JP6351001B2 - 光スイッチングデバイスの製造方法 - Google Patents

光スイッチングデバイスの製造方法 Download PDF

Info

Publication number
JP6351001B2
JP6351001B2 JP2016532417A JP2016532417A JP6351001B2 JP 6351001 B2 JP6351001 B2 JP 6351001B2 JP 2016532417 A JP2016532417 A JP 2016532417A JP 2016532417 A JP2016532417 A JP 2016532417A JP 6351001 B2 JP6351001 B2 JP 6351001B2
Authority
JP
Japan
Prior art keywords
optical
light
variable
state
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016532417A
Other languages
English (en)
Other versions
JPWO2016006180A1 (ja
Inventor
裕子 鈴鹿
裕子 鈴鹿
伊藤 宜弘
宜弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2016006180A1 publication Critical patent/JPWO2016006180A1/ja
Application granted granted Critical
Publication of JP6351001B2 publication Critical patent/JP6351001B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Description

光スイッチングデバイス及びその製造方法、並びに建材の発明が開示される。より詳しくは、電力により光透過性の程度が変化可能な光スイッチングデバイス及びその製造方法、並びに建材が開示される。
近年、電気により光透過性が変化する部材が注目されている。光透過性が変化する部材は、窓などの建材に利用可能である。例えば、透明な有機EL素子では、発光状態と非発光状態とで光透過性が変化する。光学的な特性が変化する有機EL素子は、例えば、特許文献1に例示される。特許文献1では、光の進行方向を変化させる光学層を設けて、有機EL素子の光学的な特性を変化させている。
特開2013−201009号公報
光透過性が変化する部材では、透明な状態とそうでない状態との変化のバリエーションにより、光学特性のさらなる向上が見込まれる。ここで、光透過性が変化する部分を複数有する場合には、構成が複雑化するため、安定して製造され、それらの部分が光学的に良好に機能することが重要である。
以下に開示される発明は、安定して製造され、光学特性に優れた光スイッチングデバイス及びその製造方法、並びに建材を提供することを目的とする。
本開示の光スイッチングデバイスの一態様は、面状であり、電力により光学的状態の程度が変化可能である複数の光学可変体と、前記複数の光学可変体の間に配置される光学調整層と、を備えている。前記光学可変体は、一対の基板と、前記一対の基板の間に配置される一対の電極と、前記一対の電極の間に配置され、光学的状態の程度が変化可能な光学可変層と、を備えている。前記光学調整層は、前記複数の光学可変体を厚み方向で面状に接着し、隣り合う前記光学可変体の前記基板の間の屈折率を可視光波長域において調整する。前記電極は、電力を供給するための露出面を有している。前記光学調整層の前記基板に対する接着力は、前記光学可変層の前記電極に対する接着力よりも大きい。
本開示の建材の一態様は、上記の光スイッチングデバイスと、配線とを備えている。
本開示の光スイッチングデバイスの製造方法の一態様は、前記複数の光学可変体を前記光学調整層で接着する工程と、前記複数の光学可変体の側端部において、厚み方向の一方の端部に配置される前記基板から、厚み方向の他方の端部に配置される前記光学可変層まで、切れ目を入れる工程と、前記切れ目に沿って、前記光学可変体の側端部を除去し、前記電極を露出させる工程と、を含む。
本開示の光スイッチングデバイスは、安定して製造され、光学特性に優れている。本開示の建材は、光学特性に優れている。本開示の光スイッチングデバイスの製造方法は、光学特性に優れた光スイッチングデバイスを容易に製造することができる。
図1は、光スイッチングデバイスの一例を示す模式的な断面図である。 図2は、光スイッチングデバイスの一例を示す模式的な断面図である。 図3は、光スイッチングデバイスの一例を示す模式的な断面図である。 図4は、光スイッチングデバイスの製造方法の一例を示す模式的な断面図である。図4のAは、接着前の複数の光学可変体を示す。図4のBは、複数の光学可変体を接着した後の状態を示す。図4のCは、切れ目を入れた後の状態を示す。図4のDは、側端部を除去した後の状態を示す。図4のEは、配線を繋いだ後の状態を示す。 図5は、光スイッチングデバイスの複数の光学可変部の機能の発揮状態を示す模式図である。図5のAは、光散乱性が機能している状態を示す。図5のBは、発光している状態を示す。図5のCは、光反射性が機能している状態を示す。図5のDは、光吸収性が機能している状態を示す。図5のEは、光散乱性が機能し、発光している状態を示す。図5のFは、光散乱性及び光反射性が機能している状態を示す。図5のGは、光散乱性及び光吸収性が機能している状態を示す。図5のHは、光反射性が機能し、発光している状態を示す。図5のIは、光吸収性が機能し、発光している状態を示す。図5のJは、光反射性及び光吸収性が機能している状態を示す。図5のKは、光散乱性及び光反射性が機能し、発光している状態を示す。図5のLは、光散乱性及び光吸収性が機能し、発光している状態を示す。図5のMは、光散乱性、光反射性及び光吸収性が機能している状態を示す。図5のNは、光反射性及び光吸収性が機能し、発光している状態を示す。図5のPは、光散乱性、光反射性及び光吸収性が機能し、発光している状態を示す。図5のQは、光散乱性、光反射性及び光吸収性の全てが機能されず、発光していない状態を示す。 図6は、光スイッチングデバイスを備えた建材の一例を示す模式図である。
以下により、光スイッチングデバイスが開示される。図1は、光スイッチングデバイス100の一例である。図2は、光スイッチングデバイス100の他の一例である。図3は、光スイッチングデバイス100のさらに他の一例である。
光スイッチングデバイス100は、複数の光学可変体1を備える。図1の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bとで構成されている。図2の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bと第3光学可変体1Cとで構成されている。図3の例では、複数の光学可変体1は、第1光学可変体1Aと第2光学可変体1Bと第3光学可変体1Cと第4光学可変体1Dとで構成されている。複数の光学可変体1が存在することで、光学特性が向上する。
光学可変体1は、面状である。光学可変体1は、電力により光学的状態の程度が変化可能である。ここで、光学的状態とは、透明性、発光性、光散乱性、光反射性及び光吸収性のいずれかの状態を意味する。光学可変体1は、一対の基板6,6と、一対の電極5,5と、光学可変層2とを備えている。一対の電極5,5は、一対の基板6,6の間に配置されている。光学可変層2は、一対の電極5,5の間に配置されている。光学可変層2は、光学的状態の程度が変化可能である。電極5は、平面視において電力を供給するための露出面5sを有している。露出面5sにより、電力の供給が容易になる。
光スイッチングデバイス100は、光学調整層3を備えている。光学調整層3は、複数の光学可変体1の間に配置されている。光学調整層3は、複数の光学可変体1を厚み方向で面状に接着している。光学調整層3は、隣り合う光学可変体1の基板6の間の屈折率を可視光波長域において調整する。光学調整層3の基板6に対する接着力は、光学可変層2の電極5に対する接着力よりも大きい。光学調整層3により、基板間の屈折率差が調整されるため、光学特性が向上する。さらに、光学調整層3が接着性を有することにより、隣り合う基板6に対する接着性が高まる。
厚み方向とは、光スイッチングデバイス100の厚みの方向である。図1〜図3において、厚み方向は、矢印DTで示されている。厚み方向とは、基板6の表面に垂直な方向であってよい。図1〜図3において、光スイッチングデバイス100の各層は厚み方向に対して垂直な方向に広がっていると考えることができる。なお、「平面視」とは基板6の表面に垂直な方向(厚み方向DT)に沿って見た場合のことを意味する。
光スイッチングデバイス100は面状である。光スイッチングデバイス100はパネル状であってよい。光スイッチングデバイス100は、光の状態をスイッチングする。
光スイッチングデバイス100は、第1面F1と、第1面F1とは反対側に配置された第2面F2とを有している。第1面F1及び第2面F2は外面となる。これらの面は露出していてよい。あるいは、第1面F1及び第2面F2は、他の透明な面状部材で覆われていてもよい。
ここで、光スイッチングデバイス100の面は、平面及び曲面を含む。面は平面のみで構成されていてもよい。あるいは、面は曲面のみで構成されていてもよい。例えば、面は円弧状となり得る。あるいは、面は平面と曲面との両方を含んでいてもよい。
図1〜図3は、光スイッチングデバイス100の例であり、光スイッチングデバイスの態様はこれに限定されない。図1〜図3及び他の図においては、光スイッチングデバイス100及びその中の各構成が、模式的に図示されており、これらの実際の寸法関係等は図面と異なるものであってよい。また、特に断りのない限り、複数の図において、同じ符号番号を付した構成は同様の構成を指し、その符号番号の構成に関して行った説明は、共通して適用可能である。
