WO2016002479A1 - 培養装置 - Google Patents

培養装置 Download PDF

Info

Publication number
WO2016002479A1
WO2016002479A1 PCT/JP2015/067025 JP2015067025W WO2016002479A1 WO 2016002479 A1 WO2016002479 A1 WO 2016002479A1 JP 2015067025 W JP2015067025 W JP 2015067025W WO 2016002479 A1 WO2016002479 A1 WO 2016002479A1
Authority
WO
WIPO (PCT)
Prior art keywords
incubator
robot
centrifuge tube
dish
isolator
Prior art date
Application number
PCT/JP2015/067025
Other languages
English (en)
French (fr)
Inventor
匡弘 坂本
武志 山森
Original Assignee
澁谷工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澁谷工業株式会社 filed Critical 澁谷工業株式会社
Priority to US15/322,831 priority Critical patent/US20170137770A1/en
Priority to EP15815550.7A priority patent/EP3162882A4/en
Priority to CA2953761A priority patent/CA2953761A1/en
Priority to KR1020177001736A priority patent/KR102372535B1/ko
Publication of WO2016002479A1 publication Critical patent/WO2016002479A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • B01L1/04Dust-free rooms or enclosures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid

Definitions

  • the present invention relates to a culture apparatus, and more specifically, to a culture apparatus configured by connecting an incubator for culturing an object to be cultured therein to an isolator in which a working chamber formed therein is maintained in a sterile state.
  • an incubator is provided in an isolator whose interior is maintained in a sterilized state so that the incubator can be contacted and separated by connection means. It has been performed to move to a more distant position and culture the cells housed inside (Patent Document 1). And in the culture apparatus of patent document 1, when the isolator and the incubator are separated, the part exposed to the external space is decontaminated by the decontamination gas when connected by the connecting means, thereby maintaining the aseptic state. The isolator and the incubator are communicated with each other.
  • the present invention provides a culture apparatus that can carry out a culture object to a plurality of incubators more efficiently.
  • the culture apparatus includes an isolator in which a working chamber formed therein is maintained in a sterile state, and an incubator for culturing a culture object accommodated therein, and the isolator and the incubator are provided.
  • the isolator includes a communication port portion for communicating the working chamber with the inside of the incubator, and a communication port opening / closing member for opening and closing the communication port portion, and the incubator includes a loading / unloading port portion for loading and unloading the culture object.
  • a cylindrical connecting member that connects the isolator and the incubator in a state of surrounding the communication port portion and the carry-in / out entrance portion, and decontamination gas supply means that supplies decontamination gas to the inside of the connection member.
  • the isolator has at least two communication ports, and each of the communication ports is provided with the connecting member to connect an incubator to each.
  • the work chamber and the inside of the incubator can communicate with each other, and the other communication port and the in / out port portion of the other incubator
  • the decontamination gas is supplied to the decontamination space formed inside the connecting member, and the portion exposed to the decontamination space is decontaminated.
  • a plurality of communication ports are formed in the isolator so that a plurality of incubators can be connected at the same time. Therefore, while one incubator is in communication with the work chamber, another incubator is connected. The decontamination of the decontamination space formed by the connecting member can be performed. As a result, when the carry-in / out operation in one incubator is completed, it becomes possible to quickly connect the other incubator in which the decontamination of the decontamination space has been completed to the work room, and to perform the culture operation efficiently. it can.
  • the top view of the automatic culture operation apparatus concerning a present Example.
  • the side view of the said automatic culture operation apparatus The figure explaining a gripper.
  • the side view of a disposal box Sectional drawing which shows an inspection means.
  • Flow explaining sowing work Flow explaining the medium replacement work.
  • FIG. 1 is a plan view of the automatic culture operation device 1 according to the present embodiment
  • FIG. 2 is a side view.
  • the automatic culture operation device 1 has a working chamber 2a formed therein. Is connected to the work chamber 2a, an isolator 2 that is maintained in a sterile state, a pass box 3 that is connected to the work chamber 2a and carries instruments, containers, and liquids used for the culture operation.
  • the automatic culture operation apparatus 1 is controlled by a control means 5 provided adjacent to the isolator 2.
  • the containers are transferred between the first robot 6 and the second robot 7 that hold and transfer the containers, and the first robot 6 and the second robot 7.
  • a rotary stocker 8 as a storage means for storing the containers, a centrifuge means 9 for performing centrifugation, a liquid supply means 10 for supplying the liquids, and a culture object
  • the inspection means 11 and the carrying-in / out means 12 which carry in / out a to-be-cultured material with respect to the said incubator 4 are provided.
  • a culture operation such as a seeding operation or a medium replacement operation for seeding the cells as the culture medium on the medium is performed by the operations of the first and second robots 6 and 7 under the control of the control means 5. It can be done automatically.
  • Examples of the containers used for the culture operation include a dish 21 as a culture container used for cell culture and a centrifuge tube 22 having a tapered tip (see FIG. 6).
  • the instruments include a pipette 23 (see FIG. 9) and an aspirator nozzle 24 (see FIG. 10) used in the liquid supply means 10, an observation plate 25 (see FIG. 12) used for cell inspection, and the centrifuge tube. 22 and a cover cap 26 (see FIGS. 6 and 9) attached to a liquid container containing the liquids.
  • the centrifuge tube 22 and the pipette 23 are gripped by the grippers 6b and 7b of the first and second robots 6 and 7, as shown in FIG.
  • the pipette 23 is gripped by using the arc-shaped second recesses 6d and 7d for gripping the small-diameter member.
  • Examples of the culture object include human cells, tissues, blood, and the like, which are stored in the isolator 2 as liquids in a sample container 28 (see FIG. 6) having the same shape as the centrifuge tube 22. It comes to be brought in.
  • Examples of the liquids used for the culture operation include a culture medium, a chemical solution such as PBS (phosphate buffered saline), trypsin, trypan blue, and the like. And a reagent container 32 (see FIG. 13).
  • the dish 21 and the attachment 33 will be described with reference to FIG. 4.
  • the dish 21 is a circular dish container having a shallow bottom, and a cover 21 a is attached to the dish 21.
  • 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along the line bb in FIG. 4A.
  • the attachment 33 includes a grip 33a that is gripped by the grippers 6b and 7b of the first and second robots 6 and 7, a holding portion 33b that supports the dish 21, and a connecting member 33c that connects them. .
  • the grip 33a is a columnar member having a substantially square cross section, and the attachment 33 does not rotate with respect to the grippers 6b and 7b by being gripped by the V-shaped first recesses 6c and 7c of the grippers 6b and 7b. It is like that.
  • the holding portion 33b is a substantially U-shaped member, and the connecting member 33c is connected to the base side of the U-shape, and a required gap is formed on the tip side.
  • the holding portion 33b has a substantially L-shaped cross-sectional shape along the circumferential direction, and the bottom surface portion supports the bottom surface of the dish 21 from below, and the side surface portion supports the side surface of the dish 21. It has become.
  • a relief portion 33d that protrudes outward from the holding portion 33b is formed at the base side of the holding portion 33b in the U-shape and at a position orthogonal thereto, and the relief portion 33d is It consists of vertical walls.
  • the connecting member 33c is provided with two positioning holes 33e. One is provided between the holding portion 33b and the grip 33a, and the other is provided at the position of the grip 33a.
  • a disk-shaped disk having the same diameter as the outer diameter of the dish 21 is formed on the lower surface of the small-diameter dish.
  • a holder can be provided and the holder 33 can be held by the attachment 33.
  • the observation plate 25 is composed of a plate 25a made of glass or the like on which cells are placed, and a plate holder 25b for holding the plate 25a.
  • the plate holder 25b is a substantially U-shaped thin plate member formed so as to surround substantially three sides of the plate 25a.
  • the plate holder 25b includes grippers 6b of the first and second robots 6 and 7, A grip 25c gripped by 7b and two positioning holes 25d are provided.
  • micropipette 34 As the micropipette 34, a conventionally known micropipette 34 can be used as shown in FIGS. 13 and 14, and a cylindrical tip tube 34 a to which the replaceable micropipette nozzle 35 is attached and a liquid suction / discharge A suction button 34b for operating and an eject button 34c for releasing the micropipette nozzle 35 provided surrounding the suction button 34b are provided. Further, in order to hold the micropipette 34 by the first and second robots 6 and 7, a flat holding member 36 is fixed to the body of the micropipette 34.
  • the holding member 36 protrudes to the side of the micropipette 34, and the protruding portion includes a grip 36 a gripped by the grippers 6 b and 7 b of the first and second robots 6 and 7, and two positioning holes 36 b. Is provided.
  • the work chamber 2a formed therein is preliminarily decontaminated, and the sterilized state maintaining means 37 provided on the top of the isolator 2 shown in FIG.
  • the pressure is maintained at a positive pressure to maintain a sterilized state.
  • the decontamination gas supply means 38 supplies decontamination gas (hydrogen peroxide vapor) to the inside of the work chamber 2a. ) Is decontaminated.
  • the pass box 3 is provided on the outer right side surface of the isolator 2, and the internal space is decontaminated by supplying the decontamination gas from the decontamination gas supply means 38. Further, the work chamber 2a of the isolator 2 and the internal space of the pass box 3 can be communicated by opening and closing the open / close door 39. It is opened when it is carried into the work chamber 2a. Further, the pass box 3 is provided with an external opening / closing door 3a toward the external space, and the carry-in thing is carried into the pass box 3 through the external opening / closing door 3a.
  • the instruments and containers carried into the work chamber 2a via the pass box 3 are preliminarily sterilized in a state of being accommodated in the resin packaging bag B shown in FIG.
  • its outer surface is decontaminated with the decontamination gas of the decontamination gas supply means 38.
  • a hook 3b for suspending the packaging bag B is provided inside the pass box 3, so that decontamination gas can be attached to the entire outer surface of the packaging bag B for decontamination. .
  • the sample container 28 and liquid containers 29 to 31 are used by using a disinfectant solution such as alcohol (disinfecting ethanol), oxidol (aqueous hydrogen peroxide solution), peracetic acid, sodium hypochlorite, etc. The surface is wiped off and the surface is sterilized.
  • a disinfectant solution such as alcohol (disinfecting ethanol), oxidol (aqueous hydrogen peroxide solution), peracetic acid, sodium hypochlorite, etc.
  • the work of loading the carry-in items such as the instruments, containers, and liquids from the pass box 3 into the work chamber 2a, and the work of placing the carry-in items in the work chamber 2a are performed by the isolator 2 and the pass box 3. This is done manually by an operator wearing a glove 40 provided on the front wall of the machine.
  • the globe 40 provided adjacent to the opening / closing door 39 is a carrying-in / out globe 40a for carrying in / out the load between the pass box 3 and the work chamber 2a.
  • the work range of the aspirator nozzle 24 and the liquid containers 29 to 32 used in the liquid supply means 10 is limited in the carry-in / out glove 40a among the carried-in items carried into the work chamber 2a via the pass box 3. Therefore, it cannot be arranged at a predetermined position.
  • an arrangement glove 40b for arranging the aspirator nozzle 24 and the liquid containers 29 to 32 in the liquid supply means 10 is provided in the approximate center of the work chamber 2a, and the working range of the carry-in / out glove 40a is further provided.
  • a moving table 41 that moves between the working range of the placement glove 40b.
  • the moving table 41 is moved by a manual operation of an operator wearing the carry-in / out glove 40a along a rail 41a provided in the left-right direction on the front side of the work chamber 2a.
  • an aspirator nozzle 24 is placed as an instrument used in the liquid supply means 10, and a culture medium container 29, a PBS container 30, and a trypsin container 31 are placed as liquid containers. .
  • an operator wearing the carry-in / out glove 40a is placed on the moving table 41. Yes.
  • the worker moves the moving table 41 to the working range of the placement glove 40b, and the worker wearing the placement glove 40b places them at predetermined positions of the liquid supply means 10, respectively. It has become.
  • the first and second robots 6 and 7 can use the same type of articulated robot for industrial use, and are arranged at the center of the work chamber 2a so that a part of their movable ranges overlap each other.
  • the robot 6 is provided on the pass box 3 side
  • the second robot 7 is provided on the incubator 4 side.
  • Each of the first and second robots 6 and 7 includes arms 6a and 7a each composed of a plurality of axes, and the grippers 6b and 7b provided at the tips of the arms 6a and 7a.
  • the centrifuge tube holder 43 that supports the heat sink 22 and the heating chamber 44 for delivering the dish 21 containing cells are provided.
  • a camera 45 is provided on the back side of the isolator 2, for photographing containers and instruments such as the centrifuge tube 22 and pipette 23 held by the first and second robots 6 and 7. .
  • the delivery table 42 is provided approximately in the middle between the first robot 6 and the second robot 7, and the upper surface thereof is fitted into positioning holes 25 d and 33 e formed in the observation plate 25 and the attachment 33 (not shown).
  • a positioning pin is provided.
  • the first robot 6 places the dish 21 together with the attachment 33 on the delivery table 42.
  • the attachment 33 is placed so as not to be displaced at a predetermined position by fitting the positioning hole 33e of the attachment 33 to the positioning pin.
  • the second robot 7 holds the grip 33a of the attachment 33 placed on the delivery table 42, whereby the delivery of the dish 21 is completed.
  • the observation plate 25 can be transferred between the first robot 6 and the second robot 7 in the same manner as the attachment 33, and may be used when only the attachment 33 is transferred.
  • the centrifuge tube holder 43 is provided at a position adjacent to the front of the delivery table 42 and supports a plurality of centrifuge tubes 22.
  • the centrifuge tube 22 can be transferred by the first and second robots 6 and 7 as in the case of the dish 21, and a plurality of centrifuge tubes 22 can be supported.
  • the other robot repeats another operation, and the plurality of centrifuge tubes 22 can be supported by the centrifuge tube holder 43.
  • the heating chamber 44 is configured to accommodate the five dishes 21 together with the attachment 33, and the uppermost stage is a tapping for applying vibration to the dishes 21 during a culture operation.
  • Means 46 are provided. Each stage of the heating chamber 44 is provided with a positioning pin 44a for positioning the attachment 33 and a plate-shaped heating means 44b.
  • the heating means 44b is arranged to place the dish 21 on the dish 21.
  • the dish 21 is in close contact with the bottom surface and heated to a predetermined temperature.
  • the tapping means 46 is composed of a plate-like placement portion 46a for placing the dish 21, and a striking member 46b which is provided across the placement portion 46a and reciprocates by driving means such as an air cylinder. Yes.
  • the striking member 46b reciprocates and collides with the side surface of the dish 21, so that the cells attached to the bottom surface of the dish 21 during culture are separated by vibration.
  • the delivery table 42 it is also possible to deliver only the attachment 33 between the first and second robots 6 and 7 using the heating chamber 44.
  • the camera 45 is provided so that the vicinity of the delivery table 42 is an imaging range, and is actually provided inside a casing 45a for protection from decontamination gas as shown in FIG.
  • the camera 45 takes a picture of them, and the control means 5 uses the grippers 6b and 7b. Check whether these are held normally. Further, the camera 45 can take an image of the centrifuge tube 22 held by the grippers 6b and 7b, and can check the remaining amount of liquid in the centrifuge tube 22 and the like.
  • the rotary stocker 8 includes a rotary shaft 51 rotatably provided on the floor 2b of the work chamber 2a, and a single attachment mounting table provided in order from above the rotary shaft 51. 52, five dish mounting tables 53, one centrifuge tube support table 54, and one sample container support table 55.
  • a container detection sensor 56 for recognizing the presence or absence of containers placed on the tables 53 to 55 is provided at a position adjacent to the rotary lister 8.
  • the rotary shaft 51 is erected on a cylindrical member 51a formed through the floor 2b of the work chamber 2a formed inside the isolator 2 so as to be rotatable via a bearing 51b and below the floor 2b.
  • a drive means 57 comprising a servo motor is connected to the portion protruding into the space 2c. And between the said rotating shaft 51 and the said drive means 57, the transmission state which transmits the driving force of the driving means 57 to the rotating shaft 51, and the driving force of the said driving means 57 are interrupted
  • Switching means 58 is provided for switching to a non-transmission state in which the table can be rotated. When the non-transmission state is established, the tables 52 to 55 can be manually rotated. .
  • a rotational position sensor 59 is provided at a position adjacent to the lower end portion of the rotation shaft 51, and a detection piece 59 a detected by the rotation position sensor 59 is provided at the lower end portion of the rotation shaft 51.
  • the control means 5 recognizes the rotational angle of the rotary shaft 51, controls the drive means 57, and the containers placed on the tables 52 to 55. The kind is moved to the required delivery position and stopped.
  • the dish mounting portion 60 includes a connecting portion 60a connected to the rotating shaft 51, a mounting portion 60b formed at the tip of the connecting portion 60a, and a protruding piece protruding radially from the periphery of the mounting portion 60b. 60c and an engaging protrusion 60d protruding upward from the tip of each protruding piece 60c.
  • the protruding piece 60c is provided at a position corresponding to the clearance on the distal end side of the attachment 33 and the escape portion 33d, and the engaging protrusion 60d is provided in accordance with the position of the outer diameter of the dish 21, and Supports the sides.
  • the attachment 33 and the dish placing portion 60 deliver the dish 21 in the direction shown in FIG. 4A, and the control means 5 drives the first robot 6 and the rotary stocker 8. 57 is controlled to obtain the state shown in this figure. Specifically, the clearance on the distal end side of the holding portion 33b of the attachment 33 held by the first robot 6 does not interfere with the connecting portion 60a of the dish placement portion 60, and the escape portion 33d of the attachment 33 is the placement portion. Do not interfere with the protruding piece 60c of 60b. Then, the first robot 6 moves the attachment 33 from the lower side to the upper side of the mounting part 60b while the dish 21 is mounted on the mounting part 60b, so that the dish is transferred from the rotary stocker 8 to the first robot 6. 21 is delivered.
  • the first robot 6 moves the attachment 33 downward from above the placement portion 60b in a state where the dish 21 is placed on the attachment 33 held by the first robot 6, whereby the first robot 6 is moved.
  • the dish 21 is delivered to the rotary stocker 8.
  • the centrifuge tube support table 54 protrudes radially outward from the outer peripheral edge of the dish mounting table 53 and has a large diameter, and a plurality of holes that support the outer peripheral surface of the centrifuge tube 22 along the outer peripheral edge.
  • 54 a and a receiving member 54 b that supports the lower end portion of the centrifuge tube 22 below the centrifuge tube 22, and supports the centrifuge tube 22 in an upright state at equal intervals.
  • the sample container support table 55 is a member having a larger diameter than the centrifuge tube support table 54 and having an arc shape, and is similar to the centrifuge tube support table 54 along the circumferential direction of the arc-shaped member.
  • a hole 55a and a receiving member 55b are provided, and the sample container 28 and the reagent container 32 are supported in an upright state, and the micropipette nozzle 35 of the micropipette 34 is supported in an upright state.
  • the sample container support table 55 can hold the micropipette 34, and for this reason, two ends formed on the holding member 36 of the micropipette 34 (not shown) are provided at the end of the sample container support table 55. Positioning pins that fit into the positioning holes 36b are provided.
  • the sample container support table 55 can also support the centrifuge tube 22 containing necessary reagents used for the culture operation, although not described in the following operations of the culture operation.
  • Each of the tables 52 to 55 is positioned at least partially within the movable range of the first robot 6 and is required to be placed on the tables 52 to 55 under the control of the control means 5.
  • These containers and the like are positioned at a predetermined delivery position within the movable range of the first robot 6.
  • the first robot 6 can hold all the containers, instruments, etc. accommodated in the rotary stocker 8, and can accommodate a large number of containers, instruments, etc. in the work chamber 2a of the isolator 2. At the same time, it is possible to efficiently perform the culturing operation by taking out these efficiently.
  • each of the tables 52 to 55 is provided in a plurality of stages in the vertical direction with respect to the rotating shaft 51, the proportion of the work chamber 2a with respect to the floor 2b can be reduced. Etc. can be stored compactly.
  • a portion adjacent to the carry-in / out glove 40a provided in front of the isolator 2 is located within the work range of the carry-in / out glove 40a.
  • FIG. 7 shows a cross-sectional view of the switching means 58 of the rotary lister 8.
  • the switching means 58 is provided so as to be rotatable with respect to the connecting member 61 that rotates integrally with the rotating shaft 51 and the cylindrical member 51a.
  • a plurality of balls 63 provided between the connecting member 61 and the pulley 62.
  • a key 61a is provided on the inner surface of the connecting member 61, and a key groove 51c is formed in the vertical direction on the outer surface of the rotating shaft 51.
  • a spring 64 is elastically mounted between the lower end portion of the connecting member 61 and a spring receiver 51d provided at the lower end portion of the rotating shaft 51, whereby the connecting member 61 is constantly urged upward. Yes.
  • the pulley 62 is positioned above the connecting member 61 and is rotatably held by a lower end portion of the cylindrical member 51a via a ball bearing 65. Further, a belt 57 a is stretched between the pulley 62 and the driving means 57 so that the driving force of the driving means 57 acts on the pulley 62.
  • the balls 63 are accommodated in a plurality of recesses 61b formed in the circumferential direction on the upper surface of the connecting member 61 so as not to drop off, and the lower surface of the pulley 62 is a substantially hemispherical shape in which the top of the ball 63 is fitted.
  • a recess 62a is formed.
  • the switching means 58 shown in FIG. 7 is in a transmission state, and in the transmission state, the ball 63 is fitted in a recess 62 a formed on the lower surface of the pulley 62.
  • the connecting member 61 is biased upward by the spring 64, and the state in which the ball 63 is fitted in the recess 62a is maintained by the biasing force of the spring 64.
  • the driving means 57 rotates the pulley 62 via the belt 57 a in this transmission state, the driving force is transmitted to the connecting member 61 via the ball 63, and each rotary table fixed to the rotary shaft 51. 52 to 55 are rotated.
  • the ball 63 is removed from the recess 62a of the pulley 62 so that the pulley 62 and the connecting member 61 can rotate with each other. . More specifically, when the switching means 58 is first set to the non-transmission state, the driving means 57 is not in operation, and the pulley 62 is prevented from rotating via the belt 57a. From this state, when the operator manually rotates the tables 52 to 55, the switching means 58 is initially in the transmission state, so that the resistance from the pulley 62 that is prevented from rotating acts on the operator. To do.
  • the operator further rotates the tables 52 to 55 against this resistance force, whereby the ball 63 is detached from the recess 62 a of the pulley 62, and the connecting member 61 descends against the urging force of the spring 64. .
  • the ball 63 becomes movable with respect to the lower surface of the pulley 62, and the connecting member 61 becomes rotatable with respect to the pulley 62.
  • the tables 52 to 55 can be rotated.
  • the switching means 58 may be a switching means for turning off a servo command of a servo motor serving as the driving means 57 instead of the mechanical switching means having the above-described configuration.
  • the centrifuge 9 is provided between the second robot 7 and the incubator 4 as shown in FIG. 1, and a conventionally known centrifuge can be used. As shown in FIG. 2, the centrifugal separating means 9 is provided so as to protrude downward from the floor 2b of the work chamber 2a of the isolator 2, and is provided with four rotating shafts provided on a rotating shaft that is rotated by a motor not shown in the approximate center. A bucket 9a is provided, and the centrifuge tube 22 is accommodated in the bucket 9a. In the present embodiment, at least a part of the centrifugal separating means 9 is within the movable range of the second robot 7, and the required bucket 9 a is moved within the movable range of the second robot 7 by the control of the control means 5.
  • the counterweight accommodated in a position opposite to the centrifuge tube 22 that accommodates the cells and the like causes the first robot 6 and the liquid supply means 10 to dispense PBS into the new centrifuge tube 22. It can be created by the second robot 7.
  • the liquid supply means 10 includes first to third liquid supply / discharge means 71A to 71C for dispensing liquids and first and first liquid containers 29 and 30 for holding liquids.
  • the lid holding means 74A to 74D are configured.
  • the first liquid supply / discharge means 71A and the first container holding means 72A constitute medium supply means for supplying a medium to the containers
  • the third liquid supply / discharge means 71C is provided for the containers.
  • a pipette holder 75 as a pipette support section for storing a plurality of pipettes 23, a container holder 76 for storing the trypsin container 31, a used pipette 23 and a centrifuge tube 22 are discarded.
  • a disposal box 77 is provided as a disposal unit.
  • the first to third liquid supply / discharge means 71A to 71C, the aspirator 73, and the first to fourth lid holding means 74A to 74D are provided above the working chamber 2a by a substantially portal holding member 78. These are all located within the movable range of the first and second robots 6 and 7.
  • the first liquid supply / discharge means 71A is provided on the first robot 6 side
  • the second liquid supply / discharge means 71B is provided on the second robot 7 side
  • the third liquid supply / discharge means is provided.
  • 71C is provided between the first liquid supply / discharge means 71A and the second liquid supply / discharge means 71B.
