WO2016009589A1 - 面状光学素子、照明装置及び建材 - Google Patents

面状光学素子、照明装置及び建材 Download PDF

Info

Publication number
WO2016009589A1
WO2016009589A1 PCT/JP2015/003071 JP2015003071W WO2016009589A1 WO 2016009589 A1 WO2016009589 A1 WO 2016009589A1 JP 2015003071 W JP2015003071 W JP 2015003071W WO 2016009589 A1 WO2016009589 A1 WO 2016009589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
planar
optical element
state
electrodes
Prior art date
Application number
PCT/JP2015/003071
Other languages
English (en)
French (fr)
Inventor
真 白川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016534094A priority Critical patent/JPWO2016009589A1/ja
Publication of WO2016009589A1 publication Critical patent/WO2016009589A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S19/00Lighting devices or systems employing combinations of electric and non-electric light sources; Replacing or exchanging electric light sources with non-electric light sources or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present invention relates to a planar optical element, and an illumination device and a building material including the planar optical element, and, for example, a planar optical element capable of changing the degree of optical characteristics such as light scattering, light reflectivity, and light absorptivity. , And an illumination device and a building material provided with the planar optical element.
  • Patent Document 1 includes a liquid crystal in which a light control glass window is sealed in a minute gap between two glass plates, and a transparent electrode, and when a predetermined voltage is applied to the transparent electrode It is disclosed that the light transmittance of the portion changes as the optical characteristics change.
  • the present invention has been made in view of the above problems, and is a planar optical element capable of changing an optical state by applying a voltage between electrodes and suppressing attenuation of an electromagnetic wave by the electrodes, and this An object of the present invention is to provide a lighting device and a building material provided with a planar optical element.
  • the planar optical element includes two electrodes facing each other along one direction, and the light scattering according to a change in voltage applied between the two electrodes and between the two electrodes. And one or more optical functional parts provided with an optical functional layer in which the degree of optical characteristics selected from the properties, light reflectivity and light absorbency changes, each of the electrodes has a low resistivity portion, and the low And a high resistivity portion having a higher electrical resistivity than the resistivity portion.
  • An illumination device includes the planar optical element.
  • a building material according to an aspect of the present invention includes the planar optical element.
  • the optical state of the planar optical element can be changed by applying a voltage between the electrodes, and the electromagnetic wave is attenuated by securing the transmission of the electromagnetic wave at the high resistivity portion. It can be suppressed.
  • FIG. 1 is a front view showing a planar optical element according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing the planar optical element according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1, showing the planar optical element according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a planar optical element according to a second embodiment of the present invention.
  • FIG. 5A is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5B is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5C is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5D is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5E is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5F is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • FIG. 5G is a schematic view showing the operation of the planar optical element according to the first embodiment of the present invention.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Moreover, in each figure, the same code
  • FIGS. 1 to 3 An embodiment of the present invention will be described (see FIGS. 1 to 3).
  • the planar optical element 1 includes one or more optical function units 2.
  • the optical function unit 2 includes two electrodes 3 facing each other along one direction (hereinafter, referred to as a first direction D1) and an optical function layer 4 interposed between the two electrodes 3.
  • the optical function layer 4 is configured such that the degree of optical characteristics selected from light scattering, light reflectivity and light absorptivity changes in accordance with a change in voltage applied between the electrodes 3.
  • Each of the electrodes 3 in the optical function unit 2 includes a low resistivity portion 11 and a high resistivity portion 12 having a higher electrical resistivity than the low resistivity portion 11.
  • the optical state of the planar optical element 1 can be changed by applying a voltage between the electrodes 3.
  • the performance of the electrode 3 can be secured at the low resistivity portion 11, and the transmission of electromagnetic waves can be secured at the high resistivity portion 12. For this reason, it is suppressed that the planar optical element 1 attenuates an electromagnetic wave.
  • the visible light transmittance of the high resistivity portion 12 and the visible light transmittance of the low resistivity portion 11 may be 80% or more. In this case, it can be suppressed that the electrode 3 provided with the low resistivity portion 11 inhibits the optical function of the optical function unit 2.
  • the high resistivity portions 12 of the electrodes 3 in the optical function portion 2 may all be aligned in the first direction D1.
  • the planar optical element 1 includes one optical function unit 2
  • the high resistivity portions 12 provided in each of the two electrodes 3 in the optical function unit 2 may all be aligned in the first direction D1.
  • the planar optical element 1 includes the plurality of optical function units 2
  • the plurality of optical function units 2 are arranged in the first direction D 1
  • the high resistivity portion 12 includes the electrodes 3 in the plurality of optical function units 2.
  • the electromagnetic wave transmission performance of the planar optical element 1 resulting from the high resistivity portion 12 is particularly high.
  • the planar optical element 1 may include the planar light emitting unit 6.
  • the planar light emitting unit 6 includes two electrodes 8 facing each other along the first direction D1, and an organic light emitting layer 9 interposed between the two electrodes 8.
  • each of the electrodes 8 of the planar light emitting unit 6 has a low resistivity portion 11 and a high resistivity having an electrical resistivity higher than that of the low resistivity portion 11.
  • the region 12 may be provided.
  • the visible light transmittance of the high resistivity portion 12 and the visible light transmittance of the low resistivity portion 11 in the electrode 8 of the planar light emitting portion 6 may be 80% or more. In this case, it can be suppressed that the electrode 8 provided with the low resistivity portion 11 inhibits the optical functions of the planar light emitting unit 6 and the optical function unit 2.
  • the planar optical element 1 includes the planar light emitting unit 6, the high resistivity portion 12 of the electrode 3 of the optical function unit 2 and the high resistivity portion 12 of the electrode 8 of the planar light emitting unit 6 are all in the first direction. It may be in line with D1. In this case, the electromagnetic wave transmission performance of the planar optical element 1 resulting from the high resistivity portion 12 is particularly high.
  • the planar optical element 1 which concerns on 1st embodiment is shown in FIG. 1 thru
  • the planar optical element 1 includes two optical function units 2 and a planar light emitting unit 6.
  • the two optical function units 2 include a first optical function unit 21 and a second optical function unit 22.
  • the planar optical element 1 includes the first surface F1 and the second surface F2 opposite to the first surface F1, and the first surface F1 and the second surface F2 are the second surface. It is aligned along one direction D1.
  • the first optical function unit 21, the planar light emitting unit 6, and the second optical function unit 22 are provided between the first surface F ⁇ b> 1 and the second surface F ⁇ b> 2.
  • the first optical function unit 21, the planar light emitting unit 6, and the second optical function unit 22 are arranged in this order from the first surface F1 side to the second surface F2 side.
  • the planar optical element 1 in the first embodiment can emit light in a planar manner by including the planar light emitting unit 6.
  • the light emitting surface when the planar optical element 1 emits light is one or both of the first surface F1 and the second surface F2.
  • the light emitting surface may include a flat surface and a curved surface.
  • the light emitting surface may be configured only by a plane, or may be configured only by a curved surface.
  • the light emitting surface may be an arc shaped surface.
  • the light emitting surface may include both a flat surface and a curved surface.
  • the planar optical element 1 includes a plurality of substrates 7. Each of the plurality of substrates 7 has optical transparency.
  • the substrate 7 supports, for example, the optical function unit 2 or the planar light emitting unit 6 in the planar optical element 1, or seals the optical function unit 2 or the planar light emitting unit 6.
  • the plurality of substrates 7 includes two substrates 71 and 72 disposed at both ends of the planar optical element 1 along the first direction D1, and between the two substrates 71 and 72, the optical functional unit 2 and the optical function unit 2
  • the planar light emitting unit 6 is disposed.
  • the plurality of substrates 7 are arranged at intervals in the first direction D1.
  • Each of the first optical function unit 21, the planar light emitting unit 6, and the second optical function unit 22 is disposed between two adjacent substrates 7.
  • the substrate 71 provided with the first surface F1 the substrate 71 provided with the first surface F1, the first optical function unit 21, the substrate 73, the planar light emitting unit 6, the substrate 74, the second optical function unit 22,
  • the substrates 72 provided with the second surface F2 are arranged in this order.
  • the optical function unit 2 and the planar light emitting unit 6 are protected by the substrate 7.
  • the substrate 7 is made of, for example, a glass substrate, a resin substrate or the like.
  • the substrate 7 is formed of a glass substrate, since the glass has high transparency, the substrate 7 does not easily inhibit the optical functions of the optical function unit 2 and the planar light emitting unit 6.
  • the glass has low moisture permeability, penetration of moisture between adjacent substrates 7 is suppressed.
  • Thin film glass can be used as the substrate 7. In that case, it is possible to obtain a flexible planar optical element 1 having high transparency and high moisture resistance.
  • a resin substrate is used as the substrate 7, since the resin is hard to break, scattering of fragments and the like is suppressed even if the planar optical element 1 is broken, and a safe planar optical element 1 can be obtained. .
  • the resin substrate when used, it is possible to obtain the flexible planar optical element 1. Furthermore, in the case where the refractive index of the resin is equivalent to that of the planar light emitting unit 6 and the optical function unit 2, the reflection of light at the interface between the substrate 7 and the planar light emitting unit 6 or the optical function unit 2 is to be suppressed. Since this can be performed, the transparency of the planar optical element 1 can be improved.
  • the two substrates 71 and 72 disposed at both ends of the planar optical element 1 may be glass substrates. All of the plurality of substrates 7 may be glass substrates. Among the plurality of substrates 7, one or more of the substrates 73 and 74 disposed between two substrates 71 and 72 disposed at both ends of the planar optical element 1 may be resin substrates. In that case, even if the planar optical element 1 is broken, scattering of fragments and the like can be suppressed, and a safe planar optical element 1 can be obtained.
  • the surface of the substrate 7 may be coated with an antifouling material. In that case, the contamination on the surface of the substrate 7 can be reduced.
  • the coating of the antifouling material may be performed on the outer surface of the substrate 7 disposed outside.
  • the substrate 7 may be coated with a UV reflecting material or a UV absorbing material. In that case, deterioration of the material which comprises the planar optical element 1 can be prevented.
  • the substrate 7 is a resin substrate, the surface may be covered with a moisture-proof material. In that case, the sealing performance of the substrate 7 can be enhanced.
  • the substrate 73 between the first optical function portion 21 and the planar light emitting portion 6 supports or seals the first optical functional portion 21 and supports or seals the planar light emitting portion 6. doing.
  • the substrate 74 between the planar light emitting unit 6 and the second optical function unit 22 supports or seals the planar light emitting unit 6 and supports or seals the second optical function unit 22.
  • a layered air gap is not formed between the adjacent two elements. it can.
  • the number of interfaces where reflection or refraction of light occurs in the planar optical element 1 can be reduced, so that more light can be extracted from the planar light emitting unit 6 to the outside of the planar optical element 1 it can.
  • the light extraction property may decrease due to the interference of light.
  • the light interference can be suppressed to improve the light extractability.
  • the substrate 7 between two adjacent elements in the planar optical element 1 may be divided in the first direction D1.
  • the substrate 73 between the first optical function unit 21 and the planar light emitting unit 6 includes a member for supporting or sealing the first optical functional unit 21 and a member for supporting or sealing the planar light emitting unit 6 It may be divided into In that case, since it becomes possible to perform formation of the 1st optical function part 21 and formation of the planar light emission part 6 independently, it may become advantageous on manufacture. The same applies to the substrate 7 between the other two elements.
  • Each of the optical function units 2 includes two electrodes 3 facing each other along the first direction D1 and an optical function layer 4 interposed between the two electrodes 3.
  • the optical function layer 4 is configured such that the degree of optical characteristics selected from light scattering, light reflectivity and light absorptivity changes in accordance with a change in voltage applied between the electrodes 3.
  • the first optical function unit 21 includes two first electrodes 31 facing each other along the first direction D1, and a first optical function layer 41 interposed between the first electrodes 31.
  • the second optical function unit 22 includes two second electrodes 32 facing each other along the first direction D1, and a second optical function layer 42 interposed between the second electrodes 32.
  • the first optical function unit 21 in the first embodiment is, for example, a first optical function layer 41 (light scattering variable layer 401) whose degree of light scattering changes according to a change in voltage applied between the first electrodes 31. And the light scattering variable part 201.
  • the second optical function unit 22 in the first embodiment is, for example, a second optical function layer 42 (light reflection variable layer) whose degree of light reflectivity changes in accordance with a change in voltage applied between the second electrodes 32. 402) is a light reflection variable part 202.
  • planar light emitting unit 6 includes two electrodes 8 facing each other along the first direction D1, and an organic light emitting layer 9 interposed between the two electrodes 8.
  • the organic light emitting layer 9 is configured to emit light by organic electroluminescence when a voltage is applied between the electrodes 8.
  • Each of the electrode 3 in the optical function part 2 and the electrode 8 in the planar light emitting part 6 has optical transparency. These electrodes 3 and 8 are provided to drive the planar optical element 1. Since either of the electrodes 3 and 8 has optical transparency, the electrodes 3 and 8 do not inhibit the optical functions of the optical function unit 2 and the planar light emitting unit 6.
  • the electrodes 3 and 8 are made of, for example, a transparent conductive layer.
  • materials of the electrodes 3 and 8 include transparent metal oxides, conductive particle-containing resins, and metal thin films. Preferred specific examples of the materials of the electrodes 3 and 8 include transparent metal oxides such as ITO and IZO.
  • the planar light emitting unit 6 may include an electrode 8 made of transparent metal oxide.
  • the electrodes 3 and 8 may be layers containing silver nanowires or may be transparent metal layers such as silver thin films.
  • the electrodes 3 and 8 may be a laminate of a transparent metal oxide layer and a metal layer.
  • the electrodes 3 and 8 may include a transparent conductive layer and an auxiliary wiring.
  • the electrodes 3 and 8 may have a heat shielding effect, thereby providing the planar optical element 1 with thermal insulation.
  • Each of the electrodes 3 in the optical function unit 2 includes the low resistivity portion 11 and the high resistivity portion 12 having a higher electrical resistivity than the low resistivity portion 11. That is, the two first electrodes 31 in the first optical function part 21 both have the low resistivity part 11 and the high resistivity part 12, and both of the two second electrodes 32 in the second optical function part 22 are low. A resistivity portion 11 and a high resistivity portion 12 are provided. The electrode 3 having the low resistivity portion 11 ensures the function of the electrode 3, and the electrode 3 having the high resistivity portion 12 allows the electrode 3 to transmit an electromagnetic wave.
  • the position and shape of the high resistivity portion 12 are not particularly limited.
  • the high resistivity portion 12 is present near the corner of each electrode 3 and the shape of the high resistivity portion 12 viewed in the first direction D1 is circular.
  • the shape of the high resistivity portion 12 viewed in the first direction D1 may be a frame along the outer periphery of the electrode 3.
  • the high resistivity portion 12 may be divided into a plurality of portions. A portion other than the high resistivity portion 12 in the electrode 3 is a low resistivity portion 11.
  • Each of the electrodes 8 in the planar light emitting portion 6 includes the low resistivity portion 11 and the high resistivity portion 12 having a higher electrical resistivity than the low resistivity portion 11.
  • the electrode 8 having the low resistivity portion 11 ensures the function of the electrode 8, and the electrode 8 having the high resistivity portion 12 allows the electrode 8 to transmit an electromagnetic wave.
  • the position and shape of the high resistivity portion 12 are not particularly limited.
  • the high resistivity portion 12 is present near the corner of each electrode 8 and the shape of the high resistivity portion 12 viewed in the first direction D1 is circular.
  • the shape of the high resistivity portion 12 viewed in the first direction D1 may be a frame along the outer periphery of the electrode 8.
  • the high resistivity portion 12 may be divided into a plurality of portions.
  • the portion other than the high resistivity portion 12 in the electrode 8 is the low resistivity portion 11.
  • the high resistivity portion 12 of the electrode 3 in the optical function portion 2 and the high resistivity portion 12 of the electrode 8 in the planar light emitting portion 6 are all the first It is arranged in a line in the direction D1. Specifically, the high resistivity portion 12 of the first electrode 31 on the first surface F1 side in the first optical function portion 21, the high resistivity portion 12 of the first electrode 31 on the second surface F2, a planar light emitting portion 6, the high resistivity portion 12 of the electrode 8 on the first surface F1 side, the high resistivity portion 12 of the electrode 8 on the second surface F2, and the second electrode 32 on the first surface F1 of the second optical function portion 22.
  • the high resistivity portion 12 and the high resistivity portions 12 of the second electrode 32 on the second surface F2 side are aligned in this order in the first direction D1. For this reason, the electromagnetic waves can be easily transmitted through the plurality of high resistivity portions 12 sequentially, and the electromagnetic wave transmission performance of the planar optical element 1 becomes particularly high.
  • the visible light transmittance of the high resistivity portion 12 in the electrode 3 of the optical function part 2 and the visible light transmittance of the low resistivity portion 11 in the electrode 3 may be 80% or more.
  • both the visible light transmittance of the high resistivity portion 12 of the electrode 8 of the planar light emitting portion 6 and the visible light transmittance of the low resistivity portion 11 of the electrode 8 may be 80% or more. In this case, inhibition of the optical functions of the optical function unit 2 and the planar light emitting unit 6 is suppressed.
  • the visible light transmittance is measured, for example, with a Hitachi spectrophotometer U-3900.
  • the electrical resistivity of the high resistivity portion 12 is, for example, in the range of 2 to 20 times the electrical resistivity of the low resistivity portion 11.
  • the electrical resistivity of the low resistivity portion 11 is, for example, in the range of 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the electrical resistivity of the high resistivity portion 12 may be high enough to allow the high resistivity portion 12 to sufficiently transmit an electromagnetic wave, and the electrical efficiency of the high resistivity portion 12 becomes excessively high to cause high resistivity.
  • the rate site 12 may not inhibit the functions of the electrodes 3 and 8.
  • the electrical resistivity of the high resistivity portion 12 may be in the range of 1 ⁇ 10 ⁇ 3 to 2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. In this case, it is possible to prevent the high resistivity portion 12 from inhibiting the performance of the electrodes 3 and 8 while securing the electromagnetic wave transmission performance of the high resistivity portion 12.
  • the size of the high resistivity portion 12 is not particularly limited, but the upper limit of the wavelength of the electromagnetic wave that can be transmitted through the high resistivity portion 12 can be regulated by adjusting the size of the high resistivity portion 12. That is, the high resistivity portion 12 can selectively transmit an electromagnetic wave having a wavelength according to the dimension. For example, if the diameter of the projected image in the first direction D1 of the high resistivity portion 12 is in the range of 1 to 5 cm, the high resistivity portion 12 can transmit an electromagnetic wave transmitted / received by a home wireless communication device. . If the diameter of the projected image in the first direction D1 of the high resistivity portion 12 is in the range of 1 to 20 cm, the high resistivity portion 12 can transmit an electromagnetic wave transmitted / received by a device such as a cellular phone.
  • the low resistivity portion 11 and the high resistivity portion 12 can be produced by an appropriate method.
  • the low resistivity portion 11 and the high resistivity portion 12 may be made of different materials.
  • the high resistivity portion 12 may be produced by partially chemically or physically treating the electrodes 3 and 8 to partially increase the resistivity of the electrodes 3 and 8.
  • the low resistivity portion 11 and the high resistivity portion 12 are made of the same material by a deposition method, and the deposition conditions are made different between the low resistivity portion 11 and the high resistivity portion 12 to obtain a high resistivity portion.
  • the electrical resistivity of 12 may be higher than that of the low resistivity portion 11.
  • the electrodes 3 and 8 may be formed by laminating a plurality of films different in electrical resistivity.
  • An alkali-free glass plate (“No. 1737” manufactured by Corning Inc.) is prepared as the transparent substrate 7.
  • the electrodes 3 and 8 are formed on the substrate 7 by sputtering using an ITO (indium-tin oxide) target (manufactured by Tosoh Corporation).
  • ITO indium-tin oxide
  • a circular masking plate with a diameter of 20 cm is first placed on the substrate 7, and in this state, an ITO film with a thickness of 90 nm is formed under film forming conditions to obtain a film with an electrical resistivity of 1.2 ⁇ 10 -4 ⁇ ⁇ cm.
  • a film thickness of 90 nm is obtained under the film forming conditions to obtain a film with an electrical resistivity of 1.1 ⁇ 10 -3 ⁇ ⁇ cm.
  • an ITO film with a thickness of 10 nm is formed under film forming conditions satisfying an electrical resistivity of 1.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the film formation conditions are adjusted, for example, by appropriately changing the conditions such as the introduced oxygen partial pressure. Thereby, the high resistivity portion 12 is formed at the place where the circular masking plate is placed on the substrate 7, and the low resistivity portion 11 is formed at the other places.
  • the electrodes 3 and 8 provided with the high resistivity portion 12 and the low resistivity portion 11 are formed on the substrate 7.
  • the electrodes 3 and 8 are subjected to ultrasonic cleaning with acetone, pure water and isopropyl alcohol for 15 minutes, dried, and further subjected to UV-O 3 treatment (ultraviolet-ozone treatment) for 15 minutes.
  • UV-O 3 treatment ultraviolet-O 3 treatment
  • the sealing material 13 and the insulating caulking material 14 are interposed between the adjacent substrates 7. Therefore, the gap between the adjacent substrates 7 is sealed by the sealing material 13 and the insulating caulking material 14.
  • the insulating caulking material 14 is disposed outside the sealing material 13.
  • the material of the sealing material 13 include UV curable resins such as World Lock 780, manufactured by Kyoritsu Chemical Industry Co., Ltd., and No. TB3027B, manufactured by ThreeBond Co., Ltd. It is not limited as long as it is a thing.
  • specific examples of the material of the insulating caulking material 14 include commercially available polysulfide sealing materials and polysulfide materials such as Topol S (trade name) and Topcor LM (trade names, manufactured by Toh Reikol Co., Ltd.) and Bond PS seal (trade name, manufactured by Konishi). Although an elastic adhesive is mentioned, it is not limited to this.
