WO2016005201A1 - Sensor mit opferanode - Google Patents

Sensor mit opferanode Download PDF

Info

Publication number
WO2016005201A1
WO2016005201A1 PCT/EP2015/064415 EP2015064415W WO2016005201A1 WO 2016005201 A1 WO2016005201 A1 WO 2016005201A1 EP 2015064415 W EP2015064415 W EP 2015064415W WO 2016005201 A1 WO2016005201 A1 WO 2016005201A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
layer
leadframe
intermediate layer
contacting
Prior art date
Application number
PCT/EP2015/064415
Other languages
English (en)
French (fr)
Inventor
Jakob Schillinger
Dietmar Huber
Stefan GÜNTHNER
Thomas Fischer
Lothar Biebricher
Michael SCHULMEISTER
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to KR1020177001221A priority Critical patent/KR101930649B1/ko
Priority to CN201590000777.6U priority patent/CN206758422U/zh
Publication of WO2016005201A1 publication Critical patent/WO2016005201A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49534Multi-layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the invention relates to a sensor for detecting a dependent of a physical quantity to be measured physical encoder field.
  • WO 2010/037 810 A1 discloses a sensor with a sensor circuit which is set up to output a sensor signal dependent on the physical variable to be measured via a physical encoder field dependent on a physical quantity to be measured.
  • a sensor for detecting a physical encoder field dependent on a physical quantity to be measured comprises a leadframe with a
  • the specified sensor is based on the consideration that the contacting layer is necessary for electrical connection of the sensor circuit to the conductor track of the leadframe via a bonding wire as a connecting element, a sufficiently high mechanical strength of the bonding wire on the leadframe si ⁇ cherieri, so this is not retrospectively again detached from the leadframe and the electrical connection between Sen ⁇ sorscrien and interconnect is interrupted.
  • the leadframe should it be resistant to certain designed to he ⁇ waiting pollution as contaminated liquids or gases. For example, in a vehicle, it may be necessary to have the leadframe resistant to sulfur contaminated liquids or gases. However, this has the disadvantage that the leadframe in its
  • the sacrificial anode layer has the greatest electro ⁇ negativity in the composite and is thus attacked by the penetrating moisture first. The contacting layer then remains longer, whereby the life of the sensor can be noticeably increased.
  • the specified sensor comprises a dirt mass enveloping at least the intermediate layer and the contacting layer on the conductor track.
  • This protective compound is to protect the sensor from environmental influences, such as the above-mentioned moisture.
  • Mechanical Kochbeanspru ⁇ chungen which may be caused by temperature changes and / or tensile stresses on the trace of the lead frame, for example, can lead to a break in the connection between the protective ground and lead frame, so that forms a gap between the lead frame and the protective ground, the Kunststoffierpin exposed to the aforementioned liquid to the outside.
  • the intermediate layer acting as a sacrificial anode protects the contacting layer and ensures a sufficiently long service life thereof.
  • the intermediate layer acting as a sacrificial anode should be to have ⁇ least in the region a very large surface area, one in which the penetrating most likely to occur. For this reason, in a particular development of the specified sensor, the intermediate layer at least partially protrudes in front of the contacting layer in order to ensure the largest possible surface area.
  • the intermediate layer in a sectional plane between the intermediate layer and the
  • the intermediate layer should be seen in a sectional plane between the intermediate layer and the Needlesier Anlagen but formed larger area than the Needlesier Anlagen because a corresponding large sacrificial layer area provides an increased reaction area and thus improved protection of the contacting layer.
  • the intermediate layer is formed thinner seen normal to a sectional plane between the intermediate layer and the Needlesier Anlagen, as the Bachier Anlagen, whereby the specified sensor is designed to save space.
  • the material used may be silver for the contact layer, a copper alloy or an iron-nickel alloy for the leadframe, and copper for the intermediate layer.
  • the indicated sensor may be an airbag acceleration sensor, a wheel speed sensor or an inertial sensor for a vehicle.
  • a vehicle includes a specified sensor.
  • FIG. 1 is a schematic view of a vehicle with a vehicle dynamics control
  • FIG. 2 is a schematic representation of an inertial sensor in the vehicle of FIG. 1,
  • FIG. 3 shows an embodiment of the inertial sensor of FIG. 2 in a schematic sectional view
  • FIG. 4 shows the inertial sensor of FIG. 3 on a printed circuit board in a schematic side view
  • FIG Fig. 5 shows a detail of the inertial sensor of Fig. 4.
  • Fig. 1 shows a schematic view of a vehicle 2 with a known vehicle dynamics control. Details of this driving dynamics control can be found for example in DE 10 2011 080 789 AI.
  • the vehicle 2 comprises a chassis 4 and four wheels 6. Each wheel 6 can be slowed down relative to the chassis 4 via a brake 8 fastened fixedly to the chassis 4 in order to slow down a movement of the vehicle 2 on a road (not shown).
  • ABS antilock braking system
  • ESP electronic stability program
  • the below mentioned driving dynamics data 16 inertial data of the vehicle 2 detects the ⁇ example, a pitch rate, a roll rate, a yaw rate, a lateral acceleration, a longitudinal acceleration and / or vertical acceleration of the vehicle 2 may include.
  • a controller 18 can determine, in a manner known to the person skilled in the art, whether the vehicle 2 slips on the roadway or even deviates from the aforementioned predetermined trajectory and correspond with a known controller output signal 20 to respond.
  • the controller output signal 20 may then be used by an actuator 22 to communicate by means of
  • the controller 18 may be integrated, for example, in a known motor control of the vehicle 2. Also, the controller 18 and the actuator 22 as a common
  • Control device formed and optionally be integrated into the aforementioned engine control.
  • Inertialsensor 14 as driving dynamics data 16, the indicated in Fig. 2 lateral acceleration 26 detected on the vehicle and the yaw rate 28, with which the vehicle 2 rotates about its vertical axis, because they are usually used in the context of the aforementioned stability program.
