltage to be applied is likely to be constant, which makes it possible to stabilize the light reflectivity.
  • the alternating current may be a pulse.
  • the middle reflection state can be formed by controlling the amount of voltage applied.
  • a material of the light reflection variable layer a material whose molecular orientation is changed by electric field modulation can be used.
  • nematic liquid crystals cholesteric liquid crystals, ferroelectric liquid crystals, electrochromic and the like can be mentioned.
  • the cholesteric liquid crystal may be a nematic liquid crystal having a helical structure.
  • the cholesteric liquid crystal may be a chiral nematic liquid crystal.
  • Cholesteric liquid crystal is called CLC (Cholestric Liquid Crystal).
  • CLC Chargestric Liquid Crystal
  • electrochromic By changing the liquid crystal state with an electric field, it is possible to control between light reflectivity and light transparency.
  • electrochromic it is possible to utilize the color change phenomenon of the substance by the electrochemical reversible reaction (electrolytic redox reaction) by voltage application, and it is possible to control between light reflectivity and light transparency.
  • a cholesteric liquid crystal or an electrochromic can be preferably used as the material of the light reflection variable layer.
  • the light reflection variable part is in a light reflection state when no voltage is applied, and it is an aspect preferably in a light transmission state when a voltage is applied.
  • Such control can be achieved in cholesteric liquid crystals and electrochromics. This is because in liquid crystals, alignment can be made uniform by application of a voltage.
  • the cholesteric liquid crystal and the electrochromic it is possible to form a thin and highly reflective light reflection variable part.
  • a state in which only specific light is reflected without applying a voltage is referred to as planar alignment, and a state in which light is passed through application of a voltage may be referred to as focal conic alignment.
  • the light reflection variable part may be in the light transmission state when no voltage is applied, and may be in the light reflection state when voltage is applied.
  • the light reflection variable layer may maintain the light reflection state when a voltage is applied. Power efficiency is thereby increased.
  • the property of maintaining the light reflection state is called hysteresis.
  • the time during which the light reflection state is maintained is preferably longer, for example, one hour or more.
  • the plurality of optical variable parts may include a light absorption variable part.
  • the light absorption variable portion is configured to be capable of changing the degree of light absorption.
  • the variable degree of light absorption may be the ability to adjust the high absorption state and the low absorption state. Alternatively, that the degree of light absorption can be changed may be adjustable between a state having light absorption and a state not having light absorption. When the degree of light absorption is adjustable, the optical state can be changed, and the optical switching device 100 with excellent optical characteristics can be obtained.
  • the light absorption variable part may be formed in a layer.
  • the high absorption state is a state in which light absorption is high. In the high absorption state, for example, light incident from one surface is not emitted to the other surface by absorption.
  • the high absorption state may be a state in which an object present on one surface side can not be viewed from the other surface side.
  • the high absorption state may be a state in which an object present on the other surface side can not be viewed from both sides.
  • the high absorption state can be an opaque state.
  • the light absorption variable part may be black. When the light absorption variable part exhibits light absorbability, the light absorption variable part functions as an absorption layer that absorbs light.
  • the low absorption state is a state of low light absorption or no light absorption.
  • the low absorption state is, for example, a state in which light incident from one surface is not absorbed but is maintained in the traveling direction and emitted to the other surface.
  • the low absorption state may be a state in which the object can be clearly viewed when the object present on the other surface side is viewed from one surface side.
  • the low absorption state may be a transparent state.
  • the light absorption variable portion exhibits light absorption between a high absorption state with high light absorption, a low absorption state with low light absorption or no light absorption, and a high absorption state and a low absorption state. And may be configured to be capable of. By being able to exhibit light absorption between the high absorption state and the low absorption state, it is possible to impart moderate light absorption, so that the optical state can be changed at high variation, and optical The characteristics can be further improved.
  • a state exhibiting light absorbency between the high absorption state and the low absorption state is referred to as a medium absorption state.
  • the intermediate absorption state may have at least one absorption state between the high absorption state and the low absorption state.
  • the medium absorption state is a preferable embodiment in which the medium absorption state has a plurality of states in which the degree of absorption becomes a plurality of stages between the high absorption state and the low absorption state. As a result, the optical properties can be further enhanced because the degree of absorbency is in a plurality of stages.
  • the medium absorption state is a preferable embodiment that is configured to change continuously between the high absorption state and the low absorption state between the high absorption state and the low absorption state.
  • the degree of absorption changes continuously, so that the optical state can be changed at high variation, and the optical characteristics can be further enhanced.
  • an intermediate state can be created, and thus the optical characteristics are improved.
  • the light absorption variable part may be configured to be able to maintain the medium absorption state.
  • the light absorption variable part may absorb at least a part of visible light. Thereby, light emission can be made clear.
  • the light absorption variable part may absorb all of visible light. Thereby, the light emission can be further clarified.
  • the light absorption variable part may absorb infrared rays. When absorbing infrared rays, a heat shielding effect can be obtained.
  • the light absorption variable part may absorb ultraviolet light. Thereby, deterioration of the optical switching device 100 can be suppressed. In addition, if ultraviolet rays can be absorbed, the penetration of ultraviolet rays into the room can be suppressed.
  • the light absorption variable part preferably absorbs any one of visible light, ultraviolet light and infrared light, more preferably absorbs two of these, and still more preferably absorbs all of them.
  • the light absorption variable part may be configured to be able to change the shape of the absorption spectrum.
  • the change of absorption spectrum may be performed in a medium absorption state.
  • the change in the shape of the absorption spectrum means that the spectral shapes of the light incident on the light absorption variable part and the light passing through the light absorption variable part are different.
  • the change of absorption spectrum is made by the change of absorption wavelength. For example, the shape of the spectrum is changed by strongly absorbing only blue light, strongly absorbing only green light, or strongly absorbing only red light. As the absorption spectrum changes, the color of light passing through the optical switching device 100 changes. Therefore, toning (color adjustment) of transmitted light can be performed, and optical characteristics can be improved.
  • the optical variable layer 2 may be configured of a light absorption variable layer.
  • the light absorption variable layer is disposed between the pair of electrodes 5 and 5. By applying a voltage between the pair of electrodes 5 and 5, the degree of light absorption in the light absorption variable layer changes.
  • the light absorption variable part may be connected to a DC power supply or an AC power supply, but is preferably connected to a DC power supply.
  • the light absorption may change due to the flow of electricity in one direction. Therefore, stable light absorption can be obtained by the DC power supply.
  • the medium absorption state can be formed by controlling the amount of voltage or current applied.
  • a material of the light absorption variable layer a material whose light absorption changes by electric field modulation can be preferably used.
  • a material of electric field modulation for example, tungsten oxide and the like can be mentioned.
  • the light absorption variable part is in a light transmission state when no voltage is applied, and is a preferable aspect in that it is a light absorption state when a voltage is applied.
  • the absorption may be changed by the application of a voltage.
  • the liquid crystal it is possible to form a thin light absorbing variable portion with high absorbency.
  • the light absorption variable part may be in a light absorption state when no voltage is applied and in a light transmission state when a voltage is applied.
  • the light absorption variable layer may be such that a light absorption state when a voltage is applied is maintained. Power efficiency is thereby increased.
  • the property of maintaining the light absorption state is called hysteresis.
  • the time during which the light absorption state is maintained is preferably longer, for example, one hour or more.
  • the first surface F1 is defined as the main surface
  • the second surface F2 is defined as the back surface.
  • the main surface is disposed in the direction in which light is desired to be obtained.
  • the main surface first surface F1
  • the back surface second surface F2
  • Table 1 shows an example of the configuration of the plurality of optical variable parts.
  • the configuration of the optical switching device 100 as the optical variable unit is indicated by “o”.
  • the operation when each configuration is selected is shown.
  • positioning of an optical variable part does not matter.
  • the light reflection variable part is preferably arranged closer to the second surface F2 than the planar light emitting part and the light scattering variable part. In that case, since light can be extracted using reflection, the optical switching device 100 having excellent optical characteristics can be obtained.
  • the light absorption variable part is one aspect preferably arranged closest to the second surface F2 among the plurality of optical variable parts. In that case, light entering from the second surface F2 can be absorbed. In addition, the contrast of light emitted from the first surface F1 can be enhanced.
  • the plurality of optical variable portions are preferably arranged in the order of the light scattering variable portion, the planar light emitting portion, the light reflection variable portion, and the light absorption variable portion from the first surface F1 to the second surface F2.
  • a suitable arrangement can be derived by removing a part of the above four cases.
  • the plurality of optical variable portions include an organic electroluminescent element (planar light emitting portion) and a light scattering variable portion.
  • planar light emitter having excellent optical properties can be obtained.
  • a planar light emitter can be used as a lighting device.
  • the plurality of optical variable units may have two or more light scattering variable units.
  • the plurality of optical variable units may have two or more planar light emitting units.
  • the plurality of optical variable units may have two or more light reflection variable units.
  • the plurality of optical variable units may have two or more light absorption variable units. If there are two or more portions having the same function (scattering, light emitting, reflecting, absorbing), the function can be enhanced.
  • the optical adjustment layer 3 bonds the adjacent optical variable bodies 1.
  • the optical adjustment layer 3 fills the space between the adjacent optical variable bodies 1.
  • the outline of the object on the other side tends to blur when looking from one side to the other side through them. So-called double reflection and multiple reflection may occur.
  • the optical adjustment layer 3 since the optical adjustment layer 3 is disposed between the substrates 6, the difference in refractive index with the substrate 6 is adjusted, so the phenomenon of double reflection and multiple reflection is suppressed. Ru. This is because the optical adjustment layer 3 performs matching of the refractive index.
  • the optical adjustment layer 3 when the optical adjustment layer 3 is present, interface reflection occurring on the surface of the substrate 6 is suppressed, so that optical loss is reduced and light transmission efficiency is improved. Furthermore, the optical adjustment layer 3 doubles as an adhesive. Therefore, adjacent substrates 6 can be firmly bonded. Furthermore, when the plurality of substrates 6 include glass, scattering of the glass can be suppressed even if the light switching device 100 is broken. Thereby, a safe device is obtained.
  • the adhesion of the optical adjustment layer 3 to the substrate 6 is represented by AS.
  • the adhesion of the optical variable layer 2 to the electrode 5 is AE.
  • AS> AE Relationship is established.
  • the adhesive force AS may be a bonding force between the optical adjustment layer 3 and the substrate 6.
  • the adhesive force AS is exerted at the interface between the optical adjustment layer 3 and the substrate 6.
  • the interface between the optical adjustment layer 3 and the substrate 6 is indicated by FS in FIGS. 1 to 3.
  • the adhesive force AE may be a bonding force between the optical variable layer 2 and the electrode 5.
  • the adhesive force AE is exerted at the interface between the optical variable layer 2 and the electrode 5.
  • the interface between the optical variable layer 2 and the electrode 5 is indicated by FE in FIGS. 1 to 3.
  • the adhesiveness between the substrates is improved. Therefore, even if a force acts in the peeling direction, the substrate 6 is less likely to be peeled, and a strong device is formed. Also, this relationship enhances thermal stability. The reason is presumed to be that the substrate 6 which is more likely to cause the problem of expansion and contraction due to heat than the optically variable layer 2 is firmly bonded. Furthermore, even if the optical switching device 100 is cracked, scattering is suppressed if the adhesive strength is high.
  • the optical switching device 100 may be manufactured by exposing a part of the side end portion and exposing the electrode 5 after the plurality of optical variable bodies 1 are stacked, as described later. At this time, if the above-described adhesive strength relationship holds, peeling off between the substrate 6 and the substrate 6 is suppressed when removing a part of the side end, and the side end is removed. Can be done well. Therefore, the manufacture of the device is facilitated.
  • the relationship of adhesion can be confirmed by a peeling test of the optical switching device 100.
  • an adhesive tape is attached to each of the first surface F1 and the second surface F2, and they are pulled in a direction away from each other to observe a part to be separated (separated) inside the light switching device 100. Relationship is confirmed.
  • AS> AE holds, the separation between the optically variable layer 2 and the electrode 5 occurs without the separation between the adjacent substrates 6, that is, between the adjacent optical variable bodies 1.
  • adhesiveness may be confirmed by another test.
  • the optical adjustment layer 3 is disposed between the adjacent substrates 6.