  • the planar optical element 1 includes a connection terminal 5 electrically connected to each of the two first electrodes 31 in the first optical function unit 21, and two in the second optical function unit 22.
  • a connection terminal 5 electrically connected to each of the two second electrodes 32 and a connection terminal 5 electrically connected to each of the two electrodes 3 in the planar light emitting unit 6 are provided.
  • the connection terminals 5 are provided on the outer peripheral portion of the planar optical element 1. Specifically, each of the connection terminals 5 is provided at an end of the planar optical element 1.
  • Each connection terminal 5 protrudes from the electrode 3 toward the end of the planar optical element 1 and is embedded in the insulating caulking material 14 at the end of the planar optical element 1.
  • planar optical element 1 which concerns on 1st embodiment is applicable to various uses, such as a lighting fixture, construction materials, a window, etc. so that it may mention later.
  • planar optical element 1 When the planar optical element 1 is installed, the planar optical element 1 may be installed in a state in which an appropriate frame material surrounding the outer periphery of the planar optical element 1 is attached, as necessary.
  • connection terminal 5 in the first optical function unit 21, the connection terminal 5 in the second optical function unit 22, and the connection terminal in the planar optical element 1 The power supply 10 is connected to each of the five.
  • the end of the wiring 101 connected to the power supply 10 is embedded in the insulating caulking material 14 at the end of the planar optical element 1 and connected to the connection terminal 5.
  • the power supply 10 is connected between the two first electrodes 31 in the first optical function unit 21 via the connection terminal 5 and the wiring 101, and a voltage can be applied between the power supply 10 and the first electrode 31.
  • the power supply 10 is also connected between the two second electrodes 32 in the second optical function unit 22 via the connection terminal 5 and the wiring 101, and a voltage can be applied between the power supply 10 and the second electrode 32. Further, the power supply 10 is also connected between the two electrodes 3 in the planar light emitting unit 6 via the connection terminal 5 and the wiring 101, and a voltage can be applied between the power supply 10 and the electrodes 3.
  • the optical characteristics of the first optical function layer 41 according to the change in voltage The degree of change.
  • the degree of the optical characteristics of the second optical function layer 42 changes according to the change in voltage.
  • FIG. 4 shows a second embodiment of the present invention.
  • the planar optical element 1 includes the third optical function unit 23. That is, the planar optical element 1 includes three optical function units 2 and a planar light emitting unit 6, and the three optical function units 2 include a first optical function unit 21, a second optical function unit 22, and a third optical function unit. Including 23.
  • the planar optical element 1 according to the second embodiment has the same configuration as that of the first embodiment except for including the third optical function unit 23. For this reason, about the structure which is common in 1st embodiment, the same code
  • the substrate 72 provided with the functional unit 22, the substrate 75, the third optical functional unit 23, and the second surface F2 is arranged in this order.
  • the third optical function unit 23 includes two third electrodes 33 facing each other along the first direction D1, and a third optical function layer 43 interposed between the third electrodes 33.
  • the third optical function unit 23 in the second embodiment is, for example, a third optical function layer 43 (light absorption variable layer 403) whose degree of light absorption changes according to a change in voltage applied between the third electrodes 33. And the light absorption variable part 203.
  • Each of the two third electrodes 33 in the third optical function portion 23 includes the low resistivity portion 11 and the high resistivity portion 12 in the same manner as the first electrode 31 and the second electrode 32.
  • the high resistivity portion 12 of the first electrode 31 on the first surface F1 side and the high resistivity portion 12 of the first electrode 31 on the second surface F2 side of the first optical function portion 21 are planar
  • the high resistivity portions 12 of the third electrode 33 on the second surface F2 side are aligned in this order in the first direction D1. For this reason, the electromagnetic waves can be easily transmitted through the plurality of high resistivity portions 12 sequentially, and the electromagnetic wave transmission performance of the planar optical element 1 becomes particularly high.
  • the first optical function unit 21 in the first embodiment and the second embodiment is, for example, the light scattering variable unit 201.
  • the light scattering variable part 201 includes two electrodes 3 (the first electrode 31 in the first embodiment and the second embodiment) facing each other along the first direction D1, and the optical function layer 4 (the first embodiment and the first embodiment)
  • the light scattering variable layer 401 as the first optical function layer 41) is provided.
  • the light scattering variable layer 401 is interposed between the two electrodes 3, and the degree of light scattering changes according to the change of the voltage applied between the electrodes 3.
  • the electrode 3 in the light scattering variable portion 201 has light transparency, the electrode 3 does not inhibit the incidence of light to the light scattering variable portion 201 and the emission of light from the light scattering variable portion 201, and It also does not interfere with the ability to scatter light. Therefore, the light scattering variable unit 201 can scatter the light passing through the light scattering variable unit 201 in the planar optical element 1.
  • the state of the light scattering variable layer 401 is switched between the high scattering state and the low scattering state according to the change of the voltage applied between the electrodes 3.
  • the state of the light scattering variable layer 401 may be further switched to the medium scattering state.
  • the high scattering state is a state in which the degree of light scattering is higher than the low scattering state
  • the low scattering state is a state in which the degree of light scattering is lower than the high scattering state or no light scattering.
  • the medium scattering state is a state in which the degree of light scattering is higher than the low scattering state and lower than the high scattering state.
  • the high scattering state for example, light incident on the light scattering variable layer 401 is scattered, the traveling direction of the light is changed in various directions, and the light is emitted from the light scattering variable layer 401.
  • the high scattering state may be a translucent state.
  • the low scattering state for example, the traveling direction of light incident on the light scattering variable layer 401 is maintained as it is and emitted from the light scattering variable layer 401.
  • the low scattering state may be a transparent state.
  • the medium scattering state may include only one state or may include a plurality of states having different degrees of light scattering.
  • the medium scattering state includes a plurality of states, it means that the degree of light scattering of the light scattering variable layer 401 can be switched in multiple stages between the high scattering state and the low scattering state.
  • the degree of light scattering of the light scattering variable layer 401 may be continuously steplessly switched between the high scattering state and the low scattering state.
  • the optical state of the planar optical element 1 can be switched in various ways.
  • the light scattering variable unit 201 may be configured to be able to maintain the medium scattering state of the light scattering variable layer 401.
  • the light scattering variable unit 201 is configured to scatter at least part of visible light, for example.
  • the light scattering variable unit 201 may be configured to scatter all of the visible light.
  • the light scattering variable unit 201 may be configured to scatter infrared light, and may be configured to scatter ultraviolet light.
  • the light scattering variable layer 401 is configured to be able to change, for example, at least one of the scattering amount and the scattering direction of light incident on the light scattering variable unit 201.
  • the change of the scattering amount and the scattering direction may be performed in the medium scattering state.
  • Changing the amount of scattering means changing the intensity of scattering.
  • Changing the scattering direction means changing the direction of scattering.
  • the light scattering variable layer 401 When the light scattering variable layer 401 is in a light scattering state, light scattering from the second surface F2 side is more than the degree of light scattering when light is incident on the light scattering variable layer 401 from the first surface F1 side The degree of light scattering when light is incident on the variable layer 401 may be higher. In this case, the light emitted from the planar light emitting unit 6 and incident on the light scattering variable unit 201 can be scattered more strongly.
  • the light scattering variable portion 201 is sealed by being disposed between the adjacent substrates 7, and the deterioration of the light scattering variable layer 401 is suppressed.
  • the light scattering variable unit 201 is disposed between the substrate 71 and the substrate 73.
  • the light scattering variable unit 201 is formed, for example, by laminating a plurality of layers constituting the light scattering variable unit 201. At that time, it is necessary to stack a plurality of layers on a formation substrate.
  • the formation substrate may be either of the two substrates 7 on both sides of the light scattering variable part 201. Of the two substrates 7, the substrate 7 that is not the formation substrate is a sealing substrate that seals the light scattering variable portion 201 on the formation substrate.
  • the power supply 10 connected to the electrode 3 in the light scattering variable unit 201 is, for example, an AC power supply.
  • an AC power supply Among materials in which the degree of light scattering changes with the change in electric field, there are many materials that can not maintain the degree of light scattering at the time of voltage application as time passes from the start of voltage application. Therefore, when the power supply 10 is a DC power supply, the degree of light scattering of the light scattering variable unit 201 may not be maintained constant.
  • an alternating current power supply can apply a voltage between the electrodes 3 while alternately reversing the polarity, and can apply a voltage substantially intermittently. Therefore, the degree of light scattering can be maintained constant.
  • the waveform of the voltage applied between the power supply 10 and the electrode 3 may be a rectangular wave.
  • the absolute value of the voltage applied between the electrodes 3 tends to be constant, and the degree of light scattering tends to be stable.
  • the waveform of the voltage may be a pulse wave.
  • the medium scattering state can be realized by appropriately controlling the value of the voltage applied between the electrodes 3.
  • the material of the light scattering variable layer 401 may be a material whose molecular orientation is changed by electric field modulation. Examples of such materials include liquid crystal materials.
  • the material of the light scattering variable layer 401 may be a polymer dispersed liquid crystal (abbreviated as PDLC). In the polymer dispersed liquid crystal, liquid crystal molecules are held by the polymer, so that the stable light scattering variable layer 401 can be manufactured from the polymer dispersed liquid crystal.
  • the material of the light scattering variable layer 401 may be a solid material whose light scattering property is changed by an electric field.
  • the polymer dispersed liquid crystal includes, for example, a resin part and a liquid crystal part.
  • the resin portion is formed of a polymer.
  • the resin part may have optical transparency.
  • the light scattering variable part 201 can be made to have light transparency.
  • the resin portion may be formed of a thermosetting resin, an ultraviolet curable resin, or the like.
  • the liquid crystal part is composed of liquid crystal in which the molecular orientation changes in accordance with the change in the electric field.
  • the liquid crystal part is made of, for example, nematic liquid crystal.
  • the polymer dispersed liquid crystal has, for example, a structure in which a plurality of liquid crystal portions are scattered in a resin portion.
  • the polymer dispersed liquid crystal may have a sea-island structure in which the resin part is the sea and the liquid crystal part is the island.
  • the polymer dispersed liquid crystal may have a structure in which liquid crystal portions irregularly linked in a mesh shape exist in the resin portion.
  • the polymer dispersed liquid crystal may have a structure in which resin portions are scattered in the liquid crystal portion.
  • the polymer-dispersed liquid crystal may have a structure in which resin portions randomly linked in a mesh shape exist in the liquid crystal portion.
  • the light scattering variable layer 401 is in a high scattering state when, for example, no voltage is applied between the electrodes 3 and is in a low scattering state when a voltage is applied.
  • the light scattering variable layer 401 is made of polymer dispersed liquid crystal, the light scattering variable layer 401 can have such characteristics. This is because it is possible to align the molecular orientation of the liquid crystal by applying a voltage.
  • the light scattering variable layer 401 may be in a low scattering state when a voltage is not applied between the electrodes 3 and may be in a high scattering state when a voltage is applied.
  • the degree of light scattering of the light scattering variable layer 401 when a voltage is applied to the light scattering variable layer 401 may be maintained or no voltage is applied. In this case, a voltage may be applied only when switching the state of the light scattering variable layer 401, and the voltage application may be stopped after switching, so power saving can be achieved.
  • the voltage applied to the light scattering variable layer 401 is changed to change the degree of light scattering of the light scattering variable layer 401, if the hysteresis is large, that is, if the memory property (memory property) is present, the voltage is applied. Even if it disappears, the degree of light scattering at the time of voltage application is maintained.
  • the light scattering variable layer 401 may be made of, for example, a polymer dispersed liquid crystal in which a large hysteresis appears.
  • the time during which the degree of light scattering is maintained is preferably as long as the voltage application is stopped, for example, 1 hour or more is preferable, 3 hours or more is more preferable, 6 hours or more is more preferable, 12 hours or more is more preferable, More than time is more preferable.
  • the second optical function unit 22 in the first embodiment and the second embodiment is, for example, the light reflection variable unit 202.
  • the light reflection variable portion 202 includes two electrodes 3 (the first electrode 32 in the first embodiment) facing each other along the first direction D1, and an optical function layer 4 (the second optical function in the first embodiment). And a light reflection variable layer 402 as the layer 42).
  • the light reflection variable layer 402 is interposed between the two electrodes 3, and the degree of light reflectivity changes according to the change of the voltage applied between the electrodes 3.
  • the electrode 3 in the light reflection variable portion 202 has light transparency. Therefore, the electrode 3 does not inhibit the incidence of light to the light reflection variable portion 202 and the emission of light from the light reflection variable portion 202, and does not inhibit the function of reflecting the light of the light reflection portion. For this reason, the light reflection variable part 202 can reflect the light that has reached the light reflection variable part 202 in the planar optical element 1.
  • the state of the light reflection variable layer 402 is switched between the high reflection state and the low reflection state according to the change of the voltage applied between the electrodes 3.
  • the state of the light reflection variable layer 402 may be further switched to the middle reflection state.
  • the high reflection state is a state in which the degree of light reflectivity is higher than that in the low reflection state
  • the low reflection state is a state in which the degree of light reflectivity is lower than the high reflection state or no light reflectivity.
  • the medium reflection state is a state in which the degree of light reflectivity is higher than the low reflection state and lower than the high reflection state.
  • the traveling direction of the light incident on the light reflection variable layer 402 is reversed, and the light is emitted to the incident side.
  • the light reflection variable layer 402 in the high reflection state may be in a mirror state.
  • the light reflection variable unit 202 can function as a reflection layer that reflects light.
  • the low reflection state for example, the traveling direction of light incident on the light reflection variable layer 402 is maintained as it is and emitted from the light reflection variable layer 402.
  • the low reflection state may be a transparent state.
  • the medium reflection state may include only one state or may include a plurality of states having different degrees of light reflectivity.
  • the medium reflection state includes a plurality of states, it means that the degree of light reflectivity of the light reflection variable layer 402 can be switched in multiple stages between the high reflection state and the low reflection state. Also, the degree of light reflectivity of the light reflection variable layer 402 may be continuously steplessly switched between the high reflection state and the low reflection state.
  • the light reflection variable layer 402 can be switched to the medium reflection state, it is possible to switch the optical state of the planar optical element 1 in various ways.
  • the light reflection variable part 202 may be configured to be able to maintain the middle reflection state of the light reflection variable layer 402.
  • the light reflection variable unit 202 is configured to reflect, for example, at least a part of visible light.
  • the light reflection variable unit 202 may be configured to reflect all of the visible light.
  • the light reflection variable unit 202 may be configured to reflect infrared light, and may be configured to reflect ultraviolet light.
  • the light reflection variable part 202 may be configured to reflect all of visible light, infrared light and ultraviolet light.
  • the light reflection variable unit 202 may be configured to be able to change the waveform of the reflection spectrum.
  • the reflection spectrum is the spectrum of the light emitted from the light reflection variable part 202 when the light incident on the light reflection variable part 202 is reflected by the light reflection variable layer 402 and is emitted from the light reflection variable part 202.
  • Being able to change the waveform of the reflection spectrum means that the light reflection variable layer 402 can be switched to a plurality of different states of the waveform of the reflection spectrum.
  • the change of the reflection spectrum may be achieved, for example, when the light reflection variable part 202 is in the middle reflection state. That is, for example, the waveforms of the reflection spectrum may be different between the high reflection state and the middle reflection state.
  • the medium reflection state may include a plurality of states in which the waveforms of the reflection spectrum are different.
  • Changes in the reflection spectrum are achieved, for example, by changes in the reflection wavelength.
  • the light reflection variable layer 402 is switched between a state in which blue light is particularly strongly reflected and a state in which blue light is not particularly reflected, and is switched between a state in which green light is particularly strongly reflected and not so, or red light In particular, it is switched between the strongly reflecting state and the not strongly reflecting state.
  • the reflection spectrum changes, the color of the light emitted from the planar optical element 1 changes. Therefore, the light emitted from the planar optical element 1 can be toned (that is, the color of the emitted light can be adjusted).
  • the light reflection variable unit 202 may be configured not to change the waveform of the reflection spectrum. That is, even if the degree of light reflectivity changes by switching the state of the light reflection variable layer 402, only the intensity of the light emitted from the light reflection variable portion 202 changes, and the waveform of the reflection spectrum does not change. May be In this case, by changing the degree of light reflectivity in the light reflection variable section 202, it is possible to control the light emitted from the planar optical element 1 (that is, to adjust the brightness of the emitted light).
  • the light reflection variable layer 402 When the light reflection variable layer 402 is in a light reflecting state, light is reflected from the first surface F1 side more than the degree of light reflectivity when light is incident on the light reflection variable layer 402 from the second surface F2 side
  • the degree of light reflectivity when light enters the variable layer 402 may be higher. In this case, light emitted from the planar light emitting unit 6 and incident on the light reflection variable unit 202 can be more strongly reflected and emitted from the first surface F1 to the outside of the planar optical element 1.
  • the light reflection variable portion 202 is sealed by being disposed between the adjacent substrates 7, and the deterioration of the light reflection variable layer 402 is suppressed.
  • the light reflection variable unit 202 is disposed between the substrate 74 and the substrate 72.
  • the light reflection variable part 202 is formed, for example, by laminating a plurality of layers constituting the light reflection variable part 202. At that time, it is necessary to stack a plurality of layers on a formation substrate.
  • the formation substrate may be either of the two substrates 7 on both sides of the light reflection variable portion 202. Of the two substrates 7, the substrate 7 that is not the formation substrate is a sealing substrate that seals the light reflection variable portion 202 on the formation substrate.
  • the power supply 10 connected to the electrode 3 in the light reflection variable unit 202 is, for example, an AC power supply.
  • an AC power supply Among the materials of which the degree of light reflectivity changes according to the change of the electric field, there are many materials which can not maintain the degree of light reflectivity at the time of voltage application as time passes from the start of voltage application. Therefore, when the power supply 10 is a DC power supply, the degree of light reflectivity of the light reflection variable portion 202 may not be maintained constant.
  • an alternating current power supply can apply a voltage between the electrodes 3 while alternately reversing the polarity, and can apply a voltage substantially intermittently. Therefore, the degree of light reflectivity can be maintained constant.
  • the waveform of the voltage applied across the electrodes 3 from the AC power supply may be a rectangular wave.
  • the absolute value of the voltage applied between the electrodes 3 tends to be constant, and the degree of light reflectivity tends to be stable.
  • the waveform of the voltage may be a pulse wave.
  • the medium reflection state can be realized by appropriately controlling the value of the voltage applied between the electrodes 3.
  • the material of the light reflection variable layer 402 may be a material whose molecular orientation is changed by electric field modulation.
  • a material include nematic liquid crystals, cholesteric liquid crystals, ferroelectric liquid crystals, and electrochromic materials.
  • the cholesteric liquid crystal may be a nematic liquid crystal having a helical structure.
  • the nematic liquid crystal having a helical structure as referred to herein is, for example, a material obtained by adding a chiral agent to the nematic liquid crystal to impart optical rotatory power.
  • the cholesteric liquid crystal may be a chiral nematic liquid crystal.
  • Cholesteric liquid crystals have a macroscopic helical structure by having a continuous change in the alignment direction of the molecular axes. Therefore, it is possible to reflect the light of the wavelength corresponding to the period of the cholesteric liquid crystal and the spiral. It is possible to change the degree of light reflectivity of the cholesteric liquid crystal by changing the state of the helix of the cholesteric liquid crystal by an electric field. This phenomenon can be used to change the degree of light reflectivity of the light reflection variable layer 402 made of cholesteric liquid crystal.
  • the electrochromic material undergoes a color change due to an electrochemical reversible reaction (electrolytic redox reaction) when a voltage is applied. This phenomenon can be used to change the degree of light reflectivity of the light reflection variable layer 402 made of an electrochromic material.
  • cholesteric liquid crystal may be used as a material of the light reflection variable layer 402, in particular, cholesteric liquid crystal may be used.
  • the light reflection variable layer 402 is in a high light reflection state when a voltage is not applied between the electrodes 3 and is in a low light reflection state when a voltage is applied.
  • the light reflection variable layer 402 may have such characteristics. This is because it is possible to align the molecular orientation of the liquid crystal by applying a voltage. For example, when a voltage is not applied between the electrodes 3, the cholesteric liquid crystal is in a planar alignment state to reflect light of a specific wavelength, and when a voltage is applied between the electrodes 3, it is in a focal conic alignment state to transmit light. It can be done.
  • the light reflection variable layer 402 may be in a low light reflection state when a voltage is not applied between the electrodes 3 and may be in a high light reflection state when a voltage is applied.