  • the invention is explained in more detail with reference to the inertial sensor 14, the invention can be applied to any desired sensors, such as the speed sensors 10 mentioned above.
  • Inertialsensors 14 explained in more detail with reference to FIGS. 2 and 3. For detecting the lateral acceleration 26 is in the
  • Inertialsensor 14 a transverse accelerometer 30 is arranged.
  • the Querbeatungsmessaufsmelling 30 is exposed ⁇ 32 of a physical timer field in the form of a Zentrifugalkraftfel that the
  • Querbeschleunmessmessetzillon 30 acts and accelerated to be detected with the lateral acceleration 26 to the vehicle 2.
  • the detected lateral acceleration 26 is then output to a signal conditioning circuit 34.
  • a Coriolis acceleration sensor 36 is arranged in the inertial sensor 14.
  • Coriolis Beschreibungsmessaufsmelling 36 is exposed to a physical see encoder field in the form of a Coriolis force field 38.
  • the Coriolis force field 38 In response to the Coriolis force field 38, the
  • Coriolis Beschreibungsmessaufsmelling 36 corresponding evaluation device 42 can be converted into the yaw rate 28.
  • An example of how the yaw rate 28 can be detected based on a correlation field 38 is described in the publication DE 10 2010 002 796 A1, which is why it should be omitted here for the sake of brevity.
  • the detected yaw rate 28 is output to the signal conditioning circuit 34.
  • the thus detected lateral acceleration 26 and yaw rate 28 can be post-processed, for example to reduce the noise band gap and to increase the signal strength.
  • the thus processed lateral acceleration 26 and yaw rate 28 can then be output to an interface 44, which then sends the two detected signals to the controller 18 as driving dynamics data 16.
  • This interface 44 could, for example, be based on the PSI5 standard or the CAN standard.
  • Interconnections can be realized here via electrical lines in the form of bonding wires 50.
  • the interface 44 can be integrated into the signal conditioning circuit 34 and designed as an application-specific integrated circuit, hereinafter referred to as ASIC 34 (application-specific integrated control).
  • ASIC 34 application-specific integrated control
  • the sensor circuit 46 may also be surrounded by a mechanical decoupling material 51, also called globetop mass 51, in the form of a silicone material, which in turn may be encapsulated together in a molded as injection molding material 52 protective compound 52, such as a thermoset in the form of an epoxy resin 52.
  • corresponding contact possibilities protrude from the inertial sensor 14, such as pins shown in FIG. 2, for making electrical contact with a circuit, such as the controller 18, which can be used as an interface 54 to a cable, plug or superordinate circuit, not shown.
  • a circuit such as the controller 18, which can be used as an interface 54 to a cable, plug or superordinate circuit, not shown.
  • FIGS. 4 and 5 in which a Wei ⁇ training of the inertial sensor 14 is shown.
  • the entire sensor circuit 46 is shown as a single block to simplify the following illustrations.
  • the contacting of the sensor circuit 46 and the bonding wires 50 on the leadframe 48 takes place in the context of the present embodiment via a contact layer 56.
  • a contact layer 56 This can be formed, for example, from silver. If the bonding wires 50 are made of gold, then the silver contacting layer 56 ensures a stable electrical and mechanical connection of the bonding wires 50 on the leadframe 48.
  • the sensor circuit 46 may be mechanically held and electrically contacted on the silver contact layer 56 via a contact adhesive layer 58.
  • the leadframe 48 In order to protect the leadframe 48 and in particular the interface 54 from weathering and other external influences, the leadframe 48 should be made of a material that withstands these external influences.
  • the inertial sensor 14 is in use in the above Vehicle 2 is usually exposed to sulphurous liquids or gases. These sulfur-containing liquids or gases must be able to withstand the leadframe 48 and must not decompose. Therefore, the leadframe 48 is made predominantly of copper alloys or iron-nickel alloys that can not be attacked by the sulfur-containing gases and liquids.
  • Liquids may convert the silver of Maisier Anlagen 56 into silver sulfides or other sulfur compounds, whereby the electrical contact of the bonding wire 50 is destroyed with the lead frame. In particular, this can occur if, due to mechanical overstressing, eg as a result of temperature changes or tensile forces on the leadframe 48, the protective compound 52 breaks and a gap 60 arises between the leadframe 48 and protective compound 52. In this gap 60, liquid contaminated with sulfur can penetrate to the bonding site 62 where the bonding wire 50 on the silver bonding layer 56 is electrically contacted.
  • an intermediate layer 64 between the silver contacting layer 56 and the leadframe 48 which is attacked as a sacrificial anode in front of the silver contacting layer 56.
  • the intermediate layer 64 must have an electronegativity that is greater than the electronegativity of the leadframe 48 and the silver contact layer 56. This is achieved in the context of the aforementioned materials, when the intermediate layer 64 is formed as a copper layer.
  • the interlayer 64 thus decouples the leadframe 48 from the silver contact layer 56 and allows the leadframe chemistry to be matched to contaminated gases and liquids entering the sensor without consideration for the silver contact layer 56. As shown in FIG. 5 with reference to a cutout 66 from FIG.
  • the intermediate layer 64 should have a projection 68 opposite to the silver contacting layer 56, in the course of which the intermediate layer 64 protrudes therefrom in a plan view of the silver contacting layer 56 ,
  • This projection 68 may be formed in regions, but it may also extend completely around the silver contact layer 56, as shown in Fig. 5.
  • Sectioning plane 72 between the silver contacting layer 56 and the intermediate layer 64 is formed larger than the corresponding surface of the silver contacting layer 56, thereby providing a larger chemical reaction surface with which the sacrificial anode-formed intermediate layer 56 can act.
  • the projection 68 should be at least as wide as a layer thickness 74 of the silver contacting layer.
  • a film thickness can be made thinner the intermediate layer 64 ⁇ 76, than the corresponding layer thickness 74 of the silver-contacting layer 56th