  • one of the adjacent substrates 6 is a substrate 6X
  • the other is a substrate 6Y.
  • the substrate 6b is the substrate 6X
  • the substrate 6c is the substrate 6Y.
  • the difference between the refractive index of the optical adjustment layer 3 and the refractive index of the substrate 6X (substrate 6Y) is preferably 0.1 or less in absolute value, and more preferably 0.05 or less .
  • the refractive index of the optical adjustment layer 3 may be the same as the refractive index of the substrate 6X (substrate 6Y).
  • the refractive index means a refractive index in the visible light wavelength range.
  • the visible light wavelength range is defined as a wavelength range of 450 to 700 nm. The light in this wavelength range greatly affects the transparency of the optical switching device 100 because it is visible to the human eye. Therefore, it is optically more advantageous to adjust the refractive index in this visible light wavelength range.
  • the substrate 6X and the substrate 6Y are different materials, a difference in refractive index may occur between them.
  • a difference in refractive index is likely to occur.
  • the optical adjustment layer 3 has a refractive index between the refractive index of the substrate 6X disposed on one side of the optical adjustment layer 3 and the refractive index of the substrate 6Y disposed on the other side of the optical adjustment layer 3 Is a preferred embodiment. Thereby, the refractive index difference is further reduced and the optical characteristics are improved.
  • the refractive index of the optical adjustment layer 3 when the refractive index of the optical adjustment layer 3 is between the refractive index of the substrate 6X and the refractive index of the substrate 6Y, the refractive index of the optical adjustment layer 3 changes stepwise in the thickness direction. desirable. By changing the refractive index stepwise, the refractive index difference is further reduced, and the optical characteristics are further improved. For example, when the refractive index of one substrate 6X is higher than the refractive index of the other substrate 6Y, the refractive index of the optical adjustment layer 3 gradually increases from the substrate 6Y having a low refractive index toward the substrate 6X having a high refractive index. May be higher. The change of the refractive index can be performed in the thickness direction.
  • the change of the refractive index may be a step change or a smooth change (gradation).
  • the stepwise change in refractive index can be obtained, for example, by forming the optical adjustment layer 3 with a plurality of layers and changing the refractive index of the plurality of layers.
  • the optical adjustment layer 3 may have a multilayer structure.
  • the gradation-like change is obtained, for example, by the refractive index of the single-layer optical adjustment layer 3 becoming higher in the thickness direction.
  • the optical adjustment layer 3 may have the same anisotropy as the substrate having anisotropy. Thereby, the light transmission is enhanced, and the optical characteristics are further improved.
  • the substrate 6 is made of a resin material (PET, PEN, etc.)
  • the substrate 6 may have anisotropy.
  • the optical adjustment layer 3 may have ultraviolet absorption. Thereby, the deterioration of the device due to the ultraviolet light can be suppressed.
  • the light switching device 100 can be provided with ultraviolet light cutting properties. This aspect is particularly effective when at least one surface of the optical switching device 100 is exposed to the outside. It is because it can control the penetration of ultraviolet rays into the room.
  • the number of optical variable members 1 is three or more, the effect of ultraviolet ray cutting is increased.
  • the optical adjustment layer 3 preferably has a small light absorption. Thereby, the loss of light can be suppressed.
  • the optical adjustment layer 3 can be formed of a resin composition.
  • the resin may be a thermosetting resin or a photocurable resin.
  • the resin composition may contain appropriate additives.
  • the refractive index can be adjusted by the inclusion of low refractive index particles or high refractive index particles.
  • ultraviolet ray absorbability is provided by containing of a ultraviolet absorber.
  • COP cycloolefin polymer
  • COP is preferable because of its low light absorption.
  • the optical adjustment layer 3 may be a gel material. If there is adhesion and optical adjustability, the optical adjustment layer 3 can be a gel material. When the optical adjustment layer 3 is a gel material, impact resistance can be enhanced. In addition, contraction due to thermal stress can be alleviated.
  • a step of bonding the plurality of optical variable bodies 1 through the optical adjustment layer 3 a step of forming the cut CL in the plurality of optical variable bodies 1, and a side end of the optical variable body 1 And removing 1x.
  • the step of making the cut CL in the plurality of optical variable bodies 1, in the side ends of the plurality of optical variable bodies 1, from the substrate 6 disposed at one end in the thickness direction, disposed at the other end in the thickness direction It is the process of making the cut CL up to the optical variable layer 2 to be made.
  • the step of removing the side end 1x of the optical variable body 1 is a step of removing the side end 1x of the optical variable body 1 along the cut CL and exposing the electrode 5.
  • FIG. 4 shows the case where there are two optical variable bodies 1 (see FIG. 1), the case where there are three optical variable bodies 1 (see FIG. 2), four cases (see FIG. 3) and more
  • FIG. 4 shows the case where there are two optical variable bodies 1 (see FIG. 1), the case where there are three optical variable bodies 1 (see FIG. 2), four cases (see FIG. 3) and more
  • FIG. 4 shows the case where there are two optical variable bodies 1 (see FIG. 1), the case where there are three optical variable bodies 1 (see FIG. 2), four cases (see FIG. 3) and more
  • FIG. 4 shows the case where there are two optical variable bodies 1 (see FIG. 1), the case where there are three optical variable bodies 1 (see FIG. 2), four cases (see FIG. 3) and more
  • FIG. 4 shows the case where there are two optical variable bodies 1 (see FIG. 1), the case where there are three optical variable bodies 1 (see FIG. 2), four cases (see FIG. 3) and more
  • FIG. 4 shows the case where there are two optical variable bodies 1
  • optical variable body 1 is produced separately.
  • the production of the optical variable 1 can be performed by an appropriate lamination process.
  • a plurality of optical variable bodies 1 are bonded by the optical adjustment layer 3.
  • the adhesion with the optical adjustment layer 3 can be performed, for example, by applying the material of the optical adjustment layer 3 having adhesiveness to the surface of the optical variable body 1 and overlapping the other optical variable body 1 on this surface. .
  • the plurality of optical variable bodies 1 are attached to each other.
  • the optical adjustment layer 3 is made of a curable material
  • the optical adjustment layer 3 is formed by curing the material.
  • cuts CL are made at the side ends of the plurality of optical variable bodies 1.
  • the cut CL is formed by, for example, a cutting tool such as a cutter or a laser.
  • the cut CL is formed from the substrate 6 disposed at one end in the thickness direction to the optically variable layer 2 disposed at the other end in the thickness direction.
  • the cut CL is formed from the substrate 6 ⁇ to the optical variable layer 2 ⁇ .
  • the cut CL is formed from the substrate 6 ⁇ to the optical variable layer 2 ⁇ .
  • the cut CL may be formed halfway to the thickness direction.
  • the cut CL may be appropriately formed.
  • FIG. 4C a cut CL from the substrate 6 ⁇ to the optically variable layer 2 ⁇ and a cut CL from the substrate 6 ⁇ to the optically variable layer 2 ⁇ are formed.
  • the side edge part 1x of the 1 or several optical variable body 1 which exists outside the cut CL is removed. Then, since the cut CL is stopped halfway in the thickness direction, the portion from the substrate 6 to the optically variable layer 2 is removed, and a part of the electrode 5 is exposed. Thereby, the electrode 5 comes to have the exposed surface 5s.
  • the exposed surface 5s of the electrode 5 is disposed at the side end of the optical switching device 100.
  • the adhesion AS between the optical adjustment layer 3 and the substrate 6 is larger than the adhesion AE between the optical variable layer 2 and the electrode 5. Therefore, when the side end 1x is removed, the side end 1x to be removed can be integrally removed without separation between the substrate 6 and the substrate 6.
  • the adhesion at interfaces FS1 and FS2 shown in FIG. 4C is greater than the adhesion at interfaces FE1 and FE2.
  • the interface FE1 and the interface FE2 are the interface between the electrode 5 remote from the substrate 6 and the optical variable layer 2 in the optical variable portion provided on the opposite surface of the substrate 6 in contact with the optical adjustment layer 3 Can.
  • the interface FE1 and the interface FE2 may be referred to as an interface between the electrode 5 in contact with the substrate 6 facing the substrate 6 in contact with the optical adjustment layer 3 and the optical variable layer 2 in contact with the electrode 5.
  • connection wiring 4 is connected to the exposed surface 5 s of the electrode 5.
  • the connection wiring 4 may have an appropriate structure that can be connected to a power supply.
  • the connection wiring 4 may be composed of a wire, a laminate of conductive materials, or the like.
  • the exposed surface 5 s may be covered by the connection wiring 4.
  • the optical switching device 100 is manufactured.
  • a frame material surrounding the outer periphery of the optical switching device 100 may be attached.
  • a transparent cover that covers the optical switching device 100 in a plane may be attached to one side or both sides.
  • the optical adjustment layer 3 may be provided at any position between the adjacent substrates 6.
  • FIG. 5 shows an example of the function of the optical switching device 100.
  • the plurality of optical variable parts are schematically illustrated. Arrows indicate the progression of light.
  • FIG. 5 shows an example in which a light scattering variable portion 1S, a planar light emitting portion 1P, a light reflection variable portion 1R, and a light absorption variable portion 1Q are disposed as a plurality of optical variable portions from the first surface F1 side. There is.
  • the optical switching device 100 of FIG. 5 is configured to mainly extract the light of the planar light emitting unit 1P from the first surface F1.
  • the functioning optical variable part is indicated by oblique lines. Being functional means that light scattering is exhibited in the light scattering variable portion 1S, light is emitted in the planar light emitting portion 1P, and light reflectivity is exhibited in the light reflection variable portion 1R.
  • the light absorption variable part 1Q means a state where light absorption is exhibited. If an optical variable does not function, then that optical variable may be transparent. In order to simplify the description, the light scattering property, the light reflectivity, and the light absorbing property do not indicate intermediate states, but an intermediate state may be present.
  • a to Q in FIG. 5 are different in the state of the function of the optical variable unit, and are different from one another as the optical switching device 100.
  • the optical switching device 100 may be able to exert all of the states A to Q in FIG. 5 or may be able to exert some of these states.
  • the optical switching device 100 can switch the optical state.
  • the optical switching device 100 when at least one of the plurality of optical variable units is functional, it is difficult for light entering the optical switching device 100 from the outside to pass through as it is, so the optical switching device 100 may be opaque.
  • the light scattering property of the light scattering variable portion 1S when exhibited as shown in A of FIG. 5, the light is scattered, so the light remains as it is between the first surface F1 and the second surface F2. I can not go through.
  • the light reflectivity of the light reflection variable portion 1R is exhibited as shown in C of FIG. 5, the light is reflected, so the light remains as it is between the first surface F1 and the second surface F2. I can not go through.
  • the optical switching device 100 can be changed from the transparent state such as Q in FIG. 5 to various opaque states shown by A to P in FIG. 5, so that the optical characteristics are improved.
  • FIG. 5 shows an example in which four types of different optical variable parts are combined
  • the function of the optical switching device 100 can be understood from this example also in the case of three optical variable parts and in the case of two optical variable parts. Also, when the arrangement (order) of the optical variable parts is changed, the function of the optical switching device 100 can be understood based on FIG.
  • the optical switching device 100 can be used as a window.
  • a window that produces an optically different state may be defined as an active window.
  • a window in which the pattern changes between opaque and transparent is useful.
  • the windows can be used for both the inner and outer windows.
  • an on-board window as the window.
  • the on-vehicle window may be a window for an automatic vehicle, a vehicle such as a train, a locomotive, a train, an airplane, or a ship.
  • windows that can change transparency and opacity are suitable for luxury cars.
  • the optical switching device 100 can be used as a building material. As building materials, it can be used for wall materials, partitions, signage and the like. Signage may be a so-called lighting advertisement.
  • the wall material may be for the outer wall or for the inner wall.
  • the optical switching device 100 can be used as a lighting device when it has a planar light emitting unit. In the optical switching device 100, illumination with an optical state change may be obtained.
  • FIG. 6 is an application example of the optical switching device 100.
  • a building material 200 is shown.
  • the building material 200 shown in FIG. 6 is a window.
  • the building material 200 includes the optical switching device 100.
  • the building material 200 has a frame 101, a wire 102, and a plug 103.
  • the building material 200 is a so-called electrified building material.
  • the frame 101 encloses the outer periphery of the optical switching device 100.
  • the wire 102 is electrically connected to the optical switching device 100.
  • the plug 103 can be connected to an external power supply.
  • the optical state of the optical switching device 100 may change.
  • a plurality of states such as a transparent state, a semitransparent (ground glass state), a mirror state, and a light emitting state, change. Therefore, the building material 200 is excellent in optical characteristics.
  • an optical switching device As mentioned above, although an optical switching device, its manufacturing method, construction materials, etc. were explained based on an embodiment, an optical switching device etc. of this indication are not limited to the above-mentioned embodiment.
  • the present invention can be realized by arbitrarily combining the components and functions in the embodiment without departing from the scope of the present disclosure or the embodiments obtained by applying various modifications that those skilled in the art would think on the above embodiment. Forms are also included in the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 光スイッチングデバイス(100)は、電力により光学的状態の程度が変化可能である複数の光学可変体(1)と、複数の光学可変体(1)の間に配置される光学調整層(3)とを備えている。光学可変体(1)は、一対の基板(6,6)と、一対の基板(6,6)の間に配置される一対の電極(5,5)と、一対の電極(5,5)の間に配置される光学可変層(2)とを備えている。光学調整層(3)は、複数の光学可変体(1)を厚み方向で面状に接着している。光学調整層(3)は、隣り合う光学可変体(1)の基板(6)の間の屈折率を調整する。電極(5)は、電力を供給するための露出面(5s)を有している。光学調整層(3)の基板(6)に対する接着力は、光学可変層(2)の電極(5)に対する接着力よりも大きい。

