WO2016002557A1 - 多段圧縮システム、制御装置、制御方法及びプログラム - Google Patents

多段圧縮システム、制御装置、制御方法及びプログラム Download PDF

Info

Publication number
WO2016002557A1
WO2016002557A1 PCT/JP2015/067858 JP2015067858W WO2016002557A1 WO 2016002557 A1 WO2016002557 A1 WO 2016002557A1 JP 2015067858 W JP2015067858 W JP 2015067858W WO 2016002557 A1 WO2016002557 A1 WO 2016002557A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
stage compressor
abnormality
valve
closing signal
Prior art date
Application number
PCT/JP2015/067858
Other languages
English (en)
French (fr)
Inventor
陽介 中川
直人 米村
寛之 宮田
森 直樹
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to EP15814779.3A priority Critical patent/EP3147505A4/en
Priority to US15/314,394 priority patent/US10400774B2/en
Priority to CN201580025893.8A priority patent/CN106460834A/zh
Publication of WO2016002557A1 publication Critical patent/WO2016002557A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/009Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses

Definitions

  • the present invention relates to a multistage compression system, a control device, a control method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2014-136052 for which it applied to Japan on July 1, 2014, and uses the content here.
  • a compressor that compresses gas and supplies the compressed gas to a machine or the like connected to the downstream side is known.
  • an IGV Inlet Guide Vane
  • Patent Document 1 as a related technique, even when a performance difference occurs between a plurality of compressor bodies, a technique that appropriately controls the opening degree of the IGV and enables optimal operation. Is described.
  • the multistage compressor as described in Patent Document 1 has a function of switching signals so as not to correct the flow rate difference when an alarm occurs due to an abnormal state.
  • the controller continues to output a signal during that time, which may cause excessive force on the IGV and cause a failure.
  • the IGV recovers from the stick state due to something, the IGV suddenly starts moving, and the plant may become unstable.
  • the number of operation ends of the IGV opening control is reduced by one, so that the controllability deteriorates, but the response to this phenomenon is not considered.
  • the present invention provides a multistage compression system, a control device, a control method, and a program that can solve the above-described problems.
  • the multistage compression system is a multistage compression system in which the gas compressed by a pair of first stage compressors is compressed by a subsequent stage compressor connected in series to the first stage compressor.
  • a valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting a flow rate of the gas flowing into the first-stage compressor provided on the inlet side of the compressor;
  • the valve control unit is configured to detect an abnormality in which one of the valves does not have an opening corresponding to the opening / closing signal, and then, as an opening / closing signal until the abnormality is resolved, the valve opening before the abnormality is detected.
  • the opening / closing signal having a difference equal to or less than a predetermined value is output.
  • the multistage compression system is a multistage compression system in which the gas compressed by a pair of first stage compressors is compressed by a subsequent stage compressor connected in series to the first stage compressor.
  • a valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting a flow rate of the gas flowing into the first-stage compressor provided on the inlet side of the compressor;
  • the valve control unit stores an opening / closing signal when an abnormality is detected, and supplies the stored opening / closing signal until the abnormality is resolved.
  • the valve control unit stores an opening / closing signal at the time of abnormality detection, and until the abnormality is resolved, the valve control unit has a required opening degree.
  • the open / close signal is limited to a predetermined rate of change or less.
  • the multistage compression system is a multistage compression system in which the gas compressed by a pair of first stage compressors is connected by the first stage compressor and compressed by a subsequent stage compressor, wherein the first stage compressor A valve control unit for outputting an opening / closing signal for opening / closing a valve for adjusting a gas flow rate flowing into the first-stage compressor provided on each of the inlet sides of the compressor;
  • the valve control unit outputs an opening / closing signal indicating a value of a normal valve opening that has already been detected at the time of abnormality detection while outputting the opening / closing signal after the abnormality detection, Alternatively, an open / close signal indicating the value of the valve opening corresponding to the newly measured opening detection signal is output after the abnormality is detected.
  • the valve control unit controls the sensitivity of the other valve in which no abnormality is detected after the abnormality is detected until the abnormality is resolved. To increase.
  • the control device is a control device for a multi-stage compressor that compresses a gas compressed by a pair of first-stage compressors by a subsequent-stage compressor connected in series to the first-stage compressor,
  • a valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting a flow rate of gas flowing into the first stage compressor provided on an inlet side of the first stage compressor;
  • the valve control unit is configured to detect an abnormality in which one of the valves does not have an opening corresponding to the opening / closing signal, and then, as an opening / closing signal until the abnormality is resolved, the valve opening before the abnormality is detected.
  • the opening / closing signal having a difference equal to or less than a predetermined value is output.
  • the control device is a control device for a multi-stage compressor that compresses a gas compressed by a pair of first-stage compressors by a subsequent-stage compressor connected in series to the first-stage compressor,
  • a valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting a flow rate of gas flowing into the first stage compressor provided on an inlet side of the first stage compressor;
  • the valve control unit stores an opening / closing signal when an abnormality is detected, and supplies the stored opening / closing signal until the abnormality is resolved.
  • the valve control unit stores an opening / closing signal at the time of abnormality detection, and opens / closes to a required opening until the abnormality is resolved. Limit the signal below a predetermined rate of change.
  • the control device is a control device for a multi-stage compressor that compresses the gas compressed by the pair of first-stage compressors by a subsequent-stage compressor connected in series to the first-stage compressor,
  • a valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting a flow rate of gas flowing into the first stage compressor provided on an inlet side of the first stage compressor;
  • the valve control unit outputs an opening / closing signal indicating a value of a normal valve opening that has already been detected at the time of abnormality detection while outputting the opening / closing signal after the abnormality detection, Alternatively, an open / close signal indicating the value of the valve opening corresponding to the newly measured opening detection signal is output after the abnormality is detected.
  • the valve control unit increases the control sensitivity of the other valve in which no abnormality is detected until the abnormality is resolved after the abnormality is detected. Make it high.
  • a control method comprising: a multistage compression system in which a gas compressed by a pair of first stage compressors is compressed by a second stage compressor connected in series to the first stage compressor;
  • the valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting the flow rate of the gas flowing into the first stage compressor provided on the inlet side, so that one of the valves does not have an opening corresponding to the opening / closing signal.
  • the opening / closing signal having a predetermined difference or less with respect to the opening of the valve before the abnormality is detected is output.
  • the control method includes: The valve control unit that outputs an opening / closing signal for opening / closing a valve for adjusting the flow rate of gas flowing into the first stage compressor provided on the inlet side stores the opening / closing signal at the time of abnormality detection, and the abnormality is resolved. Until this time, the stored open / close signal is supplied.
  • the valve control unit stores an opening / closing signal at the time of abnormality detection, and opens / closes to a required opening until the abnormality is resolved. Limit the signal below a predetermined rate of change.
  • the control method includes: The valve controller that outputs an open / close signal that opens and closes the valve for adjusting the flow rate of gas flowing into the first stage compressor provided on the inlet side is already detected when an abnormality is detected when the open / close signal is output after the abnormality is detected.
  • a normal opening / closing signal indicating the valve opening value is output after the abnormality is detected, or an opening / closing signal indicating the valve opening value corresponding to the newly measured opening detection signal is output.
  • a signal is output after the abnormality is detected.