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Pressure Sensors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Die Erfindung betrifft einen Sensor (14) zum Erfassen eines von einer zu messenden physikalischen Größe (16) abhängigen physikalischen Geberfeldes (32, 38), umfassend: - einen Leadframe (48) mit einer Bestückinsel (58), einer Schnittstelle (54) und wenigstens einer von der Schnittstelle (54) zur Bestückinsel (58) führenden Leiterbahn (62), - eine auf der Bestückinsel (58) des Leadframes (48) getragene Sensorschaltung (46) zum Erfassen des Geberfeldes (32, 38) und zum Ausgeben eines vom Geberfeld (32, 38) abhängigen Sensorsignals (26, 28) über die Schnittstelle (54), und - einen Bonddraht (50) zum Kontaktieren der Sensorschaltung (46) mit der Leiterbahn (62) des Leadframes (48), - eine elektrisch an die Leiterbahn (62) des Leadframes (48) angebundene Kontaktierschicht (56) zum elektrischen Anbinden des Bonddrahtes (50) an den Leadframe (48), und - eine auf der Leiterbahn (62) des Leadframes (48) getragene Zwischenschicht (64), auf der von der Leiterbahn (62) des Leadframes (48) gesehen die Kontaktierschicht (56) getragen ist, wobei die Zwischenschicht (64) eine Elektronegativität aufweist, die größer ist, als eine Elektronegativität der Kontaktierschicht (56) und des Leadframes (48).

