WO2016002867A1 - Machine dynamo-électrique - Google Patents

Machine dynamo-électrique Download PDF

Info

Publication number
WO2016002867A1
WO2016002867A1 PCT/JP2015/069087 JP2015069087W WO2016002867A1 WO 2016002867 A1 WO2016002867 A1 WO 2016002867A1 JP 2015069087 W JP2015069087 W JP 2015069087W WO 2016002867 A1 WO2016002867 A1 WO 2016002867A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
rotor
cooling
cooling channel
cross
Prior art date
Application number
PCT/JP2015/069087
Other languages
English (en)
Japanese (ja)
Inventor
道年 東
森 剛
盛幸 枦山
大穀 晃裕
知也 立花
秀哲 有田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016531435A priority Critical patent/JP6173593B2/ja
Publication of WO2016002867A1 publication Critical patent/WO2016002867A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • Rotating electrical machines for driving and generating electric vehicles or hybrid vehicles are required to be highly efficient and downsized. Therefore, in recent years, permanent magnet type rotating electrical machines are generally used as rotating electrical machines for electric vehicles or hybrid vehicles. In order to improve the rotational torque in a permanent magnet type rotating electrical machine, a permanent magnet having a large maximum energy product is desired. Therefore, there are many cases where neodymium magnets having a large maximum energy product are used as permanent magnets used in rotating electrical machines. In automobile applications, the rotating electrical machine may be disposed near the engine. The rotating electrical machine in this case is required to be driven at a high temperature.
  • a rotating electrical machine includes a stator core and a stator having a multi-layer winding wound around the stator core, and a rotor core disposed so as to face the stator core.
  • a rotor core rotatably supported, and the rotor core includes a permanent magnet, a first cooling flow path, a second cooling channel, and a second cooling passage arranged in order in the direction of the center axis of the rotor.
  • the cross-sectional area of the second cooling flow path that has a cooling flow path and a third cooling flow path and is perpendicular to the central axis direction of the rotor is the first cooling flow path that is perpendicular to the central axis direction of the rotor.
  • the stator 31 includes a stator core 32 and a multiphase winding 33 wound around the stator core 32, and the outer periphery of the stator core 32 is fixed to the frame 10.
  • the stator core 32 is configured by laminating and integrating a plurality of magnetic steel plates formed in a predetermined shape in the central axis direction of the rotor 40. Further, the stator core 32 protrudes in a radial direction that is a direction perpendicular to the central axis of the rotor 40 from the cylindrical core back and the inner peripheral surface of the core back, and is arranged in 48 pieces at an equiangular pitch in the circumferential direction.
  • the teeth are provided. In FIG. 1, the teeth and the core back are omitted.
  • the stator has multiphase windings 33 wound around the teeth so that the number of teeth per phase per phase is 2, but the detailed winding distribution is omitted in FIG. Has been.
  • FIG. 5 is a characteristic diagram of the thermal conductance of the rotor according to the present embodiment.
  • the horizontal axis in FIG. 5 represents the reduction rate ⁇ of the cross-sectional area of the cooling channel described later.
  • the vertical axis in FIG. 5 represents the thermal conductance [W / ° C.] of the rotor core described later.
  • a bar graph 51 and a bar graph 52 in FIG. 5 indicate the thermal conductance Ga of the first rotor core 34 and the thermal conductance Gb of the second rotor core 35, respectively.
  • the thermal conductance Gb of the second rotor core 35 decreases, and the cooling performance of the second rotor core 35 decreases.
  • the thermal conductance Gb of the second rotor core 35 is larger than the thermal conductance Ga of the first rotor core 34 (Ga ⁇ Gb). For this reason, the cooling performance of the second rotor core 35 is improved as compared with the cooling performance of the first rotor core 34.
  • the first rotor core 34, the second rotor core 35, and the third rotor core 36 penetrate in the direction of the central axis of the permanent magnet 42 and the rotor 40, and the rotor 40.
  • the first cooling flow path 134, the second cooling flow path 135, and the third cooling flow path 136, which are arranged side by side in the direction of the central axis of the rotor 40, are perpendicular to the direction of the central axis of the rotor 40.
  • the cooling performance distribution can be changed from the both ends in the central axis direction where the heat dissipation characteristics are good and the temperature is relatively low to the central part in the central axis direction where the heat dissipation characteristics are poor and the temperature is high, and the rotating electrical machine 1 is increased in size.
  • the heat distribution in the central axis direction of the rotor 40 can be made uniform.
  • the permanent magnet 42 can be efficiently cooled, and thermal demagnetization of the permanent magnet 42 can be suppressed.
  • FIG. 10 is a cross-sectional view of second cooling flow path 135b in the rotor core according to the fourth embodiment for carrying out the present invention.
  • the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the second embodiment in the following points.
  • the inner surface of the second cooling channel 135 b has a plurality of protrusions 46.
  • the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 are not shown in the drawing, the cross-sectional shape of the second cooling flow path 135b is a shape obtained by removing the plurality of protrusions 46.
  • the third embodiment In addition to the fact that the cross-sectional shape of the first cooling channel 134 and the inner surface of the third cooling channel 136 have a plurality of protrusions 46, that is, a shape having a plurality of irregularities, the third embodiment.
  • the cross-sectional shape of the first cooling flow path 134 and the cross-sectional shape of the third cooling flow path 136 may be quadrilateral shapes divided on the left and right with respect to the reference line 44.
  • the cross-sectional area Sb of the second cooling flow path 135b perpendicular to the central axis direction of the rotor 40 is greater than the cross-sectional area Sa of the first cooling flow path 134 and the cross-sectional area Sc of the third cooling flow path 136.
  • FIG. 12 is a cross-sectional side view of the main part of the rotor core according to the present embodiment.
  • the configuration of the rotating electrical machine 1 according to the present embodiment is different from that of the first embodiment in the points described below.
  • the fifth cooling channel 164 of the fifth rotor core 64 is inclined with respect to the central axis direction of the rotor 40 toward the outer peripheral side from the upstream side to the downstream side of the refrigerant.
  • the fourth cooling flow path 163 of the fourth rotor core 63 and the sixth cooling flow path 165 of the sixth rotor core 65 are formed substantially parallel to the central axis direction of the rotor 40. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