Description

光スイッチングデバイス及びその製造方法、並びに建材
 光スイッチングデバイス及びその製造方法、並びに建材の発明が開示される。より詳しくは、電力により光透過性の程度が変化可能な光スイッチングデバイス及びその製造方法、並びに建材が開示される。
 近年、電気により光透過性が変化する部材が注目されている。光透過性が変化する部材は、窓などの建材に利用可能である。例えば、透明な有機EL素子では、発光状態と非発光状態とで光透過性が変化する。光学的な特性が変化する有機EL素子は、例えば、特許文献1に例示される。特許文献1では、光の進行方向を変化させる光学層を設けて、有機EL素子の光学的な特性を変化させている。
特開2013-201009号公報
 光透過性が変化する部材では、透明な状態とそうでない状態との変化のバリエーションにより、光学特性のさらなる向上が見込まれる。ここで、光透過性が変化する部分を複数有する場合には、構成が複雑化するため、安定して製造され、それらの部分が光学的に良好に機能することが重要である。
 以下に開示される発明は、安定して製造され、光学特性に優れた光スイッチングデバイス及びその製造方法、並びに建材を提供することを目的とする。
 本開示の光スイッチングデバイスの一態様は、面状であり、電力により光学的状態の程度が変化可能である複数の光学可変体と、前記複数の光学可変体の間に配置される光学調整層と、を備えている。前記光学可変体は、一対の基板と、前記一対の基板の間に配置される一対の電極と、前記一対の電極の間に配置され、光学的状態の程度が変化可能な光学可変層と、を備えている。前記光学調整層は、前記複数の光学可変体を厚み方向で面状に接着し、隣り合う前記光学可変体の前記基板の間の屈折率を可視光波長域において調整する。前記電極は、電力を供給するための露出面を有している。前記光学調整層の前記基板に対する接着力は、前記光学可変層の前記電極に対する接着力よりも大きい。
 本開示の建材の一態様は、上記の光スイッチングデバイスと、配線とを備えている。
 本開示の光スイッチングデバイスの製造方法の一態様は、前記複数の光学可変体を前記光学調整層で接着する工程と、前記複数の光学可変体の側端部において、厚み方向の一方の端部に配置される前記基板から、厚み方向の他方の端部に配置される前記光学可変層まで、切れ目を入れる工程と、前記切れ目に沿って、前記光学可変体の側端部を除去し、前記電極を露出させる工程と、を含む。
 本開示の光スイッチングデバイスは、安定して製造され、光学特性に優れている。本開示の建材は、光学特性に優れている。本開示の光スイッチングデバイスの製造方法は、光学特性に優れた光スイッチングデバイスを容易に製造することができる。
図1は、光スイッチングデバイスの一例を示す模式的な断面図である。 図2は、光スイッチングデバイスの一例を示す模式的な断面図である。 図3は、光スイッチングデバイスの一例を示す模式的な断面図である。 図4は、光スイッチングデバイスの製造方法の一例を示す模式的な断面図である。図4のAは、接着前の複数の光学可変体を示す。図4のBは、複数の光学可変体を接着した後の状態を示す。図4のCは、切れ目を入れた後の状態を示す。図4のDは、側端部を除去した後の状態を示す。図4のEは、配線を繋いだ後の状態を示す。 図5は、光スイッチングデバイスの複数の光学可変部の機能の発揮状態を示す模式図である。図5のAは、光散乱性が機能している状態を示す。図5のBは、発光している状態を示す。図5のCは、光反射性が機能している状態を示す。図5のDは、光吸収性が機能している状態を示す。図5のEは、光散乱性が機能し、発光している状態を示す。図5のFは、光散乱性及び光反射性が機能している状態を示す。図5のGは、光散乱性及び光吸収性が機能している状態を示す。図5のHは、光反射性が機能し、発光している状態を示す。図5のIは、光吸収性が機能し、発光している状態を示す。図5のJは、光反射性及び光吸収性が機能している状態を示す。図5のKは、光散乱性及び光反射性が機能し、発光している状態を示す。図5のLは、光散乱性及び光吸収性が機能し、発光している状態を示す。図5のMは、光散乱性、光反射性及び光吸収性が機能している状態を示す。図5のNは、光反射性及び光吸収性が機能し、発光している状態を示す。図5のPは、光散乱性、光反射性及び光吸収性が機能し、発光している状態を示す。図5のQは、光散乱性、光反射性及び光吸収性の全てが機能されず、発光していない状態を示す。 図6は、光スイッチングデバイスを備えた建材の一例を示す模式図である。
 以下により、光スイッチングデバイスが開示される。図1は、光スイッチングデバイス100の一例である。図2は、光スイッチングデバイス100の他の一例である。図3は、光スイッチングデバイス100のさらに他の一例である。
 光スイッチングデバイス100は、複数の光学可変体1を備える。図1の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bとで構成されている。図2の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bと第3光学可変体1Cとで構成されている。図3の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bと第3光学可変体1Cと第4光学可変体1Dとで構成されている。複数の光学可変体1が存在することで、光学特性が向上する。
 光学可変体1は、面状である。光学可変体1は、電力により光学的状態の程度が変化可能である。ここで、光学的状態とは、透明性、発光性、光散乱性、光反射性及び光吸収性のいずれかの状態を意味する。光学可変体1は、一対の基板6,6と、一対の電極5,5と、光学可変層2とを備えている。一対の電極5,5は、一対の基板6,6の間に配置されている。光学可変層2は、一対の電極5,5の間に配置されている。光学可変層2は、光学的状態の程度が変化可能である。電極5は、平面視において電力を供給するための露出面5sを有している。露出面5sにより、電力の供給が容易になる。
 光スイッチングデバイス100は、光学調整層3を備えている。光学調整層3は、複数の光学可変体1の間に配置されている。光学調整層3は、複数の光学可変体1を厚み方向で面状に接着している。光学調整層3は、隣り合う光学可変体1の基板6の間の屈折率を可視光波長域において調整する。光学調整層3の基板6に対する接着力は、光学可変層2の電極5に対する接着力よりも大きい。光学調整層3により、基板間の屈折率差が調整されるため、光学特性が向上する。さらに、光学調整層3が接着性を有することにより、隣り合う基板6に対する接着性が高まる。
 厚み方向とは、光スイッチングデバイス100の厚みの方向である。図1~図3において、厚み方向は、矢印DTで示されている。厚み方向とは、基板6の表面に垂直な方向であってよい。図1~図3において、光スイッチングデバイス100の各層は厚み方向に対して垂直な方向に広がっていると考えることができる。なお、「平面視」とは基板6の表面に垂直な方向(厚み方向DT)に沿って見た場合のことを意味する。
 光スイッチングデバイス100は面状である。光スイッチングデバイス100はパネル状であってよい。光スイッチングデバイス100は、光の状態をスイッチングする。
 光スイッチングデバイス100は、第1面F1と、第1面F1とは反対側に配置された第2面F2とを有している。第1面F1及び第2面F2は外面となる。これらの面は露出していてよい。あるいは、第1面F1及び第2面F2は、他の透明な面状部材で覆われていてもよい。
 ここで、光スイッチングデバイス100の面は、平面及び曲面を含む。面は平面のみで構成されていてもよい。あるいは、面は曲面のみで構成されていてもよい。例えば、面は円弧状となり得る。あるいは、面は平面と曲面との両方を含んでいてもよい。
 図1~図3は、光スイッチングデバイス100の例であり、光スイッチングデバイスの態様はこれに限定されない。図1~図3及び他の図においては、光スイッチングデバイス100及びその中の各構成が、模式的に図示されており、これらの実際の寸法関係等は図面と異なるものであってよい。また、特に断りのない限り、複数の図において、同じ符号番号を付した構成は同様の構成を指し、その符号番号の構成に関して行った説明は、共通して適用可能である。
 一対の電極5,5とその間に配置される光学可変層2とは、光学可変部を構成する。光学可変部は、光学可変体1内の主要部である。光学可変部は、光学可変体1から基板6を取り除いたものであってよい。光スイッチングデバイス100は、複数の光学可変部を有する。
 複数の光学可変部は、複数の基板6によって支持されている。光学可変部は、一対の基板6の間に配置されている。それにより、光学可変部が保護されている。光学可変部は、基板6で支持されることで、容易に製造され、安定化し得る。
 図1~図3では、複数の基板6は、便宜上、第1面F1側から順番に、基板6a、基板6b、基板6c、基板6d、基板6e、基板6f、基板6g、基板6hと、符号付けされている。
 光スイッチングデバイス100は、基板6を複数有しているとよい。複数の基板6は光透過性を有する。それにより、光学特性の高い光スイッチングデバイス100を得ることができる。基板6は、光スイッチングデバイス100の各層を支持するための基板として機能し得る。基板6は、光スイッチングデバイス100の各層を封止するための基板として機能し得る。複数の基板6は厚み方向に配置されている。
 光スイッチングデバイス100は、複数の基板6のうち、外側に配置される二つの基板6の間に、複数の光学可変部が配置されたものであるとよい。それにより、複数の光学可変部を基板6で保護することができる。
 基板6として、ガラス基板、樹脂基板などを用いることができる。基板6をガラス基板で構成した場合、ガラスは透明性が高いため、光学特性の優れた光スイッチングデバイス100を得ることができる。また、ガラスは水分の透過性が低いので、封止領域の内部に水分が浸入することを抑制することができる。ガラスは紫外線吸収性を有し得るため、デバイスの劣化を抑制できる。ガラスとしては、ソーダガラス、無アルカリガラス、高屈折率ガラスが例示される。基板6として薄膜ガラスを用いることができる。その場合、高透明性と高防湿性に加えて、フレキシブルな光スイッチングデバイス100を得ることが可能である。また、基板6として樹脂基板を用いた場合、樹脂は破断しにくいために、破壊時の飛散が抑制された安全な光スイッチングデバイス100を得ることができる。また、樹脂基板を用いた場合、フレキシブルな光スイッチングデバイス100を得ることが可能である。樹脂基板はフィルム状であってよい。樹脂としては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)が例示される。
 複数の基板6のうち、外側に配置される二つの基板6はガラス基板であるとよい。それにより、光学特性の優れた光スイッチングデバイス100を得ることができる。複数の基板6の全てが、ガラス基板であってもよい。その場合、光学的な条件を制御しやすくなり、光学特性を高めることができる。内側の基板6のいずれか一つ以上が、樹脂基板であってもよい。その場合、破壊時の飛散を抑制することができ、安全な光スイッチングデバイス100を得ることができる。基板6の表面は、防汚材料、紫外線遮断材料、紫外線吸収材料、及び防湿材料のいずれか一つ以上によって被覆されていてもよい。その場合、保護性が高まる。
 電極5は、透明な導電層によって構成することができる。透明導電層の材料としては、透明金属酸化物、導電性粒子含有樹脂、金属薄膜などを用いることができる。電極5は、各場所において好適化された導電材料が用いられ得る。光透過性を有する電極5の材料の好ましいものとして、ITO、IZOなどの透明金属酸化物が例示される。透明金属酸化物によって構成される電極5は、光学可変体1の電極5に用いることが好適である。また、電極5は、銀ナノワイヤを含有する層や薄膜銀などの透明金属層であってもよい。また、電極5は、透明金属酸化物の層と金属層とが積層されたものであってもよい。また、電極5は、透明導電層に電気的な補助を行う配線が設けられたものであってもよい。電極5は遮熱効果を有していてもよい。それにより、断熱性が高まり得る。基板6と電極5の間に防湿層が形成されていてもよい。防湿層により光スイッチングデバイス100への水分の浸入が抑制されるため、光スイッチングデバイス100の劣化を抑制することができる。
 一対の電極5,5は、電気的に対となる二つの電極5である。一対の電極5,5は、一方が陽極を構成し、他方が陰極を構成する。一対の電極5,5は、その一方が第1面F1側に配置され、他方が第2面F2側に配置され得る。一対の電極5,5が第1面F1側のみまたは第2面F2側のみに配置されていてもよい。
 複数の電極5は、電源との電気接続が可能なように構成されていてよい。光スイッチングデバイス100は、電源に接続するために、電極パッドや、電極パッドを電気的に集約した電気接続部などを有していてよい。電気接続部はプラグなどにより構成されていてもよい。
 電極5は露出面5sを有している。露出面5sは電極5に対して電力を供給するための面である。電極5の露出面5sは、光スイッチングデバイス100の側端部に配置される。露出面5sは、電極5における光学可変層2と接していない部分で形成される。露出面5sは、光学可変層2から露出していればよい。露出面5sは、外部に露出していなくてよい。露出面5sは、平面視において電極5が光学可変層2よりもはみ出すことで設けられる。露出面5sは、接続配線4によって覆われていてもよい。露出面5sには、電源との電気的な接続を行うための接続配線4が接続されている。光スイッチングデバイス100は、接続配線4を備えているとよい。電極5が露出面5sを有することにより、電源との電気接続が容易になり、複数の光学可変部への電力供給を良好に行うことができる。また、接続配線4は、電気的な接続をさらに容易にさせる。
 図1~図3では、複数の電極5は、便宜上、第1面F1側から順番に、電極5a、電極5b、電極5c、電極5d、電極5e、電極5f、電極5g、電極5hと、符号付けされている。
 光学可変部は、光学可変層2を有する。光学可変層2は、一対の電極5,5の間に配置されている。光学可変層2は、一対の電極5,5を介して電力が供給されて、光学的状態の程度が変化する。一対の電極5,5は、光学可変層2を駆動させる電極として機能する。第1光学可変体1A内の光学可変層2は第1光学可変層2Aと定義される。同様に、第2光学可変層2B、第3光学可変層2C、第4光学可変層2Dが、第2~第4の光学可変体1B~1D内の光学可変層2としてそれぞれ定義される。