Description

Sensor mit Opferanode
Die Erfindung betrifft einen Sensor zum Erfassen eines von einer zu messenden physikalischen Größe abhängigen physikalischen Geberfeldes .
Aus der WO 2010 / 037 810 AI ist ein Sensor mit einer Sensorschaltung bekannt, die eingerichtet ist, über ein von einer zu messenden physikalischen Größe abhängiges physikalisches Geberfeld ein von der zu messenden physikalischen Größe abhängiges Sensorsignal auszugeben.
Es ist Aufgabe der Erfindung, derartige Sensoren zu verbessern.
Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen sind Gegenstand der ab¬ hängigen Ansprüche. Gemäß einem Aspekt der Erfindung umfasst ein Sensor zum Erfassen eines von einer zu messenden physikalischen Größe abhängigen physikalischen Geberfeldes einen Leadframe mit einer
Bestückinsel, einer Schnittstelle und wenigstens einer von der Schnittstelle zur Bestückinsel führenden Leiterbahn, eine auf der Bestückinsel des Leadframes getragene Sensorschaltung zum Erfassen des Geberfeldes und zum Ausgeben eines vom Geberfeld abhängigen Sensorsignals über die Schnittstelle, und einen Bonddraht zum Kontaktieren der Sensorschaltung mit der Leiterbahn des Leadframes, eine elektrisch an die Leiterbahn des Leadframes angebundene Kontaktierschicht zum elektrischen Anbinden des Bonddrahtes an den Leadframe und eine auf der Leiterbahn des Leadframes getragene Zwischenschicht, auf der von der Leiterbahn des Leadframes gesehen die Kontaktierschicht getragen ist, wobei die Zwischenschicht eine Elektronegativität aufweist, die größer ist, als eine Elektronegativität der Kontaktierschicht und des Leadframes. Dem angegebenen Sensor liegt die Überlegung zugrunde, dass die Kontaktierschicht beim elektrischen Anschließen der Sensorschaltung an die Leiterbahn des Leadframes über einen Bonddraht als Verbindungselement notwendig ist, eine ausreichend hohe mechanische Festigkeit des Bonddrahtes auf dem Leadframe si¬ cherzustellen, damit dieser sich im Nachhinein nicht wieder vom Leadframe löst und die elektrische Verbindung zwischen Sen¬ sorschaltung und Leiterbahn unterbrochen wird. Der Leadframe sollte dabei resistent gegen bestimmte zu er¬ wartende Umweltbelastungen, wie kontaminierte Flüssigkeiten oder Gase ausgelegt sein. So könnte es in einem Fahrzeug beispielsweise notwendig sein, den Leadframe beständig gegenüber mit Schwefel kontaminierten Flüssigkeiten oder Gasen auszulegen. Dies hat jedoch den Nachteil, dass der Leadframe in seiner
Elektronegativität nicht vollständig unabhängig gegenüber der Kontaktierschicht ausgebildet werden kann. Deshalb könnte die Kontaktierschicht bei in den Sensor eindringender mit Schwefel kontaminierter Feuchtigkeit durch Umwandlung in Sulfide oder anderer Schwefelverbindungen zerstört werden, was dann einen Ausfall des Sensors nach sich ziehen würde, weil der mechanische und folglich auch der elektrische Kontakt zwischen Bonddraht und Leiterbahn des Leadframes unterbricht. Hier greift der angegebene Sensor mit der Überlegung an, die Kontaktierschicht über eine Opferanodenschicht in Form der Zwischenschicht vom Leadframe zu entkoppeln. Mit dieser Op¬ feranodenschicht sind die chemischen Eigenschaften der
Kontaktierschicht unabhängig vom Material des Leadframes. Die Opferanodenschicht weist in dem Verbund die größte Elektro¬ negativität auf und wird somit von der eindringenden Feuchtigkeit als erstes angegriffen. Die Kontaktierschicht bleibt dann länger erhalten, wodurch die Lebensdauer des Sensors spürbar gesteigert werden kann.
Die Elektronegativität der Kontaktierschicht kann dann völlig frei gewählt werden, also auch kleiner als die Elektronegativität des Leadframes. In einer besonderen Weiterbildung umfasst der angegebene Sensor eine wenigstens die Zwischenschicht und die Kontaktierschicht auf der Leiterbahn einhüllende Schmutzmasse. Diese Schutzmasse soll den Sensor vor Umwelteinflüssen, wie beispielsweise der oben genannten Feuchtigkeit schützen. Mechanische Überbeanspru¬ chungen, die beispielweise durch Temperaturwechsel und/oder Zugbeanspruchungen auf die Leiterbahn des Leadframes bedingt sein können, können zu einem Aufbrechen der Verbindung zwischen Schutzmasse und Leadframe führen, so dass sich zwischen dem Leadframe und der Schutzmasse ein Spalt ausbildet, der das Kontaktierpin für die zuvor erwähnte Flüssigkeit nach außen hin exponiert. Die als Opferanode wirkende Zwischenschicht schützt dabei jedoch die Kontaktierschicht und stellt eine ausreichend lange Lebensdauer dieser sicher.
Die als Opferanode wirkende Zwischenschicht sollte dabei zu¬ mindest in dem Bereich eine möglichst große Oberfläche aufweisen werden, in dem die eindringende am Wahrscheinlichsten auftritt. Aus diesem Grund kragt die Zwischenschicht in einer besonderen Weiterbildung des angegebenen Sensors wenigstens teilweise vor die Kontaktierschicht, um diese möglichst große Oberfläche sicherzustellen . In einer bevorzugten Weiterbildung kann die Zwischenschicht in einer Schnittebene zwischen der Zwischenschicht und der
Kontaktierschicht gesehen flächig alternativ oder zusätzlich wenigstens genauso groß ausgebildet sein, wie die
Kontaktierschicht. Damit ist sichergestellt, dass zunächst auch tatsächlich die Zwischenschicht von der eindringenden Feuchtigkeit angegriffen, bevor die eindringende Feuchtigkeit die Kontaktierschicht angreift.
In einer besonders bevorzugten Weiterbildung sollte die Zwi- schenschicht in einer Schnittebene zwischen der Zwischenschicht und der Kontaktierschicht gesehen aber flächig größer ausgebildet sein, als die Kontaktierschicht, weil eine entsprechend große Opferschichtfläche eine erhöhte Reaktionsfläche und damit einen verbesserten Schutz der Kontaktierschicht bietet.