  • the degree of light reflectivity of the light reflection variable layer 402 when a voltage is applied to the light reflection variable layer 402 may be maintained even if the voltage is not applied. In this case, a voltage may be applied only when switching the state of the light reflection variable layer 402, and the voltage application may be stopped after switching, so power saving can be achieved.
  • the voltage applied to the light reflection variable layer 402 is changed to change the degree of light reflectivity of the light reflection variable layer 402, if the hysteresis is large, that is, if the memory property (memory property) is present, the voltage is applied. Even if it disappears, the degree of light reflectivity at the time of voltage application is maintained.
  • the light reflection variable layer 402 may be manufactured from liquid crystal in which a large hysteresis appears.
  • the third optical function unit 23 in the second embodiment is, for example, the light absorption variable unit 203.
  • the light absorption variable portion 203 includes two electrodes 3 (third electrode 33 in the second embodiment) facing each other along the first direction D1, and an optical function layer 4 (the third optical function layer 43 in the second embodiment). And the light absorption variable layer 403).
  • the light absorption variable layer 403 is interposed between the two electrodes 3, and the degree of light absorption changes according to the change of the voltage applied between the electrodes 3.
  • the electrode 3 in the light absorption variable portion 203 has light transparency, the electrode 3 does not inhibit the incidence of light to the light absorption variable portion 203 and the emission of light from the light absorption variable portion 203, and the light absorption variable portion It also does not inhibit the light absorbing function of 203. Therefore, the light absorption variable unit 203 can absorb the light that has reached the light absorption variable unit 203 in the planar optical element 1.
  • the state of the light absorption variable layer 403 is switched between the high absorption state and the low absorption state according to a change in voltage applied between the electrodes 3.
  • the state of the light absorption variable layer 403 may be further switched to the middle absorption state.
  • the high absorption state is a state in which the degree of light absorption is higher than that in the low absorption state
  • the low absorption state is a state in which the degree of light absorption is lower than in the high absorption state or no light absorption.
  • the medium absorption state is a state in which the degree of light absorption is higher than the low absorption state and lower than the high absorption state.
  • the high absorption state for example, light that has entered the light absorption variable portion 203 from one of the first surface F1 side and the second surface F2 side is absorbed by the light absorption variable layer 403 and is not emitted to the other.
  • an object on the second surface F2 side can not be visually recognized from the first surface F1 side through the light absorption variable layer 403 but can not be visually recognized, and through the light absorption variable layer 403 from the second surface F2 side Even when trying to visually recognize an object on the first surface F1 side, it may be in a state where it can not be visually recognized.
  • the light absorption variable layer 403 may be in an opaque state.
  • the color of the light absorption variable layer 403 may be black.
  • the light absorption variable part 203 can function as an absorption layer that absorbs light.
  • the low absorption state is, for example, a state in which light entering the light absorption variable portion 203 from one of the first surface F1 side and the second surface F2 side is emitted to the other as it is without being absorbed by the light absorption variable layer 403 .
  • the high absorption state for example, an object on the second surface F2 side can be clearly viewed through the light absorption variable layer 403 from the first surface F1 side, and through the light absorption variable layer 403 from the second surface F2 side Thus, the object on the first surface F1 side may be clearly visible.
  • the medium absorption state may include only one state or may include a plurality of states having different degrees of light absorption.
  • the medium absorption state includes a plurality of states, it means that the degree of light absorption of the light absorption variable layer 403 can be switched in multiple stages between the high absorption state and the low absorption state. Also, the degree of light absorption of the light absorption variable layer 403 may be continuously steplessly switched between the high absorption state and the low absorption state.
  • the optical state of the planar optical element 1 can be switched in various ways.
  • the light absorption variable unit 203 may be configured to be able to maintain the medium absorption state of the light absorption variable layer 403.
  • the light absorption variable unit 203 is configured to absorb, for example, at least a part of visible light. In this case, at least a part of the light incident on the planar optical element 1 from the outside through the second surface F2 can be absorbed by the light absorption variable portion 203, so that the first surface F1 is emitted from the planar light emitting portion 6. Can make the light emitted to the outside clear.
  • the light absorption variable part 203 may be configured to absorb all of visible light. In this case, light emitted from the planar light emitting unit 6 and emitted to the outside through the first surface F1 can be further clarified.
  • the light absorption variable unit 203 may be configured to absorb infrared light. In this case, the planar optical element 1 can obtain a heat shielding effect.
  • the light absorption variable unit 203 may be configured to absorb ultraviolet light. In this case, deterioration of the planar optical element 1 due to ultraviolet light can be suppressed. In addition, the planar optical element 1 can obtain the ultraviolet shielding effect, and for example, the planar optical element 1 can suppress the penetration of the ultraviolet light from the outdoors to the indoor.
  • the light absorption variable part 203 absorbs infrared light or ultraviolet light
  • the light absorption variable part 203 may be located closer to the second surface F2 than the light reflection variable part 202. In this case, it is possible to suppress that the infrared light or the ultraviolet light degrades the planar light emitting unit 6, the light reflection variable unit 202, and the light scattering variable unit 201.
  • the light absorption variable part 203 preferably absorbs any one of visible light, ultraviolet light and infrared light, more preferably absorbs two of these, and still more preferably absorbs all of them.
  • the light absorption variable unit 203 may be configured to be able to change the waveform of the absorption spectrum.
  • the absorption spectrum is a spectrum of light emitted from the light absorption variable part 203 when light incident on the light absorption variable part 203 passes through the light absorption variable layer 403 and is emitted from the light absorption variable part 203. is there.
  • Being able to change the waveform of the absorption spectrum means that the light absorption variable layer 403 can be switched to different states of the waveform of the absorption spectrum.
  • the change of the absorption spectrum may be achieved, for example, when the light absorption variable part 203 is in the middle absorption state. That is, for example, the waveforms of the absorption spectrum may be different between the high absorption state and the medium absorption state.
  • the medium absorption state may include a plurality of states in which the waveforms of the absorption spectrum are different.
  • the change of absorption spectrum is achieved, for example, by a change of absorption wavelength.
  • the light absorption variable layer 403 is switched between a state that absorbs blue light particularly strongly and a state that does not absorb blue light, and is switched between a state that absorbs blue light particularly strongly and a state that does not so, or red light In particular, it is switched between strongly absorbing and non-strongly absorbing states.
  • the absorption spectrum changes, the color of light emitted from the planar optical element 1 changes. Therefore, the light emitted from the planar optical element 1 can be toned (that is, the color of the emitted light can be adjusted).
  • the degree of light absorption when light is incident on the variable layer 403 may be higher.
  • deterioration of the planar light emitting unit 6 can be particularly effectively suppressed, and emission of ultraviolet light from the first surface F1 to the outside of the planar optical element 1 can be particularly effectively suppressed.
  • the light absorption variable portion 203 is sealed by being disposed between the adjacent substrates 7, and the deterioration of the light absorption variable layer 403 is suppressed.
  • the light absorption variable unit 203 is disposed between the substrate 72 and the substrate 75.
  • the light absorption variable unit 203 is formed, for example, by laminating a plurality of layers constituting the light absorption variable unit 203. At that time, it is necessary to stack a plurality of layers on a formation substrate.
  • the formation substrate may be either of the two substrates 7 on both sides of the light absorption variable part 203. Of the two substrates 7, the substrate 7 that is not the formation substrate is a sealing substrate that seals the light absorption variable portion 203 on the formation substrate.
  • the power supply connected to the electrode 3 in the light absorption variable part 203 may be an AC power supply, but may be a DC power supply.
  • a material whose degree of light absorption changes in response to a change in electric field may change its light absorption by a current in one direction. Therefore, stable light absorption of the light absorption variable layer 403 can be obtained by a DC power supply.
  • the medium absorption state can be realized by appropriately controlling the value of the voltage applied between the electrodes 3.
  • the material of the light absorption variable layer 403 may be a material whose light absorption changes by electric field modulation.
  • Such materials include, for example, tungsten oxide.
  • the light absorption variable layer 403 may be in a high light absorption state when a voltage is not applied between the electrodes 3 and may be in a low light absorption state when a voltage is applied.
  • the light absorption variable layer 403 may have such characteristics. This is because it is possible to align the molecular orientation of the liquid crystal by applying a voltage. From the liquid crystal, the light absorption variable layer 403 which is thin but has a high degree of light absorption in a high light absorption state can be manufactured.
  • the light absorption variable layer 403 may be in a low light absorption state when a voltage is not applied between the electrodes 3 and may be in a high light absorption state when a voltage is applied.
  • the degree of light absorbency of the light absorption variable layer 403 when a voltage is applied to the light absorption variable layer 403 may be maintained even if the voltage is not applied. In this case, a voltage may be applied only when switching the state of the light absorption variable layer 403, and the voltage application may be stopped after switching, so power saving can be achieved.
  • the voltage applied to the light absorption variable layer 403 is changed to change the degree of light absorption of the light absorption variable layer 403, the voltage is applied if the hysteresis is large, that is, if the memory property is obtained. Even if it disappears, the degree of light absorption at the time of voltage application is maintained.
  • the time during which the degree of light absorption is maintained is preferably as long as the voltage application is stopped, for example, 1 hour or more is preferable, 3 hours or more is more preferable, 6 hours or more is more preferable, 12 hours or more is more preferable, More than time is more preferable.
  • the planar light emitting unit 6 is configured of an organic EL element having light transparency.
  • the planar light emitting unit 6 may be transparent so that the optical function of the optical function unit 2 is not inhibited.
  • the planar light emitting unit 6 may be coated with a moisture-proof material. In this case, the sealing performance of the planar light emitting unit 6 can be improved.
  • the moisture proof material may be transparent.
  • the planar light emitting unit 6 includes two electrodes 8 and an organic light emitting layer 9 disposed between the two electrodes 8.
  • the organic light emitting layer 9 is light transmissive.
  • both of the two electrodes 8 are light transmissive. Therefore, when the organic light emitting layer 9 emits light, the light emitted from the organic light emitting layer 9 is emitted to both sides of the first direction D1.
  • the organic light emitting layer 9 can transmit light incident on the organic light emitting layer 9 from the outside.
  • one electrode 8 constitutes an anode, and the other electrode 8 constitutes a cathode.
  • the electrode 8 on the first surface F1 side with respect to the organic light emitting layer 9 may constitute a cathode and the electrode 8 on the second surface F2 side may constitute an anode, and the second surface F2 side And the electrode 8 on the second surface F2 side may constitute a cathode.
  • the organic light emitting layer 9 is a layer having a function of causing light emission, and includes, for example, a light emitting layer containing a light emitting material, and further, if necessary, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an intermediate layer It comprises one or more layers appropriately selected from layers and the like. Of course, the organic light emitting layer 9 may be composed of only the light emitting layer. When a voltage is applied between the two electrodes 8 and a current flows between the electrodes 8, holes and electrons are charge-coupled in the light emitting layer to generate light.
  • the planar light emitting unit 6 is sealed by being disposed between the adjacent substrates 7, and the deterioration of the organic light emitting layer 9 is suppressed.
  • the planar light emitting unit 6 is disposed between the substrate 73 and the substrate 74.
  • an organic EL element is formed by laminating
  • the formation substrate may be either of the two substrates 7 on both sides of the planar light emitting unit 6. Of the two substrates 7, the substrate 7 which is not the formation substrate is a sealing substrate for sealing the organic EL element on the formation substrate.
  • the power supply 10 to which the electrode 8 in the planar light emitting unit 6 is connected is, for example, a DC power supply.
  • stable light emission of the organic EL element can be obtained.
  • the emission color of the organic EL element may be white, blue, green or red. Of course, it may be an intermediate color between blue and green or green and red. In addition, it may be possible to adjust the luminescent color according to the current value.
  • FIG. 5A to FIG. 5G show an example of the operation of the planar optical element 1 in the case of using the planar optical element 1 according to the first embodiment and the second embodiment as a window of a building or the like.
  • the planar optical element 1 is used as a window, the first surface F1 of the planar optical element 1 is disposed indoors, and the second surface F2 is disposed outdoors.
  • the configuration of the planar optical element 1 is schematically shown. Arrows indicate the progression of light.
  • the light reflection variable portion 202 is hatched when it is in a light reflecting state (for example, a high reflection state or a medium reflection state), and is not in a light reflection state (low reflection When it is in the state), it is not shaded.
  • the light scattering variable part 201 is hatched when it is in a light scattering state (for example, high scattering state or medium scattering state) and is in a state not having light scattering (for example, low scattering state) Sometimes it is not shaded.
  • the planar light emitting unit 6 is hatched when light is emitted, and not hatched when light is not emitted.
  • the light reflection variable part 202 is in a state of light reflectivity, the planar light emitting part 6 does not emit light, and the light scattering variable part 201 is transparent without light scattering. It is in.
  • the planar optical element 1 can shield light incident from the outside toward the second surface F2.
  • light incident toward the first surface F1 from the outside (indoor) on the first surface F1 side is reflected by the light reflection variable portion 202 and emitted from the first surface F1 to the outside. Therefore, the planar optical element 1 can function as a mirror. In this state, the planar optical element 1 may not function as a mirror depending on the degree of reflectivity of the light reflection variable section 202.
  • the planar light emitting unit 6 is in a light emitting state
  • the light reflection variable unit 202 is in a transparent state without light reflectivity
  • the light scattering variable unit 201 has a light scattering property. It is not transparent and is in a transparent state. In this state, the light emitted from the planar light emitting unit 6 and directed to the first surface F1 exits the first surface F1 as it is. Therefore, the planar optical element 1 can perform illumination such as indoors.
  • light incident toward the second surface F2 from the outside on the second surface F2 side passes through the light reflection variable portion 202, the planar light emitting portion 6, and the light scattering variable portion 201, and is externally transmitted from the first surface F1. I will emit.
  • the illumination effect of the planar optical element 1 can be enhanced.
  • the light which goes to the 2nd surface F2 from the planar light emission part 6 can also be radiate
  • the light scattering variable part 201 is in a light scattering property
  • the planar light emitting part 6 is not in a light emitting state
  • the light reflection variable part 202 is transparent without light reflectivity.
  • light incident toward the second surface F2 from the outside (outdoor) on the second surface F2 side passes through the light reflection variable portion 202 and the planar light emitting portion 6, and further passes through the light scattering variable portion 201. While being scattered, it emits from the first surface F1 to the outside (indoor) on the first surface F1 side.
  • planar optical element 1 transmits light.
  • the planar optical element 1 when trying to visually recognize an object on the second surface F2 side from the first surface F1 side through the planar optical element 1, and from the second surface F2 side to the first surface F1 through the planar optical element 1 In any case where an object on the side is to be viewed, the object is blurred and difficult to be viewed. That is, the planar optical element 1 is in a semitransparent state.
  • the translucent state is, for example, ground glass or frosted glass. Therefore, the planar optical element 1 can realize privacy protection.
  • outside light can be drawn from the outside into the room and used while protecting privacy.
  • the planar light emitting part 6 is in a light emitting state
  • the light reflection variable part 202 is in a light reflecting state
  • the light scattering variable part 201 is transparent without light scattering. It is in a state.
  • the light emitted from the planar light emitting unit 6 and directed to the first surface F1 exits the first surface F1 as it is.
  • light emitted from the planar light emitting unit 6 and directed to the second surface F2 is reflected by the light reflection variable unit 202, travels to the first surface F1, and exits from the first surface F1. Therefore, the amount of light emitted from the first surface F1 to the outside can be increased, and for example, the effect of indoor lighting can be enhanced.
  • the planar optical element 1 can shield light incident from the outside toward the second surface F2.
  • the planar light emitting part 6 is in a light emitting state, the light scattering variable part 201 is in a light scattering property, and the light reflection variable part 202 has no light reflectivity. It is in a transparent state. In this state, the light emitted from the planar light emitting unit 6 and traveling toward the first surface F1 is scattered while passing through the light scattering variable unit 201, and exits from the first surface F1. For this reason, the planar optical element 1 can emit light with low orientation from the first surface F1 to the outside, whereby a unique illumination effect can be obtained.
  • the planar optical element 1 can emit light on both sides.
  • the planar light emitting part 6 is in a light emitting state
  • the light scattering variable part 201 is in a light scattering property
  • the light reflection variable part 202 is in a light reflecting property.
  • the light emitted from the planar light emitting unit 6 and traveling toward the first surface F1 is scattered while passing through the light scattering variable unit 201, and exits from the first surface F1.
  • the light emitted from the planar light emitting unit 6 and directed to the second surface F 2 is reflected by the light reflection variable unit 202 to be directed to the first surface F 1 and scattered while passing through the light scattering variable unit 201. It emits from the face F1 to the outside.
  • the planar optical element 1 can emit light with low orientation from the first surface F1 to the outside, whereby a unique illumination effect can be obtained. Further, by scattering light by the light scattering variable part 201, interface reflection of light in the planar optical element 1 can be reduced, and the extraction efficiency of light from the first surface F1 can be improved.
  • light incident from the outside toward the second surface F2 from the outside on the second surface F2 side is not transmitted by the planar optical element 1 because it is reflected by the light reflection variable part 202. Therefore, the planar optical element 1 can shield light incident from the outside toward the second surface F2.
  • the planar light emitting unit 6 does not emit light
  • the light scattering variable unit 201 is in a transparent state without light scattering
  • the light reflection variable unit 202 has light reflectivity. It is in a transparent state.
  • the light incident on the first surface F1 from the outside on the first surface F1 side is not scattered, passes through the planar optical element 1 and is emitted from the second surface F2 to the outside, and the second surface F2 side
  • Light incident to the second surface F2 from the outside is not reflected, passes through the planar optical element 1, and exits from the first surface F1.
  • the planar optical element 1 is in a transparent state, and for example, outdoor to indoor daylighting is possible as in a general transparent window.
  • planar optical element 1 further includes the light absorption variable portion 203 as in the second embodiment, if the light absorption variable portion 203 does not have light absorptivity, the planar optical element 1 has the above-mentioned figure.
  • the operation is similar to the case shown in 5A to 5G.
  • the ultraviolet-ray cutting effect which suppresses the penetration
  • the second surface F2 side can be made to absorb part or all of the light incident on the second surface F 2 from the outside before reaching the light reflection variable part 202. For this reason, it can suppress that the light which injected into the 2nd surface F2 from the exterior by the side of the 2nd surface F2 is reflected by the planar optical element 1, and is radiate
  • the light absorption variable portion 203 is light absorptive in a state where the planar light emitting portion 6 is emitting light and the light reflection variable portion 202 does not have light reflectivity. If the light absorption variable portion 203 absorbs light from the outside on the second surface F2 side and enters the second surface F2 and travels to the first surface F1. For this reason, the contrast of the light emitted from the planar light emitting unit 6 and emitted from the first surface F1 to the outside can be enhanced.
  • the planar optical element 1 can exhibit a light shielding function.
  • the light absorption variable unit 203 adjusts the color of the light passing through the light absorption variable unit 203 to obtain various kinds of light emitted from the planar optical element 1. Can also be given a color.
  • the degree of optical characteristics of the optical function unit 2 in the planar optical element 1 is switched, or the light emission of the planar light emitting unit 6 is switched on / off, whereby various planar optical elements 1 can be obtained. It can take an optical state.
  • the planar optical element 1 is applicable to various applications in which such an optical state can be used.
  • the planar optical element 1 can take various optical states, it has various functions such as a function to transmit light, a function to block light, a function as a mirror, a function to protect privacy, and a function as illumination. It can. Therefore, the planar optical element 1 can be used as a multi-functional lighting device, a building material, a window, and the like.
  • the planar optical element 1 can configure a window that can be switched to a plurality of optically different states. Such a window can be called an active window. Such windows are valuable.
  • the window composed of the planar optical element 1 can be used for either the inner window or the outer window.
  • a window configured of the planar optical element 1 may be applied to a window for a vehicle such as a vehicle-mounted window.
  • the window formed of the planar optical element 1 may be applied to a window of an automobile, a train, a locomotive, a vehicle such as a train, a plane, a ship or the like.
  • windows that can change transparency are suitable for luxury cars.
  • the planar optical element 1 can also be used as a building material.
  • the building materials include wall materials, partitions, signage and the like.
  • the signage may be a so-called lighting advertisement.
  • the wall material may be for the outer wall or for the inner wall.
  • the planar optical element 1 may include only one optical function unit 2 or may include four or more optical function units 2.
  • the planar optical element 1 may not include the planar light emitting unit 6.
  • one of the first optical function unit 21 and the second optical function unit 22 may be the light absorption variable unit 203.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Liquid Crystal (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明に係る面状光学素子(1)は、光学機能部(2)を一つ以上備える。光学機能部(2)は、一方向に沿って対向し合う二つの電極(3)と、二つの電極(3)間に介在し、電極(3)間に印加される電圧の変化に応じて光散乱性、光反射性及び光吸収性から選択される光学特性の程度が変化する光学機能層(4)とを備える。電極(3)の各々は、低抵抗率部位(11)と、低抵抗率部位(11)よりも高い電気抵抗率を有する高抵抗率部位(12)とを備える。