  • the valve control unit increases the control sensitivity of the other valve in which no abnormality is detected until the abnormality is resolved after the abnormality is detected. Make it high.
  • the program stores the computer of the control device for the multistage compressor, wherein the gas compressed by the pair of first stage compressors is connected in series to the first stage compressor and compressed by the subsequent stage compressor.
  • the program stores the computer of the control device for the multistage compressor that compresses the gas compressed by the pair of first stage compressors in series with the first stage compressor, and compresses the gas by the latter stage compressor.
  • the valve control means functions as valve control means for outputting an opening / closing signal for opening and closing a valve for adjusting the flow rate of gas flowing into the first stage compressor provided on the inlet side of the first stage compressor, and the valve control means detects abnormality.
  • the opening / closing signal at this time is stored, and the stored opening / closing signal is supplied until the abnormality is resolved.
  • the above-mentioned program stores an opening / closing signal at the time of abnormality detection in the valve control means, and an opening / closing signal up to a required opening until the abnormality is resolved. Is limited to a predetermined rate of change or less.
  • a program for controlling a computer of a control device for a multi-stage compressor that compresses a gas compressed by a pair of first-stage compressors in series with the first-stage compressor, and compresses the gas by the latter-stage compressor.
  • the valve control means functions as valve control means for outputting an opening / closing signal for opening and closing a valve for adjusting the flow rate of gas flowing into the first stage compressor provided on the inlet side of the first stage compressor, and the valve control means detects abnormality.
  • an opening / closing signal indicating the value of the normal valve opening already detected at the time of abnormality detection is output while maintaining the value after the abnormality is detected, or a newly measured opening degree
  • An open / close signal indicating the value of the valve opening according to the detection signal is output after the abnormality is detected.
  • the above program increases the control sensitivity of the other valve in which no abnormality is detected until the abnormality is resolved after the abnormality is detected in the valve control means.
  • the entire plant does not become unstable and improves controllability even when an alarm occurs in the multistage compressor. Can do.
  • FIG. 1 is a diagram showing an example of the configuration of a multistage compression system 1a according to the first embodiment of the present invention.
  • the multistage compression system 1a according to the first embodiment includes a multistage compressor 10a and a compressor control device 200a (control device).
  • the multistage compressor 10a includes a first stage compressor main body 101 (101a, 101b), a second stage compressor main body 103 (second stage compressor), and a final stage compression arranged in series from the upstream side to the downstream side of the gas flow.
  • the machine main body 102 (rear stage compressor) is provided.
  • the first stage compressor body 101a and the first stage compressor body 101b are paired.
  • the first-stage compressor main body 101 (101a, 101b), the second-stage compressor main body 103, and the final-stage compressor main body 102 are coupled via a shaft 106.
  • first-stage compressor bodies 101a and 101b are arranged in parallel in pairs.
  • a second-stage compressor main body 103 and a final-stage compressor main body 102 are arranged in parallel on the downstream side of the shaft 106.
  • the motor 104 is connected to the middle of the shaft 106.
  • Each compressor body and the motor 104 are connected to a shaft 106 via a gear box 105.
  • the supply lines 130a and 130b are pipes for supplying gas to the first-stage compressor bodies 101a and 101b.
  • the supply line 130a is connected to the inlet of the first stage compressor body 101a.
  • the supply line 130b is connected to the entrance of the first stage compressor body 101b.
  • the first-stage compressor main body 101a takes in gas through the supply line 130a and compresses the gas to generate compressed gas.
  • the first-stage compressor main body 101b generates compressed gas by taking in gas and compressing the gas via the supply line 130b.
  • the first connection line 132 is a pipe for supplying the compressed gas generated by the first stage compressor main bodies 101 a and 101 b to the second stage compressor main body 103.
  • the first connection line 132 is connected to the outlet of the first stage compressor body 101a and the outlet of 101b.
  • the first connection line 132 is connected to the inlet of the second stage compressor body 103.
  • the first connection line 132 has a junction, and the compressed gases discharged from the two first-stage compressor bodies 101a and 101b join at the junction.
  • the first connection line 132 supplies the merged compressed gas to the second-stage compressor body 103.
  • the second-stage compressor main body 103 generates a compressed gas obtained by further compressing the taken compressed gas via the first connection line 132.
  • the second connection line 133 is a pipe for supplying the compressed gas generated in the second stage compressor main body 103 to the final stage compressor main body 102.
  • the second connection line 133 is connected to the outlet of the second stage compressor main body 103 and the inlet of the final stage compressor main body 102.
  • the second connection line 133 supplies the compressed gas to the final stage compressor body 102.
  • the final stage compressor main body 102 generates compressed gas obtained by further compressing the compressed gas taken in via the second connection line 133.
  • the discharge line 131 is a pipe for supplying the compressed gas generated in the final stage compressor body 102 to the downstream process.
  • the discharge line 131 is connected to the outlet of the final stage compressor body 102 and the inlet of the downstream process.
  • the discharge line 131 supplies compressed gas to the downstream process.
  • An inlet guide vane (IGV) 107a is provided in the supply line 130a near the inlet of the first stage compressor body 101a.
  • the supply line 130b near the inlet of the first stage compressor body 101b is provided with an IGV 107b.
  • the IGV 107a provided in the supply line 130a controls the flow rate of the gas flowing into the first stage compressor body 101a.
  • the IGV 107b provided in the supply line 130b controls the flow rate of the gas flowing into the first stage compressor body 101b.
  • a discharge line 131 near the output of the final stage compressor body 102 is provided with a discharge valve 108.
  • the air discharge valve 108 provided in the discharge line 131 releases air to the atmosphere via the air discharge line 136 when the gas to be compressed is a compressor.
  • gas when gas is nitrogen etc., it can be set as a recycle valve.
  • the air discharge valve 108 can return the gas to the supply line 130a through a recycle line in which the air discharge line 136 is connected to the supply line 130a.
  • the air discharge valve 108 can return the gas to the supply line 130b via a recycle line connected to the supply line 130b via the air discharge line 136.
  • the opening degrees of the IGV 107a, the IGV 107b, and the air discharge valve 108 are controlled in order to control the outlet pressure of the multistage compressor 10a or avoid surging.
  • the inlet flow rate detector 114a is disposed in the supply line 130a.
  • the inlet flow rate detector 114a detects the flow rate of the inlet gas flowing into the first stage compressor body 101a and generates an inlet flow rate detection value.
  • An inlet flow rate detector 114b is disposed in the supply line 130b. The inlet flow rate detector 114b detects the inlet gas flow rate flowing into the first stage compressor body 101b, and generates an inlet flow rate detection value.
  • the post-merging pressure detector 110 is disposed downstream of the merging portion of the first connection line 132.
  • the post-merging pressure detector 110 generates a post-merging pressure detection value by detecting the pressure after the merging of the gases flowing out from the first stage compressor bodies 101a and 101b.
  • the cooler 109 a is disposed in the first connection line 132.
  • the cooler 109 a cools the gas flowing inside the first connection line 132.
  • the cooler 109b is disposed in the second connection line 133.
  • the cooler 109b cools the gas flowing inside the second connection line 133.
  • an outlet pressure detector 111 is arranged in the discharge line 131.
  • the outlet pressure detector 111 generates the outlet pressure detection value by detecting the pressure of the gas flowing out from the final stage compressor body 102.
  • an outlet flow rate detector 115 is disposed in the discharge line 131. The outlet flow rate detector 115 generates an outlet flow rate detection value by detecting the flow rate of the gas flowing out from the final stage compressor body 102.
  • FIG. 2 is a diagram illustrating an example of the configuration of the compressor control device 200a according to the first embodiment of the present invention.
  • the compressor control device 200a according to the first embodiment of the present invention has a configuration in which a valve control unit 30a is added to the compressor control device shown in FIG.