一対の電極5,5とその間に配置される光学可変層2とは、光学可変部を構成する。光学可変部は、光学可変体1内の主要部である。光学可変部は、光学可変体1から基板6を取り除いたものであってよい。光スイッチングデバイス100は、複数の光学可変部を有する。
複数の光学可変部は、複数の基板6によって支持されている。光学可変部は、一対の基板6の間に配置されている。それにより、光学可変部が保護されている。光学可変部は、基板6で支持されることで、容易に製造され、安定化し得る。
図1〜図3では、複数の基板6は、便宜上、第1面F1側から順番に、基板6a、基板6b、基板6c、基板6d、基板6e、基板6f、基板6g、基板6hと、符号付けされている。
光スイッチングデバイス100は、基板6を複数有しているとよい。複数の基板6は光透過性を有する。それにより、光学特性の高い光スイッチングデバイス100を得ることができる。基板6は、光スイッチングデバイス100の各層を支持するための基板として機能し得る。基板6は、光スイッチングデバイス100の各層を封止するための基板として機能し得る。複数の基板6は厚み方向に配置されている。
光スイッチングデバイス100は、複数の基板6のうち、外側に配置される二つの基板6の間に、複数の光学可変部が配置されたものであるとよい。それにより、複数の光学可変部を基板6で保護することができる。
基板6として、ガラス基板、樹脂基板などを用いることができる。基板6をガラス基板で構成した場合、ガラスは透明性が高いため、光学特性の優れた光スイッチングデバイス100を得ることができる。また、ガラスは水分の透過性が低いので、封止領域の内部に水分が浸入することを抑制することができる。ガラスは紫外線吸収性を有し得るため、デバイスの劣化を抑制できる。ガラスとしては、ソーダガラス、無アルカリガラス、高屈折率ガラスが例示される。基板6として薄膜ガラスを用いることができる。その場合、高透明性と高防湿性に加えて、フレキシブルな光スイッチングデバイス100を得ることが可能である。また、基板6として樹脂基板を用いた場合、樹脂は破断しにくいために、破壊時の飛散が抑制された安全な光スイッチングデバイス100を得ることができる。また、樹脂基板を用いた場合、フレキシブルな光スイッチングデバイス100を得ることが可能である。樹脂基板はフィルム状であってよい。樹脂としては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)が例示される。
複数の基板6のうち、外側に配置される二つの基板6はガラス基板であるとよい。それにより、光学特性の優れた光スイッチングデバイス100を得ることができる。複数の基板6の全てが、ガラス基板であってもよい。その場合、光学的な条件を制御しやすくなり、光学特性を高めることができる。内側の基板6のいずれか一つ以上が、樹脂基板であってもよい。その場合、破壊時の飛散を抑制することができ、安全な光スイッチングデバイス100を得ることができる。基板6の表面は、防汚材料、紫外線遮断材料、紫外線吸収材料、及び防湿材料のいずれか一つ以上によって被覆されていてもよい。その場合、保護性が高まる。
電極5は、透明な導電層によって構成することができる。透明導電層の材料としては、透明金属酸化物、導電性粒子含有樹脂、金属薄膜などを用いることができる。電極5は、各場所において好適化された導電材料が用いられ得る。光透過性を有する電極5の材料の好ましいものとして、ITO、IZOなどの透明金属酸化物が例示される。透明金属酸化物によって構成される電極5は、光学可変体1の電極5に用いることが好適である。また、電極5は、銀ナノワイヤを含有する層や薄膜銀などの透明金属層であってもよい。また、電極5は、透明金属酸化物の層と金属層とが積層されたものであってもよい。また、電極5は、透明導電層に電気的な補助を行う配線が設けられたものであってもよい。電極5は遮熱効果を有していてもよい。それにより、断熱性が高まり得る。基板6と電極5の間に防湿層が形成されていてもよい。防湿層により光スイッチングデバイス100への水分の浸入が抑制されるため、光スイッチングデバイス100の劣化を抑制することができる。
一対の電極5,5は、電気的に対となる二つの電極5である。一対の電極5,5は、一方が陽極を構成し、他方が陰極を構成する。一対の電極5,5は、その一方が第1面F1側に配置され、他方が第2面F2側に配置され得る。一対の電極5,5が第1面F1側のみまたは第2面F2側のみに配置されていてもよい。
複数の電極5は、電源との電気接続が可能なように構成されていてよい。光スイッチングデバイス100は、電源に接続するために、電極パッドや、電極パッドを電気的に集約した電気接続部などを有していてよい。電気接続部はプラグなどにより構成されていてもよい。
電極5は露出面5sを有している。露出面5sは電極5に対して電力を供給するための面である。電極5の露出面5sは、光スイッチングデバイス100の側端部に配置される。露出面5sは、電極5における光学可変層2と接していない部分で形成される。露出面5sは、光学可変層2から露出していればよい。露出面5sは、外部に露出していなくてよい。露出面5sは、平面視において電極5が光学可変層2よりもはみ出すことで設けられる。露出面5sは、接続配線4によって覆われていてもよい。露出面5sには、電源との電気的な接続を行うための接続配線4が接続されている。光スイッチングデバイス100は、接続配線4を備えているとよい。電極5が露出面5sを有することにより、電源との電気接続が容易になり、複数の光学可変部への電力供給を良好に行うことができる。また、接続配線4は、電気的な接続をさらに容易にさせる。
図1〜図3では、複数の電極5は、便宜上、第1面F1側から順番に、電極5a、電極5b、電極5c、電極5d、電極5e、電極5f、電極5g、電極5hと、符号付けされている。
光学可変部は、光学可変層2を有する。光学可変層2は、一対の電極5,5の間に配置されている。光学可変層2は、一対の電極5,5を介して電力が供給されて、光学的状態の程度が変化する。一対の電極5,5は、光学可変層2を駆動させる電極として機能する。第1光学可変体1A内の光学可変層2は第1光学可変層2Aと定義される。同様に、第2光学可変層2B、第3光学可変層2C、第4光学可変層2Dが、第2〜第4の光学可変体1B〜1D内の光学可変層2としてそれぞれ定義される。
複数の光学可変部は、面状発光部、光散乱可変部、光反射可変部、及び光吸収可変部から選択されるもので構成される。面状発光部は、電力の供給により面状に発光する素子で構成され得る。光散乱可変部は、電力により光散乱性の程度が変化可能な素子で構成され得る。光反射可変部は、電力により光反射性の程度が変化可能な素子で構成され得る。光吸収可変部は、電力により光吸収性の程度が変化可能な素子で構成され得る。
面状発光部を有する光学可変体1は、面状発光体と定義される。光散乱可変部を有する光学可変体1は光散乱可変体と定義される。光反射可変部を有する光学可変体1は光反射可変体と定義される。光吸収可変部を有する光学可変体1は光吸収可変体と定義される。光スイッチングデバイス100は、面状発光体、光散乱可変体、光反射可変体、及び光吸収可変体から選ばれる2以上の光学可変体1を含み得る。
複数の光学可変部は、面状発光部を含むとよい。面状発光部は、面状に発光することが可能である。面状発光部は、有機エレクトロルミネッセンス素子(有機EL素子)であるとよい。それにより、薄型で大面積の発光を得ることができる。面状発光部は透明であるとよい。
光学可変部が有機EL素子である場合、光学可変層2は有機発光層で構成され得る。有機EL素子は、一対の電極5,5の間に有機発光層が配置された構成を有する素子である。面状発光部が有機EL素子で構成されることにより、光学特性の優れた薄型で透明の発光体を形成することができる。この場合、光スイッチングデバイスは、面発光が可能となる。有機発光層は光透過性を有する。そのため、発光時には、有機発光層で発した光を厚み方向の両側に出射することができる。また、非発光時には、光を一方の側から他方の側に透過させることができる。
有機発光層は、発光を生じさせる機能を有する層であり、ホール注入層、ホール輸送層、発光材料含有層、電子輸送層、電子注入層、中間層などから適宜選ばれる複数の機能層によって構成され得る。もちろん、有機発光層は発光材料含有層の単層で構成されてもよい。有機EL素子では、一対の電極5,5の間で電気を流すことにより、発光材料含有層において正孔と電子を結合させて発光を生じさせる。
有機EL素子では一般的には電流の方向は一方向である。そのため、直流電源が接続され得る。もちろん、交流から変換された直流であってもよい。直流電源により、安定した発光を得ることができる。有機EL素子の発光色は白色でもよいし、青色、緑色、又は赤色でもよい。もちろん、青から緑又は緑から赤までの間の中間色であってもよい。また、印加電流により調色可能であってもよい。
複数の光学可変部は、光散乱可変部を含むとよい。光散乱可変部は、光散乱性の程度が変化可能に構成されている。光散乱性の程度が変化可能とは、高散乱状態と低散乱状態とを調整可能なことであってよい。あるいは、光散乱性の程度が変化可能とは、光散乱性を有する状態と、光散乱性を有さない状態とを調整可能なことであってもよい。光散乱性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光散乱可変部は層状に形成されていてよい。
高散乱状態とは、光散乱性が高い状態である。高散乱状態は、例えば、一方の面から入射した光が、散乱によって進行方向がいろいろな方向に変わって、他方の面に分散して出射する状態である。高散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体がぼやけて見える状態であり得る。高散乱状態は、半透明な状態であり得る。光散乱可変部が光散乱性を発揮する場合、光散乱可変部は、光を散乱する散乱層として機能する。