 複数の光学可変部は、面状発光部、光散乱可変部、光反射可変部、及び光吸収可変部から選択されるもので構成される。面状発光部は、電力の供給により面状に発光する素子で構成され得る。光散乱可変部は、電力により光散乱性の程度が変化可能な素子で構成され得る。光反射可変部は、電力により光反射性の程度が変化可能な素子で構成され得る。光吸収可変部は、電力により光吸収性の程度が変化可能な素子で構成され得る。
 面状発光部を有する光学可変体1は、面状発光体と定義される。光散乱可変部を有する光学可変体1は光散乱可変体と定義される。光反射可変部を有する光学可変体1は光反射可変体と定義される。光吸収可変部を有する光学可変体1は光吸収可変体と定義される。光スイッチングデバイス100は、面状発光体、光散乱可変体、光反射可変体、及び光吸収可変体から選ばれる2以上の光学可変体1を含み得る。
 複数の光学可変部は、面状発光部を含むとよい。面状発光部は、面状に発光することが可能である。面状発光部は、有機エレクトロルミネッセンス素子(有機EL素子)であるとよい。それにより、薄型で大面積の発光を得ることができる。面状発光部は透明であるとよい。
 光学可変部が有機EL素子である場合、光学可変層2は有機発光層で構成され得る。有機EL素子は、一対の電極5,5の間に有機発光層が配置された構成を有する素子である。面状発光部が有機EL素子で構成されることにより、光学特性の優れた薄型で透明の発光体を形成することができる。この場合、光スイッチングデバイスは、面発光が可能となる。有機発光層は光透過性を有する。そのため、発光時には、有機発光層で発した光を厚み方向の両側に出射することができる。また、非発光時には、光を一方の側から他方の側に透過させることができる。
 有機発光層は、発光を生じさせる機能を有する層であり、ホール注入層、ホール輸送層、発光材料含有層、電子輸送層、電子注入層、中間層などから適宜選ばれる複数の機能層によって構成され得る。もちろん、有機発光層は発光材料含有層の単層で構成されてもよい。有機EL素子では、一対の電極5,5の間で電気を流すことにより、発光材料含有層において正孔と電子を結合させて発光を生じさせる。
 有機EL素子では一般的には電流の方向は一方向である。そのため、直流電源が接続され得る。もちろん、交流から変換された直流であってもよい。直流電源により、安定した発光を得ることができる。有機EL素子の発光色は白色でもよいし、青色、緑色、又は赤色でもよい。もちろん、青から緑又は緑から赤までの間の中間色であってもよい。また、印加電流により調色可能であってもよい。
 複数の光学可変部は、光散乱可変部を含むとよい。光散乱可変部は、光散乱性の程度が変化可能に構成されている。光散乱性の程度が変化可能とは、高散乱状態と低散乱状態とを調整可能なことであってよい。あるいは、光散乱性の程度が変化可能とは、光散乱性を有する状態と、光散乱性を有さない状態とを調整可能なことであってもよい。光散乱性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光散乱可変部は層状に形成されていてよい。
 高散乱状態とは、光散乱性が高い状態である。高散乱状態は、例えば、一方の面から入射した光が、散乱によって進行方向がいろいろな方向に変わって、他方の面に分散して出射する状態である。高散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体がぼやけて見える状態であり得る。高散乱状態は、半透明な状態であり得る。光散乱可変部が光散乱性を発揮する場合、光散乱可変部は、光を散乱する散乱層として機能する。
 低散乱状態とは、光散乱性が低い又は光散乱性がない状態である。低散乱状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低散乱状態は、透明な状態であり得る。
 光散乱可変部は、光散乱性が高い高散乱状態と、光散乱性が低い又は光散乱性がない低散乱状態と、高散乱状態と低散乱状態との間の光散乱性を発揮する状態と、を有することが可能なように構成されているとよい。高散乱状態と低散乱状態との間の光散乱性を発揮することができることで、中程度の光散乱性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高散乱状態と低散乱状態との間の光散乱性を発揮する状態を、中散乱状態と呼ぶ。
 中散乱状態は、高散乱状態と低散乱状態との間において、少なくとも一つの散乱状態を有するものであってよい。例えば、高散乱状態と中散乱状態と低散乱状態との三つの状態を切り替えることにより、光散乱性を変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、散乱性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、散乱性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高散乱状態と複数の中散乱状態と低散乱状態との複数の状態を切り替えることにより、光散乱性を段階的に変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、高散乱状態から低散乱状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、散乱性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高散乱状態と低散乱状態との間で目的とする光散乱性を発揮させる状態にして光散乱性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光散乱可変部が、中散乱状態を有する場合、光散乱可変部は、中散乱状態を維持できるように構成されているとよい。
 光散乱可変部は、少なくとも可視光の一部を散乱させるものであってよい。光散乱可変部は可視光の全部を散乱させるものであるとよい。もちろん、光散乱可変部は、赤外線を散乱させたり、紫外線を散乱させたりするものであってもよい。
 光学可変部が光散乱可変部である場合、光学可変層2は、光散乱可変層で構成され得る。光散乱可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光散乱可変層における光散乱性の程度が変化する。
 光散乱可変部は、交流電源に接続され得る。電界により光散乱性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光散乱性の状態が維持できなくなるものが多く存在する。交流電源では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源により、安定した光散乱性を得ることができる。交流の波形は矩形波であるとよい。それにより、印加する電圧量が一定になりやすくなるため、光散乱性を安定化させることがより可能になる。交流はパルスであってよい。なお、中散乱状態は、電圧の印加量が制御されることによって形成され得る。
 光散乱可変層の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、液晶材料などが挙げられる。光散乱可変層の材料としては、高分子分散型液晶を用いるとよい。高分子分散型液晶では、液晶が高分子によって保持されているため、安定な光散乱可変層を形成することができる。高分子分散型液晶は、PDLC(Polymer Dispersed Liquid Crystal)と呼ばれる。なお、光散乱可変層の材料としては、電界により散乱性が変化する固体物質も好ましく用いられる。
 高分子分散型液晶は、樹脂部と液晶部とから構成されるものであってよい。樹脂部は高分子により形成される。樹脂部は光透過性を有するとよい。それにより、光散乱可変部が光透過性を有するようにすることができる。樹脂部は、熱硬化性樹脂、紫外線硬化性樹脂などにより形成され得る。液晶部は、電界によって液晶構造が変化する部分である。液晶部は、ネマチック液晶などが用いられる。高分子分散型液晶は、樹脂部の中に液晶部が点状に存在する構造であることが好ましい一態様である。この高分子分散型液晶においては、樹脂部が海、液晶部が島を構成する海島構造となっていてよい。高分子分散型液晶は、樹脂部の中において液晶部が網目状に不規則につながる形状であることが好ましい一態様である。もちろん、高分子分散型液晶は、液晶部の中に樹脂部が点状に存在したり、液晶部の中で樹脂部が網目状に不規則につながったりした構造であってもよい。
 光散乱可変部は、電圧無印加時に光散乱状態となり、電圧印加時に光透過状態となることが好ましい一態様である。高分子分散型液晶では、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。高分子分散型液晶では、薄型で光散乱性の高い光散乱可変部を形成することができる。もちろん、光散乱可変部は、電圧無印加時に光透過状態となり、電圧印加時に光散乱状態となるものであってもよい。
 光散乱可変層は、電圧を印加したときの光散乱状態が維持されるものであるとよい。それにより、電力効率が高まる。光散乱状態が維持される性質はヒステリシスと呼ばれる。光散乱状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
 複数の光学可変部は、光反射可変部を含むとよい。光反射可変部は、光反射性の程度が変化可能に構成されている。光反射性の程度が変化可能とは、高反射状態と低反射状態とを調整可能なことであってよい。あるいは、光反射性の程度が変化可能とは、光反射性を有する状態と、光反射性を有さない状態とを調整可能なことであってもよい。光反射性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光反射可変部は層状に形成されていてよい。
 高反射状態とは、光反射性が高い状態である。高反射状態は、例えば、一方の面に入射した光が、反射によって進行方向が反対方向に変わって、入射した側に出射する状態である。高反射状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高反射状態は、一方の面側から光反射可変部を見たときに、同じ面側に存在する物体が視認される状態であり得る。高反射状態は、鏡状態であり得る。光反射可変部が光反射性を発揮する場合、光反射可変部は、光を反射する反射層として機能する。
 低反射状態とは、光反射性が低い又は光反射性がない状態である。低反射状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低反射状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低反射状態は、透明な状態であり得る。
 光反射可変部は、光反射性が高い高反射状態と、光反射性が低い又は光反射性がない低反射状態と、高反射状態と低反射状態との間の光反射性を発揮する状態と、を有することが可能なように構成されているとよい。高反射状態と低反射状態との間の光反射性を発揮することができることで、中程度の光反射性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高反射状態と低反射状態との間の光反射性を発揮する状態を、中反射状態と呼ぶ。
 中反射状態は、高反射状態と低反射状態との間において、少なくとも一つの反射状態を有するものであってよい。例えば、高反射状態と中反射状態と低反射状態との三つの状態を切り替えることにより、光反射性を変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、反射性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、反射性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高反射状態と複数の中反射状態と低反射状態との複数の状態を切り替えることにより、光反射性を段階的に変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、高反射状態から低反射状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、反射性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高反射状態と低反射状態との間で目的とする光反射性を発揮させる状態にして光反射性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光反射可変部が、中反射状態を有する場合、光反射可変部は、中反射状態を維持できるように構成されているとよい。
 光反射可変部は、少なくとも可視光の一部を反射させるものであってよい。光反射可変部は可視光の全部を反射させるものであるとよい。光反射可変部は、赤外線を反射させるものであってもよい。光反射可変部は紫外線を反射させるものであってもよい。光反射可変部が、可視光、紫外線及び赤外線の全てを反射する場合、光学的特性に優れ、安定した光スイッチングデバイス100を得ることができる。
 光反射可変部は、反射スペクトルの形状を変化させることが可能なように構成されることが好ましい一態様である。反射スペクトルの変化は、中反射状態において行われるものであってよい。反射スペクトルの形状が変化するとは、光反射可変部に入射する光と、光反射可変部で反射した光とのスペクトル形状が異なることである。反射スペクトルの変化は反射波長の変化により行われる。例えば、青色光のみを強く反射させたり、緑色光のみを強く反射させたり、赤色光のみを強く反射させたりすることによって、反射スペクトルの形状は変化する。反射スペクトルが変化すると、光の色が変化する。そのため、調色(色の調整)を行うことができ、光学特性を向上させることができる。
 光反射可変部は、反射スペクトルの形状を変化させずに、光を反射させることが可能なように構成されることが好ましい一態様である。その場合、入射光と反射光とでスペクトルの変化がないため、反射の程度に簡単に強弱を付与することができる。反射性の強弱を制御することが可能になると、調光(明るさの調整)を行うことができ、光学特性を向上することができる。
 光学可変部が光反射可変部である場合、光学可変層2は、光反射可変層で構成され得る。光反射可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光反射可変層における光反射性の程度が変化する。