  • the compressor control device 200a in the first embodiment includes a valve control unit 30a, an IGV opening control unit 50 (50a, 50b), and a discharge valve opening control unit 53.
  • the IGV opening controller 50a controls the opening of the IGV 107a.
  • the IGV opening controller 50b controls the opening of the IGV 107b.
  • the configurations of the IGV opening controller 50a and the IGV opening controller 50b are equal.
  • the IGV opening degree control unit 50a includes an IGV opening degree command value generation unit 51 and an IGV opening degree command value correction unit 52a.
  • the IGV opening degree control unit 50b includes an IGV opening degree command value generation unit 51 and an IGV opening degree command value correction unit 52b.
  • the IGV opening command value generation unit 51 is common to the IGV opening control unit 50a and the IGV opening control unit 50b.
  • the IGV opening command value generation unit 51 generates and outputs an IGV opening command value indicating the opening of the IGV 107a.
  • the IGV opening command value generation unit 51 generates and outputs an IGV opening command value indicating the opening of the IGV 107b.
  • the IGV opening command value generation unit 51 includes a pressure controller 129 and a function generator 116.
  • the IGV opening command value correction units 52 a and 52 b correct the IGV opening command value output from the IGV opening command value generation unit 51.
  • the IGV opening command value correction unit 52a outputs a flow indicator 125a that outputs the input inlet flow detection value as it is, a pressure indicator 126 that outputs the input post-merging pressure detection value as it is, and outputs an IGV opening correction value.
  • a function generator 117a A function generator 117a.
  • the IGV opening command value correction unit 52b outputs a flow indicator 125b that outputs the input inlet flow detection value as it is, a pressure indicator 126 that outputs the input pressure detection value after merging, and an IGV opening correction value.
  • the pressure indicator 126 is common to the IGV opening command value correction unit 52a and the IGV opening command value correction unit 52b, but is not limited thereto.
  • the air discharge valve opening degree control unit 53 controls the opening degree of the air discharge valve 108.
  • the discharge valve opening degree control unit 53 includes an upstream anti-surge control unit 54 (54a, 54b), an outlet pressure control unit 55, a downstream anti-surge control unit 56, and a command value selection unit 112.
  • the anti-surge control is a control for keeping the flow rate at a certain value or higher in order to prevent the multistage compressor 10a from being damaged by so-called surging that occurs when the flow rate in the compressor decreases.
  • the upstream anti-surge control unit 54a controls the opening degree of the discharge valve 108 in order to prevent surging from occurring in the first stage compressor body 101a.
  • the upstream anti-surge control unit 54b controls the opening degree of the air discharge valve 108 in order to prevent surging from occurring in the first stage compressor body 101b.
  • the upstream antisurge control unit 54a and the upstream antisurge control unit 54b have the same configuration.
  • the upstream antisurge control unit 54a outputs the input post-merging outlet pressure detection value as it is, the function generator 118a that outputs the inlet flow target value, and the input inlet flow detection value as it is. And a flow rate controller 127a that outputs a discharge valve opening command value based on the inlet flow rate target value.
  • the upstream antisurge control unit 54b outputs the input post-merging outlet pressure detection value as it is, the function generator 118b that outputs the inlet flow target value, and the input inlet flow detection value as it is. And a flow rate controller 127b that outputs a discharge valve opening command value based on the inlet flow rate target value.
  • the pressure indicator 126 is common to the upstream antisurge control unit 54a and the upstream antisurge control unit 54b, but is not limited thereto.
  • the outlet pressure control unit 55 includes a pressure controller 129 that outputs an operation value such that the input outlet pressure detection value becomes a set value, and a function generator 119 that outputs an air discharge valve opening command value.
  • the downstream anti-surge control unit 56 includes a function generator 120 that outputs an outlet flow rate target value and a flow rate controller 128 that outputs a discharge valve opening command value based on the outlet flow rate target value.
  • the IGV opening command value correction unit 52a includes a performance difference correction coefficient generation unit 124, an inlet flow rate target value generation unit 122, and a function generator 121a.
  • the IGV opening command value correction unit 52b includes a performance difference correction coefficient generation unit 124, an inlet flow rate target value generation unit 122, and a function generator 121b.
  • the performance difference correction coefficient generation unit 124 and the inlet flow rate target value generation unit 122 are common to the IGV opening command value correction unit 52a and the IGV opening command value correction unit 52b.
  • the performance difference correction coefficient generation unit 124 generates and outputs a performance difference correction coefficient that corrects the performance difference between the two first-stage compressor bodies 101a and 101b.
  • the inlet flow target value generation unit 122 receives the performance difference correction coefficient and the detected inlet flow rate in the first-stage compressor bodies 101a and 101b, and generates the inlet flow target value for the first-stage compressor bodies 101a and 101b.
  • the inlet flow rate target value is input to the corresponding function generators 121a and 121b.
  • the function generator 121a is provided corresponding to the command value selection unit 113a.
  • the function generator 121b is provided corresponding to the command value selection unit 113b.
  • the function generator 121a receives the target inlet flow rate value and the detected inlet flow rate value output from the corresponding flow rate indicator 125a.
  • the function generator 121b receives the inlet flow rate target value and the inlet flow rate detection value output from the corresponding flow rate indicator 125b.
  • the function generator 121 (121a, 121b) generates and outputs an IGV opening command correction value proportional to the difference between the inlet flow rate target value and the inlet flow rate detection value.
  • the function generator 121 (121a, 121b) may generate and output the IGV opening command correction value in consideration of the integration of the difference between the inlet flow rate target value and the inlet flow rate detection value.
  • the valve control unit 30a inputs the value generated by the function generator 121a to the function generator 117a as an IGV opening correction signal input to the function generator 117a.
  • the valve control unit 30a does not want to input the correction signal from the function generator 121a to the function generator 117a when an alarm such as IGV stick detection occurs (does not want to input a correction signal that may cause a sudden change).
  • a value holding the output of the command value selection unit 113a is input to the function generator 117a.
  • the value holding the output of the command value selection unit 113a may be changed by the operator at the time of switching in the command value selection unit 113a.
  • valve control unit 30a inputs the value generated by the function generator 121b to the function generator 117b as an IGV opening correction signal input to the function generator 117b.
  • the valve control unit 30a does not want to input the correction signal from the function generator 121b to the function generator 117b when an alarm such as IGV stick detection occurs (does not want to input a correction signal that may cause a sudden change).
  • a value holding the output of the command value selection unit 113b is input to the function generator 117b.
  • the valve control unit 30a selects the command value when it is not desired to input the correction signal from the function generator 121a to the function generator 117a when an alarm such as IGV stick detection occurs.
  • the value held immediately after switching in the unit 113a is input to the function generator 117a.
  • the valve control unit 30a does not want to input the correction signal from the function generator 121b to the function generator 117b when an alarm such as IGV stick detection occurs, the value held immediately after switching in the command value selection unit 113b. Is input to the function generator 117b.
  • the multistage compression system 1a is a rear stage compressor (second stage compressor 103, final stage compressor 102) in which the gas compressed by the pair of first stage compressors 101 (101a, 101b) is connected in series to the first stage compressor 101. It is a multi-stage compression system that compresses by the above.
  • a valve control unit 30a that outputs an opening / closing signal for opening and closing a valve for adjusting the flow rate of gas flowing into the first stage compressor 101 provided on the inlet side of the first stage compressor 101 is provided.
  • the valve control unit 30a stores an opening / closing signal when an abnormality is detected, and supplies the stored opening / closing signal until the abnormality is resolved.
