WO2016002765A1 - 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法 - Google Patents

識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法 Download PDF

Info

Publication number
WO2016002765A1
WO2016002765A1 PCT/JP2015/068801 JP2015068801W WO2016002765A1 WO 2016002765 A1 WO2016002765 A1 WO 2016002765A1 JP 2015068801 W JP2015068801 W JP 2015068801W WO 2016002765 A1 WO2016002765 A1 WO 2016002765A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
cholesteric
identification medium
cholesteric resin
metal foil
Prior art date
Application number
PCT/JP2015/068801
Other languages
English (en)
French (fr)
Inventor
仁志 大石
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580033122.3A priority Critical patent/CN106461847A/zh
Priority to EP15814788.4A priority patent/EP3163335A4/en
Priority to JP2016531389A priority patent/JPWO2016002765A1/ja
Priority to US15/320,535 priority patent/US20170157972A1/en
Publication of WO2016002765A1 publication Critical patent/WO2016002765A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/455Associating two or more layers using heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/46Associating two or more layers using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/465Associating two or more layers using chemicals or adhesives
    • B42D25/47Associating two or more layers using chemicals or adhesives using adhesives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/08Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
    • G06K19/10Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards

Definitions

  • the present invention relates to an identification medium and a method for manufacturing and using the same. Specifically, the present invention relates to an identification medium for authenticity identification for determining the authenticity of an article to which the identification medium is attached.
  • an identification medium that cannot be easily copied is attached to the surface of an article that is required to be authentic in order to prevent forgery of the article.
  • Such an identification medium is required to have characteristics such that it cannot be easily duplicated and whether it is genuine or not can be easily determined.
  • An identification medium using polarized light is known as an example of the identification medium.
  • Patent Document 1 describes an identification medium that detects a pattern drawn with a cholesteric liquid crystal material using polarized light.
  • a technique such as that disclosed in Patent Document 2 is also known.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an identification medium for authenticity identification in which a pattern cannot be easily visually recognized without using a circularly polarizing plate.
  • the inventor of the present invention in an identification medium comprising a metal foil and a cholesteric resin layer provided in pieces on the metal foil, the chromaticity coordinates of the metal foil and the cholesteric resin When the chromaticity coordinates of the layer satisfy a predetermined relationship, it was found that it was difficult to visually recognize the pattern without using a circularly polarizing plate, and the present invention was completed. That is, the present invention is as follows.
  • a metal foil, and a cholesteric resin layer provided in pieces on the metal foil The chromaticity coordinates (x1, y1) in the xy chromaticity diagram of the metal foil, and the chromaticity coordinates (x2, y2) in the xy chromaticity diagram of the cholesteric resin layer, 0 ⁇
  • ⁇ 10% The identification medium according to any one of [1] to [3], wherein [5]
  • [6] A method for producing an identification medium according to [5], Providing the thermoplastic resin layer on the metal foil; Contacting the cholesteric resin layer with the thermoplastic resin layer; And a step of welding the thermoplastic resin layer and the cholesteric resin layer.
  • [7] A method of using the identification medium according to any one of [1] to [5], Viewing the surface of the identification medium on the cholesteric resin layer side through a circularly polarizing plate, observing a region with the cholesteric resin layer in a bright state, and observing a region without the cholesteric resin layer in a dark state, How to use the identification medium.
  • an identification medium for authenticity identification in which a pattern cannot be easily visually recognized without using a circularly polarizing plate.
  • FIG. 1 is a plan view schematically showing an identification medium according to the first embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing a cross section of the identification medium shown in FIG. 1 cut along the broken line in FIG.
  • FIG. 3 is a partial longitudinal view schematically showing a cholesteric resin layer and a thermoplastic resin layer of an identification medium according to the first embodiment of the present invention, and a light path that passes through or reflects at these layers.
  • FIG. FIG. 4 is a partial longitudinal cross-sectional view schematically showing a cholesteric resin layer and a thermoplastic resin layer of an identification medium according to the first embodiment of the present invention, and a light path that passes through or reflects at these layers.
  • FIG. 5 is a longitudinal sectional view schematically showing a laminated support in order to explain an example of a method for manufacturing an identification medium according to the first embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view schematically showing a CLC multilayer film for explaining an example of a method for producing an identification medium according to the first embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view schematically showing a laminated intermediate for explaining an example of a method for manufacturing an identification medium according to the first embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing an identification medium and a CLC multilayer film for explaining an example of the identification medium manufacturing method according to the first embodiment of the present invention.
  • FIG. 9 is a plan view schematically showing an identification medium according to the second embodiment of the present invention.
  • 10 is a vertical cross-sectional view schematically showing a cross section of the identification medium shown in FIG. 9 taken along the broken line in FIG.
  • FIG. 11 is a longitudinal sectional view schematically showing a CLC multilayer film for explaining an example of a method for producing an identification medium according to the second embodiment of the present invention.
  • FIG. 12 is a longitudinal sectional view schematically showing a laminated intermediate for explaining an example of a method for producing an identification medium according to the second embodiment of the present invention.
  • FIG. 13 is a longitudinal sectional view schematically showing an identification medium and a base film in order to explain an example of a method for manufacturing the identification medium according to the second embodiment of the present invention.
  • the identification medium is placed horizontally with its observed surface facing up unless otherwise specified. Therefore, when observed, the side relatively close to the observer (front side in the plan view, upper side in the longitudinal sectional view) may be simply expressed as the upper side, and the side relatively far from the observer may be simply expressed as the lower side. .
  • the “polarizing plate” and the “1 ⁇ 4 wavelength plate” include not only a rigid member but also a flexible member such as a resin film.
  • the in-plane retardation of a certain layer is a value represented by (nx ⁇ ny) ⁇ d unless otherwise specified.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the layer and giving the maximum refractive index.
  • Ny represents the refractive index in the in-plane direction of the layer and in a direction orthogonal to the nx direction.
  • d represents the thickness of the layer.
  • In-plane retardation can be measured using a commercially available phase difference measuring apparatus (for example, “WPA-micro” manufactured by Photonic Lattice), Senarmon method, Axoscan manufactured by Axometrics, or KOBRA manufactured by Oji Scientific Instruments.
  • WPA-micro manufactured by Photonic Lattice
  • Senarmon method Senarmon method
  • Axoscan manufactured by Axometrics or KOBRA manufactured by Oji Scientific Instruments.
  • (meth) acrylate includes both “acrylate” and “methacrylate”. Furthermore, “(meth) acryl” includes both “acryl” and “methacryl”.
  • FIG. 1 is a plan view schematically showing an identification medium according to the first embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing a cross section of the identification medium shown in FIG. 1 cut along the broken line in FIG.
  • the ratio of the dimension in the thickness direction to the dimension in the width direction is shown larger than the ratio of the actual identification medium.
  • the identification medium 100 includes a metal foil 110 and a cholesteric resin layer 120 provided in pieces on the metal foil 110.
  • “partially” means that the area occupied by the cholesteric resin layer 120 is 1% or more and less than 50% with respect to the area of the surface 110U of the metal foil 110 on which the cholesteric resin layer 120 is provided.
  • the cholesteric resin layer 120 is provided in a plurality of regions so as to form a plurality of symbols 131 to 133.
  • the cholesteric resin layer 120 is provided only in the region corresponding to the symbols 131 to 133 on the surface 110U of the metal foil 110, whereby a pattern having a shape corresponding to the symbols 131 to 133 is formed. ing.
  • thermoplastic resin layer 140 is provided between the metal foil 110 and the cholesteric resin layer 120, and the cholesteric resin layer 120 in the identification medium 100 is interposed via the thermoplastic resin layer 140.
  • the metal foil 110 is bonded to the surface 110U.
  • thermoplastic resin layer 140 is formed only directly below the cholesteric resin layer 120. Also good.
  • This thermoplastic resin layer 140 is not an essential element in the present invention, but an arbitrary constituent element.
  • the cholesteric resin layer 120 has a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting part or all of the other circularly polarized light.
  • the identification medium 100 can exhibit the authenticity of identification using this property.
  • the authenticity identification operation of the identification medium 100 will be described with reference to FIGS.
  • various absorptions and reflections may occur in addition to those described below.
  • main light paths are schematically described for convenience of description of the operation.
  • the reflection of light at the cholesteric resin layer 120 can occur not only on the surface of the cholesteric resin layer 120 but also inside, but as a schematic representation, in FIGS. 3 and 4, the light reflection at the cholesteric resin layer 120 is shown. The reflection is illustrated as occurring on the surface of the cholesteric resin layer 120.
  • 3 and 4 show the cholesteric resin layer 120 and the thermoplastic resin layer 140 of the identification medium 100 according to the first embodiment of the present invention, and the path of light that passes through or reflects at these layers. It is a fragmentary longitudinal cross-sectional view shown roughly. 3 and 4 show an example in which a layer that reflects right circularly polarized light and transmits left circularly polarized light is provided as the cholesteric resin layer 120.
  • the identification medium 100 is observed through a right circularly polarizing plate 150 that transmits right circularly polarized light and absorbs left circularly polarized light as shown in FIG.
  • natural light A L is incident on the right circularly polarizing plate 150
  • left-circularly polarized light is absorbed in the right circular polarizer 150
  • right-handed circularly polarized light A L1R is transmitted through the right-handed circularly polarizing plate 150.
  • the right circularly polarized light A L1R is reflected by the cholesteric resin layer 120.
  • the direction of rotation of the circularly polarized electric field vector is maintained.
  • the reflected right circularly polarized light AL2R passes through the right circularly polarizing plate 150 and is visually recognized by the observer.
  • the right circularly polarized light AL1R is transmitted through the thermoplastic resin layer 140 and reflected by the surface 110U of the metal foil 110.
  • the direction of rotation of the circularly polarized electric field vector is reversed, so the reflected light becomes left circularly polarized light A L2L .
  • the left circularly polarized light A L2L passes through the thermoplastic resin layer 140 and is then absorbed by the right circularly polarizing plate 150 and is not visually recognized by the observer.
  • the identification medium 100 is observed through a left circularly polarizing plate 160 that transmits left circularly polarized light and can absorb right circularly polarized light.
  • the right circularly polarized light is absorbed in the left-hand circularly polarizing plate 160, left-handed circularly polarized light A L1L is transmitted through the left circular polarizing plate 160.
  • the left circularly polarized light AL1L passes through the cholesteric resin layer 120 and the thermoplastic resin layer 140 and reaches the surface 110U of the metal foil 110 below the cholesteric resin layer 120. , Reflected.
  • the direction of rotation of the circularly polarized electric field vector is reversed, so that the reflected light becomes the right circularly polarized light A L2R .
  • This right circularly polarized light AL2R is transmitted through the thermoplastic resin layer 140 and reflected by the cholesteric resin layer 120, and the reflected right circularly polarized light AL3R is transmitted through the thermoplastic resin layer 140 and again on the surface 110U of the metal foil 110. By being reflected, it becomes left circularly polarized light A L3L .
  • the left circularly polarized light AL3L passes through the thermoplastic resin layer 140, the cholesteric resin layer 120, and the left circularly polarizing plate 160 and is visually recognized by the observer.
  • the left circularly polarized light A L1L passes through the thermoplastic resin layer 140 and is reflected by the surface 110U of the metal foil 110.
  • the direction of rotation of the circularly polarized electric field vector is reversed, so that the reflected light becomes the right circularly polarized light A L2R .
  • the right circularly polarized light AL2R is absorbed by the left circularly polarizing plate 160 after passing through the thermoplastic resin layer 140 and is not visually recognized by the observer.
  • the surface 100U on the cholesteric resin layer 120 side of the identification medium 100 is viewed through the right circularly polarizing plate 150 or the left circularly polarizing plate 160.
  • the reflected light in the region where the cholesteric resin layer 120 is present is visually recognized, and the reflected light in the region where the cholesteric resin layer 120 is absent is not visually recognized. Therefore, since the region where the cholesteric resin layer 120 is present is observed in a bright state and the region where the cholesteric resin layer 120 is absent is observed in a dark state, the symbols 131 to 133 (see FIG. 1) represented by the cholesteric resin layer 120 are It can be visually recognized by an observer.
  • the identification medium 100 when the identification medium 100 is observed through the right circularly polarizing plate 150 or the left circularly polarizing plate 160, if the observer can visually recognize the symbols 131 to 133 represented by the cholesteric resin layer 120, the identification medium 100 is attached. It is possible to determine that the article has been authentic. Further, when the identification medium 100 is observed through the right circularly polarizing plate 150 or the left circularly polarizing plate 160, if the symbols 131 to 133 represented by the cholesteric resin layer 120 cannot be visually recognized by the observer, the identification medium 100 is displayed. Articles marked with can be determined to be unauthentic.
  • the chromaticity coordinates (x1, y1) in the xy chromaticity diagram of the metal foil 110 and the chromaticity coordinates (x2, y2) in the xy chromaticity diagram of the cholesteric resin layer 120 are 0 ⁇
  • is usually 0 or more, usually 0.02 or less, preferably 0.01 or less, more preferably 0.005 or less.
  • is usually 0 or more, usually 0.02 or less, preferably 0.01 or less, more preferably 0.005 or less.
  • the chromaticity coordinates of the metal foil 110 and the cholesteric resin layer 120 are 5 ° with respect to the normal of the surface to be measured using a spectrophotometer (“V-7200” manufactured by JASCO Corporation) according to JIS Z8722.
  • V-7200 manufactured by JASCO Corporation
  • Light can be incident from the direction and measured from a direction that is symmetric with respect to the direction of the incident light and a direction normal to the direction of 5 ° with respect to the normal.
  • s-polarized light and p-polarized light are used as incident light, and the average value of the values measured with both polarized light is used as the chromaticity coordinates of the measurement object.
  • a C light source can be used as the light source.
  • the reflectance Ya550 of the metal foil 110 at a wavelength of 550 nm and the reflectance Yb550 of the cholesteric resin layer 120 at a wavelength of 550 nm satisfy 0% ⁇
  • is usually 0% or more, usually 10% or less, preferably 7.0% or less, more preferably 5.0% or less.
  • the area where the cholesteric resin layer 120 is present and the area where the cholesteric resin layer 120 is absent have similar brightness. Since it is observed, the observer cannot easily visually recognize the symbols 131 to 133 represented by the cholesteric resin layer 120. Therefore, the difficulty of counterfeiting can be further increased.
  • the reflectance of the metal foil 110 and the cholesteric resin layer 120 at a wavelength of 550 nm is 5 with respect to the normal of the surface to be measured using a spectrophotometer (“V-7200” manufactured by JASCO Corporation) according to JIS Z8722. It is possible to measure light from a direction of 5 [deg.] With respect to the normal, which is symmetric with respect to the direction of the incident light and normal with respect to the direction of incident light. At this time, s-polarized light and p-polarized light are used as incident light, and the average value of the values measured with both polarized light is taken as the reflectance of the measurement object. Further, a C light source can be used as the light source.
  • the cholesteric resin layer 120 that satisfies the requirements regarding the chromaticity coordinates and the reflectance as described above includes, for example, (i) a cholesteric resin layer in which the pitch of the helical structure is changed stepwise, and (ii) a helical structure of the helical structure.
  • a cholesteric resin layer in which the pitch is continuously changed can be employed. Details of these will be described later.
  • the cholesteric resin layer 120 is not limited to the cholesteric resin layers (i) and (ii).
  • the distance T between the surface 110U of the metal foil 110 on the cholesteric resin layer 120 side and the surface 120U of the cholesteric resin layer 120 opposite to the metal foil 110 is preferably 3 ⁇ m or more.
  • the thickness is preferably 4 ⁇ m or more, particularly preferably 5 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and particularly preferably 6 ⁇ m or less. Since the thickness of the cholesteric resin layer 120 can be increased by setting the distance T to be equal to or greater than the lower limit value of the range, the chromaticity coordinates and the reflectance of the cholesteric resin layer 120 are adjusted to the same level as the metal foil 110. Is possible.
  • the surface 100U on the cholesteric resin layer 120 side of the identification medium 100 is viewed without using a circularly polarizing plate by setting it to the upper limit value or less, the cholesteric resin layer 120, the thermoplastic resin layer 140, and the metal foil 110 This makes it difficult to visually recognize the symbols 131 to 133 represented by the cholesteric resin layer 120.
  • the manufacturing method of the identification medium 100 is not limited, for example, a step of providing a thermoplastic resin layer 140 on the metal foil 110; a step of bringing the cholesteric resin layer 120 into contact with the thermoplastic resin layer 140; and a thermoplastic resin It can be manufactured by a manufacturing method including the step of welding the layer 140 and the cholesteric resin layer 120.
  • welding refers to bonding the cholesteric resin layer 120 to the surface 110U of the metal foil 110 by melting the thermoplastic resin layer 140 with heat and cooling it while applying pressure as necessary. Welding is sometimes referred to as “fusion”, “heat sealing” or “thermal bonding”.
  • this manufacturing method will be described with reference to examples.
  • FIG. 5 is a longitudinal sectional view schematically showing the laminated support 210 for explaining an example of the manufacturing method of the identification medium 100 according to the first embodiment of the present invention.
  • a step of providing a thermoplastic resin layer 140 on the surface 110U of the metal foil 110 is performed.
  • the thermoplastic resin layer 140 may be formed by any method.
  • the thermoplastic resin solution may be applied to the surface 110U of the metal foil 110 and dried.
  • the thermoplastic resin layer 140 may be formed by placing a film made of a thermoplastic resin on the surface 110U of the metal foil 110.
  • a laminated support 210 including the metal foil 110 and the thermoplastic resin layer 140 is obtained.
  • the surface of the metal foil may be treated with a silane coupling agent, or the thermoplastic resin layer may contain a silane coupling agent.
  • the silane coupling agent used for the surface treatment of the metal foil include an amino group-containing silane coupling agent and a mercapto group-containing silane coupling agent.
  • the silane coupling agent contained in the thermoplastic resin layer include an epoxy group-containing silane coupling agent, a vinyl group-containing silane coupling agent, and an isocyanate group-containing silane coupling agent.
  • a method of treating the surface of the metal foil with the silane coupling agent a method of applying the silane coupling agent to the surface of the metal foil, a method of spraying the silane coupling agent on the surface of the metal foil, a metal in the atmosphere of the silane coupling agent
  • a method of allowing the foil to stand a method of incorporating a silane coupling agent into the thermoplastic resin layer; a method of incorporating a silane coupling agent into the thermoplastic resin; and a method of applying the silane coupling agent to the surface of the thermoplastic resin layer
  • Known methods such as
  • FIG. 6 is a longitudinal sectional view schematically showing a CLC multilayer film 230 for explaining an example of the method for manufacturing the identification medium 100 according to the first embodiment of the present invention.
  • a step of preparing a CLC multilayer film 230 including a base film 220 and a cholesteric resin layer 120 is performed.
  • the CLC multilayer film 230 can be manufactured, for example, by forming the cholesteric resin layer 120 on the base film 220 by a manufacturing method described later.
  • FIG. 7 is a longitudinal sectional view schematically showing the laminated intermediate 240 for explaining an example of the method for manufacturing the identification medium 100 according to the first embodiment of the present invention.
  • thermoplastic resin layer 140 In the step of bringing the cholesteric resin layer 120 into contact with the thermoplastic resin layer 140, at least one surface of the thermoplastic resin layer 140 and the cholesteric resin layer 120 is preferably subjected to a hydrophilic treatment.
  • a hydrophilic treatment By performing the hydrophilic treatment, the adhesion between the thermoplastic resin layer 140 and the cholesteric resin layer 120 is improved.
  • the hydrophilic treatment include known methods such as corona treatment, plasma treatment, and flame treatment.
  • the process of welding the thermoplastic resin layer 140 and the cholesteric resin layer 120 is performed.
  • welding is performed as follows.
  • the horn 250 of an ultrasonic welder is applied to the surface 220U of the laminated intermediate 240 on the base film 220 side.
  • the horn 250 in which a plurality of protrusions 251 are formed on the portion of the horn 250 that can contact the base film 220.
  • the position of the horn 250 is set to a position in an area corresponding to the pattern to be formed on the identification medium 100.
  • the horn 250 is vibrated while being pressed against the surface 220U of the laminated intermediate 240 on the base film 220 side, thereby giving ultrasonic vibration.
  • the vibration of the horn 250 is transmitted to the thermoplastic resin layer 140, and the thermoplastic resin layer 140 vibrates.
  • the vibrating thermoplastic resin layer 140 generates frictional heat between the metal foil 110 and the cholesteric resin layer 120 and is melted by the frictional heat.
  • the melted thermoplastic resin layer 140 is cooled and solidified while being pressurized.
  • the cholesteric resin layer 120 is bonded onto the metal foil 110 by the thermoplastic resin layer 140 in the region where the horn 250 is applied.
  • FIG. 8 is a longitudinal sectional view schematically showing the identification medium 100 and the CLC multilayer film 230 in order to explain an example of the manufacturing method of the identification medium 100 according to the first embodiment of the present invention.
  • the CLC multilayer film 230 is peeled from the laminated support 210 shown in FIG. 7 to obtain the identification medium 100 shown in FIG.
  • the cholesteric resin layer 120 is adhered onto the metal foil 110 via the thermoplastic resin layer 140, so that the cholesteric resin layer 120 remains on the metal foil 110.
  • the cholesteric resin layer 120 is peeled off from the thermoplastic resin layer 140 together with the base film 220.
  • the desired identification medium 100 can be manufactured. .
  • the identification medium 100 including the thermoplastic resin layer 140 only under the cholesteric resin layer 120 is manufactured by removing the thermoplastic resin layer 140 in an area where the thermoplastic resin layer 140 is unnecessary. it can.