 光反射可変部は、交流電源に接続され得る。電界により光反射性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光反射性の状態が維持できなくなるものが多く存在する。交流電源では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源により、安定した光反射性を得ることができる。交流の波形は矩形波であるとよい。それにより、印加する電圧量が一定になりやすくなるため、光反射性を安定化させることがより可能になる。交流はパルスであってよい。なお、中反射状態は、電圧の印加量が制御されることによって形成され得る。
 光反射可変層の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、ネマチック液晶、コレステリック液晶、強誘電性液晶、エレクトロクロミックなどが挙げられる。コレステリック液晶は、螺旋構造を持つネマチック液晶であってよい。コレステリック液晶は、キラルネマチック液晶であってよい。コレステリック液晶は、CLC(Cholestric Liquid Crystal)と呼ばれる。コレステリック液晶では、分子軸の配向方向が空間で連続的に変化し、巨視的な螺旋構造が生まれる。このため、螺旋の周期に対応した光の反射が可能となる。液晶状態を電界によって変化させることにより、光反射性と光透過性との間を制御することが可能である。エレクトロクロミックでは、電圧印加による電気化学的可逆反応(電解酸化還元反応)による物質の色変化現象を利用することができ、光反射性と光透過性との間を制御することが可能である。光反射可変層の材料として、コレステリック液晶やエレクトロクロミックを好ましく用いることができる。
 光反射可変部は、電圧無印加時に光反射状態となり、電圧印加時に光透過状態となることが好ましい一態様である。コレステリック液晶やエレクトロクロミックでは、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。コレステリック液晶やエレクトロクロミックでは、薄型で反射性の高い光反射可変部を形成することができる。電圧を印加せずに特定の光だけを反射する状態をプレーナ配向といい、電圧を印加して光を通す状態をフォーカルコニック配向ということがある。もちろん、光反射可変部は、電圧無印加時に光透過状態となり、電圧印加時に光反射状態となるものであってもよい。
 光反射可変層は、電圧を印加したときの光反射状態が維持されるものであるとよい。それにより、電力効率が高まる。光反射状態が維持される性質はヒステリシスと呼ばれる。光反射状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
 複数の光学可変部は、光吸収可変部を含むとよい。光吸収可変部は、光吸収性の程度が変化可能に構成されている。光吸収性の程度が変化可能とは、高吸収状態と低吸収状態とを調整可能なことであってよい。あるいは、光吸収性の程度が変化可能とは、光吸収性を有する状態と、光吸収性を有さない状態とを調整可能なことであってもよい。光吸収性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光吸収可変部は層状に形成されていてよい。
 高吸収状態とは、光吸収性が高い状態である。高吸収状態は、例えば、一方の面から入射した光が、吸収によって他方の面に出射しない状態である。高吸収状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、両側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、不透明な状態であり得る。高吸収状態では、光吸収可変部は黒色となり得る。光吸収可変部が光吸収性を発揮する場合、光吸収可変部は、光を吸収する吸収層として機能する。
 低吸収状態とは、光吸収性が低い又は光吸収性がない状態である。低吸収状態は、例えば、一方の面から入射した光が、吸収されずに進行方向をそのまま維持して、他方の面に出射する状態である。低吸収状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低吸収状態は、透明な状態であり得る。
 光吸収可変部は、光吸収性が高い高吸収状態と、光吸収性が低い又は光吸収性がない低吸収状態と、高吸収状態と低吸収状態との間の光吸収性を発揮する状態と、を有することが可能なように構成されていてもよい。高吸収状態と低吸収状態との間の光吸収性を発揮することができることで、中程度の光吸収性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高吸収状態と低吸収状態との間の光吸収性を発揮する状態を、中吸収状態と呼ぶ。
 中吸収状態は、高吸収状態と低吸収状態との間において、少なくとも一つの吸収状態を有するものであってよい。例えば、高吸収状態と中吸収状態と低吸収状態との三つの状態を切り替えることにより、光吸収性を変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、吸収性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、吸収性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高吸収状態と複数の中吸収状態と低吸収状態との複数の状態を切り替えることにより、光吸収性を段階的に変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、高吸収状態から低吸収状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、吸収性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高吸収状態と低吸収状態との間で目的とする光吸収性を発揮させる状態にして光吸収性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光吸収可変部が、中吸収状態を有する場合、光吸収可変部は、中吸収状態を維持できるように構成されているとよい。
 光吸収可変部は、少なくとも可視光の一部を吸収するものであるとよい。それにより、発光を鮮明にすることができる。光吸収可変部は可視光の全部を吸収するものであるとよい。それにより、さらに発光を鮮明にすることができる。光吸収可変部は、赤外線を吸収するものであってもよい。赤外線を吸収する場合、遮熱効果を得ることができる。光吸収可変部は紫外線を吸収するものであってもよい。それにより、光スイッチングデバイス100の劣化を抑制することができる。また、紫外線を吸収できると、屋内への紫外線の侵入を抑制することができる。光吸収可変部は、可視光、紫外線及び赤外線のいずれか1つを吸収することが好ましく、これらのうちの2つを吸収することがより好ましく、これらの全てを吸収することがさらに好ましい。
 光吸収可変部は、吸収スペクトルの形状を変化させることが可能なように構成されていてもよい。吸収スペクトルの変化は、中吸収状態において行われるものであってよい。吸収スペクトルの形状が変化するとは、光吸収可変部に入射する光と、光吸収可変部を通った光とのスペクトル形状が異なることである。吸収スペクトルの変化は吸収波長の変化により行われる。例えば、青色光のみを強く吸収したり、緑色光のみを強く吸収したり、赤色光のみを強く吸収したりすることによって、スペクトルの形状は変化する。吸収スペクトルが変化すると、光スイッチングデバイス100を通過する光の色が変化する。そのため、透過光の調色(色の調整)を行うことができ、光学特性を向上することができる。
 光学可変部が光吸収可変部である場合、光学可変層2は、光吸収可変層で構成され得る。光吸収可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光吸収可変層における光吸収性の程度が変化する。
 光吸収可変部は、直流電源に接続されてもよいし、交流電源に接続されてもよいが、好ましくは直流電源に接続される。電界により光吸収性が変化する材料では、一方向の電気の流れにより光吸収性が変化し得る。そのため、直流電源により、安定した光吸収性を得ることができる。なお、中吸収状態は、電圧又は電流の印加量が制御されることによって形成され得る。
 光吸収可変層の材料としては、電界変調によって光吸収性が変わる材料を好ましく用いることができる。電界変調の材料として、例えば、酸化タングステンなどが挙げられる。
 光吸収可変部は、電圧無印加時に光透過状態となり、電圧印加時に光吸収状態となることが好ましい一態様である。液晶材料では、電圧の印加により吸収性が変化し得る。液晶では、電圧の印加で配向を揃えることが可能である。液晶では、薄型で吸収性の高い光吸収可変部を形成することができる。もちろん、光吸収可変部は、電圧無印加時に光吸収状態となり、電圧印加時に光透過状態となるものであってもよい。
 光吸収可変層は、電圧を印加したときの光吸収状態が維持されるものであるとよい。それにより、電力効率が高まる。光吸収状態が維持される性質はヒステリシスと呼ばれる。光吸収状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
 光スイッチングデバイス100において、第1面F1は主面と定義され、第2面F2は裏面と定義される。主面は、光を得たい方向に配置される。例えば、光スイッチングデバイス100が窓として利用される場合、主面(第1面F1)は内部側、裏面(第2面F2)は外部側に配置される。
 表1は、複数の光学可変部の構成の例を示す。表1では、光スイッチングデバイス100が光学可変部として有する構成を「○」で示している。さらに、各構成を選択した場合の作用を示す。なお、光学可変部の配置の順序は問わない。
Figure JPOXMLDOC01-appb-T000001
 光反射可変部は、面状発光部及び光散乱可変部よりも第2面F2側に配置されていることが好ましい一態様である。その場合、反射を利用して光を取り出すことができるため、光学特性に優れた光スイッチングデバイス100を得ることができる。
 光吸収可変部は、複数の光学可変部のうちで最も第2面F2側に配置されていることが好ましい一態様である。その場合、第2面F2から入る光を吸収することができる。また、第1面F1から出射する光のコントラストを高めることができる。
 複数の光学可変部は、好ましくは、第1面F1から第2面F2に向かって、光散乱可変部、面状発光部、光反射可変部、及び光吸収可変部の順で配置される。なお、光学可変部が、2つ及び3つの場合、上記の4つ場合からその一部を除去すれば好適な配置が導き出される。
 光スイッチングデバイス100の好ましい態様では、複数の光学可変部は、有機エレクトロルミネッセンス素子(面状発光部)と、光散乱可変部とを含む。それにより、光学特性の優れた面状発光体を得ることができる。面状発光体は照明装置として利用可能である。
 ところで、上記では、複数の光学可変部が、光散乱可変部、面状発光部、光反射可変部、及び光吸収可変部のいずれか1つから選ばれている例を示しているが、これらの2つ以上が選ばれてもよい。例えば、複数の光学可変部は、光散乱可変部を2以上有していてもよい。例えば、複数の光学可変部は、面状発光部を2以上有していてもよい。例えば、複数の光学可変部は、光反射可変部を2以上有していてもよい。例えば、複数の光学可変部は、光吸収可変部を2以上有していてもよい。同種の機能(散乱性、発光性、反射性、吸収性)を有する部分が2以上あると、その機能を増強させることができる。
 図1~図3の各例で示すように、光学調整層3は、隣り合う光学可変体1を接着している。光学調整層3は、隣り合う光学可変体1の間のスペースを満たしている。一般に、透明な二つの基板が重なり、それらの間に空間が形成されると、それらを通して一方の側から他方の側を見たときに、他方の側にある物体の輪郭がぶれやすくなる。いわゆる、二重映りや多重映りが発生し得る。しかしながら、上記の光スイッチングデバイス100では、基板6の間に光学調整層3が配置されているため、基板6との屈折率差が調整されるので、二重映りや多重映りの現象が抑制される。光学調整層3が屈折率のマッチングを行うためである。また、光学調整層3が存在すると、基板6の表面で発生する界面反射が抑制されるため、光学ロスが低減され、光透過効率が向上する。さらに、光学調整層3は、接着剤を兼ねている。そのため、隣り合う基板6を強固に接着することができる。さらに、複数の基板6がガラスを含む場合、光スイッチングデバイス100が割れたとしても、ガラスの飛散を抑制できる。それにより、安全なデバイスが得られる。
 光学調整層3の基板6に対する接着力をASとする。光学可変層2の電極5に対する接着力をAEとする。このとき、光スイッチングデバイス100においては、
  AS > AE
の関係が、成り立っている。
 接着力ASは、光学調整層3と基板6との結合力であってよい。接着力ASは、光学調整層3と基板6との界面で発揮される。光学調整層3と基板6との界面は、図1~図3において、FSで示されている。
 接着力AEは、光学可変層2と電極5との結合力であってよい。接着力AEは、光学可変層2と電極5との界面で発揮される。光学可変層2と電極5との界面は、図1~図3において、FEで示されている。
 接着力についてAS>AEの関係が成り立つと、基板間の接着性が向上する。そのため、剥がれる方向に力が働いたとしても、基板6が剥がれにくくなり、強固なデバイスが形成される。また、この関係は、熱に対する安定性を高める。その理由は、光学可変層2よりも熱によって膨張収縮の問題が発生しやすい基板6を強固に接着するからと推測される。さらに、光スイッチングデバイス100に割れが生じたとしても、接着力が高いと、飛散が抑制される。
 さらに、接着力についてのAS>AEの関係は、デバイスの製造を容易にさせる。光スイッチングデバイス100は、後述のように、複数の光学可変体1が積層された後、側端部の一部が除去されて、電極5が露出されることにより製造され得る。その際、上記の接着力の関係が成り立っていると、側端部の一部を除去するときに、基板6と基板6との間で、剥がれてしまうことが抑制され、側端部の除去が良好に行われ得る。そのため、デバイスの製造が容易になる。
 接着力の関係(AS>AE)は、光スイッチングデバイス100の剥離試験により確認することができる。例えば、第1面F1と第2面F2とのそれぞれに、粘着テープを貼り、これらを離れる方向に引っ張って、光スイッチングデバイス100の内部で剥離(分離)する部分を観察することで、接着力の関係が確認される。AS>AEの関係が成り立つときには、隣り合う基板6の間、すなわち、隣り合う光学可変体1の間においての分離が生じずに、光学可変層2と電極5との間での分離が生じる。なお、ここに示したのは、接着力の試験の好ましい一例であり、他の試験で接着性を確認してもよい。