  • the first container holding means 72A is provided below the first liquid supply / discharge means 71A
  • the second container holding means 72B is provided below the second liquid supply / discharge means 71B.
  • the first and second lid holding means 74A and 74B are provided above the first and second container holding means 72A and 72B, respectively, and the third lid holding means 74C is arranged in the vicinity of the first robot 6.
  • the fourth lid holding means 74D is disposed in the vicinity of the second robot 7.
  • a container holder 76 for accommodating the trypsin container 31 is provided within a movable range of the second robot 7, and the trypsin container 31 is held together with the container holder 76 by the second robot 7.
  • the second liquid supply / discharge means 71B, the second container holding means 72B, and the second lid holding means 74B will be described with reference to FIG.
  • the first and third liquid supply / discharge means 71A, 71C having the same configuration as the second liquid supply / discharge means 71B, and the first container holding means 72A having the substantially same configuration as the second container holding means 72B will be described. Is omitted.
  • the second liquid supply / discharge means 71B includes a connecting portion 79 fixed to the holding member 78 and connected to the pipette 23, an elevating means 80 that holds the pipette 23 and connects it to the connecting portion 79, It comprises a supply / discharge means 81 connected to the connecting portion 79 and provided in the space 2c below the floor 2b of the work chamber 2a.
  • the connecting portion 79 is a cylindrical member made of resin and having a bellows shape, and is fixed to the holding member 78 via a stay, and the tube 7 is disposed between the connecting portion 79 and the supply / discharge means 81.
  • the pipette 23 is in close contact with the lower part.
  • the elevating means 80 includes a gripper 80a that opens and closes by an air cylinder or the like and grips the pipette 23, and an air cylinder 80b that elevates and lowers the gripper 80a.
  • the means 81 and the pipette 23 are communicated with each other.
  • the supply / discharge means 81 is provided for each of the first to third liquid supply / discharge means 71A to 71C.
  • the control means 5 controls the pipette 23 to suck and hold a predetermined amount of liquid. A predetermined amount of the liquid held by the pipette 23 is discharged.
  • the second container holding means 72B is composed of a holding member 82 for holding the PBS container 30 and a medium container 29A containing an unadjusted medium, and a moving means 83 for moving the holding member 82 up and down.
  • the mouth portion 30a of the PBS container 30 used in the present embodiment is inclined with respect to the bottom portion 30b, and the holding member 82 holds the bottom portion 30b of the PBS container 30 in an inclined state. Yes.
  • the corner part of the bottom part 30b and the side part adjacent to the bottom part 30b is located directly below the mouth part 30a, and the pipette 23 is inserted into the mouth part 30a from directly above, the tip of the pipette 23 is It is located at the corner.
  • the culture medium container 29A has a prismatic shape, a mouth is formed on the top thereof, and the holding member 82 for holding the culture medium container 29A is in a state where the bottom of the culture medium container 29A is oriented horizontally. It comes to hold.
  • the first container holding means 72A holds a medium container 29 for storing the adjusted medium, and the medium container 29 also has a cylindrical shape with a mouth portion provided at the top, and the bottom is horizontal. It is supposed to be retained.
  • the moving means 83 includes an elevating mechanism 84 that elevates and lowers the holding member 82 and a rotating mechanism 85 that rotates the holding member 82 in the horizontal direction, and elevates and lowers the PBS container 30 held by the holding member 82. At the same time, it is designed to turn laterally.
  • the elevating mechanism 84 includes a columnar support column 84a penetrating the working chamber 2a up and down, an elevating member 84b provided with the holding member 82 fixed and movable up and down along the support column 84a, The slide mechanism 84c moves up and down the lift member 84b.
  • the elevating member 84b is provided with a connecting rod 84d downward, and the slide mechanism 84c moves the elevating member 84b up and down via the connecting rod 84d.
  • the rotating mechanism 85 includes a servo motor 85a provided in a space 2c below the floor 2b of the work chamber 2a, a pulley 85b provided on the connecting rod 84d, and a belt 85c stretched therebetween. It is configured.
  • the servo motor 85a drives the pulley 85b
  • the connecting rod 84d rotates
  • the lifting member 84b rotates with respect to the support column 84a
  • the holding member 82 rotates in the horizontal direction.
  • a ball link 85d is provided at a connection portion between the lower end portion of the connecting rod 84d and the slide mechanism 84c so as to allow the connecting rod 84d to rotate.
  • FIG. 10 shows the aspirator 73, a suction pipe 86 to which the aspirator nozzle 24 is attached at the tip, a rotating means 87 for rotatably holding the suction pipe 86, and a tube 88 connected to the suction pipe 86.
  • the two waste liquid bottles 89A and 89B provided in the middle of the tube 88, the switching means 90 for switching the flow path to the two waste liquid bottles 89A and 89B, and the suction means for generating a negative pressure in the aspirator nozzle 24 91.
  • the aspirator nozzle 24 is replaceably provided at the tip of the suction pipe 86, and the aspirator nozzle 24 is replaced by an operator wearing the placement glove 40b. It may be exchanged by a robot.
  • the rotating means 87 changes the inclination of the aspirator nozzle 24 attached to the suction tube 86. For example, when discharging the liquid in the centrifuge tube 22, the centrifuge tube 22 is directed in the vertical direction. When the aspirator nozzle 24 is used in the vertical direction and the liquid in the dish 21 is discharged, the dish 21 is inclined to position the liquid downward, and the aspirator nozzle is adjusted to this inclination. 24 is inclined.
  • the waste liquid bottles 89A and 89B are provided in a space 2c below the floor 2b of the work chamber 2a, and a tube 88A communicating with the suction pipe 86 and a tube 88B communicating with the suction means 91 are respectively provided in the upper part thereof. It is connected. With this configuration, when the suction means 91 generates a negative pressure suction force, a negative pressure acts on the aspirator nozzle 24 via the waste liquid bottles 89A and 89B, and the liquid sucked by the aspirator nozzle 24 becomes a waste liquid bottle. 89A and 89B are collected.
  • the suction means 91 generates a negative pressure at all times while the automatic culture operation device 1 is operating, and thereby, by constantly sucking the air in the working chamber 2a of the isolator 2, the waste liquid bottle The liquid from 89A and 89B and the air in the external space are prevented from flowing into the working chamber 2a.
  • Each of the tubes 88 is bifurcated and connected to two waste liquid bottles 89A and 89B, and the switching means 90 is provided at the branched portions.
  • the switching means 90 is configured to communicate either the waste liquid bottle 89A or the waste liquid bottle 89B with the suction pipe 86 and the suction means 91 by switching the flow path of the branched tube 88.
  • the control means 5 controls the switching means 90 to switch the flow path to the other waste liquid bottle 89B, and collects the waste liquid in the waste liquid bottle 89B.
  • the full waste liquid bottle 89A can be replaced with an empty waste liquid bottle.
  • the first to fourth lid holding means 74A to 74D adsorb and hold the cover 21a of the dish 21, the centrifuge tube 22 and the cover cap 26 of the liquid containers 29 to 31 by the adsorption head 74a provided at the lower end portion. It has become.
  • the first and second lid holding means 74A and 74B provided above the first and second container holding means 72A and 72B are the medium container 29 and the first container holding means 72A and 72B,
  • the cover cap 26 of the PBS container 30 (medium container 29A) is temporarily held.
  • the third lid holding means 74C temporarily holds the cover 21a and the cover cap 26 attached to the dish 21 and the centrifuge tube 22 held by the first robot 6.
  • the fourth lid holding means 74D temporarily holds the cover 21a and the cover cap 26 attached to the dish 21 and the centrifuge tube 22 held by the second robot 7.
  • the pipette 23 and the centrifuge tube 22 that are no longer necessary in the culture operation are discarded.
  • the movable range of the first robot 6 and the loading / unloading gloves 40a are disposed. It is provided within the work range.
  • the disposal box 77 is formed with two disposal spaces 77a and 77b at the front and rear, and disposal bags are set in advance in the disposal spaces 77a and 77b.
  • the pipette disposal space 77a on the first robot 6 side is a vertically long space, in which the pipette 23 is discarded, and the centrifuge tube 22 and the dish 21 are disposed in the other container disposal space 77b on the wall surface side of the isolator 2.
  • the elongated pipettes 23 can be aligned in the pipette disposal space 77a in the vertical direction, and the volume of waste can be reduced as compared with the case where the pipettes 23 are disposed in the same space as the centrifuge tube 22 and the dish 21. It can be made smaller.
  • a holding member 77A for holding the empty centrifuge tube 22 at an angle is provided at a position adjacent to the pipette disposal space 77a in the disposal box 77, and an empty far end held by the holding member 77A.
  • a used pipette 23 is accommodated in the settling tube 22.
  • the holding member 77A holds the centrifuge tube 22 obliquely toward the upper side of the pipette waste space 77a, and the upper end portion of the pipette 23 protrudes above the waste box 77. As a result, the pipette 23 is positioned in the centrifuge tube 22 and can be held by the robot.
  • the first robot 6 is equipped with the pipette 23 before the culture operation is performed in the automatic culture operation apparatus 1 in the first to third liquid supply / discharge means 71A to 71C.
  • the pipette 23 carried into the isolator 2 from the pass box 3 is accommodated in the pipette holder 75 with the tip portion facing upward by an operator wearing the carrying-in / out glove 40a.
  • the first robot 6 takes out the pipette 23 from the pipette holder 75, the first robot 6 rotates it 180 ° and directs the tip portion downward, and in that state, moves to the first to third liquid supply / discharge means 71A to 71C.
  • the pipette 23 may be rotated by 90 ° while the pipette 23 is directly transferred between the first robot 6 and the second robot 7.
  • the elevating means 80 positions the gripper 80a in the lowered position, and in this state, the first robot 6 moves the pipette 23 to the gripper 80a. Hand over.
  • the elevating means 80 raises the gripper 80a together with the pipette 23, and the upper end portion of the pipette 23 is brought into close contact with the connecting portion 79 from below, whereby the pipette 23 communicates with the supply / discharge means 81, and the pipette 23 It will be held by the two liquid supply / discharge means 71B.
  • the pipette 23 is also attached to the first and third dispensing means 71A and 71C.
  • a method of directly measuring the liquid level from the mouth of the culture medium container 29 using a commercially available sensor is conceivable.
  • a predetermined amount of medium is sucked into the pipette 23 of the first liquid supply / discharge means 71A.
  • the first container holding means 72A moves the culture medium container 29 to the first lid holding means 74A adjacent to the first liquid supply / discharge means 71A, and holds the cover cap 26 by suction.
  • the first container holding means 72A moves the medium container 29 to the first liquid supply / discharge means 71A, and inserts the pipette 23 into the medium container 29.
  • the supply / discharge means 81 is activated and a predetermined amount of medium is sucked into the pipette 23.
  • the control means 5 controls the moving means 83 of the first container holding means 72A to The relative height of the medium container 29 with the liquid level of the medium is adjusted. Specifically, the insertion amount of the pipette 23 inserted into the medium of the medium container 29 is set to a minimum depth, and the first liquid supply / discharge unit 71A sucks the medium of the medium container 29 to obtain the liquid level.
  • the control means 5 controls the moving means 83 to raise the medium container 29 according to the decrease in the liquid level.
  • the first container holding means 72A moves the culture medium container 29 to the first lid holding means 74A to attach the cover cap 26, and then lowers the culture medium container 29 to the lowered position.
  • the second robot 7 When a predetermined amount of medium is sucked into the pipette 23 of the first liquid supply / discharge means 71A in this way, an operation of discharging the medium to, for example, the centrifuge tube 22 held by the second robot 7 is performed. Specifically, the second robot 7 is activated to take out the centrifuge tube 22 from the centrifuge tube holder 43 and move it to the fourth lid holding means 74D adjacent to the second robot 7 to hold the cover cap 26. . Then, when the second robot 7 positions the centrifuge tube 22 below the pipette 23 of the first liquid supply / discharge means 71A, the control means 5 controls the supply / discharge means 81 so that the medium contained in the pipette 23 is stored.
  • a predetermined amount is discharged to the centrifuge tube 22.
  • the control means 5 stores the amount of liquid stored in the centrifuge tube 22, and the second robot 7 determines the relative height between the pipette 23 and the held centrifuge tube 22. It comes to adjust.
  • the second robot 7 positions the centrifuge tube 22 so that the tip of the pipette 23 is positioned slightly above the liquid level of the liquid. Let Then, when the medium is discharged from the pipette 23 and the liquid level rises, the second robot 7 lowers the centrifuge tube 22 as the liquid level rises, and the pipette 23 moves the liquid in the centrifuge tube 22 to the liquid.
  • the second robot 7 moves the centrifuge tube 22 to the fourth lid holding means 74D and attaches the cover cap 26 to the centrifuge tube 22. .
  • the first liquid supply / discharge means 71A contains the medium stored in the medium container 29 of the first container holding means 72A, and the second liquid supply / discharge means 71B receives the PBS stored in the PBS container 30 of the second container holding means 72B.
  • the third liquid supply / discharge means 71C of the present embodiment handles the trypsin accommodated in the trypsin container 31, and creates a suspension composed of a liquid containing a cell and a medium in the centrifuge tube 22, for example. Also used when doing.
  • the second robot 7 holds the trypsin container 31 together with the container holder 76, temporarily holds the cover cap 26 in the fourth lid holding means 74D, Trypsin is sucked in the liquid supply / discharge means 71C. Also at this time, the trypsin liquid level in the trypsin container 31 is registered in the control means 5, so that the trypsin is sucked into the pipette 23 and the liquid surface height is lowered, thereby reducing the trypsin container 31. Is supposed to rise.
  • the used pipette 23 used for the trypsin is replaced with a new pipette 23 when the suspension is prepared. It is supposed to be.
  • the first robot 6 takes out the empty centrifuge tube 22 supported by the holding member 77 provided in the vicinity of the disposal box 77 in advance, and positions it below the pipette 23 of the third liquid supply / discharge means 71C. Then, the lifting / lowering means 80 of the third liquid supply / discharge means 71C lowers the pipette 23 to disengage it from the connecting portion 79, and further releases the held pipette 23, whereby the pipette 23 is held by the first robot 6.
  • the first robot 6 accommodates the centrifuge tube 22 containing the pipette 23 in the holding member 77A, whereby the centrifuge tube 22 and the pipette 23 are inclined. As a result, the pipette 23 is always positioned below the inclined opening of the centrifuge tube 22, and the first robot 6 can reliably hold the pipette 23.
  • the pipette 23 is rotated so that the pipette 23 faces in the vertical direction, and is further positioned above the pipette disposal space 77 a in the disposal box 77. Drop it.
  • the inspection means 11 is arranged within the movable range of the second robot 7, and as shown in FIG. 12, the imaging means 11a provided above and below the narrow observation space 11S vertically projecting outward from the back side of the isolator 2, and It is comprised from the illumination means 11b.
  • the observation space 11S communicates with the work chamber 2a of the isolator 2, and light transmission members such as glass are provided on the upper surface and the lower surface of the observation space 11S.
  • the observation plate 25 held by the second robot 7 is used for the observation. It is inserted into the space 11S.
  • the imaging means 11a is provided above the observation space 11S, and the illumination means 11b is provided below the observation space 11S.
  • the light of the illumination means 11b is transmitted through the light transmitting member and the plate 25a of the observation plate 25.
  • the imaging means 11a captures an enlarged image of the cells on the plate 25a.
  • the image taken by the imaging means 11a is image-processed by the control means 5, and for example, the number of surviving cells in the observation range and the number of dead cells are counted, from which the cell survival rate is calculated. It is calculated.
  • the dish 21 placed on the attachment 33 can be inserted into the observation space 11S, and the occupancy of the cells in the mixture of cells and culture accommodated in the dish 21 can be obtained by image processing.
  • the robot holds the culture medium sucked from the culture medium container 29 by the first liquid supply / discharge means 71 A constituting the culture medium supply means. It supplies to the new empty dish 21 as a culture container.
  • the third liquid supply / discharge means 71C constituting the distribution means sucks the suspension of the cells and the medium from the centrifuge tube 22 as the first culture container, and the plurality of second liquids transferred by the robot are transferred to the suspension.
  • the cells are distributed to a new dish 21 by dispensing into the dish 21 as a culture container.
  • the amount of culture medium newly required for the current passage work is obtained, and the number of new dishes 21 to be distributed is determined based on this amount.
  • the determination means for performing the determination is provided in the control means 5.
  • the determination means determines whether or not the survival rate exceeds a predetermined threshold value when the number of viable cells is counted in the inspection means 11, and is used when the threshold value is not exceeded.
  • a standard amount is selected as the amount of the medium, and the above passage operation is performed in a standard passage mode in which cells are passaged to a predetermined number of dishes 21 associated therewith.
  • the determination means selects the medium amount larger than the standard, and the passage work in the excellent passage mode in which cells are passaged to a larger number of dishes 21 than the standard passage mode associated therewith. Is supposed to be executed. For example, when the cells stored in one centrifuge tube 22 in the standard passage mode are passaged to 10 new dishes 21, the cells are passaged to 15 dishes 21 in the excellent passage mode. It is like that. Since the cell inspection is performed by extracting a part of the cultured cells, the required amount of medium is calculated by multiplying the obtained survival number by a predetermined coefficient. Alternatively, the number of dishes 21 may be obtained by dividing the calculated amount of medium to be distributed by the amount of medium accommodated per dish 21.
  • the inspection means 11 and the determination means can be used not only to determine the number of dishes 21 to be cultured in the passage work but also to determine whether or not to perform the passage operation.
  • the second robot 7 takes out the dish 21 from the incubator 4 at a predetermined interval, for example, a predetermined time every morning, and moves the cells along with the dish 21 to the inspection means 11. Then, the imaging means 11a of the inspection means 11 photographs the cells in the dish 21 and measures the occupation ratio of the cells in the image. If it is determined that the above-mentioned passaging operation is performed, it is determined.
  • a reagent supply means 101 for supplying the trypan blue to the observation plate 25, and a micropipette nozzle for the micropipette 34 used for supplying the cells and trypan blue to the observation plate 25 are provided in the working chamber 2a.
  • Nozzle exchanging means 102 for exchanging 35 is provided, and these operations are automatically performed.
  • the reagent supply means 101 is provided in a casing 45 a that houses a camera 45, and is provided in a movable range of the first and second robots 6 and 7.
  • a holding means 103 for holding the micropipette 34 is fixed to the casing 45a, and a centrifuge tube 22 for discarding the micropipette nozzle 35 is disposed below the held micropipette 34.
  • a reagent container holder 104 that holds the reagent container 32 is provided in the vicinity of the casing 45a.
  • a holding member 36 mounted on the micropipette 34 is placed on the upper surface of the holding means 103, and a positioning (not shown) that fits into two positioning holes 36b provided in the holding member 36. Pins are provided.
  • the centrifuge tube 22 for discarding the micropipette nozzle 35 is adapted to collect the dropped micropipette nozzle 35 when the eject button 34c of the micropipette 34 is operated. Is disposed in the disposal box 77 together with the centrifuge tube 22.
  • the nozzle replacement means 102 is provided in a position adjacent to the rotary stocker 8 and is provided in the movable range of the first robot 6. As shown in FIG. 14, the nozzle replacement means 102 includes a holding means 103A having the same configuration as the holding means 103 of the reagent supply means 101, and a micropipette nozzle 35 provided below the holding means 103A. And mounting means 105 for mounting to the tip tube 34a.
  • the mounting means 105 includes a holding member 105a having a through hole for holding the micropipette nozzle 35, and an elevating means 105b such as an air cylinder for raising and lowering the holding member 105a.
  • the micropipette 34 is used as follows. First, the first robot 6 holds the micropipette nozzle 35 from the sample container support table 55 of the rotary stocker 8, moves it to the nozzle replacement means 102, and holds it on the holding member 105 a of the mounting means 105. Subsequently, the first robot 6 holds the micropipette 34 from the sample container support table 55 and holds it on the holding means 103 ⁇ / b> A of the nozzle changing means 102.
  • the holding member 105a of the mounting means 105 is positioned at the lowered position by the lifting / lowering means 105b, and the micropipette nozzle 35 is firmly attached to the tip tube 34a by raising the holding member 105a from this state. It is like that.
  • the first robot 6 presses the micropipette 34 from above so that the micropipette 34 does not fall off the holding means 103.
  • the first robot 6 moves the micropipette 34 to the reagent supply means 101.
  • the second robot 7 moves the centrifuge tube 22 in which the suspension containing the cells is stored, below the micropipette 34 in the reagent supply means 101.
  • the first robot 6 operates the suction button 34 b of the micropipette 34 to suck a small amount of suspension into the micropipette 34.
  • the second robot 7 positions the observation plate 25 below the micropipette 34, and when the first robot 6 operates the suction button 34b again, a predetermined amount of suspension is discharged onto the observation plate 25.
  • the second robot 7 places the observation plate 25 on which the cells are placed on the delivery table 42, and the first robot 6 operates the eject button 34 c of the micropipette 34 to move the attached micropipette nozzle 35. Drop into the centrifuge tube 22.
  • the first robot 6 moves the micropipette 34 to the nozzle replacement means 102, attaches a new micropipette nozzle 35, and reattaches the micropipette 34 attached with the new micropipette nozzle 35 to the reagent supply means.
  • the second robot 7 holds the reagent container 32 from the reagent container holder 104 and moves it to the reagent supply means 101, and the first robot 6 operates the micropipette 34 to suck a predetermined amount of reagent.
  • the second robot 7 moves the observation plate 25 below the micropipette 34, and the first robot 6 operates the micropipette 34 to supply the reagent to the cells of the observation plate 25.
  • the second robot 7 moves the observation plate 25 to the observation means 11 and observes the cells.
  • the first robot 6 operates the micropipette 34, collects the used micropipette nozzle 35 in the centrifuge tube 22, and moves the micropipette 34 to the nozzle replacement means 102.
  • the automatic culture operation device 1 includes the incubator 4 and is configured as a culture device for culturing a culture object. Further, the incubator 4 is movably provided by a carriage 4a shown in FIG. 2 and can culture cells at a position separated from the isolator 2. Further, inside the incubator 4 are provided a rack (not shown) that accommodates a predetermined number of dishes 21, and a transport means 4 b that takes out the predetermined dishes 21 from the rack and transfers them to the loading / unloading means 12 in the isolator 2. .
  • the conveying means 4b includes a holding portion 4c having the same shape as the holding portion 33b of the attachment 33, and the dish 21 is accommodated at a required position of the rack by raising and lowering the holding portion 4c. Yes.
  • first and second communication ports 2dA and 2dB are formed at positions where the two incubators 4 on the side surface of the isolator 2 are connected, and these first and second communication ports 2dA are formed.
  • 2 dB is opened and closed by an isolator-side shutter 112 as a communication port opening and closing member.
  • a carry-in / out entrance portion 4d is formed on the side surface of the incubator 4, and the carry-in / out entrance portion 4d is opened and closed by an incubator-side shutter 113 as a carry-in / out entrance opening / closing member.
  • the connecting means 111 connected to the first communication port portion 2dA will be described with reference to FIG. 15.
  • the connection means 111 surrounds the periphery of the communication port portion 2dA of the isolator 2 and the carry-in / out port portion 4d of the incubator 4.
  • the cylindrical connecting member 114 is provided in a state where the side surface of the isolator 2 and the side surface of the incubator 4 are kept airtight, and the connection mechanism 115 that maintains the isolator 2 and the incubator 4 in a connected state.
  • the communication port 2dA of the isolator 2 is provided with an annular hollow sealing member 116, and the isolator-side shutter 112 is guided by a guide rail 112b by an air cylinder 112a as a driving means so as to be able to move up and down.
  • the incubator side shutter 113 is guided by the guide rail 118 by the driving force of the opening / closing motor 117 as a driving means to move up and down to open / close the carry-in / out entrance 4d of the incubator 4, and the lock motor 119 maintains the raised state. It is like that.
  • the incubator-side shutter 113 is positioned at the height of the carry-in / out entrance portion 4d, if air is supplied to the annular hollow seal member 120 provided in the carry-out / out entrance portion 4d to expand it, the incubator-side shutter 113 comes into close contact with the incubator-side shutter 113 It is designed to be sealed.
  • the rotation shaft of the opening / closing motor 117 passes through the side wall of the incubator 4, and an arm 121 having a substantially U-shaped first recess 121 a is provided at the tip of the rotation shaft.
  • the first recess 121a engages with a first protrusion 113a provided below the side portion of the incubator-side shutter 113, and between the closed state shown in FIG. 16A and the open state shown in FIG.
  • the opening / closing motor 117 swings the arm 121 up and down, presses the first projection 113a in conjunction with the first recess 121a, and moves the incubator-side shutter 113 up and down.
  • the rotating shaft of the locking motor 119 also passes through the side wall of the incubator 4, and a substantially U-shaped second recess 122 a is formed in the rotating body 122 rotated by the rotating shaft.