  • the identification medium 100 can be provided on the metal foil 110 by a simple method of welding the cholesteric resin layer 120.
  • the cholesteric resin layer 120 is formed on the metal foil 110, for example, an alignment film such as a photo-alignment film is provided on the metal foil 110, and the cholesteric liquid crystal composition is applied on the alignment film and cured to be cholesteric. It is also conceivable to form the resin layer 120.
  • the manufacturing method described in the present embodiment can manufacture the cholesteric resin layer 120 in a separate process, and the cholesteric resin layer is formed only in a necessary portion. I can expect.
  • the number of steps required for manufacturing the identification medium 100 can be reduced, so that the manufacturing can be performed easily. Further, since the shapes of the symbols 131 to 133 can be set by adjusting the position of the welding region, the symbols 131 to 133 can be easily changed.
  • FIG. 9 is a plan view schematically showing an identification medium according to the second embodiment of the present invention.
  • 10 is a vertical cross-sectional view schematically showing a cross section of the identification medium shown in FIG. 9 taken along the broken line in FIG.
  • the identification medium 300 according to the second embodiment of the present invention has the same structure as the identification medium 100 according to the first embodiment except that the isotropic layer 310 is provided.
  • the isotropic layer 310 is a layer having optical isotropy, and specifically refers to a layer in which the front retardation Re of the isotropic layer 310 at a wavelength of 550 nm is 0 nm or more and 10 nm or less.
  • Such an isotropic layer 310 usually has no difference in appearance whether or not a circularly polarizing plate is used. Therefore, the identification medium 300 provided with such an isotropic layer 310 can exhibit an authenticity identification action in the same manner as the identification medium 100 according to the first embodiment.
  • the isotropic layer 310 is formed on the cholesteric resin layer 120 in all areas of the surface 110U of the metal foil 110 on the cholesteric resin layer 120 side where the cholesteric resin layer 120 is not provided. It is provided with the same thickness. Therefore, in the identification medium 300, the cholesteric resin layer 120 and the isotropic layer 310 are mixed in a single layer. Thereby, in addition to the same advantages as the identification medium 100 according to the first embodiment, the identification medium 300 according to the present embodiment can prevent the surface 110U of the metal foil 110 from being damaged, or foreign matter can be present in the cholesteric resin layer 120. There is an advantage that the cholesteric resin layer 120 can be prevented from being damaged due to being caught. Further, the isotropic layer 310 can increase the mechanical strength of the identification medium 300.
  • the isotropic layer 310 is preferably transparent. Specifically, the total light transmittance of the isotropic layer 310 is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more. Accordingly, when the surface 300U on the cholesteric resin layer 120 side of the identification medium 300 is viewed without using a circularly polarizing plate, the region where the cholesteric resin layer 120 is present and the region where the cholesteric resin layer 120 is absent can be observed with similar colors. Therefore, it is difficult to visually recognize the symbols 131 to 133 represented by the cholesteric resin layer 120.
  • the light transmittance can be measured using a spectrophotometer (an ultraviolet-visible near-infrared spectrophotometer “V-570” manufactured by JASCO Corporation) in accordance with JIS K0115.
  • the transparent isotropic layer 310 as described above can be formed of a resin, for example.
  • a resin layer containing a polymer obtained by polymerizing a polymerizable liquid crystalline compound without aligning the liquid crystalline compound is preferable.
  • the manufacturing method of the identification medium 300 can manufacture by welding similarly to the identification medium 100 which concerns on 1st embodiment.
  • the step of providing the thermoplastic resin layer 140 on the metal foil 110; the step of bringing the cholesteric resin layer 120 and the isotropic layer 310 into contact with the thermoplastic resin layer 140; and the thermoplastic resin layer 140 and the cholesteric resin layer 120 and the isotropic layer 310 are welded to each other.
  • this manufacturing method will be described with reference to examples.
  • thermoplastic resin layer 140 on the surface 110U of the metal foil 110, the metal foil A laminated support 210 having 110 and a thermoplastic resin layer 140 is prepared.
  • FIG. 11 is a longitudinal sectional view schematically showing a CLC multilayer film 320 for explaining an example of a method for manufacturing the identification medium 300 according to the second embodiment of the present invention.
  • a step of preparing a CLC multilayer film 320 including a base film 220, a cholesteric resin layer 120, and an isotropic layer 310 is performed.
  • the cholesteric resin layer 120 and the isotropic layer 310 are both formed on the base film 220 so that the cholesteric resin layer 120 and the isotropic layer 310 are mixed in a single layer.
  • a single layer including the cholesteric resin layer 120 and the isotropic layer 310 may be appropriately referred to as a “mixed layer 330”. Further, the cholesteric resin layer 120 is formed at a position in a region corresponding to a pattern to be formed on the identification medium 300.
  • the CLC multilayer film 320 can be manufactured, for example, by forming the cholesteric resin layer 120 and the isotropic layer 310 on the base film 220 by a manufacturing method described later.
  • FIG. 12 is a longitudinal sectional view schematically showing a laminated intermediate 340 for explaining an example of a method for manufacturing the identification medium 300 according to the second embodiment of the present invention.
  • the laminated intermediate body 340 provided with the metal foil 110; the thermoplastic resin layer 140; the mixed layer 330 including the cholesteric resin layer 120 and the isotropic layer 310; and the base film 220 in this order is obtained.
  • the surface of at least one of the thermoplastic resin layer 140, the cholesteric resin layer 120, and the isotropic layer 310 is subjected to a hydrophilic treatment.
  • a hydrophilic treatment Preferably it is.
  • the adhesion between the thermoplastic resin layer 140 and the cholesteric resin layer 120 and the adhesion between the thermoplastic resin layer 140 and the isotropic 310 are improved.
  • the hydrophilic treatment include known methods such as corona treatment, plasma treatment, and flame treatment.
  • thermoplastic resin layer 140 the cholesteric resin layer 120, and the isotropic layer 310 are performed.
  • the cholesteric resin layer 120 and the isotropic layer 310 are placed on the metal foil 110 by applying vibration from the horn 250 to melt the thermoplastic resin layer 140 and then cooling the same as in the first embodiment. Adhere to.
  • the entire cholesteric resin layer 120 and the isotropic layer 310 are bonded onto the metal foil 110 by performing welding while moving the horn 250.
  • FIG. 13 is a longitudinal sectional view schematically showing the identification medium 300 and the base film 220 in order to explain an example of the method for manufacturing the identification medium 300 according to the second embodiment of the present invention.
  • a step of peeling the base film 220 from the cholesteric resin layer 120 and the isotropic layer 310 is performed.
  • the entire surface 110U of the metal foil 110 is welded, the entire cholesteric resin layer 120 and the isotropic layer 310 remain on the metal foil 110.
  • the cholesteric resin layer 120 is provided via the thermoplastic resin layer 140 in the region corresponding to the symbols 131 to 133 (see FIG. 1) of the surface 110U of the metal foil 110, and the thermoplastic resin is formed in the other regions. Since the isotropic layer 310 is provided via the resin layer 140, a desired identification medium 300 can be manufactured.
  • the present invention is not limited to the above-described embodiments, and can be further modified.
  • the symbols 131 to 133 represented by the cholesteric resin layer 120 are not limited to characters as shown in FIG. 1, and may be any number, symbol, picture, or the like.
  • the isotropic layer 310 is provided on the entire area of the surface 110U of the metal foil 110 where the cholesteric resin layer 120 is not present.
  • the isotropic layer 310 is formed of the cholesteric surface 110U of the metal foil 110. You may provide only in a part of area
  • the ultrasonic welding method is used as the welding method for manufacturing the identification media 100 and 300, but a welding method other than the ultrasonic welding method may be used.
  • a vibration welding method there are a vibration welding method, an induction welding method, a high frequency welding method, a semiconductor laser welding method, a thermal welding method, and a spin welding method.
  • a method capable of reducing the welding position is preferable in order to accurately draw the symbols 131 to 133 of the identification media 100 and 300 and to increase the design freedom of the symbols 131 to 133.
  • an ultrasonic welding method is particularly preferable as a method for applying heat and welding within a small range.
  • the cholesteric resin layer 120 and the isotropic layer 310 are prepared as the CLC multilayer films 220 and 320 including the base film 220, but the base film 220 is not used. May be. However, it is preferable to use the base film 220 from the viewpoint of improving workability and preventing the cholesteric resin layer 120 and the isotropic layer 310 from being damaged.
  • the identification media 100 and 300 may include other authenticity identifying means in addition to the authenticity identifying means using the cholesteric resin layer 120 described above.
  • other authenticity identifying means such as holograms, watermarks, micro characters, fluorescent ink, magnetic ink, and printing with special inks such as infrared reflection ink may be provided.
  • the metal foil is a sheet-like member formed of a metal material.
  • the metal foil has excellent properties such as easy shape change and high shape followability.
  • Examples of the metal material forming such a metal foil include a simple metal, an alloy, and the like. Especially, what has shape followability when it is set as foil is preferable. Moreover, a metal material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. As an example of a metal material, what is shown in the following table
  • surface is mentioned, for example.
  • the thickness of the metal foil is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less. .
  • the thickness of the metal foil is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the metal foil can be manufactured, for example, by thinly extending from a metal material using its spreadability. Moreover, metal foil can be manufactured by forming the layer of a metal material on base materials, such as a plastic film, paper, a nonwoven fabric, for example. Examples of the method for providing the metal layer include a metal vapor deposition method, a sputter vapor deposition method, a plating method, and an ink coating method in which metal particles are dispersed.
  • a cholesteric resin layer is a resin layer having cholesteric regularity.
  • the cholesteric regularity of the cholesteric resin layer is that the molecular axes are aligned in a certain direction on one plane, but the molecular axes are displaced at a slight angle in the next plane that overlaps them, and in the next plane As the angle further shifts, the structure is such that the angle of the molecular axis in the plane is shifted (twisted) as it sequentially passes through the overlapping planes.
  • the structure in which the direction of the molecular axis is twisted becomes an optically chiral structure.
  • the cholesteric resin layer usually has a circularly polarized light separation function. That is, it has a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting a part or all of the other circularly polarized light. The reflection in the cholesteric resin layer reflects circularly polarized light while maintaining its chirality.
  • the wavelength that exhibits the circularly polarized light separation function depends on the pitch of the helical structure in the cholesteric resin layer.
  • the pitch of the helical structure is the distance in the plane normal direction until the angle of the molecular axis in the helical structure gradually shifts as it advances along the plane and then returns to the original molecular axis direction again.
  • the refractive index anisotropy ⁇ n of the cholesteric resin layer is preferably 0.20 or more, and more preferably 0.22 or more.
  • the wavelength range in which circularly polarized light can be reflected can be widened.
  • Such a cholesteric resin layer having a high ⁇ n can be formed by using a liquid crystal composition such as a cholesteric liquid crystal composition (X) described later.
  • X cholesteric liquid crystal composition
  • ⁇ n is 0.30 or more, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range, but even if the absorption edge of the spectrum extends to the visible range, the desired optical performance is adversely affected. It can be used as long as it does not.
  • ⁇ n can be measured by the Senarmon method.
  • the upper limit of the refractive index anisotropy ⁇ n can be set to 0.25 or less, for example.
  • the cholesteric resin layer can be produced, for example, by providing a film of a cholesteric liquid crystal composition on a suitable base film for forming a cholesteric resin layer and curing the film. Moreover, according to this manufacturing method, the film provided with the cholesteric resin layer 120 on the base film 220 can be manufactured like the CLC multilayer film 230 according to the first embodiment.
  • the cholesteric liquid crystal composition for forming the cholesteric resin layer a composition containing a liquid crystal compound and capable of exhibiting a cholesteric liquid crystal phase when formed into a film can be used.
  • the liquid crystal compound a liquid crystal compound which is a polymer compound and a polymerizable liquid crystal compound can be used.
  • a polymerizable liquid crystal compound By polymerizing the polymerizable liquid crystalline compound in a state exhibiting cholesteric regularity, the film of the cholesteric liquid crystal composition can be cured to obtain a non-liquid crystalline resin layer cured while exhibiting cholesteric regularity. it can.
  • the material referred to as a liquid crystal composition here for convenience includes not only a mixture of two or more substances but also a material made of a single substance.
  • cholesteric resin layer examples include (i) a cholesteric resin layer in which the helical structure pitch is changed stepwise, and (ii) a cholesteric resin in which the helical structure pitch is continuously changed. Layer, and the like.
  • a cholesteric resin layer in which the pitch of the helical structure is changed stepwise can be obtained by laminating a plurality of cholesteric resin layers having different helical structure pitches. Lamination can be performed by preparing a plurality of cholesteric resin layers having different pitches of the helical structure in advance and then fixing each layer with an adhesive or an adhesive. Or it can also carry out by forming another cholesteric resin layer in order after forming a certain cholesteric resin layer.
  • the cholesteric resin layer in which the pitch of the helical structure is continuously changed is not particularly limited by the manufacturing method.
  • the method for producing such a cholesteric resin layer include a cholesteric liquid crystal composition containing a polymerizable liquid crystal compound for forming a cholesteric resin layer, preferably on a stretched film or other layer such as an alignment film.
  • a method of curing the layer in a state where the pitch of the helical structure is continuously changed by light irradiation and / or heating treatment at least once is applied. It is done. Since the operation of continuously changing the pitch of the spiral structure is an operation of extending the reflection band of the cholesteric resin layer, it is called a broadening process.
  • the cholesteric liquid crystal composition subjected to such a broadening treatment include cholesteric liquid crystal composition (X) described in detail below.
  • the cholesteric resin layer in which the pitch of the helical structure of (ii) is continuously changed may be a single cholesteric resin layer used as an identification medium, or a plurality of layers may be stacked and used as an identification medium.
  • a cholesteric resin layer may be used.
  • a combination of a cholesteric resin layer that exhibits a circularly polarized light separating function in a part of the visible light wavelength region and a cholesteric resin layer that exhibits a circularly polarized light separating function in another region It is possible to use a cholesteric resin layer that exhibits a circularly polarized light separating function in a wide area.
  • the cholesteric resin layer used for the identification medium may be a resin layer consisting of only one layer, the cholesteric resin layer of (i) above, the cholesteric resin layer of (ii) above, a laminate of any one or both of these layers, etc. It may be a resin layer composed of two or more layers.
  • the number of layers constituting the cholesteric resin layer is preferably 1 to 100 layers, more preferably 1 to 20 layers, from the viewpoint of ease of production.
  • the cholesteric liquid crystal composition (X) contains a compound represented by the following formula (1) and a specific rod-like liquid crystal compound. Each of these components will be described in turn.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. Or a branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, which may have an arbitrary linking group interposed, And a group selected from the group consisting of a cyano group.
  • the alkyl group and alkylene oxide group may be unsubstituted or substituted with one or more halogen atoms.
  • the halogen atom, hydroxyl group, carboxyl group, (meth) acryl group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group are bonded to an alkyl group having 1 to 2 carbon atoms or an alkylene oxide group. You may do it.
  • R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
  • At least one of R 1 and R 2 is a reactive group.
  • the compound represented by the formula (1) is fixed in the cholesteric resin layer at the time of curing, and a stronger film can be formed.
  • the reactive group include a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group in which an arbitrary linking group may be interposed.
  • a 1 and A 2 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4 , 4′-bicyclohexylene group and a group selected from the group consisting of 2,6-naphthylene group.
  • the 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, and 2,6-naphthylene group are Is not substituted, or is substituted with one or more substituents such as a halogen atom, hydroxyl group, carboxyl group, cyano group, amino group, alkyl group having 1 to 10 carbon atoms, halogenated alkyl group, etc. It may be. In each of A 1 and A 2 , when two or more substituents are present, they may be the same or different.
  • a 1 and A 2 include groups selected from the group consisting of 1,4-phenylene group, 4,4′-biphenylene group, and 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid as compared with the alicyclic skeleton, have a high affinity with the mesogen of the rod-like liquid crystalline compound, and have higher alignment uniformity ability.
  • B particularly preferred as B include a single bond, —OCO— and —CH ⁇ NN—CH—.
  • At least one of the compounds represented by the formula (1) preferably has liquid crystallinity, and preferably has chirality.
  • the compound represented by the formula (1) is preferably used in combination of a plurality of optical isomers. For example, a mixture of a plurality of types of enantiomers, a mixture of a plurality of types of diastereomers, or a mixture of enantiomers and diastereomers may be used.
  • At least one of the compounds represented by formula (1) preferably has a melting point in the range of 50 ° C to 150 ° C.
  • the compound represented by the formula (1) has liquid crystallinity, it is preferable to have a high ⁇ n.
  • ⁇ n of the cholesteric liquid crystal composition (X) can be improved, and a cholesteric resin layer having a wide selective reflection band can be produced.
  • At least one ⁇ n of the compound represented by the formula (1) can be preferably 0.18 or more, more preferably 0.22 or more.
  • the upper limit of ⁇ n can be set to 0.25 or less, for example.
  • particularly preferred compounds represented by the formula (1) include the following compounds (A1) to (A9): Further, the compound represented by the formula (1) is used alone. Alternatively, two or more types may be used in combination at any ratio.
  • the cholesteric liquid crystal composition (X) contains a rod-like liquid crystal compound having at least two reactive groups in one molecule.
  • the rod-like liquid crystalline compound include a compound represented by the formula (2).
  • R 3 and R 4 are reactive groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group. , An allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group.
  • D 3 and D 4 are each a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
  • Represents a group selected from the group consisting of C 3 to C 6 are each independently a single bond, —O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —.
  • M represents a mesogenic group, and specifically, azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid, which may be unsubstituted or substituted.
  • the skeleton is represented by —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH ⁇ N—N ⁇ CH—, — NHCO -, - OCOO -, - CH 2 COO-, and is formed are joined by a linking group of -CH 2 OCO- or the like.
  • Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , —O—C. ( ⁇ O) —R 5 , —C ( ⁇ O) —O—R 5 , —O—C ( ⁇ O) —O—R 5 , —NR 5 —C ( ⁇ O) —R 5 , —C ( ⁇ O) —NR 5 R 7 , or —O—C ( ⁇ O) —NR 5 R 7 .
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 6 carbon atoms.
  • Examples thereof include a carbonyloxy group and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
  • the rod-like liquid crystalline compound preferably has an asymmetric structure.
  • the asymmetric structure means a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the formula (2) with the mesogenic group M as the center.
  • R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the formula (2) with the mesogenic group M as the center.
  • ⁇ n of the rod-like liquid crystal compound is preferably 0.18 or more, more preferably 0.22 or more.
  • the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range, but the desired optical performance is achieved even when the absorption edge of the spectrum extends to the visible range. It can be used as long as it does not have an adverse effect.
  • a cholesteric resin layer having high optical performance for example, selective reflection performance of circularly polarized light
  • the upper limit of the refractive index anisotropy ⁇ n can be set to 0.25 or less, for example.
  • the rod-like liquid crystalline compound may have two or more reactive groups in one molecule.
  • reactive groups include epoxy groups, thioepoxy groups, oxetane groups, thietanyl groups, aziridinyl groups, pyrrole groups, fumarate groups, cinnamoyl groups, isocyanate groups, isothiocyanate groups, amino groups, hydroxyl groups, carboxyl groups, alkoxysilyls.
  • the film strength that can withstand practical use is pencil hardness (JIS K5400) and is usually HB or higher, preferably H or higher. Since the film strength is high as described above, the film is hardly scratched and has excellent handling properties.
  • the upper limit of the preferred pencil hardness is not particularly limited as long as it does not adversely affect the optical performance and durability test.
  • rod-like liquid crystalline compound examples include the following compounds (B1) to (B9), but the rod-like liquid crystalline compound is not limited to the following compounds.
  • a rod-shaped liquid crystalline compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the weight ratio represented by (total weight of compounds represented by formula (1)) / (total weight of rod-like liquid crystalline compounds) is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0. .15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.45 or less.
  • the weight ratio is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0. .15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.45 or less.
  • the total weight indicates the weight when one type is used, and indicates the total weight when two or more types are used.
  • the molecular weight of the compound represented by the formula (1) is preferably less than 600, and the molecular weight of the rod-like liquid crystalline compound is preferably 600 or more. Thereby, the fluidity of the cholesteric liquid crystal composition is increased, and the uniformity of the liquid crystal alignment can be improved.
  • the cholesteric liquid crystal composition such as the cholesteric liquid crystal composition (X) can optionally contain a crosslinking agent in order to improve the film strength after curing and the durability.
  • the cross-linking agent increases the cross-linking density of the cholesteric resin layer by, for example, reacting when the film of the liquid crystal composition is cured, promoting the reaction by heat treatment after curing, or allowing the reaction to proceed spontaneously due to moisture. Can do.
  • a crosslinking agent what can react with an ultraviolet-ray, a heat
  • crosslinking agent examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2- (2-vinyloxyethoxy).
  • Polyfunctional acrylate compounds such as ethyl acrylate; Epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri- ⁇ -aziridinylpro Aziridine compounds such as pionate; isocyanate compounds such as hexamethylene diisocyanate, isocyanurate type isocyanate, biuret type isocyanate, adduct type isocyanate derived from hexamethylene diisocyanate; polyoxazoline compound having an oxazoline group in the side chain; vinyltrimethoxysilane,
  • a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Furthermore, you may use a well-known catalyst according to the reactivity of a crosslinking agent. By using a catalyst, productivity can be improved in addition to improvement in film strength and durability.