低散乱状態とは、光散乱性が低い又は光散乱性がない状態である。低散乱状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低散乱状態は、透明な状態であり得る。
光散乱可変部は、光散乱性が高い高散乱状態と、光散乱性が低い又は光散乱性がない低散乱状態と、高散乱状態と低散乱状態との間の光散乱性を発揮する状態と、を有することが可能なように構成されているとよい。高散乱状態と低散乱状態との間の光散乱性を発揮することができることで、中程度の光散乱性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高散乱状態と低散乱状態との間の光散乱性を発揮する状態を、中散乱状態と呼ぶ。
中散乱状態は、高散乱状態と低散乱状態との間において、少なくとも一つの散乱状態を有するものであってよい。例えば、高散乱状態と中散乱状態と低散乱状態との三つの状態を切り替えることにより、光散乱性を変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、散乱性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、散乱性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高散乱状態と複数の中散乱状態と低散乱状態との複数の状態を切り替えることにより、光散乱性を段階的に変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、高散乱状態から低散乱状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、散乱性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高散乱状態と低散乱状態との間で目的とする光散乱性を発揮させる状態にして光散乱性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光散乱可変部が、中散乱状態を有する場合、光散乱可変部は、中散乱状態を維持できるように構成されているとよい。
光散乱可変部は、少なくとも可視光の一部を散乱させるものであってよい。光散乱可変部は可視光の全部を散乱させるものであるとよい。もちろん、光散乱可変部は、赤外線を散乱させたり、紫外線を散乱させたりするものであってもよい。
光学可変部が光散乱可変部である場合、光学可変層2は、光散乱可変層で構成され得る。光散乱可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光散乱可変層における光散乱性の程度が変化する。
光散乱可変部は、交流電源に接続され得る。電界により光散乱性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光散乱性の状態が維持できなくなるものが多く存在する。交流電源では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源により、安定した光散乱性を得ることができる。交流の波形は矩形波であるとよい。それにより、印加する電圧量が一定になりやすくなるため、光散乱性を安定化させることがより可能になる。交流はパルスであってよい。なお、中散乱状態は、電圧の印加量が制御されることによって形成され得る。
光散乱可変層の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、液晶材料などが挙げられる。光散乱可変層の材料としては、高分子分散型液晶を用いるとよい。高分子分散型液晶では、液晶が高分子によって保持されているため、安定な光散乱可変層を形成することができる。高分子分散型液晶は、PDLC(Polymer Dispersed Liquid Crystal)と呼ばれる。なお、光散乱可変層の材料としては、電界により散乱性が変化する固体物質も好ましく用いられる。
高分子分散型液晶は、樹脂部と液晶部とから構成されるものであってよい。樹脂部は高分子により形成される。樹脂部は光透過性を有するとよい。それにより、光散乱可変部が光透過性を有するようにすることができる。樹脂部は、熱硬化性樹脂、紫外線硬化性樹脂などにより形成され得る。液晶部は、電界によって液晶構造が変化する部分である。液晶部は、ネマチック液晶などが用いられる。高分子分散型液晶は、樹脂部の中に液晶部が点状に存在する構造であることが好ましい一態様である。この高分子分散型液晶においては、樹脂部が海、液晶部が島を構成する海島構造となっていてよい。高分子分散型液晶は、樹脂部の中において液晶部が網目状に不規則につながる形状であることが好ましい一態様である。もちろん、高分子分散型液晶は、液晶部の中に樹脂部が点状に存在したり、液晶部の中で樹脂部が網目状に不規則につながったりした構造であってもよい。
光散乱可変部は、電圧無印加時に光散乱状態となり、電圧印加時に光透過状態となることが好ましい一態様である。高分子分散型液晶では、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。高分子分散型液晶では、薄型で光散乱性の高い光散乱可変部を形成することができる。もちろん、光散乱可変部は、電圧無印加時に光透過状態となり、電圧印加時に光散乱状態となるものであってもよい。
光散乱可変層は、電圧を印加したときの光散乱状態が維持されるものであるとよい。それにより、電力効率が高まる。光散乱状態が維持される性質はヒステリシスと呼ばれる。光散乱状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
複数の光学可変部は、光反射可変部を含むとよい。光反射可変部は、光反射性の程度が変化可能に構成されている。光反射性の程度が変化可能とは、高反射状態と低反射状態とを調整可能なことであってよい。あるいは、光反射性の程度が変化可能とは、光反射性を有する状態と、光反射性を有さない状態とを調整可能なことであってもよい。光反射性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光反射可変部は層状に形成されていてよい。
高反射状態とは、光反射性が高い状態である。高反射状態は、例えば、一方の面に入射した光が、反射によって進行方向が反対方向に変わって、入射した側に出射する状態である。高反射状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高反射状態は、一方の面側から光反射可変部を見たときに、同じ面側に存在する物体が視認される状態であり得る。高反射状態は、鏡状態であり得る。光反射可変部が光反射性を発揮する場合、光反射可変部は、光を反射する反射層として機能する。
低反射状態とは、光反射性が低い又は光反射性がない状態である。低反射状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低反射状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低反射状態は、透明な状態であり得る。
光反射可変部は、光反射性が高い高反射状態と、光反射性が低い又は光反射性がない低反射状態と、高反射状態と低反射状態との間の光反射性を発揮する状態と、を有することが可能なように構成されているとよい。高反射状態と低反射状態との間の光反射性を発揮することができることで、中程度の光反射性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高反射状態と低反射状態との間の光反射性を発揮する状態を、中反射状態と呼ぶ。
中反射状態は、高反射状態と低反射状態との間において、少なくとも一つの反射状態を有するものであってよい。例えば、高反射状態と中反射状態と低反射状態との三つの状態を切り替えることにより、光反射性を変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、反射性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、反射性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高反射状態と複数の中反射状態と低反射状態との複数の状態を切り替えることにより、光反射性を段階的に変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、高反射状態から低反射状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、反射性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高反射状態と低反射状態との間で目的とする光反射性を発揮させる状態にして光反射性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光反射可変部が、中反射状態を有する場合、光反射可変部は、中反射状態を維持できるように構成されているとよい。
光反射可変部は、少なくとも可視光の一部を反射させるものであってよい。光反射可変部は可視光の全部を反射させるものであるとよい。光反射可変部は、赤外線を反射させるものであってもよい。光反射可変部は紫外線を反射させるものであってもよい。光反射可変部が、可視光、紫外線及び赤外線の全てを反射する場合、光学的特性に優れ、安定した光スイッチングデバイス100を得ることができる。
光反射可変部は、反射スペクトルの形状を変化させることが可能なように構成されることが好ましい一態様である。反射スペクトルの変化は、中反射状態において行われるものであってよい。反射スペクトルの形状が変化するとは、光反射可変部に入射する光と、光反射可変部で反射した光とのスペクトル形状が異なることである。反射スペクトルの変化は反射波長の変化により行われる。例えば、青色光のみを強く反射させたり、緑色光のみを強く反射させたり、赤色光のみを強く反射させたりすることによって、反射スペクトルの形状は変化する。反射スペクトルが変化すると、光の色が変化する。そのため、調色(色の調整)を行うことができ、光学特性を向上させることができる。