Description

面状光学素子、照明装置及び建材
 本発明は、面状光学素子、並びにこの面状光学素子を備える照明装置及び建材に関し、例えば、光散乱性、光反射性、光吸収性等の光学特性の程度を変更可能な面状光学素子、並びにこの面状光学素子を備える照明装置及び建材に関する。
 従来、調光ガラス窓などのように、光学的な状態を変更可能な部材が知られている。例えば特許文献1には、調光ガラス窓が二枚のガラス板の間の微小隙間に封入された液晶と、透明電極とを備え、透明電極に所定の電圧が印加されると電圧印加部分の液晶の光学特性が変化することでその部分の光透過度が変化することが、開示されている。
特開平8-184273号公報
 しかし、特許文献1に開示されているような調光ガラス窓には全体に亘って電極が設けられているため、電極により電磁波が減衰してしまう。このため、例えば調光ガラス窓が建築物等の窓に適用される場合、携帯電話が送受信する電磁波のように減衰すべきではない電磁波が減衰してしまうおそれがある。
 本発明は上記事由に鑑みてなされたものであり、電極間に電圧を印加することで光学的な状態を変更可能であると共に電極によって電磁波が減衰することを抑制できる面状光学素子、並びにこの面状光学素子を備える照明装置及び建材を提供することを目的とする。
 本発明の一態様に係る面状光学素子は、一方向に沿って対向し合う二つの電極と、前記二つの電極間に介在し、前記電極間に印加される電圧の変化に応じて光散乱性、光反射性及び光吸収性から選択される光学特性の程度が変化する光学機能層とを備える光学機能部を、一つ以上備え、前記電極の各々は、低抵抗率部位と、前記低抵抗率部位よりも高い電気抵抗率を有する高抵抗率部位とを備える。
 本発明の一態様に係る照明装置は、前記面状光学素子を備える。
 本発明の一態様に係る建材は、前記面状光学素子を備える。
 本発明によれば、電極間に電圧を印加することで面状光学素子の光学的な状態を変更可能であると共に、高抵抗率部位で電磁波の透過を確保することで電磁波が減衰することを抑制できる。
図1は、本発明の第一実施形態に係る面状光学素子を示す正面図である。 図2は、本発明の第一実施形態に係る面状光学素子を示す、図1のA-A断面図である。 図3は、本発明の第一実施形態に係る面状光学素子を示す、図1のB-B断面図である。 図4は、本発明の第二実施形態に係る面状光学素子を示す断面図である。 図5Aは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Bは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Cは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Dは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Eは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Fは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。 図5Gは、本発明の第一実施形態に係る面状光学素子の動作を示す模式図である。
 以下では、本発明の実施の形態に係る面状発光体、照明装置及び建材について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 以下、本発明の実施の形態について説明する(図1~図3参照)。
 面状光学素子1は、一つ以上の光学機能部2を備える。光学機能部2は、一方向(以下、第一方向D1という)に沿って対向し合う二つの電極3と、二つの電極3間に介在する光学機能層4とを備える。光学機能層4は、電極3間に印加される電圧の変化に応じて光散乱性、光反射性及び光吸収性から選択される光学特性の程度が変化するように構成されている。光学機能部2における電極3の各々は、低抵抗率部位11と、前記低抵抗率部位11よりも高い電気抵抗率を有する高抵抗率部位12とを備える。
 このため、電極3間に電圧を印加することで面状光学素子1の光学的な状態を変更可能である。また、低抵抗率部位11で電極3の性能を確保することができると共に、高抵抗率部位12で電磁波の透過を確保することができる。このため、面状光学素子1が電磁波を減衰させることが抑制される。
 高抵抗率部位12の可視光透過率と低抵抗率部位11の可視光透過率とは、いずれも80%以上であってもよい。この場合、低抵抗率部位11を備える電極3が光学機能部2の光学的機能を阻害することを抑制できる。
 光学機能部2における電極3の高抵抗率部位12は、全て第一方向D1に一列に並んでいてもよい。面状光学素子1が一つの光学機能部2を備える場合には、光学機能部2における二つの電極3がそれぞれ備える高抵抗率部位12は、全て第一方向D1に一列に並んでいてもよい。また面状光学素子1が複数の光学機能部2を備える場合には、複数の光学機能部2は第一方向D1に並び、複数の光学機能部2における電極3がそれぞれ備える高抵抗率部位12が全て第一方向D1に一列に並んでいてもよい。この場合、高抵抗率部位12に起因する面状光学素子1の電磁波の透過性能が特に高くなる。
 面状光学素子1は、面状発光部6を備えてもよい。面状発光部6は、第一方向D1に沿って対向し合う二つの電極8と、二つの電極8間に介在する有機発光層9とを備える。
 面状光学素子1が面状発光部6を備える場合、面状発光部6の電極8の各々は、低抵抗率部位11と、低抵抗率部位11よりも高い電気抵抗率を有する高抵抗率部位12とを備えてもよい。
 面状発光部6の電極8における高抵抗率部位12の可視光透過率と低抵抗率部位11の可視光透過率とも、いずれも80%以上であってもよい。この場合、低抵抗率部位11を備える電極8が面状発光部6及び光学機能部2の光学的機能を阻害することを抑制できる。
 面状光学素子1が面状発光部6を備える場合、光学機能部2の電極3における高抵抗率部位12、及び面状発光部6の電極8における高抵抗率部位12は、全て第一方向D1に一列に並んでいてもよい。この場合、高抵抗率部位12に起因する面状光学素子1の電磁波の透過性能が特に高くなる。
 以下、本発明の、より具体的な実施形態について説明する。
 第一実施形態に係る面状光学素子1を図1乃至図3に示す。この面状光学素子1は、二つの光学機能部2と、面状発光部6とを備える。二つの光学機能部2は、第一光学機能部21及び第二光学機能部22を含む。
 第一実施形態では、面状光学素子1は、第一面F1と、この第一面F1とは反対側にある第二面F2とを備え、第一面F1と第二面F2とは第一方向D1に沿って並んでいる。第一面F1と第二面F2との間に、第一光学機能部21、面状発光部6及び第二光学機能部22がある。第一光学機能部21、面状発光部6及び第二光学機能部22は、この順番に第一面F1側から第二面F2側に向かって並んでいる。
 第一実施形態における面状光学素子1は、面状発光部6を備えることで、面状に発光することができる。面状光学素子1が発光する場合の発光面は第一面F1と第二面F2のうちの一方又は両方である。発光面は平面及び曲面を含んでもよい。発光面は平面のみで構成されていてもよく、曲面のみで構成されていてもよい。例えば、発光面は円弧状の面でもよい。発光面は平面と曲面との両方を含んでいてもよい。
 第一実施形態では、面状光学素子1は複数の基板7を備える。複数の基板7はいずれも光透過性を有する。基板7は、例えば面状光学素子1における光学機能部2又は面状発光部6を支持し、或いは光学機能部2又は面状発光部6を封止する。
 複数の基板7は、面状光学素子1の第一方向D1に沿った両端にそれぞれ配置される二つの基板71,72を含み、この二つの基板71,72の間に、光学機能部2及び面状発光部6が配置されている。第一実施形態では、複数の基板7は第一方向D1に間隔をあけて並んでいる。第一光学機能部21、面状発光部6及び第二光学機能部22の各々は、隣り合う二つの基板7の間に配置されている。すなわち、第一面F1から第二面F2に向かって、第一面F1を備える基板71、第一光学機能部21、基板73、面状発光部6、基板74、第二光学機能部22、第二面F2を備える基板72が、この順に並んでいる。これにより、光学機能部2及び面状発光部6が、基板7で保護される。
 基板7は、例えばガラス基板、樹脂基板などから構成される。基板7をガラス基板で構成した場合、ガラスは透明性が高いため、基板7が光学機能部2及び面状発光部6の光学的機能を阻害しにくくなる。また、ガラスは水分の透過性が低いので、隣り合う基板7間に水分が浸入することが抑制される。基板7として薄膜ガラスを用いることができる。その場合、高透明性と高防湿性を有すると共にフレキシブルな面状光学素子1を得ることが可能である。また、基板7として樹脂基板を用いた場合、樹脂は破断しにくいために、面状光学素子1が破壊されても破片等の飛散が抑制され、安全な面状光学素子1を得ることができる。また、樹脂基板を用いた場合、フレキシブルな面状光学素子1を得ることが可能である。さらに、樹脂の屈折率が面状発光部6及び光学機能部2と同等である場合に、基板7と面状発光部6又は光学機能部2との界面での光の反射を抑制することができるため、面状光学素子1の透明性を向上させることができる。
 複数の基板7のうち、面状光学素子1の両端に配置される二つの基板71,72はガラス基板であってもよい。複数の基板7の全てが、ガラス基板であってもよい。複数の基板7のうち、面状光学素子1の両端に配置される二つの基板71,72の間に配置される基板73,74の一つ以上が、樹脂基板であってもよい。その場合、面状光学素子1が破壊されても破片等の飛散を抑制することができ、安全な面状光学素子1を得ることができる。基板7の表面は防汚材料によって被覆されていてもよい。その場合、基板7表面の汚染を低減することができる。防汚材料の被覆は、外側に配置される基板7の外部側表面に行われていてもよい。基板7は紫外線反射材料または紫外線吸収材料によって被覆されていてもよい。その場合、面状光学素子1を構成する材料の劣化を防ぐことができる。また、基板7が樹脂基板である場合、その表面が防湿材料によって被覆されていてもよい。その場合、基板7の封止性能を高めることができる。
 第一実施形態では、第一光学機能部21と面状発光部6との間にある基板73は、第一光学機能部21を支持又は封止すると共に面状発光部6を支持又は封止している。面状発光部6と第二光学機能部22との間にある基板74は、面状発光部6を支持又は封止すると共に第二光学機能部22を支持又は封止している。このように、基板7が光学機能部2及び面状発光部6のうち隣り合う二つの要素を支持又は封止すると、隣り合う二つの要素の間に層状の空隙が形成されないようにすることができる。空隙がないと、面状光学素子1内における光の反射又は屈折が生じる界面の数を減らすことができるため、面状発光部6から面状光学素子1の外部へ光をより多く取り出すことができる。また、空隙が存在すると光の干渉によって光取り出し性が低下する場合があるが、空隙がないと光の干渉を抑制して、光取り出し性を向上させることができる。尚、面状光学素子1内の隣り合う二つの要素間にある基板7は、第一方向D1に分割されていてもよい。例えば、第一光学機能部21と面状発光部6との間にある基板73は、第一光学機能部21を支持又は封止する部材と面状発光部6を支持又は封止する部材とに分割されていてもよい。その場合、第一光学機能部21の形成と、面状発光部6の形成とを独立して行うことが可能になるため、製造上有利になり得る。これ以外の二つの要素間にある基板7についても同様である。
 光学機能部2の各々は、第一方向D1に沿って対向し合う二つの電極3と、二つの電極3の間に介在する光学機能層4とを備える。光学機能層4は、電極3間に印加される電圧の変化に応じて光散乱性、光反射性及び光吸収性から選択される光学特性の程度が変化するように構成されている。第一実施形態では、第一光学機能部21は、第一方向D1に沿って対向し合う二つの第一電極31と、第一電極31間に介在する第一光学機能層41とを備える。また、第二光学機能部22は、第一方向D1に沿って対向し合う二つの第二電極32と、第二電極32間に介在する第二光学機能層42とを備える。第一実施形態における第一光学機能部21は、例えば第一電極31間に印加される電圧の変化に応じて光散乱性の程度が変化する第一光学機能層41(光散乱可変層401)を備える光散乱可変部201である。また、第一実施形態における第二光学機能部22は、例えば第二電極32間に印加される電圧の変化に応じて光反射性の程度が変化する第二光学機能層42(光反射可変層402)を備える光反射可変部202である。
 また、面状発光部6は、第一方向D1に沿って対向し合う二つの電極8と、この二つの電極8間に介在する有機発光層9とを備える。有機発光層9は、電極8間に電圧が印加されると有機エレクトロルミネッセンスにより発光するように構成されている。
 光学機能部2における電極3及び面状発光部6における電極8は、いずれも光透過性を有する。これらの電極3,8は、面状光学素子1を駆動させるために設けられている。いずれの電極3,8も光透過性を有するため、電極3,8は、光学機能部2及び面状発光部6の光学的な機能を阻害しない。
 電極3,8は、例えば透明な導電層で構成される。電極3,8の材料としては、透明金属酸化物、導電性粒子含有樹脂、金属薄膜などが挙げられる。電極3,8の材料の好ましい具体例として、ITO、IZOなどの透明金属酸化物が挙げられる。例えば面状発光部6は、透明金属酸化物製の電極8を備えてもよい。電極3,8は、銀ナノワイヤを含有する層でもよく、銀薄膜などの透明金属層であってもよい。電極3,8は、透明金属酸化物の層と金属層との積層物であってもよい。電極3,8は、透明導電層と補助配線とを備えてもよい。電極3,8は遮熱効果を有していてもよく、それにより、面状光学素子1に断熱性が付与される。
 光学機能部2におけるいずれの電極3も、低抵抗率部位11と、低抵抗率部位11よりも高い電気抵抗率を有する高抵抗率部位12とを備える。すなわち、第一光学機能部21における二つの第一電極31はいずれも低抵抗率部位11と高抵抗率部位12とを備え、第二光学機能部22における二つの第二電極32もいずれも低抵抗率部位11と高抵抗率部位12とを備える。電極3が低抵抗率部位11を備えることで電極3の機能が確保され、更に電極3が高抵抗率部位12を備えることで電極3は電磁波を透過させることができる。高抵抗率部位12の位置及び形状に特に制限はない。第一実施形態では、各電極3の隅付近に高抵抗率部位12があり、この高抵抗率部位12を第一方向D1に視た形状は円形である。尚、例えば高抵抗率部位12を第一方向D1に視た形状は、電極3の外周に沿った枠状であってもよい。各電極3において、高抵抗率部位12が複数の部分に分断されていてもよい。電極3における高抵抗率部位12以外の部分が低抵抗率部位11である。
 面状発光部6におけるいずれの電極8も、低抵抗率部位11と、低抵抗率部位11よりも高い電気抵抗率を有する高抵抗率部位12とを備える。電極8が低抵抗率部位11を備えることで電極8の機能が確保され、更に電極8が高抵抗率部位12を備えることで電極8は電磁波を透過させることができる。高抵抗率部位12の位置及び形状に特に制限はない。第一実施形態では、各電極8の隅付近に高抵抗率部位12があり、この高抵抗率部位12の第一方向D1に視た形状は円形である。尚、例えば高抵抗率部位12の第一方向D1に視た形状は、電極8の外周に沿った枠状であってもよい。各電極8において、高抵抗率部位12が複数の部分に分断されていてもよい。電極8における高抵抗率部位12以外の部分が低抵抗率部位11である。
 第一実施形態では、図2及び図3に示すように、光学機能部2における電極3の高抵抗率部位12、及び面状発光部6における電極8の高抵抗率部位12は、全て第一方向D1に一列に並んでいる。具体的には、第一光学機能部21における第一面F1側の第一電極31の高抵抗率部位12、第二面F2側の第一電極31の高抵抗率部位12、面状発光部6における第一面F1側の電極8の高抵抗率部位12、第二面F2側の電極8の高抵抗率部位12、第二光学機能部22における第一面F1側の第二電極32の高抵抗率部位12、及び第二面F2側の第二電極32の高抵抗率部位12が、この順番に第一方向D1に一列に並んでいる。このため、電磁波が複数の高抵抗率部位12を順次透過しやすくなり、面状光学素子1の電磁波透過性能が特に高くなる。
 光学機能部2の電極3における高抵抗率部位12の可視光透過率と電極3における低抵抗率部位11の可視光透過率とは、いずれも80%以上であってもよい。また、面状発光部6の電極8における高抵抗率部位12の可視光透過率と電極8における低抵抗率部位11の可視光透過率とも、いずれも80%以上であってもよい。この場合、各高抵抗率部位12が光学機能部2及び面状発光部6の光学的機能を阻害することが、抑制される。尚、可視光透過率は、例えば日立分光光度計U-3900で測定される。