 光学調整層3は、隣り合う基板6の間に配置されている。ここで、隣り合う基板6のうちの一方を基板6Xとし、他方を基板6Yとする。例えば、図1~図3において、基板6bが基板6Xとなり、基板6cが基板6Yとなる。基板6Xと基板6Yとが同様の材料で形成されている場合、基板6Xの屈折率と基板6Yの屈折率は略同一となる。このとき、光学調整層3の屈折率は、基板6X(基板6Y)の屈折率との差が、絶対値で、0.1以下であることが好ましく、0.05以下であることがより好ましい。基板6と光学調整層3との屈折率差が小さくなると、光学的により有利になる。界面での光の反射が抑制されるからである。光学調整層3の屈折率が、基板6X(基板6Y)の屈折率と同じであってもよい。なお、屈折率は、可視光波長域における屈折率を意味する。本開示においては、可視光波長域は、波長450~700nmの領域と定義される。この波長域の光は、人の目に視認されるため光スイッチングデバイス100の透明性に大きく影響する。よって、この可視光波長域において屈折率を調整することで、光学的により有利になる。
 一方、基板6Xと基板6Yとが、別の材料である場合、これらの間で屈折率の差が生じ得る。例えば、基板6X及び基板6Yのうちの一方がガラスで、他方が樹脂の場合、屈折率差が生じやすい。また、基板6X及び基板6Yの両方がガラス(又は樹脂)であっても、異なる材質のものを用いれば、屈折率差が生じ得る。ここで、光学調整層3は、光学調整層3の一方に配置される基板6Xの屈折率と、光学調整層3の他方に配置される基板6Yの屈折率との間の屈折率を有することが、好ましい一態様である。それにより、屈折率差がより低減され、光学特性が向上する。
 さらに、光学調整層3の屈折率が基板6Xの屈折率と基板6Yの屈折率との間である場合には、光学調整層3は、厚み方向に屈折率が段階的に変化することがより望ましい。屈折率が段階的に変化することで、屈折率差がより低減され、光学特性がさらに向上する。例えば、一方の基板6Xの屈折率が他方の基板6Yの屈折率よりも高い場合、屈折率の低い基板6Yから、屈折率の高い基板6Xに向かって、光学調整層3の屈折率が徐々に高くなっていてよい。屈折率の変化は厚み方向で行われ得る。屈折率の変化は、階段状の変化であってもよいし、滑らかな変化(グラデーション状)であってもよい。階段状の屈折率の変化は、例えば、光学調整層3が複数の層で構成され、複数の層の屈折率が変わることにより得られる。光学調整層3は複層構造を有していてよい。グラデーション状の変化は、例えば、単層の光学調整層3が厚み方向に屈折率が高くなることにより得られる。
 基板6X及び基板6Yのいずれか一方又は両方が異方性を有する場合、光学調整層3は、異方性を有する基板と同様の異方性を有するとよい。それにより、光の透過性が高まるため、光学特性がさらに向上する。例えば、樹脂材料(PETやPENなど)で基板6が構成された場合、基板6は異方性を有し得る。
 光学調整層3は、紫外線吸収性を有するとよい。それにより、紫外線によるデバイスの劣化を抑制することができる。また、紫外線を吸収するため、光スイッチングデバイス100に紫外線カット性を付与できる。この態様は、光スイッチングデバイス100の少なくとも一方の面が屋外に曝される場合に特に有効である。屋内への紫外線の侵入を抑制できるからである。また、光学可変体1が三つ以上の場合に、紫外線カットの効果が増大する。
 光学調整層3は、光吸収性が小さい方がよい。それにより、光の損失を抑制することができる。
 光学調整層3は、樹脂組成物により形成することができる。樹脂は、熱硬化性の樹脂であってもよいし、光硬化性の樹脂であってもよい。樹脂組成物は、適宜の添加剤を含んでいてよい。例えば、低屈折率粒子又は高屈折率粒子の含有により、屈折率が調整され得る。また、紫外線吸収剤の含有により、紫外線吸収性が付与される。光学調整層3の好ましい材料としては、COP(シクロオレフィンポリマー)が例示される。COPは、光吸収性が小さいため好適である。
 光学調整層3は、ゲル材料であってもよい。接着性と光学調整性とがあれば、光学調整層3はゲル材料であり得る。光学調整層3がゲル材料である場合、耐衝撃性を高めることができる。また、熱応力による収縮を緩和することができる。
 光スイッチングデバイス100の製造方法を説明する。
 光スイッチングデバイス100の製造方法は、複数の光学可変体1を光学調整層3を介して接着する工程と、複数の光学可変体1に切れ目CLを入れる工程と、光学可変体1の側端部1xを除去する工程とを含む。複数の光学可変体1に切れ目CLを入れる工程は、複数の光学可変体1の側端部において、厚み方向の一方の端部に配置される基板6から、厚み方向の他方の端部に配置される光学可変層2まで、切れ目CLを入れる工程である。光学可変体1の側端部1xを除去する工程は、切れ目CLに沿って、光学可変体1の側端部1xを除去し、電極5を露出させる工程である。
 図4により光スイッチングデバイス100の製造方法をより詳しく説明する。図4では、光学可変体1が2つの場合(図1参照)を示しているが、光学可変体1が3つの場合(図2参照)、4つの場合(図3参照)、及びそれ以上の場合も、図4から理解できる。
 まず、図4のAに示すように、複数の光学可変体1を個々に作製する。光学可変体1の作製は、適宜の積層プロセスにより行うことができる。次に、図4のBに示すように、複数の光学可変体1を光学調整層3で接着する。光学調整層3での接着は、例えば、光学可変体1の表面に、接着性を有する光学調整層3の材料を塗布し、この面に他の光学可変体1を重ねることで行うことができる。これにより、複数の光学可変体1が貼り合わせられる。硬化性の材料で光学調整層3が構成される場合、材料を硬化させることで光学調整層3が形成される。
 次いで、図4のCに示すように、複数の光学可変体1の側端部に、切れ目CLを入れる。切れ目CLは、例えば、カッタやレーザなどの切断具で形成される。切れ目CLは、厚み方向の一方の端部に配置される基板6から、厚み方向の他方の端部に配置される光学可変層2まで形成される。例えば、図4のCの上側からの切れ込みでは、切れ目CLが、基板6αから光学可変層2αまで形成されている。また、図4のCの下側からの切れ込みでは、切れ目CLが、基板6βから光学可変層2βまで形成されている。切れ目CLは厚み方向の途中まで形成されるものであってよい。なお、複数の電極5の露出のために、切れ目CLはその他にも適宜形成されていてよい。例えば、図4のCでは、基板6αから光学可変層2βまでの切れ目CLと、基板6βから光学可変層2αまでの切れ目CLとが形成されている。
 そして、図4のDに示すように、切れ目CLより外側に存在する1又は複数の光学可変体1の側端部1xを除去する。すると、切れ目CLは、厚み方向の途中で止まっているため、基板6から光学可変層2までの部分が取り除かれ、電極5の一部が露出する。これにより、電極5は露出面5sを有するようになる。電極5の露出面5sは、光スイッチングデバイス100の側端部に配置される。ここで、上述したように、光学調整層3と基板6との間の接着力ASは、光学可変層2と電極5との間の接着力AEよりも大きい。そのため、側端部1xを除去する際に、基板6と基板6との間が分離することなく、除去したい側端部1xを一体的に取り除くことができる。そのため、製造が容易になる。特に、図4のCに示す界面FS1及び界面FS2における接着力が、界面FE1及び界面FE2における接着力よりも大きいことが有利である。界面FE1及び界面FE2は、光学調整層3が接する基板6の反対側の面に設けられた光学可変部における前記基板6とは遠い方の電極5と光学可変層2との間の界面ということができる。あるいは、界面FE1及び界面FE2は、光学調整層3が接する基板6と対向する基板6に接する電極5と、この電極5に接する光学可変層2との間の界面といってもよい。上記のような界面の接着力の関係が成り立つことにより、製造がさらに容易になる。
 最後に、図4のEに示すように、接続配線4が電極5の露出面5sに接続される。接続配線4は、電源との接続が可能な適宜の構造を有し得る。例えば、接続配線4は、ワイヤ、導電材料の積層物などで構成され得る。このとき、接続配線4によって、露出面5sが被覆されてもよい。以上により、光スイッチングデバイス100が製造される。なお、この後、さらに筐体に取り付けられたりしてもよい。例えば、光スイッチングデバイス100の外周を取り囲む枠材が取り付けられ得る。また、光スイッチングデバイス100を面状に覆う透明なカバー体が、片方の面、又は両方の面に取り付けられてもよい。
 ところで、以上では、1つの光学可変層2が一対の基板6,6の間に配置された例を示したが、2以上の光学可変層2が一対の基板6,6の間に配置されてもよい。また、隣り合う基板6が合体して、この部分の光学調整層3が省略されてもよい。基板6の数が減少すると、界面の数が減るため、光学的に有利になる。光スイッチングデバイス100では、隣り合う基板6の間のいずれかの位置に、光学調整層3が設けられていればよい。
 図5は、光スイッチングデバイス100の機能の一例を示している。図5では、複数の光学可変部は模式的に図示されている。矢印は光の進行を示している。図5では、第1面F1側から、複数の光学可変部として、光散乱可変部1S、面状発光部1P、光反射可変部1R、光吸収可変部1Qが配置されている例を示している。図5の光スイッチングデバイス100は、第1面F1から主として面状発光部1Pの光を取り出すように構成されている。
 図5では、機能している光学可変部を斜線で示している。機能しているとは、光散乱可変部1Sでは光散乱性が発揮されている状態、面状発光部1Pでは発光している状態、光反射可変部1Rでは光反射性が発揮されている状態、光吸収可変部1Qでは光吸収性が発揮されている状態、を意味する。ある光学可変部が機能していない場合、その光学可変部は透明となり得る。なお、説明を単純化するため、光散乱性や光反射性や光吸収性が中間の状態は示していないが、中間状態があってもよい。図5のA~Qは、光学可変部の機能の状態が異なっており、光スイッチングデバイス100としてそれぞれ異なる状態となっている。光スイッチングデバイス100は、図5のA~Qの全ての状態を発揮可能であってもよいし、これらのうちのいくつかの状態を発揮可能であってもよい。光スイッチングデバイス100は、光学的な状態が切り替え可能である。
 図5に示すように、複数の光学可変部のうちの少なくとも一つが機能すると、光スイッチングデバイス100に外部から入った光がそのまま通りぬけにくくなるため、光スイッチングデバイス100は不透明になり得る。例えば、図5のAのように光散乱可変部1Sの光散乱性が発揮されている場合には、光が散乱されるため、第1面F1と第2面F2との間において光がそのまま通りぬけできない。また、図5のCのように光反射可変部1Rの光反射性が発揮されている場合には、光が反射されるため、第1面F1と第2面F2との間において光がそのまま通りぬけできない。また、図5のDのように、光吸収可変部1Qの光吸収性が発揮されている場合には、光が吸収されるため、第1面F1と第2面F2との間において光が通りぬけできない。図5のBのように、面状発光部1Pが機能する場合であっても、面状発光部の発する光により、向こう側が視認しにくくなり、不透明となり得る。一方、図5のQでは、全ての光学可変部が機能しておらず、透明である。そのため、光スイッチングデバイス100は、図5のQのような透明な状態から、図5のA~Pで示される種々の不透明な状態に変化可能になり得るため、光学特性が向上する。特に、複数の光学的なパターン変化が可能になると、不透明と透明との間に複雑な変化がもたらされ、複数の模様を形成することが可能なため、意匠性の優れた光学状態が発揮され得る。図5では光の進行が矢印で示されており、この図から各状態における光スイッチングデバイス100の光学的な作用が理解される。複数の光学可変部の機能については、前述したように、表1からも理解される。
 図5では、4つの種類の異なる光学可変部を組み合わせた例を示したが、この例から、光学可変部が3つの場合及び2つの場合も、光スイッチングデバイス100の機能は理解され得る。また、光学可変部の配置(順序)が変更された場合も、図5に基づき、光スイッチングデバイス100の機能は理解され得る。
 光スイッチングデバイス100は、窓として利用することができる。光学的に異なる状態を作り出す窓は、アクティブウィンドウと定義され得る。不透明と透明とがパターン変化する窓は、利用価値が高い。窓は、内窓、外窓のいずれにも利用可能である。また、窓として車載窓の利用も可能である。車載窓は、自動用、電車、機関車、列車などの車両用や、飛行機用、船用などの窓であってよい。例えば、透明と不透明を変化させることが可能な窓は高級自動車用に好適である。また、光スイッチングデバイス100は、建材として利用することができる。建材としては、壁材、パーティション、サイネージなどに利用することができる。サイネージはいわゆる照明広告であってよい。壁材は、外壁用であってもよいし、内壁用であってもよい。
 光スイッチングデバイス100は、面状発光部を有する場合、照明装置として利用することができる。光スイッチングデバイス100では、光学的な状態が変化する照明が得られ得る。
 図6は、光スイッチングデバイス100の応用例である。図6では、建材200が示されている。図6に示される建材200は、窓である。建材200は、光スイッチングデバイス100を備える。建材200は、枠体101と、配線102と、プラグ103とを有する。建材200は、いわば電化建材である。枠体101は光スイッチングデバイス100の外周を囲っている。配線102は、光スイッチングデバイス100と電気的に接続されている。プラグ103は、外部電源との接続が可能である。プラグ103及び配線102を通して電力が光スイッチングデバイス100に供給されると、光スイッチングデバイス100の光学的状態が変化し得る。例えば、光スイッチングデバイス100は、透明な状態、半透明(すりガラス状)の状態、鏡の状態、発光する状態、の複数の状態が変化する。そのため、建材200は、光学特性に優れている。
 以上、光スイッチングデバイス及びその製造方法、並びに建材等について、実施の形態に基づいて説明したが、本開示の光スイッチングデバイス等は、上記実施の形態に限定されるものではない。例えば、上記の実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 1   光学可変体
 2   光学可変層
 3   光学調整層
 4   接続配線
 5   電極
 6   基板
 CL  切れ目
 1x  側端部
 5s  露出面

Claims (6)

  1.  面状であり、電力により光学的状態の程度が変化可能である複数の光学可変体と、
     前記複数の光学可変体の間に配置される光学調整層と、を備え、
     前記光学可変体は、一対の基板と、前記一対の基板の間に配置される一対の電極と、前記一対の電極の間に配置され、光学的状態の程度が変化可能な光学可変層と、を備え、
     前記光学調整層は、前記複数の光学可変体を厚み方向で面状に接着し、隣り合う前記光学可変体の前記基板の間の屈折率を可視光波長域において調整し、
     前記電極は、電力を供給するための露出面を有しており、
     前記光学調整層の前記基板に対する接着力は、前記光学可変層の前記電極に対する接着力よりも大きい、光スイッチングデバイス。
  2.  前記光学調整層は、当該光学調整層の一方に配置される前記基板の屈折率と、当該光学調整層の他方に配置される前記基板の屈折率との間の屈折率を有する、請求項1に記載の光スイッチングデバイス。
  3.  前記光学調整層は、厚み方向に屈折率が段階的に変化する、請求項2に記載の光スイッチングデバイス。
  4.  前記光学調整層は、紫外線吸収性を有する、請求項1乃至3のいずれか1項に記載の光スイッチングデバイス。
  5.  請求項1乃至4のいずれか1項に記載の光スイッチングデバイスと、配線と、を備えた建材。
  6.  請求項1乃至4のいずれか1項に記載の光スイッチングデバイスを製造する方法であって、
     前記複数の光学可変体を前記光学調整層を介して接着する工程と、
     前記複数の光学可変体の側端部において、厚み方向の一方の端部に配置される前記基板から、厚み方向の他方の端部に配置される前記光学可変層まで、切れ目を入れる工程と、
     前記切れ目に沿って、前記光学可変体の側端部を除去し、前記電極を露出させる工程と、を含む、光スイッチングデバイスの製造方法。
PCT/JP2015/003152 2014-07-11 2015-06-24 光スイッチングデバイス及びその製造方法、並びに建材 WO2016006180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/317,260 US20170101819A1 (en) 2014-07-11 2015-06-24 Optical switching device, method of manufacturing the same, and building material
JP2016532417A JP6351001B2 (ja) 2014-07-11 2015-06-24 光スイッチングデバイスの製造方法
DE112015003215.0T DE112015003215T5 (de) 2014-07-11 2015-06-24 Optische Schaltvorrichtung, Verfahren zur Herstellung derselben und Baumaterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142798 2014-07-11
JP2014142798 2014-07-11

Publications (1)

Publication Number Publication Date
WO2016006180A1 true WO2016006180A1 (ja) 2016-01-14

Family

ID=55063837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003152 WO2016006180A1 (ja) 2014-07-11 2015-06-24 光スイッチングデバイス及びその製造方法、並びに建材

Country Status (4)

Country Link
US (1) US20170101819A1 (ja)
JP (1) JP6351001B2 (ja)
DE (1) DE112015003215T5 (ja)
WO (1) WO2016006180A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574641B1 (ko) * 2016-07-19 2023-09-06 삼성디스플레이 주식회사 표시 장치
DE102017212657B4 (de) 2017-05-24 2021-09-30 Volkswagen Aktiengesellschaft Fensterscheibeneinrichtung für ein Fenster eines Kraftfahrzeugs sowie Verfahren und Kraftfahrzeug
EP3855242B1 (en) * 2018-09-19 2023-10-11 Toppan Printing Co., Ltd. Light modulation sheet, and method of manufacturing light modulation sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029240A (ja) * 2001-07-16 2003-01-29 Matsushita Electric Ind Co Ltd 画像表示装置およびその駆動方法並びにその選択表示方法
JP2006234963A (ja) * 2005-02-22 2006-09-07 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2008197224A (ja) * 2007-02-09 2008-08-28 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
US20120033144A1 (en) * 2010-08-06 2012-02-09 Samsung Electronics Co. Ltd. Active matrix organic light-emitting diode display and method of controlling display thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516076B1 (en) * 1991-05-27 1999-04-07 Dainippon Ink And Chemicals, Inc. Liquid crystal device
US20100017738A1 (en) * 2008-07-20 2010-01-21 Rhodes Gary J Project tracking software with compact visual elements that indicate task completion and overdue status
JP4513921B2 (ja) * 2008-12-09 2010-07-28 ソニー株式会社 光学体およびその製造方法、窓材、ブラインド、ロールカーテン、ならびに障子
US8164818B2 (en) * 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
GB201101915D0 (en) * 2011-02-04 2011-03-23 Terry Paul R V5- self scan checkout hybrid
US8994042B2 (en) * 2013-05-20 2015-03-31 Lg Electronics Inc. Display panel and display device
US9989798B2 (en) * 2014-06-27 2018-06-05 Lg Display Co., Ltd. Light controlling apparatus, method of fabricating the light controlling apparatus and transparent display device including the light controlling apparatus with transparent mode and light shielding mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029240A (ja) * 2001-07-16 2003-01-29 Matsushita Electric Ind Co Ltd 画像表示装置およびその駆動方法並びにその選択表示方法
JP2006234963A (ja) * 2005-02-22 2006-09-07 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2008197224A (ja) * 2007-02-09 2008-08-28 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
US20120033144A1 (en) * 2010-08-06 2012-02-09 Samsung Electronics Co. Ltd. Active matrix organic light-emitting diode display and method of controlling display thereof

Also Published As

Publication number Publication date
US20170101819A1 (en) 2017-04-13
JPWO2016006180A1 (ja) 2017-04-27
JP6351001B2 (ja) 2018-07-04
DE112015003215T5 (de) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2016006181A1 (ja) 光スイッチングデバイス及び建材
WO2016013154A1 (ja) 調光素子及びそれを備える建材
US20080278792A1 (en) Electrochromic device having improved color properties
WO2016008375A1 (en) Switchable glass structure and vehicle window cross-reference to related applications
JP5454519B2 (ja) 調光素子
JP2005183352A (ja) 照明装置
JP6425080B2 (ja) 光学デバイス
WO2016006180A1 (ja) 光スイッチングデバイス及びその製造方法、並びに建材
US20190221724A1 (en) Backlight unit and display apparatus including the same
WO2017122245A1 (ja) 光学デバイス及び配光機能付き窓
JP4578954B2 (ja) 表示装置
JP2020052374A (ja) 調光シート、および、調光ガラス
KR102156779B1 (ko) 투명 표시 장치 및 이의 제조 방법
CN110133930A (zh) 一种用于汽车上的电致变色玻璃结构
JP2019158938A (ja) 熱反射機能を有する調光フィルム
US10121833B2 (en) Organic light-emitting diode
WO2015182039A1 (ja) 面状発光体
WO2016006166A1 (ja) 面状発光ユニット、面状発光体、照明装置及び建材
WO2016009596A1 (ja) 面状発光体、それを備えた照明装置及び建材
JP6402959B2 (ja) 光学デバイス
WO2015097965A1 (ja) 面状発光体、それを用いた照明装置及び建材
WO2016009621A1 (ja) 光デバイス
JP6493710B2 (ja) 光学デバイス
WO2016009589A1 (ja) 面状光学素子、照明装置及び建材
JP2019056763A (ja) 光学デバイス及び光学デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532417

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317260

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003215

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819264

Country of ref document: EP

Kind code of ref document: A1