光反射可変部は、反射スペクトルの形状を変化させずに、光を反射させることが可能なように構成されることが好ましい一態様である。その場合、入射光と反射光とでスペクトルの変化がないため、反射の程度に簡単に強弱を付与することができる。反射性の強弱を制御することが可能になると、調光(明るさの調整)を行うことができ、光学特性を向上することができる。
光学可変部が光反射可変部である場合、光学可変層2は、光反射可変層で構成され得る。光反射可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光反射可変層における光反射性の程度が変化する。
光反射可変部は、交流電源に接続され得る。電界により光反射性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光反射性の状態が維持できなくなるものが多く存在する。交流電源では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源により、安定した光反射性を得ることができる。交流の波形は矩形波であるとよい。それにより、印加する電圧量が一定になりやすくなるため、光反射性を安定化させることがより可能になる。交流はパルスであってよい。なお、中反射状態は、電圧の印加量が制御されることによって形成され得る。
光反射可変層の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、ネマチック液晶、コレステリック液晶、強誘電性液晶、エレクトロクロミックなどが挙げられる。コレステリック液晶は、螺旋構造を持つネマチック液晶であってよい。コレステリック液晶は、キラルネマチック液晶であってよい。コレステリック液晶は、CLC(Cholestric Liquid Crystal)と呼ばれる。コレステリック液晶では、分子軸の配向方向が空間で連続的に変化し、巨視的な螺旋構造が生まれる。このため、螺旋の周期に対応した光の反射が可能となる。液晶状態を電界によって変化させることにより、光反射性と光透過性との間を制御することが可能である。エレクトロクロミックでは、電圧印加による電気化学的可逆反応(電解酸化還元反応)による物質の色変化現象を利用することができ、光反射性と光透過性との間を制御することが可能である。光反射可変層の材料として、コレステリック液晶やエレクトロクロミックを好ましく用いることができる。
光反射可変部は、電圧無印加時に光反射状態となり、電圧印加時に光透過状態となることが好ましい一態様である。コレステリック液晶やエレクトロクロミックでは、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。コレステリック液晶やエレクトロクロミックでは、薄型で反射性の高い光反射可変部を形成することができる。電圧を印加せずに特定の光だけを反射する状態をプレーナ配向といい、電圧を印加して光を通す状態をフォーカルコニック配向ということがある。もちろん、光反射可変部は、電圧無印加時に光透過状態となり、電圧印加時に光反射状態となるものであってもよい。
光反射可変層は、電圧を印加したときの光反射状態が維持されるものであるとよい。それにより、電力効率が高まる。光反射状態が維持される性質はヒステリシスと呼ばれる。光反射状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
複数の光学可変部は、光吸収可変部を含むとよい。光吸収可変部は、光吸収性の程度が変化可能に構成されている。光吸収性の程度が変化可能とは、高吸収状態と低吸収状態とを調整可能なことであってよい。あるいは、光吸収性の程度が変化可能とは、光吸収性を有する状態と、光吸収性を有さない状態とを調整可能なことであってもよい。光吸収性の程度が調整可能であると、光学的な状態を変化させることができ、光学特性の優れた光スイッチングデバイス100を得ることができる。光吸収可変部は層状に形成されていてよい。
高吸収状態とは、光吸収性が高い状態である。高吸収状態は、例えば、一方の面から入射した光が、吸収によって他方の面に出射しない状態である。高吸収状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、両側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、不透明な状態であり得る。高吸収状態では、光吸収可変部は黒色となり得る。光吸収可変部が光吸収性を発揮する場合、光吸収可変部は、光を吸収する吸収層として機能する。
低吸収状態とは、光吸収性が低い又は光吸収性がない状態である。低吸収状態は、例えば、一方の面から入射した光が、吸収されずに進行方向をそのまま維持して、他方の面に出射する状態である。低吸収状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低吸収状態は、透明な状態であり得る。
光吸収可変部は、光吸収性が高い高吸収状態と、光吸収性が低い又は光吸収性がない低吸収状態と、高吸収状態と低吸収状態との間の光吸収性を発揮する状態と、を有することが可能なように構成されていてもよい。高吸収状態と低吸収状態との間の光吸収性を発揮することができることで、中程度の光吸収性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高吸収状態と低吸収状態との間の光吸収性を発揮する状態を、中吸収状態と呼ぶ。
中吸収状態は、高吸収状態と低吸収状態との間において、少なくとも一つの吸収状態を有するものであってよい。例えば、高吸収状態と中吸収状態と低吸収状態との三つの状態を切り替えることにより、光吸収性を変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、吸収性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、吸収性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高吸収状態と複数の中吸収状態と低吸収状態との複数の状態を切り替えることにより、光吸収性を段階的に変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、高吸収状態から低吸収状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、吸収性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高吸収状態と低吸収状態との間で目的とする光吸収性を発揮させる状態にして光吸収性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光吸収可変部が、中吸収状態を有する場合、光吸収可変部は、中吸収状態を維持できるように構成されているとよい。
光吸収可変部は、少なくとも可視光の一部を吸収するものであるとよい。それにより、発光を鮮明にすることができる。光吸収可変部は可視光の全部を吸収するものであるとよい。それにより、さらに発光を鮮明にすることができる。光吸収可変部は、赤外線を吸収するものであってもよい。赤外線を吸収する場合、遮熱効果を得ることができる。光吸収可変部は紫外線を吸収するものであってもよい。それにより、光スイッチングデバイス100の劣化を抑制することができる。また、紫外線を吸収できると、屋内への紫外線の侵入を抑制することができる。光吸収可変部は、可視光、紫外線及び赤外線のいずれか1つを吸収することが好ましく、これらのうちの2つを吸収することがより好ましく、これらの全てを吸収することがさらに好ましい。
光吸収可変部は、吸収スペクトルの形状を変化させることが可能なように構成されていてもよい。吸収スペクトルの変化は、中吸収状態において行われるものであってよい。吸収スペクトルの形状が変化するとは、光吸収可変部に入射する光と、光吸収可変部を通った光とのスペクトル形状が異なることである。吸収スペクトルの変化は吸収波長の変化により行われる。例えば、青色光のみを強く吸収したり、緑色光のみを強く吸収したり、赤色光のみを強く吸収したりすることによって、スペクトルの形状は変化する。吸収スペクトルが変化すると、光スイッチングデバイス100を通過する光の色が変化する。そのため、透過光の調色(色の調整)を行うことができ、光学特性を向上することができる。
光学可変部が光吸収可変部である場合、光学可変層2は、光吸収可変層で構成され得る。光吸収可変層は、一対の電極5,5の間に配置される。一対の電極5,5の間に電圧が印加されることにより、光吸収可変層における光吸収性の程度が変化する。
光吸収可変部は、直流電源に接続されてもよいし、交流電源に接続されてもよいが、好ましくは直流電源に接続される。電界により光吸収性が変化する材料では、一方向の電気の流れにより光吸収性が変化し得る。そのため、直流電源により、安定した光吸収性を得ることができる。なお、中吸収状態は、電圧又は電流の印加量が制御されることによって形成され得る。
光吸収可変層の材料としては、電界変調によって光吸収性が変わる材料を好ましく用いることができる。電界変調の材料として、例えば、酸化タングステンなどが挙げられる。
光吸収可変部は、電圧無印加時に光透過状態となり、電圧印加時に光吸収状態となることが好ましい一態様である。液晶材料では、電圧の印加により吸収性が変化し得る。液晶では、電圧の印加で配向を揃えることが可能である。液晶では、薄型で吸収性の高い光吸収可変部を形成することができる。もちろん、光吸収可変部は、電圧無印加時に光吸収状態となり、電圧印加時に光透過状態となるものであってもよい。
光吸収可変層は、電圧を印加したときの光吸収状態が維持されるものであるとよい。それにより、電力効率が高まる。光吸収状態が維持される性質はヒステリシスと呼ばれる。光吸収状態の維持される時間は、長い方がよく、例えば、1時間以上であるとよい。