 高抵抗率部位12の電気抵抗率は、例えば低抵抗率部位11の電気抵抗率の2~20倍の範囲内である。低抵抗率部位11の電気抵抗率は、例えば1×10-4~5×10-4Ω・cmの範囲内である。また、高抵抗率部位12の電気抵抗率は、高抵抗率部位12が電磁波を充分に透過させ得る程度に高くてもよく、高抵抗率部位12の電気的効率が過度に高くなって高抵抗率部位12が電極3,8の機能を阻害するようなことがなくてもよい。特に高抵抗率部位12の電気抵抗率は、1×10-3~2×10-3Ω・cmの範囲内であってもよい。この場合、高抵抗率部位12の電磁波透過性能を確保しながら、高抵抗率部位12が電極3,8の性能を阻害することを抑制することができる。
 高抵抗率部位12の寸法に特に制限はないが、高抵抗率部位12の寸法を調整することで、高抵抗率部位12を透過し得る電磁波の波長の上限を規制することができる。すなわち、高抵抗率部位12は、寸法に応じた波長を有する電磁波を選択的に透過させることができる。例えば高抵抗率部位12の第一方向D1の投影像の径が1~5cmの範囲内であれば、高抵抗率部位12は家庭内無線通信用の機器が送受信する電磁波を透過させることができる。また、高抵抗率部位12の第一方向D1の投影像の径が1~20cmの範囲内であれば、高抵抗率部位12は携帯電話などの機器が送受信する電磁波を透過させることができる。
 電極3,8を作製する際、低抵抗率部位11と高抵抗率部位12とは、適宜の手法で作製できる。例えば、低抵抗率部位11と高抵抗率部位12とを、異なる材料から作製してもよい。また、電極3,8に部分的に化学的又は物理的な処理を施して電極3,8を部分的に高抵抗率化することで高抵抗率部位12を作製してもよい。また、低抵抗率部位11と高抵抗率部位12とを同じ材料で蒸着法によって作製すると共に、低抵抗率部位11と高抵抗率部位12とで蒸着条件を異ならせることで、高抵抗率部位12の電気抵抗率を低抵抗率部位11よりも高くしてもよい。電気抵抗率の異なる複数の膜を積層することで電極3,8を形成してもよい。
 低抵抗率部位11と高抵抗率部位12とを備える電極3,8の作製方法の具体的な一例を下記に示す。
 透明な基板7として無アルカリガラス板(コーニング社製「No.1737」)を用意する。この基板7を250℃に加熱した状態で、ITO(インジウム-スズ酸化物)ターゲット(東ソー社製)を用いてスパッタリングにより、基板7上に電極3,8を形成する。スパッタリングの際、まず基板7に直径20cmの円形のマスキングプレートを置き、この状態で、電気抵抗率1.2×10-4Ω・cmの膜を得る成膜条件で、厚み90nmのITO膜を形成する。次に基板7上の円形のマスキングプレートを置いていた箇所以外の領域を覆う別のマスキングプレートを用い、電気抵抗率1.1×10-3Ω・cmの膜を得る成膜条件で厚み90nmのITO膜を形成する。次に、マスキングプレートを置かずに、電気抵抗率1.2×10-4Ω・cmを満たす成膜条件で厚み10nmのITO膜を形成する。成膜条件は、例えば導入酸素分圧等の条件を適宜変更することで調整される。これにより、基板7上の円形のマスキングプレートを置いていた箇所に高抵抗率部位12が形成され、それ以外の箇所に低抵抗率部位11が形成される。すなわち、基板7上に高抵抗率部位12及び低抵抗率部位11を備える電極3,8が形成される。この電極3,8をアセトン、純水及びイソプロピルアルコールで15分間超音波洗浄をした後、乾燥し、さらにUV-O処理(紫外線-オゾン処理)を15分間行う。この電極3,8の高抵抗率部位12及び低抵抗率部位11の可視光透過率を日立分光光度計U-3900で測定すると、いずれも86%という良好な結果が得られる。
 面状光学素子1の外周部では、隣り合う基板7同士の間にシール材13と絶縁性コーキング材14とが介在している。このため、隣り合う基板7同士の間の隙間がシール材13及び絶縁性コーキング材14で封止されている。絶縁性コーキング材14は、シール材13よりも外側に配置される。
 シール材13の材料の具体例としては、協立化学産業株式会社製の商品名ワールドロック780、株式会社スリーボンド製の品番TB3027BなどのUV硬化樹脂が挙げられるが、これに限らず耐湿性のよいものであれば限定されない。また絶縁性コーキング材14の材料の具体例としては、東レチオコール株式会社製の商品名トプコールS及びトプコールLM、コニシ株式会社製の商品名ボンドPSシールなどの、市販のポリサルファイド系シーリング材及びポリサルファイド系弾性接着剤が挙げられるが、これに限定されるものではない。
 面状光学素子1は、図1及び図3に示すように、第一光学機能部21における二つの第一電極31の各々に電気的に接続する接続端子5、第二光学機能部22における二つの第二電極32の各々に電気的に接続する接続端子5、及び面状発光部6における二つの電極3の各々に電気的に接続する接続端子5を備える。これらの接続端子5は、面状光学素子1の外周部に設けられている。具体的には、これらの接続端子5の各々は、面状光学素子1の端部に設けられている。各接続端子5は、電極3から面状光学素子1の端部に向けて突出し、面状光学素子1の端部において絶縁性コーキング材14に埋まっている。
 第一実施形態に係る面状光学素子1は、後述するように、照明器具、建材、窓等の種々の用途に適用できる。面状光学素子1を設置する際は、必要に応じ、面状光学素子1にその外周を囲む適宜のフレーム材を取り付けた状態で、面状光学素子1を設置してもよい。
 面状光学素子1が設置された状態で、図3に示すように、第一光学機能部21における接続端子5、第二光学機能部22における接続端子5、及び面状光学素子1における接続端子5の各々に、電源10が接続される。例えば電源10に接続されている配線101の端部が、面状光学素子1の端部において絶縁性コーキング材14に埋め込まれて、接続端子5に接続される。これにより、第一光学機能部21における二つの第一電極31間に接続端子5及び配線101を介して電源10が接続され、電源10から第一電極31間に電圧を印加可能となる。また、第二光学機能部22における二つの第二電極32間にも接続端子5及び配線101を介して電源10が接続され、電源10から第二電極32間に電圧を印加可能となる。また、面状発光部6における二つの電極3間にも接続端子5及び配線101を介して電源10が接続され、電源10から電極3間に電圧を印加可能となる。
 このように設置された面状光学素子1の第一光学機能部21における第一電極31間に電源10から電圧が印加されると、電圧の変化に応じて第一光学機能層41の光学特性の程度が変化する。また、第二光学機能部22における第二電極32間に電源10から電圧が印加されると、電圧の変化に応じて第二光学機能層42の光学特性の程度が変化する。また、面状発光部6における電極3間に電源10から電圧が印加されると、面状発光部6が発光し、電圧の印加が停止されると面状発光部6の発光が停止する。これにより、面状光学素子1の光学的な状態が種々切り替えられる。
 図4に、本発明の第二実施形態を示す。第二実施形態では、第一実施形態において、面状光学素子1が第三光学機能部23を備える。すなわち、面状光学素子1は三つの光学機能部2と面状発光部6とを備え、三つの光学機能部2は第一光学機能部21、第二光学機能部22及び第三光学機能部23を含む。
 第二実施形態に係る面状光学素子1は、第三光学機能部23を備える以外は、第一実施形態と同じ構成を有する。このため、第一実施形態と共通する構成については、図4に第一実施形態の場合と同じ符号を付してその説明を省略する。
 第二実施形態では、第一面F1から第二面F2に向かって、第一面F1を備える基板71、第一光学機能部21、基板73、面状発光部6、基板74、第二光学機能部22、基板75、第三光学機能部23、第二面F2を備える基板72が、この順に並んでいる。
 第三光学機能部23は、第一方向D1に沿って対向し合う二つの第三電極33と、第三電極33間に介在する第三光学機能層43とを備える。第二実施形態における第三光学機能部23は、例えば第三電極33間に印加される電圧の変化に応じて光吸収性の程度が変化する第三光学機能層43(光吸収可変層403)を備える光吸収可変部203である。
 第三光学機能部23における二つの第三電極33は、いずれも第一電極31及び第二電極32と同様に、低抵抗率部位11と高抵抗率部位12とを備える。
 第二の実施形態では、第一光学機能部21における第一面F1側の第一電極31の高抵抗率部位12、第二面F2側の第一電極31の高抵抗率部位12、面状発光部6における第一面F1側の電極8の高抵抗率部位12、第二面F2側の電極8の高抵抗率部位12、第二光学機能部22における第一面F1側の第二電極32の高抵抗率部位12、第二面F2側の第二電極32の高抵抗率部位12、第三光学機能部23における第一面F1側の第三電極33の高抵抗率部位12、及び第二面F2側の第三電極33の高抵抗率部位12が、この順番に第一方向D1に一列に並んでいる。このため、電磁波が複数の高抵抗率部位12を順次透過しやすくなり、面状光学素子1の電磁波透過性能が特に高くなる。
 第一実施形態及び第二実施形態における光学機能部2及び面状発光部6の構成について、更に詳しく説明する。
 上述の通り、第一実施形態及び第二実施形態における第一光学機能部21は、例えば光散乱可変部201である。光散乱可変部201は、第一方向D1に沿って対向し合う二つの電極3(第一実施形態及び第二実施形態においては第一電極31)と、光学機能層4(第一実施形態及び第二実施形態においては第一光学機能層41)としての光散乱可変層401とを備える。光散乱可変層401は、二つの電極3間に介在し、電極3間に印加される電圧の変化に応じて光散乱性の程度が変化する。
 光散乱可変部201における電極3は光透過性を有するため、この電極3は光散乱可変部201への光の入射及び光散乱可変部201からの光の出射を阻害せず、光散乱部の光を散乱させる機能も阻害しない。このため、光散乱可変部201は、面状光学素子1内で光散乱可変部201を通過する光を散乱させることができる。
 例えば、光散乱可変層401の状態は、電極3間に印加される電圧の変化に応じて、高散乱状態と低散乱状態とに切り替えられる。光散乱可変層401の状態は、更に中散乱状態に切り替えられてもよい。高散乱状態とは光散乱性の程度が低散乱状態よりも高い状態であり、低散乱状態とは光散乱性の程度が高散乱状態よりも低く或いは光散乱性が無い状態である。中散乱状態とは、光散乱性の程度が低散乱状態よりも高いと共に高散乱状態よりも低い状態である。
 高散乱状態は、例えば、光散乱可変層401に入射した光が散乱されてこの光の進行方向が種々の方向に変えられて光散乱可変層401から出射する状態である。高散乱状態にある光散乱可変層401を介して物体を視認した場合、例えば物体がぼやけて見える。高散乱状態は、半透明な状態であってもよい。一方、低散乱状態は、例えば、光散乱可変層401に入射した光の進行方向がそのまま維持されて光散乱可変層401から出射する状態である。低散乱状態にある光散乱可変層401を介して物体を視認した場合、例えば物体が明瞭に視認できる。低散乱状態は、透明な状態であってもよい。
 中散乱状態は、一つの状態のみを含んでもよいし、光散乱性の程度が異なる複数の状態を含んでもよい。中散乱状態が複数の状態を含むとは、光散乱可変層401の光散乱性の程度が、高散乱状態と低散乱状態との間で複数段階に切り替え可能であることを意味する。また、光散乱可変層401の光散乱性の程度が、高散乱状態と低散乱状態との間で連続的に無段階に切り替え可能であってもよい。光散乱可変層401が中散乱状態に切り替え可能である場合、面状光学素子1の光学的な状態を更に多様に切り替え可能となる。光散乱可変部201は、光散乱可変層401の中散乱状態を維持できるように構成されていてもよい。
 光散乱可変部201は、例えば可視光の少なくとも一部を散乱させるように構成される。光散乱可変部201は可視光の全部を散乱させるように構成されてもよい。面状光学素子1の用途によっては、光散乱可変部201は赤外線を散乱させるように構成されてもよく、紫外線を散乱させるように構成されてもよい。
 光散乱可変層401は、例えば光散乱可変部201に入射する光の散乱量と散乱方向の少なくともいずれか一方を変化させることが可能なように構成される。散乱量及び散乱方向の変化は、中散乱状態において行われるものであってもよい。散乱量が変化するとは、散乱の強さが変化することである。散乱方向が変化するとは、散乱する方向性が変化することである。散乱量及び散乱方向が変化すると、例えば、面状光学素子1を介して物体を視認したときに、物体の不明瞭性(ぼやけ方)の強さが変化する。そのため、面状光学素子1を通した物体の見え方を異ならせるようにしたり、面状発光部6の発光時に面状発光部6から発する光の配向性の制御を行ったりすることができる。
 光散乱可変層401が光散乱性を有する状態にあるとき、第一面F1側から光散乱可変層401へ光が入射する場合の光散乱性の程度よりも、第二面F2側から光散乱可変層401へ光が入射する場合の光散乱性の程度の方が高くてもよい。この場合、面状発光部6から発せられて光散乱可変部201へ入射する光を、より強く散乱させることができる。
 光散乱可変部201は、隣り合う基板7の間に配置されていることで封止され、光散乱可変層401の劣化が抑制される。第一実施形態では、光散乱可変部201は、基板71と基板73との間に配置されている。光散乱可変部201は、例えば光散乱可変部201を構成する複数の層を積層することで形成される。その際、形成基板上に複数の層を積層することを要する。形成基板は、光散乱可変部201の両側の二つの基板7のうち、いずれかでよい。二つの基板7のうち形成基板ではない基板7は、形成基板上の光散乱可変部201を封止する封止基板となる。
 光散乱可変部201における電極3に接続される電源10は、例えば交流電源である。電界の変化に応じて光散乱性の程度が変化する材料のなかには、電圧印加の開始時から時間がたつと、電圧印加時の光散乱性の程度が維持できなくなる材料が多く存在する。このため、電源10が直流電源であると光散乱可変部201の光散乱性の程度を一定に維持できない場合がある。しかし、交流電源は、極性を交互に逆転させながら電極3間に電圧を印加することができ、実質的に断続的に電圧を印加することが可能である。そのため、光散乱性の程度を一定に維持できる。電源10から電極3間に印加される電圧の波形は矩形波であってもよい。それにより、電極3間に印加される電圧の絶対値が一定になりやすくなるため、光散乱性の程度が安定しやすくなる。もちろん、電圧の波形はパルス波であってもよい。尚、中散乱状態は、電極3間に印加される電圧の値が適宜制御されることによって実現され得る。
 光散乱可変層401の材料は、電界変調によって分子配向が変化する材料であってもよい。このような材料として、例えば液晶材料が挙げられる。特に光散乱可変層401の材料は、高分子分散型液晶(Polymer Dispersed Liquid Crystal、略称PDLC)であってもよい。高分子分散型液晶中では液晶分子が高分子で保持されているため、高分子分散型液晶からは安定な光散乱可変層401が作製され得る。尚、光散乱可変層401の材料は、電界により光散乱性が変化する固体物質であってもよい。
 高分子分散型液晶は、例えば樹脂部と液晶部とを備える。樹脂部は高分子により形成される。樹脂部は光透過性を有してもよい。それにより、光散乱可変部201が光透過性を有するようにできる。樹脂部は、熱硬化性樹脂、紫外線硬化性樹脂などにより形成され得る。液晶部は、電界の変化に応じて分子配向が変化する液晶から構成される。液晶部は、例えばネマチック液晶から構成される。高分子分散型液晶は、例えば樹脂部の中に複数の液晶部が点在する構造を有する。高分子分散型液晶は、樹脂部を海、液晶部を島とする海島構造を有してもよい。高分子分散型液晶は、樹脂部の中に網目状に不規則に連なった液晶部が存在している構造を有してもよい。高分子分散型液晶は、液晶部の中に樹脂部が点在している構造を有してもよい。高分子分散型液晶は、液晶部の中に網目状に不規則に連なった樹脂部が存在している構造を有してもよい。
 光散乱可変層401は、例えば電極3間に電圧が印加されない場合に高散乱状態となり、電圧が印加された場合に低散乱状態となる。光散乱可変層401が高分子分散型液晶から作製されると、光散乱可変層401はこのような特性を有し得る。これは、液晶の分子配向を電圧の印加によって揃えることが可能だからである。
 高分子分散型液晶からは、薄型でも高散乱状態における光散乱性の程度が高い光散乱可変層401を作製することができる。尚、光散乱可変層401は、電極3間に電圧が印加されない場合に低散乱状態となり、電圧が印加された場合に高散乱状態となってもよい。