  • a second protrusion 113b that engages with the second recess 122a is formed on the side of the incubator-side shutter 113.
  • the second recess 122a is directed in the lateral direction by the locking motor 119, thereby preventing the second protrusion 113b from moving in the vertical direction. It is designed to maintain a closed state.
  • the locking motor 119 directs the second recess 122a downward and allows the second protrusion 113b to move downward, so that the incubator-side shutter 113 can be opened.
  • the communication port 2d of the isolator 2 and the carry-in / out port 4d of the incubator 4 employ a shutter that is opened and closed with a driving means as an opening and closing member, it is possible to cope with automation and at the time of opening. There is no interference with the movement of the second robot 7 and the loading / unloading means 12.
  • the connecting member 114 is a cylindrical member that is fixed to the side surface of the isolator 2 and is provided so as to surround each of the first and second communication ports 2dA and 2dB of the isolator 2.
  • An annular seal member 123 is provided at the tip, and the periphery of the outer wall side of the carry-in / out port portion 4d of the incubator 4 is enclosed and sealed. Thereby, a decontamination space S isolated from the external atmosphere is formed between the isolator 2 and the incubator 4 connected by the connecting member 114.
  • the connection mechanism 115 includes four engagement pins 115a provided on the side surface of the isolator 2, four engagement hooks 115b provided on the side surface of the incubator 4 and engaged with the engagement pin 115a, It is composed of an air cylinder 115c for retracting and retracting the pin 115a.
  • the engaging pin 115a is protruded, and all the engaging pins 115a are engaged with the engaging hooks 115b, whereby the incubator 4 is connected and held to the isolator 2, and is sealed inside the connecting member 114.
  • a decontamination space S is formed.
  • the decontamination gas is supplied from the decontamination gas supply unit 38 to the connection member 114 of each connection unit 111 corresponding to the first and second communication ports 2dA and 2dB via the supply passage 124. It has become.
  • the supply passage 124 is branched into a passage 124A connected to the connection member 114 provided in the first communication port 2dA and a passage 124B connected to the connection member 114 provided in the second communication port 2dB. Is provided with an on-off valve 125 controlled by the control means 5, thereby constituting a switching means for supplying a decontamination gas to one of the connection means 111.
  • the decontamination space S formed by the connecting member 114 is filled with the decontamination gas, and the external atmosphere
  • the surfaces of the isolator-side shutter 112 and the incubator-side shutter 113 that have been exposed to the surface can be decontaminated.
  • the decontamination gas in the decontamination space S opens the opening / closing valve 127 of the discharge passage 126 provided in each connecting member 114 and the decontamination gas.
  • the decontamination gas in the space S is rendered harmless by the catalyst 128 and discharged, and then aeration is performed by flowing aseptic air over a predetermined time. Such decontamination with the decontamination gas is performed when the incubator 4 is connected and disconnected.
  • the connecting member 114 forms a narrow decontamination space S that surrounds the first and second communication ports 2dA and 2dB of the isolator 2 and the carry-in / out port 4d of the incubator 4. Since the decontamination is performed with the dye gas, the decontamination can be performed in a shorter time compared with the case of decontaminating a large volume space.
  • the carry-in / out means 12 for delivering the dish 21 between the isolator 2 and the incubator 4 is provided in the vicinity of the two communication ports 2dA and 2dB.
  • the carry-in / out means 12 includes a dish placing portion 12a for placing the dish 21 and a moving means 12b for moving the dish placing portion 12a in the horizontal direction.
  • the dish mounting portion 12a has the same shape as the dish mounting portion 60 of the dish mounting table 53 in the rotary stocker 8, and the moving means 12b allows the inside of the incubator 4 to be within the working range of the second robot 7. It is designed to reciprocate between.
  • the dish mounting portion 60 When the dish mounting portion 60 is positioned on the second robot 7 side by the moving means 12b, the dish 21 is transferred via the attachment 33 held by the second robot 7, and the position is determined by the second robot 7. The dish 21 is brought into and out of the incubator 4. When the dish placing portion 60 is located inside the incubator 4, the dish 21 is transferred to and from the transport means 4 b of the incubator 4.
  • the operation of the automatic culture operation device 1 having the above configuration will be described.
  • the instruments and containers Prior to performing the culture operation using the first and second robots 6 and 7, the instruments and containers are carried into the isolator 2 from the pass box 3, and the instruments and containers are put into a predetermined position.
  • the preparatory work for placement is performed manually by the operator.
  • the operator opens the external opening / closing door 3a of the pass box 3, hangs the packaging bag B containing the instruments and containers on the hook 3b in the pass box 3, and decontaminates the outer surface of the packaging bag B. Decontamination is performed by the decontamination gas of the gas supply means 38.
  • An operator wears the carrying-in / out glove 40 a provided in the isolator 2 and the pass box 3, and carries the packaging bag B in the pass box 3 into the work chamber 2 a of the isolator 2.
  • the operator manually rotates the tables 52 to 55 with the switching means of the rotary stocker 8 in the non-transmitting state, and stores the dish 21 and the centrifuge tube 22 in the tables 52 to 55, and also the pipette 23. Is placed on the pipette holder 75. Further, the operator places the aspirator nozzle 24 on the moving table 41 and discards the packaging bag B after taking out the instruments and containers in the disposal box 77.
  • the operator carries the sample container 28 and liquids into the pass box 3 from the external opening / closing door 3a of the pass box 3, and further mounts the carrying-in / out glove 40a to accommodate these sample containers 28 and liquids. Wipe the liquid containers 29 to 32 with the disinfectant. Subsequently, the operator opens the door 39 and carries the liquids into the isolator 2. Specifically, the sample container 28 and the reagent container 32 are accommodated in the rotary table 8, and the medium container 29 and PBS container are stored. 30 and the trypsin container 31 are placed on the moving table 41, respectively.
  • the operator replaces the screw caps attached to the centrifuge tube 22, the sample container 28, and the liquid containers 29 to 32 with a cover cap 26 that does not require a rotating operation.
  • the operator manually moves the moving table 41 to the front of the liquid supply means 10
  • the operator further attaches the placement glove 40 b and attaches the aspirator nozzle 24 on the moving table 41 to the aspirator 73.
  • the liquid containers 29 to 31 are arranged at predetermined positions.
  • the attachment 33 and the micropipette 34 are placed on the isolator 2 in advance, but they may be accommodated in the packaging bag B and carried in from the outside each time a culture operation is performed.
  • the above-described equipment, containers, and liquids are carried in and placed in a complicated manner by the operation of the robot, they are quickly performed by the operator.
  • control means 5 When these preparatory operations are completed, the control means 5 enables automatic culture operations by the first and second robots 6 and 7, the liquid supply means 10 and the like, but before each culture operation, The following operations are performed under the control of the control means 5.
  • the control means 5 controls the first robot 6 to attach the pipette 23 placed on the pipette holder 75 to the first to third liquid supply / discharge means 71A to 71C of the liquid supply means 10, respectively.
  • the control means 5 performs an operation for returning the switching means 58 of the rotary lister 8 to the transmission state.
  • the pulley 62 when the pulley 62 is rotated by the driving means 57 and the switching means 58 remains in the non-transmitting state by the preparation work, the pulley 62 is relatively moved with respect to the connecting member 61.
  • the pulley 62 further rotates after that, the ball 63 is fitted into the recess 62a of the pulley, and the connecting member 61 moves upward to be in the transmission state.
  • the control means 5 further rotates the rotating shaft 51 by the driving means 57, recognizes the detection piece 59a provided on the rotating shaft 51 by the rotational position sensor 59, and The containers and instruments placed on the tables 52 to 55 by the operator are recognized by the instrument sensor 57.
  • the control means 5 recognizes the rotational positions of the tables 52 to 55 and stores the positions and presence / absence of the instruments and containers placed on the tables 52 to 55.
  • the above culturing operation seeding operation for accommodating cells in a culture container together with culture medium, medium replacement operation for replacing an old medium, subculture operation for distributing cells in one culture container to a plurality of new culture containers, culture A recovery operation for recovering the completed cells will be described.
  • the operations of the first and second robots 6 and 7 and the liquid supply unit 10 in the culture operation are performed according to the operations registered in the control unit 5 in advance.
  • the following operations are merely examples and different operations. It goes without saying that the culturing operation can be performed according to the order, and operations other than those described above can be performed.
  • FIG. 17 shows a flow of the seeding operation.
  • a dish 21 and a centrifuge tube 22 are used as containers, a pipette 23 is used as equipment, an aspirator nozzle 24 is used as a liquid, a medium container 29, A PBS container 30 and a reagent container 32 are carried in, respectively.
  • a sample container 28 containing cells is carried in.
  • an operation of dispensing the cells in the specimen container 28 into the plurality of centrifuge tubes 22 is performed (A-1).
  • the first robot 6 takes out the sample container 28 from the rotary stocker 8, moves it to the third liquid supply / discharge means 71C of the liquid supply means 10, and sucks the liquid containing the cells in the sample container 28 into the pipette 23.
  • the first robot 6 discards the empty sample container 28 in the disposal box 77, then takes out the empty centrifuge tube 22 from the rotary stocker 8, moves it to the third liquid supply / discharge means 71C, and pipettes it.
  • a predetermined amount of cells is dispensed from 23 into the centrifuge tube 22.
  • the first robot 6 supports the centrifuge tube 22 into which the cells have been dispensed by the centrifuge tube holder 43.
  • PBS is dispensed into the centrifuge tube 22 (A-2).
  • the second liquid supply / discharge means 71B and the second container holding means 72B of the liquid supply means 10 are operated to suck a predetermined amount of PBS into the pipette 23.
  • the first robot 6 takes out the centrifuge tube 22 supported by the centrifuge tube holder 43, moves it to the second liquid supply / discharge means 71B, and discharges a predetermined amount of PBS from the pipette 23 to the centrifuge tube 22. To do.
  • the first robot 6 causes the centrifuge tube holder 43 to again support the centrifuge tube 22 into which PBS has been dispensed.
  • the second robot 7 takes out the centrifuge tube 22 supported by the centrifuge tube holder 43 and stores it in the centrifuge 9. At this time, the second robot 7 and the liquid supply unit 10 remove the counterweight from the new centrifuge tube 22. Create Subsequently, the centrifugal separator 9 is operated, whereby the liquid in the centrifuge tube 22 is separated into a liquid containing cells below and an upper supernatant.
  • the second robot 7 takes out the centrifuge tube 22 from the centrifuge 9 and moves it to the aspirator 73.
  • the aspirator 73 sucks and removes the supernatant of the centrifuge tube 22. Then, the second robot 7 supports the centrifuge tube 22 from which the supernatant is removed by the centrifuge tube holder 43.
  • the cells in the centrifuge tube 22 are inspected (A-4).
  • the first liquid supply / discharge means 71A and the first container holding means 72A of the liquid supply means 10 are operated to suck a predetermined amount of medium into the pipette 23.
  • the first robot 6 takes out the centrifuge tube 22 of the centrifuge tube holder 43, moves it to the first liquid supply / discharge means 71A, and discharges a predetermined amount of medium from the pipette 23 to the centrifuge tube 22.
  • the first robot 6 causes the centrifuge tube holder 43 to support the centrifuge tube 22 into which the medium has been dispensed.
  • the observation plate 25 is held by the first and second robots 6 and 7, and the inspection means 11 inspects some of the cells in the centrifuge tube 22 based on the procedure described above.
  • the centrifuge tube 22 from which some cells have been collected for examination is again supported by the centrifuge tube holder 43.
  • a suspension of medium and cells is prepared and transferred to the dish 21 (A-5).
  • the first robot 6 replaces the pipette 23 of the third liquid supply / discharge means 71C used when sucking the liquid containing cells from the specimen container 28 in the operation B-1 with a new pipette 23 accommodated in the pipette holder 75.
  • the used pipette 23 is discarded in the disposal box 77.
  • the second robot 7 takes out the centrifuge tube 22 of the centrifuge tube holder 43, moves it to the third liquid supply / discharge means 71C, and repeats suction and discharge of the liquid in the centrifuge tube 22 to the pipette 23 to create a suspension. This is further sucked into the pipette 23.
  • the second robot 7 delivers the empty centrifuge tube 22 to the first robot 6 through the centrifuge tube holder 43 and discards it in the disposal box 77.
  • the first robot 6 takes out a new empty dish 21 from the rotary stocker 8 by using the attachment 33, moves it to the third liquid supply / discharge means 71C, and from the pipette 23 to the dish 21 the suspension. Discharge the liquid.
  • the first robot 6 places the dish 21 into which the suspension has been dispensed together with the attachment 33 on the delivery table 42.
  • the work of carrying the dish 21 into which the suspension has been dispensed into the incubator 4 is performed (A-6).
  • the second robot 7 holds the dish 21 placed on the delivery table 42 together with the attachment 33, and places the dish 21 on the loading / unloading means 12.
  • the carry-in / out means 12 moves the dish 21 into the incubator 4 and delivers it to the transport means 4 b of the incubator 4.
  • the suspension sucked into the third liquid supply / discharge means 71C is dispensed into the plurality of dishes 21, and for this reason, By repeating the above operations A-5 and A-6, a predetermined number of dishes 21 are accommodated in the incubator 4.
  • FIG. 18 shows the flow of medium exchange work.
  • a dish 21 containing cultured cells is stored in the incubator 4 connected to the isolator 2, and a pipette 23 and an aspirator nozzle 24 are loaded into the isolator 2 as instruments.
  • the medium container 29 is carried in as liquids in advance.
  • the work of taking out the dish 21 in the incubator 4 is performed (B-1).
  • the incubator-side shutter 113 and the isolator-side shutter 112 are opened, and the carry-in / out means 12 moves the dish mounting portion 12 a into the incubator 4.
  • the carry-in / out means 12 receives the dish 21 from the transport means 4 b in the incubator 4
  • the carry-in / out means 12 moves the dish 21 into the isolator 2, and the second robot 7 receives the dish 21.
  • an operation of replacing the old medium in the dish 21 with a new medium is performed (B-2).
  • the second robot 7 holding the dish 21 moves the dish 21 to the aspirator 73 and sucks and removes the old medium in the dish 21 by the aspirator 73.
  • the first liquid supply / discharge means 71A and the first container holding means 72A in the liquid supply means 10 are operated, and the pipette 23 sucks a predetermined amount of medium.
  • the second robot 7 moves the dish 21 from which the spent medium has been removed to the first liquid supply / discharge means 71A, discharges a predetermined amount of medium from the pipette 23 to the dish 21, and the replacement of the medium is completed. To do.
  • the dish 21 is carried into the incubator 4 (B-3).
  • the second robot 7 delivers the dish 21 to the dish mounting portion 12a of the carry-in / out means 12 positioned at the delivery position of the movable range, and the carry-in / out means 12 moves the dish 21 into the incubator 4 to incubate the incubator 4.
  • the transfer means 4b accommodates the dish 21 in a predetermined rack.
  • the control means 5 repeats the above operations B-1 to B-3 for all the dishes 21 in the incubator 4, and exchanges the medium of all the dishes 21.
  • FIG. 19 shows a flow of subculture work.
  • a dish 21 containing cells is accommodated in the incubator 4 connected to the isolator 2, and the isolator 2 contains the dish 21, centrifuge tube 22, instrument and the like.
  • a pipette 23 and an aspirator nozzle 24 are carried in as a kind, and a medium container 29, a trypsin container 31 and a reagent container 32 are carried in as liquids.
  • the work of carrying out the dish 21 in the incubator 4 (C-1) and the work of removing the old medium from the dish 21 (C-2), these operations are the medium exchange work B-1, B Since this is the same operation as -2, detailed description is omitted.
  • the dish 21 from which the medium has been removed is placed on the delivery table 42 together with the attachment 33.
  • the second robot 7 takes out the trypsin container 31 together with the container holder 76, moves it to the second liquid supply / discharge means 71 ⁇ / b> B, and sucks trypsin into the pipette 23. Since PBS is not used in this passage work, trypsin can be sucked into the second liquid supply / discharge means 71B in this work. Thereafter, the first robot 6 holds the dish 21 on the delivery table 42 and moves it to the second liquid supply / discharge means 71B, and the second liquid supply / discharge means 71B discharges the trypsin of the pipette 23 to the dish 21. To do. Then, the first robot 6 stores the dish 21 into which trypsin has been dispensed together with the attachment 33 in the heating chamber 44, and the heating chamber 44 heats the dish 21 to a predetermined temperature.
  • the second robot 7 takes out the dish 21 heated to a predetermined temperature from the heating chamber 44. At that time, the second robot 7 moves the dish 21 to the tapping means 46 of the heating chamber 44, and the tapping means 46 vibrates the dish 21 to peel off the cells attached to the bottom of the dish 21. Subsequently, the second robot 7 moves the dish 21 to the third liquid supply / discharge means 71C, and repeatedly sucks and discharges the cells and trypsin in the dish 21 with the pipette 23 to create a suspension. Is sucked into the pipette 23.
  • the second robot 7 delivers the empty dish 21 to the first robot 6 and discards it in the disposal box 77.
  • the first robot 6 holds the empty centrifuge tube 22 from the rotary stocker 8, moves it to the third liquid supply / discharge means 71 ⁇ / b> C, and discharges the suspension from the pipette 23 to the centrifuge tube 22.
  • the second robot 7 repeats the above operation on the dish 21 stored in the heating chamber 44, and the centrifuge tube 22 that holds the suspensions stored in the plurality of dishes 21 by the first robot 6. To aggregate.
  • the first robot 6 supports the centrifuge tube 22 on the centrifuge tube holder 43.
  • the operation of pouring (C-7) and the operation of carrying the dish 21 into the incubator 4 (C-8) are performed. These operations are the same as the operations A-3 to A-6 in the seeding operation.
  • the determination means provided in the control means 5 is used for suspension.
  • the number of dishes 21 to which the liquid is distributed is determined. Specifically, in the inspection work related to C-6, the number of viable cells on the observation plate 25 is measured by the inspection means 11, and the amount of newly required medium is obtained based on the number of viable cells. Based on this, it is determined whether the operation of C-7 is performed in the normal passage mode or the excellent passage mode.
  • the control means 5 removes the suspension containing the cells concentrated in one centrifuge tube 22 as the first culture vessel.
  • the first and second robots 6 and 7 and the liquid supply means 10 are controlled so as to dispense into the dish 21 as ten second culture vessels.
  • the control means 5 controls the first liquid supply / discharge means 71A and the first container holding means 72A, and the pipette 23 of the first liquid supply / discharge means 71A has the medium dispensed into the ten dishes 21. The total amount of is aspirated.
  • the control means 5 distributes the suspension containing the cells contained in the centrifuge tube 22 into, for example, 15 dishes 21. Let me note. Also in this case, the control means 5 controls the first liquid supply / discharge means 71A and the first container holding means 72A, so that the medium to be dispensed into the fifteen dishes 21 is dispensed to the pipette 23 of the first liquid supply / discharge means 71A. The total amount is aspirated. If the entire amount of medium cannot be aspirated at a time, aspiration and discharge can be performed in multiple batches, and the same operation as the number of dishes 21 can be performed for each dish 21.
  • the newly required amount of the medium can be obtained by multiplying the measured number of survival by a predetermined coefficient, and the dish to be distributed from the amount of the medium to be accommodated in one dish 21 with respect to the obtained amount of medium.
  • the number 21 may be obtained.
  • the dishes 21 are accommodated in the other incubators 4.
  • the second incubator 4 is accommodated when the dish 21 is completely accommodated in the first incubator 4. While the incubator 4 and the work chamber 2a are in communication, the decontamination space S of the connecting means 111 of the incubator 4 is immediately decontaminated and detached, and the third incubator 4 is connected.
  • the decontamination space S is decontaminated by the connecting means 111 of the third incubator 4.
  • the dish 21 can be carried in by allowing the third incubator 4 to communicate with the work chamber 2a.
  • the connecting means 111 of the present embodiment since the connecting means 111 of the present embodiment only needs to decontaminate a narrow decontamination space, the first incubator 4 can be quickly detached and the third unit connected. It is possible to perform the subculture work efficiently. Further, by performing decontamination when the incubator 4 is detached, it is possible to prevent the virus specific to the specimen from leaking from the work chamber 2a to the outside. It prevents bacteria and microorganisms from being brought into the work chamber 2a.
  • FIG. 20 shows a flow of recovery work.
  • a dish 21 containing cells is stored in the incubator 4 connected to the isolator 2, and the dish 21, centrifuge tube 22, instrument and the like are stored in the pass box 3.
  • a pipette 23 and an aspirator nozzle 24 are carried in, and liquids, a medium container 29, a trypsin container 31, and a reagent container 32 are carried in, respectively.
  • the operation of carrying out the dish 21 from the incubator 4 (D-1), the operation of removing the medium older than the dish 21 (D-2), the operation of dispensing trypsin into the dish 21 (D-3), The operation of dispensing the suspension into the centrifuge tube 22 (D-4) and the operation of centrifuging the suspension of the centrifuge tube 22 (D-5) are performed. Since these operations are similar to the above-described subculture operations C-1 to C-7, detailed description thereof will be omitted.
  • the centrifugation operation according to D-5 a plurality of centrifuge tubes 22 containing cells from which the supernatant has been removed are obtained, and these are supported by the centrifuge tube holder 43.
  • an operation of concentrating the centrifuged cells into one centrifuge tube 22 is performed (D-6).
  • the medium is sucked into the pipette 23 by the first liquid supply / discharge means 71A and the first container holding means 72A, and the second robot 7 takes out the centrifuge tube 22 of the centrifuge tube holder 43 and removes it.
  • the medium is moved to the means 71A, and the medium is discharged from the pipette 23 to the centrifuge tube 22.
  • the second robot 7 causes the centrifuge tube holder 43 to support the centrifuge tube 22 into which the medium has been dispensed.
  • the first robot 6 replaces the pipette 23 used when removing the medium related to D-2 in the third liquid supply / discharge means 71C in advance with a new pipette 23 accommodated in the pipette holder 75, and has been used.
  • the pipette 23 is discarded in the disposal box 77.
  • the first robot 6 takes out the centrifuge tube 22 into which the medium has been dispensed from the centrifuge tube holder 43, moves it to the third liquid supply / discharge means 71C, and causes the pipette 23 to transfer the culture medium in the centrifuge tube 22 to the medium. Suspension and discharge of cells are repeated to create a suspension, which is sucked into the pipette 23.
  • the first robot 6 discards the used centrifuge tube 22 in the disposal box 77. Subsequently, the first robot 6 takes out the new centrifuge tube 22 from the rotary stocker 8, moves it to the third liquid supply / discharge means 71C, and discharges the suspension from the pipette 23 to the new centrifuge tube 22.
  • the control means 5 creates the suspension for all of the centrifuge tubes 22 supported by the centrifuge tube holder 43 in the operation of D-5, and creates one new suspension held by the first robot 6. The centrifuge tube 22 is collected.
  • the second robot 7 takes out the centrifuge tube 22 containing the suspension from the centrifuge tube holder 43 and stores it in the centrifuge 9.
  • the centrifuge 9 centrifuges the suspension in the centrifuge tube 22. To separate.
  • the second robot 7 takes out the centrifuge tube 22 and moves it to the aspirator 73, and the aspirator 73 removes the supernatant from the centrifuge tube 22.
  • an operation for inspecting the cells in the centrifuge tube 22 from which the supernatant has been removed is performed (D-8). Since the inspection work related to D-8 is the same as the inspection work of C-6 related to the substituting work, detailed description thereof is omitted. Finally, an operation for collecting the cells is performed (D-9).
  • the first robot 6 houses the centrifuge tube 22 in the rotary stocker 8, and the control means 5 stops the operations of the first and second robots 6, 7 and the like. Thereafter, the operator wears a carrying-in / out glove 40 a and carries out the centrifuge tube 22 containing the cells through the pass box 3.
  • a robot is provided in the work chamber 2a of the isolator 2, and the first robot 6 is connected to the rotary cooker 8 by the incubator 4 and the centrifugal separator.
  • a second robot 7 is provided corresponding to each means 9.
  • the containers stored in the rotary stocker 8 are handled by the first robot 6, and the culture vessel is carried in and out of the incubator 4 and the centrifuge tube 9 is handled by the second robot 7.
  • a delivery table 42 as a temporary storage unit
  • a centrifuge tube holder 43, and a heating chamber 44 are provided for delivering containers between them.
  • the first robot 6 and the second robot 7 exchange containers with each other. For this reason, even if one robot is working, for example, the other robot can perform another work by placing containers on the temporary placement unit.
  • a rotary stocker 8 is disposed near the pass box 3 in the work chamber 2a of the isolator 2, and a carrying-in / out glove 40a capable of working on the pass box 3 and the rotary stocker 8 is provided. ing. For this reason, when carrying the containers from the pass box 3 into the isolator 2 and storing them in the rotary stocker 8, these carrying-in operations can be performed by an operator wearing the carrying-in / out gloves 40a. Complicated work can be performed quickly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 アイソレータ2は少なくとも2つの連通口部2dA、2dBを有するとともに、各連通口部のそれぞれに連結部材114(接続手段111)を介してインキュベータ4を連結している。 一つの連通口部2dAとこれに連通するインキュベータ4の搬出入口部4dとを開放して作業室2aと当該インキュベータ4の内部とが連通可能な状態で、他の連通口部2dBと他のインキュベータ4の搬出入口部4dとを閉鎖して、上記連結部材の内側に形成された除染空間Sに除染ガスを供給して、当該除染空間に露出する部分の除染を行う。 効率的な培養操作を行うことができる。