In einer anderen Weiterbildung des angegebenen Sensors ist die Zwischenschicht normal zu einer Schnittebene zwischen der Zwischenschicht und der Kontaktierschicht gesehen dünner ausgebildet, als die Kontaktierschicht, wodurch der angegebene Sensor sehr bauraumsparend ausgeführt wird. Als Material kann für Kontaktierschicht Silber, für den Leadframe eine Kupferlegierung oder eine Eisen-Nickel-Legierung und für die Zwischenschicht Kupfer gewählt werden.
Der angegebene Sensor kann ein Airbag-Beschleunigungssensor, ein Raddrehzahlsensor oder ein Inertialsensor für ein Fahrzeug sein.
Gemäß einem weiteren Aspekt der Erfindung umfasst ein Fahrzeug einen angegebenen Sensor. Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden, wobei :
Fig. 1 eine schematische Ansicht eines Fahrzeuges mit einer Fahrdynamikregelung, Fig. 2 einen schematische Darstellung eines Inertialsensors in dem Fahrzeug der Fig. 1,
Fig. 3 eine Ausführung des Inertialsensors der Fig. 2 in einer schematischen Schnittdarstellung,
Fig. 4 der Inertialsensor der Fig. 3 auf einer Leiterplatte in einer schematischen Seitenansicht, und Fig. 5 einen Ausschnitt aus dem Inertialsensor der Fig. 4 zeigen .
In den Figuren werden gleiche technische Elemente mit gleichen Bezugszeichen versehen und nur einmal beschrieben.
Es wird auf Fig. 1 Bezug genommen, die eine schematische Ansicht eines Fahrzeuges 2 mit einer an sich bekannten Fahrdynamikregelung zeigt. Details zu dieser Fahrdynamikregelung können beispielsweise der DE 10 2011 080 789 AI entnommen werden.
Das Fahrzeug 2 umfasst ein Chassis 4 und vier Räder 6. Jedes Rad 6 kann über eine ortsfest am Chassis 4 befestigte Bremse 8 gegenüber dem Chassis 4 verlangsamt werden, um eine Bewegung des Fahrzeuges 2 auf einer nicht weiter dargestellten Straße zu verlangsamen .
Dabei kann es in einer dem Fachmann bekannten Weise passieren, dass das die Räder 6 des Fahrzeugs 2 ihre Bodenhaftung verlieren und sich das Fahrzeug 2 sogar von einer beispielsweise über ein nicht weiter gezeigtes Lenkrad vorgegebenen Trajektorie durch Untersteuern oder Übersteuern wegbewegt. Dies wird durch an sich bekannte Regelkreise wie ABS (Antiblockiersystem) und ESP (elektronisches Stabilitätsprogramm) vermieden.
In der vorliegenden Ausführung weist das Fahrzeug 2 dafür Drehzahlsensoren 10 an den Rädern 6 auf, die eine Drehzahl 12 der Räder 6 erfassen. Ferner weist das Fahrzeug 2 einen
Inertialsensor 14 auf, der nachstehend Fahrdynamidaten 16 genannte Inertialdaten des Fahrzeuges 2 erfasst die bei¬ spielsweise eine Nickrate, eine Wankrate, eine Gierrate, eine Querbeschleunigung, eine Längsbeschleunigung und/oder eine Vertikalbeschleunigung des Fahrzeuges 2 umfassen können. Basierend auf den erfassten Drehzahlen 12 und Fahrdynamikdaten 16 kann ein Regler 18 in einer dem Fachmann bekannten Weise bestimmen, ob das Fahrzeug 2 auf der Fahrbahn rutscht oder sogar von der oben genannten vorgegebenen Trajektorie abweicht und entsprechen mit einem an sich bekannten Reglerausgangssignal 20 darauf reagieren. Das Reglerausgangssignal 20 kann dann von einer Stelleinrichtung 22 verwendet werden, um mittels
Stellsignalen 24 Stellglieder, wie die Bremsen 8 anzusteuern, die auf das Rutschen und die Abweichung von der vorgegebenen Trajektorie in an sich bekannter Weise reagieren.
Der Regler 18 kann beispielsweise in eine an sich bekannte Motorsteuerung des Fahrzeuges 2 integriert sein. Auch können der Regler 18 und die Stelleinrichtung 22 als eine gemeinsame
Regeleinrichtung ausgebildet und optional in die zuvor genannte Motorsteuerung integriert sein.
Um die nachstehenden Erklärungen zu vereinfachen soll in nicht einschränkender davon ausgegangen werden, dass der
Inertialsensor 14 als Fahrdynamikdaten 16 die in Fig. 2 angedeutete Querbeschleunigung 26 auf das Fahrzeug sowie die Gierrate 28 erfasst, mit der sich das Fahrzeuges 2 um seine Hochachse dreht, weil diese im Rahmen des zuvor genannten Stabilitätsprogrammes in der Regel zum Einsatz kommen.
Zwar wird die Erfindung anhand des Inertialsensors 14 näher erläutert, jedoch kann die Erfindung auf beliebige Sensoren, wie beispielsweise die genannten Drehzahlsensoren 10 angewendet werden.
Nachstehend wird das ein mögliches Prinzip für den
Inertialsensors 14 anhand von Fig. 2 und 3 näher erläutert. Zur Erfassung der Querbeschleunigung 26 ist in dem
Inertialsensor 14 ein Querbeschleunigungsmessaufnehmer 30 angeordnet. Der Querbeschleunigungsmessaufnehmer 30 ist einem physikalischen Geberfeld in Form eines Zentrifugalkraftfel¬ des 32 ausgesetzt, das auf den
Querbeschleunigungsmessaufnehmer 30 wirkt und mit der zu erfassenden Querbeschleunigung 26 auf das Fahrzeug 2 beschleunigt. Die erfasste Querbeschleunigung 26 wird anschließend an eine Signalaufbereitungsschaltung 34 ausgegeben. Zur Erfassung der Gierrate 28 ist in dem Inertialsensor 14 ein Coriolisbeschleunigungsmessaufnehmer 36 angeordnet. Der
Coriolisbeschleunigungsmessaufnehmer 36 ist einem physikali- sehen Geberfeld in Form eines Corioliskraftfeldes 38 ausgesetzt . Als Antwort auf das Corioliskraftfeld 38 gibt der
Coriolisbeschleunigungsmessaufnehmer 36 ein Gebersignal 40 aus, das dann in einer gegebenenfalls noch zum
Coriolisbeschleunigungsmessaufnehmer 36 dazugehörenden Aus- Werteeinrichtung 42 in die Gierrate 28 umgerechnet werden kann. Ein Beispiel, wie die Gierrate 28 basierend auf einem Corio- liskraftfeld 38 erfasst werden kann, ist in der Druckschrift DE 10 2010 002 796 AI beschrieben, weshalb hier der Kürze halber darauf verzichtet werden soll. Auch die erfasste Gierrate 28 wird an die Signalaufbereitungsschaltung 34 ausgegeben.
In der Signalaufbereitungsschaltung 34 können die so erfasste Querbeschleunigung 26 und Gierrate 28 nachbearbeitet werden, um beispielsweise den Rauschbandabstand zu mindern und die Sig- nalstärke zu erhöhen. Die so aufbereitete Querbeschleunigung 26 und Gierrate 28 kann dann an eine Schnittstelle 44 ausgegeben werden, die dann die beiden erfassten Signale als Fahrdynamikdaten 16 an den Regler 18 sendet. Diese Schnittstelle 44 könnte beispielsweise basierend auf dem PSI5-Standard oder dem CAN-Standard aufgebaut sein.