 光散乱可変層401に電圧が印加されている時の光散乱可変層401の光散乱性の程度は、電圧が印加されなくなっても維持されてもよい。この場合、光散乱可変層401の状態を切り替える時のみに電圧を印加し、切り替えた後は電圧印加を停止すればよいので、省電力化が可能である。光散乱可変層401に印加される電圧を変化させて光散乱可変層401の光散乱性の程度を変化させる場合にヒステリシスが大きければ、すなわち記憶性(メモリ性)があれば、電圧が印加されなくなっても電圧印加時の光散乱性の程度が維持される。このため、例えば大きなヒステリシスが現れるような高分子分散型液晶から光散乱可変層401が作製されてもよい。電圧印加の停止時から光散乱性の程度が維持される時間は長い程よく、例えば1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。
 上述の通り、第一実施形態及び第二実施形態における第二光学機能部22は、例えば光反射可変部202である。光反射可変部202は、第一方向D1に沿って対向し合う二つの電極3(第一実施形態においては第二電極32)と、光学機能層4(第一実施形態においては第二光学機能層42)としての光反射可変層402とを備える。光反射可変層402は、二つの電極3間に介在し、電極3間に印加される電圧の変化に応じて光反射性の程度が変化する。
 光反射可変部202における電極3は光透過性を有する。このため、電極3は光反射可変部202への光の入射及び光反射可変部202からの光の出射を阻害せず、光反射部の光を反射させる機能も阻害しない。このため、光反射可変部202は、面状光学素子1内で光反射可変部202に到達した光を反射させることができる。
 例えば、光反射可変層402の状態は、電極3間に印加される電圧の変化に応じて、高反射状態と低反射状態とに切り替えられる。光反射可変層402の状態は、更に中反射状態に切り替えられてもよい。高反射状態とは光反射性の程度が低反射状態よりも高い状態であり、低反射状態とは光反射性の程度が高反射状態よりも低く或いは光反射性が無い状態である。中反射状態とは、光反射性の程度が低反射状態よりも高いと共に高反射状態よりも低い状態である。
 高反射状態は、例えば、光反射可変層402に入射した光の進行方向が反転してこの光が入射側へ出射する状態である。例えば高反射状態にある光反射可変層402を介して物体を視認しようとしても、この物体は視認できない。高反射状態にある光反射可変層402は鏡の状態であってもよい。光反射可変層402が光反射性を有する状態では、光反射可変部202は光を反射させる反射層として機能することができる。一方、低反射状態は、例えば、光反射可変層402に入射した光の進行方向がそのまま維持されて光反射可変層402から出射する状態である。低反射状態にある光反射可変層402を介して物体を視認した場合、例えば物体が明瞭に視認できる。低反射状態は、透明な状態であってもよい。
 中反射状態は、一つの状態のみを含んでもよいし、光反射性の程度が異なる複数の状態を含んでもよい。中反射状態が複数の状態を含むとは、光反射可変層402の光反射性の程度が、高反射状態と低反射状態との間で複数段階に切り替え可能であることを意味する。また、光反射可変層402の光反射性の程度が、高反射状態と低反射状態との間で連続的に無段階に切り替え可能であってもよい。光反射可変層402が中反射状態に切り替え可能である場合、面状光学素子1の光学的な状態を更に多様に切り替えることが可能となる。光反射可変部202は、光反射可変層402の中反射状態を維持できるように構成されていてもよい。
 光反射可変部202は、例えば可視光の少なくとも一部を反射させるように構成される。光反射可変部202は可視光の全部を反射させるように構成されてもよい。面状光学素子1の用途によっては、光反射可変部202は赤外線を反射させるように構成されてもよく、紫外線を反射させるように構成されてもよい。光反射可変部202は、可視光、赤外線及び紫外線を全て反射させるように構成されてもよい。
 光反射可変部202は、反射スペクトルの波形を変化させることが可能なように構成されてもよい。反射スペクトルとは、光反射可変部202に入射した光が光反射可変層402で反射されて光反射可変部202から出射する場合の、光反射可変部202から出射する光のスペクトルである。反射スペクトルの波形を変化させることが可能であるとは、光反射可変層402が、反射スペクトルの波形が異なる複数の状態に切り替え可能であることを意味する。反射スペクトルの変化は、例えば光反射可変部202が中反射状態にあるときに達成されてもよい。すなわち、例えば高反射状態と中反射状態とで反射スペクトルの波形が異なっていてもよい。中反射状態が反射スペクトルの波形が異なる複数の状態を含んでもよい。
 反射スペクトルの変化は、例えば反射波長の変化によって達成される。例えば光反射可変層402が、青色光を特に強く反射させる状態とそうでない状態との間で切り替えられ、緑色光を特に強く反射させる状態とそうでない状態との間で切り替えられ、或いは赤色光を特に強く反射させる状態とそうでない状態との間で切り替えられる。これにより反射スペクトルの形状が変化する。反射スペクトルが変化すると、面状光学素子1から出射する光の色が変化する。そのため、面状光学素子1から出射する光を調色(すなわち出射する光の色を調整)することができる。
 光反射可変部202は、反射スペクトルの波形を変化させないように構成されてもよい。すなわち、光反射可変層402の状態が切り替えられることで光反射性の程度が変化しても、光反射可変部202から出射する光の強度が変化するだけで、反射スペクトルの波形は変化しなくてもよい。この場合、光反射可変部202における光反射性の程度を変化させることで、面状光学素子1から出射する光を調光(すなわち出射する光の明るさを調整)することができる。
 光反射可変層402が光反射性を有する状態にあるとき、第二面F2側から光反射可変層402へ光が入射する場合の光反射性の程度よりも、第一面F1側から光反射可変層402へ光が入射する場合の光反射性の程度の方が高くてもよい。この場合、面状発光部6から発せられて光反射可変部202へ入射する光をより強く反射させて第一面F1から面状光学素子1の外部へ出射させることができる。
 光反射可変部202は、隣り合う基板7の間に配置されていることで封止され、光反射可変層402の劣化が抑制される。第一実施形態では、光反射可変部202は、基板74と基板72との間に配置されている。光反射可変部202は、例えば光反射可変部202を構成する複数の層を積層することで形成される。その際、形成基板上に複数の層を積層することを要する。形成基板は、光反射可変部202の両側の二つの基板7のいずれかでよい。二つの基板7のうち形成基板ではない基板7は、形成基板上の光反射可変部202を封止する封止基板となる。
 光反射可変部202における電極3に接続される電源10は、例えば交流電源である。電界の変化に応じて光反射性の程度が変化する材料のなかには、電圧印加の開始時から時間がたつと、電圧印加時の光反射性の程度が維持できなくなる材料が多く存在する。このため、電源10が直流電源であると光反射可変部202の光反射性の程度を一定に維持できない場合がある。しかし、交流電源は、極性を交互に逆転させながら電極3間に電圧を印加することができ、実質的に断続的に電圧を印加することが可能である。そのため、光反射性の程度を一定に維持できる。交流電源から電極3間に印加される電圧の波形は矩形波であってもよい。それにより、電極3間に印加される電圧の絶対値が一定になりやすくなるため、光反射性の程度が安定しやすくなる。もちろん、電圧の波形はパルス波であってもよい。尚、中反射状態は、電極3間に印加される電圧の値が適宜制御されることによって実現され得る。
 光反射可変層402の材料は、電界変調によって分子配向が変化する材料であってもよい。このような材料として、例えば、ネマチック液晶、コレステリック液晶、強誘電性液晶、エレクトロクロミック材料などが挙げられる。コレステリック液晶は、螺旋構造を持つネマチック液晶であってもよい。ここでいう螺旋構造を持つネマチック液晶とは、例えばネマチック液晶にカイラル剤を加えて旋光性を付与することで得られた材料である。コレステリック液晶は、キラルネマチック液晶であってもよい。コレステリック液晶は、分子軸の配向方向の連続的な変化を有することで、巨視的な螺旋構造を有する。このためコレステリック液晶、螺旋の周期に対応した波長の光を反射させることができる。コレステリック液晶の螺旋の状態を電界によって変化させることにより、コレステリック液晶の光反射性の程度を変化させることが可能である。この現象を利用して、コレステリック液晶から作製される光反射可変層402の光反射性の程度を変化させることができる。また、エレクトロクロミック材料は、電圧が印加されると電気化学的可逆反応(電解酸化還元反応)によって色の変化が起こる。この現象を利用して、エレクトロクロミック材料から作製される光反射可変層402の光反射性の程度を変化させることができる。光反射可変層402の材料として、特にコレステリック液晶でもよい。
 光反射可変層402は、例えば電極3間に電圧が印加されない場合に高光反射状態となり、電圧が印加された場合に低光反射状態となる。光反射可変層402がコレステリック液晶から作製されると、光反射可変層402はこのような特性を有し得る。これは、液晶の分子配向を電圧の印加によって揃えることが可能だからである。例えばコレステリック液晶は電極3間に電圧が印加されない場合にはプレーナ配向状態となって特定の波長の光を反射し、電極3間に電圧が印加されるとフォーカルコニック配向状態となって光を透過させることができる。コレステリック液晶からは、薄型でも高光反射状態における光反射性の程度が高い光反射可変層402を作製することができる。尚、光反射可変層402は、電極3間に電圧が印加されない場合に低光反射状態となり、電圧が印加された場合に高光反射状態となってもよい。
 光反射可変層402に電圧が印加されている時の光反射可変層402の光反射性の程度が、電圧が印加されなくなっても維持されてもよい。この場合、光反射可変層402の状態を切り替える時のみに電圧を印加し、切り替えた後は電圧印加を停止すればよいので、省電力化が可能である。光反射可変層402に印加される電圧を変化させて光反射可変層402の光反射性の程度を変化させる場合にヒステリシスが大きければ、すなわち記憶性(メモリ性)があれば、電圧が印加されなくなっても電圧印加時の光反射性の程度が維持される。このため、例えば大きなヒステリシスが現れるような液晶から光反射可変層402が作製されてもよい。電圧印加の停止時から光反射性の程度が維持される時間は長い程よく、例えば1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。
 上述の通り、第二実施形態における第三光学機能部23は、例えば光吸収可変部203である。光吸収可変部203は、第一方向D1に沿って対向し合う二つの電極3(第二実施形態では第三電極33)と、光学機能層4(第二実施形態では第三光学機能層43)としての光吸収可変層403とを備える。光吸収可変層403は、二つの電極3間に介在し、電極3間に印加される電圧の変化に応じて光吸収性の程度が変化する。
 光吸収可変部203における電極3は光透過性を有するため、この電極3は光吸収可変部203への光の入射及び光吸収可変部203からの光の出射を阻害せず、光吸収可変部203の光を吸収する機能も阻害しない。このため、光吸収可変部203は、面状光学素子1内で光吸収可変部203に到達した光を吸収することができる。
 例えば、光吸収可変層403の状態は、電極3間に印加される電圧の変化に応じて、高吸収状態と低吸収状態とに切り替えられる。光吸収可変層403の状態は、更に中吸収状態に切り替えられてもよい。高吸収状態とは光吸収性の程度が低吸収状態よりも高い状態であり、低吸収状態とは光吸収性の程度が高吸収状態よりも低く或いは光吸収性が無い状態である。中吸収状態とは、光吸収性の程度が低吸収状態よりも高いと共に高吸収状態よりも低い状態である。
 高吸収状態は、例えば第一面F1側と第二面F2側のうち一方から光吸収可変部203に入射した光が、光吸収可変層403に吸収されて他方へ出射しない状態である。高吸収状態は、例えば第一面F1側から光吸収可変層403を介して第二面F2側にある物体を視認しようとしても視認できず、第二面F2側から光吸収可変層403を介して第一面F1側にある物体を視認しようとしても視認できない状態であり得る。高吸収状態は、光吸収可変層403が不透明な状態であってもよい。高吸収状態では、光吸収可変層403の色が黒色であってもよい。光吸収可変層403が光吸収性を有する場合、光吸収可変部203は、光を吸収する吸収層として機能することができる。
 低吸収状態は、例えば第一面F1側と第二面F2側のうち一方から光吸収可変部203に入射した光が、光吸収可変層403に吸収されずにそのまま他方へ出射する状態である。高吸収状態は、例えば第一面F1側から光吸収可変層403を介して第二面F2側にある物体を明瞭に視認することができ、第二面F2側から光吸収可変層403を介して第一面F1側にある物体を明瞭に視認できる状態であってもよい。
 中吸収状態は、一つの状態のみを含んでもよいし、光吸収性の程度が異なる複数の状態を含んでもよい。中吸収状態が複数の状態を含むとは、光吸収可変層403の光吸収性の程度が、高吸収状態と低吸収状態との間で複数段階に切り替え可能であることを意味する。また、光吸収可変層403の光吸収性の程度が、高吸収状態と低吸収状態との間で連続的に無段階に切り替え可能であってもよい。光吸収可変層403が中吸収状態に切り替え可能である場合、面状光学素子1の光学的な状態を更に多様に切り替えることが可能となる。光吸収可変部203は、光吸収可変層403の中吸収状態を維持できるように構成されていてもよい。
 光吸収可変部203は、例えば可視光の少なくとも一部を吸収するように構成される。この場合、外部から第二面F2を通じて面状光学素子1へ入射する光の少なくとも一部を光吸収可変部203で吸収させることができるため、面状発光部6から発せられて第一面F1を通じて外部へ出射する光を鮮明化することができる。光吸収可変部203は可視光の全部を吸収するように構成されてもよい。この場合、面状発光部6から発せられて第一面F1を通じて外部へ出射する光を更に鮮明化することができる。光吸収可変部203は、赤外線を吸収するように構成されてもよい。この場合、面状光学素子1が遮熱効果を得ることができる。光吸収可変部203は紫外線を吸収するように構成されてもよい。この場合、面状光学素子1の紫外線による劣化を抑制することができる。また、面状光学素子1が紫外線遮蔽効果を得ることができ、例えば屋外から屋内への紫外線の侵入を面状光学素子1によって抑制することができる。光吸収可変部203が赤外線または紫外線を吸収する場合、光吸収可変部203は光反射可変部202より第二面F2側に位置してもよい。この場合、赤外線又は紫外線が、面状発光部6、光反射可変部202及び光散乱可変部201を劣化させることを抑制することができる。光吸収可変部203は、可視光、紫外線及び赤外線のいずれか1つを吸収することが好ましく、これらのうちの2つを吸収することがより好ましく、これらの全てを吸収することがさらに好ましい。
 光吸収可変部203は、吸収スペクトルの波形を変化させることが可能なように構成されてもよい。ここでいう吸収スペクトルとは、光吸収可変部203に入射した光が光吸収可変層403を通過して光吸収可変部203から出射する場合の、光吸収可変部203から出射する光のスペクトルである。吸収スペクトルの波形を変化させることが可能であるとは、光吸収可変層403が、吸収スペクトルの波形が異なる複数の状態に切り替え可能であることを意味する。吸収スペクトルの変化は、例えば光吸収可変部203が中吸収状態にあるときに達成されてもよい。すなわち、例えば高吸収状態と中吸収状態とで吸収スペクトルの波形が異なっていてもよい。中吸収状態が吸収スペクトルの波形が異なる複数の状態を含んでもよい。
 吸収スペクトルの変化は、例えば吸収波長の変化によって達成される。例えば光吸収可変層403が、青色光を特に強く吸収する状態とそうでない状態との間で切り替えられ、緑色光を特に強く吸収する状態とそうでない状態との間で切り替えられ、或いは赤色光を特に強く吸収する状態とそうでない状態との間で切り替えられる。これにより、吸収スペクトルの形状が変化する。吸収スペクトルが変化すると、面状光学素子1から出射する光の色が変化する。そのため、面状光学素子1から出射する光を調色(すなわち出射する光の色を調整)することができる。
 光吸収可変層403が光吸収性を有する状態にあるとき、第一面F1側から光吸収可変層403へ光が入射する場合の光吸収性の程度よりも、第二面F2側から光吸収可変層403へ光が入射する場合の光吸収性の程度の方が高くてもよい。この場合、面状発光部6の劣化を特に効果的に抑制したり、紫外線が第一面F1から面状光学素子1の外部へ出射することを特に効果的に抑制したりすることができる。