光スイッチングデバイス100において、第1面F1は主面と定義され、第2面F2は裏面と定義される。主面は、光を得たい方向に配置される。例えば、光スイッチングデバイス100が窓として利用される場合、主面(第1面F1)は内部側、裏面(第2面F2)は外部側に配置される。
表1は、複数の光学可変部の構成の例を示す。表1では、光スイッチングデバイス100が光学可変部として有する構成を「○」で示している。さらに、各構成を選択した場合の作用を示す。なお、光学可変部の配置の順序は問わない。
Figure 0006351001
光反射可変部は、面状発光部及び光散乱可変部よりも第2面F2側に配置されていることが好ましい一態様である。その場合、反射を利用して光を取り出すことができるため、光学特性に優れた光スイッチングデバイス100を得ることができる。
光吸収可変部は、複数の光学可変部のうちで最も第2面F2側に配置されていることが好ましい一態様である。その場合、第2面F2から入る光を吸収することができる。また、第1面F1から出射する光のコントラストを高めることができる。
複数の光学可変部は、好ましくは、第1面F1から第2面F2に向かって、光散乱可変部、面状発光部、光反射可変部、及び光吸収可変部の順で配置される。なお、光学可変部が、2つ及び3つの場合、上記の4つ場合からその一部を除去すれば好適な配置が導き出される。
光スイッチングデバイス100の好ましい態様では、複数の光学可変部は、有機エレクトロルミネッセンス素子(面状発光部)と、光散乱可変部とを含む。それにより、光学特性の優れた面状発光体を得ることができる。面状発光体は照明装置として利用可能である。
ところで、上記では、複数の光学可変部が、光散乱可変部、面状発光部、光反射可変部、及び光吸収可変部のいずれか1つから選ばれている例を示しているが、これらの2つ以上が選ばれてもよい。例えば、複数の光学可変部は、光散乱可変部を2以上有していてもよい。例えば、複数の光学可変部は、面状発光部を2以上有していてもよい。例えば、複数の光学可変部は、光反射可変部を2以上有していてもよい。例えば、複数の光学可変部は、光吸収可変部を2以上有していてもよい。同種の機能(散乱性、発光性、反射性、吸収性)を有する部分が2以上あると、その機能を増強させることができる。
図1〜図3の各例で示すように、光学調整層3は、隣り合う光学可変体1を接着している。光学調整層3は、隣り合う光学可変体1の間のスペースを満たしている。一般に、透明な二つの基板が重なり、それらの間に空間が形成されると、それらを通して一方の側から他方の側を見たときに、他方の側にある物体の輪郭がぶれやすくなる。いわゆる、二重映りや多重映りが発生し得る。しかしながら、上記の光スイッチングデバイス100では、基板6の間に光学調整層3が配置されているため、基板6との屈折率差が調整されるので、二重映りや多重映りの現象が抑制される。光学調整層3が屈折率のマッチングを行うためである。また、光学調整層3が存在すると、基板6の表面で発生する界面反射が抑制されるため、光学ロスが低減され、光透過効率が向上する。さらに、光学調整層3は、接着剤を兼ねている。そのため、隣り合う基板6を強固に接着することができる。さらに、複数の基板6がガラスを含む場合、光スイッチングデバイス100が割れたとしても、ガラスの飛散を抑制できる。それにより、安全なデバイスが得られる。
光学調整層3の基板6に対する接着力をASとする。光学可変層2の電極5に対する接着力をAEとする。このとき、光スイッチングデバイス100においては、
AS > AE
の関係が、成り立っている。
接着力ASは、光学調整層3と基板6との結合力であってよい。接着力ASは、光学調整層3と基板6との界面で発揮される。光学調整層3と基板6との界面は、図1〜図3において、FSで示されている。
接着力AEは、光学可変層2と電極5との結合力であってよい。接着力AEは、光学可変層2と電極5との界面で発揮される。光学可変層2と電極5との界面は、図1〜図3において、FEで示されている。
接着力についてAS>AEの関係が成り立つと、基板間の接着性が向上する。そのため、剥がれる方向に力が働いたとしても、基板6が剥がれにくくなり、強固なデバイスが形成される。また、この関係は、熱に対する安定性を高める。その理由は、光学可変層2よりも熱によって膨張収縮の問題が発生しやすい基板6を強固に接着するからと推測される。さらに、光スイッチングデバイス100に割れが生じたとしても、接着力が高いと、飛散が抑制される。
さらに、接着力についてのAS>AEの関係は、デバイスの製造を容易にさせる。光スイッチングデバイス100は、後述のように、複数の光学可変体1が積層された後、側端部の一部が除去されて、電極5が露出されることにより製造され得る。その際、上記の接着力の関係が成り立っていると、側端部の一部を除去するときに、基板6と基板6との間で、剥がれてしまうことが抑制され、側端部の除去が良好に行われ得る。そのため、デバイスの製造が容易になる。
接着力の関係(AS>AE)は、光スイッチングデバイス100の剥離試験により確認することができる。例えば、第1面F1と第2面F2とのそれぞれに、粘着テープを貼り、これらを離れる方向に引っ張って、光スイッチングデバイス100の内部で剥離(分離)する部分を観察することで、接着力の関係が確認される。AS>AEの関係が成り立つときには、隣り合う基板6の間、すなわち、隣り合う光学可変体1の間においての分離が生じずに、光学可変層2と電極5との間での分離が生じる。なお、ここに示したのは、接着力の試験の好ましい一例であり、他の試験で接着性を確認してもよい。
光学調整層3は、隣り合う基板6の間に配置されている。ここで、隣り合う基板6のうちの一方を基板6Xとし、他方を基板6Yとする。例えば、図1〜図3において、基板6bが基板6Xとなり、基板6cが基板6Yとなる。基板6Xと基板6Yとが同様の材料で形成されている場合、基板6Xの屈折率と基板6Yの屈折率は略同一となる。このとき、光学調整層3の屈折率は、基板6X(基板6Y)の屈折率との差が、絶対値で、0.1以下であることが好ましく、0.05以下であることがより好ましい。基板6と光学調整層3との屈折率差が小さくなると、光学的により有利になる。界面での光の反射が抑制されるからである。光学調整層3の屈折率が、基板6X(基板6Y)の屈折率と同じであってもよい。なお、屈折率は、可視光波長域における屈折率を意味する。本開示においては、可視光波長域は、波長450〜700nmの領域と定義される。この波長域の光は、人の目に視認されるため光スイッチングデバイス100の透明性に大きく影響する。よって、この可視光波長域において屈折率を調整することで、光学的により有利になる。
一方、基板6Xと基板6Yとが、別の材料である場合、これらの間で屈折率の差が生じ得る。例えば、基板6X及び基板6Yのうちの一方がガラスで、他方が樹脂の場合、屈折率差が生じやすい。また、基板6X及び基板6Yの両方がガラス(又は樹脂)であっても、異なる材質のものを用いれば、屈折率差が生じ得る。ここで、光学調整層3は、光学調整層3の一方に配置される基板6Xの屈折率と、光学調整層3の他方に配置される基板6Yの屈折率との間の屈折率を有することが、好ましい一態様である。それにより、屈折率差がより低減され、光学特性が向上する。
さらに、光学調整層3の屈折率が基板6Xの屈折率と基板6Yの屈折率との間である場合には、光学調整層3は、厚み方向に屈折率が段階的に変化することがより望ましい。屈折率が段階的に変化することで、屈折率差がより低減され、光学特性がさらに向上する。例えば、一方の基板6Xの屈折率が他方の基板6Yの屈折率よりも高い場合、屈折率の低い基板6Yから、屈折率の高い基板6Xに向かって、光学調整層3の屈折率が徐々に高くなっていてよい。屈折率の変化は厚み方向で行われ得る。屈折率の変化は、階段状の変化であってもよいし、滑らかな変化(グラデーション状)であってもよい。階段状の屈折率の変化は、例えば、光学調整層3が複数の層で構成され、複数の層の屈折率が変わることにより得られる。光学調整層3は複層構造を有していてよい。グラデーション状の変化は、例えば、単層の光学調整層3が厚み方向に屈折率が高くなることにより得られる。
基板6X及び基板6Yのいずれか一方又は両方が異方性を有する場合、光学調整層3は、異方性を有する基板と同様の異方性を有するとよい。それにより、光の透過性が高まるため、光学特性がさらに向上する。例えば、樹脂材料(PETやPENなど)で基板6が構成された場合、基板6は異方性を有し得る。
光学調整層3は、紫外線吸収性を有するとよい。それにより、紫外線によるデバイスの劣化を抑制することができる。また、紫外線を吸収するため、光スイッチングデバイス100に紫外線カット性を付与できる。この態様は、光スイッチングデバイス100の少なくとも一方の面が屋外に曝される場合に特に有効である。屋内への紫外線の侵入を抑制できるからである。また、光学可変体1が三つ以上の場合に、紫外線カットの効果が増大する。
光学調整層3は、光吸収性が小さい方がよい。それにより、光の損失を抑制することができる。
光学調整層3は、樹脂組成物により形成することができる。樹脂は、熱硬化性の樹脂であってもよいし、光硬化性の樹脂であってもよい。樹脂組成物は、適宜の添加剤を含んでいてよい。例えば、低屈折率粒子又は高屈折率粒子の含有により、屈折率が調整され得る。また、紫外線吸収剤の含有により、紫外線吸収性が付与される。光学調整層3の好ましい材料としては、COP(シクロオレフィンポリマー)が例示される。COPは、光吸収性が小さいため好適である。
光学調整層3は、ゲル材料であってもよい。接着性と光学調整性とがあれば、光学調整層3はゲル材料であり得る。光学調整層3がゲル材料である場合、耐衝撃性を高めることができる。また、熱応力による収縮を緩和することができる。
光スイッチングデバイス100の製造方法を説明する。
光スイッチングデバイス100の製造方法は、複数の光学可変体1を光学調整層3を介して接着する工程と、複数の光学可変体1に切れ目CLを入れる工程と、光学可変体1の側端部1xを除去する工程とを含む。複数の光学可変体1に切れ目CLを入れる工程は、複数の光学可変体1の側端部において、厚み方向の一方の端部に配置される基板6から、厚み方向の他方の端部に配置される光学可変層2まで、切れ目CLを入れる工程である。光学可変体1の側端部1xを除去する工程は、切れ目CLに沿って、光学可変体1の側端部1xを除去し、電極5を露出させる工程である。
図4により光スイッチングデバイス100の製造方法をより詳しく説明する。図4では、光学可変体1が2つの場合(図1参照)を示しているが、光学可変体1が3つの場合(図2参照)、4つの場合(図3参照)、及びそれ以上の場合も、図4から理解できる。
まず、図4のAに示すように、複数の光学可変体1を個々に作製する。光学可変体1の作製は、適宜の積層プロセスにより行うことができる。次に、図4のBに示すように、複数の光学可変体1を光学調整層3で接着する。光学調整層3での接着は、例えば、光学可変体1の表面に、接着性を有する光学調整層3の材料を塗布し、この面に他の光学可変体1を重ねることで行うことができる。これにより、複数の光学可変体1が貼り合わせられる。硬化性の材料で光学調整層3が構成される場合、材料を硬化させることで光学調整層3が形成される。
次いで、図4のCに示すように、複数の光学可変体1の側端部に、切れ目CLを入れる。切れ目CLは、例えば、カッタやレーザなどの切断具で形成される。切れ目CLは、厚み方向の一方の端部に配置される基板6から、厚み方向の他方の端部に配置される光学可変層2まで形成される。例えば、図4のCの上側からの切れ込みでは、切れ目CLが、基板6αから光学可変層2αまで形成されている。また、図4のCの下側からの切れ込みでは、切れ目CLが、基板6βから光学可変層2βまで形成されている。切れ目CLは厚み方向の途中まで形成されるものであってよい。なお、複数の電極5の露出のために、切れ目CLはその他にも適宜形成されていてよい。例えば、図4のCでは、基板6αから光学可変層2βまでの切れ目CLと、基板6βから光学可変層2αまでの切れ目CLとが形成されている。
そして、図4のDに示すように、切れ目CLより外側に存在する1又は複数の光学可変体1の側端部1xを除去する。すると、切れ目CLは、厚み方向の途中で止まっているため、基板6から光学可変層2までの部分が取り除かれ、電極5の一部が露出する。これにより、電極5は露出面5sを有するようになる。電極5の露出面5sは、光スイッチングデバイス100の側端部に配置される。ここで、上述したように、光学調整層3と基板6との間の接着力ASは、光学可変層2と電極5との間の接着力AEよりも大きい。そのため、側端部1xを除去する際に、基板6と基板6との間が分離することなく、除去したい側端部1xを一体的に取り除くことができる。そのため、製造が容易になる。特に、図4のCに示す界面FS1及び界面FS2における接着力が、界面FE1及び界面FE2における接着力よりも大きいことが有利である。界面FE1及び界面FE2は、光学調整層3が接する基板6の反対側の面に設けられた光学可変部における前記基板6とは遠い方の電極5と光学可変層2との間の界面ということができる。あるいは、界面FE1及び界面FE2は、光学調整層3が接する基板6と対向する基板6に接する電極5と、この電極5に接する光学可変層2との間の界面といってもよい。上記のような界面の接着力の関係が成り立つことにより、製造がさらに容易になる。
最後に、図4のEに示すように、接続配線4が電極5の露出面5sに接続される。接続配線4は、電源との接続が可能な適宜の構造を有し得る。例えば、接続配線4は、ワイヤ、導電材料の積層物などで構成され得る。このとき、接続配線4によって、露出面5sが被覆されてもよい。以上により、光スイッチングデバイス100が製造される。なお、この後、さらに筐体に取り付けられたりしてもよい。例えば、光スイッチングデバイス100の外周を取り囲む枠材が取り付けられ得る。また、光スイッチングデバイス100を面状に覆う透明なカバー体が、片方の面、又は両方の面に取り付けられてもよい。
ところで、以上では、1つの光学可変層2が一対の基板6,6の間に配置された例を示したが、2以上の光学可変層2が一対の基板6,6の間に配置されてもよい。また、隣り合う基板6が合体して、この部分の光学調整層3が省略されてもよい。基板6の数が減少すると、界面の数が減るため、光学的に有利になる。光スイッチングデバイス100では、隣り合う基板6の間のいずれかの位置に、光学調整層3が設けられていればよい。
図5は、光スイッチングデバイス100の機能の一例を示している。図5では、複数の光学可変部は模式的に図示されている。矢印は光の進行を示している。図5では、第1面F1側から、複数の光学可変部として、光散乱可変部1S、面状発光部1P、光反射可変部1R、光吸収可変部1Qが配置されている例を示している。図5の光スイッチングデバイス100は、第1面F1から主として面状発光部1Pの光を取り出すように構成されている。
図5では、機能している光学可変部を斜線で示している。機能しているとは、光散乱可変部1Sでは光散乱性が発揮されている状態、面状発光部1Pでは発光している状態、光反射可変部1Rでは光反射性が発揮されている状態、光吸収可変部1Qでは光吸収性が発揮されている状態、を意味する。ある光学可変部が機能していない場合、その光学可変部は透明となり得る。なお、説明を単純化するため、光散乱性や光反射性や光吸収性が中間の状態は示していないが、中間状態があってもよい。図5のA〜Qは、光学可変部の機能の状態が異なっており、光スイッチングデバイス100としてそれぞれ異なる状態となっている。光スイッチングデバイス100は、図5のA〜Qの全ての状態を発揮可能であってもよいし、これらのうちのいくつかの状態を発揮可能であってもよい。光スイッチングデバイス100は、光学的な状態が切り替え可能である。
図5に示すように、複数の光学可変部のうちの少なくとも一つが機能すると、光スイッチングデバイス100に外部から入った光がそのまま通りぬけにくくなるため、光スイッチングデバイス100は不透明になり得る。例えば、図5のAのように光散乱可変部1Sの光散乱性が発揮されている場合には、光が散乱されるため、第1面F1と第2面F2との間において光がそのまま通りぬけできない。また、図5のCのように光反射可変部1Rの光反射性が発揮されている場合には、光が反射されるため、第1面F1と第2面F2との間において光がそのまま通りぬけできない。また、図5のDのように、光吸収可変部1Qの光吸収性が発揮されている場合には、光が吸収されるため、第1面F1と第2面F2との間において光が通りぬけできない。図5のBのように、面状発光部1Pが機能する場合であっても、面状発光部の発する光により、向こう側が視認しにくくなり、不透明となり得る。一方、図5のQでは、全ての光学可変部が機能しておらず、透明である。そのため、光スイッチングデバイス100は、図5のQのような透明な状態から、図5のA〜Pで示される種々の不透明な状態に変化可能になり得るため、光学特性が向上する。特に、複数の光学的なパターン変化が可能になると、不透明と透明との間に複雑な変化がもたらされ、複数の模様を形成することが可能なため、意匠性の優れた光学状態が発揮され得る。図5では光の進行が矢印で示されており、この図から各状態における光スイッチングデバイス100の光学的な作用が理解される。複数の光学可変部の機能については、前述したように、表1からも理解される。
図5では、4つの種類の異なる光学可変部を組み合わせた例を示したが、この例から、光学可変部が3つの場合及び2つの場合も、光スイッチングデバイス100の機能は理解され得る。また、光学可変部の配置(順序)が変更された場合も、図5に基づき、光スイッチングデバイス100の機能は理解され得る。
光スイッチングデバイス100は、窓として利用することができる。光学的に異なる状態を作り出す窓は、アクティブウィンドウと定義され得る。不透明と透明とがパターン変化する窓は、利用価値が高い。窓は、内窓、外窓のいずれにも利用可能である。また、窓として車載窓の利用も可能である。車載窓は、自動用、電車、機関車、列車などの車両用や、飛行機用、船用などの窓であってよい。例えば、透明と不透明を変化させることが可能な窓は高級自動車用に好適である。また、光スイッチングデバイス100は、建材として利用することができる。建材としては、壁材、パーティション、サイネージなどに利用することができる。サイネージはいわゆる照明広告であってよい。壁材は、外壁用であってもよいし、内壁用であってもよい。
光スイッチングデバイス100は、面状発光部を有する場合、照明装置として利用することができる。光スイッチングデバイス100では、光学的な状態が変化する照明が得られ得る。
図6は、光スイッチングデバイス100の応用例である。図6では、建材200が示されている。図6に示される建材200は、窓である。建材200は、光スイッチングデバイス100を備える。建材200は、枠体101と、配線102と、プラグ103とを有する。建材200は、いわば電化建材である。枠体101は光スイッチングデバイス100の外周を囲っている。配線102は、光スイッチングデバイス100と電気的に接続されている。プラグ103は、外部電源との接続が可能である。プラグ103及び配線102を通して電力が光スイッチングデバイス100に供給されると、光スイッチングデバイス100の光学的状態が変化し得る。例えば、光スイッチングデバイス100は、透明な状態、半透明(すりガラス状)の状態、鏡の状態、発光する状態、の複数の状態が変化する。そのため、建材200は、光学特性に優れている。
以上、光スイッチングデバイス及びその製造方法、並びに建材等について、実施の形態に基づいて説明したが、本開示の光スイッチングデバイス等は、上記実施の形態に限定されるものではない。例えば、上記の実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
1 光学可変体
2 光学可変層
3 光学調整層
4 接続配線
5 電極
6 基板
CL 切れ目
1x 側端部
5s 露出面

Claims (6)

  1. 光スイッチングデバイスを製造する方法であって、
    前記複数の光学可変体を前記光学調整層を介して接着する工程と、
    前記複数の光学可変体の側端部において、厚み方向の一方の端部に配置される前記基板から、厚み方向の他方の端部に配置される前記光学可変層まで、切れ目を入れる工程と、
    前記切れ目に沿って、前記光学可変体の側端部を除去し、前記電極を露出させる工程と、を含み、
    前記光スイッチングデバイスは、
    面状であり、電力により光学的状態の程度が変化可能である複数の光学可変体と、
    前記複数の光学可変体の間に配置される光学調整層と、を備え、
    前記複数の光学可変体の各々は、一対の基板と、前記一対の基板の間に配置される一対の電極と、前記一対の電極の間に配置され、光学的状態の程度が変化可能な光学可変層と、を備え、
    前記光学調整層は、前記複数の光学可変体のうちの隣り合う前記光学可変体の前記基板同士を厚み方向で面状に接着し、隣り合う前記光学可変体の前記基板の間の屈折率を可視光波長域において調整し、
    前記電極は、電力を供給するための露出面を有しており、
    前記光学調整層の前記基板に対する接着力は、前記光学可変層の前記電極に対する接着力よりも大きい、
    光スイッチングデバイスの製造方法
  2. 前記光学調整層は、当該光学調整層の一方に配置される前記基板の屈折率と、当該光学調整層の他方に配置される前記基板の屈折率との間の屈折率を有する、請求項1に記載の光スイッチングデバイスの製造方法
  3. 前記光学調整層は、厚み方向に屈折率が段階的に変化する、請求項2に記載の光スイッチングデバイスの製造方法
  4. 前記光学調整層は、紫外線吸収性を有する、請求項1乃至3のいずれか1項に記載の光スイッチングデバイスの製造方法
  5. 前記電極の前記露出面は、前記基板の側端部に存在する、請求項1乃至4のいずれか1項に記載のスイッチングデバイスの製造方法
  6. 前記光学調整層の前記基板に対する接着力は、前記一対の基板のうち前記光学調整層が接する基板に対向する基板側の前記電極についての前記光学可変層の当該電極に対する接着力よりも大きい、請求項1乃至5のいずれか1項に記載のスイッチングデバイスの製造方法
JP2016532417A 2014-07-11 2015-06-24 光スイッチングデバイスの製造方法 Active JP6351001B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014142798 2014-07-11
JP2014142798 2014-07-11
PCT/JP2015/003152 WO2016006180A1 (ja) 2014-07-11 2015-06-24 光スイッチングデバイス及びその製造方法、並びに建材

Publications (2)

Publication Number Publication Date
JPWO2016006180A1 JPWO2016006180A1 (ja) 2017-04-27
JP6351001B2 true JP6351001B2 (ja) 2018-07-04

Family

ID=55063837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532417A Active JP6351001B2 (ja) 2014-07-11 2015-06-24 光スイッチングデバイスの製造方法

Country Status (4)

Country Link
US (1) US20170101819A1 (ja)
JP (1) JP6351001B2 (ja)
DE (1) DE112015003215T5 (ja)
WO (1) WO2016006180A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574641B1 (ko) 2016-07-19 2023-09-06 삼성디스플레이 주식회사 표시 장치
DE102017212657B4 (de) 2017-05-24 2021-09-30 Volkswagen Aktiengesellschaft Fensterscheibeneinrichtung für ein Fenster eines Kraftfahrzeugs sowie Verfahren und Kraftfahrzeug
EP3855242B1 (en) * 2018-09-19 2023-10-11 Toppan Printing Co., Ltd. Light modulation sheet, and method of manufacturing light modulation sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516076B1 (en) * 1991-05-27 1999-04-07 Dainippon Ink And Chemicals, Inc. Liquid crystal device
JP2003029240A (ja) * 2001-07-16 2003-01-29 Matsushita Electric Ind Co Ltd 画像表示装置およびその駆動方法並びにその選択表示方法
JP2006234963A (ja) * 2005-02-22 2006-09-07 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2008197224A (ja) * 2007-02-09 2008-08-28 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
US20100017738A1 (en) * 2008-07-20 2010-01-21 Rhodes Gary J Project tracking software with compact visual elements that indicate task completion and overdue status
JP4513921B2 (ja) * 2008-12-09 2010-07-28 ソニー株式会社 光学体およびその製造方法、窓材、ブラインド、ロールカーテン、ならびに障子
KR101721889B1 (ko) * 2010-08-06 2017-03-31 삼성전자주식회사 능동형유기발광다이오드 표시장치 및 그의 표시제어방법
US8164818B2 (en) * 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
GB201101915D0 (en) * 2011-02-04 2011-03-23 Terry Paul R V5- self scan checkout hybrid
US8994042B2 (en) * 2013-05-20 2015-03-31 Lg Electronics Inc. Display panel and display device
US9989798B2 (en) * 2014-06-27 2018-06-05 Lg Display Co., Ltd. Light controlling apparatus, method of fabricating the light controlling apparatus and transparent display device including the light controlling apparatus with transparent mode and light shielding mode

Also Published As

Publication number Publication date
DE112015003215T5 (de) 2017-04-20
US20170101819A1 (en) 2017-04-13
WO2016006180A1 (ja) 2016-01-14
JPWO2016006180A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016006181A1 (ja) 光スイッチングデバイス及び建材
US10525674B2 (en) Glazed vehicle roof
KR102127226B1 (ko) 스위칭가능한 유리 구조물 및 차량 창문
JP6594203B2 (ja) 照明手段、および光透過率制御手段を含むガラスルーフ
WO2016013154A1 (ja) 調光素子及びそれを備える建材
US7532383B2 (en) Electrochromic device having improved color properties
JP2005183352A (ja) 照明装置
JP6351001B2 (ja) 光スイッチングデバイスの製造方法
JP2015527948A (ja) 照明手段を含むサンルーフ
WO2019214926A1 (de) Bedien- und/oder anzeigeelement für ein kraftfahrzeug
JP2021181403A (ja) 合わせガラス
WO2017122245A1 (ja) 光学デバイス及び配光機能付き窓
TWM534855U (zh) 觸控裝置
JP4578954B2 (ja) 表示装置
WO2022107808A1 (ja) 調光シート、および、調光シートの製造方法
CN113250589A (zh) 具有有源部件的透光面板
US10121833B2 (en) Organic light-emitting diode
JP2019158938A (ja) 熱反射機能を有する調光フィルム
WO2015182039A1 (ja) 面状発光体
WO2016006166A1 (ja) 面状発光ユニット、面状発光体、照明装置及び建材
WO2016009596A1 (ja) 面状発光体、それを備えた照明装置及び建材
WO2015097965A1 (ja) 面状発光体、それを用いた照明装置及び建材
JP2017157269A (ja) 光デバイス
WO2016009589A1 (ja) 面状光学素子、照明装置及び建材
JP2016025153A (ja) 面状発光体及び建材

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R151 Written notification of patent or utility model registration

Ref document number: 6351001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151