Im Rahmen der vorliegenden Ausführung bilden die beiden
Messaufnehmer 30, 36 und die Signalaufbereitungsschaltung 34 eine Sensorschaltung 46 aus, die auf einem als Leadframe 48 ausgeführten Schaltungsträger getragen und verschaltet ist. Gegebenenfalls nicht auf dem Leadframe 48 realisierbare
Verschaltungen können hier über elektrische Leitungen in Form von Bonddrähten 50 realisiert werden. Die Schnittstelle 44 kann in die Signalaufbereitungsschaltung 34 integriert und als an- wendungsspezifische integrierte Schaltung, nachstehend ASIC 34 (engl: application-speeific integrated cireuit) genannt, ausgebildet sein. Die Sensorschaltung 46 kann ferner von einem mechanischen Entkopplungsmaterial 51, auch Globetop-Masse 51 genannt, in Form eines Silikonmaterials umhüllt sein, das wiederum gemeinsam in einer als Spritzpressmaterial 52 ausgebildeten Schutzmasse 52, wie beispielsweise einem Duroplast in Form eines Epoxidharzes 52 verkapselt sein kann.
Schließlich ragen vom Inertialsensor 14 entsprechende Kontaktmöglichkeiten, wie in Fig. 2 gezeigte Beinchen zur elektrischen Kontaktierung mit einem Schaltkreis wie beispielsweise des Reglers 18 ab, die als Schnittstelle 54 zu einem nicht gezeigten Kabel, Stecker oder übergeordneten Schaltkreis verwendet werden kann. Es wird auf Fig. 4 und 5 Bezug genommen, in denen eine Wei¬ terbildung des Inertialsensors 14 gezeigt ist.
Im Rahmen der vorliegenden Ausführungen ist die gesamte Sensorschaltung 46 als ein einziger Block dargestellt, um die nachfolgenden Darstellungen zu vereinfachen.
Die Kontaktierung der Sensorschaltung 46 sowie der Bonddrähte 50 auf dem Leadframe 48 erfolgt im Rahmen der vorliegenden Ausführung über eine Kontaktierschicht 56. Diese kann bei- spielsweise aus Silber ausgebildet sein. Sind die Bonddrähte 50 aus Gold gefertigt, so stellt die Silber-Kontaktierschicht 56 eine beständige elektrische und mechanische Verbindung der Bonddrähte 50 auf dem Leadframe 48 sicher. Die Sensorschaltung 46 kann demgegenüber auf der Silber-Kontaktierschicht 56 über eine Kontaktkleberschicht 58 mechanisch gehalten und elektrisch kontaktiert sein.
Um den Leadframe 48 und insbesondere die Schnittstelle 54 vor Witterungserscheinungen und anderen äußeren Einflüssen zu schützen, sollte der Leadframe 48 aus einem Material gefertigt sein, das diesen äußeren Einflüssen stand hält. Erfahrungsgemäß wird der Inertialsensor 14 im Einsatz in dem oben genannten Fahrzeug 2 in der Regel schwefelhaltigen Flüssigkeiten oder Gasen ausgesetzt. Diesen schwefelhaltigen Flüssigkeiten oder Gasen muss der Leadframe 48 standhalten können und darf sich nicht zersetzen. Daher wird der Leadframe 48 vorwiegend aus Kupferlegierungen oder Eisen-Nickel-Legierungen gefertigt, die durch die schwefelhaltigen Gase und Flüssigkeiten nicht angegriffen werden können.
Derartigen Legierungen gegenüber weist das Silber der
Kontaktierschicht 56 jedoch eine größere Elektronegativität auf, was dazu führt, dass die schwefelhaltigen Gase und
Flüssigkeiten das Silber der Kontaktierschicht 56 in Silbersulfide oder andere Schwefelverbindungen umwandeln können, wodurch der elektrische Kontakt des Bonddrahtes 50 mit dem Leadframe zerstört wird. Insbesondere kann dies eintreten, wenn durch mechanische Überanspruchung, z.B. infolge von Temperaturwechsel oder Zugkräfte auf den Leadframe 48, die Schutz¬ masse 52 bricht und ein Spalt 60 zwischen Leadframe 48 und Schutzmasse 52 entsteht. In diesem Spalt 60 kann mit Schwefel kontaminierte Flüssigkeit zu der Bondstelle 62 vordringen, an der der Bonddraht 50 auf der Silber-Kontaktierschicht 56 elektrisch kontaktiert ist.
Um dies zu vermeiden wird im Rahmen der vorliegenden Ausführung vorgeschlagen, zwischen die Silber-Kontaktierschicht 56 und den Leadframe 48 eine Zwischenschicht 64 einzubringen, die als Opferanode vor der Silber-Kontaktierschicht 56 angegriffen wird. Dazu muss die Zwischenschicht 64 eine Elektronegativität aufweisen, die größer ist als die Elektronegativität des Leadframes 48 und der Silber-Kontaktierschicht 56 ist. Dies wird im Rahmen der zuvor genannten Materialen dadurch erreicht, wenn die Zwischenschicht 64 als Kupferschicht ausgebildet wird. Die Zwischenschicht 64 entkoppelt so den Leadframe 48 von der Silber-Kontaktierschicht 56 und erlaubt es die chemischen Eigenschaften des Leadframes an in den Sensor eindringende kontaminierte Gase und Flüssigkeiten anzupassen ohne auf die Silber-Kontaktierschicht 56 Rücksicht zu nehmen. Wie in Fig. 5 anhand eines Ausschnittes 66 aus der Fig. 4 gezeigt, sollte die Zwischenschicht 64 dabei gegenüber der Silber-Kontaktierschicht 56 eine Auskragung 68 aufweisen, im Rahmen derer die Zwischenschicht 64 in einer Draufsicht auf die Silber-Kontaktierschicht 56 von dieser hervorspringt. Diese Auskragung 68 kann bereichsweise ausgebildet sein, sie kann jedoch auch vollumfänglich um die Silber-Kontaktierschicht 56 verlaufen, wie in Fig. 5 dargestellt. Auf diese wird die Oberfläche 70 der Zwischenschicht 64, die parallel zur
Schnittebene 72 zwischen der Silber-Kontaktierschicht 56 und der Zwischenschicht 64 liegt, größer ausgebildet, als die entsprechende Oberfläche der Silber-Kontaktierschicht 56, wodurch eine größere chemische Reaktionsfläche bereitgestellt wird, mit der die als Opferanode ausgebildete Zwischenschicht 56 wirken kann. Die Auskragung 68 sollte dabei wenigstens so breit sein, wie eine Schichtdicke 74 der Silber-Kontaktierschicht.
Andererseits kann jedoch eine Schichtdicke 76 der Zwischen¬ schicht 64 dünner ausgebildet sein, als die entsprechende Schichtdicke 74 der Silber-Kontaktierschicht 56.