 光吸収可変部203は、隣り合う基板7の間に配置されていることで封止され、光吸収可変層403の劣化が抑制される。第二実施形態では、光吸収可変部203は、基板72と基板75との間に配置されている。光吸収可変部203は、例えば光吸収可変部203を構成する複数の層を積層することで形成される。その際、形成基板上に複数の層を積層することを要する。形成基板は、光吸収可変部203の両側の二つの基板7のいずれかでよい。二つの基板7のうち形成基板ではない基板7は、形成基板上の光吸収可変部203を封止する封止基板となる。
 光吸収可変部203における電極3に接続されている電源は交流電源であってもよいが、直流電源であってもよい。電界の変化に応じて光吸収性の程度が変化する材料は、一方向の電流により光吸収性が変化し得る。そのため、直流電源により、光吸収可変層403の安定した光吸収性を得ることができる。尚、中吸収状態は、電極3間に印加される電圧の値が適宜制御されることによって実現され得る。
 光吸収可変層403の材料は、電界変調によって光吸収性が変化する材料であってもよい。このような材料として、例えば酸化タングステンが挙げられる。
 光吸収可変層403は、例えば電極3間に電圧が印加されない場合に高光吸収状態となり、電圧が印加された場合に低光吸収状態となってもよい。光吸収可変層403が液晶から作製されると、光吸収可変層403はこのような特性を有し得る。これは、液晶の分子配向を電圧の印加によって揃えることが可能だからである。液晶からは、薄型でも高光吸収状態における光吸収性の程度が高い光吸収可変層403を作製することができる。尚、光吸収可変層403は、電極3間に電圧が印加されない場合に低光吸収状態となり、電圧が印加された場合に高光吸収状態となってもよい。
 光吸収可変層403に電圧が印加されている時の光吸収可変層403の光吸収性の程度が、電圧が印加されなくなっても維持されてもよい。この場合、光吸収可変層403の状態を切り替える時のみに電圧を印加し、切り替えた後は電圧印加を停止すればよいので、省電力化が可能である。光吸収可変層403に印加される電圧を変化させて光吸収可変層403の光吸収性の程度を変化させる場合にヒステリシスが大きければ、すなわち記憶性(メモリ性)があれば、電圧が印加されなくなっても電圧印加時の光吸収性の程度が維持される。電圧印加の停止時から光吸収性の程度が維持される時間は長い程よく、例えば1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。
 面状発光部6は、光透過性を有する有機EL素子で構成されている。光学機能部2の光学的機能が阻害されないためには、面状発光部6は透明であってもよい。面状発光部6は防湿材料で被覆されていてもよい。この場合、面状発光部6の封止性能を向上させることができる。防湿材料は透明であってもよい。
 第一実施形態では、面状発光部6は、二つの電極8と、この二つの電極8の間に配置されている有機発光層9とを備える。面状発光部6が有機EL素子で構成されることにより、薄型で透明な面状発光部6が得られる。有機発光層9は光透過性を有する。更に二つの電極8はいずれも光透過性を有する。そのため、有機発光層9が発光すると、有機発光層9で発した光は、第一方向D1の両側に出射される。また、有機発光層9が発光していないときは、有機発光層9は、外部から有機発光層9へ入射する光を透過させることができる。
 面状発光部6における二つの電極8のうち、一方の電極8は陽極を構成し、他方の電極8は陰極を構成する。二つの電極8のうち、有機発光層9に対して第一面F1側の電極8が陰極を構成すると共に第二面F2側の電極8が陽極を構成してもよく、第二面F2側の電極8が陽極を構成すると共に第二面F2側の電極8が陰極を構成してもよい。
 有機発光層9は、発光を生じさせる機能を有する層であり、例えば発光材料を含有する発光層を備え、更に必要に応じてホール注入層、ホール輸送層、電子輸送層、電子注入層、中間層などから適宜選ばれる一以上の層を備える。もちろん、有機発光層9は発光層のみで構成されてもよい。二つの電極8の間に電圧が印加されてこの電極8間に電流が流れると、発光層で正孔と電子とが電荷結合し、発光が生じる。
 面状発光部6は、隣り合う基板7の間に配置されていることで封止され、有機発光層9の劣化が抑制される。第一実施形態では、面状発光部6は、基板73と基板74との間に配置されている。通常、有機EL素子は、有機EL素子を構成する複数の層を積層することで形成される。その際、形成基板上に複数の層を積層することを要する。形成基板は、面状発光部6の両側の二つの基板7のいずれかでよい。二つの基板7のうち形成基板ではない基板7は、形成基板上の有機EL素子を封止する封止基板となる。
 面状発光部6における電極8が接続される電源10は、例えば直流電源である。この場合、有機EL素子の安定した発光を得ることができる。有機EL素子の発光色は白色でもよいし、青色、緑色、又は赤色でもよい。もちろん、青から緑又は緑から赤までの間の中間色であってもよい。また、電流値に応じて発光色が調色可能であってもよい。
 図5A乃至図5Gは、第一実施形態及び第二実施形態に係る面状光学素子1を建築物等の窓として用いる場合の、面状光学素子1の動作の例を示す。面状光学素子1が窓として用いられる場合、面状光学素子1の第一面F1が屋内に配置され、第二面F2が屋外に配置される。
 図5A乃至図5Gでは、面状光学素子1の構成は模式的に示されている。矢印は光の進行を示している。図5A乃至図5Gでは、光反射可変部202には、光反射性を有する状態(例えば高反射状態又は中反射状態)にあるときは斜線を付し、光反射性を有しない状態(低反射状態)にあるときには斜線を付していない。また、光散乱可変部201には、光散乱性を有する状態(例えば高散乱状態又は中散乱状態)にあるときは斜線を付し、光散乱性を有しない状態(例えば低散乱状態)にあるときには斜線を付していない。また、面状発光部6には、発光している状態にあるときには斜線を付し、発光していない状態にあるときは斜線を付していない。
 図5Aに示す状態では、光反射可変部202が光反射性を有する状態にあり、面状発光部6は発光しておらず、光散乱可変部201は光散乱性を有さず透明な状態にある。この状態では、第二面F2側の外部(屋外)から第二面F2へ向けて入射する光は光反射可変部202で反射されるため面状光学素子1を透過しない。そのため、面状光学素子1は、外部から第二面F2へ向けて入射する光を遮蔽することができる。一方、第一面F1側の外部(屋内)から第一面F1へ向けて入射する光は光反射可変部202で反射されて第一面F1から外部へ出射する。そのため、面状光学素子1は鏡として機能することができる。尚、この状態において、光反射可変部202の反射性の程度によっては、面状光学素子1は鏡として機能しなくてもよい。
 図5Bに示す状態では、面状発光部6が発光している状態にあり、光反射可変部202は光反射性を有さず透明な状態にあり、光散乱可変部201は光散乱性を有さず透明な状態にある。この状態では、面状発光部6から発せられて第一面F1へ向かう光は、そのまま第一面F1から外部へ出射する。そのため、面状光学素子1が屋内などの照明をおこなうことができる。また、第二面F2側の外部から第二面F2へ向けて入射する光は、光反射可変部202、面状発光部6及び光散乱可変部201を通過し、第一面F1から外部へ出射する。このため、例えば日中においては、面状光学素子1を通じて外光を屋内へ引き込んで利用することができる。このため、面状光学素子1の照明効果を高めることができる。また、面状発光部6から第二面F2へ向かう光を、第二面F2から外部へ出射させることもできる。すなわち、面状光学素子1を両面発光させることがきる。このため、例えば夜間に面状光学素子1から屋外を出射す光で屋外を照らすことが可能である。また、面状光学素子1の第一面F1から出射する光を屋内照明に利用すると共に第二面F2から出射する光をイルミネーションなどとして利用することもできる。
 図5Cに示す状態では、光散乱可変部201が光散乱性を有する状態にあり、面状発光部6は発光しない状態にあり、光反射可変部202は光反射性を有さずに透明な状態にある。この状態では、第二面F2側の外部(屋外)から第二面F2へ向けて入射する光は、光反射可変部202及び面状発光部6を通過し、更に光散乱可変部201を通過しながら散乱されて、第一面F1から第一面F1側の外部(屋内)へ出射する。一方、第一面F1側の外部から第一面F1へ入射する光は、光散乱可変部201を通過しながら散乱され、更に面状発光部6及び光反射可変部202を通過して第二面F2から外部へ出射する。このため、面状光学素子1は光を透過する。しかし、第一面F1側から面状光学素子1を介して第二面F2側にある物体を視認しようとする場合、及び第二面F2側から面状光学素子1を介して第一面F1側にある物体を視認しようとする場合の、いずれにおいても、物体はぼやけて視認しにくくなる。すなわち、面状光学素子1は半透明の状態となる。半透明の状態とは、例えばすりガラス状又は曇りガラス状である。このため、面状光学素子1がプライバシーの保護を実現できる。また、日中においては、プライバシーを保護しながら、外光を屋外から屋内へ引き込んで利用することができる。
 図5Dに示す状態では、面状発光部6は発光している状態にあり、光反射可変部202は光反射性を有する状態にあり、光散乱可変部201は光散乱性を有さず透明な状態にある。この状態では、面状発光部6から発せられて第一面F1へ向かう光は、そのまま第一面F1から外部へ出射する。更に、面状発光部6から発せられて第二面F2へ向かう光は、光反射可変部202で反射されて第一面F1へと向かい、第一面F1から外部へ出射する。そのため、第一面F1から外部へ出射する光の量を増大させることができ、これにより例えば屋内照明の効果を高めることができる。また、光散乱可変部201は光を散乱させないため、第一面F1から外部へ出射する光の配向性が高くなる。一方、第二面F2側の外部から第二面F2へ向けて入射する光は光反射可変部202で反射されるため面状光学素子1を透過しない。そのため、面状光学素子1は、外部から第二面F2へ向けて入射する光を遮蔽することができる。
 図5Eに示す状態では、面状発光部6は発光している状態にあり、光散乱可変部201は光散乱性を有する状態にあり、光反射可変部202は光反射性を有さずに透明な状態にある。この状態では、面状発光部6から発せられて第一面F1へ向かう光は、光散乱可変部201を通過しながら散乱され、第一面F1から外部へ出射する。このため、面状光学素子1は配向性の低い光を第一面F1から外部へ出射することができ、それにより独特の照明効果を得ることができる。また、光散乱可変部201で光を散乱させることで面状光学素子1内における光の界面反射を低減し、第一面F1からの光の取り出し効率を向上することができる。一方、面状発光部6から発せられて第二面F2へ向かう光は、光反射可変部202をそのまま透過し、第二面F2から外部へ出射する。このため、面状光学素子1を両面発光させることがきる。
 図5Fに示す状態では、面状発光部6は発光している状態にあり、光散乱可変部201は光散乱性を有する状態にあり、光反射可変部202は光反射性を有する状態にある。この状態では、面状発光部6から発せられて第一面F1へ向かう光は、光散乱可変部201を通過しながら散乱され、第一面F1から外部へ出射する。面状発光部6から発せられて第二面F2へ向かう光は、光反射可変部202で反射されることで第一面F1へ向かい、光散乱可変部201を通過しながら散乱され、第一面F1から外部へ出射する。そのため、第一面F1から外部へ出射する光の量を増大させることができ、これにより例えば屋内照明の効果を高めることができる。また、面状光学素子1は配向性の低い光を第一面F1から外部へ出射することができ、それにより独特の照明効果を得ることができる。また、光散乱可変部201で光を散乱させることで面状光学素子1内における光の界面反射を低減し、第一面F1からの光の取り出し効率を向上することができる。一方、第二面F2側の外部から第二面F2へ向けて入射する光は光反射可変部202で反射されるため面状光学素子1を透過しない。そのため、面状光学素子1は、外部から第二面F2へ向けて入射する光を遮蔽することができる。
 図5Gに示す状態では、面状発光部6は発光しない状態にあり、光散乱可変部201は光散乱性を有さずに透明な状態にあり、光反射可変部202は光反射性を有さずに透明な状態にある。この状態では、第一面F1側の外部から第一面F1へ入射する光は散乱されずに面状光学素子1を透過して第二面F2から外部へ出射し、第二面F2側の外部から第二面F2へ入射する光は反射されずに面状光学素子1を透過して第一面F1から外部へ出射する。このため、面状光学素子1は透明な状態になり、例えば一般的な透明な窓と同様に屋外から屋内への採光が可能である。
 第二実施形態のように面状光学素子1が光吸収可変部203を更に備える場合は、光吸収可変部203が光吸収性を有さない状態にあれば、面状光学素子1は上記図5A~図5Gに示す場合と同様に動作する。
 光吸収可変部203が光吸収性を有する状態にあれば、第二面F2側の外部から第二面F2へ入射する光の一部又は全部が光吸収可変部203で吸収されるため、面状光学素子1の光による劣化が抑制される。また、第一面F1側の外部から第二面F2側の外部への紫外線の侵入を抑制する紫外線カット効果、又は第一面F1側の外部から第二面F2側の外部への赤外線の侵入を抑制する遮熱効果を得ることもできる。
 また、図5A、図5D及び図5Fに示すように光反射可変部202が光反射性を有する状態で、光吸収可変部203が光吸収性を有する状態にあれば、第二面F2側の外部から第二面F2へ入射する光の一部又は全部を、光反射可変部202へ到達する前に光吸収可変部203に吸収させることができる。このため、第二面F2側の外部から第二面F2へ入射した光が面状光学素子1で反射して第二面F2側の外部へ出射することを抑制することができる。
 また、図5B及び図5Eに示すように面状発光部6が発光している状態にあると共に光反射可変部202が光反射性を有さない状態で、光吸収可変部203が光吸収性を有する状態にあれば、第二面F2側の屋外から第二面F2へ入射し第一面F1へ向かう光の一部又は全部を光吸収可変部203に吸収させることができる。このため、面状発光部6から発せられて第一面F1から外部へ出射する光のコントラストを高めることができる。
 また、図5Gに示す状態で光吸収可変部203が光吸収性を有する状態にあると、面状光学素子1に遮光作用を発揮させることができる。
 また、光吸収可変部203は、可視光の特定波長を吸収する状態にあれば、この光吸収可変部203を通過する光を調色することで、面状光学素子1から出射する光に種々の色彩を与えることもできる。
 以上の通り、面状光学素子1における光学機能部2の光学特性の程度が切り替えられ、或いは更に面状発光部6の発光のオン・オフが切り替えられることで、面状光学素子1が種々の光学的な状態をとることができる。面状光学素子1は、このような光学的な状態を利用できる種々の用途に適用可能である。
 このように面状光学素子1は種々の光学的な状態をとりえるため、光を透過させる機能、遮光機能、鏡としての機能、プライバシー保護機能、照明としての機能などの、種々の機能を有し得る。このため、面状光学素子1を、多機能な照明装置、建材、窓などして利用することができる。
 例えば、面状光学素子1で、光学的に異なる複数の状態に切り替え可能な窓を構成することができる。このような窓をアクティブウィンドウということができる。このような窓は、利用価値が高い。面状光学素子1から構成される窓は、内窓、外窓のいずれにも利用可能である。また、面状光学素子1から構成される窓を、車載窓のような乗物用の窓に適用してもよい。例えば面状光学素子1から構成される窓を、自動車、電車、機関車、列車などの車両、飛行機、船などの窓に適用してもよい。例えば透明性を変化させることが可能な窓は、高級自動車用に好適である。
 面状光学素子1を、建材として利用することもできる。建材としては、壁材、パーティション、サイネージなどが挙げられる。サイネージはいわゆる照明広告であってもよい。壁材は、外壁用であってもよいし、内壁用であってもよい。
 尚、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論のことである。
 例えば面状光学素子1は、一つのみの光学機能部2を備えてもよく、四つ以上の光学機能部2を備えてもよい。また面状光学素子1は面状発光部6を備えなくてもよい。
 また、第一実施形態において、第一光学機能部21及び第二光学機能部22のうちの一方が光吸収可変部203であってもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1  面状光学素子
 2  光学機能部
 3  電極
 4  光学機能層
 6  面状発光部
 11 低抵抗率部位
 12 高抵抗率部位