Description

培養装置
 本発明は培養装置に関し、具体的には、内部に形成された作業室が無菌状態に維持されるアイソレータに、内部に収容した被培養物を培養するインキュベータを接続して構成した培養装置に関する。
 今日、例えば患者から採取した細胞を培養して治療に用いることが行われており、当該治療に用いるためにこれら細胞といった被培養物の効率的な培養が求められている。
 このような細胞を培養するため、内部が無菌状態に維持されたアイソレータにインキュベータを接続手段によって接離可能に設け、アイソレータにおいて所要の培養操作が完了した細胞をインキュベータに搬入したら、当該インキュベータをアイソレータより離隔した位置に移動させて、内部に収容した細胞を培養することが行われている(特許文献1)。
 そして特許文献1の培養装置では、アイソレータとインキュベータとが分離している際に外部空間に露出した部分を、上記接続手段によって接続した際に除染ガスによって除染し、これにより無菌状態を維持したままアイソレータとインキュベータとを連通させるようになっている。
特開2014-23455号公報
 ここで、上記インキュベータでは、クロスコンタミネーションや取り違え防止の観点から、1つのインキュベータで大量の細胞を培養するよりも複数の小型のインキュベータを用いて細胞を培養することが好ましい。
 従って、上記アイソレータにおいて大量の細胞を処理した場合には、一つのインキュベータに収容することができない場合があり、その場合には別のインキュベータを接続する必要がある。
 しかしながら、上記特許文献1のように一つのインキュベータのみが接続可能な培養装置においては、一つのインキュベータに細胞を収容した後、新たなインキュベータを接続し、さらに上記接続手段において除染を行わなければならないことから、インキュベータの付け替えに時間がかかるという問題があった。
 このような問題に鑑み、本発明はより効率的に被培養物を複数のインキュベータに搬出することが可能な培養装置を提供するものである。
 すなわち請求項1の発明にかかる培養装置は、内部に形成された作業室が無菌状態に維持されるアイソレータと、内部に収容した被培養物を培養するインキュベータとを備え、上記アイソレータとインキュベータとを接続して構成した培養装置において、
 上記アイソレータは、作業室をインキュベータ内部と連通させるための連通口部と、この連通口部を開閉する連通口開閉部材とを備え、上記インキュベータは、被培養物を搬出入するための搬出入口部と、この搬出入口部を開閉する搬出入口開閉部材とを備え、
 上記連通口部と上記搬出入口部とをそれぞれ囲繞した状態で上記アイソレータとインキュベータとを連結する筒状の連結部材と、当該連結部材の内側に除染ガスを供給する除染ガス供給手段とを備え、
 上記アイソレータは少なくとも2つの連通口部を有するとともに、各連通口部に対してそれぞれ上記連結部材を設けて各々にインキュベータを連結し、
 一つの連通口部とこれに連通するインキュベータの搬出入口部とを開放することで作業室と当該インキュベータの内部とが連通可能な状態で、他の連通口部と他のインキュベータの搬出入口部とを閉鎖して、上記連結部材の内側に形成された除染空間に除染ガスを供給して、当該除染空間に露出する部分の除染を行うことを特徴としている。
 上記発明によれば、アイソレータに複数の連通口部を形成して、複数のインキュベータを同時に接続可能な構成とすることから、一つのインキュベータと作業室とを連通させている間に、他のインキュベータにおいては上記連結部材によって形成した除染空間の除染を行うことができる。
 これにより、一つのインキュベータでの搬出入作業が終了したら、速やかに上記除染空間の除染が完了した他のインキュベータと作業室を連通させることが可能となり、効率的に培養操作を行うことができる。
本実施例にかかる自動培養操作装置の平面図。 上記自動培養操作装置の側面図。 グリッパを説明する図。 アタッチメントおよびディッシュ載置部を説明する図。 加温庫の断面図。 ロータリストッカの断面図。 切替手段の断面図。 液体給排手段の構成図。 第2分注手段および第2容器保持手段の側面図。 アスピレータの側面図。 廃棄箱の側面図。 検査手段を示す断面図。 試薬供給手段を示す側面図。 ノズル交換手段を示す側面図。 接続手段を示す平面図。 インキュベータのシャッタの側面図。 播種作業を説明するフロー。 培地交換作業を説明するフロー。 継代作業を説明するフロー。 回収作業を説明するフロー。
 以下図示実施例について説明すると、図1は本実施例にかかる自動培養操作装置1の平面図を、図2は側面図をそれぞれ示し、この自動培養操作装置1は内部に形成された作業室2aが無菌状態に維持されるアイソレータ2と、上記作業室2aに接続されて培養操作に使用する器具類や容器類および液体類を搬入するためのパスボックス3と、作業室2aに接続されるとともに収容した被培養物を培養するインキュベータ4とを備え、この自動培養操作装置1はアイソレータ2に隣接して設けられた制御手段5によって制御されるようになっている。
 上記アイソレータ2の作業室2aには、上記容器類を保持して移送する第1ロボット6および第2ロボット7と、これら第1ロボット6と第2ロボット7との間で上記容器類を受け渡すための仮置き部と、上記容器類を収納する収納手段としてのロータリストッカ8と、遠心分離を行う遠心分離手段9と、上記液体類を供給する液体供給手段10と、被培養物を検査する検査手段11と、被培養物を上記インキュベータ4に対して搬出入する搬出入手段12とが設けられている。
 そして本実施例では、上記被培養物としての細胞を培地に播種する播種作業や培地交換作業といった培養操作を、上記制御手段5の制御による上記第1、第2ロボット6、7等の動作によって自動的に行うことが可能となっている。
 上記培養操作に使用する上記容器類としては、細胞の培養に使用する培養容器としてのディッシュ21や、先端がテーパ状に形成された遠沈管22がある(図6参照)。
 また上記器具類としては、上記液体供給手段10で使用するピペット23(図9参照)およびアスピレータノズル24(図10参照)、細胞の検査に使用する観察プレート25(図12参照)、上記遠沈管22や上記液体類を収容した液体容器に装着するカバーキャップ26(図6、図9参照)がある。
 上記遠沈管22やピペット23は、図3に示すように第1、第2ロボット6、7のグリッパ6b、7bによって把持され、遠沈管22はグリッパ6b、7bに形成された大径部材を把持するためのV字形状の第1凹部6c、7cを用いて把持され、ピペット23は小径部材を把持するための円弧形状の第2凹部6d、7dを用いて把持されるようになっている。
 上記被培養物としては人間の細胞の他、組織や血液等があり、これらは液体類として上記遠沈管22と同形状を有する検体容器28(図6参照)に収容された状態でアイソレータ2に搬入されるようになっている。
 また上記培養操作に使用する上記液体類としては、培地やPBS(リン酸緩衝生理食塩水)、トリプシン、トリパンブルー等の薬液があり、それぞれ培地容器29、PBS容器30、トリプシン容器31(図8参照)、試薬容器32(図13参照)に収容されている。
 そして、上記遠沈管22、検体容器28、培地容器29、PBS容器30、トリプシン容器31には、パスボックス3に搬入される際にはそれぞれ口部に図示しないスクリューキャップが螺着されているが、これらは上記第1、第2ロボット6、7による開閉が煩雑であるため、作業室2aの内部において螺合の必要のない上記カバーキャップ26に交換されるようになっている。
 さらに上記培養操作で使用する器具類としては他に、上記ディッシュ21を搬送するためのアタッチメント33(図4参照)や、上記試薬容器32の試薬を分注するマイクロピペット34(図13参照)がある。
 図4を用いて上記ディッシュ21および上記アタッチメント33について説明すると、上記ディッシュ21は底の浅い円形の皿形容器となっており、当該ディッシュ21にはカバー21aが装着されている。そして図4(a)は平面図を、(b)は(a)におけるb-b部の断面図を示している。
 上記アタッチメント33は第1、第2ロボット6、7のグリッパ6b、7bによって把持されるグリップ33aと、上記ディッシュ21を支持する保持部33bと、これらを連結する連結部材33cとから構成されている。
 上記グリップ33aは断面略四角形の柱状部材となっており、上記グリッパ6b、7bのV字形状の第1凹部6c、7cによって把持されることで、アタッチメント33がグリッパ6b、7bに対して回転しないようになっている。
 上記保持部33bは略U字形の部材となっており、当該U字形の形状の基部側に上記連結部材33cが連結され、先端側には所要の隙間が形成されている。また保持部33bはその周方向に沿って略L字形の断面形状を有しており、その底面部分でディッシュ21の底面を下方から支持し、また側面部分でディッシュ21の側面を支持するようになっている。
 さらに、上記保持部33bのU字形における基部側と、これに対して直交した位置とには、それぞれ当該保持部33bより外方に突出する逃がし部33dが形成されており、当該逃がし部33dは垂直な壁面によって構成されている。
 そして、上記連結部材33cには2つの位置決め孔33eが穿設されており、一つは上記保持部33bとグリップ33aとの間に、もう一つは上記グリップ33aの位置に設けられている。
 なお培養操作において、図4に示すディッシュ21の他に、当該ディッシュ21よりも小径の小径ディッシュを用いる場合には、当該小径ディッシュの下面に上記ディッシュ21の外径と略同径の円盤状のホルダを設けて、当該ホルダごと上記アタッチメント33によって保持することが可能となっている。
 上記観察プレート25は、図12に示すように細胞がその表面に載置されるガラスなどからなるプレート25aと、当該プレート25aを保持するプレートホルダ25bとから構成されている。
 上記プレートホルダ25bは上記プレート25aの略三方を囲繞するように形成された略コ字形の薄板状部材となっており、当該プレートホルダ25bには第1、第2ロボット6、7のグリッパ6b、7bによって把持されるグリップ25cと、2つの位置決め孔25dが設けられている。
 上記マイクロピペット34は、図13、14に示すように従来公知のマイクロピペット34を使用することができ、交換式のマイクロピペットノズル35が装着される筒状の先端管34aと、液体の吸排を操作をするための吸引ボタン34bと、当該吸引ボタン34bを囲繞して設けられた上記マイクロピペットノズル35を離脱させるためのイジェクトボタン34cとが設けられている。
 また上記マイクロピペット34を上記第1、第2ロボット6、7によって保持するため、マイクロピペット34の胴部には平板状の保持部材36が固定されている。
 当該保持部材36はマイクロピペット34の側方に突出し、当該突出した部分には上記第1、第2ロボット6、7のグリッパ6b、7bによって把持されるグリップ36aと、2つの位置決め孔36bとが設けられている。
 上記アイソレータ2は、その内部に形成された作業室2aが予め除染処理された状態で、図2に示すアイソレータ2の上部に設けた無菌状態維持手段37が清浄化された空気を上方より下方に向けて流通させることにより、陽圧に維持されて無菌状態を維持するようになっている。
 また、作業室2aにおいて異なる細胞を扱う場合や、異なる培養操作を行う際には、作業室2aの内部は除染ガス(過酸化水素蒸気)を供給する除染ガス供給手段38(図1参照)によって除染処理されるようになっている。
 上記パスボックス3はアイソレータ2の外部右側面に設けられており、その内部空間には上記除染ガス供給手段38から除染ガスが供給されて除染されるようになっている。
 またアイソレータ2の作業室2aとパスボックス3の内部空間とは開閉扉39を開閉することで連通させることができ、パスボックス3内の器具類や容器類および液体類等の搬入物をアイソレータ2の作業室2aに搬入する際に開放されるようになっている。
 またパスボックス3には外部空間に向けて外部開閉扉3aが設けられており、当該外部開閉扉3aを介して上記搬入物をパスボックス3内に搬入するようになっている。
 上記パスボックス3を介して作業室2aに搬入される上記器具類や容器類は、予め図2に示す樹脂製の包装袋Bに収容された状態で放射線殺菌されており、当該包装袋Bを作業室2aに搬入する際には、その外面を上記除染ガス供給手段38の除染ガスによって除染するようになっている。
 パスボックス3の内部には上記包装袋Bをつりさげるためのフック3bが設けられており、これにより包装袋Bの外面全体に除染ガスを付着させて除染することが可能となっている。
 一方、パスボックス3を介して作業室2aに上記検体容器28や液体類を搬入する際、これらを収容した検体容器28および液体容器29~32の内部に除染ガスが入り込むのを避けるため、これらについては除染ガスによる除染は行わず、上記包装袋を作業室2aに搬入した後にパスボックス3内に搬入されるようになっている。
 その際に同時にパスボックス3内に搬入したアルコール(消毒用エタノール)、オキシドール(過酸化水素水溶液)、過酢酸、次亜塩素酸ナトリウム等の消毒液を用いて検体容器28や液体容器29~31の表面をふき取り、表面の殺菌を行うようになっている。
 そして上記パスボックス3より作業室2aに上記器具類や容器類、および液体類などの搬入物を搬入する作業や、これらの搬入物を作業室2aに配置する作業は、アイソレータ2およびパスボックス3の正面壁部に設けたグローブ40を装着した作業者によって手作業により行われる。
 このうち、上記開閉扉39に隣接して設けられたグローブ40は、パスボックス3と作業室2aとの間で搬入物の搬出入を行うための搬出入用グローブ40aとなっている。
 上記搬出入用グローブ40aを用いてパスボックス3から作業室2aに搬入物を搬入する際は、まず作業者が上記開閉扉39に隣接するアイソレータ2側およびパスボックス3側の搬出入用グローブ40aを装着し、上記開閉扉39を手動で開放する。
 その状態で、作業者はパスボックス3側の搬出入用グローブ40aを用いてパスボックス3内の搬入物を作業室2aの内部に移動させると、これをアイソレータ2側の搬出入用グローブ40aによって受け取ることができる。
 なお、上記搬出入用グローブ40aについては、一人の作業者が装着して上記作業を行うことが可能であるが、2人の作業者が装着して作業を行うようにしてもよい。
 しかしながら、パスボックス3を介して作業室2aに搬入した搬入物のうち、上記液体供給手段10で使用するアスピレータノズル24および液体容器29~32は、上記搬出入用グローブ40aでは作業範囲が限定されるため所定位置に配置することができない。
 そこで本実施例では、作業室2aのほぼ中央に、液体供給手段10にアスピレータノズル24や液体容器29~32を配置するための配置用グローブ40bを設け、さらに上記搬出入用グローブ40aの作業範囲と上記配置用グローブ40bの作業範囲との間で移動する移動テーブル41を設けたものとなっている。
 上記移動テーブル41は、作業室2aの正面側に左右方向に向けて設けられたレール41aに沿って、上記搬出入用グローブ40aを装着した作業者の手作業によって移動するようになっている。
 上記移動テーブル41には、上記液体供給手段10で使用する器具類としてアスピレータノズル24を載置し、また液体容器として培地容器29、PBS容器30、トリプシン容器31を載置するようになっている。
 これらアスピレータノズル24や液体容器29~31は、上記パスボックス3から作業室2aに搬入された後、上記搬出入用グローブ40aを装着した作業者が上記移動テーブル41に載置するようになっている。
 その後、作業者が当該移動テーブル41を配置用グローブ40bの作業範囲まで移動させ、さらに配置用グローブ40bを装着した作業者が、これらをそれぞれ上記液体供給手段10の所定の位置に配置するようになっている。
 上記第1、第2ロボット6、7は、同型の産業用多関節ロボットを使用することができ、互いの可動範囲の一部が重複するように作業室2aの中央部に配置され、第1ロボット6は上記パスボックス3側に設けられ、第2ロボット7は上記インキュベータ4側に設けられている。
 第1、第2ロボット6、7はそれぞれ複数の軸から構成されたアーム6a、7aと、当該アーム6a、7aの先端に設けられた上記グリッパ6b、7bとを備え、これらは上記除染ガスに対して防護されている。
 そして本実施例では、上記第1ロボット6と第2ロボット7との間で容器類を受け渡すための仮置き部として、上記ディッシュ21および観察プレート25を載置する受渡しテーブル42と、遠沈管22を支持する遠沈管ホルダ43と、細胞を収容したディッシュ21を受け渡すための加温庫44とを備えている。
 また、アイソレータ2の背面側には、第1、第2ロボット6、7が保持している上記遠沈管22やピペット23等の容器類や器具類を撮影するためのカメラ45が設けられている。
 上記受渡しテーブル42は第1ロボット6および第2ロボット7の略中間に設けられており、その上面には、図示しないが上記観察プレート25およびアタッチメント33に形成された位置決め孔25d、33eに嵌合する位置決めピンが設けられている。
 例えば第1ロボット6から第2ロボット7にディッシュ21を受け渡す際、第1ロボット6は上記アタッチメント33ごと上記ディッシュ21を上記受渡しテーブル42に載置する。
 その際、上記アタッチメント33の位置決め孔33eを上記位置決めピンに嵌合させることで、アタッチメント33が所定の位置に位置ずれしないように載置される。
 その後第2ロボット7はこの受渡しテーブル42に載置されたアタッチメント33のグリップ33aを保持することで、ディッシュ21の受け渡しが完了する。
 また上記観察プレート25についても、上記アタッチメント33と同様に第1ロボット6と第2ロボット7との間で受け渡すことが可能であり、また上記アタッチメント33だけを受け渡す場合に用いてもよい。
 上記遠沈管ホルダ43は上記受渡しテーブル42の前方に隣接した位置に設けられ、複数本の遠沈管22を支持するようになっている。
 この遠沈管ホルダ43においても、上記ディッシュ21の場合と同様に第1、第2ロボット6、7によって上記遠沈管22の受け渡しを行うことができ、また複数個の遠沈管22を支持可能とすることで、一方のロボットが所要の作業を行う間に、他方のロボットが別の作業を繰り返して、複数個の遠沈管22を遠沈管ホルダ43に支持させることが可能となっている。
 上記加温庫44は、図5に示すように5つのディッシュ21を上記アタッチメント33ごと収容するように構成されており、最上段には培養操作の際に上記ディッシュ21に振動を与えるためのタッピング手段46が設けられている。
 また上記加温庫44の各段には上記アタッチメント33を位置決めする位置決めピン44aと、プレート状の加温手段44bが設けられており、加温手段44bは、ディッシュ21が載置されると当該ディッシュ21の底面に密着して所定の温度に加温するようになっている。
 上記タッピング手段46は、上記ディッシュ21を載置するプレート状の載置部46aと、載置部46aを挟んで設けられるとともにエアシリンダ等の駆動手段によって往復動する打撃部材46bとから構成されている。
 上記打撃部材46bが往復動してディッシュ21の側面に衝突することで、培養の間にディッシュ21の底面に張り付いた細胞を振動により剥離させるようになっている。
 また上記受渡しテーブル42と同様、上記加温庫44を用いて上記第1、第2ロボット6、7との間でアタッチメント33だけの受け渡しを行うことも可能である。
 上記カメラ45は、上記受渡しテーブル42の近傍を撮影範囲とするように設けられ、実際には図13に示すように除染ガスから防護するためのケーシング45aの内部に設けられている。
 第1、第2ロボット6、7が保持した遠沈管22やピペット23をこのカメラ45の撮影範囲内に移動させると、上記カメラ45はこれらを撮影し、制御手段5は上記グリッパ6b、7bがこれらを正常に保持しているか否かを確認する。
 また、上記カメラ45がグリッパ6b、7bに保持された遠沈管22内を撮影して、当該遠沈管22内の液体の残量等を確認することも可能となっている。
 上記ロータリストッカ8は、図6に示すように、作業室2aの床2bに回転可能に設けられた回転軸51と、当該回転軸51の上方から順に設けられた、一枚のアタッチメント載置テーブル52と、5枚のディッシュ載置テーブル53と、一枚の遠沈管支持テーブル54と、一枚の検体容器支持テーブル55とを備えている。
 またロータリストッカ8に隣接した位置には、上記各テーブル53~55に載置された容器類の有無を認識する容器類検出センサ56が設けられている。
 上記回転軸51はアイソレータ2の内部に形成した作業室2aの床2bを貫通して固定された筒状部材51aに、ベアリング51bを介して回転可能に立設されるとともに、上記床2bより下方の空間2cに突出した部分にはサーボモータからなる駆動手段57が連結されている。
 そして、上記回転軸51と上記駆動手段57との間には、駆動手段57の駆動力を回転軸51に伝達させる伝達状態と、上記駆動手段57の駆動力が遮断されて人手により回転軸51を回転させることが可能な非伝達状態とに切り換える切替手段58が設けられており、上記非伝達状態とした際には、上記各テーブル52~55を手動で回転させることが可能となっている。
 さらに上記回転軸51の下端部に隣接した位置には、回転位置センサ59が設けられ、上記回転軸51の下端部には当該回転位置センサ59によって検出される検出片59aが設けられている。
 そして上記回転位置センサ59が上記検出片59aを検出することにより、制御手段5は回転軸51の回転角度を認識し、上記駆動手段57を制御して各テーブル52~55に載置された容器類を所要の受け渡し位置に移動ならびに停止をさせるようになっている。
 上記アタッチメント載置テーブル52には5つのアタッチメント33および一つの上記観察プレート25が載置可能となっており、これらアタッチメント33および観察プレート25に設けた位置決め孔33e、25dと嵌合する位置決めピン52aが設けられている。
 上記5枚のディッシュ載置テーブル53にはそれぞれ4個のディッシュ21を載置可能となっており、具体的には図4に示すディッシュ載置部60が上記回転軸51を中心に四方に設けられている。
 上記ディッシュ載置部60は、上記回転軸51に連結される連結部60aと、連結部60aの先端に形成された載置部60bと、この載置部60bの周縁から放射状に突出する突出片60cと、各突出片60cの先端から上方に突出する係合突起60dとから構成されている。
 上記突出片60cは上記アタッチメント33における先端側の隙間と逃がし部33dに対応する位置に設けられ、また上記係合突起60dはディッシュ21の外径の位置に合わせて設けられ、かつ上記ディッシュ21の側面を支持するようになっている。
 上記アタッチメント33と上記ディッシュ載置部60とは、図4(a)に示す向きでディッシュ21の受け渡しを行うようになっており、制御手段5が上記第1ロボット6およびロータリストッカ8の駆動手段57を制御してこの図のような状態とする。
 具体的には、第1ロボット6が保持した上記アタッチメント33の保持部33bの先端側の隙間がディッシュ載置部60の連結部60aと干渉せず、かつアタッチメント33の逃がし部33dが載置部60bの突出片60cと干渉しないようにする。
 そして、載置部60bにディッシュ21が載置された状態で、第1ロボット6が上記アタッチメント33を載置部60bの下方から上方に移動させることで、ロータリストッカ8から第1ロボット6にディッシュ21が受け渡される。
 逆に、第1ロボット6が保持したアタッチメント33にディッシュ21が載置された状態で、第1ロボット6が上記アタッチメント33を載置部60bの上方から下方に移動させることで、第1ロボット6からロータリストッカ8にディッシュ21が受け渡されることとなる。
 上記遠沈管支持テーブル54は上記ディッシュ載置テーブル53の外周縁よりも半径方向外方に突出して大径に形成され、その外周縁に沿って遠沈管22の外周面を支持する複数の孔部54aと、その下方で遠沈管22の下端部分を支持する受け部材54bとを備え、上記遠沈管22を等間隔に起立状態で支持するようになっている。
 このように、遠沈管22の支持部をディッシュ載置テーブル53より外方に配置することにより、上記第1ロボット6は保持した遠沈管22を上方へ抜き出すことが可能となっている。
 上記検体容器支持テーブル55は上記遠沈管支持テーブル54よりも大径で円弧状を有した部材となっており、当該円弧状の部材の円周方向に沿って上記遠沈管支持テーブル54と同様の孔部55aおよび受け部材55bとを備え、上記検体容器28および上記試薬容器32を起立状態で支持し、また上記マイクロピペット34のマイクロピペットノズル35を起立状態で支持するようになっている。
 さらに、検体容器支持テーブル55では上記マイクロピペット34を保持可能となっており、このため当該検体容器支持テーブル55の端部には、図示しないが上記マイクロピペット34の保持部材36に形成した2つの位置決め孔36bと嵌合する位置決めピンが設けられている。
 なお、検体容器支持テーブル55には、以下の培養操作の各作業においては説明しないが、培養操作に使用する所要の試薬等を収容した遠沈管22も支持可能となっている。
 そして上記各テーブル52~55は、その少なくとも一部が上記第1ロボット6の可動範囲内に位置するようになっており、上記制御手段5の制御によって各テーブル52~55に載置された所要の容器類等を第1ロボット6の可動範囲内の所定の受け渡し位置に位置させるようになっている。
 これにより、上記第1ロボット6はロータリストッカ8に収容されたすべての容器類や器具類等を保持することが可能となり、多数の容器類や器具類等をアイソレータ2の作業室2a内に収納するとともに、これらを効率的に取り出すことで培養操作を効率的に行うことが可能となる。
 また上記各テーブル52~55は回転軸51に対して上下方向に複数段設けられていることから、作業室2aの床2bに対して占める割合を少なくすることができ、上記容器類や器具類等をコンパクトに収納することが可能となっている。
 また上記各テーブル52~55のうち、上記アイソレータ2の正面に設けられた搬出入用グローブ40aに隣接した部分は、当該搬出入用グローブ40aの作業範囲内に位置している。
 これにより、搬出入用グローブ40aを装着した作業者がパスボックス3より作業室2aに容器類等を搬入した後、上記切替手段58を非伝達状態とすることにより、各テーブル52~55を手動で回転させて、ロータリストッカ8に容器類等を収容することが可能となる。
 図7は上記ロータリストッカ8の切替手段58の断面図を示し、当該切替手段58は、上記回転軸51と一体的に回転する連結部材61と、上記筒状部材51aに対して回転可能に設けられたプーリ62と、これら連結部材61とプーリ62との間に設けられた複数のボール63とを備えている。
 上記連結部材61の内面にはキー61aが設けられるとともに、上記回転軸51の外面には上下方向にキー溝51cが形成されており、これらが相互に係合することにより連結部材61と回転軸51とは一体的に回転し、かつ連結部材61は回転軸51に対して上下方向に移動可能になっている。
 また上記連結部材61の下端部には、上記回転軸51の下端部に設けたばね受51dとの間にばね64が弾装され、これにより連結部材61は常時上方向に向けて付勢されている。
 上記プーリ62は上記連結部材61の上部に位置するとともに、上記筒状部材51aの下端部にボールベアリング65を介して回転可能に保持されている。
 また上記プーリ62は上記駆動手段57との間にベルト57aが張設されており、当該プーリ62に駆動手段57の駆動力が作用するようになっている。
 上記ボール63は連結部材61の上面に円周方向に沿って複数形成された凹部61bに脱落しないように収容され、またプーリ62の下面には上記ボール63の頂部が嵌合する略半球状の凹部62aが形成されている。
 図7に示す上記切替手段58は伝達状態となっており、当該伝達状態において上記ボール63はプーリ62の下面に形成された凹部62aに嵌合している。
 このとき上記連結部材61は上記ばね64によって上方に付勢されており、当該ばね64の付勢力によってボール63が上記凹部62aに嵌合した状態が維持される。
 このため、この伝達状態において上記駆動手段57がベルト57aを介してプーリ62を回転させると、上記ボール63を介して連結部材61に駆動力が伝達され、回転軸51に固定された各回転テーブル52~55を回転させるようになっている。
 そして切替手段58を上記伝達状態から非伝達状態とするには、上記ボール63をプーリ62の凹部62aより離脱させて、上記プーリ62と連結部材61とが相互に回転可能な状態とすればよい。
 具体的に説明すると、まず切替手段58を非伝達状態とする際、上記駆動手段57は作動しておらず、上記ベルト57aを介してプーリ62の回転が阻止された状態となっている。
 この状態から、作業者がテーブル52~55を手動で回転させると、最初は上記切替手段58が伝達状態となっていることから、作業者には回転の阻止されたプーリ62からの抵抗が作用する。
 作業者はこの抵抗力に対してさらにテーブル52~55を回転させ、これにより上記ボール63が上記プーリ62の凹部62aより離脱し、上記連結部材61がばね64の付勢力に抗して下降する。
 上記凹部62aより離脱することで、ボール63はプーリ62の下面に対して移動可能な状態となり、上記連結部材61がプーリ62に対して回転可能な状態となることから、作業者は少ない力でテーブル52~55を回転させることが可能となる。
 そして作業者がさらにテーブル52~55を回転させると、上記ボール63が再びプーリ62の凹部62aに嵌合し、連結部材61がばね64の付勢力で上昇するため、切替手段58は再度伝達状態となる。
 なお、上記切替手段58については、上記構成を有する機械的な切替手段ではなく、例えば上記駆動手段57としてのサーボモータのサーボ指令をOFFにする切替手段としてもよい。
 上記遠心分離手段9は、図1に示すように上記第2ロボット7とインキュベータ4との間に設けられており、従来公知の遠心分離機を使用することができる。
 遠心分離手段9は、図2に示すようにアイソレータ2の作業室2aの床2bより下方に突出するように設けられるととともに、略中央で図示しないモータによって回転する回転軸に設けられた4つのバケット9aを備え、当該バケット9aに上記遠沈管22が収容されるようになっている。
 そして本実施例において、上記遠心分離手段9は少なくともその一部が第2ロボット7の可動範囲内に入っており、制御手段5の制御によって所要のバケット9aを上記第2ロボット7の可動範囲内に位置させるようになっている。
 また遠心分離を行う際、上記細胞等を収容した遠沈管22に対向する位置に収容するカウンターウェイトは、上記液体供給手段10において新たな遠沈管22にPBSを分注させて第1ロボット6や第2ロボット7により作成することができる。
 液体供給手段10は、図8に示すように、液体の分注を行う第1~第3液体給排手段71A~71Cと、液体類を収容した液体容器29、30を保持する第1、第2容器保持手段72A,72Bと、不要な液体を吸引除去するアスピレータ73と、上記遠沈管22や液体容器29~31に装着したカバーキャップ26やディッシュ21のカバー21aを保持する第1~第4蓋保持手段74A~74Dとから構成されている。
 上記構成のうち、上記第1液体給排手段71Aおよび第1容器保持手段72Aは培地を上記容器類に供給する培地供給手段を構成しており、上記第3液体給排手段71Cは容器類に被培養物を分配する分配手段を構成している。
 また液体供給手段10の近傍には、複数のピペット23を収容するピペット支持部としてのピペットホルダ75と、上記トリプシン容器31を収容する容器ホルダ76と、使用済みのピペット23や遠沈管22を廃棄するための廃棄部としての廃棄箱77とが設けられている。
 上記第1~第3液体給排手段71A~71C、上記アスピレータ73、上記第1~第4蓋保持手段74A~74Dは、略門型の保持部材78によって作業室2aの上方に設けられており、これらはいずれも第1、第2ロボット6、7の可動範囲内に位置している。
 さらに具体的には、上記第1液体給排手段71Aは上記第1ロボット6側に設けられ、上記第2液体給排手段71Bは上記第2ロボット7側に設けられ、第3液体給排手段71Cは第1液体給排手段71Aと第2液体給排手段71Bとの間に設けられている。
 また上記第1容器保持手段72Aは上記第1液体給排手段71Aの下方に設けられており、上記第2容器保持手段72Bは上記第2液体給排手段71Bの下方に設けられている。
 また上記第1、第2蓋保持手段74A、74Bは、それぞれ上記第1、第2容器保持手段72A,72Bの上方に設けられ、第3蓋保持手段74Cは第1ロボット6の付近に配置され、第4蓋保持手段74Dは第2ロボット7の付近に配置されている。
 そして、上記トリプシン容器31を収容する容器ホルダ76は第2ロボット7の可動範囲内に設けられ、トリプシン容器31は当該第2ロボット7によって上記容器ホルダ76ごと保持されるようになっている。
 以下、図9を用いて第2液体給排手段71B、第2容器保持手段72B、第2蓋保持手段74Bについて説明する。なお第2液体給排手段71Bと共通の構成を有する第1、第3液体給排手段71A,71C、並びに第2容器保持手段72Bと略共通の構成を有する第1容器保持手段72Aについては説明を省略する。
 第2液体給排手段71Bは、上記保持部材78に固定されて上記ピペット23と接続される接続部79と、上記ピペット23を保持してこれを上記接続部79に接続させる昇降手段80と、上記接続部79に接続されるとともに作業室2aの床2bの下方の空間2cに設けられた給排手段81とから構成されている。
 上記接続部79は樹脂製で蛇腹状を有した筒状の部材であって、上記保持部材78にステーを介して固定され、上部には上記給排手段81との間にチューブ7が配設され、下部には上記ピペット23が密着するようになっている。
 上記昇降手段80は、エアシリンダ等によって開閉して上記ピペット23を把持するグリッパ80aと、当該グリッパ80aを昇降させるエアシリンダ80bとから構成されている。
 そして、上記グリッパ80aがピペット23を保持した状態で、上記エアシリンダ80bがピペット23を上昇位置に位置させると、上記ピペット23の上端部が上記接続部79を圧縮しながら密着し、上記給排手段81とピペット23とを連通させるようになっている。
 上記給排手段81は上記第1~第3液体給排手段71A~71Cのそれぞれについて設けられており、上記制御手段5の制御によって上記ピペット23に所定量の液体を吸引して保持させ、また当該ピペット23に保持された液体を所定量吐出させるようになっている。
 上記第2容器保持手段72Bは、上記PBS容器30および調整されていない培地を収容した培地容器29Aを保持する保持部材82と、当該保持部材82を昇降させる移動手段83とから構成されている。
 本実施例で使用する上記PBS容器30の口部30aは底部30bに対して傾斜して設けられており、上記保持部材82はPBS容器30の底部30bを傾斜した状態で保持するようになっている。
 これにより、当該底部30bとこれに隣接する側部との角部が上記口部30aの真下に位置し、上記口部30aに真上からピペット23が挿入されると、当該ピペット23の先端が上記角部に位置するようになっている。
 一方、図示しないが培地容器29Aは角柱状を有しており、その上部に口部が形成され、当該培地容器29Aを保持する保持部材82は、培地容器29Aの底部が水平を向いた状態で保持するようになっている。
 また上記第1容器保持手段72Aは調整された培地を収容する培地容器29を保持し、当該培地容器29も上部に口部が設けられた筒状を有しており、底部が水平な状態で保持されるようになっている。
 上記移動手段83は、上記保持部材82を昇降させる昇降機構84と、上記保持部材82を水平方向に回転させる回転機構85とから構成され、上記保持部材82に保持されたPBS容器30を昇降させるとともに横方向に旋回させるようになっている。
 上記昇降機構84は、作業室2aを上下に貫通する円柱状の支持柱84aと、上記保持部材82が固定されるとともに上記支持柱84aに沿って上下動可能に設けられた昇降部材84bと、上記昇降部材84bを昇降させるスライド機構84cとから構成されている。
 上記昇降部材84bには下方に向けて連結棒84dが設けられており、上記スライド機構84cはこの連結棒84dを介して昇降部材84bを昇降させるようになっている。
 上記回転機構85は、作業室2aの床2bの下方の空間2cに設けられたサーボモータ85aと、上記連結棒84dに設けられたプーリ85bと、これらの間に張設されたベルト85cとから構成されている。
 上記サーボモータ85aが上記プーリ85bを駆動すると、上記連結棒84dが回転して上記昇降部材84bが支持柱84aに対して回転し、上記保持部材82を水平方向に回転させるようになっている。
 この時、上記連結棒84dの下端部における上記スライド機構84cとの連結部分にはボールリンク85dが設けられており、連結棒84dの回転を許容するようになっている。
 図10は上記アスピレータ73を示し、先端に上記アスピレータノズル24が装着される吸引管86と、上記吸引管86を回転可能に保持する回転手段87と、上記吸引管86に接続されたチューブ88と、上記チューブ88の途中に設けられた2つの廃液ボトル89A、89Bと、上記2つの廃液ボトル89A、89Bへの流路を切替える切替手段90と、上記アスピレータノズル24に負圧を発生させる吸引手段91とを備えている。
 上記吸引管86の先端には上記アスピレータノズル24が交換可能に設けられ、このアスピレータノズル24は上記配置用グローブ40bを装着した作業者によって交換されるようになっている。なおロボットによって交換するようにしてもよい。
 上記回転手段87は上記吸引管86に装着された上記アスピレータノズル24の傾きを変更するようになっており、例えば遠沈管22の液体を排出する際には当該遠沈管22を上下方向に向けた状態で保持するとともにアスピレータノズル24を上下方向に向けて使用し、ディッシュ21内の液体を排出する際には、当該ディッシュ21を傾斜させて液体を下方に位置させ、この傾きに合わせてアスピレータノズル24を傾斜させるようになっている。
 上記廃液ボトル89A、89Bは作業室2aの床2bの下方の空間2cに設けられており、その上部には上記吸引管86に連通するチューブ88Aと、吸引手段91に連通するチューブ88Bとがそれぞれ接続されている。
 このような構成により、上記吸引手段91が負圧吸引力を発生させると、上記廃液ボトル89A、89Bを介して負圧が上記アスピレータノズル24に作用し、アスピレータノズル24が吸引した液体が廃液ボトル89A、89Bに回収されるようになっている。
 さらに上記吸引手段91は、自動培養操作装置1が作動している間、常時負圧を発生するようになっており、これによりアイソレータ2の作業室2aの空気を常時吸引することで、廃液ボトル89A、89Bからの液体や外部空間の空気が作業室2aに流入するのを防止するようになっている。
 上記チューブ88はそれぞれ2股に分岐して2つの廃液ボトル89A、89Bに接続されており、この分岐部分に上記切替手段90が設けられている。
 上記切替手段90は上記分岐したチューブ88の流路を切替えることにより、上記廃液ボトル89Aまたは廃液ボトル89Bのいずれか一方を上記吸引管86および吸引手段91に連通させるようになっている。
 そして、例えば培養操作中に一方の廃液ボトル89Aが満杯となったら、制御手段5は上記切替手段90を制御して他方の廃液ボトル89Bに流路を切替え、当該廃液ボトル89Bにおいて廃液を回収する間に、満杯となった廃液ボトル89Aを空の廃液ボトルに交換することが可能となっている。
 上記第1~第4蓋保持手段74A~74Dは、それぞれ下端部に設けられた吸着ヘッド74aによってディッシュ21のカバー21aや遠沈管22や液体容器29~31のカバーキャップ26を吸着保持するようになっている。
 上記第1、第2容器保持手段72A,72Bの上方に設けられた第1、第2蓋保持手段74A、74Bは、これら第1、第2容器保持手段72A,72Bが保持する培地容器29やPBS容器30(培地容器29A)のカバーキャップ26を一時的に保持するものとなっている。
 上記第3蓋保持手段74Cは、上記第1ロボット6が保持するディッシュ21や遠沈管22に装着されたカバー21aやカバーキャップ26を一時的に保持するものとなっている。
 これと同様、第4蓋保持手段74Dは、上記第2ロボット7が保持するディッシュ21や遠沈管22に装着されたカバー21aやカバーキャップ26を一時的に保持するものとなっている。
 図11に示すように、上記廃棄箱77には、培養操作において不要となったピペット23や遠沈管22を廃棄するようになっており、第1ロボット6の可動範囲および搬出入用グローブ40aの作業範囲内に設けられている。
 上記廃棄箱77は前後に2つの廃棄空間77a、77bが形成されており、これら廃棄空間77a、77bには予め廃棄袋がセットされている。
 このうち第1ロボット6側のピペット用廃棄空間77aは縦長の空間で、ここには上記ピペット23を廃棄し、アイソレータ2の壁面側のその他容器類用廃棄空間77bには遠沈管22やディッシュ21などのピペット23以外のものを廃棄するようになっている。
 これにより、細長いピペット23を上記ピペット用廃棄空間77a内で上下方向を向いた状態で揃えることができ、上記遠沈管22やディッシュ21等と同じ空間に廃棄した場合に比べて廃棄物の容積を小さくすることが可能となる。
 さらに、上記廃棄箱77における上記ピペット用廃棄空間77aに隣接した位置には、空の遠沈管22を斜めに保持する保持部材77Aが設けられており、当該保持部材77Aに保持される空の遠沈管22には使用済みのピペット23が収容されるようになっている。
 また、上記保持部材77Aは上記遠沈管22を上記ピペット用廃棄空間77aの上方に向けて斜めに保持し、ピペット23の上端部が廃棄箱77の上方に突出するようになっている。これにより遠沈管22の中でピペット23が位置決めされ、ロボットで保持することが可能となっている。
 上記構成を有する液体供給手段10の動作について説明する。
 まず上記第1~第3液体給排手段71A~71Cには、自動培養操作装置1において培養操作を行う前に、上記第1ロボット6がピペット23を装着するようになっている。
 まず、上記パスボックス3よりアイソレータ2に搬入されたピペット23は、搬出入用グローブ40aを装着した作業者によって先端部が上方を向いた状態で上記ピペットホルダ75に収容される。
 そして第1ロボット6は、上記ピペットホルダ75よりピペット23を取り出すと、これを180°回転させて先端部を下方に向け、その状態で上記第1~第3液体給排手段71A~71Cに移動させる。
 その際、第1ロボット6と第2ロボット7との間でピペット23を直接受け渡しながら、90°ずつピペット23を回転させるようにしてもよい。
 図9を用いて説明すると、ピペット23が装着されていない状態において、上記昇降手段80は上記グリッパ80aを下降位置に位置させており、その状態で上記第1ロボット6が当該グリッパ80aにピペット23を受け渡す。
 すると、上記昇降手段80がピペット23ごとグリッパ80aを上昇させて、当該ピペット23の上端部を接続部79に下方から密着させ、これによりピペット23が給排手段81に連通し、ピペット23が第2液体給排手段71Bに保持されることとなる。
 そしてこれと同様の動作を行うことにより、第1、第3分注手段71A,71Cにもピペット23の装着を行う。
 次に、第1液体給排手段71Aを用いて遠沈管22に培地を分注する際の動作について説明する。なお第2液体給排手段71Bを用いてディッシュ21にPBSを分注する際の動作も同様であるため、説明は省略する。
 まず、上記培地容器29を上記パスボックス3から作業室2a内に搬入する際、予め制御手段5には当該培地容器29における培地の液面高さが登録されている。
 具体的な液面高さを認識する方法としては、液面高さ検出手段としての重量計によって計測した培地容器29の重量から認識する方法や、光学式、超音波式、静電容量式など市販のセンサを用いて培地容器29の口部から液面高さを直接計測する方法が考えられる。
 次に、第1液体給排手段71Aのピペット23に所定量の培地を吸引させる。
 具体的には、上記第1容器保持手段72Aは培地容器29を上記第1液体給排手段71Aに隣接する第1蓋保持手段74Aに移動させて、カバーキャップ26を吸着保持させる。
 さらに、第1容器保持手段72Aは培地容器29を第1液体給排手段71Aに移動させ、ピペット23を培地容器29に挿入させる。すると給排手段81が作動して上記ピペット23に所定量の培地が吸引される。
 その際、上記制御手段5には培地容器29における培地の液面高さが登録されているため、制御手段5は上記第1容器保持手段72Aの移動手段83を制御して、上記ピペット23と培地容器29の培地の液面との相対高さを調整する。
 具体的には、上記培地容器29の培地に挿入される上記ピペット23の挿入量が最小限の深さとなるようにし、第1液体給排手段71Aが培地容器29の培地を吸引して液面高さが減少すると、制御手段5は移動手段83を制御して、当該液面高さの減少に応じて上記培地容器29を上昇させる。
 これにより上記ピペット23の外面に付着する培地の接触面積を最小限とし、当該ピペット23の外面に付着した培地が作業室2a内に落下してしまうことを防止するようになっている。
 そして、培地容器29から培地が吸引されると、第1容器保持手段72Aは培地容器29を第1蓋保持手段74Aに移動させてカバーキャップ26を装着させ、その後培地容器29を下降位置まで下降させる。
 このようにして第1液体給排手段71Aのピペット23に所定量の培地が吸引されたら、この培地を例えば第2ロボット7が保持した遠沈管22に吐出する動作を行う。
 具体的には、第2ロボット7が作動して上記遠沈管ホルダ43より遠沈管22を取り出し、これを第2ロボット7に隣接した第4蓋保持手段74Dに移動させてカバーキャップ26を保持させる。
 そして、第2ロボット7が上記遠沈管22を第1液体給排手段71Aのピペット23の下方に位置させると、制御手段5は給排手段81を制御して、ピペット23に収容された培地を所定量だけ遠沈管22に排出させる。
 その際においても、制御手段5は上記遠沈管22に収容されている液体の量を記憶しており、上記第2ロボット7は上記ピペット23と保持した遠沈管22との相対的な高さを調整するようになっている。
 遠沈管22に予め所定量の細胞を含んだ液体が収容されている場合、第2ロボット7は当該液体の液面に対して若干上方にピペット23の先端が位置するように遠沈管22を位置させる。
 そして、上記ピペット23から培地が吐出されて液面高さが上昇すると、第2ロボット7はこの液面高さの上昇に合わせて遠沈管22を下降させ、ピペット23に遠沈管22内の液体が接触しないようにする。
 このようにして遠沈管22に所定量の培地が分注されると、第2ロボット7は当該遠沈管22を上記第4蓋保持手段74Dに移動させて遠沈管22にカバーキャップ26を装着させる。
 上記第1液体給排手段71Aは第1容器保持手段72Aの培地容器29に収容された培地を、第2液体給排手段71Bは第2容器保持手段72BのPBS容器30に収容されたPBSをそれぞれ扱うのに対し、本実施例の第3液体給排手段71Cは、トリプシン容器31に収容されたトリプシンを扱うほか、例えば遠沈管22において細胞を含む液体と培地とからなる懸濁液を作成する際にも使用される。
 まず、トリプシンを分注する際には、上記第2ロボット7がトリプシン容器31を容器ホルダ76ごと保持し、上記第4蓋保持手段74Dにおいてカバーキャップ26を一時的に保持させてから、第3液体給排手段71Cにおいてトリプシンを吸引させる。
 この時も、制御手段5にトリプシン容器31内のトリプシンの液面高さを登録しておくことで、ピペット23にトリプシンが吸引されて液面高さが下降するのに応じて、トリプシン容器31を上昇させるようになっている。
 そして第3液体給排手段71Cでは、上記トリプシンの分注が終了し、その後上記懸濁液を作成する際には、トリプシンの分注に使用した使用済みのピペット23を新たなピペット23に交換するようになっている。
 上記第1ロボット6は予め廃棄箱77近傍に設けられた上記保持部材77に支持された空の遠沈管22を取り出して、これを第3液体給排手段71Cのピペット23の下方に位置させる。
 すると、第3液体給排手段71Cの昇降手段80がピペット23を下降させて接続部79より離脱させ、さらに保持したピペット23を解放することにより、当該ピペット23を第1ロボット6が保持した遠沈管22の内部に落下させる。
 第1ロボット6は、上記ピペット23を収容した遠沈管22を上記保持部材77Aに収容し、これにより遠沈管22およびピペット23は傾斜した状態となる。
 その結果、上記傾斜した遠沈管22の開口部の下方には必ずピペット23が位置することとなり、第1ロボット6が上記ピペット23を確実に把持することが可能となる。
 第1ロボット6は、この傾斜した遠沈管22からピペット23を取り出すと、当該ピペット23が上下方向を向くように回転させ、さらに上記廃棄箱77におけるピペット用廃棄空間77aの上方に位置させてから落下させる。
 ピペット23は上下方向を向いたまま落下するため、その後他のピペット23を廃棄しても、上記ピペット用廃棄空間77aのすべてのピペット23が上下方向を向くこととなり、廃棄する際の容積を小さくすることができる。
 このように、第1ロボット6が保持した遠沈管22にピペット23を落下させてから、当該ピペット23を遠沈管22ごと廃棄箱77の近傍に移動させ、その後当該ピペット23を廃棄箱77に廃棄することで、ピペット23を廃棄箱77まで移動させる間に、当該ピペット23に付着した液体がアイソレータ2の床2bに落下してしまうのを防止することができる。
 このようにして使用済みのピペット23を廃棄したら、第1ロボット6はピペットホルダ75から新たなピペット23を保持して、これを第3液体給排手段71Cに装着する。
 上記検査手段11は、第2ロボット7の可動範囲内に配置され、図12に示ようにアイソレータ2の背面側より外方に突出した上下に狭い観察空間11Sの上下に設けた撮像手段11aおよび照明手段11bとから構成されている。
 上記観察空間11Sは上記アイソレータ2の作業室2aと連通しており、その上面および下面にはガラスなどの光透過部材が設けられており、第2ロボット7に保持された観察プレート25が当該観察空間11Sに挿入されるようになっている。
 上記撮像手段11aは上記観察空間11Sの上方に、上記照明手段11bは観察空間11Sの下方にそれぞれ設けられ、上記照明手段11bの光は上記光透過部材を透過するとともに上記観察プレート25のプレート25aを透過し、撮像手段11aが当該プレート25a上の細胞の拡大画像を撮影するようになっている。
 そして上記撮像手段11aが撮影した画像は、上記制御手段5において画像処理され、例えば観察範囲における生存する細胞の生存数と、死滅した細胞の死滅数とを計数し、ここから細胞の生存率が算出されるようになっている。
 なお、アタッチメント33に載置させたディッシュ21を観察空間11Sに挿入させて、ディッシュ21内に収容された細胞と培養の混合物における細胞の占有率を画像処理にて求めることもできる。
 そして、本実施例における後述する継代作業では、上記液体供給手段10において、培地供給手段を構成する第1液体給排手段71Aが培地容器29より吸引した培地を上記ロボットが保持する第2の培養容器としての新たな空のディッシュ21に供給する。
 一方、分配手段を構成する第3液体給排手段71Cが第1の培養容器としての遠沈管22から細胞と培地とによる懸濁液を吸引し、これを上記ロボットが移送した複数の上記第2の培養容器としてのディッシュ21に分注することにより、細胞を新たなディッシュ21に分配するようになっている。
 その際、本実施例では、上記検査手段11の検査結果に基づいて、今回の継代作業に新たに必要な培地の量を求め、これに基づいて分配する新たなディッシュ21の個数を決定するようになっており、その判定を行う判定手段は上記制御手段5に設けられている。
 上記判定手段は、上記検査手段11において細胞の生存数が計数されると、上記生存率が所定のしきい値を超えるか否かを判定し、上記しきい値を超えない場合には使用する培地の量として標準量を選択し、これに伴う所定個数のディッシュ21に細胞を継代させる標準継代モードで上記継代作業を実行させる。
 一方、検査結果において細胞の生存数が上記しきい値を超えた場合には、多数の細胞が生存していることから、これを上記標準継代モードで継代を行う場合に比べて、より多くの培地が必要となる。
 このため、上記判定手段は、上記標準よりも多量の培地量を選択して、これに伴う上記標準継代モードよりも多数のディッシュ21に細胞を継代させる優良継代モードで上記継代作業を実行させるようになっている。
 例えば、上記標準継代モードにおいて一つの遠沈管22に収容されていた細胞を10個の新たなディッシュ21に継代する場合、上記優良継代モードでは15個のディッシュ21に細胞を継代させるようになっている。
 なお、細胞の検査は培養されている細胞の一部を抽出して行われるため、求めた生存数に所定の係数を掛けて必要な培地の量を算出する。また、算出した分配する培地の量をディッシュ21一つ当たりに収容する培地量で割って、ディッシュ21の数を求めるようにしてもよい。
 また検査手段11はおよび判定手段は、上記継代作業において培養するディッシュ21の個数を決定するだけではなく、上記継代操作を行うか否かの判断にも用いることができる。
 例えば第2ロボット7が上記インキュベータ4から所定の間隔、例えば毎朝決まった時間にディッシュ21を取り出して、当該ディッシュ21ごと細胞を上記検査手段11に移動させる。
 すると検査手段11の撮像手段11aがディッシュ21内の細胞を撮影して当該細胞の画像に占める占有率を測定し、制御手段5はこの細胞の占有率に基づいて、細胞が十分に培養されていると判定された場合には上記継代操作を行うことを決定する。
 上記観察手段11で上記細胞の観察を行う際、上記観察プレート25に載置した細胞に上記試薬容器32に収容されたトリパンブルーを加えることで、細胞の生存数を上記撮像手段11aによって容易に計測することができる。
 そのため、上記作業室2aには、上記観察プレート25に上記トリパンブルーを供給する試薬供給手段101と、上記細胞やトリパンブルーを観察プレート25に供給するために使用する上記マイクロピペット34のマイクロピペットノズル35を交換するためのノズル交換手段102とを設け、これらの作業を自動的に行うようになっている。
 図13に示すように、上記試液供給手段101はカメラ45を収納したケーシング45aに設けられており、かつ第1、第2ロボット6、7の可動範囲に設けられている。
 上記ケーシング45aにはマイクロピペット34を保持する保持手段103が固定され、保持されたマイクロピペット34の下方には上記マイクロピペットノズル35を廃棄するための遠沈管22が配置されている。また上記ケーシング45aの近傍には試薬容器32を保持する試薬容器ホルダ104が設けられている。
 上記保持手段103の上面には上記マイクロピペット34に装着された保持部材36が載置されるようになっており、当該保持部材36に設けられた2つの位置決め孔36bに嵌合する図示しない位置決めピンが設けられている。
 上記マイクロピペットノズル35を廃棄するための遠沈管22は、上記マイクロピペット34のイジェクトボタン34cが操作されると、落下したマイクロピペットノズル35を回収するようになっており、その後当該マイクロピペットノズル35は上記遠沈管22ごと廃棄箱77に廃棄されるようになっている。
 上記ノズル交換手段102は上記ロータリストッカ8に隣接した位置に設けられ、第1ロボット6の可動範囲に設けられている。
 図14に示すように、ノズル交換手段102は、上記試液供給手段101の保持手段103と同様の構成を有する保持手段103Aと、当該保持手段103Aの下方に設けられてマイクロピペットノズル35をマイクロピペット34の先端管34aに装着するための装着手段105とから構成されている。
 上記装着手段105は、上記マイクロピペットノズル35を保持する貫通孔を備えた保持部材105aと、当該保持部材105aを昇降させるエアシリンダ等の昇降手段105bとから構成されている。
 そして本実施例において上記マイクロピペット34は以下のようにして使用される。
 まず、第1ロボット6はロータリストッカ8の検体容器支持テーブル55よりマイクロピペットノズル35を保持してこれを上記ノズル交換手段102に移動させ、上記装着手段105の保持部材105aに保持させる。
 続いて、第1ロボット6は上記検体容器支持テーブル55からマイクロピペット34を保持して、これをノズル交換手段102の上記保持手段103Aに保持させる。
 このとき、上記装着手段105の保持部材105aは昇降手段105bによって下降位置に位置し、この状態から保持部材105aを上昇させることで、上記マイクロピペットノズル35が上記先端管34aに強固に装着されるようになっている。
 その際、第1ロボット6はマイクロピペット34を上方から押圧し、マイクロピペット34が保持手段103より脱落しないようにする。
 このようにしてマイクロピペット34にマイクロピペットノズル35が装着されると、第1ロボット6は当該マイクロピペット34を上記試液供給手段101に移動させる。
 続いて第2ロボット7は細胞を含む懸濁液が収容された遠沈管22を試液供給手段101におけるマイクロピペット34の下方に移動させる。そして第1ロボット6が当該マイクロピペット34の吸引ボタン34bを操作して、マイクロピペット34に少量の懸濁液を吸引する。
 続いて、第2ロボット7は観察プレート25をマイクロピペット34の下方に位置させ、第1ロボット6が再度吸引ボタン34bを操作すると、観察プレート25に所定量の懸濁液が吐出される。
 第2ロボット7は上記細胞の載置された観察プレート25を受渡しテーブル42に載置し、第1ロボット6はマイクロピペット34のイジェクトボタン34cを操作して、装着されていたマイクロピペットノズル35を遠沈管22に落下させる。
 その後第1ロボット6は当該マイクロピペット34を上記ノズル交換手段102に移動させて、新たなマイクロピペットノズル35を装着させ、当該新たなマイクロピペットノズル35が装着されたマイクロピペット34を再度試液供給手段101に移動させる。
 第2ロボット7は試薬容器32を試薬容器ホルダ104より保持して試液供給手段101に移動させ、第1ロボット6がマイクロピペット34を操作することにより、所定量の試薬を吸引させる。
 次に、第2ロボット7は観察プレート25をマイクロピペット34の下方に移動させ、第1ロボット6がマイクロピペット34を操作することにより、観察プレート25の細胞に上記試薬を供給する。
 その後、第2ロボット7は当該観察プレート25を上記観察手段11に移動させて、上記細胞の観察を行う。
 一方、第1ロボット6はマイクロピペット34を操作して、使用したマイクロピペットノズル35を遠沈管22に回収し、上記ノズル交換手段102にマイクロピペット34を移動させる。
 上記インキュベータ4は、内部空間が細胞の培養に最適な温度や湿度に維持され、上記アイソレータ2とインキュベータ4とは接続手段111によって接続されている。このように、本実施例の自動培養操作装置1は、インキュベータ4を備え、被培養物を培養する培養装置として構成されている。
 またインキュベータ4は図2に示す台車4aによって移動可能に設けられ、アイソレータ2より離隔した位置において細胞の培養を行うことが可能となっている。
 またインキュベータ4の内部には所定個数のディッシュ21を収容する図示しないラックと、当該ラックから所定のディッシュ21を取り出してアイソレータ2内の搬出入手段12に受け渡す搬送手段4bとが設けられている。
 上記搬送手段4bは上記アタッチメント33の保持部33bと同じ形状を有した保持部4cを備え、当該保持部4cを昇降させることで、上記ラックの所要の位置にディッシュ21を収容するようになっている。
 図1に示すようにアイソレータ2の側面における上記2つのインキュベータ4が接続される位置には、それぞれ第1、第2連通口部2dA、2dBが形成され、これら第1、第2連通口部2dA、2dBは連通口開閉部材としてのアイソレータ側シャッタ112によって開閉されるようになっている。
 一方、上記インキュベータ4の側面には搬出入口部4dが形成され、当該搬出入口部4dは搬出入口開閉部材としてのインキュベータ側シャッタ113によって開閉されるようになっている。
 以下、図15を用いて第1連通口部2dAに接続される接続手段111について説明すると、当該接続手段111は、アイソレータ2の連通口部2dAおよびインキュベータ4の搬出入口部4dの周囲を囲繞して、アイソレータ2の側面とインキュベータ4の側面に気密を保った状態で設けられる筒状の連結部材114と、アイソレータ2とインキュベータ4とを接続状態に維持する接続機構115とを備えている。
 上記アイソレータ2の連通口部2dAには環状の中空シール部材116が設けられるとともに、上記アイソレータ側シャッタ112は駆動手段としてのエアシリンダ112aによってガイドレール112bに案内されて昇降可能に設けられている。
 上記アイソレータ側シャッタ112が上記連通口部2dの高さに位置すると、上記中空シール部材116にエアが供給されて膨張し、アイソレータ側シャッタ112に密着して密封するようになっている。
 インキュベータ側シャッタ113は駆動手段としての開閉用モータ117の駆動力によりガイドレール118に案内されて昇降してインキュベータ4の搬出入口部4dを開閉し、またロック用モータ119によって上昇状態が維持されるようになっている。
 上記インキュベータ側シャッタ113が搬出入口部4dの高さに位置する際、当該搬出入口部4dに設けた環状の中空シール部材120にエアを供給して膨張させると、インキュベータ側シャッタ113に密着して密封されるようになっている。
 上記開閉用モータ117の回転軸はインキュベータ4の側壁を貫通しており、当該回転軸の先端には略U字形の第1凹部121aが形成されたアーム121が設けられている。
 上記第1凹部121aは上記インキュベータ側シャッタ113の側部下方に設けられた第1突起113aに係合し、図16(a)に示す閉鎖状態と(b)に示す開放状態との間では、上記開閉用モータ117がアーム121を上下に揺動させて、上記第1凹部121aに連動させて上記第1突起113aを押圧し、インキュベータ側シャッタ113を昇降させるようになっている。
 上記ロック用モータ119の回転軸もインキュベータ4の側壁を貫通しており、当該回転軸により回転される回動体122には略U字形の第2凹部122aが形成されている。これに対し、上記インキュベータ側シャッタ113の側部には上記第2凹部122aに係合する第2突起113bが形成されている。
 そして図16(a)に示す上昇状態では、上記ロック用モータ119により第2凹部122aが横方向を向き、これにより第2突起113bの上下方向への移動を阻止して、インキュベータ側シャッタ113の閉鎖状態を維持するようになっている。
 開放状態とするには、上記ロック用モータ119が上記第2凹部122aを下方に向け、第2突起113bの下方への移動を許容し、インキュベータ側シャッタ113が開放可能となる。
 このように、アイソレータ2の連通口部2d、インキュベータ4の搬出入口部4dとも、駆動手段を備えて開閉作動されるシャッタを開閉部材として採用しているため、自動化に対応可能であり、開放時に第2ロボット7や搬出入手段12の可動に干渉することはない。
 上記連結部材114は、上記アイソレータ2の側面に固定されるとともに上記アイソレータ2の第1、第2連通口部2dA、2dBのそれぞれを囲繞するように設けられた筒状の部材であって、その先端には環状シール部材123が設けられ、インキュベータ4の搬出入口部4dの外壁側の周囲を囲繞して密封するようになっている。
 これにより、当該連結部材114によって連結されたアイソレータ2とインキュベータ4との間には、外部雰囲気から隔離された除染空間Sが形成されるようになっている。
 上記接続機構115は、アイソレータ2の側面に設けられた4つの係合ピン115aと、上記インキュベータ4の側面に設けられて上記係合ピン115aに係合する4つの係合フック115bと、係合ピン115aを出退させるエアシリンダ115cから構成されている。
 上記係合ピン115aを突出させて、すべての係合ピン115aが上記係合フック115bに係合することで、アイソレータ2に対しインキュベータ4が連結保持され、上記連結部材114の内側に密閉された除染空間Sを形成する。
 そして、第1、第2連通口部2dA、2dBに対応する各接続手段111の連結部材114には、供給通路124を介して上記除染ガス供給手段38から除染ガスが供給されるようになっている。
 上記供給通路124は、第1連通口部2dAに設けた連結部材114に接続される通路124Aと、第2連通口部2dBに設けた連結部材114に接続される通路124Bとに分岐され、各々に制御手段5によって制御される開閉弁125が設けられ、これによりいずれか一方の接続手段111に除染ガスを供給するための切換手段が構成されている。
 このような構成により、上記供給通路124を介していずれか一方の連結部材114に除染ガスを供給すると、当該連結部材114によって形成された除染空間Sに除染ガスが充満し、外部雰囲気に露出していたアイソレータ側シャッタ112やインキュベータ側シャッタ113の表面を除染できるようになっている。
 除染空間Sに除染ガスが供給され、所定時間が経過すると、当該除染空間S内の除染ガスは各連結部材114に設けた排出通路126の開閉弁127を開いて、当該除染空間Sの除染ガスを触媒128により無害化して排出し、その後、所定時間にわたって無菌エアを流してエアレーションが行われるようになっている。
 そして、このような除染ガスによる除染は、インキュベータ4の接続時と離脱時に実施されるようになっている。
 ここで、本実施例では上記連結部材114によってアイソレータ2の第1、第2連通口部2dA、2dBおよびインキュベータ4の搬出入口部4dを囲繞する狭小な除染空間Sを形成し、これを除染ガスによって除染するため、容積の大きな空間を除染する場合に比べて短時間で除染が行えるようになっている。
 上記アイソレータ2とインキュベータ4との間でディッシュ21の受け渡しを行う搬出入手段12は、上記2つの連通口部2dA,2dBの近傍にそれぞれ設けられている。
 上記搬出入手段12は、ディッシュ21を載置するディッシュ載置部12aと、当該ディッシュ載置部12aを水平方向に移動させる移動手段12bとによって構成されている。
 上記ディッシュ載置部12aはロータリストッカ8におけるディッシュ載置テーブル53のディッシュ載置部60と同じ形状を有しており、上記移動手段12bによって第2ロボット7の作業範囲内とインキュベータ4の内部との間で往復動するようになっている。
 上記ディッシュ載置部60が上記移動手段12bによって第2ロボット7側に位置すると、上記第2ロボット7が保持したアタッチメント33を介してディッシュ21の受け渡しが行われ、当該位置が第2ロボット7による上記インキュベータ4に対するディッシュ21の搬出入位置となる。
 そしてディッシュ載置部60がインキュベータ4の内部に位置すると、当該インキュベータ4の搬送手段4bとの間でディッシュ21の受け渡しを行うようになっている。
 以下、上記構成を有する自動培養操作装置1の動作について説明する。
 上記第1、第2ロボット6、7を用いた培養操作を行う前に、上記パスボックス3からアイソレータ2に上記器具類や容器類を搬入し、またこれら器具類および容器類を所定の位置に配置する準備作業を、作業者による手作業によって行う。
 まず作業者は上記パスボックス3の外部開閉扉3aを開放して、器具類や容器類が収容された包装袋Bを当該パスボックス3内のフック3bにぶら下げ、包装袋Bの外面を除染ガス供給手段38の除染ガスによって除染する。
 作業者はアイソレータ2およびパスボックス3に設けられた搬出入用グローブ40aを装着し、上記パスボックス3内の包装袋Bをアイソレータ2の作業室2a内に搬入する。
 その際、作業者は上記ロータリストッカ8の切替手段を非伝達状態として各テーブル52~55を手動で回転させ、上記ディッシュ21や遠沈管22を各テーブル52~55に収容し、また上記ピペット23をピペットホルダ75に載置する。
 また作業者は、上記アスピレータノズル24を上記移動テーブル41に載置し、さらに器具類や容器類を取り出した後の包装袋Bを廃棄箱77に廃棄する。
 次に、作業者はパスボックス3の外部開閉扉3aより検体容器28や液体類をパスボックス3内に搬入し、さらに上記搬出入用グローブ40aを装着してこれら検体容器28や液体類を収容した液体容器29~32を消毒液によりふき取る。
 続いて作業者は上記開閉扉39を開放して上記液体類をアイソレータ2に搬入し、具体的には上記ロータリストッカ8に検体容器28および試薬容器32を収容し、上記培地容器29、PBS容器30、トリプシン容器31をそれぞれ上記移動テーブル41に載置する。
 このとき、作業者は上記遠沈管22や検体容器28や各液体容器29~32に装着されていたスクリュー式のキャップを、回転操作が不要なカバーキャップ26へと交換する。
 作業者が上記移動テーブル41を手動で液体供給手段10の前方まで移動させると、作業者はさらに上記配置用グローブ40bを装着して、当該移動テーブル41上のアスピレータノズル24をアスピレータ73に装着し、また上記液体容器29~31を所定の位置に配置する。
 なお、上記アタッチメント33およびマイクロピペット34は予めアイソレータ2に載置されているが、これらを上記包装袋Bに収容して、培養操作を行うたびに外部より搬入するようにしてもよい。
 このように、上記器具類や容器類および液体類の搬入作業および配置作業は、ロボットによる動作では煩雑な作業となるため、作業者により迅速に行うようになっている。
 これらの準備作業が終了すると、上記制御手段5によって上記第1、第2ロボット6、7や液体供給手段10等による自動的な培養操作が可能となるが、各培養操作を行う前に、上記制御手段5の制御によって以下の作業が行われる。
 まず、制御手段5は上記第1ロボット6を制御して、上記ピペットホルダー75に載置されたピペット23を上記液体供給手段10の上記第1~第3液体給排手段71A~71Cにそれぞれ装着させる。
 これと同時に、上記制御手段5は上記ロータリストッカ8の切替手段58を伝達状態に復帰させる動作を行う。具体的には、駆動手段57によってプーリ62を回転させ、上記準備作業によって上記切替手段58が非伝達状態のままであった場合には、上記プーリ62が上記連結部材61に対して相対的に回転するが、その後さらにプーリ62が回転すると、上記ボール63が当該プーリの凹部62aに嵌合して、上記連結部材61が上方に移動して上記伝達状態となる。
 このようにして切替手段58が伝達状態となったら、制御手段5はさらに駆動手段57によって回転軸51を回転させ、当該回転軸51に設けた検出片59aを上記回転位置センサ59によって認識し、かつ各テーブル52~55に作業者が載置した容器類や器具類を上記器具類センサ57によって認識する。
 これにより、制御手段5は各テーブル52~55の回転位置を認識するとともに、各テーブル52~55に載置されている器具類や容器類の位置や有無を記憶する。
 以下上記培養操作として、細胞を培地とともに培養容器に収容させる播種作業、古くなった培地を交換する培地交換作業、一つの培養容器の細胞を複数の新たな培養容器に分配する継代作業、培養の終了した細胞を回収する回収作業について説明する。
 なお、上記培養操作における上記第1、第2ロボット6、7や液体供給手段10等の動作は、予め制御手段5に登録された動作に従って行われるが、下記動作はあくまでも一例であり、異なる動作順序によって培養操作を行うことも、上記記載した作業以外の作業も行うことも可能であることは言うまでもない。
 図17は播種作業のフローを示し、上記パスボックス3からアイソレータ2には、容器類としてディッシュ21および遠沈管22が、器具類としてピペット23、アスピレータノズル24が、液体類として、培地容器29、PBS容器30、試薬容器32がそれぞれ搬入されている。また、これらとは別に細胞を収容した検体容器28が搬入される。
 まず、検体容器28の細胞を複数の遠沈管22に分注する作業を行う(A-1)。
 第1ロボット6は上記検体容器28をロータリストッカ8から取り出し、これを液体供給手段10の第3液体給排手段71Cまで移動させ、ピペット23に検体容器28の細胞を含む液体を吸引する。
 第1ロボット6は、空になった検体容器28を廃棄箱77に廃棄し、続いてロータリストッカ8から空の遠沈管22を取り出してこれを上記第3液体給排手段71Cに移動させ、ピペット23から当該遠沈管22に所定量の細胞を分注する。
 そして第1ロボット6は細胞の分注された遠沈管22を上記遠沈管ホルダ43に支持させる。
 次に、上記遠沈管22にPBSを分注する作業を行う(A-2)。
 上記液体供給手段10の上記第2液体給排手段71Bと第2容器保持手段72Bとが作動して、ピペット23に所定量のPBSを吸引する。
 続いて第1ロボット6は上記遠沈管ホルダ43に支持された遠沈管22を取り出し、これを上記第2液体給排手段71Bに移動させ、ピペット23から所定量のPBSを当該遠沈管22に吐出する。
 そして第1ロボット6はPBSの分注された遠沈管22を再度遠沈管ホルダ43に支持させる。
 次に、上記PBSの分注された細胞を遠心分離する作業を行う(A-3)。
 第2ロボット7は上記遠沈管ホルダ43に支持された遠沈管22を取り出してこれを遠心分離手段9に収容し、その際第2ロボット7および液体供給手段10によって新たな遠沈管22からカウンターウェイトを作成する。
 続いて遠心分離手段9が作動し、これにより遠沈管22内の液体が下方の細胞を含む液体と上方の上澄みとに分離する。
 遠心分離が終了したら、第2ロボット7は当該遠心分離手段9より遠沈管22を取り出してこれを上記アスピレータ73まで移動させ、アスピレータ73は遠沈管22の上澄みを吸引除去する。
 そして第2ロボット7は上澄みの除去された遠沈管22を遠沈管ホルダ43に支持させる。
 次に、上記遠沈管22内の細胞についての検査を行う(A-4)。
 上記液体供給手段10の上記第1液体給排手段71Aおよび第1容器保持手段72Aが作動し、上記ピペット23に所定量の培地を吸引する。
 続いて第1ロボット6は上記遠沈管ホルダ43の遠沈管22を取り出してこれを上記第1液体給排手段71Aへと移動させ、ピペット23から所定量の培地を当該遠沈管22に吐出する。
 そして第1ロボット6は培地の分注された遠沈管22を遠沈管ホルダ43に支持させる。
 その後、上記第1、第2ロボット6、7によって観察プレート25を保持し、上記検査手段11において上述した手順に基づき上記遠沈管22内の細胞の一部について検査を行う。
 検査のために一部の細胞が採取された遠沈管22は、再度上記遠沈管ホルダ43に支持される。
 次に、培地と細胞とによる懸濁液を作成し、これをディッシュ21に移す作業を行う(A-5)。
 第1ロボット6はB-1の作業において検体容器28から細胞を含む液体を吸引する際に使用した上記第3液体給排手段71Cのピペット23を、ピペットホルダ75に収容された新たなピペット23に交換し、使用済みのピペット23を廃棄箱77に廃棄する。
 第2ロボット7は遠沈管ホルダ43の遠沈管22を取り出してこれを第3液体給排手段71Cに移動させ、ピペット23に遠沈管22内の液体の吸い込みと吐出を繰り返して懸濁液を作成し、これをさらにピペット23に吸引する。
 第2ロボット7は、空になった遠沈管22を遠沈管ホルダ43を介して第1ロボット6に受け渡し、これを廃棄箱77に廃棄する。
 次に第1ロボット6はロータリストッカ8からアタッチメント33を使って新たな空のディッシュ21を取り出し、これを上記第3液体給排手段71Cへと移動させ、ピペット23から当該ディッシュ21に上記懸濁液を吐出する。
 そして第1ロボット6は、懸濁液の分注されたディッシュ21をアタッチメント33ごと受渡しテーブル42に載置する。
 最後に、上記懸濁液の分注されたディッシュ21を上記インキュベータ4に搬入する作業を行う(A-6)。
 まず、上記第2ロボット7は受渡しテーブル42に載置されたディッシュ21をアタッチメント33ごと保持し、当該ディッシュ21を上記搬出入手段12に載置する。
 アイソレータ側シャッタ112およびインキュベータ側シャッタ113を開放させると、搬出入手段12は当該ディッシュ21をインキュベータ4の内部へと移動させて、インキュベータ4の搬送手段4bへと受け渡す。
 ここで、上記A-5にかかる懸濁液を分注する作業では、第3液体給排手段71Cに吸引した懸濁液を複数個のディッシュ21に分注するようになっており、このため上記A-5およびA-6の作業を繰り返すことにより、所定数のディッシュ21をインキュベータ4に収容する。
 図18は培地交換作業のフローを示し、アイソレータ2に接続されたインキュベータ4には培養された細胞を収容したディッシュ21が収容され、アイソレータ2には、器具類としてピペット23およびアスピレータノズル24が搬入され、液体類として培地容器29が予め搬入されている。
 まず、インキュベータ4内のディッシュ21を取り出す作業を行う(B-1)。
 インキュベータ側シャッタ113およびアイソレータ側シャッタ112が開放され、搬出入手段12がディッシュ載置部12aをインキュベータ4の内部に移動させる。
 搬出入手段12がインキュベータ4内の搬送手段4bよりディッシュ21を受け取ると、搬出入手段12は当該ディッシュ21をアイソレータ2内に移動させ、第2ロボット7が当該ディッシュ21を受け取る。
 次に、上記ディッシュ21内の古い培地を新たな培地に交換する作業を行う(B-2)。
 上記ディッシュ21を保持した上記第2ロボット7は、当該ディッシュ21を上記アスピレータ73に移動させ、アスピレータ73によって当該ディッシュ21内の古い培地を吸引除去する。
 一方、上記液体供給手段10における第1液体給排手段71Aおよび第1容器保持手段72Aが作動し、ピペット23が所定量の培地を吸引する。
 その後、第2ロボット7は上記使用済みの培地が除去されたディッシュ21を第1液体給排手段71Aに移動させ、ピペット23から当該ディッシュ21に所定量の培地を吐出し、培地の交換が終了する。
 最後に、上記ディッシュ21をインキュベータ4に搬入する作業を行う(B-3)。
 第2ロボット7は上記ディッシュ21を、可動範囲の受け渡し位置に位置させた搬出入手段12のディッシュ載置部12aに受け渡し、搬出入手段12は当該ディッシュ21をインキュベータ4の内部に移動させ、インキュベータ4では上記搬送手段4bが当該ディッシュ21を所定のラックに収容する。
 そして制御手段5はインキュベータ4内のディッシュ21の全てについて、上記B-1~B-3の各作業を繰り返し、すべてのディッシュ21の培地交換を行う。
 図19は継代作業のフローを示し、このときアイソレータ2に接続されたインキュベータ4には細胞を収容したディッシュ21が収容され、またアイソレータ2には、容器類としてディッシュ21、遠沈管22、器具類としてピペット23、アスピレータノズル24が搬入され、液体類として培地容器29、トリプシン容器31、試薬容器32が搬入されている。
 まず、インキュベータ4内のディッシュ21を搬出する作業と(C-1)、当該ディッシュ21より古い培地を除去する作業を行い(C-2)、これらの動作は培地交換作業のB-1、B-2と同様の動作であるため詳細な説明は省略する。
 そして培地の除去されたディッシュ21はアタッチメント33ごと受渡しテーブル42に載置される。
 次に、ディッシュ21にトリプシンを分注する作業を行う(C-3)。
 まず第2ロボット7は容器ホルダ76ごとトリプシン容器31を取り出してこれを第2液体給排手段71Bに移動させ、ピペット23にトリプシンを吸引する。この継代作業ではPBSを使用しないため、本作業では第2液体給排手段71Bにトリプシンを吸引させることができる。
 その後、第1ロボット6が受渡しテーブル42上のディッシュ21を保持してこれを第2液体給排手段71Bに移動させ、第2液体給排手段71Bは当該ディッシュ21に上記ピペット23のトリプシンを吐出する。
 そして第1ロボット6は、トリプシンの分注されたディッシュ21をアタッチメント33ごと加温庫44に収容し、当該加温庫44ではディッシュ21を所定の温度まで加温する。
 次に、細胞とトリプシンとからなる懸濁液をひとつの遠沈管22に集約する作業を行う(C-4)。
 まず第2ロボット7は加温庫44から所定温度に加温されたディッシュ21を取り出す。その際、第2ロボット7は上記ディッシュ21を加温庫44のタッピング手段46に移動させ、タッピング手段46では当該ディッシュ21に振動を与えてディッシュ21の底に張り付いた細胞を剥離させる。
 続いて、第2ロボット7は上記ディッシュ21を上記第3液体給排手段71Cに移動させ、ピペット23によりディッシュ21内の細胞とトリプシンとを吸引および排出を繰り返して懸濁液を作成し、これをピペット23に吸引する。
 そして第2ロボット7は、空になったディッシュ21を第1ロボット6に受け渡し、廃棄箱77に廃棄する。
 一方、第1ロボット6はロータリストッカ8から空の遠沈管22を保持してこれを第3液体給排手段71Cに移動させ、ピペット23から懸濁液を当該遠沈管22に吐出する。
 第2ロボット7は、上記加温庫44に収容されているディッシュ21に対して上記動作を繰り返し、複数個のディッシュ21に収容された懸濁液を上記第1ロボット6が保持する遠沈管22に集約する。
 そして遠沈管22に所定量の懸濁液が収容されると、第1ロボット6は当該遠沈管22を遠沈管ホルダ43に支持させる。
 続いて、遠沈管22内の懸濁液を遠心分離する作業(C-5)、細胞の検査をする作業(C-6)、培地との懸濁液を作成してこれをディッシュ21に分注する作業(C-7)、上記ディッシュ21をインキュベータ4に搬入する作業(C-8)をそれぞれ行う。
 これらの作業は上記播種作業におけるA-3~A-6と同様の作業であるが、上記C-6にかかる細胞の検査をする作業では、上記制御手段5に設けた判定手段によって、懸濁液を分配するディッシュ21の個数を決定する。
 具体的には、上記C-6にかかる検査の作業において、上記検査手段11において観察プレート25上における細胞の生存数を測定し、この生存数に基づいて新たに必要となる培地の量を求め、これに基づいてC-7の動作を上記通常継代モードもしくは優良継代モードで行うかを決定する。
 上記判定手段がC-7の分注作業を上記通常継代モードで行うと決定すると、制御手段5は第1の培養容器としての一つの遠沈管22に集約された細胞を含む懸濁液を、例えば10個の第2の培養容器としてのディッシュ21に分注するよう、上記第1、第2ロボット6、7や液体供給手段10を制御する。
 この時、制御手段5は第1液体給排手段71Aおよび第1容器保持手段72Aを制御して、第1液体給排手段71Aのピペット23には、上記10個のディッシュ21に分注する培地の合計した量が吸引される。
 一方、判定手段がC-7の分注作業を優良継代モードで行うと決定すると、制御手段5は遠沈管22に収容された細胞を含む懸濁液を、例えば15個のディッシュ21に分注させる。
 その際も、制御手段5は第1液体給排手段71Aおよび第1容器保持手段72Aを制御して、第1液体給排手段71Aのピペット23に上記15個のディッシュ21に分注する培地の合計した量が吸引される。なお、一度に全量の培地を吸引できない場合には、複数回に分けて吸引および吐出を行うこともでき、また、ディッシュ21毎に分注するものとして、ディッシュ21の個数と同じだけ同じ操作を繰り返すように上記第1、第2ロボット6、7や液体供給手段10を制御するようにしても良い。
 なお、新たに必要な培地の量は、計測した生存数に所定の係数を掛けて求めることができ、求めた培地の量に対して一つのディッシュ21に収容させる培地の量から、分配するディッシュ21の数を求めるようにしてもよい。
 このように、継代作業ではインキュベータ4より取り出したディッシュ21の数よりも多くのディッシュ21に細胞を分配するため、C-8にかかるインキュベータ4へとディッシュ21を搬入する作業において、1台のインキュベータ4にすべてのディッシュ21を収容できない時には、他のインキュベータ4にディッシュ21を収容するようになっている。
 その際、培養操作開始時にアイソレータ2に接続されていた2台のインキュベータ4にすべてのディッシュ21を収容できない時には、1台目のインキュベータ4に対してディッシュ21の収容が完了したら、2台目のインキュベータ4と作業室2aとが連通している間に、直ちに当該インキュベータ4の接続手段111の除染空間Sを除染して離脱させ、3台目のインキュベータ4を接続する。
 そして2台目のインキュベータ4が作業室2aと連通可能な状態でディッシュ21の搬入を行う間に、当該3台目のインキュベータ4の接続手段111において上記除染空間Sの除染を行うことで、当該3台目のインキュベータ4に対しても作業室2aと連通可能な状態とすることで、ディッシュ21の搬入を行うことができる。
 その際、上述したように本実施例の接続手段111は狭小な除染空間を除染すればよいことから、上記1台目のインキュベータ4の離脱と3台目の接続を迅速に行うことができ、効率的に継代作業を行うことが可能となっている。
 また、インキュベータ4を離脱させる際に除染を行うことで、作業室2a内から検体固有のウイルスなどが外部に漏出することが防止され、また接続させる際に除染を行うことで、外部の菌や微生物が作業室2aに持ち込まれることを防止する。
 図20は回収作業のフローを示し、アイソレータ2に接続されたインキュベータ4には細胞の収容されたディッシュ21が保管され、また上記パスボックス3からは、容器類としてディッシュ21、遠沈管22、器具類としてピペット23、アスピレータノズル24が搬入され、液体類、培地容器29、トリプシン容器31、試薬容器32がそれぞれ搬入されている。
 回収作業では、インキュベータ4からディッシュ21を搬出する作業(D-1)、ディッシュ21より古い培地を除去する作業(D-2)、当該ディッシュ21にトリプシンを分注する作業(D-3)、懸濁液を遠沈管22に分注する作業(D-4)、遠沈管22の懸濁液を遠心分離する作業(D-5)をそれぞれ行う。これらの作業は上記継代作業のC―1~C-7と同様の作業であるため、詳細な説明は省略する。
 そして上記D-5にかかる遠心分離作業の結果、上澄みの除去された細胞を収容した複数の遠沈管22が得られ、これらは遠沈管ホルダ43に支持される。
 続いて、遠心分離された細胞を一つの遠沈管22に集約する作業を行う(D-6)。
 上記第1液体給排手段71Aおよび第1容器保持手段72Aにより、ピペット23に培地を吸引し、第2ロボット7は上記遠沈管ホルダ43の遠沈管22を取り出してこれを上記第1液体給排手段71Aに移動させ、ピペット23から当該遠沈管22に培地を吐出する。
 そして第2ロボット7は当該培地の分注された遠沈管22を遠沈管ホルダ43に支持させる。
 一方第1ロボット6は、予め第3液体給排手段71CにおいてD-2にかかる培地を除去する際に使用したピペット23を、ピペットホルダ75に収容された新たなピペット23に交換し、使用済みのピペット23は廃棄箱77に廃棄する。
 続いて第1ロボット6は、上記遠沈管ホルダ43から上記培地の分注された遠沈管22を取り出してこれを第3液体給排手段71Cに移動させ、ピペット23に遠沈管22内の培地と細胞とを吸引および排出を繰り返して懸濁液を作成し、これをピペット23に吸引する。
 そして第1ロボット6は使用済みの遠沈管22を廃棄箱77に廃棄する。
 続いて第1ロボット6は新たな遠沈管22をロータリストッカ8から取り出してこれを第3液体給排手段71Cに移動させ、ピペット23から当該新たな遠沈管22に懸濁液を吐出する。
 制御手段5は、上記D-5の作業において遠沈管ホルダ43に支持されたすべての遠沈管22の全てについて上記懸濁液を作成し、これを上記第1ロボット6が保持する1本の新たな遠沈管22に集約する。
 その際、インキュベータ4に収容されていた全ての細胞を、1サイクルの上記D-1~D-5の作業では遠心分離手段9において処理できない場合、上記D-6の作業を行う間に、2サイクル目のD-1~D-5の作業を繰り返し、当該2サイクル目の作業で得られた懸濁液についても上記1本の遠沈管22に集約する。
 そして第1ロボット6は、上記懸濁液の分注された遠沈管22を遠沈管ホルダ43に支持させる。
 次に、上記1本の遠沈管22に集約された細胞を再度遠心分離する作業を行う(D-7)。
 第2ロボット7は上記懸濁液を収容した遠沈管22を遠沈管ホルダ43より取り出してこれを上記遠心分離手段9に収容し、遠心分離手段9は当該遠沈管22内の懸濁液を遠心分離する。
 遠心分離が終了すると、第2ロボット7は遠沈管22を取り出してこれを上記アスピレータ73に移動させ、アスピレータ73は遠沈管22より上澄みを除去する。
 次に、上記上澄みの除去された遠沈管22内の細胞について検査する作業を行う(D-8)。
 上記D-8に係る検査作業は上記継代作業にかかるC-6の検査作業と同様であるので詳細な説明については省略する。
 最後に、細胞を回収する作業を行う(D-9)。
 上記検査が終了すると、第1ロボット6は遠沈管22をロータリストッカ8に収容し、制御手段5は上記第1、第2ロボット6、7等の動作を停止させる。
 その後、作業者は搬出入用グローブ40aを装着し、上記細胞の収容された遠沈管22をパスボックス3を介して搬出するようになっている。
 上記実施例に示すように、本実施例の自動培養操作装置1では、上記アイソレータ2の作業室2aにロボットを備え、ロータリストッカ8に対応させて第1ロボット6を、上記インキュベータ4、遠心分離手段9に対応させて第2ロボット7をそれぞれ設けている。
 これにより、ロータリストッカ8に収納した容器類については上記第1ロボット6によって取扱い、またインキュベータ4への培養容器の搬出入また遠心分離手段9への遠沈管のセットについては第2ロボット7によって取り扱うことができ、作業の分担による効率的な培養操作を行うことができる。
 その際、上記第1ロボット6と第2ロボット7との間に、これらの間で容器類を受け渡すための、仮置き部としての受渡しテーブル42、遠沈管ホルダ43、加温庫44を設けて、上記第1ロボット6と第2ロボット7とはこれらの間で相互に容器類を受け渡すようになっている。
 このため、例えば一方のロボットが作業中であっても、他のロボットが仮置き部に容器類を載置することにより、当該他のロボットは別の作業を行うことが可能となる。
 また本実施例では、上記アイソレータ2の作業室2aにおけるパスボックス3の近傍にロータリストッカ8を配置するとともに、上記パスボックス3およびロータリストッカ8に対して作業が可能な搬出入用グローブ40aを設けている。
 このため、パスボックス3からアイソレータ2に上記容器類を搬入しロータリストッカ8に収納する際には、上記搬出入用グローブ40aを装着した作業者によってこれらの搬入作業を行うことができ、ロボットでは煩雑となる作業を迅速に行うことができる。
 1 自動培養操作装置     2 アイソレータ
 2a 作業室         3 パスボックス
 4 インキュベータ      5 制御手段
 6 第1ロボット       7 第2ロボット
 8 ロータリストッカ     9 遠心分離手段
 10 液体給排手段      11 検査手段
 12 搬出入手段       33 アタッチメント
 34 マイクロピペット    40 グローブ
 40a 搬出入用グローブ   40b 配置用グローブ
 42 受渡しテーブル     43 遠沈管ホルダ
 44 加温庫         52 アタッチメント載置テーブル
 53 ディッシュ載置テーブル 54 遠沈管支持テーブル
 55 検体容器支持テーブル  57 駆動手段
 58 切替手段        60 ディッシュ載置部
 71A~71C 第1~第3液体給排手段
 72A,72B 第1、第2容器保持手段
 73 アスピレータ      77 廃棄箱
 111 接続手段       114 連結部材