L'invention concerne une machine dynamo-électrique (1) qui est pourvue d'un stator (31) et d'un rotor (40) ayant un noyau de rotor disposé en face d'un noyau de stator (32), le rotor (40) étant supporté de manière à être capable de tourner relativement par rapport au stator (31). Le noyau de rotor comprend un aimant permanent (42) ainsi qu'un premier chemin de refroidissement (134), un deuxième chemin de refroidissement (135), et un troisième chemin de refroidissement (136) qui passent dans la direction axiale du rotor (40) et sont agencés en une ligne, dans l'ordre indiqué, dans la direction axiale du rotor (40). La superficie en coupe Sb du deuxième chemin de refroidissement (135) est inférieure à la superficie en coupe Sa du premier chemin de refroidissement (134) et à la superficie en coupe Sc du troisième chemin de refroidissement (136). Sa et Sc sont identiques. La longueur axiale Lb du deuxième chemin de refroidissement (135) est de 0,2 à 2 fois la longueur combinée de la longueur axiale La du premier chemin de refroidissement (134) et de la longueur axiale Lc du troisième chemin de refroidissement (136). Où κ = (Sa ‒ Sb) / (Sa), κ est tel que 0,02 ≤ κ ≤ 0,09.
PCT/JP2015/069087 2014-07-02 2015-07-02 Machine dynamo-électrique WO2016002867A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531435A JP6173593B2 (ja) 2014-07-02 2015-07-02 回転電機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-136425 2014-07-02
JP2014136425 2014-07-02
JPPCT/JP2015/055509 2015-02-26
PCT/JP2015/055509 WO2016002253A1 (fr) 2014-07-02 2015-02-26 Machine dynamo-électrique

Publications (1)

Publication Number Publication Date
WO2016002867A1 true WO2016002867A1 (fr) 2016-01-07

Family

ID=55018817

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/055509 WO2016002253A1 (fr) 2014-07-02 2015-02-26 Machine dynamo-électrique
PCT/JP2015/069087 WO2016002867A1 (fr) 2014-07-02 2015-07-02 Machine dynamo-électrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055509 WO2016002253A1 (fr) 2014-07-02 2015-02-26 Machine dynamo-électrique

Country Status (2)

Country Link
JP (1) JP6173593B2 (fr)
WO (2) WO2016002253A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058194A (ja) * 2018-10-04 2020-04-09 トヨタ自動車株式会社 回転電機
JP2020521422A (ja) * 2017-05-19 2020-07-16 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH 電気機械
CN113394908A (zh) * 2021-06-28 2021-09-14 威海西立电子有限公司 一种电机冷却结构、电机及电机的制造方法
CN113394890A (zh) * 2021-06-28 2021-09-14 威海西立电子有限公司 一种电机定子冷却系统及电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114556U (ja) * 1984-01-10 1985-08-02 東洋電機製造株式会社 回転電機の回転子鉄心
JPH0648355U (ja) * 1992-12-07 1994-06-28 東洋電機製造株式会社 回転電機の回転子
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP2010183800A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電動機の回転子及び電動機及び送風機及び圧縮機
US20110163640A1 (en) * 2006-09-06 2011-07-07 Haiko Adolf Rotor cooling for a dynamoelectric machine
JP2011254577A (ja) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd 回転電機
JP2012165600A (ja) * 2011-02-08 2012-08-30 Jtekt Corp モータ及び電動パワーステアリング装置
JP2013223291A (ja) * 2012-04-13 2013-10-28 Toyota Motor Corp 回転電機のロータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114556U (ja) * 1984-01-10 1985-08-02 東洋電機製造株式会社 回転電機の回転子鉄心
JPH0648355U (ja) * 1992-12-07 1994-06-28 東洋電機製造株式会社 回転電機の回転子
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
US20110163640A1 (en) * 2006-09-06 2011-07-07 Haiko Adolf Rotor cooling for a dynamoelectric machine
JP2010183800A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電動機の回転子及び電動機及び送風機及び圧縮機
JP2011254577A (ja) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd 回転電機
JP2012165600A (ja) * 2011-02-08 2012-08-30 Jtekt Corp モータ及び電動パワーステアリング装置
JP2013223291A (ja) * 2012-04-13 2013-10-28 Toyota Motor Corp 回転電機のロータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521422A (ja) * 2017-05-19 2020-07-16 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH 電気機械
US11777352B2 (en) 2017-05-19 2023-10-03 Mahle Internationl GmbH Electrical machine
JP2020058194A (ja) * 2018-10-04 2020-04-09 トヨタ自動車株式会社 回転電機
CN113394908A (zh) * 2021-06-28 2021-09-14 威海西立电子有限公司 一种电机冷却结构、电机及电机的制造方法
CN113394890A (zh) * 2021-06-28 2021-09-14 威海西立电子有限公司 一种电机定子冷却系统及电机

Also Published As

Publication number Publication date
JP6173593B2 (ja) 2017-08-02
WO2016002253A1 (fr) 2016-01-07
JPWO2016002867A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US20210021176A1 (en) Stator for an electric motor and cooling thereof
JP6194926B2 (ja) 回転電機のロータ
JP6312111B2 (ja) 回転電機
US7902712B2 (en) Magnetic member, rotor, motor, compressor, blower, air conditioner and vehicle-mounted air conditioner
JP6173593B2 (ja) 回転電機
JP6098578B2 (ja) 回転電機のロータ
JP6269436B2 (ja) 回転電機のロータ
JP6079733B2 (ja) 回転電機のロータ
JP5951131B2 (ja) 回転電機
US11025116B2 (en) Centrifugal fluid-cooled axial flux motor
JP5897206B2 (ja) 電気機械
JP2012165620A (ja) 回転機
JP5379611B2 (ja) 回転電機
US20110309695A1 (en) Internally cooled servo motor with dry rotor
Anuja et al. Asymmetrical magnets in rotor structure of a permanent magnet brushless DC motor for cogging torque minimization
CN111293809A (zh) 转子
JP6811855B2 (ja) 回転電機
JP2020078200A (ja) 回転電機のロータ
JP5943056B2 (ja) 回転機
JP2021535718A (ja) リングコイル及び蛇行コイルを有するクローポールモータ
JP6609482B2 (ja) 回転電機
JP2013179732A (ja) 電動機
JPWO2020067348A1 (ja) 回転電機のロータ
JP2018102040A (ja) 回転電機
JP2014036518A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814918

Country of ref document: EP

Kind code of ref document: A1