Claims

Patentansprüche
1. Sensor (14) zum Erfassen eines von einer zu messenden physikalischen Größe (16) abhängigen physikalischen Geber- feldes (32, 38), umfassend:
einen Leadframe (48) mit einer Bestückinsel (58), einer Schnittstelle (54) und wenigstens einer von der Schnittstel¬ le (54) zur Bestückinsel (58) führenden Leiterbahn (62),
eine auf der Bestückinsel (58) des Leadframes (48) ge- tragene Sensorschaltung (46) zum Erfassen des Geberfeldes (32, 38) und zum Ausgeben eines vom Geberfeld (32, 38) abhängigen Sensorsignals (26, 28) über die Schnittstelle (54), und
einen Bonddraht (50) zum Kontaktieren der Sensorschal¬ tung (46) mit der Leiterbahn (62) des Leadframes (48),
- eine elektrisch an die Leiterbahn (62) des Leadframes (48) angebundene Kontaktierschicht (56) zum elektrischen Anbinden des Bonddrahtes (50) an den Leadframe (48), und
eine auf der Leiterbahn (62) des Leadframes (48) getragene Zwischenschicht (64), auf der von der Leiterbahn (62) des Leadframes (48) gesehen die Kontaktierschicht (56) getragen ist, wobei die Zwischenschicht (64) eine Elektronegativität aufweist, die größer ist, als eine Elektronegativität der Kontaktierschicht (56) und des Leadframes (48).
2. Sensor (14) nach Anspruch 1, wobei die Elektronegativität der Kontaktierschicht (56) kleiner ist, als die Elektronegativität des Leadframes (48) .
3. Sensor (14) nach Anspruch 1 oder 2, umfassend eine wenigstens die Zwischenschicht (64) und die Kontaktierschicht (56) auf der
Leiterbahn einhüllende Schmutzmasse (52).
4. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Zwischenschicht (64) wenigstens teilweise vor die
Kontaktierschicht (56) kragt (68).
5. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Zwischenschicht (64) in einer Schnittebene (72) zwischen der Zwischenschicht (64) und der Kontaktierschicht (56) gesehen flächig wenigstens genauso groß ausgebildet ist, wie die Kontaktierschicht (56) .
6. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Zwischenschicht (64) in einer Schnittebene (72) zwischen der Zwischenschicht (64) und der Kontaktierschicht (56) gesehen flächig größer (70) ausgebildet ist, als die
Kontaktierschicht (56) .
7. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Zwischenschicht (64) normal zu einer Schnittebene (72) zwischen der Zwischenschicht (64) und der Kontaktierschicht (56) gesehen dünner ausgebildet ist, als die Kontaktierschicht (56) .
8. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Kontaktierschicht (56) eine Silberschicht ist.
9. Sensor (14) nach einem der vorstehenden Ansprüche, wobei der Leadframe (48) aus einem Material mit einer Kupferlegierung oder einer Eisen-Nickel-Legierung gebildet ist.
10. Sensor (14) nach einem der vorstehenden Ansprüche, wobei die Zwischenschicht (64) eine Kupferschicht ist.
PCT/EP2015/064415 2014-07-08 2015-06-25 Sensor mit opferanode WO2016005201A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177001221A KR101930649B1 (ko) 2014-07-08 2015-06-25 희생 양극을 구비하는 센서
CN201590000777.6U CN206758422U (zh) 2014-07-08 2015-06-25 具有牺牲阳极的传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014213218.5A DE102014213218A1 (de) 2014-07-08 2014-07-08 Sensor mit Opferanode
DE102014213218.5 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016005201A1 true WO2016005201A1 (de) 2016-01-14

Family

ID=53489953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/064415 WO2016005201A1 (de) 2014-07-08 2015-06-25 Sensor mit opferanode

Country Status (4)

Country Link
KR (1) KR101930649B1 (de)
CN (1) CN206758422U (de)
DE (1) DE102014213218A1 (de)
WO (1) WO2016005201A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290985A (zh) * 2016-07-26 2017-01-04 上海芯赫科技有限公司 一种电容式复合传感器及其制造方法
WO2021123644A1 (fr) * 2019-12-18 2021-06-24 Beyond Your Motion Dispositif electronique comportant une centrale inertielle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120051A1 (de) 2019-07-24 2021-01-28 Infineon Technologies Ag Package mit selektivem Korrosionsschutz einer elektrischen Verbindungsstruktur

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147148A (ja) * 1984-01-10 1985-08-03 Hitachi Cable Ltd 半導体装置用リ−ドフレ−ム
JPS60225456A (ja) * 1984-04-24 1985-11-09 Hitachi Cable Ltd 半導体用リ−ドフレ−ム
US5889317A (en) * 1997-04-09 1999-03-30 Sitron Precision Co., Ltd. Leadframe for integrated circuit package
US20070045810A1 (en) * 2005-07-22 2007-03-01 Hitoshi Hashiba Multichip sensor
WO2010037810A1 (de) 2008-10-02 2010-04-08 Continental Teves Ag & Co. Ohg Verfahren zur herstellung eines geschwindigkeits-sensorelements
DE102010002796A1 (de) 2009-03-11 2010-09-16 Continental Teves Ag & Co. Ohg Doppelaxialer Drehratensensor
DE102011080789A1 (de) 2010-08-10 2012-02-16 Continental Teves Ag & Co. Ohg Verfahren und System zur Regelung der Fahrstabilität
US8440507B1 (en) * 2012-02-20 2013-05-14 Freescale Semiconductor, Inc. Lead frame sulfur removal
WO2014095500A1 (de) * 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zum herstellen einer elektronischen baugruppe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266726B1 (ko) * 1995-09-29 2000-09-15 기타지마 요시토시 리드프레임과 이 리드프레임을 갖춘 반도체장치
US6203931B1 (en) * 1999-02-05 2001-03-20 Industrial Technology Research Institute Lead frame material and process for manufacturing the same
WO2000062341A1 (fr) * 1999-04-08 2000-10-19 Shinko Electric Industries Co., Ltd. Grille de connexion pour dispositif semi-conducteur
JP2010019693A (ja) * 2008-07-10 2010-01-28 Torex Semiconductor Ltd 加速度センサー装置
KR101359544B1 (ko) * 2012-06-01 2014-02-11 필코씨앤디(주) 패키징용 부품 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147148A (ja) * 1984-01-10 1985-08-03 Hitachi Cable Ltd 半導体装置用リ−ドフレ−ム
JPS60225456A (ja) * 1984-04-24 1985-11-09 Hitachi Cable Ltd 半導体用リ−ドフレ−ム
US5889317A (en) * 1997-04-09 1999-03-30 Sitron Precision Co., Ltd. Leadframe for integrated circuit package
US20070045810A1 (en) * 2005-07-22 2007-03-01 Hitoshi Hashiba Multichip sensor
WO2010037810A1 (de) 2008-10-02 2010-04-08 Continental Teves Ag & Co. Ohg Verfahren zur herstellung eines geschwindigkeits-sensorelements
DE102010002796A1 (de) 2009-03-11 2010-09-16 Continental Teves Ag & Co. Ohg Doppelaxialer Drehratensensor
DE102011080789A1 (de) 2010-08-10 2012-02-16 Continental Teves Ag & Co. Ohg Verfahren und System zur Regelung der Fahrstabilität
US8440507B1 (en) * 2012-02-20 2013-05-14 Freescale Semiconductor, Inc. Lead frame sulfur removal
WO2014095500A1 (de) * 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zum herstellen einer elektronischen baugruppe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290985A (zh) * 2016-07-26 2017-01-04 上海芯赫科技有限公司 一种电容式复合传感器及其制造方法
WO2021123644A1 (fr) * 2019-12-18 2021-06-24 Beyond Your Motion Dispositif electronique comportant une centrale inertielle
FR3105399A1 (fr) * 2019-12-18 2021-06-25 Beyond Your Motion Dispositif electronique comportant une centrale inertielle

Also Published As

Publication number Publication date
CN206758422U (zh) 2017-12-15
DE102014213218A1 (de) 2016-02-18
KR20170018940A (ko) 2017-02-20
KR101930649B1 (ko) 2018-12-18

Similar Documents

Publication Publication Date Title
EP3074728B1 (de) Verfahren zum herstellen eines sensors
WO2014020034A1 (de) Verdrahtungseinrichtung zum verdrahten einer elektronischen vorrichtung
DE102012208031A1 (de) +Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
WO2014095500A1 (de) Verfahren zum herstellen einer elektronischen baugruppe
WO2016005201A1 (de) Sensor mit opferanode
DE102013217888B4 (de) Elektronische Vorrichtung und Verfahren zur Herstellung einer elektronischen Vorrichtung
DE102008015709A1 (de) Elektrische Einrichtung mit Abdeckung
WO2007054519A1 (de) Sensor, sensorbauelement und verfahren zur herstellung eines sensors
EP3194897B1 (de) Feuchtigkeitserfassung innerhalb eines sensors
EP3167253B1 (de) Körperschallentkopplung an mit geberfeldern arbeitenden sensoren
WO2015078959A1 (de) Verfahren zum herstellen einer elektronischen baugruppe
DE102015206299B4 (de) Über Leiterplatte auf Leadframe verschaltete Sensorschaltung
DE102004028334A1 (de) Sensor
DE102015207533A1 (de) Schirmung als Silikonvergusshalter
WO2015162014A1 (de) Überwachung eines 3-achsen-inertialsensors mit einem 2-achsen-inertialsensor
DE102014210523A1 (de) Spannungsarmes Verkleben von Sensorchips
WO2016005200A1 (de) Sensorunterseitig verschaltete passive bauelemente
EP2773586A2 (de) Mikromechanisches element, bauelement mit einem mikromechanischen element und verfahren zum herstellen eines bauelements
WO2016005608A1 (de) Neutralteil für einen kundenspezifisch adaptierbaren sensor
DE102004022822A1 (de) Aufnehmersystem/Auslösesensor, geeignet für Diagnose-/Sicherheitsvorrichtung, insbesondere für Unfallschutzeinrichtungen in einem Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15731920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15731920

Country of ref document: EP

Kind code of ref document: A1