Claims (5)

  1.  内部に形成された作業室が無菌状態に維持されるアイソレータと、内部に収容した被培養物を培養するインキュベータとを備え、上記アイソレータとインキュベータとを接続して構成した培養装置において、
     上記アイソレータは、作業室をインキュベータ内部と連通させるための連通口部と、この連通口部を開閉する連通口開閉部材とを備え、上記インキュベータは、被培養物を搬出入するための搬出入口部と、この搬出入口部を開閉する搬出入口開閉部材とを備え、
     上記連通口部と上記搬出入口部とをそれぞれ囲繞した状態で上記アイソレータとインキュベータとを連結する筒状の連結部材と、当該連結部材の内側に除染ガスを供給する除染ガス供給手段とを備え、
     上記アイソレータは少なくとも2つの連通口部を有するとともに、各連通口部に対してそれぞれ上記連結部材を設けて各々にインキュベータを連結し、
     一つの連通口部とこれに連通するインキュベータの搬出入口部とを開放することで作業室と当該インキュベータの内部とが連通可能な状態で、他の連通口部と他のインキュベータの搬出入口部とを閉鎖して、上記連結部材の内側に形成された除染空間に除染ガスを供給して、当該除染空間に露出する部分の除染を行うことを特徴とする培養装置。
  2.  上記除染ガス供給手段を上記複数の連結部材に接続するとともに、いずれかの連結部材に対して選択的に除染ガスを供給する切換手段を設けたことを特徴とする請求項1に記載の培養装置。
  3.  上記連通口開閉部材および搬出入口開閉部材は、いずれも駆動手段により開閉作動されるシャッタからなることを特徴とする請求項1または請求項2のいずれかに記載の培養装置。
  4.  上記アイソレータの作業室内に、上記複数の連通口部の各々に対応してそれぞれ被培養物を搬出入させる搬出入手段を設け、
     当該搬出入手段は上記連通口部および搬出入口部を通過してインキュベータ内に被培養物を移送することを特徴とする請求項1ないし請求項3のいずれかに記載の培養装置。
  5.  上記インキュベータがアイソレータに対して着脱可能であることを特徴とする請求項1ないし請求項4のいずれかに記載の培養装置。
PCT/JP2015/067025 2014-06-30 2015-06-12 培養装置 WO2016002479A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/322,831 US20170137770A1 (en) 2014-06-30 2015-06-12 Culturing device
EP15815550.7A EP3162882A4 (en) 2014-06-30 2015-06-12 Culturing device
CA2953761A CA2953761A1 (en) 2014-06-30 2015-06-12 Culturing device in which an inside of the culturing device is maintained in a sterile state
KR1020177001736A KR102372535B1 (ko) 2014-06-30 2015-06-12 배양 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135304A JP6465268B2 (ja) 2014-06-30 2014-06-30 培養装置
JP2014-135304 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002479A1 true WO2016002479A1 (ja) 2016-01-07

Family

ID=55019026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067025 WO2016002479A1 (ja) 2014-06-30 2015-06-12 培養装置

Country Status (6)

Country Link
US (1) US20170137770A1 (ja)
EP (1) EP3162882A4 (ja)
JP (1) JP6465268B2 (ja)
KR (1) KR102372535B1 (ja)
CA (1) CA2953761A1 (ja)
WO (1) WO2016002479A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854807B1 (ko) * 2016-10-12 2018-05-04 (주)로봇앤드디자인 무인 자동화 세포 배양 시스템

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358429B2 (ja) * 2014-06-30 2018-07-18 澁谷工業株式会社 自動培養操作装置
WO2016161169A2 (en) 2015-03-31 2016-10-06 Thrive Bioscience, Inc. Cell culture incubators with integrated cell manipulation systems
JP6577233B2 (ja) * 2015-05-11 2019-09-18 株式会社安川電機 生命工学・医薬品化学用自動作業セル、生命工学・医薬品化学用自動作業方法、及び自動作業セル
JP6550998B2 (ja) * 2015-07-17 2019-07-31 株式会社安川電機 処理方法、動作指令生成装置、コンピュータプログラム及び処理システム
JP6761161B2 (ja) * 2015-10-07 2020-09-23 シンフォニアテクノロジー株式会社 接続機構
JP2018138008A (ja) * 2017-02-24 2018-09-06 川崎重工業株式会社 細胞培養システム
US10835896B2 (en) * 2018-10-10 2020-11-17 SCL Biotech Ltd. Method and apparatus for cell dispensing and storage
WO2021220784A1 (ja) * 2020-04-30 2021-11-04 株式会社エアレックス インキュベータ
EP4368696A1 (de) * 2022-11-14 2024-05-15 ibidi GmbH Inkubationsvorrichtung und modulares inkubationssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278566A (ja) * 2004-03-30 2005-10-13 Shibuya Kogyo Co Ltd 無菌培養方法及びその装置
JP2011004613A (ja) * 2009-06-23 2011-01-13 Cellseed Inc 採取物調製用パーソナルボックスおよび採取物調製システムならびに採取物調製方法
JP2011050289A (ja) * 2009-08-31 2011-03-17 Shibuya Kogyo Co Ltd 接続装置
JP2014023455A (ja) * 2012-07-25 2014-02-06 Shibuya Kogyo Co Ltd 培養システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907389A (en) * 1973-12-12 1975-09-23 Marion E Cox Glove box chamber
JP2005034142A (ja) * 2003-07-02 2005-02-10 Olympus Corp 培養処理装置および自動培養装置
US7861540B2 (en) * 2008-01-25 2011-01-04 Hamilton Storage Technologies, Inc. Automated storage and retrieval system for storing biological or chemical samples at ultra-low temperatures
JP5399297B2 (ja) * 2010-02-26 2014-01-29 パナソニックヘルスケア株式会社 アイソレータ
JP5852792B2 (ja) * 2011-04-28 2016-02-03 パナソニックヘルスケアホールディングス株式会社 アイソレータ、培養物の移動方法
JP5890623B2 (ja) * 2011-06-28 2016-03-22 株式会社安川電機 液体処理システム及び液体処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278566A (ja) * 2004-03-30 2005-10-13 Shibuya Kogyo Co Ltd 無菌培養方法及びその装置
JP2011004613A (ja) * 2009-06-23 2011-01-13 Cellseed Inc 採取物調製用パーソナルボックスおよび採取物調製システムならびに採取物調製方法
JP2011050289A (ja) * 2009-08-31 2011-03-17 Shibuya Kogyo Co Ltd 接続装置
JP2014023455A (ja) * 2012-07-25 2014-02-06 Shibuya Kogyo Co Ltd 培養システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162882A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854807B1 (ko) * 2016-10-12 2018-05-04 (주)로봇앤드디자인 무인 자동화 세포 배양 시스템

Also Published As

Publication number Publication date
EP3162882A1 (en) 2017-05-03
KR102372535B1 (ko) 2022-03-10
JP2016013062A (ja) 2016-01-28
CA2953761A1 (en) 2016-01-07
JP6465268B2 (ja) 2019-02-06
KR20170020500A (ko) 2017-02-22
US20170137770A1 (en) 2017-05-18
EP3162882A4 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6358429B2 (ja) 自動培養操作装置
JP6465268B2 (ja) 培養装置
JP6762080B2 (ja) 自動培養操作装置
JP6361915B2 (ja) 自動培養操作装置
JP4300863B2 (ja) 無菌システムとその使用方法
US20180298419A1 (en) System and method for automatically venting and sampling a culture specimen container
JP5270967B2 (ja) 自動細胞培養装置
US20040185521A1 (en) Microorganism sampling method and microorganism sampling device
US20060115889A1 (en) Automatic cell cultivation apparatus having a multijoint robot
JP6566185B2 (ja) 自動培養操作装置
KR102168826B1 (ko) 검체 분리 장치 및 방법
JP2005034142A (ja) 培養処理装置および自動培養装置
WO1998000520A1 (fr) Appareil de test automatique
JP2005278565A (ja) 無菌培養方法及び無菌培養装置
JP4232007B2 (ja) 微生物採取方法及び微生物採取装置
JP4702030B2 (ja) シリンジのガスケット位置補正装置
JP2016064112A (ja) 樹脂製薬液容器の開栓方法、混注方法および混注装置
CN118749969A (zh) 一种指血自动采集化验系统
CN115011455A (zh) 核酸检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815550

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2953761

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15322831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001736

Country of ref document: KR

Kind code of ref document: A