  • valve control unit 30a can suppress a rapid change in the correction signal. Therefore, even if the multistage compressor is in an abnormal state and an alarm is generated, the entire plant does not become unstable, and the multistage compression system 1a can improve controllability.
  • FIG. 3 is a diagram showing an example of the configuration of the multistage compression system 1b according to the second embodiment of the present invention.
  • the multistage compression system 1b according to the second embodiment includes a multistage compressor 10a and a compressor control device 200b (control device).
  • the multistage compression system 1b includes a change rate limiter 134a between the command value selection unit 113a and the function generator 117a of the multistage compression system 1a according to the first embodiment, a command value selection unit 113b, and a function.
  • This is a system in which a rate of change limiter 134b between the generator 117b and the generator 117b is added.
  • the change rate limiter 134a suppresses the change rate per unit time of the opening / closing signal up to the required opening input from the command value selection unit 113a within a predetermined range, and outputs it to the function generator 117a.
  • the change rate limiter 134b limits the change rate of the signal input from the command value selection unit 113b within a predetermined range and outputs it to the function generator 117b.
  • the valve control unit 30b outputs a signal input from the command value selection unit 113a to the function generator 117a via the change rate limiter 134a. Further, the valve control unit 30b outputs a signal input from the command value selection unit 113b to the function generator 117b via the change rate limiter 134b.
  • the valve control unit 30b may always enable the change rate limiters 134a and 134b. Further, the valve control unit 30b may enable the change rate limiters 134a and 134b only when an alarm is generated.
  • the valve control unit 30b may use the technique shown in the first embodiment together.
  • the valve control unit 30b outputs the signal input from the command value selection unit 113a to the function generator 117a via the change rate limiter 134a. Further, the valve control unit 30b outputs a signal input from the command value selection unit 113b to the function generator 117b via the change rate limiter 134b.
  • the multistage compression system 1b includes a second stage compressor (second stage compressor 103, last stage compressor 102) in which the gas compressed by the pair of first stage compressors 101 (101a, 101b) is connected in series to the first stage compressor 101. ).
  • the multistage compression system 1b includes a valve control unit 30b that outputs an opening / closing signal for opening and closing a valve for adjusting the flow rate of the gas flowing into the first stage compressor 101 provided on the inlet side of the first stage compressor 101. After the abnormality is detected, the valve control unit 30b outputs an opening / closing signal that is a difference equal to or less than a predetermined value with respect to the opening of the valve before the abnormality is detected as an opening / closing signal until the abnormality is resolved.
  • the valve control unit 30b stores an opening / closing signal when an abnormality is detected, and limits the opening / closing signal up to a required opening degree to a predetermined change rate or less until the abnormality is resolved.
  • valve control unit 30b can suppress a rapid change in the correction signal. Therefore, even if the multistage compressor is in an abnormal state and an alarm is generated, the entire plant does not become unstable, and the multistage compression system 1b can improve controllability.
  • FIG. 4 is a diagram showing an example of the configuration of the multistage compression system 1c according to the third embodiment of the present invention.
  • the multistage compression system 1c according to the third embodiment includes a multistage compressor 10a and a compressor control device 200c (control device).
  • the multistage compression system 1c includes a selector 135a between the function generator 117a and the IGV 107a of the multistage compression system 1a according to the first embodiment, and a function generation of the multistage compression system 1b according to the first embodiment.
  • This is a system in which a selector 135b between the device 117b and the IGV 107b is added.
  • the selector 135a outputs the output value of the function generator 117a to the IGV 107a.
  • the selector 135a outputs the output value (open / close signal indicating a constant value) of the selector 135a or the actual IGV opening signal (feedback signal corresponding to the opening detection signal) to the IGV 107a.
  • the selector 135b outputs the output value of the function generator 117b to the IGV 107b.
  • the selector 135b outputs the output value of the selector 135b or the actual IGV opening signal to the IGV 107b.
  • the valve control unit 30c normally outputs the output value of the function generator 117a to the IGV 107a. Further, the valve control unit 30c normally outputs the output value of the function generator 117b to the IGV 107b.
  • the valve control unit 30c switches the selector 135b on the detected IGV 107b side, and outputs a selector output value for maintaining the open / close signal or an IGV actual opening signal to the IGV 107b.
  • the non-stick IGV 107a continues the same operation as normal and continues to control the compressor outlet pressure.
  • the valve control unit 30c determines that the IGV has stuck when the difference between the IGV opening command value and the actual IGV opening signal is large (the opening does not correspond to the opening / closing signal).
  • the valve control unit 30c changes the control parameter for the compressor outlet pressure control.
  • the valve control unit 30c changes the PID control gain of the pressure controller 129 to the current double based on the fact that the operating end has decreased from two to one. Thereby, the sensitivity of pressure controllability can be made equivalent to that before abnormality detection.
  • the change of the PID control gain is continued until the abnormality is resolved, and after the abnormality is resolved, the original gain is restored.
  • the valve control unit 30c normally outputs the output value of the function generator 117b to the IGV 107b. Further, when detecting the stick of the IGV 107b, the valve control unit 30c switches the detected selector 135b on the IGV side, and outputs the selector output value or the actual IGV opening signal to the IGV 107b. That is, the multi-stage compression system 1c is a rear stage compressor (second stage compressor 103, final stage compressor 102) in which the gas compressed by the pair of first stage compressors 101 (101a, 101b) is connected in series to the first stage compressor 101. It is a multi-stage compression system that compresses by the above.
  • the multistage compression system 1 c includes a valve control unit 30 c that outputs an opening / closing signal for opening and closing a valve for adjusting the flow rate of the gas flowing into the first stage compressor 101 provided on the inlet side of the first stage compressor 101.
  • the valve control unit 30c When the opening / closing signal after the abnormality detection is output, the valve control unit 30c outputs the opening / closing signal indicating the value of the normal valve opening already detected at the time of abnormality detection while maintaining the value.
  • the valve control unit 30a outputs an opening / closing signal indicating the value of the valve opening corresponding to the newly measured opening detection signal after detecting an abnormality. Further, the valve control unit 30c increases the control sensitivity of the other valve from which no abnormality is detected until the abnormality is resolved after the abnormality is detected.
  • valve control unit 30c can suppress a rapid change in the correction signal. Therefore, even if the multistage compressor is in an abnormal state and an alarm is generated, the entire plant does not become unstable, and the multistage compression system 1c can improve controllability.
  • the above-mentioned multistage compression system 1 has a computer system inside.
  • the process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the above-described functions. Furthermore, what can implement
  • the entire plant does not become unstable and improves controllability even when an alarm occurs in the multistage compressor. Can do.
  • Multistage compression system 10a Multistage compressors 30a, 30b Valve control units 50a, 50b Inlet guide vane (IGV) opening control unit 51 Inlet guide vane opening command value generation units 52a, 52b Inlet guide vane opening Degree command value correction unit 53 Ventilation valve opening control units 54a, 54b Upstream antisurge control unit 55 Outlet pressure control unit 56 Downstream antisurge control units 101, 101a, 101b First stage compressor 102 Last stage compressor 103 Two stages Eye compressor 104 Motor 105 Gear box 106 Shaft 107a, 107b Inlet guide vane 108 Air discharge valve 109a, 109b Cooler 110 Post-merge pressure detector 111, 138 Outlet pressure detector 112, 113a, 113b Command value selector 114a, 114b Inlet Flow rate detector 115 Flow rate detectors 116, 117a, 117b, 118a, 118b, 119, 120, 121a, 121b, 122 Function generators 123a,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 この多段圧縮システムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、を備える。前記弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する。