  • the amount of the crosslinking agent is preferably such that the amount of the crosslinking agent in the cholesteric resin layer obtained by curing the cholesteric liquid crystal composition is 0.1 wt% to 15 wt%.
  • the cholesteric liquid crystal composition can optionally contain a photoinitiator.
  • a photoinitiator the well-known compound which generate
  • Specific examples of the photoinitiator include benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2 , 2-azobis-2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Furthermore, you may control sclerosis
  • the amount of the photoinitiator is preferably 0.03% by weight to 7% by weight in the cholesteric liquid crystal composition.
  • the cholesteric liquid crystal composition can optionally contain a surfactant.
  • a surfactant for example, one that does not inhibit the orientation can be appropriately selected and used.
  • a surfactant for example, a nonionic surfactant containing a siloxane or a fluorinated alkyl group in the hydrophobic group portion is preferably exemplified.
  • oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable.
  • Specific examples of these surfactants include “PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-3320” of PolyFox of OMNOVA.
  • surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the surfactant is preferably such that the amount of the surfactant in the cholesteric resin layer obtained by curing the cholesteric liquid crystal composition is 0.05% by weight to 3% by weight.
  • the cholesteric liquid crystal composition can optionally contain a chiral agent.
  • a chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, JP-A-2003-342219. 2000-290315, JP-A-6-072962, U.S. Pat. No. 6,468,444, WO98 / 00428, JP-A-2007-176870, etc. can be used as appropriate. Available as BASF Palio Color LC756.
  • a chiral agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the chiral agent can be arbitrarily set within a range not deteriorating the desired optical performance.
  • the specific amount of the chiral agent is usually 1% by weight to 60% by weight in the cholesteric liquid crystal composition.
  • the cholesteric liquid crystal composition may further contain an optional component as necessary.
  • the optional component include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
  • the optional component one type may be used alone, or two or more types may be used in combination at any ratio. The amount of these optional components can be set within a range that does not deteriorate the desired optical performance.
  • the method for producing the cholesteric liquid crystal composition is not particularly limited, and can be produced by mixing the above components.
  • a cholesteric resin layer can be obtained by providing a film of the cholesteric liquid crystal composition on the base film, performing an alignment treatment as necessary, and then performing a curing treatment. .
  • the base film a film having a total light transmittance of 80% or more at a thickness of 1 mm is usually used.
  • the base film include alicyclic olefin resin, chain olefin resin such as polyethylene resin and polypropylene resin, triacetyl cellulose resin, polyvinyl alcohol resin, polyimide resin, polyarylate resin, polyester resin, polycarbonate resin, polysulfone.
  • examples thereof include a single layer or laminated film made of a synthetic resin such as a resin, a polyethersulfone resin, a modified acrylic resin, an epoxy resin, a polystyrene resin, or an acrylic resin.
  • an alicyclic olefin resin or a chain olefin resin film is preferable, and an alicyclic olefin resin film is particularly preferable from the viewpoint of transparency, low hygroscopicity, dimensional stability, lightness, and the like.
  • the substrate film may be provided with an alignment film before the film of the cholesteric liquid crystal composition is provided.
  • the alignment film can be formed of, for example, cellulose, silane coupling agent, polyimide, polyamide, polyvinyl alcohol, epoxy acrylate, silanol oligomer, polyacrylonitrile, phenol resin, polyoxazole, cyclized polyisoprene, etc. preferable.
  • the modified polyamide for example, an aromatic polyamide or an aliphatic polyamide that has been modified can be used. Of these, a modified aliphatic polyamide is particularly preferred.
  • Preferable examples include nylon-6, nylon-66, nylon-12, ternary to quaternary copolymer nylon, fatty acid polyamide, or fatty acid block copolymer (eg, polyether ester amide, polyester amide).
  • denatured can be mentioned.
  • the modification include terminal amino modification, carboxyl modification, hydroxyl modification and the like, and modification in which a part of the amide group is alkylaminated or N-alkoxyalkylated.
  • the N-alkoxyalkylated modified polyamide include N-methoxymethylated part of the amide group of copolymer nylon such as nylon-6, nylon-66, or nylon-12.
  • the weight average molecular weight of the modified polyamide is preferably 5,000 to 500,000, more preferably 10,000 to 200,000.
  • the alignment film can be produced, for example, by applying a solution containing the above-described material onto a base film, drying, and performing a rubbing treatment.
  • the coating method at this time include a reverse gravure coating method, a direct gravure coating method, a die coating method, and a bar coating method.
  • the thickness of the alignment film is preferably 0.001 ⁇ m to 5 ⁇ m, and more preferably 0.01 ⁇ m to 2 ⁇ m.
  • a film of a cholesteric liquid crystal composition is usually provided on the alignment film.
  • the surface of the base film may be subjected to surface treatment such as corona discharge treatment and rubbing treatment as necessary.
  • the cholesteric liquid crystal composition can be applied by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
  • an alignment treatment may be performed as necessary.
  • the alignment treatment can be performed, for example, by heating a liquid crystal composition film at 50 to 150 ° C. for 0.5 to 10 minutes.
  • the alignment treatment By performing the alignment treatment, the cholesteric liquid crystal composition in the film is aligned well, and the molecules of the liquid crystalline compound are in a state exhibiting cholesteric regularity.
  • a curing process is performed to cure the film of the cholesteric liquid crystal composition.
  • the curing process can be performed, for example, by a combination of one or more light irradiations and a heating process.
  • the heating conditions are, for example, usually 40 ° C. or higher, preferably 50 ° C. or higher, and usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, and usually 3 minutes.
  • the time may be preferably 120 seconds or less.
  • the light used for light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves.
  • the light irradiation can be performed, for example, by irradiating light having a wavelength of 200 nm to 500 nm for 0.01 second to 3 minutes.
  • the energy of the irradiated light can be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 .
  • a cholesteric resin layer having a polarization separation function can be obtained.
  • the expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere).
  • the application and curing steps of the cholesteric liquid crystal composition as described above are not limited to once, and the application and curing may be repeated a plurality of times. Thereby, the cholesteric resin layer containing two or more layers can be formed.
  • the cholesteric liquid crystal composition (X) described in the above example even when the liquid crystal composition is applied and cured only once, it contains a well-oriented rod-like liquid crystalline compound and has a thickness of 5 ⁇ m or more. The cholesteric resin layer can be easily formed.
  • the twist direction of the cholesteric resin layer can be appropriately selected depending on the type (structure) of the chiral agent to be used. Specifically, when the twist is set to the right direction, a chiral agent that imparts dextrorotation is used, and when the twist direction is set to the left direction, it can be realized by using a chiral agent that imparts levorotation. .
  • the thickness of the cholesteric resin layer is preferably 0.1 ⁇ m or more and more preferably 1 ⁇ m or more in order to obtain sufficient reflectance. Moreover, when obtaining the transparency of a cholesteric resin layer, it is preferable that it is 20 micrometers or less, and it is more preferable that it is 10 micrometers or less.
  • the thickness of the cholesteric resin layer refers to the total thickness of each layer when the identification medium has two or more cholesteric resin layers, and the thickness when the cholesteric resin layer is one layer. Point to.
  • the isotropic layer can be produced, for example, by curing the film of the cholesteric liquid crystal composition described above. However, in that case, from the viewpoint of obtaining optical isotropy, the film of the cholesteric liquid crystal composition is cured in a state where the cholesteric liquid crystal composition is not aligned.
  • this manufacturing method for example, the following manufacturing It can be produced by a method.
  • an orientation film is provided on the surface of the base film or a surface treatment is applied as necessary, and then a film of the cholesteric liquid crystal composition is provided on the base film. Then, after performing an alignment treatment as necessary, a film of the cholesteric liquid crystal composition is cured using a predetermined mask. At this time, the alignment treatment and the curing treatment can be performed under the same conditions as described in the section of the cholesteric resin layer.
  • the mask is a member having a light transmitting portion in a region corresponding to a pattern to be formed on the identification medium and a light shielding portion in the other region.
  • a treatment for changing its orientation to isotropic is performed. For example, a process of heating at a temperature of 150 ° C. to 200 ° C. for 1 second to 5 seconds is performed. Thereby, the molecules of the liquid crystal compound in the cholesteric liquid crystal composition lose their cholesteric regularity and become isotropic. In this state, the region not cured lost cholesteric regularity of the cholesteric liquid crystal composition, a process of light irradiation, or the like 50mJ / cm 2 ⁇ 10,000mJ / cm 2, to cure the film. Thereby, since an isotropic layer is formed on a base film, the single layer containing the cholesteric resin layer 120 and the isotropic layer 310 like the mixed layer 330 which concerns on 2nd embodiment is obtained.
  • the thickness of the isotropic layer is usually the same as that of the cholesteric resin layer. However, if necessary, the thickness of the isotropic layer may be different from that of the cholesteric resin layer.
  • thermoplastic resin layer is a thermoplastic resin layer.
  • the thermoplastic resin layer has a property of softening by heating and solidifying by cooling.
  • the metal foil and the cholesteric resin layer are bonded to each other by the welding method using the thermoplastic resin layer using this characteristic.
  • the thermoplastic resin usually contains a polymer, and further contains optional components as necessary.
  • a polymer that can give the thermoplastic resin high adhesion to the metal foil is preferable.
  • examples of such polymers include acrylic polymers, urethane polymers, ester polymers, amide polymers, amideimide polymers, cellulose polymers, silicone polymers, acrylic-silica hybrid polymers, and the like.
  • acrylic polymers, ester polymers, amideimide polymers, and acrylic-silica hybrid polymers are preferred because of their high heat resistance and transparency and particularly good adhesion to metal foils.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • acrylic polymer examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, hexyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as octyl acrylate, nonyl (meth) acrylate, and decyl (meth) acrylate; (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, etc.
  • hydroxyl group-containing vinyl monomer such as 2-hydroxyethyl (meth) acrylate, monoester of (meth) acrylic acid and polyethylene glycycol or polypropylene glycol; glycidyl (meth) acrylate, etc.
  • epoxy group-containing vinyl monomer methoxyethyl (meth) acrylate , (Meth) acrylic acid ethoxyethyl, (meth) acrylic acid propoxyethyl, (meth) acrylic acid butoxyethyl, (meth) acrylic acid ethoxypropyl, (meth) acrylic acid alkoxyalkyl; (meth) acrylamide, methylol ( Amide group-containing vinyl monomers such as (meth) acrylamide and methoxyethyl (meth) acrylamide; Silicon-containing vinyl monomers such as methacryloxypropylmethoxysilane; Aziridine group-containing vinyl monomers such as (meth) acryloylaziridine Body; aromatic monomer-containing vinyl monomers such as phenyl (meth) acrylate, benzyl (meth) acrylate, styrene, methylstyrene; alicyclic rings such as cyclohexyl (meth)
  • the urethane polymer examples include a reaction product of a general polyol and an isocyanate compound.
  • a polyether polyol having a structural unit of an alkylene oxide chain such as a methylene oxide chain, an ethylene oxide chain, an ethylene oxide chain, a propylene oxide chain, or a butylene oxide chain, or two or more kinds; a polyether polyol; terephthalic acid, Acid compounds such as adipic acid, adipic acid, sebacic acid, phthalic anhydride, isophthalic acid, and trimet acid, ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, 1,6-hexane glycol, 3-methyl-1,5- Such as pentanediol, 3,3′-dimethylolheptane, polyoxyethylene glycol, polyoxypropylene glycol, 1,4-butanediol, neopentyl glycol,
  • isocyanate compound examples include 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylenemethane diisocyanate, 2,4-tolylene diisocyanate, 2,6 Aromatic polyisocyanates such as tolylene diisocyanate, 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate; trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 2,3-butylene diisocyanate 1,3-butylene diisocyanate, dodecane methylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, etc.
  • Aromatic polyisocyanates such as tolylene diisocyanate, 4,4'-toluidine diisocyanate, 4,
  • Aromatic aliphatic polyisocyanates such as diisocyanate, 1,3-tetramethylxylylene diisocyanate; 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate Methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), 1,4′-bis (isocyanatomethyl) cyclohex
  • ester polymer examples include aliphatic polyesters described in JP-A-10-86307.
  • amide polymer examples include N-alkoxyalkylated polyamides described in JP 2011-36765 A.
  • amideimide polymer examples include a polyimide precursor described in International Publication No. 2013/136807.
  • Examples of the cellulose polymer include cellulose derivatives described in JP-A-2011-195697.
  • silicone polymer examples include a silicone or a polymer of a silicone precursor described in Japanese Patent No. 2756474.
  • acrylic-silica hybrid polymer examples include organic-inorganic hybrid materials described in International Publication No. 2012/133741.
  • the glass transition temperature Tg of the thermoplastic resin contained in the thermoplastic resin layer is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, particularly preferably 100 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. Hereinafter, it is particularly preferably 150 ° C. or lower.
  • the thermoplastic resin can be solidified when the identification medium is used, so that the adhesion between the metal foil and the cholesteric resin layer can be increased. Further, durability in an environment where the identification medium is used can be maintained. Moreover, since the thermoplastic resin layer can be smoothly melted at the time of welding by making it below the upper limit value, the identification medium can be manufactured easily.
  • silane coupling agents include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane Epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; styryl such as p-styryltrimethoxysilane Group-containing silane coupling agent; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane Me
  • the thermoplastic resin layer preferably has optical isotropy.
  • the front retardation Re of the thermoplastic resin layer at a wavelength of 550 nm is preferably 0 nm or more and 10 nm or less.
  • thermoplastic resin layer is preferably transparent.
  • the total light transmittance of the thermoplastic resin layer is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the thickness of the thermoplastic resin layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the identification medium may include components other than the metal foil, the cholesteric resin layer, and the thermoplastic resin layer described above.
  • the identification medium may include a base film and an alignment film used for manufacturing the cholesteric resin layer.
  • the identification medium is a support film layer, a protective layer, an easy adhesion layer, an easy slip layer, a hard coat layer, an antistatic layer, an abrasion resistant layer, an antireflection layer, a color correction layer, an ultraviolet absorption layer, a printing layer.
  • a transparent conductive layer, a gas barrier layer, a hologram layer, a release layer, an adhesive layer, an emboss layer, and the like may be provided.
  • the identification medium of the present invention can be applied to any article that is required to identify authenticity.
  • containers such as pharmaceuticals, cosmetics, perfumes and toners, opening seals, packages, banknotes, securities, cash vouchers, passports, electronic devices, bags, clothes, fabrics, credit cards, security cards, codes that represent information (for example, It can be used as an identification medium for preventing forgery applied to articles with various one-dimensional codes such as barcodes and two-dimensional codes such as QR codes (registered trademark).
  • a region in which the cholesteric resin layer of the identification medium was formed was scratched in an X shape with a razor blade.
  • a cellophane adhesive tape having a width of 12 mm according to JIS Z1522 was brought into close contact so as to cover the scratched portion, and one end of the cellophane adhesive tape was immediately pulled perpendicular to the surface of the identification medium and instantaneously separated. Scratched portions were observed, and adhesion was evaluated using the following indices.
  • Good No peeling of the cholesteric resin layer from the metal foil was observed.
  • Defect Peeling of the cholesteric resin layer from the metal foil including the periphery of the X-shaped scratch was observed.
  • Example 1 (1-1. Production of CLC multilayer film) 25.5 parts of a compound represented by the following formula (X), 11 parts of a polymerizable liquid crystalline compound represented by the following formula (Y), 2.3 parts of a chiral agent (“LC756” manufactured by BASF), polymerization initiation Cholesteric liquid crystal was prepared by mixing 1.2 parts of an agent (“Irgacure OXE02” manufactured by Ciba Specialty Chemicals), 0.04 part of a surfactant (“Fuent 209F” manufactured by Neos) and 60 parts of cyclopentanone as a solvent. The composition was adjusted.
  • the compound represented by the formula (X) is prepared according to the method described in Japanese Patent No. 5365519, and the compound represented by the formula (Y) is manufactured according to the method described in Japanese Patent No. 4054392. used.
  • a surface of the polyethylene terephthalate film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) provided with an easy adhesion layer on one side is subjected to a rubbing treatment, and the cholesteric liquid crystal composition is A film of cholesteric liquid crystal composition was obtained by coating using a # 10 wire bar. This film was oriented at 130 ° C. for 5 minutes. Thereafter, the process of irradiating the film of the cholesteric liquid crystal composition with weak ultraviolet rays of 0.1 mJ / cm 2 to 45 mJ / cm 2 and subsequent heating treatment at 100 ° C. for 1 minute is repeated twice.
  • thermoplastic resin layer 0.019 part of polyfunctional isocyanate (“TPA-100” manufactured by Asahi Kasei Chemicals) is added to 3.06 part of a polyester resin solution (“Byron UR-4800” manufactured by Toyobo Co., Ltd.), and then 6.9 parts of methyl ethyl ketone is added. Then, the mixture was stirred to produce a coating solution for forming a thermoplastic resin layer.
  • TPA-100 polyfunctional isocyanate
  • a polyester resin solution (“Byron UR-4800” manufactured by Toyobo Co., Ltd.)
  • Stainless steel foil (SUS302, thickness 0.05 mm) was prepared as a metal foil. On the metal foil, the above coating solution was applied with a # 22 bar and dried at 80 ° C. for 5 minutes to obtain a thermoplastic resin layer having a thickness of 2.4 ⁇ m. Thereby, the laminated support body provided with metal foil and a thermoplastic resin layer was obtained.
  • thermoplastic resin layer side of the laminated support On the thermoplastic resin layer side of the laminated support, a CLC multilayer film was disposed so that the thermoplastic resin layer and the cholesteric resin layer face each other. At this time, the thermoplastic resin layer and the cholesteric resin layer were brought into contact with each other. Thereby, the lamination intermediate provided with a metal foil, a thermoplastic resin layer, a cholesteric resin layer, and a polyethylene terephthalate film in this order was obtained.
  • the laminated intermediate was placed in a transverse vibration welder (Nippon Emerson Corporation transverse vibration welder 2000Xdt and stand 20SA).
  • a horn having a plurality of protrusions with a height of 0.5 mm was attached to the booster of this welder.
  • the horn was brought into contact with the surface of the laminated intermediate on the polyethylene terephthalate film side, and the horn was vibrated to perform ultrasonic welding processing.
  • the processing conditions of this welding processing were as follows. Oscillation frequency: 40 Hz. Oscillation time: 0.250 seconds. Actual pressurization: 100 kPa. Cooling time: 0.200 seconds.
  • the ultrasonic welding process was repeated by moving the horn along the pattern to be formed.
  • the cholesteric resin layer was bonded to the metal foil via the thermoplastic resin layer.
  • the CLC multilayer film was peeled off from the laminated support by pulling the polyethylene terephthalate film.
  • the cholesteric resin layer was peeled from the thermoplastic resin layer except in the region where the welding process was performed, but the cholesteric resin layer remained on the thermoplastic resin layer in the region where the welding process was performed.
  • an identification medium including a cholesteric resin layer in a desired pattern region on the metal foil was obtained. This identification medium was evaluated by the method described above.
  • Example 2 In the step (1-2), iridium foil (thickness 0.05 mm) was used as the metal foil instead of the stainless steel foil. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 3 In the step (1-3), the number of symbols was increased. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 4 In the step (1-1), the thickness of the cholesteric resin layer was reduced by changing the coating amount of the cholesteric liquid crystal composition. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 5 In the step (1-1), the thickness of the cholesteric resin layer was increased by changing the coating amount of the cholesteric liquid crystal composition. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 6 In the step (1-1), the thickness of the cholesteric resin layer was increased by changing the coating amount of the cholesteric liquid crystal composition. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 7 In the step (1-1), when performing a process consisting of irradiation processing with weak ultraviolet rays and subsequent heating treatment, irradiation with ultraviolet rays was performed through a mask having a translucent portion corresponding to a pattern to be formed. Further, after the above process, before irradiation with ultraviolet rays of 800 mJ / cm 2 , a treatment of heating at a temperature of 170 ° C. for 30 seconds is performed to change the uncured region of the cholesteric liquid crystal composition isotropic. Then, curing was performed by irradiating with ultraviolet rays while maintaining this isotropic state. Further, in the step (1-3), the welding process was performed not only on the region corresponding to the pattern to be formed but also on the entire surface of the metal foil. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 8 In the step (1-3), the metal foil itself was used instead of the laminated support provided with the metal foil and the thermoplastic resin layer. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Example 9 In the step (1-3), a thermal welding process described below was performed instead of the ultrasonic welding process using a transverse vibration welder. Except for the above, the identification medium was manufactured and evaluated in the same manner as in Example 1.
  • Heat welding process The surface of the laminated intermediate on the polyethylene terephthalate film side was brought into contact with a heater portion of a heat welding welder (manufactured by Seidensha Electronics Co., Ltd.), and heat was applied from the heater portion to perform heat welding processing. This heat welding process was repeated by moving the heater part along the pattern to be formed. Thereby, the cholesteric resin layer adhered to the metal foil via the thermoplastic resin layer in the region subjected to the welding process.
  • a heat welding welder manufactured by Seidensha Electronics Co., Ltd.
  • the identification medium of the present invention can visually recognize a pattern when a circularly polarizing plate is used, and can easily be visually observed without using a circularly polarizing plate. It was confirmed that it was not visible. Further, in contrast to Example 9 in which the identification medium was manufactured by the thermal welding method and Examples 1 to 8 in which the identification medium was manufactured by the ultrasonic welding method, the intended pattern was accurately cholesteric by the ultrasonic welding method. It was confirmed that drawing was possible with the resin layer.
  • Identification medium 100U Identification medium surface 110 Metal foil 110U Metal foil surface 120 Cholesteric resin layer 120U Cholesteric resin layer surfaces 131 to 133 Pattern 140 Thermoplastic resin layer 150 Right circular polarizing plate 160 Left circular polarizing plate 210 Laminate support 220 Base film 230 CLC multilayer film 240 Laminated intermediate 250 Horn of ultrasonic fusion machine 251 Projection formed on horn 300 Identification medium 310 Isotropic layer 320 CLC multilayer film 330 Mixed layer 340 Laminated intermediate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