Claims (8)

  1.  一方向に沿って対向し合う二つの電極と、
     前記二つの電極間に介在し、前記電極間に印加される電圧の変化に応じて光散乱性、光反射性及び光吸収性から選択される光学特性の程度が変化する光学機能層と、
     を備える光学機能部を、一つ以上備え、
     前記電極の各々は、低抵抗率部位と、前記低抵抗率部位よりも高い電気抵抗率を有する高抵抗率部位とを備える、
     面状光学素子。
  2.  前記高抵抗率部位の可視光透過率と前記低抵抗率部位の可視光透過率とは、いずれも80%以上である、
     請求項1に記載の面状光学素子。
  3.  前記高抵抗率部位は、全て前記方向に一列に並んでいる、
     請求項1又は2に記載の面状光学素子。
  4.  前記方向に沿って対向し合う二つの電極と、
     前記二つの電極間に介在する有機発光層と、
     を備える面状発光部を備え、
     前記面状発光部の前記電極の各々は、低抵抗率部位と、前記低抵抗率部位よりも高い電気抵抗率を有する高抵抗率部位とを備える、
     請求項1乃至3のいずれか一項に記載の面状光学素子。
  5.  前記面状発光部の前記電極における前記高抵抗率部位の可視光透過率と前記低抵抗率部位の可視光透過率とは、いずれも80%以上である、
     請求項4に記載の面状光学素子。
  6.  前記光学機能部の前記電極における前記高抵抗率部位、及び前記面状発光部の前記電極における前記高抵抗率部位は、全て前記方向に一列に並んでいる、
     請求項4又は5に記載の面状光学素子。
  7.  請求項4乃至6のいずれか一項に記載の面状光学素子を備える照明装置。
  8.  請求項1乃至6のいずれか一項に記載の面状光学素子を備える建材。
PCT/JP2015/003071 2014-07-17 2015-06-19 面状光学素子、照明装置及び建材 WO2016009589A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534094A JPWO2016009589A1 (ja) 2014-07-17 2015-06-19 面状光学素子、照明装置及び建材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-146992 2014-07-17
JP2014146992 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016009589A1 true WO2016009589A1 (ja) 2016-01-21

Family

ID=55078104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003071 WO2016009589A1 (ja) 2014-07-17 2015-06-19 面状光学素子、照明装置及び建材

Country Status (2)

Country Link
JP (1) JPWO2016009589A1 (ja)
WO (1) WO2016009589A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053466A (ja) * 2002-07-22 2004-02-19 Yokohama Rubber Co Ltd:The 電磁波遮蔽材とその製造方法
JP2008210570A (ja) * 2007-02-23 2008-09-11 Fujifilm Corp 表示装置
JP2012114041A (ja) * 2010-11-26 2012-06-14 Asahi Glass Co Ltd 電波透過部材、調光素子、および調光窓材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643813A1 (en) * 2003-07-07 2006-04-05 Pioneer Corporation Organic electroluminescent display panel and method for manufacturing same
JP2012126578A (ja) * 2009-04-13 2012-07-05 Asahi Glass Co Ltd 自動車ガラス用積層体、その製造方法、およびフロントガラス
JP5640906B2 (ja) * 2011-06-22 2014-12-17 日産自動車株式会社 合わせガラス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053466A (ja) * 2002-07-22 2004-02-19 Yokohama Rubber Co Ltd:The 電磁波遮蔽材とその製造方法
JP2008210570A (ja) * 2007-02-23 2008-09-11 Fujifilm Corp 表示装置
JP2012114041A (ja) * 2010-11-26 2012-06-14 Asahi Glass Co Ltd 電波透過部材、調光素子、および調光窓材

Also Published As

Publication number Publication date
JPWO2016009589A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
KR102127226B1 (ko) 스위칭가능한 유리 구조물 및 차량 창문
US9904136B2 (en) Light masked smart glazing
WO2016013154A1 (ja) 調光素子及びそれを備える建材
CN110636940A (zh) 高性能私密性玻璃窗结构
WO2015141740A1 (ja) 調光素子及びスマートガラス
JP6425080B2 (ja) 光学デバイス
WO2007107903A1 (en) Led-based lighting device with colour control
JPWO2016006181A1 (ja) 光スイッチングデバイス及び建材
JP2010501975A (ja) 実質的に平坦な発光構造体および/または紫外発光構造体
CN109601014A (zh) 具有可通过液晶进行改变的散射的电控装置
JP2003303682A (ja) エレクトロルミネッセンス表示装置
KR101520402B1 (ko) 솔라 블라인드의 제조 방법
WO2016006180A1 (ja) 光スイッチングデバイス及びその製造方法、並びに建材
WO2016009589A1 (ja) 面状光学素子、照明装置及び建材
WO2016009597A1 (ja) 面状光学素子、照明装置及び建材
WO2015097965A1 (ja) 面状発光体、それを用いた照明装置及び建材
JP2016201323A (ja) 発光装置および表示装置
WO2016009596A1 (ja) 面状発光体、それを備えた照明装置及び建材
WO2016009621A1 (ja) 光デバイス
JP2009140745A (ja) 発光ガラス装置
WO2016006166A1 (ja) 面状発光ユニット、面状発光体、照明装置及び建材
WO2015182039A1 (ja) 面状発光体
JP2016025153A (ja) 面状発光体及び建材
KR20190080284A (ko) 적외선 반사 기능을 갖춘 고분자 분산 액정형 스마트 윈도우 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822092

Country of ref document: EP

Kind code of ref document: A1