Description

多段圧縮システム、制御装置、制御方法及びプログラム
 本発明は、多段圧縮システム、制御装置、制御方法及びプログラムに関する。
 本願は、2014年7月1日に、日本に出願された特願2014-136052号に基づき優先権を主張し、その内容をここに援用する。
 ガスを圧縮し、下流側に接続された機械等に圧縮ガスを供給する圧縮機が知られている。そのような圧縮機としてIGV(Inlet Guide Vane)を上流側に配置し、IGVの開度を調整することで、圧縮機本体へのガス流量を調整するものがある。
 特許文献1には、関連する技術として、複数の圧縮機本体間に性能差が生じた場合であっても、適切にIGVの開度を制御し、最適な運転を行うことを可能とする技術が記載されている。
特開2013-170573号公報
 ところで、特許文献1に記載のような多段圧縮機では、異常状態になってアラームが発生したとき、流量差分を補正しないように信号を切り替える機能が備えられている。この場合、信号値が急に変化すると、プラント全体が不安定になる可能性がある。
 また、IGVがスティックした場合(固着して動作しなくなった場合)、その間もコントローラから信号が出力され続けるため、IGVに無理な力がかかり故障の原因になる可能性がある。また、何かのきっかけでIGVがスティック状態から復旧したときに、IGVが急に動きだしてしまい、プラントが不安定になる可能性がある。
 IGVがスティックした場合、IGV開度制御の操作端が1つ少なくなるため、制御性が悪くなってしまうが、この事象への対応が考慮されていない。
 そのため、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、制御性を良くすることができる技術が求められていた。
 この発明は、上記の課題を解決することのできる多段圧縮システム、制御装置、制御方法及びプログラムを提供する。
 本発明の第1の態様によれば、多段圧縮システムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する。
 本発明の第2の態様によれば、多段圧縮システムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する。
 本発明の第3の態様によれば、上述の多段圧縮システムにおいて、前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する。
 本発明の第4の態様によれば、多段圧縮システムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する。
 本発明の第5の態様によれば、上述の多段圧縮システムにおいて、前記弁制御部は、異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする。
 本発明の第6の態様によれば、制御装置は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する。
 本発明の第7の態様によれば、制御装置は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する。
 本発明の第8の態様によれば、上述の制御装置において、前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する。
 本発明の第9の態様によれば、制御装置は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部を備える。前記弁制御部は、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する。
 本発明の第10の態様によれば、上述の制御装置において、前記弁制御部は、異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする。
 本発明の第11の態様によれば、制御方法は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部が、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する。
 本発明の第12の態様によれば、制御方法は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部が、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する。
 本発明の第13の態様によれば、上述の制御方法において、前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する。
 本発明の第14の態様によれば、制御方法は、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部が、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する。
 本発明の第15の態様によれば、上述の制御方法において、前記弁制御部は、異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする。
 本発明の第16の態様によれば、プログラムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、として機能させ、前記弁制御手段に、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力させる。
 本発明の第17の態様によれば、プログラムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、として機能させ、前記弁制御手段に、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給させる。
 本発明の第18の態様によれば、上述のプログラムは、前記弁制御手段に、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限させる。
 本発明の第19の態様によれば、プログラムは、一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、として機能させ、前記弁制御手段に、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力させる。
 本発明の第20の態様によれば、上述のプログラムは、前記弁制御手段に、異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くさせる。
 上述の多段圧縮システム、制御装置、制御方法及びプログラムによれば、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、制御性を良くすることができる。
本発明の第一の実施形態による多段圧縮システムの構成の一例を示す図。 本実施形態における圧縮機制御装置の構成の一例を示す図。 本発明の第二の実施形態による多段圧縮システムの構成の一例を示す図。 本発明の第三の実施形態による多段圧縮システムの構成の一例を示す図。
<第一の実施形態>
 図1は、本発明の第一の実施形態による多段圧縮システム1aの構成の一例を示す図である。
 第一の実施形態による多段圧縮システム1aは、多段圧縮機10aと、圧縮機制御装置200a(制御装置)とを備える。
 多段圧縮機10aは、ガスの流れの上流側から下流側へ直列に配置された初段圧縮機本体101(101a、101b)と、二段目圧縮機本体103(後段圧縮機)と、最終段圧縮機本体102(後段圧縮機)とを備える。初段圧縮機本体101は、初段圧縮機本体101aと初段圧縮機本体101bとが対を成している。
 初段圧縮機本体101(101a、101b)と、二段目圧縮機本体103と、最終段圧縮機本体102は、シャフト106を介して結合されている。シャフト106の上流側には、初段圧縮機本体101aと101bとが並列に対を成して配置される。シャフト106の下流側には、二段目圧縮機本体103と最終段圧縮機本体102とが並列に配置される。モータ104は、シャフト106の中間に接続される。各圧縮機本体とモータ104は、ギアボックス105を介してシャフト106に接続される。
 供給ライン130aと130bは、ガスを初段圧縮機本体101aと101bにガスを供給するための配管である。供給ライン130aは、初段圧縮機本体101aの入口に接続される。また、供給ライン130bは、初段圧縮機本体101bの入り口に接続される。初段圧縮機本体101aは、供給ライン130aを介して、ガスを取り入れてそのガスを圧縮することで圧縮ガスを生成する。初段圧縮機本体101bは、供給ライン130bを介して、ガスを取り入れてそのガスを圧縮することで圧縮ガスを生成する。
 第一接続ライン132は、初段圧縮機本体101aと101bで生成された圧縮ガスを二段目圧縮機本体103に供給するための配管である。第一接続ライン132は、初段圧縮機本体101aの出口と101bの出口とに接続される。また、第一接続ライン132は、二段目圧縮機本体103の入口に接続される。第一接続ライン132は合流部を有し、その合流部で2つの初段圧縮機本体101aと101bとが吐出するそれぞれの圧縮ガスが合流する。第一接続ライン132は、合流した圧縮ガスを二段目圧縮機本体103に供給する。
 二段目圧縮機本体103は、第一接続ライン132を介して、取り入れた圧縮ガスをさらに圧縮した圧縮ガスを生成する。第二接続ライン133は、二段目圧縮機本体103で生成された圧縮ガスを最終段圧縮機本体102に供給するための配管である。第二接続ライン133は、二段目圧縮機本体103の出口と最終段圧縮機本体102の入口に接続される。第二接続ライン133は、圧縮ガスを最終段圧縮機本体102に供給する。
 最終段圧縮機本体102は、第二接続ライン133を介して、取り入れた圧縮ガスをさらに圧縮した圧縮ガスを生成する。吐出ライン131は、最終段圧縮機本体102で生成された圧縮ガスを下流プロセスに供給するための配管である。吐出ライン131は、最終段圧縮機本体102の出口と下流プロセスの入口に接続される。吐出ライン131は、圧縮ガスを下流プロセスに供給する。