 金属箔と、前記金属箔上に断片的に設けられたコレステリック樹脂層とを備え、前記金属箔のxy色度図における色度座標(x1,y1)、及び、前記コレステリック樹脂層のxy色度図における色度座標(x2,y2)が、0≦|x1-x2|≦0.02、及び、0≦|y1-y2|≦0.02を満たす、識別媒体。

Description

識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法
 本発明は、識別媒体並びにその製造方法及び使用方法に関する。具体的には、本発明は、当該識別媒体が付された物品の真贋を判別するための、真正性識別用の識別媒体に関する。
 真正であることが求められる物品の表面に、物品の偽造防止のために、容易に複製できない識別媒体を付することが一般的に行われている。このような識別媒体は、容易に複製できないこと、真正なものであるか否かが容易に判別できること等の特性が求められる。識別媒体の例として、偏光を利用した識別媒体が知られている。例えば特許文献1には、コレステリック液晶材料によって描画した図柄を、偏光を用いて検出させる識別媒体が記載されている。また、特許文献2のような技術も知られている。
特表2011-524556号公報(対応外国公報:欧州特許出願公開第2285587号明細書) 特許第5123445号公報(対応外国公報:欧州特許出願公開第1129373号明細書)
 しかしながら、特許文献1に記載のようなコレステリック液晶材料で描画した図柄を用いた場合、そのような図柄を物品の表面に形成すると、コレステリック液晶材料に特徴的な、特定の色彩及び観察角度による色彩の変化が観察される。このような色彩及びその変化が見えると、図柄の周辺が金属面である場合、金属面と図柄とで色彩が異なることによって、円偏光板を用いなくても目視にて図柄の形状を視認できることがある。偽造を防止するためには、円偏光板を用いない目視で図柄の形状が容易に視認できることは、避けることが求められる。
 本発明は前記の課題に鑑みて創案されたもので、円偏光板を用いない目視で図柄が容易には視認できない、真正性識別用の識別媒体を提供することを目的とする。
 本発明者は前記の課題を解決するべく鋭意検討した結果、金属箔と、この金属箔上に断片的に設けられたコレステリック樹脂層とを備える識別媒体において、金属箔の色度座標とコレステリック樹脂層の色度座標とが所定の関係を満たすときに、円偏光板を用いない目視で図柄を視認し難くできることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
 〔1〕 金属箔と、前記金属箔上に断片的に設けられたコレステリック樹脂層とを備え、
 前記金属箔のxy色度図における色度座標(x1,y1)、及び、前記コレステリック樹脂層のxy色度図における色度座標(x2,y2)が、
 0≦|x1-x2|≦0.02、及び、
 0≦|y1-y2|≦0.02
 を満たす、識別媒体。
 〔2〕 前記金属箔の前記コレステリック樹脂層側の面と、前記コレステリック樹脂層の前記金属箔とは反対側の面との距離が、3μm以上10μm以下である、〔1〕記載の識別媒体。
 〔3〕 更に等方層を備え、
 前記コレステリック樹脂層及び前記等方層が、単一層中に混在している、〔1〕又は〔2〕記載の識別媒体。
 〔4〕 波長550nmにおける前記金属箔の反射率Ya550、及び、波長550nmにおける前記コレステリック樹脂層の反射率Yb550が、
 0%≦|Ya550-Yb550|≦10%
 を満たす、〔1〕~〔3〕のいずれか一項に記載の識別媒体。
 〔5〕 前記金属箔と前記コレステリック樹脂層との間に、熱可塑性樹脂層を備える、〔1〕~〔4〕のいずれか一項に記載の識別媒体。
 〔6〕 〔5〕記載の識別媒体の製造方法であって、
 前記金属箔上に、前記熱可塑性樹脂層を設ける工程と、
 前記熱可塑性樹脂層に、前記コレステリック樹脂層を接触させる工程と、
 前記熱可塑性樹脂層と前記コレステリック樹脂層とを溶着させる工程と、を含む、識別媒体の製造方法。
 〔7〕 〔1〕~〔5〕のいずれか一項に記載の識別媒体の使用方法であって、
 前記識別媒体の前記コレステリック樹脂層側の面を、円偏光板を介して見て、前記コレステリック樹脂層がある領域を明状態で観察し、前記コレステリック樹脂層が無い領域を暗状態で観察する、識別媒体の使用方法。
 本発明によれば、円偏光板を用いない目視で図柄が容易には視認できない、真正性識別用の識別媒体を提供することができる。
図1は、本発明の第一実施形態に係る識別媒体を模式的に示す平面図である。 図2は、図1に示す識別媒体を、図1中の破線に沿って切断した断面を模式的に示す縦断面図である。 図3は、本発明の第一実施形態に係る識別媒体のコレステリック樹脂層及び熱可塑性樹脂層、並びに、これらの層を透過し又はこれらの層において反射する光の経路を概略的に示す部分縦断面図である。 図4は、本発明の第一実施形態に係る識別媒体のコレステリック樹脂層及び熱可塑性樹脂層、並びに、これらの層を透過し又はこれらの層において反射する光の経路を概略的に示す部分縦断面図である。 図5は、本発明の第一実施形態に係る識別媒体の製造方法の一例を説明するため、積層支持体を模式的に示す縦断面図である。 図6は、本発明の第一実施形態に係る識別媒体の製造方法の一例を説明するため、CLC複層フィルムを模式的に示す縦断面図である。 図7は、本発明の第一実施形態に係る識別媒体の製造方法の一例を説明するため、積層中間体を模式的に示す縦断面図である。 図8は、本発明の第一実施形態に係る識別媒体の製造方法の一例を説明するため、識別媒体及びCLC複層フィルムを模式的に示す縦断面図である。 図9は、本発明の第二実施形態に係る識別媒体を模式的に示す平面図である。 図10は、図9に示す識別媒体を、図9中の破線に沿って切断した断面を模式的に示す縦断面図である。 図11は、本発明の第二実施形態に係る識別媒体の製造方法の一例を説明するため、CLC複層フィルムを模式的に示す縦断面図である。 図12は、本発明の第二実施形態に係る識別媒体の製造方法の一例を説明するため、積層中間体を模式的に示す縦断面図である。 図13は、本発明の第二実施形態に係る識別媒体の製造方法の一例を説明するため、識別媒体及び基材フィルムを模式的に示す縦断面図である。
 以下、実施形態及び例示物を示して本発明について詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の識別媒体の説明においては、別に断らない限り、識別媒体は、その観察される面を上に向けて水平に載置したものとして説明する。従って、観察された際に相対的に観察者に近い側(平面図における手前側、縦断面図における上側)を単に上側、相対的に観察者から遠い側を単に下側と表現することがある。
 以下の説明においては、別に断らない限り、「偏光板」及び「1/4波長板」とは、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明においては、別に断らない限り、ある層の面内レターデーションとは、別に断らない限り、(nx-ny)×dで表される値である。ここで、nxは、その層の厚さ方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。また、nyは、その層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。さらに、dは、その層の厚さを表す。面内レターデーションは、市販の位相差測定装置(例えば、フォトニックラティス社製「WPA-micro」)あるいはセナルモン法、Axometrics社製Axoscan、王子計測機器社製KOBRAを用いて測定しうる。
 以下の説明においては、別に断らない限り、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する。さらに、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」の両方を包含する。
 [第一実施形態]
 図1は、本発明の第一実施形態に係る識別媒体を模式的に示す平面図である。図2は、図1に示す識別媒体を、図1中の破線に沿って切断した断面を模式的に示す縦断面図である。図2及びその他の断面図では、図示の便宜のため、幅方向の寸法に対する厚さ方向の寸法の比率を、実際の識別媒体の比率より大きく示している。
 図1に示すように、本発明の第一実施形態に係る識別媒体100は、金属箔110と、金属箔110上に断片的に設けられたコレステリック樹脂層120を備える。ここで「断片的」とは、金属箔110のコレステリック樹脂層120が設けられた面110Uの面積に対して、コレステリック樹脂層120の占める面積が、1%以上50%未満であることをいう。通常、コレステリック樹脂層120は、複数個の図柄131~133を形成するように、複数の領域に設けられる。本実施形態においてコレステリック樹脂層120は、金属箔110の面110Uの、図柄131~133に対応する領域内のみに設けられていて、これにより、図柄131~133に対応する形の模様が形成されている。
 また、図2に示すように、金属箔110とコレステリック樹脂層120との間には熱可塑性樹脂層140が設けられていて、識別媒体100においてコレステリック樹脂層120は、熱可塑性樹脂層140を介して金属箔110の面110Uに接着している。本実施形態では、金属箔110の面110Uの全体に熱可塑性樹脂層140が設けられた例を示して説明するが、熱可塑性樹脂層140は、コレステリック樹脂層120の直下にのみ形成されていてもよい。この熱可塑性樹脂層140は、本発明に必須の要素ではなく、任意の構成要素である。
 コレステリック樹脂層120は、右円偏光及び左円偏光のうちの一方の円偏光を透過させ、他方の円偏光の一部又は全部を反射させる性質を有する。識別媒体100は、この性質を利用して、真正性の識別作用を発揮しうる。
 本実施形態に係る識別媒体100の、真正性識別の作用を、図3及び図4を参照して説明する。実際の識別媒体100においては、下記に説明する以外にも、例えば様々な吸収及び反射が発生しうるが、以下の説明では、作用の説明の便宜上、主な光の経路を概略的に説明する。また、コレステリック樹脂層120での光の反射は、コレステリック樹脂層120の表面だけでなく内部でも発生しうるが、模式的な表現として、図3及び図4では、コレステリック樹脂層120での光の反射は、当該コレステリック樹脂層120の表面において発生しているものとして図示する。
 図3及び図4は、本発明の第一実施形態に係る識別媒体100のコレステリック樹脂層120及び熱可塑性樹脂層140、並びに、これらの層を透過し又はこれらの層において反射する光の経路を概略的に示す部分縦断面図である。図3及び図4に示す例では、コレステリック樹脂層120として、右円偏光を反射させ左円偏光を透過させる層を設けた例を示す。
 図3に示すように、右円偏光を透過させ左円偏光を吸収しうる右円偏光板150を介して識別媒体100を観察した場合を考える。自然光Aが右円偏光板150に入射すると、左円偏光は右円偏光板150に吸収され、右円偏光AL1Rは右円偏光板150を透過する。
 識別媒体100のコレステリック樹脂層120が設けられた領域では、右円偏光AL1Rはコレステリック樹脂層120で反射される。コレステリック樹脂層120での反射では、円偏光の電場ベクトルの回転の向きは維持される。よって、反射した右円偏光AL2Rは、右円偏光板150を透過して、観察者に視認される。
 他方、識別媒体100のコレステリック樹脂層120が設けられていない領域では、右円偏光AL1Rは熱可塑性樹脂層140を透過して金属箔110の面110Uで反射される。金属箔110の面110Uでの反射では、円偏光の電場ベクトルの回転の向きが反転するので、反射光は左円偏光AL2Lとなる。この左円偏光AL2Lは、熱可塑性樹脂層140を透過した後、右円偏光板150で吸収され、観察者に視認されない。
 次に、図4に示すように、左円偏光を透過させ右円偏光を吸収しうる左円偏光板160を介して識別媒体100を観察した場合を考える。自然光Aが左円偏光板160に入射すると、右円偏光は左円偏光板160に吸収され、左円偏光AL1Lは左円偏光板160を透過する。
 識別媒体100のコレステリック樹脂層120が設けられた領域では、左円偏光AL1Lはコレステリック樹脂層120及び熱可塑性樹脂層140を透過して、その下側にある金属箔110の面110Uに到達し、反射される。金属箔110の面110Uでの反射では、円偏光の電場ベクトルの回転の向きが反転するので、反射光は右円偏光AL2Rとなる。この右円偏光AL2Rは、熱可塑性樹脂層140を透過してコレステリック樹脂層120で反射し、反射した右円偏光AL3Rが熱可塑性樹脂層140を透過して再び金属箔110の面110Uで反射されることにより、左円偏光AL3Lとなる。そして、この左円偏光AL3Lが熱可塑性樹脂層140、コレステリック樹脂層120及び左円偏光板160を透過して、観察者に視認される。
 他方、識別媒体100のコレステリック樹脂層120が設けられていない領域では、左円偏光AL1Lは熱可塑性樹脂層140を透過して金属箔110の面110Uで反射される。金属箔110の面110Uでの反射では、円偏光の電場ベクトルの回転の向きが反転するので、反射光は右円偏光AL2Rとなる。この右円偏光AL2Rは、熱可塑性樹脂層140を透過した後、左円偏光板160で吸収され、観察者に視認されない。
 このように、識別媒体100の使用方法としては、識別媒体100のコレステリック樹脂層120側の面100Uを、右円偏光板150又は左円偏光板160を介して見る。この場合、前述したように、コレステリック樹脂層120がある領域での反射光は視認され、コレステリック樹脂層120が無い領域での反射光は視認されない。そのため、コレステリック樹脂層120がある領域が明状態で観察され、コレステリック樹脂層120が無い領域が暗状態で観察されるので、コレステリック樹脂層120によって表された図柄131~133(図1参照)が、観察者に視認できる。したがって、右円偏光板150又は左円偏光板160を介して識別媒体100を観察した場合に、コレステリック樹脂層120によって表された図柄131~133が観察者に視認できれば、当該識別媒体100が付された物品を真正なものと判断することができる。また、右円偏光板150又は左円偏光板160を介して識別媒体100を観察した場合に、コレステリック樹脂層120によって表された図柄131~133が観察者に視認できなければ、当該識別媒体100が付された物品は非真正なものと判断することができる。
 本実施形態に係る識別媒体100において、金属箔110のxy色度図における色度座標(x1,y1)、及び、コレステリック樹脂層120のxy色度図における色度座標(x2,y2)は、
 0≦|x1-x2|≦0.02、及び、
 0≦|y1-y2|≦0.02
 を満たす。
 より詳しくは、「|x1-x2|」の値は、通常0以上であり、通常0.02以下、好ましくは0.01以下、より好ましくは0.005以下である。また、「|y1-y2|」の値は、通常0以上であり、通常0.02以下、好ましくは0.01以下、より好ましくは0.005以下である。このような要件を満たすことにより、円偏光板を介さないで識別媒体100のコレステリック樹脂層120側の面100Uを見た場合に、コレステリック樹脂層120がある領域と無い領域とが似通った色で観察されるので、観察者は、コレステリック樹脂層120によって表された図柄131~133を容易には視認できない。したがって、偽造の困難性を高めることができる。
 金属箔110及びコレステリック樹脂層120の色度座標は、JIS Z8722に則り、分光光度計(日本分光社製「V-7200」)を用いて、測定対象の表面の法線に対して5°の方向から光を入射して、入射光の方向と法線に対して対称な、法線に対して5°の方向から測定しうる。この際、入射光としてs偏光及びp偏光を用い、両偏光で測定した数値の平均値を、測定対象の色度座標とする。また、光源は、C光源を用いうる。
 本実施形態に係る識別媒体100において、波長550nmにおける金属箔110の反射率Ya550、及び、波長550nmにおけるコレステリック樹脂層120の反射率Yb550が、0%≦|Ya550-Yb550|≦10%を満たすことが好ましい。より詳しくは、「|Ya550-Yb550|」の値は、通常0%以上であり、通常10%以下、好ましくは7.0%以下、より好ましくは5.0%以下である。このような要件を満たすことにより、円偏光板を介さないで識別媒体100のコレステリック樹脂層120側の面100Uを見た場合に、コレステリック樹脂層120がある領域と無い領域とが似通った輝度で観察されるので、観察者は、コレステリック樹脂層120によって表された図柄131~133を容易には視認できない。したがって、偽造の困難性を更に高めることができる。
 金属箔110及びコレステリック樹脂層120の波長550nmにおける反射率は、JIS Z8722に則り、分光光度計(日本分光社製「V-7200」)を用いて、測定対象の表面の法線に対して5°の方向から光を入射して、入射光の方向と法線に対して対称な、法線に対して5°の方向から測定しうる。この際、入射光としてs偏光及びp偏光を用い、両偏光で測定した数値の平均値を、測定対象の反射率とする。また、光源は、C光源を用いうる。
 前記のような色度座標及び反射率に係る要件を満たすコレステリック樹脂層120は、例えば、(i)らせん構造のピッチの大きさを段階的に変化させたコレステリック樹脂層、(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層、を採用しうる。これらの詳細については、後述する。但し、コレステリック樹脂層120は、これら(i)及び(ii)のコレステリック樹脂層に限られない。
 また、図2に示すように、金属箔110のコレステリック樹脂層120側の面110Uと、コレステリック樹脂層120の金属箔110とは反対側の面120Uとの距離Tは、好ましくは3μm以上、より好ましくは4μm以上、特に好ましくは5μm以上であり、好ましくは10μm以下、より好ましくは8μm以下、特に好ましくは6μm以下である。前記の距離Tを前記範囲の下限値以上にすることにより、コレステリック樹脂層120の厚さを厚くできるので、コレステリック樹脂層120の色度座標及び反射率を金属箔110と同程度に調整することが可能となる。また、上限値以下にすることにより、円偏光板を介さないで識別媒体100のコレステリック樹脂層120側の面100Uを見た場合に、コレステリック樹脂層120及び熱可塑性樹脂層140と金属箔110との段差を目立たなくできるので、コレステリック樹脂層120によって表された図柄131~133の視認を困難にできる。
 識別媒体100の製造方法に制限はないが、例えば、金属箔110上に、熱可塑性樹脂層140を設ける工程;熱可塑性樹脂層140に、コレステリック樹脂層120を接触させる工程;及び、熱可塑性樹脂層140とコレステリック樹脂層120とを溶着させる工程;を含む製造方法によって製造しうる。ここで「溶着」とは、熱可塑性樹脂層140を熱によって溶融させ、必要に応じて加圧しながら冷却することによって、コレステリック樹脂層120を金属箔110の面110Uに接着することをいう。溶着は、「融着」、「ヒートシール」又は「熱接着」と呼ばれることもある。以下、例を示して、この製造方法について説明する。
 図5は、本発明の第一実施形態に係る識別媒体100の製造方法の一例を説明するため、積層支持体210を模式的に示す縦断面図である。
 本例に係る製造方法では、図5に示すように、金属箔110の面110Uに熱可塑性樹脂層140を設ける工程を行う。この際、熱可塑性樹脂層140の形成方法は任意であり、例えば、熱可塑性樹脂の溶液を金属箔110の面110Uに塗布し、乾燥して形成してもよい。また、例えば、熱可塑性樹脂からなるフィルムを金属箔110の面110Uに載置することで、熱可塑性樹脂層140を形成してもよい。この工程により、金属箔110及び熱可塑性樹脂層140を備える積層支持体210が得られる。
 金属箔と熱可塑性樹脂層との間の密着性を向上させる目的で、金属箔の表面をシランカップリング剤で処理したり、熱可塑性樹脂層にシランカップリング剤を含有させたりしてもよい。金属箔の表面処理に用いるシランカップリング剤としては、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤などが挙げられる。熱可塑性樹脂層に含有させるシランカップリング剤としては、エポキシ基含有シランカップリング剤、ビニル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤などが挙げられる。金属箔の表面をシランカップリング剤で処理する方法としては、金属箔表面にシランカップリング剤を塗布する方法、金属箔表面にシランカップリング剤を噴霧する方法、シランカップリング剤雰囲気中に金属箔を静置する方法;熱可塑性樹脂層にシランカップリング剤を含有させる方法としては、熱可塑性樹脂にシランカップリング剤を含有させる方法、熱可塑性樹脂層表面にシランカップリング剤を塗布する方法等の公知の方法が挙げられる。
 図6は、本発明の第一実施形態に係る識別媒体100の製造方法の一例を説明するため、CLC複層フィルム230を模式的に示す縦断面図である。
 本例に示す製造方法では、図6に示すように、基材フィルム220及びコレステリック樹脂層120を備えるCLC複層フィルム230を用意する工程を行う。CLC複層フィルム230は、例えば後述する製造方法により、基材フィルム220上にコレステリック樹脂層120を形成することにより、製造しうる。
 図7は、本発明の第一実施形態に係る識別媒体100の製造方法の一例を説明するため、積層中間体240を模式的に示す縦断面図である。
 積層支持体210及びCLC複層フィルム230を用意した後で、積層支持体210上にCLC複層フィルム230を置いて、熱可塑性樹脂層140にコレステリック樹脂層120を接触させる工程を行う。これにより、金属箔110、熱可塑性樹脂層140、コレステリック樹脂層120及び基材フィルム220をこの順に備える積層中間体240が得られる。熱可塑性樹脂層140にコレステリック樹脂層120を接触させる工程において、熱可塑性樹脂層140及びコレステリック樹脂層120の少なくとも一方の表面は、親水化処理されていることが好ましい。親水化処理を行うことにより、熱可塑性樹脂層140とコレステリック樹脂層120との密着性が向上する。親水化処理としては、コロナ処理、プラズマ処理、火炎処理など公知の方法が挙げられる。
 その後、熱可塑性樹脂層140とコレステリック樹脂層120とを溶着させる工程を行う。ここで示す例では、具体的には、次のようにして溶着を行う。
 まず、積層中間体240の基材フィルム220側の面220Uに、超音波溶着機のホーン250を当てる。ホーン250の振動を積層中間体240に効果的に伝えるため、ホーン250としては、当該ホーン250の基材フィルム220に接触しうる部分に複数の突起251が形成されたものを用いることが好ましい。また、ホーン250の位置は、識別媒体100に形成させようとする図柄に対応した領域内の位置に設定する。
 そして、この状態で、積層中間体240の基材フィルム220側の面220Uに押し当てながらホーン250を振動させて、超音波振動を与える。ホーン250の振動は熱可塑性樹脂層140に伝わり、熱可塑性樹脂層140が振動する。振動する熱可塑性樹脂層140は、金属箔110及びコレステリック樹脂層120との間で摩擦熱を生じ、摩擦熱によって融解する。
 その後、ホーン250の振動を停止することにより、融解した熱可塑性樹脂層140は加圧されながら冷却されて、固化する。これにより、ホーン250を当てた領域において、コレステリック樹脂層120が熱可塑性樹脂層140によって金属箔110上に接着される。
 図8は、本発明の第一実施形態に係る識別媒体100の製造方法の一例を説明するため、識別媒体100及びCLC複層フィルム230を模式的に示す縦断面図である。
 溶着を行った後で、図7に示す積層支持体210からCLC複層フィルム230を剥離して、図8の識別媒体100を得る工程を行う。溶着が行われた領域では、コレステリック樹脂層120が熱可塑性樹脂層140を介して金属箔110上に接着されているので、コレステリック樹脂層120は金属箔110上に残留する。他方、溶着が行われていない領域では、コレステリック樹脂層120は基材フィルム220と一緒に熱可塑性樹脂層140から剥がれる。これにより、金属箔110の面110Uの図柄131~133(図1参照)に対応する領域に、熱可塑性樹脂層140を介してコレステリック樹脂層120が設けられるので、所望の識別媒体100を製造できる。
 また、その後、必要に応じて、熱可塑性樹脂層140が不要な領域において熱可塑性樹脂層140を除去することにより、コレステリック樹脂層120の直下にだけ熱可塑性樹脂層140を備える識別媒体100を製造できる。
 このように、本実施形態に係る識別媒体100は、コレステリック樹脂層120を溶着という簡単な方法で金属箔110上に設けることができる。
 また、金属箔110上にコレステリック樹脂層120を形成する場合、例えば、金属箔110に光配向膜等の配向膜を設け、その配向膜上にコレステリック液晶組成物を塗布し、硬化させて、コレステリック樹脂層120を形成することも考えられる。しかし、このような方法に比べ、本実施形態で説明した製造方法は、コレステリック樹脂層120を別工程で製造でき、また、必要な部分にのみコレステリック樹脂層を形成することから、コストの削減が見込める。さらに、金属箔110上に配向膜を設ける必要が無いので、識別媒体100の製造に要する工程数を減らせることから、製造を簡単に行うことができる。また、図柄131~133の形状を、溶着の領域の位置を調整することによって設定することが可能であるので、図柄131~133の変更を簡単に行うことが可能である。
 [第二実施形態]
 図9は、本発明の第二実施形態に係る識別媒体を模式的に示す平面図である。図10は、図9に示す識別媒体を、図9中の破線に沿って切断した断面を模式的に示す縦断面図である。
 図9及び図10に示すように、本発明の第二実施形態に係る識別媒体300は、等方層310を備えること以外は、第一実施形態に係る識別媒体100と同様の構造を有する。
 等方層310は、光学的な等方性を有する層であり、具体的には、波長550nmにおける当該等方層310の正面レターデーションReが0nm以上10nm以下である層をいう。このような等方層310は、通常、円偏光板を用いても用いなくても、見え方に違いは無い。そのため、このような等方層310を備える識別媒体300は、第一実施形態に係る識別媒体100と同様にして、真正性の識別作用を発揮しうる。
 また、本実施形態に係る識別媒体300において、等方層310は、金属箔110のコレステリック樹脂層120側の面110Uの、コレステリック樹脂層120が設けられていない全ての領域に、コレステリック樹脂層120と同様の厚さで、設けられている。そのため、識別媒体300において、コレステリック樹脂層120及び等方層310は、単一層中に混在している。これにより、本実施形態に係る識別媒体300は、第一実施形態に係る識別媒体100と同様の利点に加えて、金属箔110の面110Uの傷つきを防止したり、コレステリック樹脂層120に異物が引っかかってコレステリック樹脂層120が破損したりすることを防止できるという利点が得られる。また、等方層310により、識別媒体300の機械的強度を高めることができる。
 等方層310は、透明であることが好ましい。具体的には、等方層310の全光線透過率は、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である。これにより、円偏光板を介さないで識別媒体300のコレステリック樹脂層120側の面300Uを見た場合に、コレステリック樹脂層120がある領域と無い領域とが似通った色で観察されるようにできるので、コレステリック樹脂層120によって表された図柄131~133を視認し難くできる。ここで、光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製の紫外可視近赤外分光光度計「V-570」)を用いて測定しうる。
 前記のような透明な等方層310は、例えば、樹脂により形成しうる。特に、重合性を有する液晶性化合物を、前記液晶性化合物を配向させない状態で重合させた重合体を含む樹脂層が好ましい。
 識別媒体300の製造方法に制限はないが、例えば、第一実施形態に係る識別媒体100と同様に、溶着によって製造しうる。この場合、金属箔110上に、熱可塑性樹脂層140を設ける工程;熱可塑性樹脂層140に、コレステリック樹脂層120及び等方層310を接触させる工程;及び、熱可塑性樹脂層140とコレステリック樹脂層120及び等方層310とを溶着させる工程;を含む製造方法によって製造しうる。以下、例を示して、この製造方法について説明する。
 本例に示す製造方法では、第一実施形態で例示した製造方法と同様に、図5に示すように、金属箔110の面110Uに熱可塑性樹脂層140を設ける工程を行うことによって、金属箔110及び熱可塑性樹脂層140を備える積層支持体210を用意する。
 図11は、本発明の第二実施形態に係る識別媒体300の製造方法の一例を説明するため、CLC複層フィルム320を模式的に示す縦断面図である。
 本例に示す製造方法では、図11に示すように、基材フィルム220、コレステリック樹脂層120及び等方層310を備えるCLC複層フィルム320を用意する工程を行う。コレステリック樹脂層120及び等方層310は、いずれも基材フィルム220上に形成することにより、コレステリック樹脂層120及び等方層310が単一層中に混在するように形成する。以下、コレステリック樹脂層120及び等方層310を含む単一の層を、適宜「混在層330」と呼ぶことがある。また、コレステリック樹脂層120は、識別媒体300に形成させようとする図柄に対応した領域内の位置に形成する。このCLC複層フィルム320は、例えば後述する製造方法により、基材フィルム220上にコレステリック樹脂層120及び等方層310を形成することにより、製造しうる。
 図12は、本発明の第二実施形態に係る識別媒体300の製造方法の一例を説明するため、積層中間体340を模式的に示す縦断面図である。
 積層支持体210及びCLC複層フィルム320を用意した後で、積層支持体210上にCLC複層フィルム320を置いて、熱可塑性樹脂層140にコレステリック樹脂層120及び等方層310を接触させる工程を行う。これにより、金属箔110;熱可塑性樹脂層140;コレステリック樹脂層120及び等方層310を含む混在層330;並びに基材フィルム220をこの順に備える積層中間体340が得られる。熱可塑性樹脂層140にコレステリック樹脂層120及び等方層310を接触させる工程において、熱可塑性樹脂層140、コレステリック樹脂層120、及び等方層310の少なくとも1層の表面は、親水化処理されていることが好ましい。親水化処理を行うことにより、熱可塑性樹脂層140とコレステリック樹脂層120の密着性や、熱可塑性樹脂層140と等方性310の密着性が向上する。親水化処理としては、コロナ処理、プラズマ処理、火炎処理など公知の方法が挙げられる。
 その後、熱可塑性樹脂層140とコレステリック樹脂層120及び等方層310とを溶着させる工程を行う。ここで示す例では、第一実施形態と同様に、ホーン250から振動を加えて熱可塑性樹脂層140を溶融し、その後冷却することにより、コレステリック樹脂層120及び等方層310を金属箔110上に接着する。ただし、ここで示す例では、ホーン250を移動させながら溶着を行うことにより、コレステリック樹脂層120及び等方層310の全体を、金属箔110上に接着する。
 図13は、本発明の第二実施形態に係る識別媒体300の製造方法の一例を説明するため、識別媒体300及び基材フィルム220を模式的に示す縦断面図である。
 溶着を行った後で、図13に示すように、コレステリック樹脂層120及び等方層310から基材フィルム220を剥離する工程を行う。本例では金属箔110の面110Uの全体において溶着が行われたので、コレステリック樹脂層120及び等方層310の全体が金属箔110上に残留する。これにより、金属箔110の面110Uの図柄131~133(図1参照)に対応する領域に、熱可塑性樹脂層140を介してコレステリック樹脂層120が設けられ、それ以外の領域には、熱可塑性樹脂層140を介して等方層310が設けられるので、所望の識別媒体300を製造できる。
 [変更例]
 本発明は、上述した実施形態に限定されるものでは無く、更に変更して実施しうる。
 例えば、コレステリック樹脂層120によって表される図柄131~133は、図1に示すような文字に限定されず、例えば数字、記号、絵など、任意である。
 また、上述した第二実施形態では、金属箔110の面110Uのコレステリック樹脂層120が無い領域の全体に等方層310を設けたが、等方層310は、金属箔110の面110Uのコレステリック樹脂層120が無い領域の一部にだけ設けてもよい。
 また、上述した実施形態では、識別媒体100及び300の製造のための溶着法として超音波溶着法を用いたが、超音波溶着法以外の溶着法を用いてもよい。その例を挙げると、振動溶着法、誘導溶着法、高周波溶着法、半導体レーザー溶着法、熱溶着法、スピン溶着法などがある。これらの中でも、識別媒体100及び300の図柄131~133を正確に描画するため、及び、図柄131~133のデザインの自由度を高めるために、溶着箇所を小さくできる方法が好ましい。このような観点から、小さい範囲で熱を付与し、溶着させられる方法として、超音波溶着法が特に好ましい。
 また、上述した実施形態で例示した製造方法では、コレステリック樹脂層120及び等方層310を、基材フィルム220を備えたCLC複層フィルム220及び320として用意したが、基材フィルム220は用いなくてもよい。ただし、作業性向上、及び、コレステリック樹脂層120及び等方層310の傷つき防止の観点では、基材フィルム220を用いることが好ましい。
 さらに、識別媒体100及び300は、前記のコレステリック樹脂層120による真正性識別手段に加えて、他の真正性識別手段を併せて備えてもよい。例えば、ホログラム、すかし、マイクロ文字、蛍光インキ、磁気インキおよび赤外線反射インキ等の特殊インキによる印刷等の他の真正性識別手段を併せて備えてもよい。
 [金属箔]
 金属箔は、金属材料で形成したシート状の部材である。金属箔は、形状変化が容易であり、形状追従性が高いという、優れた性質を有する。
 このような金属箔を形成する金属材料としては、例えば、金属の単体、合金等が挙げられる。中でも、箔とした場合に形状追従性を有するものが好ましい。また、金属材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。金属材料の例としては、例えば、下記の表に示すものが挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 金属箔の厚さは、特に制限はないが、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは30μm以上であり、好ましくは300μm以下、より好ましくは100μm以下、特に好ましくは80μm以下である。金属箔の厚さを前記範囲の下限値以上にすることにより、金属箔の剛性を維持しつつ可撓性を付与でき、また、表面の鏡面化処理が可能である。また、上限値以下にすることにより、可撓性の付与ができ、表面の鏡面化処理が可能となる。
 金属箔は、例えば、金属材料からその展延性を利用して薄く延ばすことにより製造しうる。また、金属箔は、例えば、プラスチックフィルム、紙、不織布等の基材上に、金属材料の層を形成することにより、製造しうる。金属層を設ける方法としては、例えば、金属蒸着法、スパッタ蒸着法、メッキ法、金属粒子を分散したインキの塗工などの方法が挙げられる。
 [コレステリック樹脂層]
 コレステリック樹脂層とは、コレステリック規則性を有する樹脂層である。コレステリック樹脂層が有するコレステリック規則性とは、一平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。このように分子軸の方向がねじれてゆく構造は光学的にカイラルな構造となる。
 コレステリック樹脂層は、通常、円偏光分離機能を有する。すなわち、右円偏光及び左円偏光のうちの一方の円偏光を透過させ、他方の円偏光の一部又は全部を反射させる性質を有する。コレステリック樹脂層における反射は、円偏光を、そのキラリティを維持したまま反射する。
 円偏光分離機能を発揮する波長は、コレステリック樹脂層におけるらせん構造のピッチに依存する。らせん構造のピッチとは、らせん構造において分子軸の方向が平面を進むに従って少しずつ角度がずれていき、そして再びもとの分子軸方向に戻るまでの平面法線方向の距離である。このらせん構造のピッチの大きさを変えることによって、円偏光分離機能を発揮する波長を変えることができる。
 コレステリック樹脂層の屈折率異方性Δnは、好ましくは0.20以上であり、より好ましくは0.22以上である。コレステリック樹脂層が、このような高いΔnを有することにより、円偏光を反射可能な波長範囲を広くすることができる。このような高いΔnを有するコレステリック樹脂層は、後述するコレステリック液晶組成物(X)のような液晶組成物を用いることにより、形成することができる。Δnが0.30以上であると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。ここで、Δnは、セナルモン法により測定しうる。屈折率異方性Δnの上限は、例えば0.25以下としうる。
 コレステリック樹脂層は、例えば、コレステリック樹脂層形成用の適切な基材フィルム上にコレステリック液晶組成物の膜を設け、前記膜を硬化して製造することができる。また、この製造方法によれば、第一実施形態に係るCLC複層フィルム230のように、基材フィルム220上にコレステリック樹脂層120を備えるフィルムを製造できる。
 コレステリック樹脂層を形成するためのコレステリック液晶組成物としては、液晶性化合物を含有し、膜とした際にコレステリック液晶相を呈しうる組成物を用いることができる。ここで液晶性化合物としては、高分子化合物である液晶性化合物、及び重合性液晶性化合物を用いることができる。高い熱安定性を得る上では、重合性液晶性化合物を用いることが好ましい。かかる重合性液晶性化合物を、コレステリック規則性を呈した状態で重合させることにより、コレステリック液晶組成物の膜を硬化させ、コレステリック規則性を呈したまま硬化した非液晶性の樹脂層を得ることができる。なお、ここで便宜上液晶組成物と称する材料は、2以上の物質の混合物のみならず、単一の物質からなる材料をも包含する。
 コレステリック樹脂層としては、例えば、(i)らせん構造のピッチの大きさを段階的に変化させたコレステリック樹脂層、及び、(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層、等が挙げられる。
 (i)らせん構造のピッチを段階的に変化させたコレステリック樹脂層は、らせん構造のピッチが異なる複数のコレステリック樹脂層を積層することによって得ることができる。積層は、予めらせん構造のピッチが異なる複数のコレステリック樹脂層を作製した後に各層を粘着剤又は接着剤を介して固着することによって行なうことができる。または、あるコレステリック樹脂層を形成した上に他のコレステリック樹脂層を順次形成していくことによって行なうこともできる。
 (ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層は、その製法によって特に制限されない。このようなコレステリック樹脂層の製法の好ましい例としては、コレステリック樹脂層を形成するための重合性液晶性化合物を含有するコレステリック液晶組成物を、好ましくは延伸フィルム上又は配向膜等の他の層上に塗布して液晶組成物の層を得、次いで1回以上の、光照射及び/又は加温処理により、らせん構造のピッチを連続的に変化させた状態で、当該層を硬化する方法が挙げられる。かかるらせん構造のピッチを連続的に変化させる操作は、コレステリック樹脂層の反射帯域を拡張する操作であるので、広帯域化処理と呼ばれる。このような広帯域化処理に供するコレステリック液晶組成物の好ましい態様としては、下記に詳述するコレステリック液晶組成物(X)を挙げることが出来る。
 (ii)のらせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層は、1層のみを、識別媒体に用いるコレステリック樹脂層としてもよく、または、複数層を重ねて識別媒体に用いるコレステリック樹脂層としてもよい。例えば、可視光波長領域のうちの一部の領域において円偏光分離機能を発揮するコレステリック樹脂層と、他の領域において円偏光分離機能を発揮するコレステリック樹脂層とを組み合わせ、可視光波長領域のうちの広い領域において円偏光分離機能を発揮するコレステリック樹脂層としたものを用いることができる。
 識別媒体に用いるコレステリック樹脂層は、1層のみからなる樹脂層でもよく、上記(i)のコレステリック樹脂層、上記(ii)のコレステリック樹脂層、これらのいずれか又は両方を複数層重ねたもの等の2層以上の層からなる樹脂層であってもよい。コレステリック樹脂層を構成する層の数は、製造のし易さの観点から、1層~100層であることが好ましく、1層~20層であることがより好ましい。上に述べた広帯域化処理の結果、1層のみで高い可視光平均反射率を有するコレステリック樹脂層を得た場合、当該層1層のみを用いるだけでも、好ましい態様の識別媒体を得ることができる。
 コレステリック液晶組成物(X)は、下記式(1)で表される化合物、及び特定の棒状液晶性化合物を含有する。これら各成分について順次説明する。
 R1-A1-B-A2-R2 (1)
 式(1)において、R1及びR2は、それぞれ独立して、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の連結基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基を示す。
 前記アルキル基及びアルキレンオキサイド基は、置換されていないか若しくはハロゲン原子で1つ以上置換されていてもよい。前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1個~2個のアルキル基、アルキレンオキサイド基と結合していてもよい。
 R1及びR2として好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。
 また、R1及びR2の少なくとも一方は、反応性基であることが好ましい。R1及びR2の少なくとも一方として反応性基を有することにより、前記式(1)で表される化合物が硬化時にコレステリック樹脂層中に固定され、より強固な膜を形成することができる。ここで反応性基とは、例えば、カルボキシル基、任意の連結基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。
 式(1)において、A1及びA2は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていないか、若しくは、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。A1及びA2のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 A1及びA2として特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基からなる群より選択される基が挙げられる。これらの芳香環骨格は、脂環式骨格と比較して比較的剛直であり、棒状液晶性化合物のメソゲンとの親和性が高く、配向均一能がより高くなる。
 式(1)において、Bは、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-からなる群より選択される。
 Bとして特に好ましいものとしては、単結合、-OCO-及び-CH=N-N=CH-が挙げられる。
 式(1)で表される化合物は、少なくとも一種類が液晶性を有することが好ましく、また、キラリティを有することが好ましい。また、式(1)で表される化合物は、複数の光学異性体を組み合わせて用いることが好ましい。例えば、複数種類のエナンチオマーの混合物、複数種類のジアステレオマーの混合物、又は、エナンチオマーとジアステレオマーとの混合物を用いてもよい。式(1)で表される化合物の少なくとも一種は、その融点が、50℃~150℃の範囲内であることが好ましい。
 式(1)で表される化合物が液晶性を有する場合には、高いΔnを有することが好ましい。高いΔnを有する液晶性化合物を含むことにより、コレステリック液晶組成物(X)のΔnを向上させることができ、選択反射帯域の広いコレステリック樹脂層を作製することができる。式(1)で表される化合物の少なくとも一種のΔnは、好ましくは0.18以上、より好ましくは0.22以上としうる。Δnの上限は、例えば0.25以下としうる。
 式(1)で表される化合物として特に好ましい具体例としては、下記の化合物(A1)~(A9)が挙げられる:また、式(1)で表される化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 上記化合物(A3)において、「*」はキラル中心を表す。
 前記コレステリック液晶組成物(X)は、1分子中に少なくとも2つ以上の反応性基を有する棒状液晶性化合物を含有する。
 前記の棒状液晶性化合物の好ましい例としては、式(2)で表される化合物を挙げることができる。
 R3-C3-D3-C5-M-C6-D4-C4-R4 式(2)
 式(2)において、R3及びR4は、反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。D3及びD4は、単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。C3~C6は、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-からなる群より選択される基を表す。Mは、メソゲン基を表し、具体的には、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類の群から選択された2~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-等の結合基によって結合されて形成される。
 メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1~10のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5、または-O-C(=O)-NR5が挙げられる。ここで、R5及びRは、水素原子又は炭素数1~10のアルキル基を表し、アルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1~6のアルキル基を表す。
 前記「置換基を有してもよい炭素数1~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~6個のアルコキシ基、炭素原子数2~8個のアルコキシアルコキシ基、炭素原子数3~15個のアルコキシアルコキシアルコキシ基、炭素原子数2~7個のアルコキシカルボニル基、炭素原子数2~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
 前記の棒状液晶性化合物は、非対称構造であることが好ましい。ここで非対称構造とは、式(2)において、メソゲン基Mを中心としてR3-C3-D3-C5-と-C6-D4-C4-R4が異なる構造のことをいう。棒状液晶性化合物として非対称構造のものを用いることにより、配向均一性をより高めることができる。
 棒状液晶性化合物のΔnは、好ましくは0.18以上、より好ましくは0.22以上である。Δnが0.30以上の化合物を用いると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。このような高いΔn値を有することにより、高い光学的性能(例えば、円偏光の選択反射性能)を有するコレステリック樹脂層を得ることができる。屈折率異方性Δnの上限は、例えば0.25以下としうる。
 前記の棒状液晶性化合物は、1分子中に2つ以上の反応性基を有しうる。反応性基としては、例えば、エポキシ基、チオエポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、フマレート基、シンナモイル基、イソシアネート基、イソチオシアネート基、アミノ基、ヒドロキシル基、カルボキシル基、アルコキシシリル基、オキサゾリン基、メルカプト基、ビニル基、アリル基、メタクリル基、及びアクリル基が挙げられる。これらの反応性基を有することにより、コレステリック液晶組成物を硬化させた際に、実用に耐えうる膜強度を有する、安定した硬化物を得ることができる。実用に耐えうる膜強度とは、鉛筆硬度(JIS K5400)で、通常HB以上、好ましくはH以上である。膜強度が前記のように高いことにより、傷がつき難く、ハンドリング性に優れる。好ましい鉛筆硬度の上限は、光学的性能や耐久性試験に悪影響を及ぼさなければ、特に限定されない。
 棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B9)が挙げられるが、棒状液晶性化合物は下記の化合物に限定されるものではない。また、棒状液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000005
 (式(1)で表される化合物の合計重量)/(棒状液晶性化合物の合計重量)で示される重量比は、好ましくは0.05以上、より好ましくは0.1以上、特に好ましくは0.15以上であり、好ましくは1以下、より好ましくは0.65以下、特に好ましくは0.45以下である。前記の重量比を前記範囲の下限値以上にすることにより、液晶組成物の膜において配向均一性を高めることができる。また、上限値以下にすることにより、配向均一性を高くできる。また、液晶組成物の液晶相の安定性を高くできる。さらに、液晶組成物のΔnを高くできるので、所望の光学的性能(例えば、円偏光の選択反射性能)を有するコレステリック樹脂層を安定して得ることができる。ここで、合計重量とは、1種類を用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。
 コレステリック液晶組成物(X)において、式(1)で表される化合物の分子量が600未満であることが好ましく、棒状液晶性化合物の分子量が600以上であることが好ましい。これによりコレステリック液晶組成物の流動性が増し、液晶配向の均一性を向上させることができる。
 コレステリック液晶組成物(X)等のコレステリック液晶組成物は、硬化後の膜強度向上及び耐久性向上のために、任意に架橋剤を含有することができる。架橋剤は、例えば、液晶組成物の膜の硬化時に反応したり、硬化後に熱処理によって反応を促進したり、湿気により自然に反応が進行したりすることによって、コレステリック樹脂層の架橋密度を高めることができる。架橋剤としては、例えば、紫外線、熱、湿気等で反応しうるものを用いうる。中でも、架橋剤としては、配向均一性を悪化させないものが好ましい。
 架橋剤の具体例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート等のアジリジン化合物;ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートから誘導されるイソシアヌレート型イソシアネート、ビウレット型イソシアネート、アダクト型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のアルコキシシラン化合物;が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、架橋剤の反応性に応じて公知の触媒を用いてもよい。触媒を用いることにより、膜強度及び耐久性向上に加えて生産性を向上させることができる。
 架橋剤の量は、コレステリック液晶組成物を硬化して得られるコレステリック樹脂層における架橋剤の量が0.1重量%~15重量%となるようにすることが好ましい。架橋剤の量を前記範囲の下限値以上にすることにより、架橋密度を効果的に高めることができる。また、上限値以下にすることにより、コレステリック液晶組成物の液晶配向の均一性を保持することができる。
 コレステリック液晶組成物は、任意に光開始剤を含みうる。光開始剤としては、例えば、紫外線又は可視光線によってラジカル又は酸を発生させる公知の化合物が使用できる。光開始剤の具体例としては、ベンゾイン、ベンジルメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナミックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp’-ジクロロベンゾフェノン、pp’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタレン、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、必要に応じて公知の光増感剤又は重合促進剤としての三級アミン化合物を用いて、硬化性をコントロールしてもよい。
 光開始剤の量は、コレステリック液晶組成物中0.03重量%~7重量%であることが好ましい。光開始剤の量を前記範囲の下限値以上にすることにより、重合度を高くできるので、コレステリック樹脂層の膜強度を高めることができる。また、上限値以下にすることにより、液晶性化合物の配向を良好にできるので、液晶組成物の液晶相を安定にできる。
 コレステリック液晶組成物は、任意に界面活性剤を含みうる。該界面活性剤としては、例えば、配向を阻害しないものを適宜選択して使用しうる。このような界面活性剤としては、例えば、疎水基部分にシロキサン、フッ化アルキル基を含有するノニオン系界面活性剤が好適に挙げられる。中でも、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤の具体例としては、OMNOVA社PolyFoxの「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-3320」、「PF-651」、「PF-652」;ネオス社フタージェントの「FTX-209F」、「FTX-208G」、「FTX-204D」;セイミケミカル社サーフロンの「KH-40」等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 界面活性剤の量は、コレステリック液晶組成物を硬化して得られるコレステリック樹脂層における界面活性剤の量が0.05重量%~3重量%となるようにすることが好ましい。界面活性剤の量を前記範囲の下限値以上にすることにより、空気界面における配向規制力を高くできるので、配向欠陥を防止できる。また、上限値以下にすることにより、過剰の界面活性剤が液晶分子間に入り込むことによる配向均一性の低下を防止できる。
 コレステリック液晶組成物は、任意にカイラル剤を含みうる。カイラル剤の具体例としては、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号公報、WO98/00428号公報、特開2007-176870号公報、等に掲載されるものを適宜使用することができ、例えばBASF社パリオカラーのLC756として入手できる。また、カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 カイラル剤の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。カイラル剤の具体的な量は、コレステリック液晶組成物中、通常1重量%~60重量%である。
 コレステリック液晶組成物は、必要に応じて更に任意成分を含みうる。任意成分としては、例えば、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、光安定化剤等を挙げることができる。任意成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの任意成分の量は、所望する光学的性能を低下させない範囲で設定しうる。
 コレステリック液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造することができる。
 コレステリック液晶組成物を用意した後で、基材フィルム上にコレステリック液晶組成物の膜を設け、必要に応じて配向処理を行った後、硬化処理を行うことにより、コレステリック樹脂層を得ることができる。
 基材フィルムとしては、通常、1mm厚での全光透過率が80%以上のフィルムを使用する。基材フィルムの具体例としては、脂環式オレフィン樹脂、ポリエチレン樹脂やポリプロピレン樹脂などの鎖状オレフィン樹脂、トリアセチルセルロース樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、変性アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、アクリル樹脂などの合成樹脂からなる単層又は積層のフィルムが挙げられる。これらの中でも、脂環式オレフィン樹脂又は鎖状オレフィン樹脂のフィルムが好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、脂環式オレフィン樹脂のフィルムが特に好ましい。
 基材フィルムには、コレステリック液晶組成物の膜を設ける前に、配向膜を設けてもよい。配向膜は、例えば、セルロース、シランカップリング剤、ポリイミド、ポリアミド、ポリビニルアルコール、エポキシアクリレート、シラノールオリゴマー、ポリアクリロニトリル、フェノール樹脂、ポリオキサゾール、環化ポリイソプレンなどで形成しうるが、中でも変性ポリアミドが好ましい。変性ポリアミドとしては、例えば、芳香族ポリアミド又は脂肪族ポリアミドに変性を加えたものを用いうる。その中でも特に、脂肪族ポリアミドに変性を加えたものが好ましい。好適な例を挙げると、ナイロン-6、ナイロン-66、ナイロン-12、3元ないし4元共重合ナイロン、脂肪酸系ポリアミド、又は脂肪酸系ブロック共重合体(例えばポリエーテルエステルアミド、ポリエステルアミド)に変性を加えたものを挙げることができる。また、変性としては、例えば、末端アミノ変性、カルボキシル変性、ヒドロキシル変性などの変性、並びに、アミド基の一部をアルキルアミノ化又はN-アルコキシアルキル化する変性を挙げることができる。N-アルコキシアルキル化変性ポリアミドとしては、例えば、ナイロン-6、ナイロン-66、又はナイロン-12等の共重合ナイロンのアミド基の一部をN-メトキシメチル化したものが挙げられる。変性ポリアミドの重量平均分子量は、好ましくは5000~500000、より好ましくは10000~200000である。
 配向膜は、例えば、前記の材料を含む溶液を基材フィルム上に塗布し、乾燥させ、ラビング処理を施すことにより製造しうる。この際の塗布方法としては、例えば、リバースグラビアコーティング法、ダイレクトグラビアコーティング法、ダイコーティング法、バーコーティング法等が挙げられる。
 配向膜の厚さは、0.001μm~5μmが好ましく、0.01μm~2μmがさらに好ましい。基材フィルムが配向膜を備える場合、通常、この配向膜上にコレステリック液晶組成物の膜を設ける。
 さらに、コレステリック液晶組成物の膜を設ける前、又は、配向膜を設ける前に、必要に応じて、基材フィルムの表面にコロナ放電処理及びラビング処理等の表面処理を施してもよい。
 コレステリック液晶組成物の塗布は、公知の方法、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法等により実施することができる。
 基材フィルム上にコレステリック液晶組成物の膜を設けた後で、必要に応じて、配向処理を行ってもよい。配向処理は、例えば液晶組成物の膜を50℃~150℃で0.5分間~10分間加温することにより行いうる。配向処理を施すことにより、膜中のコレステリック液晶組成物は良好に配向し、液晶性化合物の分子はコレステリック規則性を呈した状態となる。
 その後、コレステリック液晶組成物の膜を硬化させるために、硬化処理を行う。硬化処理は、例えば、1回以上の光照射と加温処理との組み合わせにより行うことができる。
 加温条件は、例えば、通常40℃以上、好ましくは50℃以上、また、通常200℃以下、好ましくは140℃以下の温度において、通常1秒以上、好ましくは5秒以上、また、通常3分以下、好ましくは120秒以下の時間としうる。
 また、光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光照射は、例えば、波長200nm~500nmの光を0.01秒~3分照射することにより行うことができる。この際、照射される光のエネルギーは、例えば、0.01mJ/cm~50mJ/cm2としうる。
 0.01mJ/cm~50mJ/cm2の微弱な紫外線照射と加温とを複数回交互に繰り返すことにより、らせん構造のピッチの大きさを連続的に大きく変化させた、反射帯域の広い円偏光分離機能を有するコレステリック樹脂層を得ることができる。さらに、上記の微弱な紫外線照射等による反射帯域の拡張を行った後に、50mJ/cm~10,000mJ/cm2といった比較的強い紫外線を照射し、液晶性化合物を完全に重合させることにより、機械的強度の高いコレステリック樹脂層を得ることができる。上記の反射帯域の拡張及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)で行ってもよい。
 前記のようなコレステリック液晶組成物の塗布及び硬化の工程は、1回に限られず、塗布及び硬化を複数回繰り返して行ってもよい。これにより、2層以上を含むコレステリック樹脂層を形成できる。ただし、上記の例において説明したコレステリック液晶組成物(X)を用いることにより、1回のみの液晶組成物の塗布及び硬化によっても、良好に配向した棒状液晶性化合物を含み、かつ5μm以上といった厚さのコレステリック樹脂層を容易に形成することができる。
 このような製造方法によってコレステリック樹脂層を製造する場合、コレステリック樹脂層のねじれ方向は、使用するカイラル剤の種類(構造)により適宜選択できる。具体的には、ねじれを右方向とする場合には、右旋性を付与するカイラル剤を用い、ねじれ方向を左方向とする場合には、左旋性を付与するカイラル剤を用いることで実現できる。
 コレステリック樹脂層の厚さは、十分な反射率を得る上で、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。また、コレステリック樹脂層の透明性を得る上で、20μm以下であることが好ましく、10μm以下であることがより好ましい。ここで、コレステリック樹脂層の厚さは、識別媒体が有するコレステリック樹脂層が2以上の層である場合は各層の厚さの合計を指し、コレステリック樹脂層が1層である場合にはその厚さを指す。
 [等方層]
 等方層は、例えば、上述したコレステリック液晶組成物の膜を硬化させることにより、製造しうる。ただし、その場合は、光学的な等方性を得る観点から、コレステリック液晶組成物が配向していない状態において当該コレステリック液晶組成物の膜を硬化させる。この製造方法を用いて、第二実施形態に係るCLC複層フィルム320のように、基材フィルム220上にコレステリック樹脂層120及び等方層310を備えるフィルムを製造する場合、例えば、下記の製造方法によって製造しうる。
 上述したコレステリック樹脂層の形成方法と同様に、必要に応じて基材フィルムの表面に配向膜を設けたり表面処理を施したりした後、基材フィルム上にコレステリック液晶組成物の膜を設ける。その後、必要に応じて配向処理を行ってから、所定のマスクを用いてコレステリック液晶組成物の膜に硬化処理を施す。この際、配向処理及び硬化処理は、コレステリック樹脂層の項で説明したのと同様の条件で行いうる。また、マスクは、識別媒体に形成させようとする図柄に対応した領域に透光部を有し、それ以外の領域に遮光部を有する部材である。硬化処理の際、マスクを介して光を照射すると、光は透光部だけを透過するので、この透光部に対応した領域のコレステリック液晶組成物だけが配向した状態で硬化する。そのため、所望の図柄に応じた形状のコレステリック樹脂層が形成される。
 その後、コレステリック液晶組成物の膜の硬化していない領域において、その配向性を等方性に変化させる処理を行う。例えば、温度150℃~200℃で1秒~5秒間加熱する処理を行う。これにより、コレステリック液晶組成物内の液晶性化合物の分子は、そのコレステリック規則性を失い、等方性になる。この状態で、コレステリック液晶組成物のコレステリック規則性を失った硬化していない領域に、50mJ/cm~10,000mJ/cmの光照射等の処理を行い、膜を硬化させる。これにより、等方層が基材フィルム上に形成されるので、第二実施形態に係る混在層330のような、コレステリック樹脂層120及び等方層310を含む単一の層が得られる。
 等方層の厚さは、通常、コレステリック樹脂層と同じ厚みにする。ただし、必要であれば、等方層の厚さは、コレステリック樹脂層とは異なる厚みにしても構わない。
 [熱可塑性樹脂層]
 熱可塑性樹脂層は、熱可塑性樹脂の層である。熱可塑性樹脂層は、加熱によって軟化し、冷却することによって固化する特性を有する。上述した実施形態に係る識別媒体では、この特性を利用し、熱可塑性樹脂層を用いた溶着法によって金属箔とコレステリック樹脂層とを接着している。
 熱可塑性樹脂は、通常、重合体を含み、更に必要に応じて任意の成分を含む。熱可塑性樹脂が含む重合体としては、熱可塑性樹脂に金属箔との高い密着性を与えうるものが好ましい。このような重合体の例としては、アクリルポリマー、ウレタンポリマー、エステルポリマー、アミドポリマー、アミドイミドポリマー、セルロースポリマー、シリコーンポリマー、アクリル-シリカハイブリッドポリマーなどが挙げられる。これらの中でも、耐熱性及び透明性が高く、金属箔との密着性が特に良好であることから、アクリルポリマー、エステルポリマー、アミドイミドポリマー、及び、アクリル-シリカハイブリッドポリマーが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 アクリルポリマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルなどの(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸等の、不飽和カルボン酸;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸とポリエチレングリジコール又はポリプロピレングリコールとのモノエステル、等のヒドロキシル基含有ビニル単量体;(メタ)アクリル酸グリシジル等の、エポキシ基含有ビニル単量体;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピル等の、(メタ)アクリル酸アルコキシアルキル;(メタ)アクリルアミド、メチロール(メタ)アクリアミド、メトキシエチル(メタ)アクリルアミド等の、アミド基含有ビニル単量体;メタクリロキシプロピルメトキシシラン等の、ケイ素含有ビニル単量体;(メタ)アクリロイルアジリジン等の、アジリジン基含有ビニル単量体;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、スチレン、メチルスチレン等の、芳香族基含有ビニル単量体;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル等の、脂環式アルコールと(メタ)アクリル酸とのエステル;エチレングリコールジ(メタ)アクリリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の、(メタ)アクリロイル基を2個以上有する単量体;酢酸ビニル;塩化ビニル;マクロモノマー;ジビニルベンゼン;等のモノマーの、単一重合体ないし共重合体を挙げることができる。
 ウレタンポリマーとしては、例えば、一般的なポリオールとイソシアネート化合物との反応物を挙げることができる。
 ポリオールとしては、例えば、メチレンオキサイド鎖、エチレオキサイド鎖、エチレンオキサイド鎖、プロピレンオキサイド鎖、ブチレンオキサイド鎖等のアルキレンオキサイド鎖の構造単位を単独で、あるいは2種類以上有する、ポリエーテルポリオール;テレフタル酸、アジピン酸、アジピン酸、セバチン酸、無水フタル酸、イソフタル酸、トリメット酸などの酸化合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、1,6-ヘキサングリコール、3-メチル-1,5-ペンタンジオール、3,3’-ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオールなどのグリコール成分とのエステル化反応により得られるポリエステルポリオール;上記酸化合物と、グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオールとの反応で得られるポリエステルポリオール;ポリカプロラクトン、ポリ(β-メチル-γ-バレロラクトン)、ポリバレロラクトン等のラクトン類の開環重合で得られるポリエステルポリオール;などを挙げることができる。
 イソシアネート化合物としては、例えば、1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニレンメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート等の、芳香族ポリイソシアネート;トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカンメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシナネート等の、脂肪族ポリイソシアネート;ω,ω’-ジイソシアネート-1,3-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,3-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、1,3-テトラメチルキシリレンジイソシアネート等の、芳香族脂肪族ポリイソシアネート;3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネートメチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,4’-ビス(イソシアネートメチル)シクロヘキサン等の、脂環族ポリイソシアネート;などを挙げることができる。
 エステルポリマーとしては、例えば、特開平10-86307号公報に記載の脂肪族ポリエステル等が挙げられる。
 アミドポリマーとしては、例えば、特開2011-36765号公報に記載のN-アルコキシアルキル化ポリアミド等が挙げられる。
 アミドイミドポリマーとしては、例えば、国際公開第2013/136807号に記載のポリイミド前駆体などが挙げられる。
 セルロースポリマーとしては、例えば、特開2011-195697号公報に記載のセルロース誘導体等が挙げられる。
 シリコーンポリマーとしては、例えば、特許第2756474号公報に記載のシリコーン又はシリコーンの前駆体の重合体等が挙げられる。
 アクリル-シリカハイブリッドポリマーとしては、例えば、国際公開第2012/133741号に記載の有機-無機ハイブリッド材などが挙げられる。
 熱可塑性樹脂層に含まれる熱可塑性樹脂のガラス転移温度Tgは、好ましくは80℃以上、より好ましくは90℃以上、特に好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは170℃以下、特に好ましくは150℃以下である。熱可塑性樹脂のガラス転移温度Tgが前記範囲の下限値以上であることにより、識別媒体の使用時において熱可塑性樹脂を固化させられるので、金属箔とコレステリック樹脂層との接着性を高くできる。また、識別媒体が使用される環境下における耐久性を維持できる。また、上限値以下にすることにより、溶着時に熱可塑性樹脂層を円滑に融解させることができるので、識別媒体の製造を容易に行うことができる。
 熱可塑性樹脂が含みうる任意の成分としては、シランカップリング剤が挙げられる。シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル基含有シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩などのアミノ基含有シランカップリング剤;トリス-(トリメトキシシリルプロピル)イソシアヌレートなどのイソシアヌレート基含有シランカップリング剤;3-ウレイドプロピルトリアルコキシシランなどのウレイド基含有シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。これらのシランカップリング剤の量は、所望する光学的性能を低下させない範囲で設定しうる。
 また、識別媒体が有する真正性の識別作用を安定して発揮させる観点から、熱可塑性樹脂層は光学的な等方性を有することが好ましい。具体的には、波長550nmにおける熱可塑性樹脂層の正面レターデーションReは、0nm以上10nm以下が好ましい。
 さらに、熱可塑性樹脂層は、透明であることが好ましい。具体的には、熱可塑性樹脂層の全光線透過率は、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である。これにより、円偏光板を介さないで識別媒体のコレステリック樹脂層側の面を見た場合に、コレステリック樹脂層がある領域と無い領域とが似通った色で観察されるようにできるので、コレステリック樹脂層によって表された図柄を視認し難くできる。
 熱可塑性樹脂層の厚さは、好ましくは0.5μm以上、より好ましくは1μm以上、特に好ましくは2μm以上であり、好ましくは5μm以下、より好ましくは4μm以下、特に好ましくは3μm以下である。熱可塑性樹脂層の厚さを前記範囲の下限値以上にすることにより、金属箔とコレステリック樹脂層との接着力を高く維持できる。また、上限値以下にすることにより、円偏光板を介さないで識別媒体のコレステリック樹脂層側の面を見た場合に、コレステリック樹脂層がある領域と無い領域の段差を小さくできる。そのため、観察者がコレステリック樹脂層によって表された図柄を容易には視認できなくできるので、偽造の困難性を更に高めることができる。
 [その他の構成要素]
 識別媒体は、上述した金属箔、コレステリック樹脂層及び熱可塑性樹脂層以外の構成要素を備えていてもよい。
 例えば、識別媒体は、コレステリック樹脂層の製造のために用いた基材フィルム及び配向膜を備えていてもよい。
 また、例えば、識別媒体は、支持フィルム層、保護層、易接着層、易滑層、ハードコート層、帯電防止層、耐摩耗性層、反射防止層、色補正層、紫外線吸収層、印刷層、透明導電層、ガスバリア層、ホログラム層、剥離層、粘着層、エンボス層などを備えていてもよい。
 [用途]
 本発明の識別媒体は、真正性を識別することが求められる任意の物品に適用しうる。例えば、医薬品、化粧品、香水およびトナーなどの容器、開封シール、包装物、紙幣、証券、金券、旅券、電子機器、バッグ、衣服、布地、クレジットカード、セキュリティカード、情報を図形化したコード(例えばバーコード等の1次元のコード、並びにQRコード(登録商標)等の2次元のコード)を付した物品、並びに各種証明等に施す偽造防止のための識別媒体として使用できる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下の操作は、別に断らない限り、常温常圧大気中にて行った。
 [評価方法]
 〔色度座標及び反射率の測定方向〕
 色度座標及び波長550nmにおける反射率は、JIS Z8722に則り、分光光度計(日本分光社製「V-7200」)を用いて、測定対象の表面の法線に対して5°の方向から光を入射して、入射光の方向と法線に対して対称な、法線に対して5°の方向から測定した。この際、入射光としてs偏光及びp偏光を用い、両偏光で測定した数値の平均値を、測定対象の色度座標及び反射率とした。また、光源は、C光源を用いた。
 〔ビュワー無しでの、図柄の視認性の評価方法〕
 識別媒体を目視にて観察し、ビュワー無しでの図柄の視認性を、下記の指標にて評価した。
 可:図柄が視認できる。
 不可:図柄が視認できない。
 〔ビュワー有りでの、図柄の視認性の評価方法〕
 直線偏光子及び1/4波長板を組み合わせた円偏光板からなるビュワーを用意した。このビュワーを、直線偏光子が視認側となるように識別媒体上に乗せ、識別媒体を観察した。観察された結果から、ビュワー有りでの図柄の視認性を、下記の指標にて評価した。
 可:図柄が視認できる。
 不可:図柄が視認できない。
 〔密着性の評価方法〕
 識別媒体のコレステリック樹脂層が形成された領域に、カミソリの刃にて、X状にキズを付けた。キズ部分を覆うように、JIS Z1522による幅12mmのセロハン粘着テープを密着させ、ただちにセロハン密着テープの一端を識別媒体の面に対して垂直に引き、瞬間的に引き離した。キズ部分を観察し、密着性を下記の指標にて評価した。
  良:金属箔からのコレステリック樹脂層の剥離が、まったく見られなかった。
  不良:X状のキズの周辺を含め、金属箔からのコレステリック樹脂層の剥離が見られた。
 〔図柄の鮮明さの評価方法〕
 図柄の設計幅に対する、実際にコレステリック樹脂層で形成された図柄の幅のズレを測定した。このズレの大きさから、図柄の鮮明さを、下記の指標にて評価した。
  良:図柄の幅のズレが、図柄全体において±3mmの範囲に収まっている。
  不良:図柄の幅のズレが、±3mmの範囲に収まっていない部分がある。
 [実施例1]
 (1-1.CLC複層フィルムの製造)
 下記式(X)で表される化合物25.5部、下記式(Y)で表される重合性の液晶性化合物11部、カイラル剤(BASF社製「LC756」)2.3部、重合開始剤(チバスペシャルティケミカルズ社製「イルガキュアOXE02」)1.2部、界面活性剤(ネオス社製「フタージェント209F」)0.04部、及び溶媒としてシクロペンタノン60部を混合して、コレステリック液晶組成物を調整した。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記の式(X)で表される化合物は、特許5365519号公報に、また、前記の式(Y)で表される化合物は、特許4054392号公報に、それぞれ記載された方法に従い製造したものを使用した。
 片面に易接着層が付設されたポリエチレンテレフタレートフィルム(東洋紡社製「コスモシャインA4100」、厚み100μm)の易接着層が付設されていない面に、ラビング処理を施し、前記のコレステリック液晶組成物を、♯10のワイヤーバーを使用して塗布して、コレステリック液晶組成物の膜を得た。この膜を130℃で5分間配向処理した。その後、コレステリック液晶組成物の膜に対して、0.1mJ/cm~45mJ/cmの微弱な紫外線による照射処理と、それに続く100℃で1分間の加温処理からなるプロセスを2回繰り返した後、窒素雰囲気下で800mJ/cmの紫外線を照射して、厚さ5.2μmのコレステリック樹脂層を形成した。これにより、コレステリック樹脂層/ポリエチレンテレフタレートフィルムの層構成を有するCLC複層フィルムを得た。
 (1-2.熱可塑性樹脂層の形成)
 ポリエステル系樹脂溶液(東洋紡製「バイロンUR-4800」)3.06部に多官能イソシアネート(旭化成ケミカルズ社製「TPA-100」)0.019部を添加し、さらにメチルエチルケトン6.9部を添加してから撹拌して、熱可塑性樹脂層を形成するための塗工液を製造した。
 金属箔としてステンレス箔(SUS302、厚さ0.05mm)を用意した。この金属箔上に、前記の塗工液を#22バーにて塗工し、80℃にて5分乾燥して、厚さ2.4μmの熱可塑性樹脂層を得た。これにより、金属箔及び熱可塑性樹脂層を備える積層支持体を得た。
 (1-3.コレステリック樹脂層の形成)
 前記積層支持体の熱可塑性樹脂層側に、CLC複層フィルムを、熱可塑性樹脂層とコレステリック樹脂層とが向き合うように配置した。この際、熱可塑性樹脂層とコレステリック樹脂層とは接触させた。これにより、金属箔、熱可塑性樹脂層、コレステリック樹脂層及びポリエチレンテレフタレートフィルムをこの順に備える積層中間体を得た。
 前記の積層中間体を、横振動溶着機(日本エマソン社製 横振動溶着機2000Xdtならびにスタンド20SA)に設置した。この溶着機のブースターに、高さ0.5mmの複数の突起を形成したホーンを取り付けた。このホーンを、積層中間体のポリエチレンテレフタレートフィルム側の面に接触させ、ホーンを振動させることで超音波溶着加工処理を行った。この溶着加工処理の処理条件は、下記の通りにした。
 発振周波数:40Hz。
 発振時間:0.250秒。
 実加圧:100kPa。
 冷却時間:0.200秒。
 前記の超音波溶着加工処理を、形成したい図柄に沿ってホーンを移動させて、繰り返し行った。溶着加工処理を施された領域では、熱可塑性樹脂層を介して金属箔にコレステリック樹脂層が接着した。
 その後、ポリエチレンテレフタレートフィルムを引っ張ることで、積層支持体からCLC複層フィルムを剥がした。溶着加工処理が施された領域以外では熱可塑性樹脂層からコレステリック樹脂層が剥がれたが、溶着加工処理が施された領域ではコレステリック樹脂層は熱可塑性樹脂層上に残った。これにより、金属箔上の所望の図柄の領域にコレステリック樹脂層を備える識別媒体を得た。
 この識別媒体について、上述した方法によって評価を行った。
 [実施例2]
 前記工程(1-2)において、金属箔として、ステンレス箔の代わりにイリジウム箔(厚さ0.05mm)を用いた。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例3]
 前記工程(1-3)において、図柄の数を増やした。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例4]
 前記工程(1-1)において、コレステリック液晶組成物の塗布量を変更することにより、コレステリック樹脂層の厚さを薄くした。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例5]
 前記工程(1-1)において、コレステリック液晶組成物の塗布量を変更することにより、コレステリック樹脂層の厚さを厚くした。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例6]
 前記工程(1-1)において、コレステリック液晶組成物の塗布量を変更することにより、コレステリック樹脂層の厚さを厚くした。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例7]
 前記工程(1-1)において、微弱な紫外線による照射処理とそれに続く加温処理からなるプロセスを行う際、形成したい図柄に対応した透光部を有するマスクを介して紫外線の照射を行った。さらに、前記のプロセスの後で800mJ/cmの紫外線を照射する前に、温度170℃で時間30秒間加熱する処理を行って、コレステリック液晶組成物の硬化していない領域を等方性に変化させ、この等方性の状態を維持しながら紫外線を照射して硬化処理を行った。
 さらに、前記工程(1-3)において、形成したい図柄に対応する領域だけでなく、金属箔の全面に渡って、溶着加工処理を施した。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例8]
 前記工程(1-3)において、金属箔及び熱可塑性樹脂層を備えた積層支持体の代わりに、金属箔自体を用いた。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [実施例9]
 前記工程(1-3)において、横振動溶着機を用いた超音波溶着加工処理の代わりに、以下の説明する熱溶着加工処理を行った。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 (熱溶着処理)
 積層中間体のポリエチレンテレフタレートフィルム側の面に、熱溶着ウェルダ(精電舎電子工業社製)のヒータ部を接触させ、ヒータ部から熱を加えることにより、熱溶着加工処理を行った。この熱溶着加工処理を、形成したい図柄に沿ってヒータ部を移動させて、繰り返し行った。これにより、溶着加工処理を施された領域では、熱可塑性樹脂層を介して金属箔にコレステリック樹脂層が接着した。
 [比較例1]
 前記工程(1-3)において、所定の図柄部分だけではなく、金属箔の全面に溶着加工処理を施すことにより、金属箔の全面にコレステリック樹脂層を接着させた。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [比較例2]
 前記工程(1-1)において、コレステリック液晶組成物の塗布量を変更することにより、コレステリック樹脂層の厚さを薄くした。
 以上の事項以外は実施例1と同様にして、識別媒体の製造及び評価を行った。
 [結果]
 実施例及び比較例の結果を、下記の表に示す。下記の表に示す略称の意味は、以下の通りである。
 図柄占有率:金属箔の表面積に対する、コレステリック樹脂層の占有面積の比率。
 CLC厚さ:コレステリック樹脂層の厚さ
 PEs:ポリエステル
 USW:超音波溶着
 TW:熱溶着
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 前記の実施例及び比較例の結果から、本発明の識別媒体は、円偏光板を用いた場合には図柄を視認することができ、且つ、円偏光板を用いない目視で図柄が容易には視認できないことが確認された。また、特に熱溶着法で識別媒体を製造した実施例9と、超音波溶着法で識別媒体を製造した実施例1~8との対比から、超音波溶着法により、意図した図柄を正確にコレステリック樹脂層で描画できることが確認された。これは、熱溶着法では基材フィルム及びコレステリック樹脂層を伝わる過程で熱が拡散し、溶着部分の形状が意図した形状になり難いのに対し、超音波融着法ではこのような熱の拡散が無いので、意図した形状の図柄を正確に描画できるためと推察される。
 100 識別媒体
 100U 識別媒体の面
 110 金属箔
 110U 金属箔の面
 120 コレステリック樹脂層
 120U コレステリック樹脂層の面
 131~133 図柄
 140 熱可塑性樹脂層
 150 右円偏光板
 160 左円偏光板
 210 積層支持体
 220 基材フィルム
 230 CLC複層フィルム
 240 積層中間体
 250 超音波融着機のホーン
 251 ホーンに形成された突起
 300 識別媒体
 310 等方層
 320 CLC複層フィルム
 330 混在層
 340 積層中間体

Claims (7)

  1.  金属箔と、前記金属箔上に断片的に設けられたコレステリック樹脂層とを備え、
     前記金属箔のxy色度図における色度座標(x1,y1)、及び、前記コレステリック樹脂層のxy色度図における色度座標(x2,y2)が、
     0≦|x1-x2|≦0.02、及び、
     0≦|y1-y2|≦0.02
     を満たす、識別媒体。
  2.  前記金属箔の前記コレステリック樹脂層側の面と、前記コレステリック樹脂層の前記金属箔とは反対側の面との距離が、3μm以上10μm以下である、請求項1記載の識別媒体。
  3.  更に等方層を備え、
     前記コレステリック樹脂層及び前記等方層が、単一層中に混在している、請求項1又は2記載の識別媒体。
  4.  波長550nmにおける前記金属箔の反射率Ya550、及び、波長550nmにおける前記コレステリック樹脂層の反射率Yb550が、
     0%≦|Ya550-Yb550|≦10%
     を満たす、請求項1~3のいずれか一項に記載の識別媒体。
  5.  前記金属箔と前記コレステリック樹脂層との間に、熱可塑性樹脂層を備える、請求項1~4のいずれか一項に記載の識別媒体。
  6.  請求項5記載の識別媒体の製造方法であって、
     前記金属箔上に、前記熱可塑性樹脂層を設ける工程と、
     前記熱可塑性樹脂層に、前記コレステリック樹脂層を接触させる工程と、
     前記熱可塑性樹脂層と前記コレステリック樹脂層とを溶着させる工程と、を含む、識別媒体の製造方法。
  7.  請求項1~5のいずれか一項に記載の識別媒体の使用方法であって、
     前記識別媒体の前記コレステリック樹脂層側の面を、円偏光板を介して見て、前記コレステリック樹脂層がある領域を明状態で観察し、前記コレステリック樹脂層が無い領域を暗状態で観察する、識別媒体の使用方法。
PCT/JP2015/068801 2014-06-30 2015-06-30 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法 WO2016002765A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580033122.3A CN106461847A (zh) 2014-06-30 2015-06-30 识别介质、识别介质的制造方法和识别介质的使用方法
EP15814788.4A EP3163335A4 (en) 2014-06-30 2015-06-30 Identification medium, method for producing identification medium, and method for using identification medium
JP2016531389A JPWO2016002765A1 (ja) 2014-06-30 2015-06-30 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法
US15/320,535 US20170157972A1 (en) 2014-06-30 2015-06-30 Identification medium, method for producing identification medium, and method for using identification medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134761 2014-06-30
JP2014134761 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002765A1 true WO2016002765A1 (ja) 2016-01-07

Family

ID=55019297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068801 WO2016002765A1 (ja) 2014-06-30 2015-06-30 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法

Country Status (5)

Country Link
US (1) US20170157972A1 (ja)
EP (1) EP3163335A4 (ja)
JP (1) JPWO2016002765A1 (ja)
CN (1) CN106461847A (ja)
WO (1) WO2016002765A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034215A1 (ja) * 2016-08-19 2018-02-22 日本ゼオン株式会社 識別用表示媒体及びその製造方法
WO2019230840A1 (ja) * 2018-05-31 2019-12-05 日本ゼオン株式会社 識別媒体及び識別媒体の真正性を識別する方法
WO2020121791A1 (ja) 2018-12-11 2020-06-18 日本ゼオン株式会社 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
WO2021079815A1 (ja) 2019-10-23 2021-04-29 日本ゼオン株式会社 液晶硬化層転写シール、液晶硬化層転写物、及び液晶硬化層転写シールの真正性判定方法
WO2022173034A1 (ja) 2021-02-15 2022-08-18 日本ゼオン株式会社 インキ組成物、物品及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199812A1 (ja) * 2016-05-18 2017-11-23 富士フイルム株式会社 投影部材、投影システム、投影部材の製造方法
GB2568760A (en) * 2017-11-28 2019-05-29 De La Rue Int Ltd Security devices and methods of manufacture therefor
US20210198576A1 (en) * 2018-05-31 2021-07-01 Zeon Corporation Identification medium, and method for determining authenticity of identification medium
EP4006108A4 (en) * 2019-07-30 2023-08-02 Zeon Corporation COMPOUND PIGMENT, IDENTIFICATION MEDIA AND AUTHENTICATION PROCEDURE
CN115605353A (zh) * 2020-05-28 2023-01-13 日本瑞翁株式会社(Jp) 真伪判断构件及其真实性判断方法
CN113467095B (zh) * 2021-06-08 2023-06-30 西安交通大学 一种非成像型激光匀质系统及匀质元件的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131187A (ja) * 2001-10-26 2003-05-08 Fuji Photo Film Co Ltd 選択反射膜及びその製造方法
JP2008129421A (ja) * 2006-11-22 2008-06-05 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2008256926A (ja) * 2007-04-04 2008-10-23 Toppan Printing Co Ltd セキュリティデバイス、ラベル付き印刷物および判別方法
JP2011022314A (ja) * 2009-07-15 2011-02-03 Toppan Printing Co Ltd 偽造防止媒体及び偽造防止シール
JP2011128416A (ja) * 2009-12-18 2011-06-30 Toppan Printing Co Ltd 情報記録媒体、その製造方法及び情報読取方法
JP2013018178A (ja) * 2011-07-11 2013-01-31 National Printing Bureau 真偽判別可能な印刷物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218118A1 (en) * 2003-02-18 2004-11-04 Sumitomo Chemical Company, Limited Dye type polarizing film and dye type polarizer
DE102004039355A1 (de) * 2004-08-12 2006-02-23 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
JP2007069486A (ja) * 2005-09-07 2007-03-22 Dainippon Printing Co Ltd 体積型ホログラム付きコレステリック液晶媒体の製造方法
CN101361026B (zh) * 2006-09-27 2013-07-24 凸版印刷株式会社 光学元件、带标签物品、光学配套元件及判断方法
WO2011065242A1 (ja) * 2009-11-27 2011-06-03 日本発條株式会社 識別媒体およびその識別方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131187A (ja) * 2001-10-26 2003-05-08 Fuji Photo Film Co Ltd 選択反射膜及びその製造方法
JP2008129421A (ja) * 2006-11-22 2008-06-05 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2008256926A (ja) * 2007-04-04 2008-10-23 Toppan Printing Co Ltd セキュリティデバイス、ラベル付き印刷物および判別方法
JP2011022314A (ja) * 2009-07-15 2011-02-03 Toppan Printing Co Ltd 偽造防止媒体及び偽造防止シール
JP2011128416A (ja) * 2009-12-18 2011-06-30 Toppan Printing Co Ltd 情報記録媒体、その製造方法及び情報読取方法
JP2013018178A (ja) * 2011-07-11 2013-01-31 National Printing Bureau 真偽判別可能な印刷物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034215A1 (ja) * 2016-08-19 2018-02-22 日本ゼオン株式会社 識別用表示媒体及びその製造方法
CN109564322A (zh) * 2016-08-19 2019-04-02 日本瑞翁株式会社 识别用显示介质及其制造方法
JPWO2018034215A1 (ja) * 2016-08-19 2019-06-13 日本ゼオン株式会社 識別用表示媒体及びその製造方法
WO2019230840A1 (ja) * 2018-05-31 2019-12-05 日本ゼオン株式会社 識別媒体及び識別媒体の真正性を識別する方法
JPWO2019230840A1 (ja) * 2018-05-31 2021-07-08 日本ゼオン株式会社 識別媒体及び識別媒体の真正性を識別する方法
WO2020121791A1 (ja) 2018-12-11 2020-06-18 日本ゼオン株式会社 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
JP7428137B2 (ja) 2018-12-11 2024-02-06 日本ゼオン株式会社 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
WO2021079815A1 (ja) 2019-10-23 2021-04-29 日本ゼオン株式会社 液晶硬化層転写シール、液晶硬化層転写物、及び液晶硬化層転写シールの真正性判定方法
WO2022173034A1 (ja) 2021-02-15 2022-08-18 日本ゼオン株式会社 インキ組成物、物品及びその製造方法

Also Published As

Publication number Publication date
US20170157972A1 (en) 2017-06-08
CN106461847A (zh) 2017-02-22
JPWO2016002765A1 (ja) 2017-04-27
EP3163335A1 (en) 2017-05-03
EP3163335A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2016002765A1 (ja) 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法
US11975557B2 (en) Identification medium, authenticity determination method, and article
JP6142714B2 (ja) 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
JP6065667B2 (ja) 識別媒体、物品の識別方法、及び積層構造体
CN107848274B (zh) 胆甾型树脂层叠体、制造方法及用途
JP2014174471A (ja) 識別媒体、物品の識別方法、及び積層構造体
JP5532974B2 (ja) 液晶層形成用組成物、円偏光分離シート及びその製造方法、並びに輝度向上フィルム及び液晶表示装置
JPWO2007142206A1 (ja) コレステリック液晶組成物及び円偏光分離シート、並びにその用途
JP2014174321A (ja) 表面形状を有する光学フィルムの製造方法、重合性液晶フィルム、および表面形状を有する重合性液晶フィルム
JP6307864B2 (ja) 真正性識別用の識別媒体の製造方法
JP6349699B2 (ja) 光学積層体および光学積層体の製造方法
JP2017015897A (ja) 画像投射システム及び投影面部材
US11634636B2 (en) Method for manufacturing resin thin film stripped pieces
JP2014141057A (ja) 識別用表示媒体
EP4159454A1 (en) Authenticity determination member and authenticity determination method therefor
JP2009104065A (ja) 輝度向上フィルム及び液晶表示装置
WO2019230840A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
JP2009175550A (ja) 輝度向上フィルム及び液晶表示装置
JP2009192983A (ja) 選択反射素子及び液晶表示装置
TWI840375B (zh) 辨識媒介、真實性判定方法及被辨識物品
WO2023189966A1 (ja) 識別媒体及び物品
JP5773029B2 (ja) 液晶層形成用組成物、円偏光分離シート及びその製造方法、輝度向上フィルム並びに液晶表示装置
WO2023189967A1 (ja) 識別媒体
WO2019230782A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
WO2009081735A1 (ja) バックライト装置及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531389

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015814788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15320535

Country of ref document: US

Ref document number: 2015814788

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE