WO2016002168A1 - インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法 - Google Patents

インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法 Download PDF

Info

Publication number
WO2016002168A1
WO2016002168A1 PCT/JP2015/003193 JP2015003193W WO2016002168A1 WO 2016002168 A1 WO2016002168 A1 WO 2016002168A1 JP 2015003193 W JP2015003193 W JP 2015003193W WO 2016002168 A1 WO2016002168 A1 WO 2016002168A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
ink
mixed solvent
inkjet
mixed
Prior art date
Application number
PCT/JP2015/003193
Other languages
English (en)
French (fr)
Inventor
悠子 川浪
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Priority to JP2016531093A priority Critical patent/JPWO2016002168A1/ja
Priority to US15/322,827 priority patent/US20170155046A1/en
Publication of WO2016002168A1 publication Critical patent/WO2016002168A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present invention relates to a component management method for ink stored in an ink jet device, an ink jet system to which the ink component is applied, and a manufacturing method for manufacturing an organic EL (Electro-Luminescence) display device using the ink jet system.
  • organic EL elements that have been researched and developed are light-emitting elements that utilize the electroluminescence phenomenon of organic materials, and a light-emitting layer is provided between an anode and a cathode.
  • an organic EL element is partitioned by banks made of an insulating material, and an anode, a light emitting layer, and a cathode are formed between the banks.
  • a charge injection layer, a charge transport layer, and the like are provided between the anode and the cathode as necessary.
  • the light emitting layer, the charge injection layer, the charge transport layer, and the like are collectively referred to as a functional layer.
  • the organic EL elements are arranged in a matrix to constitute an organic EL display device.
  • an ink jet system including an ink jet device is often used to form a functional layer.
  • an ink obtained by dissolving a functional material in a solvent is applied between a pair of banks formed on a substrate to form a functional layer.
  • the thickness of the functional layer of each organic EL element must be as thin as several tens to several hundreds nm. Therefore, control of the thickness and flatness of a more severe functional layer is required.
  • an ink is prepared in which a functional material is dissolved in a solvent in which a first solvent having a low viscosity and a low boiling point and a second solvent having a high viscosity and a high boiling point are mixed at an appropriate ratio.
  • a first solvent having a low viscosity and a low boiling point and a second solvent having a high viscosity and a high boiling point are mixed at an appropriate ratio.
  • Patent Document 1 describes that the flatness of the functional layer can be increased by appropriately adjusting the composition ratio of the first solvent and the second solvent.
  • ink is stored in an inkjet apparatus, and ink is ejected onto a substrate from a nozzle provided in an inkjet head in the inkjet apparatus.
  • the ink in the ink jet apparatus is stored in a negative pressure environment so as not to leak from the nozzle by its own weight.
  • the solvent may volatilize from the ink. Then, as the ink concentration increases with time, the viscosity of the ink may increase. When the viscosity of the ink increases, the discharge amount from the nozzle may change.
  • the thickness of the functional layer differs between the product manufactured using the initial ink and the product manufactured using the ink stored for a long time.
  • the electrical characteristics and optics of the organic EL display device are different. There is a concern that the characteristics may be greatly changed, resulting in a decrease in luminous efficiency and deterioration in chromaticity.
  • the concentration of the ink decreases, so that the increase in the viscosity of the ink can be suppressed, but the composition ratio of the first solvent and the second solvent in the ink is the initial. It was found that the composition ratio deviated from the ink.
  • an object of the present invention is to provide an ink component management method capable of suppressing a change in the composition ratio of a mixed solvent in ink stored in an ink jet apparatus.
  • an ink component management method is negative for an ink including a functional material, a first solvent, and a second solvent having both a boiling point and a viscosity higher than those of the first solvent.
  • an ink component management method that manages the components of the ink stored in the ink jet apparatus.
  • the same kind of solvent as the first solvent and the same kind of solvent as the second solvent are mixed at a mixing ratio according to the volatilization quantity per unit time of the first solvent and the volatilization quantity per unit time of the second solvent.
  • the prepared mixed solvent is prepared, and the prepared mixed solvent is added to the ink stored in the ink jet apparatus.
  • the volatilization amount per unit time of each solvent is also different. Therefore, if a mixed solvent that matches the composition ratio of each solvent contained in the initial ink is added, the composition ratio of the mixed solvent in the ink stored in the ink jet apparatus is equal to the mixed solvent in the initial ink. It will change from the composition ratio. Therefore, in the ink component management method according to one aspect of the present invention, a mixed solvent prepared at a mixing ratio corresponding to the volatilization amount per unit time of each solvent is added.
  • FIG. 1 is a schematic diagram illustrating an inkjet system 1 according to an embodiment.
  • 1 is a perspective view showing an inkjet device 100 according to an embodiment. It is a schematic diagram for demonstrating the relationship between temperature, a vapor pressure, and a boiling point. It is a schematic diagram for demonstrating the time-dependent change of the composition ratio of the 1st solvent in an ink, and a 2nd solvent. It is a graph which shows the relationship between the viscosity of an ink, and the elapsed days after ink introduction. It is a graph which shows the relationship between the viscosity of an ink when a mixed solvent is added to ink, and the additional amount of a mixed solvent.
  • 3 is an overall flowchart of the control unit 13.
  • FIG. 5 is a plan view showing an arrangement form of organic EL elements 1001R, 1001G, and 1001B in an organic EL display panel 3000.
  • FIG. FIG. 15 is a cross-sectional view showing an AA cross section of FIG. 14. It is process drawing which shows the manufacturing process of the organic electroluminescent display panel 3000.
  • ink containing a functional material, a first solvent, and a second solvent having both a boiling point and a viscosity higher than those of the first solvent is stored inside in a negative pressure environment.
  • the ratio R between the volatilization amount per unit time of the same solvent as the first solvent and the volatilization amount per unit time of the same solvent as the second solvent is the ratio R of the first solvent.
  • the mass per unit volume at room temperature of the first solvent and the same type of solvent is a
  • the molecular weight of the solvent of the first solvent and the same type and M a a vapor pressure at room temperature of the solvent of the first solvent and the same type and P a
  • the mass per unit volume of the same solvent as the second solvent at room temperature is b
  • the molecular weight of the same solvent as the second solvent is M b
  • the vapor pressure of the same solvent as the second solvent at room temperature is
  • the mixed solvent is added to the ink at an additional amount Q1 per unit time, and the additional amount Q1 is added to the ink in the ink jet apparatus without adding the mixed solvent.
  • the average time change rate of the viscosity of the ink when stored in the ink is C1
  • the average change rate of the viscosity of the ink with respect to the additional amount of the mixed solvent is C2
  • the ink jet apparatus includes an ink jet head having the nozzle, and an IN tank that is connected to the ink jet head and stores the ink to be supplied to the ink jet head.
  • the mixed solvent may be added to the ink stored in the ink jet apparatus by adding the mixed solvent to the IN tank.
  • the mixed solvent may be stored under a higher pressure environment than the ink stored in the ink jet apparatus.
  • the functional material may be a polymer organic material.
  • ink containing a functional material, a first solvent, and a second solvent having both a boiling point and a viscosity higher than those of the first solvent is stored inside in a negative pressure environment.
  • An ink jet device that discharges the ink that has been discharged to the outside through a nozzle, and a pipe connected to the ink jet device through a pipe, in accordance with a volatilization amount per unit time of the first solvent and a volatilization amount per unit time of the second solvent Controlled by a mixing ratio, a mixed solvent tank storing a mixed solvent in which the same type of solvent as the first solvent and the same type of solvent as the second solvent are mixed, a valve provided in the pipe, and the valve And a control unit for adding the mixed solvent stored in the mixed solvent tank to the ink jet apparatus.
  • the ratio R between the volatilization amount per unit time of the same solvent as the first solvent and the volatilization amount per unit time of the same solvent as the second solvent is the ratio R of the first solvent.
  • the mass per unit volume at room temperature of the first solvent and the same type of solvent is a
  • the molecular weight of the solvent of the first solvent and the same type and M a a vapor pressure at room temperature of the solvent of the first solvent and the same type and P a
  • the mass per unit volume of the same solvent as the second solvent at room temperature is b
  • the molecular weight of the same solvent as the second solvent is M b
  • the vapor pressure of the same solvent as the second solvent at room temperature is
  • the mixed solvent is added to the ink at an additional amount Q1 per unit time, and the additional amount Q1 is added to the ink in the ink jet apparatus without adding the mixed solvent.
  • the average time change rate of the viscosity of the ink when stored in the ink is C1
  • the average change rate of the viscosity of the ink with respect to the additional amount of the mixed solvent is C2
  • the ink jet apparatus includes an ink jet head having the nozzle, and an IN tank that is connected to the ink jet head and stores the ink to be supplied to the ink jet head.
  • the mixed solvent may be added to the ink stored in the ink jet apparatus by adding the mixed solvent to the IN tank.
  • the mixed solvent may be stored under a higher pressure environment than the ink stored in the ink jet apparatus.
  • the functional material may be a polymer organic material.
  • FIG. 1 is a schematic diagram showing an inkjet system 1.
  • the inkjet system 1 includes an inkjet head 105, an IN tube 106 and an IN tank 10 that supply ink to the inkjet head 105, and an OUT tube 107 and an OUT tank 11 that collect ink from the inkjet head 105.
  • the IN tube 106 is provided with a flow meter 23 that measures the flow rate of the ink supplied to the inkjet head 105.
  • Ink is supplied from the IN tank 10 to the inkjet head 105 through the IN tube 106.
  • Ink is collected from the inkjet head 105 to the OUT tank 11 through the OUT tube 107.
  • the ink jet apparatus includes an IN tank 10 and an IN tube 106, a flow meter 23, an OUT tank 11 and an OUT tube 107, and an ink jet head 105 (see FIG. 2).
  • the inkjet system 1 will be described as being used in a process of applying a functional material constituting a functional layer on a substrate when the functional layer of the organic EL display panel is formed by a coating method.
  • the ink includes a functional material as a solute, a first solvent as a solvent, and a second solvent having both a boiling point and a viscosity higher than those of the first solvent.
  • the inkjet system 1 further includes a mixed solvent tank 12 and a replenishment tank 210.
  • the mixed solvent tank 12 is connected to the IN tank 10 via a tube 108 and stores a mixed solvent in which the same type of solvent as the first solvent and the same type of solvent as the second solvent are mixed.
  • the replenishment tank 210 is connected to the IN tank 10 via the tube 112 and stores ink containing the same kind of material as the functional material, the same kind of solvent as the first solvent, and the same kind of solvent as the second solvent.
  • “same species” means that the substances or compositions are the same. For example, if the first solvent is 1 methylnaphthalene, the same type of solvent as the first solvent is also 1 methylnaphthalene.
  • a tube 108 connecting the mixed solvent tank 12 and the IN tank 10 is provided with a valve 15 and a pump 14 for adjusting the flow rate of the mixed solvent. Further, the mixed solvent tank 12 is provided with a valve 22 through which external air flows.
  • a tube 112 connecting the replenishment tank 210 and the IN tank 10 is provided with a valve 212 and a pump 211 for adjusting the flow rate of the replenishment ink. Further, the replenishing tank 210 is provided with a valve 213 through which external air flows.
  • the inkjet system 1 is a so-called circulation type system.
  • the inkjet system 1 includes a pump 24 and a tube 111.
  • the ink collected in the OUT tank 11 is drawn by the pump 24 and returned to the IN tank 10 through the tube 111 again.
  • the circulation type system since ink always flows in the ink jet head 105, clogging and solidification of ink can be prevented.
  • the inkjet system 1 is connected to an IN tank 10 via a tube 109, has a valve 17 and a pump 16 for making the inside of the IN tank 10 negative pressure, and has a pressure gauge 18 for measuring the pressure in the IN tank. .
  • the inkjet system 1 is connected to the OUT tank 11 via a tube 110, and has a valve 20 and a pump 19 for making the inside of the OUT tank 11 negative pressure, and a pressure gauge that measures the pressure in the OUT tank. 21.
  • the inkjet system 1 includes an inkjet head 105 and a control unit 13 that controls each pump and each valve.
  • the control unit 13 monitors the pressure in the IN tank 10 with a pressure gauge 18 and the pressure in the OUT tank 11 with a pressure gauge 21. Then, the control unit 13 opens the valves 17 and 20 and gives an instruction to start the pumps 16 and 19.
  • the control unit 13 controls the pumps 16 and 19 so that an appropriate difference is generated between the pressure in the IN tank and the pressure in the OUT tank. This pressure difference becomes the driving force for circulating the ink in the inkjet head 105.
  • the pressure in the inkjet head 105 is considered to be a negative pressure between the pressure in the IN tank 10 and the pressure in the OUT tank 11. This prevents ink from leaking out of the inkjet head 105 by its own weight.
  • the control unit 13 also issues an instruction to start the pump 24 and circulates ink.
  • control unit 13 opens the valves 15 and 212 regularly or irregularly and issues an instruction to start the pumps 14 and 211.
  • the mixed solvent is added from the mixed solvent tank 12 to the IN tank 10, and the replenishing ink is replenished from the replenishing tank 210 to the IN tank 10.
  • air of a flow rate adjusted by the valve 22 flows into the mixed solvent tank 12 or a pump (not shown) is provided, and the pump slightly removes gas in the tank from the mixed solvent tank 12. You can pull it.
  • the pressure in the mixed solvent tank 12 is preferably at least higher than the pressure in the IN tank 10 and the OUT tank 11. As a result, the mixed solvent can smoothly flow into the IN tank 10 from the mixed solvent tank 12.
  • the replenishment tank 210 is set so that air having a flow rate adjusted by the valve 213 flows in, or a pump (not shown) is provided, and the pump slightly removes gas in the tank from the replenishment tank 210, You can pull it.
  • the pressure in the replenishing tank 210 is preferably at least higher than the pressure in the IN tank 10 and the OUT tank 11. As a result, the replenishing ink can smoothly flow from the replenishing tank 210 into the IN tank 10.
  • the control unit 13 may control the valve 22 and the valve 213.
  • FIG. 2 is a perspective view showing the inkjet device 100.
  • the ink jet apparatus 100 includes an ink jet head 105, an IN tank 10 connected to the ink jet head 105 via an IN tube 106, and an OUT tank 11 connected to the ink jet head 105 via an OUT tube 107.
  • the ink jet apparatus 100 further includes a stage 101, a slider 102A provided on the stage 101, and a rail 102B in which the slider 102A is fitted. Further, the ink jet apparatus 100 includes a base 103 that is abutted against the slider 102A and fixed to the slider 102A. A substrate S is mounted on the base 103. The substrate S is air adsorbed to the base 103 by a plurality of intake holes (not shown) provided on the base 103.
  • the ink jet apparatus 100 further includes a gantry 104 to which an ink jet head 105 is fixed. The IN tube 106 and the OUT tube 107 are connected to the inkjet head 105 via the gantry 104.
  • the inkjet head 105 has a plurality of nozzles (not shown) on the side facing the substrate S.
  • the slider 102A can slide in the X-axis direction on the rail 102B.
  • the base 103 on which the substrate S is fixed is pushed by the slider 102A and slides on the rail 102B in the X-axis direction.
  • Ink is applied onto the substrate S from the nozzles of the inkjet head 105 while the base 103 on which the substrate S is fixed passes under the gantry 104.
  • ink is applied to a desired location on the entire surface of the substrate S.
  • the ink is a functional material, a first solvent, and a second solvent having both a boiling point and a viscosity higher than those of the first solvent.
  • FIG. 3 is a schematic diagram for explaining the relationship between temperature, vapor pressure, and boiling point. From the surface of the liquid, the liquid substance is volatilized at room temperature. Vapor pressure is the pressure at which a gas of a substance is in equilibrium with a liquid at a certain temperature. A substance with a high vapor pressure at a temperature is more volatile than a substance with a low vapor pressure at that temperature. Thus, the vapor pressure P a of the first solvent at room temperature (e.g.
  • FIG. 4 is a schematic diagram for explaining the change with time of the composition ratio of the first solvent and the second solvent in the ink.
  • the functional material F, the first solvent, and the second solvent are mixed to produce ink.
  • the mass per unit volume of the first solvent in the ink at room temperature is a (g / cm 3 )
  • the mass per unit volume of the second solvent is b (g / cm 3 )
  • the molecular weight of the first solvent is M a
  • the molecular weight of the second solvent is M b .
  • the mixing ratio of the volume of the first solvent and the volume of the second solvent is A: B.
  • the volatilization amount E a per unit time of the first solvent at room temperature and the volatilization amount E b per unit time of the second solvent are as follows.
  • C st is a proportionality constant determined by the surface area of the ink surface, the internal pressure of the tank, and the like.
  • the ratio R between the volatilization amount E a per unit time of the first solvent and the volatilization amount E b per unit time of the second solvent is as follows.
  • the next question is how to determine the volume V (cm 3 ) that is the additional amount of the mixed solvent.
  • the concentration of the functional material that is a solute increases, and the viscosity of the ink may increase.
  • the functional material for example, a polymer material having an average molecular weight of 10,000 or more is used.
  • the viscosity of the ink increases, the volume of the ink droplets of the ink jet fluctuates, and the film thickness of the functional layer deviates from the design value. Therefore, it is preferable to suppress the change in ink viscosity as much as possible.
  • the viscosity of the ink is difficult to obtain a correct change in viscosity on the 1 hour or 1 day scale due to variations in viscosity measurement.
  • a mixed solvent may be added so that the viscosity approaches a constant value while measuring the viscosity during actual production, but the additional amount of the mixed solvent per unit time should be determined in advance before production. Is a more realistic approach. Therefore, in the embodiment, as a preparatory stage before actual production, first, a volume Q1 (cm 3 ) per unit time of a mixed solvent to be added to the ink stored in the ink jet apparatus is obtained in advance. Then, a method of adding an additional amount Q1 per unit time obtained in advance at the production stage is taken. The method will be described below.
  • the average time change rate C1 of the viscosity of the ink is obtained.
  • the valve 15 is closed and the ink jet system 1 is continuously operated without discharging ink (see FIG. 1).
  • the total amount of ink in the IN tank is constant.
  • the total amount of ink in the inkjet system 1 is much larger than the amount of ink consumed by production. It can be ignored. Since ink may be wasted, if it is desired to be accurate, the substrate may be flowed in the same manner as in the production stage, and ink may be continuously ejected onto the substrate. Moreover, you may obtain
  • the viscosity increases by about 1 mPa ⁇ sec in about 40 days.
  • the average time change rate C1 of the viscosity of the ink is as follows.
  • an average change rate C2 of the viscosity of the ink with respect to the volume of the mixed solvent is obtained.
  • the inkjet system 1 is not used, and the beaker work at the laboratory level is used. Put the initial ink in the beaker and cover it. And the mixed solvent of the ratio calculated
  • step S2 Yes
  • step S9 If there is no production instruction (step S2: No), the control unit 13 enters a standby state (step S3).
  • Production instructions are received from factory operators.
  • the production instruction includes information such as the type of panel to be produced and the total number N of substrates to be produced.
  • step S2 If there is a production instruction (step S2: Yes), first, the control unit 13 sets the variable n to 1 (step S9). n is a natural number, and is a variable that represents how many substrates are being processed. Next, the control unit 13 issues an application start instruction to the inkjet head 105 (step S10). When the inkjet head 105 receives a notification of ink application from the control unit 13, it applies the ink to the substrate in a predetermined sequence. Thereafter, the control unit 13 determines whether or not the time t1 of the time measuring unit 13c has reached the predetermined time T (step S11). The predetermined time T is a time interval for adding the mixed solvent to the IN tank 10 and replenishing the replenished ink.
  • the predetermined time T is a time unit such as 1 hour, 2 hours, 3 hours, or 1 day, 2 days, 3 days. It is arbitrarily set on a daily basis. If the time t1 of the time measuring unit 13c has not reached the predetermined time T (step S11: No), it is determined whether or not the inkjet head 105 has notified the control unit 13 that the application of the first substrate has been completed. (Step S17). If there is no completion notification (step S17: No), the process returns to step S11 because the first substrate is still being applied with ink. If there is a completion notification (step S17: Yes), it is determined whether n has reached the total number N of substrates to be produced (step S18).
  • step S18: Yes since the application of the N substrates to be produced has been completed, the process returns to step S2 to wait for the next production instruction. If n has not reached N (step S18: No), the variable n is incremented (step S19), and the process returns to step S10.
  • step S12 an additional process in which the mixed solvent is added to the IN tank 10 is performed. . Details of the addition process will be described in (4-2).
  • the control unit 13 calculates the ink consumption amount V2 consumed until the time t1 reaches the predetermined time T (step S13).
  • the ink consumption amount V2 is calculated by multiplying the ejection amount per nozzle of the inkjet head 105 by the number of nozzles used per substrate and the number of ejections, and producing until the time t1 reaches the predetermined time T. This is done by multiplying the number of substrates obtained.
  • step S14 No
  • step S4 the addition process (step S4, step S12) and the replenishment process (step S7, step S15) in FIG. 7 will be described.
  • FIG. 8 is an operation flow of the addition processing.
  • the control unit 13 opens the valve 15 (step S22).
  • the valve 15 is, for example, a valve that can be controlled only for opening and closing.
  • the control unit 13 causes the mixed solvent to flow into the IN tank 10 at a flow rate Q2 using the pump 14 (step S23).
  • the control unit 13 determines whether or not the time t2 of the time measuring unit 14c has reached (Q1 / Q2) T (step S24).
  • the mixed solvent in the mixed solvent tank 12 continues to flow into the IN tank 10 until the time t2 of the timing unit 14c reaches (Q1 / Q2) T.
  • step S24 Yes
  • the volume per unit time of the mixed solvent added to the ink to suppress the viscosity change of the ink in the IN tank 10 is Q1.
  • the mixed solvent is added every predetermined time T.
  • the volume required for one addition is a volume determined by the product of Q1 and T.
  • the control unit 13 stops the pump 14 (step S25), and the control unit 13 closes the valve 15 (step S26).
  • FIG. 9 is an operation flow of the replenishment process.
  • the control unit 13 opens the valve 212 (step S32).
  • the valve 212 is, for example, a valve that can be controlled only for opening and closing.
  • the control unit 13 causes the replenishment ink to flow into the IN tank 10 at a flow rate Q3 using the pump 211 (step S33).
  • the control unit 13 determines whether or not the time t3 of the time measuring unit 211c has reached V2 / Q3 (step S34).
  • the replenishing ink in the replenishing tank 210 continues to flow into the IN tank 10 until the time t3 of the time measuring unit 211c reaches V2 / Q3.
  • step S34 Yes
  • the volume V2 is the amount of ink consumed until the time measuring unit 13c of the control unit 13 reaches the predetermined time T. Therefore, in the case of the flow rate Q3, when the time t3 reaches V2 / Q3, the replenishment ink having a volume V2 equal to the consumed volume is replenished to the IN tank 10.
  • the control unit 13 stops the pump 211 (step S35), and the control unit 13 closes the valve 212 (step S36).
  • the composition ratio of the mixed solvent added from the mixed solvent tank 12 to the IN tank 10 will be considered.
  • the mixed solvent mass of the first solvent and the second solvent is set so that the viscosity is the same as the initial operation of the inkjet system 1 without considering the amount of the solvent and the volatilization amount per unit time. It seems that the ratio a: b) may be added.
  • viscosity is also important, it is preferable to suppress a change with time in the composition ratio of each solvent stored in the IN tank 10.
  • FIG. 10 shows a graph showing this fact.
  • heptylbenzene was used as the first solvent
  • 1 methylnaphthalene was used as the second solvent.
  • An organic light emitting material was used as the functional material constituting the functional layer.
  • the organic light-emitting material include F8-F6 (copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)).
  • the boiling points of the first solvent and the second solvent are 235 ° C. and 244 ° C., respectively.
  • the viscosities of the first solvent and the second solvent are 13.2 mPa ⁇ sec and 22.1 mPa ⁇ sec, respectively.
  • the second solvent has a higher boiling point and viscosity than the first solvent.
  • FIG. 10A shows the measurement result of the surface shape of the functional layer when the functional layer is formed with ink using a mixed solvent in which the second solvent and the first solvent are mixed at a ratio of 2: 8.
  • FIG. 10B is a measurement result of the surface shape of the functional layer when the functional layer is formed with ink using a mixed solvent in which the second solvent and the first solvent are mixed at a ratio of 3: 7.
  • the mixing ratio of the solvent is 2: 8
  • the film thickness is almost constant around 70 nm.
  • the mixing ratio is 3: 7
  • the film thickness is thicker than 70 nm and the surface shape is concave.
  • the mixing ratio of each solvent in the ink is an important factor that determines the surface shape of the functional layer.
  • the mixed solvent is prepared in consideration of the mixing ratio according to the volatilization amount per unit time of each solvent. Then, the mixed solvent is added to the ink stored in the inkjet apparatus 100. Thereby, the change of the composition ratio of the mixed solvent in the ink can be suppressed.
  • (6) Manufacturing Method of Organic EL Display Device As an example to which the ink component management method of the embodiment is applied, a manufacturing method of the organic EL display device 10000 will be described.
  • FIG. 11 Schematic Configuration of Organic EL Display Device 10000
  • the organic EL display device 10000 includes an organic EL display panel 3000 and a drive / control circuit unit 2000 connected thereto.
  • FIG. 12 is a plan view of the organic EL display panel 3000.
  • a plurality of organic EL elements 1001R, 1001G, and 1001B are two-dimensionally arranged in the X direction and the Y direction.
  • the organic EL element 1001R emits red light (R)
  • the organic EL element 1001G emits green light (G)
  • the organic EL element 1001B emits blue light (B).
  • the drive / control circuit unit 2000 in the organic EL display device 10000 includes four drive circuits 2100 to 2400 and one control circuit 2500.
  • (6-2) Configuration of Organic EL Display Panel 3000 As shown in FIG. 12, in the organic EL display panel 3000, groove regions 1250R, 1250G, and 1250B defined by a plurality of banks 1120 extending in the Y direction are formed. .
  • the groove regions 1250R, 1250G, and 1250B are groove regions for red, green, and blue, and corresponding organic EL elements 1001R, 1001G, and 1001B of emission colors are arranged in the Y direction.
  • FIG. 13 is a cross-sectional view showing the AA cross section of FIG.
  • the organic EL display panel 3000 is based on a TFT substrate in which a TFT layer 1010 is formed on a substrate 1000. Although the detailed illustration is omitted, the TFT layer 1010 includes three electrodes, a gate, a source, and a drain, a semiconductor layer, a passivation film, and the like.
  • An interlayer insulating layer 1020 is laminated on the TFT substrate to form a base substrate 1100.
  • An upper surface of the interlayer insulating layer 1020 is formed to be substantially flat, and organic EL elements 1001R to 1001B are formed thereon.
  • Each of the organic EL elements 1001R to 1001B has the same basic configuration, and is formed by sequentially laminating a pixel electrode (anode) 1030 and a hole injection layer 1040 on the interlayer insulating layer 1020, a hole transport layer 1160, a light emitting layer 1170, An electron transport layer 1180 and a cathode 1190 are included.
  • the bank 1120 is formed on the interlayer insulating layer 1020 so as to cover both edges of the hole injection layer 1040 in the X direction.
  • the hole transport layer 1160 and the light emitting layer 1170 are stacked between the banks 1120.
  • the hole transport layer 1160 and the light emitting layer 1170 are continuously formed in the Y direction.
  • the electron transport layer 1180, the cathode 1190, and the sealing layer 1200 are sequentially formed so as to cover the entire light emitting layer 1170 and the side and top surfaces of the bank 1120.
  • a substrate 1240 having a color filter layer 1220 and a black matrix layer 1230 is attached to the sealing layer 1200 with a resin layer 1210 interposed therebetween.
  • a TFT substrate is prepared (step S100). This TFT substrate is obtained by forming a TFT layer 1010 on the upper surface of a substrate 1000, and is manufactured by a known technique. Next, an organic material is applied on the TFT substrate to form an interlayer insulating layer 1020 (step S101).
  • the pixel electrode (anode) 1030 and the hole injection layer (HIL) 1040 are sequentially stacked on the interlayer insulating layer 1020 of the base substrate 1100 thus manufactured (steps S102 and S103).
  • the pixel electrode 1030 is formed, for example, by forming a metal film using a sputtering method or a vacuum evaporation method and then patterning the film using a photolithography method and an etching method.
  • the hole injection layer 1040 is formed, for example, by forming a film made of a metal oxide (for example, tungsten oxide) using a sputtering method and then patterning using a photolithography method and an etching method.
  • a metal oxide for example, tungsten oxide
  • a banked substrate is produced by forming the bank 1120 (step S104).
  • a bank material negative photosensitive resin composition
  • a photomask having an opening corresponding to the pattern of the bank 1120 is overlaid on the applied bank material layer and exposed from above the photomask.
  • the bank material is patterned by washing out the excess bank material with an alkaline developer to form the bank 1120.
  • a hole transport layer (HTL) 1160 is formed in each groove region 1250 partitioned by the plurality of banks 1120 (step S105).
  • the hole transport layer 1160 is formed by applying the ink containing the constituent material for the hole transport layer 1160 to the groove region between the adjacent banks 1120 and then drying it using a wet method.
  • the hole transport layer 1160 is formed by using the inkjet system 1 of the embodiment described so far.
  • a light emitting layer (EML) 1170 is stacked in the groove region 1250 partitioned by the plurality of banks 1120 (step S106).
  • the light emitting layer 1170 is also formed by applying ink containing each constituent material and then drying. This light emitting layer 1170 is also formed using the inkjet system 1 of the embodiment described so far.
  • an electron transport layer 1180 (ETL), a cathode 1190, and a sealing layer 1200 are sequentially stacked to cover the light emitting layer 1170 and the side and top surfaces of the bank 1120 (steps S107, S108, and S109).
  • the electron transport layer 1180, the cathode 1190, and the sealing layer 1200 can be formed using, for example, a sputtering method.
  • the organic EL display panel 3000 is completed by bonding the color filter (CF) substrate on which the color filter layer 1220 and the black matrix layer 1230 are formed to the substrate 1240 (step S110).
  • the hole injection layer (HIL) 1040 is formed on the pixel electrode (anode) 1030.
  • the hole injection layer (HIL) 1040 is not necessarily formed.
  • the hole transport layer (HTL) 1160 and the light emitting layer (EML) 1170 may be formed directly on the pixel electrode (anode) 1030 using the inkjet system 1 of the embodiments described above.
  • the electron transport layer 1180 (ETL) and the cathode 1190 are sequentially formed on the light emitting layer 1170, but the electron transport layer 1180 (ETL) is not necessarily formed.
  • the cathode 1190 may be formed directly on the light emitting layer 1170.
  • the functional layer formed by the inkjet system 1 of the embodiment may be formed above the pixel electrode (anode) 1030 and the cathode 1190 may be formed above the functional layer.
  • the meaning above a certain electrode or layer means that it is on a certain electrode or a certain layer (in contact with a certain electrode or certain layer) and the upper side of a certain electrode or certain layer (a certain electrode or certain layer is It shall be interpreted as either “not touching”.
  • the functional layer in the embodiment, a hole transport layer and a light-emitting layer
  • the functional layer has high flatness. Therefore, fluctuations in light emission characteristics between the display panels and within one display panel are suppressed to a small level. Therefore, according to the manufacturing method of the embodiment, it is possible to manufacture a high-quality organic EL display panel and an organic EL display device in which production variations are suppressed.
  • the mixed solvent and the replenishment ink are added and replenished every predetermined time T.
  • the present invention is not limited to this. Instead of every predetermined time T, the mixed solvent and the replenishing ink may be added continuously at all times.
  • the addition of the mixed solvent and the replenishment of the replenishment ink are performed at the same predetermined time T.
  • the present invention is not limited to this.
  • the addition of the mixed solvent and the replenishment ink replenishment may be performed at different predetermined times as independent flows.
  • the ink jet system 1 is not equipped with a viscometer.
  • a simple viscosity system may be provided in the system, and the viscosity change may be accurately monitored to determine the additional amount of the mixed solvent.
  • a polymer is used as the functional material, but a low molecular material (average molecular weight less than 10,000) may be used.
  • the valve only opens and closes and the pump flows the solvent and ink at a preset flow rate.
  • the valve may be configured to open and close and adjust the flow rate.
  • a mixed solvent may be manually added by a person.
  • a mixed solvent in which two kinds of solvents are mixed is used, but the present invention is not limited to this. Three or more solvents may be mixed. For example, when three types of first solvent, second solvent, and third solvent are used, the mixing ratio of the mixed solvent may be as follows.
  • the masses per unit volume of the first solvent, the second solvent, and the third solvent at room temperature are a (g / cm 3 ), b (g / cm 3 ), and c (g / cm 3 ), respectively.
  • the vapor pressures of the first solvent, the second solvent, and the third solvent at room temperature be Pa , Pb, and Pc , respectively.
  • the mixing ratio of the volume of the first solvent, the volume of the second solvent, and the volume of the third solvent is A: B: C.
  • the mixed solvent added from the mixed solvent tank 12 to the IN tank 10 may be added at the following volume ratio. The same applies to four or more types.
  • the simple method of adding the mixed solvent mixed at the ratio of the volatilization amount per unit time is taken, but the mixed solvent may be prepared by using a more accurate estimation method.
  • gas chromatography mass spectrometry (GC / MS) of the mixed solvent in the IN tank 10 may be performed to determine how much the solvent has actually decreased, and thereby determine the mixing ratio of the mixed solvent.
  • the room temperature means 15 ° C. or higher and 40 ° C. or lower.
  • the mixed solvent is added to the IN tank 10, but the present invention is not limited to this. It may be added to the OUT tank 11 or may be added to each tube in which ink is circulating. If added to the tube, an IN tube 106 that supplies ink to the inkjet head 105 is preferable.
  • the predetermined time T for adding the mixed solvent to the IN tank 10 may be a predetermined time T such that the characteristics of the functional layer fall within the specifications. As long as the characteristics of the functional layer fall within the specifications, for example, it may be added every relatively long predetermined time T such as once a week or once a month.
  • the present invention can be widely used for an ink component management method, an inkjet system to which the ink component management method is applied, and a manufacturing method for manufacturing an organic EL display device using the inkjet system.
  • An ink component management method according to an embodiment of the present invention, an inkjet system to which the ink component management method is applied, and a manufacturing method for manufacturing an organic EL display device using the inkjet system mainly include an organic display device and an organic light emitting device manufacturing process. Widely available.
  • Inkjet system 10. IN tank 11. OUT tank 12. Mixed solvent tank 13. Control units 13c, 14c, 211c. Timekeeping unit 15, 212. Valve 100. Inkjet device 105. Inkjet head 108. Piping (tube) 1030. First electrode (anode) 1100. Undersubstrate 1160. Functional layer (hole transport layer) 1170. Functional layer (light emitting layer) 1190. Second electrode (cathode) 3000. Organic EL display panel 10000. Organic EL display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

 インクジェット装置内に貯留されているインク中の混合溶媒の組成比の変化を抑制することができるインクの成分管理方法を提供する。機能性材料と第1溶媒と第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留されたインクをノズルを通じて外部に吐出するインクジェット装置100において、インクの成分を管理するインクの成分管理方法であって、第1溶媒の単位時間当たりの揮発量と第2溶媒の単位時間当たりの揮発量に応じた混合比率で、第1溶媒と同種の溶媒と、第2溶媒と同種の溶媒とが混合された混合溶媒を準備し、準備された混合溶媒をインクジェット装置100内に貯留されたインクに追加する。

Description

インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機EL表示装置を製造する製造方法
 本発明は、インクジェット装置内に貯留されるインクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機EL(Electro-Luminescence)表示装置を製造する製造方法に関する。
 近年、研究開発が進んでいる有機EL素子は、有機材料の電界発光現象を利用した発光素子であって、陽極と陰極との間に発光層が設けられている。一般に、有機EL素子は、絶縁材料からなるバンクで仕切られていて、このバンク間に陽極、発光層、陰極が形成される。また、陽極と陰極との間には、発光層の他に、必要に応じて、電荷注入層、電荷輸送層等が設けられる。発光層、電荷注入層、電荷輸送層等を総称して機能層と称する。
 そして、有機EL素子がマトリクス状に配列されて、有機EL表示装置を構成する。有機EL表示装置を製造する際には、基板上に機能層を形成する工程がある。近年、基板の大型化に伴い、機能層を形成するためにインクジェット装置を備えるインクジェットシステムが多く用いられている。インクジェット装置は、機能性材料を溶媒に溶解させたインクを、基板上に形成された一対のバンク間に塗布して機能層を形成する。また、有機EL表示装置において高精細な画像を得るために、各有機EL素子の一辺の長さを500μm以下の微小サイズで形成することが要請されている。このような微小サイズの有機EL素子においては、各有機EL素子の機能層の膜厚も数十~数百nmと薄く形成する必要がある。そのため、よりシビアな機能層の膜厚と平坦性の制御が要求される。
 そこで、低粘度且つ低沸点の第1溶媒と、高粘度且つ高沸点の第2溶媒とを適切な比率で混合した溶媒に機能性材料を溶解させたインクを準備する。そして、このインクを基板上に塗布することで膜厚が有機EL表示装置の全面において均一且つ平坦な機能層を形成する方法が提案されている(特許文献1)。第1溶媒と第2溶媒とを混合した溶媒を使用したインクを用いることで、インク吐出時はインクを低粘度に維持する。そして、バンク間に塗布後は速やかに低沸点の第1溶媒を蒸発させることでインクを一気に高粘度化し、インクの流動を抑制する。特許文献1には、第1溶媒と第2溶媒の組成比を適切に調整することで機能層の平坦度を高めることができると記載されている。
特開2013-214397号公報 特開2007-69140号公報
 インクジェットシステムでは、インクジェット装置内にインクを貯留しておき、インクジェット装置内のインクジェットヘッドに設けられたノズルからインクを基板上に吐出する。通常、インクジェット装置内のインクは、ノズルから自重で漏れ出すことのないように負圧環境下で貯留されている。しかし、一方で、インクジェット装置内のインクを負圧環境下で貯留するとインクから溶媒が揮発することがある。すると、時間の経過とともに、インクの濃度が高まるので、インクの粘度が増大することがある。インクの粘度が増大すると、ノズルからの吐出量が変化することが起こり得る。そのため、初期のインクを用いて製造された製品と、長時間貯留されたインクを用いて製造された製品とで、機能層の膜厚が異なり、その結果、有機EL表示装置の電気特性及び光学特性を大きく変化させ、発光効率の低下及び色度の悪化を引き起こすことが懸念される。
 これに対して、第1溶媒と同種の溶媒と第2溶媒と同種の溶媒を混合した混合溶媒を準備し、定期的または不定期にインクジェット装置内のインクに追加することが考えられる。混合溶媒の混合比率は、単純に、初期のインクに含まれる第1溶媒と第2溶媒の混合比率に一致させることが考えられる。
 しかしながら、このような混合溶媒をインクに追加した場合、インクの濃度が低下するのでインクの粘度の増大を抑制することはできるものの、インク内の第1溶媒と第2溶媒の組成比が初期のインクの組成比からずれてしまうことが分かった。
 そこで、本発明は、インクジェット装置内に貯留されているインク中の混合溶媒の組成比の変化を抑制することができるインクの成分管理方法を提供することを目的とする。
 上記課題を解決するため、本発明の一態様に係るインクの成分管理方法は、機能性材料と第1溶媒と前記第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留された前記インクをノズルを通じて外部に吐出するインクジェット装置において、前記インクジェット装置内に貯留された前記インクの成分を管理するインクの成分管理方法であって、前記第1溶媒の単位時間当たりの揮発量と前記第2溶媒の単位時間当たりの揮発量に応じた混合比率で、前記第1溶媒と同種の溶媒と、前記第2溶媒と同種の溶媒とが混合された混合溶媒を準備し、準備された前記混合溶媒を前記インクジェット装置内に貯留された前記インクに追加する。
 第1溶媒と第2溶媒の沸点は異なるので、各溶媒の単位時間当たりの揮発量も異なる。そのため、初期のインクに含まれる各溶媒の組成比に一致させた混合溶媒を追加したのでは、インクジェット装置内に貯留されているインク中の混合溶媒の組成比が、初期のインク中の混合溶媒の組成比から変化してしまう。そこで、本発明の一態様に係るインクの成分管理方法では、各溶媒の単位時間当たりの揮発量に応じた混合比率で準備された混合溶媒を追加する。
 これにより、インクジェット装置内に貯留されているインク中の混合溶媒の組成比の変化を抑制することができる。
実施の形態に係るインクジェットシステム1を示す模式図である。 実施の形態に係るインクジェット装置100を示す斜視図である。 温度と蒸気圧及び沸点の関係を説明するための模式図である。 インク中の第1溶媒と第2溶媒の組成比の経時変化を説明するための模式図である。 インクの粘度とインク導入後経過日数との関係を示すグラフである。 インクに混合溶媒を追加したときのインクの粘度と混合溶媒の追加量との関係を示すグラフである。 制御ユニット13のフローチャートの全体図である。 図7における追加処理のフローチャートである。 図7における補充処理のフローチャートである。 (a)は、1メチルナフタレンとヘプチルベンゼンを質量比2:8で混合した混合溶媒を用いたインクで機能層を形成した時の機能層の表面形状の測定結果である。(b)は、1メチルナフタレンとヘプチルベンゼンを質量比3:7で混合した混合溶媒を用いたインクで機能層を形成した時の機能層の表面形状の測定結果である。 実施の形態に係る有機EL表示装置10000の概略構成を示す模式図である。 有機EL表示パネル3000における有機EL素子1001R、1001G、1001Bの配置形態を示す平面図である。 図14のA-A断面を示す断面図である。 有機EL表示パネル3000の製造工程を示す工程図である。
 本発明を実施するための形態を、図面を参照して詳細に説明する。
<発明の態様>
 本発明の一態様に係るインクの成分管理方法では、機能性材料と第1溶媒と前記第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留された前記インクをノズルを通じて外部に吐出するインクジェット装置において、前記インクジェット装置内に貯留された前記インクの成分を管理するインクの成分管理方法であって、前記第1溶媒の単位時間当たりの揮発量と前記第2溶媒の単位時間当たりの揮発量に応じた混合比率で、前記第1溶媒と同種の溶媒と、前記第2溶媒と同種の溶媒とが混合された混合溶媒を準備し、準備された前記混合溶媒を前記インクジェット装置内に貯留された前記インクに追加する。
 また、本発明の別の態様では、前記第1溶媒と同種の溶媒の単位時間当たりの揮発量と、前記第2溶媒と同種の溶媒の単位時間当たりの揮発量との比率Rは、前記第1溶媒と同種の溶媒の室温における単位体積当たりの質量をaとし、前記第1溶媒と同種の溶媒の分子量をMaとし、前記第1溶媒と同種の溶媒の室温における蒸気圧をPaとし、前記第2溶媒と同種の溶媒の室温における単位体積当たりの質量をbとし、前記第2溶媒と同種の溶媒の分子量をMbとし、前記第2溶媒と同種の溶媒の室温における蒸気圧をPbとし、前記第1溶媒の体積と前記第2溶媒の体積の混合比をA:Bとしたとき、以下の関係式で求められる。
 R=(Aa/Bb)×(Mb/Ma)×(Pa/Pb
 また、本発明の別の態様では、前記混合溶媒は、単位時間当たりの追加量Q1で前記インクに追加され、前記追加量Q1は、前記混合溶媒を追加しない状態で前記インクを前記インクジェット装置内に貯留した場合の前記インクの粘度の平均時間変化率をC1とし、前記混合溶媒を前記インクに追加した場合に前記混合溶媒の追加量に対する前記インクの粘度の平均変化率をC2としたとき、以下の関係式で求められる。
 Q1=C1/C2
 また、本発明の別の態様では、前記インクジェット装置は、前記ノズルを有するインクジェットヘッドと、前記インクジェットヘッドに連結され前記インクジェットヘッドに供給するための前記インクを貯留するINタンクと、を備え、前記INタンクに前記混合溶媒を追加することにより、前記インクジェット装置内に貯留されている前記インクに前記混合溶媒を追加してもよい。
 また、本発明の別の態様では、前記混合溶媒は、前記インクジェット装置内に貯留されている前記インクよりも高い圧力環境下で保管されていてもよい。
 また、本発明の別の態様では、前記機能性材料は、高分子の有機材料でもよい。
 本発明の一態様に係るインクジェットシステムでは、機能性材料と第1溶媒と前記第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留された前記インクをノズルを通じて外部に吐出するインクジェット装置と、前記インクジェット装置に配管を通じて連結され、前記第1溶媒の単位時間当たりの揮発量と前記第2溶媒の単位時間当たりの揮発量に応じた混合比率で、前記第1溶媒と同種の溶媒と、前記第2溶媒と同種の溶媒とが混合された混合溶媒を貯留する混合溶媒タンクと、前記配管に設けられたバルブと、前記バルブを制御することにより、前記混合溶媒タンクに貯留された前記混合溶媒を前記インクジェット装置内に追加させる制御ユニットと、を備える。
 また、本発明の別の態様では、前記第1溶媒と同種の溶媒の単位時間当たりの揮発量と、前記第2溶媒と同種の溶媒の単位時間当たりの揮発量との比率Rは、前記第1溶媒と同種の溶媒の室温における単位体積当たりの質量をaとし、前記第1溶媒と同種の溶媒の分子量をMaとし、前記第1溶媒と同種の溶媒の室温における蒸気圧をPaとし、前記第2溶媒と同種の溶媒の室温における単位体積当たりの質量をbとし、前記第2溶媒と同種の溶媒の分子量をMbとし、前記第2溶媒と同種の溶媒の室温における蒸気圧をPbとし、前記第1溶媒の体積と前記第2溶媒の体積の混合比をA:Bとしたとき、以下の関係式で求められる。
 R=(Aa/Bb)×(Mb/Ma)×(Pa/Pb
 また、本発明の別の態様では、前記混合溶媒は、単位時間当たりの追加量Q1で前記インクに追加され、前記追加量Q1は、前記混合溶媒を追加しない状態で前記インクを前記インクジェット装置内に貯留した場合の前記インクの粘度の平均時間変化率をC1とし、前記混合溶媒を前記インクに追加した場合に前記混合溶媒の追加量に対する前記インクの粘度の平均変化率をC2としたとき、以下の関係式で求められる。
 Q1=C1/C2
 また、本発明の別の態様では、前記インクジェット装置は、前記ノズルを有するインクジェットヘッドと、前記インクジェットヘッドに連結され前記インクジェットヘッドに供給するための前記インクを貯留するINタンクと、を備え、前記INタンクに前記混合溶媒を追加することにより、前記インクジェット装置内に貯留されている前記インクに前記混合溶媒を追加してもよい。
 また、本発明の別の態様では、前記混合溶媒は、前記インクジェット装置内に貯留されている前記インクよりも高い圧力環境下で保管されていてもよい。
 また、本発明の別の態様では、前記機能性材料は、高分子の有機材料でもよい。
 本発明の一態様に係る有機EL表示装置の製造方法では、下地基板を準備し、前記下地基板上に第1電極を形成し、前記第1電極の上方に前記機能性材料で構成される機能層を、請求項7から12のいずれかに記載のインクジェットシステムを用いて形成し、前記機能層の上方に第2電極を形成する。
<実施の形態>
(1)インクジェットシステム
 図1は、インクジェットシステム1を示す模式図である。インクジェットシステム1は、インクジェットヘッド105と、インクジェットヘッド105にインクを供給するINチューブ106及びINタンク10と、インクジェットヘッド105からインクを回収するOUTチューブ107及びOUTタンク11を備える。INチューブ106には、インクジェットヘッド105に供給されるインクの流量を計測する流量計23が備えられている。インクジェットヘッド105には、INチューブ106を通じて、INタンク10からインクが供給される。インクジェットヘッド105からは、OUTチューブ107を通じて、OUTタンク11にインクが回収される。インクジェット装置は、INタンク10及びINチューブ106と、流量計23と、OUTタンク11及びOUTチューブ107と、インクジェットヘッド105とを含む(図2参照)。
 実施の形態では、インクジェットシステム1は、有機EL表示パネルの機能層を塗布法で形成する際に、機能層を構成する機能性材料を基板上に塗布する工程で使用されるものとして説明する。インクは、溶質として機能性材料を含み、溶媒として第1溶媒と、第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含む。
 インクジェットシステム1は、さらに、混合溶媒タンク12と補充タンク210を備える。混合溶媒タンク12は、チューブ108を介してINタンク10と連結され、第1溶媒と同種の溶媒と、第2溶媒と同種の溶媒が混合された混合溶媒を貯留している。補充タンク210は、チューブ112を介してINタンク10と連結され、機能性材料と同種の材料と、第1溶媒と同種の溶媒と、第2溶媒と同種の溶媒とを含むインクを貯留している。ここで「同種」とは、物質または組成が同じであることを意味する。例えば、第1溶媒が1メチルナフタレンであれば、第1溶媒と同種の溶媒も1メチルナフタレンである。混合溶媒タンク12内に貯留されている混合溶媒の組成比についての詳細は後で説明する。混合溶媒タンク12とINタンク10とを連結するチューブ108には、混合溶媒の流量を調整するためのバルブ15とポンプ14が設けられている。また、混合溶媒タンク12には、外部の空気を流入させるバルブ22が設けられている。補充タンク210とINタンク10とを連結するチューブ112には、補充インクの流量を調整するためのバルブ212とポンプ211が設けられている。また、補充タンク210には、外部の空気を流入させるバルブ213が設けられている。
 インクジェットシステム1は、所謂、循環型と称するシステムである。インクジェットシステム1は、ポンプ24とチューブ111を備える。OUTタンク11に回収されたインクは、ポンプ24で引かれ、チューブ111を通ってINタンク10に再度、戻される。循環型のシステムでは、常時、インクジェットヘッド105内をインクが流れているため、インクの詰まりや固化を防止することができる。
 インクジェットシステム1は、INタンク10にチューブ109を介して繋がれ、INタンク10内を負圧にするためのバルブ17とポンプ16を有し、INタンク内の圧力を計測する圧力計18を有する。同様に、インクジェットシステム1は、OUTタンク11にチューブ110を介して繋がれ、OUTタンク11内を負圧にするためのバルブ20とポンプ19を有し、OUTタンク内の圧力を計測する圧力計21を有する。
 さらに、インクジェットシステム1は、インクジェットヘッド105と、各ポンプ及び各バルブを制御する制御ユニット13を備える。制御ユニット13は、INタンク10内の圧力を圧力計18で、OUTタンク11内の圧力を圧力計21でモニターしている。そして、制御ユニット13は、バルブ17及び20を開けて、ポンプ16及び19を起動する指示を出す。ここで、制御ユニット13は、INタンク内の圧力とOUTタンク内の圧力に適切な差が生じるようにポンプ16及び19を制御する。この圧力差が、インクジェットヘッド105内のインクの循環の駆動力となる。インクジェットヘッド105内の圧力は、INタンク10内の圧力とOUTタンク11内の圧力との間の値の負圧になっていると考えられる。これにより、インクがインクジェットヘッド105から自重で漏れ出すことを防止している。制御ユニット13は、ポンプ24を起動する指示も出し、インクを循環させている。
 また、制御ユニット13は、定期的または不定期にバルブ15及び212を開けて、ポンプ14及び211を起動する指示を出す。これにより、混合溶媒タンク12からINタンク10に混合溶媒が追加され、補充タンク210からINタンク10に補充インクが補充される。尚、混合溶媒タンク12にはバルブ22で調整された流量の空気が流入するようにしておくか、または、ポンプ(不図示)を設け、当該ポンプが混合溶媒タンク12からタンク内のガスを若干、引いておいてもよい。混合溶媒タンク12内の圧力は、少なくとも、INタンク10内及びOUTタンク11内の圧力よりも高くすることが好ましい。これにより、混合溶媒を混合溶媒タンク12から、INタンク10内にスムーズに流入させることが可能となる。同様に、補充タンク210にはバルブ213で調整された流量の空気が流入するようにしておくか、または、ポンプ(不図示)を設け、当該ポンプが補充タンク210からタンク内のガスを若干、引いておいてもよい。補充タンク210内の圧力は、少なくとも、INタンク10内及びOUTタンク11内の圧力よりも高くすることが好ましい。これにより、補充インクを補充タンク210から、INタンク10にスムーズに流入させることが可能となる。制御ユニット13が、バルブ22及びバルブ213を制御することとしてもよい。
 さらに、制御ユニット13は、時間の経過を測定する計時部13c、14c、211cを有し、計時部13cにより測定された所定時間に応じた分量の混合溶媒を、混合溶媒タンク12からINタンク10に追加する。制御ユニット13の動作フローについては後で説明する。計時部14c、211cの動作についても制御ユニット13の動作フローとともに説明する。
(2)インクジェット装置100の構造
 図2は、インクジェット装置100を示す斜視図である。インクジェット装置100は、インクジェットヘッド105と、INチューブ106を介してインクジェットヘッド105に連結されたINタンク10と、OUTチューブ107を介してインクジェットヘッド105に連結されたOUTタンク11とを有する。インクジェット装置100は、さらに、ステージ101と、ステージ101上に設けられたスライダー102Aと、スライダー102Aが嵌め込まれたレール102Bを有する。また、インクジェット装置100は、スライダー102Aに突き当てられ、スライダー102Aに固定された基台103を備える。基台103上には基板Sが搭載されている。基板Sは、基台103上に設けられた複数の吸気孔(不図示)で基台103にエアー吸着されている。インクジェット装置100は、さらに、インクジェットヘッド105が固定されたガントリー104を有する。INチューブ106とOUTチューブ107は、ガントリー104を介してインクジェットヘッド105と繋がっている。インクジェットヘッド105の基板Sと対向する側には複数のノズル(不図示)を有する。スライダー102Aは、レール102B上をX軸方向にスライド可能である。基板Sが固定された基台103が、スライダー102Aに押されて、レール102B上をX軸方向にスライドする。そして基板Sが固定された基台103が、ガントリー104の下を通過している間に、インクジェットヘッド105のノズルから基板S上にインクが塗布される。基板Sが固定された基台103が、ガントリー104の下を通過し終わった時には、基板Sの全面の所望の箇所にインクが塗布されている。
(3)混合溶媒タンク12内の混合溶媒の組成比と追加量について
 実施の形態では、インクは、機能性材料と、第1溶媒と、第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含む。図3は、温度と蒸気圧及び沸点の関係を説明するための模式図である。液体の表面からは、常温でその液体の物質が揮発している。蒸気圧とは、ある温度において、その物質の気体が液体と平衡になる圧力のことである。ある温度における蒸気圧の高い物質は、その温度における蒸気圧の低い物質よりも揮発性が高い。よって、室温(例えば20℃)における第1溶媒の蒸気圧Paは、室温における第1溶媒の揮発し易さを指標していると考えられる。同様に、室温における第2溶媒の蒸気圧Pbは、室温における第2溶媒の揮発し易さを指標していると考えられる。PaはPbより大きいので、第1溶媒は第2溶媒よりも揮発しやすい。
 図4は、インク中の第1溶媒と第2溶媒の組成比の経時変化を説明するための模式図である。タンク内で、機能性材料Fと第1溶媒と第2溶媒とを混合してインクを作製する。室温におけるインク中の第1溶媒の単位体積当たりの質量をa(g/cm3)、第2溶媒の単位体積当たりの質量をb(g/cm3)とし、第1溶媒の分子量をMa、第2溶媒の分子量をMbとする。また、第1溶媒の体積と第2溶媒の体積の混合比をA:Bとする。すると、インク作製直後の初期の状態(t=0)での第1溶媒の物質量na(mol)と第2溶媒の物質量nb(mol)の比率Rnは、以下の通りとなる。
   Rn=na/nb=(Aa/Ma)/(Bb/Mb)=(Aa/Bb)×(Mb/Ma
インク液面付近においてもこの比率は同じであると仮定する。そして、インクの液面からは第1溶媒と第2溶媒が揮発する。その後、ある時間が経過したとする。既に説明したように、第1溶媒の蒸気圧Paは、室温における第1溶媒の揮発し易さを指標する。また、第2溶媒の蒸気圧Pbは、室温における第2溶媒の揮発し易さを指標する。そうすると、第1溶媒の室温での単位時間当たりの揮発量Ea及び第2溶媒の単位時間当たりの揮発量Ebは、以下の通りとなる。ここでCstは、インクの液面の表面積、タンクの内圧等により定まる比例定数である。
   Ea=Cst×(Aa/Ma)×Pa
   Eb=Cst×(Bb/Mb)×Pb
 従って、第1溶媒の単位時間当たりの揮発量Eaと第2溶媒の単位時間当たりの揮発量Ebとの比率Rは、以下の通りとなる。
   R=Ea/Eb=(Aa/Bb)×(Mb/Ma)×(Pa/Pb
上記の揮発量の比率Rで第1溶媒と第2溶媒とが揮発していく。よって、初期の状態での第1溶媒の物質量と第2溶媒の物質量の比率Rnを維持するためには、インクから揮発した揮発量の比率Rで第1溶媒と第2溶媒とを混合した混合溶媒を追加すればよい。
 上記で追加する混合溶媒の混合比率は決定したが、混合溶媒の追加量である体積V(cm3)をどのように決めればよいかが次に問題となる。INタンク10内で溶媒が揮発すると、溶質である機能性材料の濃度が高くなるので、インクの粘度が増大することがある。機能性材料としては、例えば、平均分子量が10000以上の高分子材料が用いられる。インクジェット装置では、インクの粘度が上昇すると、インクジェットのインクの液滴の体積が変動して、機能層の膜厚が設計値からずれてしまう。そのため、インクの粘度変化は、できるだけ抑制することが好ましい。インクの粘度は、粘度測定のばらつき等の関係から、1時間や1日のスケールでは、正しい粘度変化が得ることが難しい。実際の生産中に粘度測定をしながら粘度を一定値に近づけるように混合溶媒を追加してもよいが、生産前に、事前に、単位時間当たりの混合溶媒の追加量を決定しておくのがより現実的な手法である。そこで、実施の形態では、実際の生産前の準備段階として、まず、インクジェット装置内に貯留しているインクに追加する混合溶媒の単位時間当たりの体積Q1(cm3)を事前に求めておく。そして、予め求められた単位時間当たりの追加量Q1だけ生産段階で追加するという手法を取る。以下でその手法を説明する。
 まず、インクの粘度の平均時間変化率C1を求める。バルブ15を閉じて、インクを吐出させずにインクジェットシステム1を稼働させ続ける(図1参照)。この場合、インクを吐出しないので、INタンク内のインクの総量は一定となる。実際の生産段階ではインクを吐出してインクを消費していくが、生産によるインクの消費量に対してインクジェットシステム1内のインクの総量の方がはるかに多いので、インクの消費量の影響は無視できる場合がある。インクを無駄にしてもいいので、正確を期したい場合は、生産段階と同様に基板を流して、その基板にインクを吐出させ続けてもよい。また、実際のインクジェットシステム1を稼働させずに、実験室レベルのビーカーワークで求めてもよい。
 ここで、インクジェットシステム1の稼働初期(t=0)のINタンク10内のインクと、稼働初期から数十日経過した時点でのINタンク10内のインクを採取する。そして、これらのインクの粘度を測定する。粘度の測定は、応力制御型の粘度計AR-G2 (TA Instruments)で行い、温度は、室温(20℃)で行った。そして、インクジェットシステム1の稼働初期からの経過日数(インク導入後経過日数)と粘度との関係を求める。結果を図5に示す。この結果から、実施の形態では、約40日で粘度が約1mPa・secだけ上昇していることが分かる。一般式で表すべく、時間xが経過した時に粘度がyだけ上昇しているとすると、インクの粘度の平均時間変化率C1は、以下の通りとなる。
   C1=y/x・・・(i)
 次に、混合溶媒の体積に対するインクの粘度の平均変化率C2を求める。ここでは、インクジェットシステム1を使用せず、簡単のため、実験室レベルのビーカーワークで求める。ビーカー内に初期のインクを入れて蓋をする。そして、先に求めた比率の混合溶媒を追加していく。追加する混合溶媒の体積V(cm3)を計量し、その体積の混合溶媒を追加した時のビーカー内のインクを採取し、インクの粘度を測定する。結果を図6に示す。この結果から、粘度変化を抑えるために約1mPa・secだけ粘度を下げるには、V1(cm3)だけ混合溶媒を追加すればよいことが分かる。一般式で表すべく、追加する混合溶媒の体積がV1のとき、粘度がyだけ減少するとすれば、混合溶媒の体積に対するインクの粘度の平均変化率C2は、以下の通りとなる。
   C2=y/V1・・・(ii)
 上記(i)及び(ii)の関係から、インクの粘度変化を抑制するためにインクに追加する混合溶媒の単位時間当たりの体積Q1は、以下の通りとなる。
   Q1=V1/x=C1/C2
(4)制御ユニット13の動作フローについて
 (4-1)制御ユニット13の動作フローの全体
 製品の生産段階における制御ユニット13の動作フローの全体を図7を用いて説明する。
 制御ユニット13がスタートすると、制御ユニット13の計時部13cがスタートする(t1=0、ステップS1)。制御ユニット13は、生産指示があれば(ステップS2:Yes)、生産処理(ステップS9)に入り、生産指示がなければ(ステップS2:No)、待機状態となる(ステップS3)。生産指示は、工場のオペレーターから受け付けるものである。インクジェットシステム1を有機EL表示パネルの生産に適用する場合、生産指示は、例えば、生産しようとするパネルの機種や、生産しようとする基板のトータル枚数N等の情報を含む。
 生産指示があれば(ステップS2:Yes)、まず、制御ユニット13が、変数nを1に設定する(ステップS9)。nは自然数であり、何枚目の基板を処理しているかを表す変数である。次に、制御ユニット13が、インクジェットヘッド105に塗布スタートの指示を出す(ステップS10)。インクジェットヘッド105は、制御ユニット13からインクの塗布の通知を受け付けると、予め定められたシーケンスで基板にインクを塗布する。その後、制御ユニット13が、計時部13cの時間t1が所定時間Tに達しているかどうかを判断する(ステップS11)。所定時間Tは、INタンク10に混合溶媒を追加及び補充インクを補充する時間間隔であり、例えば、1時間、2時間、3時間のような時間単位、或いは、1日、2日、3日のような日単位で任意に設定される。計時部13cの時間t1が所定時間Tに達していなければ(ステップS11:No)、インクジェットヘッド105から制御ユニット13に、1枚目の基板の塗布が完了した旨の通知があるかどうかを判断する(ステップS17)。完了通知がない場合は(ステップS17:No)、まだ1枚目の基板がインクを塗布されている最中であるため、ステップS11に戻る。完了通知がある場合は(ステップS17:Yes)、nが生産しようとする基板のトータル枚数Nに達しているかどうかを判断する(ステップS18)。nがNに達していれば(ステップS18:Yes)、生産しようとしていたN枚の基板の塗布が完了したので、ステップS2に戻り、次の生産指示を待つことになる。nがNに達していなければ(ステップS18:No)、変数nをインクリメントして(ステップS19)、ステップS10に戻る。
 さて、上記の生産の最中に計時部13cの時間t1が所定時間Tに達した場合は(ステップS11:Yes)、INタンク10に混合溶媒が追加される追加処理(ステップS12)が行われる。追加処理の詳細については、(4-2)で説明する。追加処理が完了すると、制御ユニット13が、時間t1が所定時間Tに達するまでに消費したインクの消費量V2を算出する(ステップS13)。インクの消費量V2の算出は、インクジェットヘッド105のノズル1個当たりの吐出量に、1基板当たりに使用したノズルの個数と吐出回数を乗算し、さらに時間t1が所定時間Tに達するまでに生産した基板の枚数を乗算することで行われる。そして、V2が0でなければ(ステップS14:No)、生産によりV2分のインクが消費されているので、INタンク10にインクの消費分を補充する補充処理が行われる(ステップS15)。補充処理の詳細については、(4-3)で説明する。V2が0であれば(ステップS14:Yes)、時間t1が所定時間Tに達するまでに生産した基板の枚数が0であったことになるので、インクは消費されていないため、補充処理はスキップされる。その後、計時部13cがリセットされ、再びスタートされる(t1=0、ステップS16)。そして、ステップ11に戻る。
 ところで、ステップS2で生産指示がなければ(ステップS2:No)、まず、制御ユニット13が、計時部13cの時間t1が所定時間Tに達しているかどうかを判断する(ステップS3)。達していなければ(ステップS3:No)、ステップS2に戻る。達していれば(ステップS3:Yes)、ステップS4からステップS7の処理が行われる。ステップS4からステップS7の処理は、ステップS12からステップS15の処理と同じであるため、説明を省略する。但し、ステップS8においては、計時部13cがリセットされるのみであり、再スタートはされない(t1=0、ステップS8)。その後、制御ユニット13は一旦、エンド状態となった後、再び、スタートし、ステップS1以降が繰り返される。
 続いて、図7における追加処理(ステップS4、ステップS12)、補充処理(ステップS7、ステップS15)について説明する。
 (4-2)追加処理
 図8は、追加処理の動作フローである。
 まず、制御ユニット13の計時部14cがスタートする(t2=0、ステップS21)。次に、制御ユニット13がバルブ15を開ける(ステップS22)。バルブ15は、例えば、開閉のみが制御可能なバルブである。そして、制御ユニット13が、ポンプ14を用いて流量Q2で混合溶媒をINタンク10内に流す(ステップS23)。続いて、制御ユニット13が、計時部14cの時間t2が(Q1/Q2)Tに達したかどうかを判断する(ステップS24)。混合溶媒タンク12内の混合溶媒は、計時部14cの時間t2が(Q1/Q2)Tに達するまでINタンク10に流れ続ける。計時部14cの時間t2が(Q1/Q2)Tに達した場合(ステップS24:Yes)を説明する。既述の通り、INタンク10内のインクの粘度変化を抑制するためにインクに追加する混合溶媒の単位時間当たりの体積がQ1である。そして、図7のフローに示すように、所定時間T毎に混合溶媒が追加される。1回の追加で必要な体積はQ1とTとの積で定まる体積である。時間t2が(Q1/Q2)Tに達すれば、流量Q2で混合溶媒を流したときに、1回に必要な体積(Q1×T)が追加されることになる。次に、制御ユニット13がポンプ14を停止し(ステップS25)、制御ユニット13がバルブ15を閉じる(ステップS26)。最後に、計時部14cがリセットされる(t2=0、ステップS27)。
 (4-3)補充処理
 図9は、補充処理の動作フローである。
 まず、制御ユニット13の計時部211cがスタートする(t3=0、ステップS31)。次に、制御ユニット13がバルブ212を開ける(ステップS32)。バルブ212は、例えば、開閉のみが制御可能なバルブである。そして、制御ユニット13が、ポンプ211を用いて流量Q3で補充インクをINタンク10内に流す(ステップS33)。続いて、制御ユニット13が、計時部211cの時間t3がV2/Q3に達したかどうかを判断する(ステップS34)。補充タンク210内の補充インクは、計時部211cの時間t3がV2/Q3に達するまでINタンク10に流れ続ける。計時部211cの時間t3がV2/Q3に達した場合(ステップS34:Yes)を説明する。既述の通り、体積V2は、制御ユニット13の計時部13cが所定時間Tに達するまでに消費されたインクの消費量である。よって、流量Q3の場合に、時間t3がV2/Q3に達すれば、消費された体積に等しいV2の体積の補充インクがINタンク10に補充されたことになる。次に、制御ユニット13がポンプ211を停止し(ステップS35)、制御ユニット13がバルブ212を閉じる(ステップS36)。最後に、計時部211cがリセットされる(t3=0、ステップS37)。
(5)考察
 ここで、混合溶媒タンク12からINタンク10に追加する混合溶媒の組成比について考察してみる。単純に考えれば、溶媒の物質量や単位時間当たりの揮発量を考慮せずに、粘度だけをインクジェットシステム1の稼働初期と同じになるように、混合溶媒(第1溶媒と第2溶媒の質量比がa:b)を追加すればよいのではないかとも思われる。しかしながら、粘度も重要であるが、INタンク10内に貯留している各溶媒の組成比の経時変化も抑制することが好ましい。図10にそのことが分かるグラフを示す。ここでは、第1溶媒として、ヘプチルベンゼン、第2溶媒として、1メチルナフタレンを用いた。機能層を構成する機能性材料としては、有機性の発光材料を用いた。有機性の発光材料の好ましい例としては、F8-F6(F8(ポリジオクチルフルオレン)とF6(ポリジヘキシルフルオレン)との共重合体)が挙げられる。第1溶媒と第2溶媒の沸点は、それぞれ、235℃、244℃である。第1溶媒と第2溶媒の粘度は、それぞれ、13.2mPa・sec、22.1mPa・secである。第2溶媒は、第1溶媒よりも沸点と粘度がともに高い。図10(a)は、第2溶媒と第1溶媒とを2:8の比率で混合した混合溶媒を用いたインクで機能層を形成した時の機能層の表面形状の測定結果である。図10(b)は、第2溶媒と第1溶媒とを3:7の比率で混合した混合溶媒を用いたインクで機能層を形成した時の機能層の表面形状の測定結果である。溶媒の混合比率が2:8では、膜厚が70nm付近でほぼ一定である。一方、混合比率が3:7では、膜厚が70nmよりも厚くなり、表面形状も凹状となる。このように、インク中の各溶媒の混合比率は、機能層の表面形状を決定する重要なファクターである。従って、実施の形態のように、各溶媒の単位時間当たりの揮発量に応じた混合比率まで考慮して混合溶媒を準備する。その上で、その混合溶媒をインクジェット装置100に貯留しているインクに追加することとする。これにより、インク中の混合溶媒の組成比の変化を抑制することができる。
(6)有機EL表示装置の製造方法
 実施の形態のインクの成分管理方法を適用した一例として、有機EL表示装置10000の製造方法を説明する。
 (6-1)有機EL表示装置10000の概略構成
 図11及び図12を参照しながら、有機EL表示装置10000の概略構成を説明する。図11に示すように、有機EL表示装置10000は有機EL表示パネル3000と、これに接続された駆動・制御回路部2000とを備えている。図12は、有機EL表示パネル3000の平面図である。図12に示すように、有機EL表示パネル3000においては、複数の有機EL素子1001R、1001G、1001BがX方向及びY方向に二次元配置されている。有機EL表示パネル3000では、有機EL素子1001Rは赤色光(R)を出射し、有機EL素子1001Gは緑色光(G)を出射し、有機EL素子1001Bは青色光(B)を出射する。図11に示すように、有機EL表示装置10000における駆動・制御回路部2000は、4つの駆動回路2100~2400と1つの制御回路2500とから構成されている。
 (6-2)有機EL表示パネル3000の構成
 図12に示すように有機EL表示パネル3000において、Y方向に延伸する複数のバンク1120によって区画された溝領域1250R、1250G、1250Bが形成されている。溝領域1250R、1250G、1250Bは、赤色用、緑色用、青色用の溝領域であって、対応する発光色の有機EL素子1001R、1001G、1001BがY方向に列設されている。
 図13は、図12のA-A断面を示す断面図である。有機EL表示パネル3000は、基板1000上にTFT層1010が形成されてなるTFT基板をベースとしている。TFT層1010は、詳細な図示は省略しているが、ゲート、ソース、ドレインの3電極と、半導体層、パッシベーション膜等で構成されている。TFT基板の上に層間絶縁層1020が積層されて下地基板1100が形成されている。層間絶縁層1020の上面が略平坦に形成され、その上に有機EL素子1001R~1001Bが形成されている。
 各有機EL素子1001R~1001Bは、基本構成は同じであって、層間絶縁層1020の上に順に積層形成された画素電極(アノード)1030及びホール注入層1040、ホール輸送層1160、発光層1170、電子輸送層1180、カソード1190によって構成されている。
 バンク1120は、層間絶縁層1020の上において、ホール注入層1040のX方向両縁を覆うように形成されている。そして、ホール輸送層1160、発光層1170は、バンク1120同士の間に積層形成されている。尚、これらホール輸送層1160、発光層1170は、Y方向に連続して形成されている。
 そして、発光層1170の上及びバンク1120の側面及び頂面の上を全体的に覆うように、電子輸送層1180、カソード1190及び封止層1200が順に形成されている。封止層1200の上には、樹脂層1210を介して、カラーフィルタ層1220及びブラックマトリクス層1230を有する基板1240が貼り合わされている。
 (6-3)有機EL表示パネル3000の製造方法
 有機EL表示パネル3000の製造方法について、図14の工程図に基づいて説明する。有機EL表示パネル3000の製造においては、先ず、TFT基板を準備する(ステップS100)。このTFT基板は、基板1000の上面にTFT層1010を形成したものであり、公知の技術で作製される。次に、TFT基板上に有機材料を塗布して層間絶縁層1020を形成する(ステップS101)。
 このように作製した下地基板1100の層間絶縁層1020上に、画素電極(アノード)1030及びホール注入層(HIL)1040を順に積層形成する(ステップS102、S103)。画素電極1030の形成は、例えば、スパッタリング法若しくは真空蒸着法を用いて金属膜を形成した後、フォトリソグラフィ法及びエッチング法でパターニングすることによってなされる。
 ホール注入層1040の形成は、例えば、スパッタリング法を用いて酸化金属(例えば、酸化タングステン)からなる膜を形成した後、フォトグラフィ法およびエッチング法を用いてパターニングすることでなされる。
 次に、バンク1120を形成することによってバンク付基板を作製する(ステップS104)。このバンク1120は、バンク材料(ネガ型感光性樹脂組成物を)を基板上に一様に塗布する。塗布したバンク材料層上に、バンク1120のパターンに合わせた開口を有するフォトマスクを重ねて、フォトマスクの上から露光する。その後、余分なバンク材料をアルカリ現像液で洗い出すことによって、バンク材料をパターニングして、バンク1120を形成する。
 次に、複数のバンク1120で区画された各溝領域1250に、ホール輸送層(HTL)1160を形成する(ステップS105)。このホール輸送層1160の形成については、ウェット法を用い、ホール輸送層1160の構成用材料を含むインクを隣り合うバンク1120間の溝領域に塗布した後、乾燥することによってなされる。このホール輸送層1160は、これまでで説明した実施の形態のインクジェットシステム1を用いて形成される。
 同様に、複数のバンク1120で区画された溝領域1250に、発光層(EML)1170を積層形成する(ステップS106)。発光層1170の形成についても、各構成材料を含むインクを塗布した後、乾燥することでなされる。この発光層1170も、これまでで説明した実施の形態のインクジェットシステム1を用いて形成される。
 次に、発光層1170及びバンク1120の側面及び頂面の上を覆うように、電子輸送層1180(ETL)、カソード1190及び封止層1200を順に積層し形成する(ステップS107、S108、S109)。電子輸送層1180、カソード1190及び封止層1200は、例えば、スパッタリング法を用いて形成することができる。
 その後、基板1240にカラーフィルタ層1220及びブラックマトリクス層1230が形成されたカラーフィルタ(CF)基板を貼り合わせることによって、有機EL表示パネル3000が完成する(ステップS110)。
 尚、上記では、画素電極(アノード)1030上にホール注入層(HIL)1040を形成したが、必ずしもホール注入層(HIL)1040を形成しなくともよい。画素電極(アノード)1030上に直接、ホール輸送層(HTL)1160、発光層(EML)1170をこれまでで説明した実施の形態のインクジェットシステム1を用いて形成してもよい。
 また、上記では、発光層1170上に電子輸送層1180(ETL)、カソード1190を順に形成したが、必ずしも電子輸送層1180(ETL)は形成しなくともよい。発光層1170上に直接、カソード1190を形成してもよい。
 つまり、実施の形態のインクジェットシステム1で形成する機能層は、画素電極(アノード)1030上方に形成され、当該機能層の上方にカソード1190が形成されていればよい。ある電極やある層の上方という意味は、ある電極上やある層上(ある電極やある層と接している)という意味と、ある電極やある層の上の方(ある電極やある層とは接していない)という意味のいずれかに解釈されるものとする。
 (6-4)有機EL表示装置10000の製造方法
 上記で完成した有機EL表示パネル3000に、駆動回路2100~2400を実装する。そして、駆動回路2100~2400に制御回路2500を接続して、有機EL表示装置10000が完成する(図11参照)。
 上記で作製された有機EL表示装置10000は、機能層(実施の形態では、ホール輸送層と発光層)の膜厚が所望の値で、機能層の平坦性が高く形成されている。よって、各表示パネル間や1つの表示パネル内での発光特性の変動が小さく抑えられている。そのため、実施の形態の製造方法によれば、生産ばらつきが抑制された品質の高い有機EL表示パネル及び有機EL表示装置を製造することができる。
<その他の事項>
(1)実施の形態では、所定時間T毎に混合溶媒や補充インクを追加、補充したがこれに限られるものではない。所定時間T毎ではなく、常時、連続的に混合溶媒や補充インクを追加してもよい。
(2)実施の形態では、混合溶媒の追加と、補充インクの補充を同じ所定時間T毎に行ったが、これに限られるものではない。混合溶媒の追加と、補充インクの補充とは独立のフローとして、異なる所定時間毎に行っても構わない。
(3)実施の形態では、インクジェットシステム1に粘度計を装着していないが、システム内に簡易粘度系を設け、正確に粘度変化をモニタリングして混合溶媒の追加量を決定してもよい。
(4)実施の形態では、機能性材料として、例えば、高分子を用いたが、低分子材料(平均分子量10000未満)を用いてもよい。
(5)実施の形態では、バルブは開閉のみを行い、ポンプが予め設定された流量で溶媒やインクを流す構成としたが、これに限られるものではない。バルブが開閉を行うとともに、流量の調節をする構成としてもよい。
(6)実施の形態では、主に、インクジェットシステム1として、制御システム13を用いた自動的な制御を前提として説明したが、これに限定されるものではない。インクの成分管理方法として、人が手動で混合溶媒を追加してもよい。
(7)実施の形態では、2種類の溶媒を混合した混合溶媒を用いたが、これに限定されるものではない。3種類以上の溶媒を混合してもよい。例えば、3種類の第1溶媒、第2溶媒、第3溶媒を用いる場合には、混合溶媒の混合比率は次のようにすればよい。ここで、第1溶媒、第2溶媒、第3溶媒の順に、沸点及び粘度がともに高くなっているとする。第1溶媒、第2溶媒、第3溶媒の室温での単位体積当たりの質量をそれぞれa(g/cm3)、b(g/cm3)、c(g/cm3)とする。第1溶媒、第2溶媒、第3溶媒の分子量をそれぞれMa、Mb、Mcとする。第1溶媒、第2溶媒、第3溶媒の室温での蒸気圧をそれぞれPa、Pb、Pcとする。また、第1溶媒の体積と第2溶媒の体積と第3溶媒の体積の混合比をA:B:Cとする。混合溶媒タンク12からINタンク10に追加する混合溶媒は、以下の体積の比率で追加すればよい。4種類以上でも同様である。
   (Aa/Ma)×Pa:(Bb/Mb)×Pb:(Cc/Mc)×Pc
(8)実施の形態では、単位時間当たりの揮発量の比率で混合した混合溶媒を追加するという簡便な手法を取ったが、より正確に見積もる手法を用いて混合溶媒を準備してもよい。例えば、INタンク10内の混合溶媒のガスクロマトグラフィ質量分析(GC/MS)を行って、実際にどの溶媒がどれだけ減少したかを測定して、それにより混合溶媒の混合比率を決めてもよい。
(9)実施の形態では、室温とは、15℃以上、40℃以下のことを言う。
(10)実施の形態では、混合溶媒をINタンク10に追加するシステムとしたが、これに限定されるものではない。OUTタンク11に追加してもよいし、インクが循環している各チューブ内に追加してもよい。チューブに追加するのであれば、インクジェットヘッド105にインクを供給するINチューブ106が好ましい。
(11)混合溶媒をINタンク10に追加する所定時間Tは、機能層の特性がスペック内に収まる程度の所定時間Tであればよい。機能層の特性がスペック内に収まるのであれば、例えば、1週間に1回、1ヶ月に1回といった比較的長い所定時間T毎に追加しても構わない。
(12)実施の形態のようなインク循環型のシステムを用いずに、ある程度の時間が経てば、インクを捨てて適切な粘度と組成比のインクに入れ替えることも考えられる。しかし、機能性材料は非常に高価なため、インクを頻繁に捨てるということはあまり現実的ではない。
(13)本発明に係るインクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機EL表示装置を製造する製造方法は、実施の形態の部分的な構成を、適宜組み合わせてなる構成であってもよい。また、実施の形態に記載した材料、数値等は好ましいものを例示しているだけであり、それに限定されることはない。さらに、本発明の技術的思想の範囲を逸脱しない範囲で、構成に適宜変更を加えることは可能である。本発明は、インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機EL表示装置を製造する製造方法全般に広く利用可能である。
 本発明の一態様に係るインクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機EL表示装置を製造する製造方法は、主に有機表示装置、有機発光装置の製造プロセスに広く利用できる。
1.インクジェットシステム
10.INタンク
11.OUTタンク
12.混合溶媒タンク
13.制御ユニット
13c、14c、211c.計時部
15、212.バルブ
100.インクジェット装置
105.インクジェットヘッド
108.配管(チューブ)
1030.第1電極(アノード)
1100.下地基板
1160.機能層(ホール輸送層)
1170.機能層(発光層)
1190.第2電極(カソード)
3000.有機EL表示パネル
10000.有機EL表示装置

Claims (13)

  1.  機能性材料と第1溶媒と前記第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留された前記インクをノズルを通じて外部に吐出するインクジェット装置において、前記インクジェット装置内に貯留された前記インクの成分を管理するインクの成分管理方法であって、
     前記第1溶媒の単位時間当たりの揮発量と前記第2溶媒の単位時間当たりの揮発量に応じた混合比率で、前記第1溶媒と同種の溶媒と、前記第2溶媒と同種の溶媒とが混合された混合溶媒を準備し、準備された前記混合溶媒を前記インクジェット装置内に貯留された前記インクに追加する、
     インクの成分管理方法。
  2.  前記第1溶媒と同種の溶媒の単位時間当たりの揮発量と、前記第2溶媒と同種の溶媒の単位時間当たりの揮発量との比率Rは、前記第1溶媒と同種の溶媒の室温における単位体積当たりの質量をaとし、前記第1溶媒と同種の溶媒の分子量をMaとし、前記第1溶媒と同種の溶媒の室温における蒸気圧をPaとし、前記第2溶媒と同種の溶媒の室温における単位体積当たりの質量をbとし、前記第2溶媒と同種の溶媒の分子量をMbとし、前記第2溶媒と同種の溶媒の室温における蒸気圧をPbとし、前記第1溶媒の体積と前記第2溶媒の体積の混合比をA:Bとしたとき、以下の関係式で求められる、
     R=(Aa/Bb)×(Mb/Ma)×(Pa/Pb
     請求項1に記載のインクの成分管理方法。
  3.  前記混合溶媒は、単位時間当たりの追加量Q1で前記インクに追加され、
     前記追加量Q1は、前記混合溶媒を追加しない状態で前記インクを前記インクジェット装置内に貯留した場合の前記インクの粘度の平均時間変化率をC1とし、前記混合溶媒を前記インクに追加した場合に前記混合溶媒の追加量に対する前記インクの粘度の平均変化率をC2としたとき、以下の関係式で求められる、
     Q1=C1/C2
     請求項1に記載のインクの成分管理方法。
  4.  前記インクジェット装置は、前記ノズルを有するインクジェットヘッドと、前記インクジェットヘッドに連結され前記インクジェットヘッドに供給するための前記インクを貯留するINタンクと、を備え、
     前記INタンクに前記混合溶媒を追加することにより、前記インクジェット装置内に貯留されている前記インクに前記混合溶媒を追加する、
     請求項1に記載のインクの成分管理方法。
  5.  前記混合溶媒は、前記インクジェット装置内に貯留されている前記インクよりも高い圧力環境下で保管されている、
    請求項1に記載のインクの成分管理方法。
  6.  前記機能性材料は、高分子の有機材料である、
    請求項1に記載のインクの成分管理方法。
  7.  機能性材料と第1溶媒と前記第1溶媒よりも沸点と粘度がともに高い第2溶媒とを含むインクを負圧環境下で内部に貯留し、貯留された前記インクをノズルを通じて外部に吐出するインクジェット装置と、
     前記インクジェット装置に配管を通じて連結され、前記第1溶媒の単位時間当たりの揮発量と前記第2溶媒の単位時間当たりの揮発量に応じた混合比率で、前記第1溶媒と同種の溶媒と、前記第2溶媒と同種の溶媒とが混合された混合溶媒を貯留する混合溶媒タンクと、
     前記配管に設けられたバルブと、
     前記バルブを制御することにより、前記混合溶媒タンクに貯留された前記混合溶媒を前記インクジェット装置内に追加させる制御ユニットと、
     を備えるインクジェットシステム。
  8.  前記第1溶媒と同種の溶媒の単位時間当たりの揮発量と、前記第2溶媒と同種の溶媒の単位時間当たりの揮発量との比率Rは、前記第1溶媒と同種の溶媒の室温における単位体積当たりの質量をaとし、前記第1溶媒と同種の溶媒の分子量をMaとし、前記第1溶媒と同種の溶媒の室温における蒸気圧をPaとし、前記第2溶媒と同種の溶媒の室温における単位体積当たりの質量をbとし、前記第2溶媒と同種の溶媒の分子量をMbとし、前記第2溶媒と同種の溶媒の室温における蒸気圧をPbとし、前記第1溶媒の体積と前記第2溶媒の体積の混合比をA:Bとしたとき、以下の関係式で求められる、
     R=(Aa/Bb)×(Mb/Ma)×(Pa/Pb
     請求項7に記載のインクジェットシステム。
  9.  前記混合溶媒は、単位時間当たりの追加量Q1で前記インクに追加され、
     前記追加量Q1は、前記混合溶媒を追加しない状態で前記インクを前記インクジェット装置内に貯留した場合の前記インクの粘度の平均時間変化率をC1とし、前記混合溶媒を前記インクに追加した場合に前記混合溶媒の追加量に対する前記インクの粘度の平均変化率をC2としたとき、以下の関係式で求められる、
     Q1=C1/C2
     請求項7に記載のインクジェットシステム。
  10.  前記インクジェット装置は、前記ノズルを有するインクジェットヘッドと、前記インクジェットヘッドに連結され前記インクジェットヘッドに供給するための前記インクを貯留するINタンクと、を備え、
     前記INタンクに前記混合溶媒を追加することにより、前記インクジェット装置内に貯留されている前記インクに前記混合溶媒を追加する、
     請求項7に記載のインクジェットシステム。
  11.  前記混合溶媒は、前記インクジェット装置内に貯留されている前記インクよりも高い圧力環境下で保管されている、請求項7に記載のインクジェットシステム。
  12.  前記機能性材料は、高分子の有機材料である、
    請求項7に記載のインクジェットシステム。
  13.  下地基板を準備し、
     前記下地基板上に第1電極を形成し、
     前記第1電極の上方に前記機能性材料で構成される機能層を、請求項7に記載のインクジェットシステムを用いて形成し、
     前記機能層の上方に第2電極を形成する、
     有機EL表示装置の製造方法。
PCT/JP2015/003193 2014-06-30 2015-06-25 インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法 WO2016002168A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531093A JPWO2016002168A1 (ja) 2014-06-30 2015-06-25 インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法
US15/322,827 US20170155046A1 (en) 2014-06-30 2015-06-25 Ink component management method, inkjet system using same, and manufacturing method for manufacturing organic el display device using inkjet system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134850 2014-06-30
JP2014134850 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002168A1 true WO2016002168A1 (ja) 2016-01-07

Family

ID=55018749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003193 WO2016002168A1 (ja) 2014-06-30 2015-06-25 インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法

Country Status (3)

Country Link
US (1) US20170155046A1 (ja)
JP (1) JPWO2016002168A1 (ja)
WO (1) WO2016002168A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230548A1 (ja) * 2017-06-15 2018-12-20 Dic株式会社 機能層形成用インク
JP2020114652A (ja) * 2019-01-18 2020-07-30 株式会社日立産機システム インクジェット記録装置およびインクジェット記録装置の制御方法
KR20230023916A (ko) * 2021-08-11 2023-02-20 순천향대학교 산학협력단 전기 스프레이 코팅 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509143A (zh) * 2019-05-21 2020-08-07 广东聚华印刷显示技术有限公司 功能薄膜及其制备方法、显示面板及打印系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282246A (ja) * 2002-03-20 2003-10-03 Seiko Epson Corp デバイスの製造方法及び製造装置、有機エレクトロルミネッセンス装置の製造方法及び製造装置、デバイス及び有機エレクトロルミネッセンス装置、電子機器
JP2004119351A (ja) * 2002-09-30 2004-04-15 Dainippon Screen Mfg Co Ltd 有機el塗布装置
JP3121757U (ja) * 2006-03-08 2006-05-25 理想科学工業株式会社 インクジェットプリンタ
JP2010188316A (ja) * 2009-02-20 2010-09-02 Konica Minolta Holdings Inc 塗布液の塗布方法及び塗布システム
JP2012016911A (ja) * 2010-07-09 2012-01-26 Hitachi Industrial Equipment Systems Co Ltd インクジェット記録装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195776A (ja) * 2008-02-19 2009-09-03 Hitachi High-Technologies Corp インクジェット記録装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282246A (ja) * 2002-03-20 2003-10-03 Seiko Epson Corp デバイスの製造方法及び製造装置、有機エレクトロルミネッセンス装置の製造方法及び製造装置、デバイス及び有機エレクトロルミネッセンス装置、電子機器
JP2004119351A (ja) * 2002-09-30 2004-04-15 Dainippon Screen Mfg Co Ltd 有機el塗布装置
JP3121757U (ja) * 2006-03-08 2006-05-25 理想科学工業株式会社 インクジェットプリンタ
JP2010188316A (ja) * 2009-02-20 2010-09-02 Konica Minolta Holdings Inc 塗布液の塗布方法及び塗布システム
JP2012016911A (ja) * 2010-07-09 2012-01-26 Hitachi Industrial Equipment Systems Co Ltd インクジェット記録装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230548A1 (ja) * 2017-06-15 2018-12-20 Dic株式会社 機能層形成用インク
JP2020114652A (ja) * 2019-01-18 2020-07-30 株式会社日立産機システム インクジェット記録装置およびインクジェット記録装置の制御方法
JP7221060B2 (ja) 2019-01-18 2023-02-13 株式会社日立産機システム インクジェット記録装置およびインクジェット記録装置の制御方法
KR20230023916A (ko) * 2021-08-11 2023-02-20 순천향대학교 산학협력단 전기 스프레이 코팅 장치
KR102606297B1 (ko) 2021-08-11 2023-11-24 순천향대학교 산학협력단 전기 스프레이 코팅 장치

Also Published As

Publication number Publication date
JPWO2016002168A1 (ja) 2017-04-27
US20170155046A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2016002168A1 (ja) インクの成分管理方法、これを適用したインクジェットシステム、及び、インクジェットシステムを用いて有機el表示装置を製造する製造方法
US9818802B2 (en) Electroluminescent device comprising channels, its manufacturing method, and display device
US7395976B2 (en) Solution spray apparatus and solution spray method
JP4148933B2 (ja) 機能膜の製造方法、機能膜形成用塗液、機能素子、電子デバイス及び表示装置
US9312486B2 (en) Method for fabricating organic light emitting display device by predepositing a solvent to increase wettability and inkjet print device used therein
CN104882468A (zh) 有机电致发光显示基板及其制作方法、显示装置
WO2004030417A1 (ja) アクティブマトリクス型有機el表示体の製造方法およびその装置およびアクティブマトリクス型有機el表示体、並びに液晶アレイの製造方法および液晶アレイ、並びにカラーフィルタ基板の製造方法およびその装置およびカラーフィルタ基板
KR20150054160A (ko) 표시장치 제조용 잉크 및 이를 이용한 표시장치의 제조방법
TWI298001B (ja)
CN111192979A (zh) 显示面板的制造方法及功能层形成装置
WO2018131616A1 (ja) 有機el表示パネルの製造方法、及びインク乾燥装置
KR20160067544A (ko) 유기전계 발광소자 및 이의 제조방법
US20090303275A1 (en) Droplet discharge device, method for discharging droplet and method for manufacturing electro-optical device
JP2008296177A (ja) 液滴吐出ヘッドの配置方法、ヘッドユニットおよび液滴吐出装置、並びに、電気光学装置の製造方法、電気光学装置および電子機器
US10490606B2 (en) Display substrate, display panel, and method for fabricating the display substrate
JP4168999B2 (ja) 発光材料及び有機el装置の製造方法
JP2010040323A (ja) 液滴吐出装置および液滴吐出方法ならびに有機el素子の製造方法
WO2022124242A1 (ja) インクの吐出量の測定調整方法、インク吐出量測定調整装置、有機el表示パネルのパネル製造システム、有機el表示パネルの製造方法、インク、およびインクを用いて製造される有機el表示パネル
JP2004230209A (ja) 溶液噴出装置
WO2008035501A1 (fr) Solution de revêtement pour élément électroluminescent organique, cet élément et son procédé de production
CN100469464C (zh) 液滴喷射涂布方法及显示装置的制造方法
JP2009247933A (ja) 液状体吐出方法、有機elパネルの製造方法、カラーフィルタの製造方法、表示装置、および電子機器
KR101014406B1 (ko) 평판디스플레이의 프린팅 장치 및 방법
TW201321085A (zh) 薄膜形成方法
JP2013077502A (ja) 塗布装置、塗布方法及び有機機能性素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531093

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322827

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814649

Country of ref document: EP

Kind code of ref document: A1