 初段圧縮機本体101aの入口付近の供給ライン130aには、インレットガイドベーン(Inlet Guide Vane、以下IGV)107aが備えられている。初段圧縮機本体101bの入口付近の供給ライン130bには、IGV107bが備えられている。供給ライン130aに備えられたIGV107aは、初段圧縮機本体101aに流入するガスの流量を制御する。供給ライン130bに備えられたIGV107bは、初段圧縮機本体101bに流入するガスの流量を制御する。
 最終段圧縮機本体102の出力付近の吐出ライン131には、放風弁108が備えられている。吐出ライン131に備えられた放風弁108は、圧縮するガスが空気である圧縮機である場合は、放風ライン136を介して空気を大気に放出する。また、ガスが窒素等の場合は、リサイクル弁とすることができる。その場合、放風弁108は、放風ライン136を供給ライン130aまで接続したリサイクルラインを介して、ガスを供給ライン130aに戻すことが可能である。また、放風弁108は、放風ライン136を介して供給ライン130bまで接続されたリサイクルラインを介して、ガスを供給ライン130bに戻すことが可能である。
 IGV107a、IGV107b及び放風弁108は、多段圧縮機10aの出口圧力を制御したり、サージングを回避したりするために、その開度が制御される。
 供給ライン130aには、入口流量検出器114aが配置される。入口流量検出器114aは、初段圧縮機本体101aに流入する入口ガス流量を検出し、入口流量検出値を生成する。供給ライン130bには、入口流量検出器114bが配置される。入口流量検出器114bは、初段圧縮機本体101bに流入する入口ガス流量を検出し、入口流量検出値を生成する。
 第一接続ライン132の合流部よりも下流側には、合流後圧力検出器110が配置される。合流後圧力検出器110は、初段圧縮機本体101aと101bから流出するガスの合流後の圧力を検出することにより、合流後圧力検出値を生成する。また、第一接続ライン132には、クーラ109aが配置される。クーラ109aは、第一接続ライン132の内部を流れるガスを冷却する。
 第二接続ライン133には、クーラ109bが配置される。クーラ109bは、第二接続ライン133の内部を流れるガスを冷却する。
 吐出ライン131には、出口圧力検出器111が配置される。出口圧力検出器111は、最終段圧縮機本体102から流出するガスの圧力を検出することにより、出口圧力検出値を生成する。また、吐出ライン131には、出口流量検出器115が配置される。出口流量検出器115は、最終段圧縮機本体102から流出するガスの流量を検出することにより、出口流量検出値を生成する。
 次に、本発明の第一の実施形態における圧縮機制御装置200aの構成について、説明する。
 図2は、本発明の第一の実施形態における圧縮機制御装置200aの構成の一例を示す図である。
 本発明の第一の実施形態における圧縮機制御装置200aは、特許文献1の図9で示される圧縮機制御装置に、弁制御部30aを追加した構成である。第一の実施形態における圧縮機制御装置200aは、弁制御部30aと、IGV開度制御部50(50a、50b)と、放風弁開度制御部53とを備える。
 IGV開度制御部50aは、IGV107aの開度の制御を行う。IGV開度制御部50bは、IGV107bの開度の制御を行う。IGV開度制御部50aとIGV開度制御部50bとの構成は等しい。
 IGV開度制御部50aは、IGV開度指令値生成部51とIGV開度指令値補正部52aとを備える。IGV開度制御部50bは、IGV開度指令値生成部51とIGV開度指令値補正部52bとを備える。IGV開度指令値生成部51は、IGV開度制御部50aと、IGV開度制御部50bとで共通である。
 IGV開度指令値生成部51は、IGV107aの開度を示すIGV開度指令値を生成し、出力する。IGV開度指令値生成部51は、IGV107bの開度を示すIGV開度指令値を生成し、出力する。IGV開度指令値生成部51は、圧力制御器129と、関数発生器116とを備える。
 IGV開度指令値補正部52aと52bは、IGV開度指令値生成部51が出力したIGV開度指令値の補正を行う。
 IGV開度指令値補正部52aは、入力された入口流量検出値をそのまま出力する流量インジケータ125aと、入力された合流後圧力検出値をそのまま出力する圧力インジケータ126と、IGV開度補正値を出力する関数発生器117aとを備える。
 IGV開度指令値補正部52bは、入力された入口流量検出値をそのまま出力する流量インジケータ125bと、入力された合流後圧力検出値をそのまま出力する圧力インジケータ126と、IGV開度補正値を出力する関数発生器117bとを備える。
 圧力インジケータ126は、IGV開度指令値補正部52aとIGV開度指令値補正部52bとで共通のものとしているが、これに限るものではない。
 放風弁開度制御部53は、放風弁108の開度の制御を行う。放風弁開度制御部53は、上流側アンチサージ制御部54(54a、54b)と、出口圧力制御部55と、下流側アンチサージ制御部56と、指令値選択部112とを備える。
 ここで、アンチサージ制御とは、圧縮機における流量が少なくなることで発生する、いわゆるサージングにより、多段圧縮機10aが損傷することを防止するために、流量を一定値以上に保つ制御である。
 上流側アンチサージ制御部54aは、初段圧縮機本体101aにおいてサージングが発生することを防ぐために、放風弁108の開度を制御する。上流側アンチサージ制御部54bは、初段圧縮機本体101bにおいてサージングが発生することを防ぐために、放風弁108の開度を制御する。ここで、上流側アンチサージ制御部54aと上流側アンチサージ制御部54bの構成は等しい。
 上流側アンチサージ制御部54aは、入力された合流後出口圧力検出値をそのまま出力する圧力インジケータ126と、入口流量目標値を出力する関数発生器118aと、入力された入口流量検出値をそのまま出力する流量インジケータ125aと、入口流量目標値に基づいて放風弁開度指令値を出力する流量制御器127aとを備える。上流側アンチサージ制御部54bは、入力された合流後出口圧力検出値をそのまま出力する圧力インジケータ126と、入口流量目標値を出力する関数発生器118bと、入力された入口流量検出値をそのまま出力する流量インジケータ125bと、入口流量目標値に基づいて放風弁開度指令値を出力する流量制御器127bとを備える。
 また、圧力インジケータ126は、上流側アンチサージ制御部54aと上流側アンチサージ制御部54bとで共通のものとしているが、これに限るものではない。
 出口圧力制御部55は、入力された出口圧力検出値が設定値となるような操作値を出力する圧力制御器129と、放風弁開度指令値を出力する関数発生器119とを備える。
 下流側アンチサージ制御部56は、出口流量目標値を出力する関数発生器120と、出口流量目標値に基づいて放風弁開度指令値を出力する流量制御器128とを備える。
 また、IGV開度指令値補正部52aは、性能差補正係数生成部124と、入口流量目標値生成部122と、関数発生器121aとを備える。IGV開度指令値補正部52bは、性能差補正係数生成部124と、入口流量目標値生成部122と、関数発生器121bとを備える。
 性能差補正係数生成部124及び入口流量目標値生成部122は、IGV開度指令値補正部52a及びIGV開度指令値補正部52bとで共通である。性能差補正係数生成部124は、2つの初段圧縮機本体101aと101bとの間の性能差を補正する性能差補正係数を生成し、出力する。入口流量目標値生成部122には、性能差補正係数と、初段圧縮機本体101aおよび101bにおける入口流量検出値が入力され、初段圧縮機本体101aおよび101bについて入口流量目標値を生成する。
 入口流量目標値は、対応する関数発生器121aと121bへと入力される。関数発生器121aは、指令値選択部113aと対応して設けられている。関数発生器121bは、指令値選択部113bと対応して設けられている。
 関数発生器121aには、入口流量目標値と、対応する流量インジケータ125aから出力された入口流量検出値が入力される。関数発生器121bには、入口流量目標値と、対応する流量インジケータ125bから出力された入口流量検出値が入力される。関数発生器121(121a、121b)は、入口流量目標値と入口流量検出値の差分に比例したIGV開度指令補正値を生成し、出力する。ここで、関数発生器121(121a、121b)は、入口流量目標値と入口流量検出値とを差分したものの積分を考慮し、IGV開度指令補正値を生成し、出力しても良い。
 次に、第一の実施形態による圧縮機制御装置200aの動作について説明する。なお、特許文献1の図9で示される圧縮機制御装置に相当する第一の実施形態による圧縮機制御装置200aにおける動作については省略する。ここでは、弁制御部30aについて説明する。
 弁制御部30aは、関数発生器117aに入力するIGV開度補正信号として関数発生器121aが発生した値を関数発生器117aに入力する。弁制御部30aは、IGVスティック検知などのアラーム発生時に関数発生器121aからの補正信号を関数発生器117aに入力したくない(急な変動を起こす可能性のある補正信号を入力したくない)場合には、指令値選択部113aの出力を保持した値を関数発生器117aに入力する。
 なお、指令値選択部113aの出力を保持した値は、指令値選択部113aにおける切り換え時に運転員が変更しても良い。
 また、弁制御部30aは、関数発生器117bに入力するIGV開度補正信号として関数発生器121bが発生した値を関数発生器117bに入力する。弁制御部30aは、IGVスティック検知などのアラーム発生時に関数発生器121bからの補正信号を関数発生器117bに入力したくない(急な変動を起こす可能性のある補正信号を入力したくない)場合には、指令値選択部113bの出力を保持した値を関数発生器117bに入力する。
 以上のように、多段圧縮システム1aにおいて、弁制御部30aは、IGVスティック検知などのアラーム発生時に関数発生器121aからの補正信号を関数発生器117aに入力したくない場合には、指令値選択部113aにおける切り換え直後に保持した値を関数発生器117aに入力する。また、弁制御部30aは、IGVスティック検知などのアラーム発生時に関数発生器121bからの補正信号を関数発生器117bに入力したくない場合には、指令値選択部113bにおける切り換え直後に保持した値を関数発生器117bに入力する。
 つまり、多段圧縮システム1aは、一対の初段圧縮機101(101a、101b)により圧縮したガスを初段圧縮機101に直列に接続した後段圧縮機(二段目圧縮機103、最終段圧縮機102)により圧縮する多段圧縮システムである。初段圧縮機101の入口側にそれぞれ設けられた初段圧縮機101に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部30aを備える。弁制御部30aは、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する。
 こうすることで、弁制御部30aは、補正信号の急激な変化を抑えることができる。そのため、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、多段圧縮システム1aは、制御性を良くすることができる。
<第二の実施形態>
 図3は、本発明の第二の実施形態による多段圧縮システム1bの構成の一例を示す図である。
 第二の実施形態による多段圧縮システム1bは、多段圧縮機10aと、圧縮機制御装置200b(制御装置)とを備える。
 第二の実施形態による多段圧縮システム1bは、第一の実施形態による多段圧縮システム1aの指令値選択部113aと関数発生器117aとの間の変化率リミッタ134aと、指令値選択部113bと関数発生器117bとの間の変化率リミッタ134bとを追加したシステムである。
 変化率リミッタ134aは、指令値選択部113aから入力する必要な開度までの開閉信号の単位時間当たりの変化率を所定の範囲内に抑えて関数発生器117aに出力する。また、変化率リミッタ134bは、指令値選択部113bから入力する信号の変化率を所定の範囲内に制限して関数発生器117bに出力する。
 弁制御部30bは、変化率リミッタ134aを介して、指令値選択部113aから入力する信号を関数発生器117aに出力する。また、弁制御部30bは、変化率リミッタ134bを介して、指令値選択部113bから入力する信号を関数発生器117bに出力する。なお、弁制御部30bは、変化率リミッタ134aと134bを常時有効にしても良い。また、弁制御部30bは、変化率リミッタ134aと134bをアラーム発生時のみ有効にしても良い。また、弁制御部30bは、実施形態1に示した技術を併用しても良い。
 以上のように、多段圧縮システム1bにおいて、弁制御部30bは、変化率リミッタ134aを介して、指令値選択部113aから入力する信号を関数発生器117aに出力する。また、弁制御部30bは、変化率リミッタ134bを介して、指令値選択部113bから入力する信号を関数発生器117bに出力する。
 つまり、多段圧縮システム1bは、一対の初段圧縮機101(101a、101b)により圧縮したガスを該初段圧縮機101に直列に接続した後段圧縮機(二段目圧縮機103、最終段圧縮機102)により圧縮する多段圧縮システムである。多段圧縮システム1bは、初段圧縮機101の入口側にそれぞれ設けられた初段圧縮機101に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部30bを備える。弁制御部30bは、異常が検出された後、異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる開閉信号を出力する。
 弁制御部30bは、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する。
 こうすることで、弁制御部30bは、補正信号の急激な変化を抑えることができる。そのため、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、多段圧縮システム1bは、制御性を良くすることができる。
<第三の実施形態>
 図4は、本発明の第三の実施形態による多段圧縮システム1cの構成の一例を示す図である。
 第三の実施形態による多段圧縮システム1cは、多段圧縮機10aと、圧縮機制御装置200c(制御装置)とを備える。
 第三の実施形態による多段圧縮システム1cは、第一の実施形態による多段圧縮システム1aの関数発生器117aとIGV107aとの間のセレクタ135aと、第一の実施形態による多段圧縮システム1bの関数発生器117bとIGV107bとの間のセレクタ135bとを追加したシステムである。
 セレクタ135aは、関数発生器117aの出力値をIGV107aに出力する。または、セレクタ135aは、セレクタ135aの出力値(一定値を示す開閉信号)またはIGV実開度信号(開度検出信号に応じたフィードバック信号)をIGV107aに出力する。
 また、セレクタ135bは、関数発生器117bの出力値をIGV107bに出力する。または、セレクタ135bは、セレクタ135bの出力値またはIGV実開度信号をIGV107bに出力する。
 弁制御部30cは、通常時には関数発生器117aの出力値をIGV107aに出力する。また、弁制御部30cは、通常時には関数発生器117bの出力値をIGV107bに出力する。
 弁制御部30cは、IGV107bのスティックを検知した場合、検知したIGV107b側のセレクタ135bを切り換え、開閉信号を維持するセレクタ出力値またはIGV実開度信号をIGV107bに出力する。このとき、スティックしていないIGV107aは通常時と同じ動作を継続し、圧縮機出口圧力の制御を継続する。
 なお、弁制御部30cは、例えば、IGV開度指令値とIGV実開度信号との差分が大きい(開閉信号に応じた開度とならない)ときにIGVがスティックしたと判定する。
 弁制御部30cは、IGV107bがスティックしたと判定した場合、圧縮機出口圧力制御の制御パラメータを変更する。例えば、弁制御部30cは、操作端が2つから1つに減少したことに基づいて、圧力制御器129のPID制御ゲインを現在の2倍に変更する。これにより、圧力制御性の感度を異常検出前と同等とすることができる。なお、PID制御ゲインの変更は異常が解消されるまで継続し、異常が解消された後は元のゲインに戻す。
 以上のように、多段圧縮システム1cにおいて、弁制御部30cは、通常時には関数発生器117bの出力値をIGV107bに出力する。また、弁制御部30cは、IGV107bのスティックを検知した場合、検知したIGV側のセレクタ135bを切り換え、セレクタ出力値またはIGV実開度信号をIGV107bに出力する。
 つまり、多段圧縮システム1cは、一対の初段圧縮機101(101a、101b)により圧縮したガスを初段圧縮機101に直列に接続した後段圧縮機(二段目圧縮機103、最終段圧縮機102)により圧縮する多段圧縮システムである。多段圧縮システム1cは、初段圧縮機101の入口側にそれぞれ設けられた初段圧縮機101に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部30cを備える。弁制御部30cは、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を異常検出後に値を維持して出力する。または、弁制御部30aは、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を異常検出後に出力する。
 また、弁制御部30cは、異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする。
 こうすることで、弁制御部30cは、補正信号の急激な変化を抑えることができる。そのため、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、多段圧縮システム1cは、制御性を良くすることができる。
 なお本発明の実施形態について説明したが、上述の多段圧縮システム1は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定するものではない。また、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができるものである。
 上述の多段圧縮システム、制御装置、制御方法及びプログラムによれば、多段圧縮機において、異常状態になりアラームが発生した場合であってもプラント全体が不安定にならず、制御性を良くすることができる。
1a、1b、1c、1d 多段圧縮システム
10a 多段圧縮機
30a、30b 弁制御部
50a、50b インレットガイドベーン(IGV)開度制御部
51 インレットガイドベーン開度指令値生成部
52a、52b インレットガイドベーン開度指令値補正部
53 放風弁開度制御部
54a、54b 上流側アンチサージ制御部
55 出口圧力制御部
56 下流側アンチサージ制御部
101、101a、101b 初段圧縮機
102 最終段圧縮機
103 二段目圧縮機
104 モータ
105 ギアボックス
106 シャフト
107a、107b インレットガイドベーン
108 放風弁
109a、109b クーラ
110 合流後圧力検出器
111、138 出口圧力検出器
112、113a、113b 指令値選択部
114a、114b 入口流量検出器
115 出口流量検出器
116、117a、117b、118a、118b、119,120、121a、121b、122 関数発生器
123a、123b 補正取消信号生成部
124 性能差補正係数生成部
125a、125b 流量インジケータ
126 圧力インジケータ
127a、127b、128 流量制御器
129 圧力制御器
130a、130b 供給ライン
131 吐出ライン
132 第一接続ライン
133 第二接続ライン
134a、134b 変化率リミッタ
135a、135b セレクタ
136 放風ライン
200a、200b、200c 圧縮機制御装置

Claims (20)

  1.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する、多段圧縮システム。
  2.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する、多段圧縮システム。
  3.  前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する、
     請求項1または請求項2に記載の多段圧縮システム。
  4.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムであって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する、
     ことを特徴とする多段圧縮システム。
  5.  前記弁制御部は、
     異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする、
     請求項1から請求項4の何れか一項に記載の多段圧縮システム。
  6.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する、制御装置。
  7.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する、制御装置。
  8.  前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する、
     請求項6または請求項7に記載の制御装置。
  9.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置であって、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部、
     を備え、
     前記弁制御部は、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する、制御装置。
  10.  前記弁制御部は、
     異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする、
     請求項6から請求項9の何れか一項に記載の制御装置。
  11.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部は、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力する、制御方法。
  12.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給する制御方法。
  13.  前記弁制御部は、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限する、
     請求項11または請求項12に記載の制御方法。
  14.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮システムにおいて、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御部は、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力する、制御方法。
  15.  前記弁制御部は、
     異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くする、
     請求項11から請求項14の何れか一項に記載の制御方法。
  16.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、
     として機能させ、
     前記弁制御手段に、前記弁の一方が開閉信号に応じた開度とならない異常が検出された後、当該異常が解消されるまでの開閉信号として、異常検出前の弁の開度に対して所定以下の差分となる前記開閉信号を出力させる、プログラム。
  17.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、
     として機能させ、
     前記弁制御手段に、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、記憶された開閉信号を供給させる、プログラム。
  18.  前記弁制御手段に、異常検出のときの開閉信号を記憶し、異常が解消されるまでの間、必要な開度までの開閉信号を所定の変化率以下に制限させる、
     請求項16または請求項17に記載のプログラム。
  19.  一対の初段圧縮機により圧縮したガスを該初段圧縮機に直列に接続した後段圧縮機により圧縮する多段圧縮機の制御装置のコンピュータを、
     前記初段圧縮機の入口側にそれぞれ設けられた前記初段圧縮機に流入するガス流量を調整するための弁を開閉する開閉信号を出力する弁制御手段、
     として機能させ、
     前記弁制御手段に、異常検出後の開閉信号の出力時に、異常検出時に既に検出されている正常時の弁開度の値を示す開閉信号を前記異常検出後に値を維持して出力するか、または、新たに計測した開度検出信号に応じた弁開度の値を示す開閉信号を前記異常検出後に出力させる、プログラム。
  20.  前記弁制御手段に、
     異常が検出された後、異常が解消される迄の間、異常が検出されない他方の弁の制御感度を高くさせる、
     請求項16から請求項19の何れか一項に記載のプログラム。
PCT/JP2015/067858 2014-07-01 2015-06-22 多段圧縮システム、制御装置、制御方法及びプログラム WO2016002557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15814779.3A EP3147505A4 (en) 2014-07-01 2015-06-22 Multi-stage compression system, control device, control method, and program
US15/314,394 US10400774B2 (en) 2014-07-01 2015-06-22 Multi-stage compression system, control device, control method, and program
CN201580025893.8A CN106460834A (zh) 2014-07-01 2015-06-22 多级压缩系统、控制装置、控制方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136052A JP2016014336A (ja) 2014-07-01 2014-07-01 多段圧縮システム、制御装置、制御方法及びプログラム
JP2014-136052 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002557A1 true WO2016002557A1 (ja) 2016-01-07

Family

ID=55019101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067858 WO2016002557A1 (ja) 2014-07-01 2015-06-22 多段圧縮システム、制御装置、制御方法及びプログラム

Country Status (5)

Country Link
US (1) US10400774B2 (ja)
EP (1) EP3147505A4 (ja)
JP (1) JP2016014336A (ja)
CN (1) CN106460834A (ja)
WO (1) WO2016002557A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492884B (zh) * 2019-07-01 2022-08-26 开利公司 多级压缩机的浪涌保护

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247335A (ja) * 1995-03-13 1996-09-27 Toshiba Corp 弁開度調節装置
JPH096439A (ja) * 1995-06-22 1997-01-10 Toto Ltd 流量調節装置
JPH09159047A (ja) * 1995-12-05 1997-06-17 Kubota Corp 弁の開閉駆動装置
JP2002147253A (ja) * 2000-11-09 2002-05-22 Mitsubishi Heavy Ind Ltd ガスタービン保護装置及び燃料制御装置
JP2008169985A (ja) * 2007-01-15 2008-07-24 Yamatake Corp アクチュエータ
JP2008274931A (ja) * 2007-03-30 2008-11-13 Toyota Motor Corp ファン制御装置
WO2011005455A2 (en) * 2009-06-23 2011-01-13 Honeywell International Inc. Turbocharger with two-stage compressor, including a twin-wheel parallel-flow first stage
JP2013170573A (ja) * 2012-02-23 2013-09-02 Mitsubishi Heavy Ind Ltd 圧縮機制御装置及びその制御方法、圧縮機システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360882A (en) * 1980-08-27 1982-11-23 Phillips Petroleum Company Process control system
US4554788A (en) * 1983-12-21 1985-11-26 Westinghouse Electric Corp. Turbine valve control system
JP4191563B2 (ja) * 2003-08-28 2008-12-03 三菱重工業株式会社 圧縮機の制御方法
JP4501411B2 (ja) * 2003-11-07 2010-07-14 パナソニック株式会社 流体遮断装置
DE102006030108A1 (de) * 2006-06-28 2008-01-03 Man Turbo Ag Vorrichtung und Verfahren zum Durchführen eines Ventiltests an einer Turbomaschine
KR102247596B1 (ko) * 2014-01-24 2021-05-03 한화파워시스템 주식회사 압축기 시스템 및 그 제어 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247335A (ja) * 1995-03-13 1996-09-27 Toshiba Corp 弁開度調節装置
JPH096439A (ja) * 1995-06-22 1997-01-10 Toto Ltd 流量調節装置
JPH09159047A (ja) * 1995-12-05 1997-06-17 Kubota Corp 弁の開閉駆動装置
JP2002147253A (ja) * 2000-11-09 2002-05-22 Mitsubishi Heavy Ind Ltd ガスタービン保護装置及び燃料制御装置
JP2008169985A (ja) * 2007-01-15 2008-07-24 Yamatake Corp アクチュエータ
JP2008274931A (ja) * 2007-03-30 2008-11-13 Toyota Motor Corp ファン制御装置
WO2011005455A2 (en) * 2009-06-23 2011-01-13 Honeywell International Inc. Turbocharger with two-stage compressor, including a twin-wheel parallel-flow first stage
JP2013170573A (ja) * 2012-02-23 2013-09-02 Mitsubishi Heavy Ind Ltd 圧縮機制御装置及びその制御方法、圧縮機システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147505A4 *

Also Published As

Publication number Publication date
EP3147505A1 (en) 2017-03-29
US10400774B2 (en) 2019-09-03
CN106460834A (zh) 2017-02-22
EP3147505A4 (en) 2017-06-28
US20170198705A1 (en) 2017-07-13
JP2016014336A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5611253B2 (ja) 圧縮機制御装置及びその制御方法、圧縮機システム
US7096669B2 (en) Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
US10487841B2 (en) Compressor control system and method
KR101858648B1 (ko) 다단 압축 시스템의 서지 제어 방법
US11125242B2 (en) Compressor system and method of controlling the same
US20160047392A1 (en) Methods and systems for controlling turbocompressors
US11421596B2 (en) Gas turbine control device and method, non-transitory storage medium, and gas turbine
JP2009541756A (ja) ターボエンジンの制御エレメントの機能試験を実行するためのデバイス及び方法
US6164901A (en) Method and device for operating turbocompressors with a plurality of controllers that interfere one with each other
JP5595232B2 (ja) ガスタービンおよび冷却方法
WO2016002557A1 (ja) 多段圧縮システム、制御装置、制御方法及びプログラム
CN102840136A (zh) 蒸汽驱动式压缩装置
WO2017154976A1 (ja) 燃料制御装置、燃焼器、ガスタービン、燃料制御方法及びプログラム
JP6671202B2 (ja) ポジショナ
KR102251736B1 (ko) 다단 압축기 및 이를 이용한 서지 제어방법
EP3147506B1 (en) Multi-stage compressor system, control device, method for assessing abnormality, and program
CN107532605B (zh) 用于压缩机系统增压的方法和设备
KR20150119925A (ko) 터보 압축기의 블로우오프 제어 밸브 개폐 장치
JP5518683B2 (ja) 圧縮機システム及び圧縮機システムの制御方法
JP2024024276A (ja) 圧縮機の減圧装置および圧縮機の減圧方法
WO2017138481A1 (ja) 圧縮機のサージ発生防止装置および圧縮機システム
JP2014085715A (ja) 機械装置の制御装置、ガスタービン、及び機械装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814779

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015814779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314394

Country of ref document: US

Ref document number: 2015814779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE