WO2016002058A1 - Semiconductor device, method for producing same, power module, and power conversion device - Google Patents

Semiconductor device, method for producing same, power module, and power conversion device Download PDF

Info

Publication number
WO2016002058A1
WO2016002058A1 PCT/JP2014/067841 JP2014067841W WO2016002058A1 WO 2016002058 A1 WO2016002058 A1 WO 2016002058A1 JP 2014067841 W JP2014067841 W JP 2014067841W WO 2016002058 A1 WO2016002058 A1 WO 2016002058A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial layer
semiconductor device
degrees
sic substrate
type
Prior art date
Application number
PCT/JP2014/067841
Other languages
French (fr)
Japanese (ja)
Inventor
望月 和浩
宏行 松島
三木 浩史
廉一 山田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016530773A priority Critical patent/JP6282346B2/en
Priority to PCT/JP2014/067841 priority patent/WO2016002058A1/en
Publication of WO2016002058A1 publication Critical patent/WO2016002058A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, a power module, a power conversion device, a three-phase motor system, an automobile, and a railway vehicle.
  • Patent Document 1 JP 2009-302436 A
  • carbonization is performed to form a p-type deep layer to a deeper position by implanting p-type impurities by oblique ion implantation inclined in a direction to cancel the off angle.
  • a method for manufacturing a silicon semiconductor device is described.
  • the present invention provides a silicon carbide semiconductor device having excellent breakdown voltage characteristics.
  • a p-type impurity is added to an n-type 4H—SiC substrate whose surface is turned off from the (0001) plane by 4 degrees in the [11-20] direction [
  • the ions are implanted in a direction inclined at an angle of 0 ° or more from the [000-1] direction to the [11-20] direction, or from 0 ° to less than 4 ° from the [000-1] direction to the [ ⁇ 1-120] direction, and n
  • An FLR is formed on the epitaxial layer of 4H—SiC formed on the surface of the mold 4H—SiC substrate.
  • the angle formed between the upper surface of the epitaxial layer and the metallurgical boundary of the FLR is less than 90 degrees at the end of the upper surface of the epitaxial layer opposite to the off direction of the FLR.
  • a silicon carbide semiconductor device having excellent breakdown voltage characteristics can be provided.
  • FIG. 6 is a cross-sectional view of a principal part of a Schottky barrier diode for explaining an embodiment of FLR formed by ion implantation of p-type impurities.
  • FIG. 5 is an enlarged cross-sectional view showing the surface warpage of an n-type 4H—SiC substrate having a substrate diameter of 6 inches. The simulation result of the FLR shape by Example 1 is shown.
  • (A) shows the simulation result of the FLR shape when Al ions are implanted in the [000-1] direction.
  • (B) shows the simulation results of the FLR shape when Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [-1-120] direction.
  • (C) shows the simulation results of the FLR shape when Al ions are implanted in the direction inclined by 8 degrees from the [000-1] direction to the [-1-120] direction.
  • the simulation result of the FLR shape by Example 1 is shown.
  • (A) shows the simulation results of the FLR shape when Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [11-20] direction.
  • (B) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined by 8 degrees from the [000-1] direction to the [11-20] direction.
  • (C) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined by 12 degrees from the [000-1] direction to the [11-20] direction.
  • (D) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined 16 degrees from the [000-1] direction to the [11-20] direction.
  • the avalanche breakdown voltage at room temperature of the pn diode formed on the n-type 4H—SiC substrate whose surface was turned off by 4 degrees from the (0001) plane in the [11-20] direction according to Example 1, and the FLR (metallurgical region) It is a graph explaining the relationship with depth.
  • FIG. 4 is a plan view of a principal part showing one example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1;
  • FIG. FIG. 6 is a main part sectional view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 (main part sectional view taken along the line AA ′ in FIG. 9); is there. 6 is a process diagram illustrating an example of a method of manufacturing a semiconductor device according to Example 1.
  • FIG. FIG. 10 is a sectional view of a key portion showing one example of a manufacturing process of a semiconductor device according to Example 1.
  • FIG. 13 is a main part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 12;
  • FIG. 14 is an essential part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 13;
  • FIG. 15 is a main-portion cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 14;
  • FIG. 16 is a main-portion cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 15;
  • FIG. 17 is a main part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 16;
  • FIG. 6 is a cross-sectional view of a principal part showing one example of a MOSFET formed on an n-type 4H—SiC substrate constituting a switching element according to Example 2.
  • FIG. 6 is a cross-sectional view of a principal part showing one example of a MOSFET formed on an n-type 4H—SiC substrate constituting a switching element according to Example 2.
  • FIG. 6 is a
  • FIG. 6 is a circuit diagram showing an example of a power conversion device (inverter) in which a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 3 is connected to a switching element as a freewheeling diode.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of an electric vehicle according to a fourth embodiment.
  • FIG. 10 is a circuit diagram illustrating an example of a boost converter according to a fourth embodiment.
  • FIG. 10 is a circuit diagram illustrating an example of a converter and an inverter provided in a railway vehicle according to a fifth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • the present inventors use an n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction, and uses a guard ring made of a p-type semiconductor region and one or more of them.
  • a Schottky barrier diode having an FLR was fabricated and its breakdown voltage was measured.
  • the guard ring and the FLR are provided on the outer periphery of the semiconductor device, the guard ring alleviates the electric field concentration at the end of the anode electrode, and the FLR is the end of the guard ring or, in the case of a plurality of FLRs, the inner FLR. It has a function to alleviate electric field concentration at the end.
  • a patterned mask material layer 20 is formed on the surface of an n-type 4H—SiC substrate 10, and p-type impurities are ionized into the n-type 4H—SiC substrate 10 exposed from the mask material layer 20.
  • a guard ring 30 and three FLRs 40 spaced apart from each other were formed.
  • p-type impurities are ion-implanted in a direction inclined from 0 ° to 4 ° from the [000-1] direction to the [-1-120] direction.
  • the standard deviation in the substrate surface was equal to or less than 20% of the average value.
  • the breakdown voltage at room temperature of a pn diode provided with one FLR was obtained by simulation.
  • the pn diode is used because it is difficult to accurately model the reverse leakage current of the Schottky barrier diode.
  • the results are shown in FIG. 3 when the FLR width is 5 ⁇ m and the distance from the guard ring to the FLR is 2.5 ⁇ m.
  • the vertical axis in FIG. 3 is the avalanche breakdown voltage at room temperature of a pn diode in which one FLR having a width of 5 ⁇ m is provided 2.5 ⁇ m apart from the guard ring, and the horizontal axis is from the [000-1] direction to [ ⁇ 1 -120] direction ion implantation tilt angle and [000-1] direction to [11-20] direction ion implantation tilt angle.
  • the off-angle specification of a commercially available n-type 4H-SiC substrate is usually ⁇ 0.5 degrees, but as schematically shown in FIG. 4, the n-type 4H-SiC with a large substrate diameter up to 6 inches is used.
  • the substrate 10 has a large warp on its surface. For this reason, when the ion implantation tilt angle from the [000-1] direction to the [-1-120] direction is in the range of 0 ° or more and 4 ° or less, the effective variation in the off-angle increases.
  • the measured avalanche pressure resistance is considered to vary greatly.
  • the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is not less than 0 degrees and not more than 4 degrees (in other words, the ion implantation from the [000-1] direction to the [-1-120] direction. Also in the case where the tilt angle is in the range of ⁇ 4 degrees or more and 0 degrees or less, the avalanche breakdown voltage decreases as the ion implantation tilt angle increases, and the avalanche breakdown voltage takes a value in the range of 900V to 200V.
  • the n-type 4H-SiC substrate having a substrate diameter of up to 6 inches has a large warp on the surface, so that the effective variation in the off angle increases, resulting in a measured avalanche breakdown voltage. Are considered to vary greatly.
  • the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is not less than 4 degrees and not more than 12 degrees (in other words, the ion implantation from the [000-1] direction to the [-1-120] direction.
  • the avalanche breakdown voltage is as low as 200 V, but the value hardly depends on the ion implantation tilt angle.
  • n-type 4H—SiC in the actual measurement of the Schottky barrier diode shown in FIG. 2 in which the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is set to 8 degrees. This means that the avalanche breakdown voltage does not vary even if the effective variation of the off angle due to the warpage of the substrate surface is ⁇ 4 degrees at the maximum. With this effect, as described above, it is considered that a uniform withstand voltage was obtained in an n-type 4H—SiC substrate having a substrate diameter of 6 inches.
  • the absolute value of the avalanche breakdown voltage can be increased by increasing the number of FLRs, a low avalanche breakdown voltage of 200 V when there is one FLR is not a practical obstacle. That is, by increasing the number of FLRs, it is possible to increase the breakdown voltage of the Schottky barrier diode.
  • FIG. 5 and FIG. 6 show a case where Al is ion-implanted from various directions into an n-type 4H—SiC substrate 10 whose surface is turned off by 4 degrees from the (0001) plane to the [11-20] direction using Monte Carlo simulation.
  • This is a result of obtaining the metallurgical boundary (the boundary (pn junction surface) between the n-type 4H—SiC substrate 10 and the FLR 40) of the FLR 40 in the case.
  • the donor density in the n-type 4H—SiC substrate 10 is 3 ⁇ 10 15 cm ⁇ 3
  • the range of Al ion implantation energy is 30 keV to 150 keV
  • the total amount of Al ion implantation is 2 ⁇ 10 14 cm ⁇ 2 .
  • the cross-sectional shape of the ion implantation mask 50 is such that its side surface has an inclination of 86 degrees with respect to the surface of the n-type 4H—SiC substrate 10.
  • FIG. 5 (a) shows the simulation result when Al ions are implanted in the [000-1] direction.
  • a certain proportion of Al ions penetrates through the gaps of the lattice and penetrates deep into the crystal (channeling), and the depth of the metallurgical boundary of FLR 40 reaches 1.58 ⁇ m.
  • the horizontal extent of the metallurgical boundary of the FLR 40 is substantially symmetric in the [11-20] direction and the [ ⁇ 1-120] direction, and the metallurgical engineering of the FLR 40 on the surface of the n-type 4H—SiC substrate 10.
  • the horizontal extent of the boundary is equal to 0.27 ⁇ m in both directions from the end of the ion implantation mask 50.
  • FIG. 5B shows a case where Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [-1-120] direction, that is, perpendicularly implanted on the surface of the n-type 4H—SiC substrate 10.
  • the simulation result is shown.
  • the channeling seen in FIG. 5 (a) is suppressed.
  • the horizontal expansion of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is asymmetrical with the [ ⁇ 1-120] direction being 0.28 ⁇ m and the [11-20] direction being 0.17 ⁇ m. .
  • FIG. 5 (c) shows a simulation result when Al ions are implanted in the direction inclined by 8 degrees from the [000-1] direction to the [-1-120] direction.
  • the asymmetry of the horizontal extension of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10 is further expanded as compared with FIG.
  • the horizontal extent of the metallurgical boundary of FLR 40 is 0.28 ⁇ m in the [ ⁇ 1-120] direction and 0.10 ⁇ m in the [11-20] direction.
  • directions in which Al ions are inclined from the [000-1] direction to the [11-20] direction by 4 degrees, 8 degrees, and 12 degrees. are respectively restored to the symmetry of the horizontal extension of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10, and the horizontal of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10 is restored.
  • the direction spread is 0.27 ⁇ m in both the [ ⁇ 1-120] direction and the [11-20] direction.
  • the symmetry of the horizontal extension of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is that Al ions are [11-1] from the [000-1] direction. 20] direction disappears when implanted in a direction inclined 16 degrees, and the horizontal extension of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is 0.31 ⁇ m in the [ ⁇ 1-120] direction, 11-20] direction is 0.05 ⁇ m.
  • the horizontal axis in FIG. 7 indicates that the horizontal extent of the metallurgy boundary of the FLR on the surface of the n-type 4H—SiC substrate whose surface is off by 4 degrees from the (0001) plane in the [11-20] direction is opposite to the off direction.
  • the ratio of the depth of the metallurgical boundary of the FLR to the horizontal extent of the metallurgical boundary of the FLR in the case of being approximately symmetric in direction.
  • a pn diode is realized by realizing an Al concentration distribution in which the ratio of the depth of the metallurgical boundary of the FLR to the horizontal extent of the metallurgical boundary of the FLR is 4.4 or less.
  • the variation in the avalanche breakdown voltage is reduced. That is, in the FLR, by realizing an Al concentration distribution in which the ratio of the depth of the metallurgical boundary of the FLR to the horizontal spread of the metallurgical boundary of the FLR is 4.4 or less, in the Schottky barrier diode, In addition, variations in breakdown voltage can be reduced.
  • FIG. 7 shows the result in the case of one FLR, but the same tendency is shown in the case of having a plurality of FLRs, except that the absolute value of the vertical axis increases.
  • the shape of the FLR is such that the horizontal spread of the metallurgical boundary of the FLR on the surface of the n-type 4H—SiC substrate is substantially symmetric in the off direction and the opposite direction, and the horizontal of the metallurgical boundary of the FLR.
  • the ratio of the depth of the metallurgical boundary of the FLR to the direction spread is characterized by being a predetermined value or less, and 4.4 or less in Example 1.
  • the shape of the FLR is the same as the surface of the n-type 4H—SiC substrate at the horizontally expanded end (the end of the FLR) of the metallurgical boundary of the FLR on the surface of the n-type 4H—SiC substrate in the direction opposite to the off direction. It is characterized in that the angle formed by the metallurgical boundary of FLR is less than 90 degrees.
  • This withstand voltage variation is, for example, the direction inclined from the [000-1] direction to the [-1-120] direction in the range of 0 degree to 4 degrees, or the [000-1] direction, as exemplified in FIG.
  • the variation of the avalanche breakdown voltage observed when Al ions are implanted in the direction inclined from 0 ° to [11-20] in the range of 0 ° to 4 ° is shown. In this case, it is desirable to implant Al ions in the [000-1] direction in order to achieve the maximum breakdown voltage.
  • Al ions should be implanted deep into the n-type 4H—SiC substrate by channeling, and the depth of the FLR (metallurgical region) accompanying the implantation of Al ions should be 1 ⁇ m or more. . This is based on a simulation result shown in FIG.
  • FIG. 8 shows the avalanche breakdown voltage at room temperature of the pn diode formed on the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction, and the depth of the FLR (metallurgical region). It is a graph explaining the relationship.
  • the vertical axis of FIG. 8 is the avalanche breakdown voltage at room temperature of a pn diode in which one FLR having a width of 5 ⁇ m is provided 2.5 ⁇ m apart from the guard ring, and the horizontal axis is the n-type of FLR (metallurgical region). This is the depth from the surface of the 4H—SiC substrate.
  • the avalanche breakdown voltage in the case where the maximum value of the implantation energy is four types of 35 keV, 65 keV, 95 keV and 145 keV is simulated, and the avalanche breakdown voltage obtained at other energy is obtained using the avalanche breakdown voltage obtained at 95 keV. Is standardized.
  • the maximum avalanche breakdown voltage is obtained when the maximum value of the implantation energy is 145 keV, but the avalanche breakdown voltage decreases as the maximum value of the implantation energy decreases.
  • the maximum value of the implantation energy at which the depth of the FLR (metallurgical region) is less than 1 ⁇ m is 35 keV and 65 keV, the avalanche breakdown voltage decreases rapidly.
  • the FLR (metallurgical region) depth is about 1.0 ⁇ m, 80% or more of the avalanche breakdown voltage when the maximum value of the implantation energy is 145 keV is obtained.
  • Al ions are implanted in the [000-1] direction, which is a direction perpendicular to the crystal main surface, and Al ions are n-type 4H—SiC by channeling. It is considered that the depth of the FLR (metallurgical region) should be 1 ⁇ m or more by implanting deep into the substrate.
  • Al ions may deviate from the [000-1] direction due to manufacturing variations such as variations in tilt angle of ion implantation or variations in shape of the ion implantation mask.
  • Al ions can be implanted in a direction inclined from the [000-1] direction to the [11-20] direction. preferable. This is because, even when Al ions are implanted in a direction inclined from the [000-1] direction to the [11-20] direction, the above-mentioned “(1). Improving the uniformity of the breakdown voltage of the Schottky barrier diode” is described. This is because a uniform withstand voltage can be obtained as described in FIG.
  • Al ions may be implanted in a direction inclined from the [000-1] direction to the [-1-120] direction.
  • the horizontal spread of the FLR metallurgical boundary on the surface of the n-type 4H—SiC substrate is increased.
  • Asymmetry occurs between the off direction and the opposite direction (see FIGS. 5B and 5C), and it is difficult to obtain a uniform breakdown voltage. Therefore, when Al ions are implanted in the direction inclined from the [000-1] direction to the [-1-120] direction, the inclination angle inclined from the [000-1] direction to the [-1-120] direction is 4 Make it smaller than degree.
  • Al ions are 4 degrees or more from the [000-1] direction to the [11-20] direction, 12 degrees or more.
  • the FLR is formed by injecting in an inclined direction within a range of less than or equal to degrees. Thereby, it is possible to reduce variations in the breakdown voltage of the Schottky barrier diode.
  • the horizontal spread of the FLR metallurgical boundary on the surface of the n-type 4H—SiC substrate is made substantially symmetric in the off direction and the opposite direction, and the FLR with respect to the horizontal spread of the metallurgical boundary of the FLR
  • the depth ratio of the metallurgical boundary is set to a predetermined value or less, and 4.4 or less in Example 1.
  • the angle formed by the boundary is less than 90 degrees. In this case, the high breakdown voltage of the Schottky barrier diode can be realized by increasing the number of FLRs.
  • Al ions are [000] to the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction. -1] direction to [11-20] direction 0 degree or more, or [000-1] direction [1-1-120] direction 0 degree or more and less than 4 degrees, injecting in a direction inclined to form FLR To do.
  • variations in the breakdown voltage of the Schottky barrier diode can be reduced, and a high breakdown voltage can be obtained.
  • a high breakdown voltage of the Schottky barrier diode can be realized even if the number of FLRs is small, so that the semiconductor chip can be miniaturized, and the number of chips obtained from a large-diameter 4H-SiC substrate increases. As a result, the chip cost is reduced.
  • Example 1 it is possible to realize a silicon carbide semiconductor device having excellent breakdown voltage characteristics.
  • FIG. 9 is a principal plan view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to the first embodiment.
  • FIG. 10 is a fragmentary cross-sectional view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 (major portion along the line AA ′ in FIG. 9).
  • FIG. 10 is a fragmentary cross-sectional view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 (major portion along the line AA ′ in FIG. 9).
  • the semiconductor device is composed of a Schottky barrier diode and a guard ring and FLR formed around the Schottky barrier diode, and is formed in one semiconductor chip.
  • the semiconductor chip 101 has an n + type 4H ⁇ whose surface is inclined at an off angle of 4 degrees in the [11-20] direction from the (0001) plane of the crystal main surface.
  • An n ⁇ -type 4H—SiC epitaxial layer 103 is formed on the surface of the SiC substrate 102.
  • the epitaxial layer 103 functions as an n ⁇ type drift layer.
  • the impurity concentration of the n + -type 4H—SiC substrate 102 is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the impurity concentration of the epitaxial layer 103 is lower than the impurity concentration of the n + -type 4H—SiC substrate 102, for example, about 1 ⁇ 10 15 to 4 ⁇ 10 16 cm ⁇ 3 . Further, the thickness of the epitaxial layer 103 is, for example, about 3 to 80 ⁇ m.
  • the semiconductor chip 101 has a quadrangular shape of 6 mm ⁇ 6 mm, for example. In Example 1, the off angle is 4 degrees, but an n + type 4H—SiC substrate having another off angle may be used.
  • a central region on the upper surface of the epitaxial layer 103 is an active region, and a guard ring 109 which is a p-type annular semiconductor region is formed around the active region. Further, a plurality of FLRs 107a, 107b, and 107c, which are p-type annular semiconductor regions, are formed on the upper surface of the epitaxial layer 103 so as to surround the guard ring 109.
  • the guard ring 109 and the FLR 107a are formed with an interval 104
  • the FLR 107a and the FLR 107b are formed with an interval 105
  • the FLR 107b and the FLR 107c are formed with an interval 106.
  • the p-type impurity of the guard ring 109 and the FLRs 107a, 107b, and 107c is, for example, Al.
  • the width of the FLRs 107a, 107b, and 107c is, for example, about 5 ⁇ m.
  • the depth of the FLRs 107a, 107b, and 107c from the upper surface of the epitaxial layer 103 is, for example, about 0.8 to 1.2 ⁇ m.
  • the impurity concentration of the guard ring 109 and the FLRs 107a, 107b, and 107c is, for example, 6 ⁇ 10 17 cm ⁇ 3 .
  • the impurity concentration of the guard ring 109 can be higher than the impurity concentration of the FLRs 107a, 107b, and 107c, and can be set to 2 ⁇ 10 19 cm ⁇ 3 , for example.
  • the shapes of the guard ring 109 and the FLRs 107a, 107b, and 107c are, for example, metallurgical boundaries on the upper surface of the epitaxial layer 103 (boundaries between the epitaxial layer 103 and the guard ring 109 or FLRs 107a, 107b, and 107c (pn junction surfaces)).
  • the guard ring 109 and the FLRs 107a, 107b, and 107c have, for example, an Al concentration distribution shown in 6 (a), (b), or (c).
  • FIGS. 9 and 10 schematically show the positional relationship between the guard ring 109 and the FLRs 107a, 107b, and 107c in an easy-to-understand manner.
  • the anode electrode 111 is a Schottky electrode that is in Schottky junction with the upper surface of the epitaxial layer 103 in the active region that is the central region. Further, the end portion of the electrode of the anode electrode 111 is located on the guard ring 109.
  • a cathode electrode 110 is electrically connected to the back surface of the n + -type 4H—SiC substrate 102. As described above, a Schottky barrier diode is formed in the semiconductor chip 101.
  • an interlayer insulating film is formed on the semiconductor chip 101 in order to protect the upper surface of the epitaxial layer 103.
  • the interlayer insulating film is provided with an opening for exposing the anode electrode 111.
  • the AA ′ line shown in FIG. 9 is along a direction substantially orthogonal to the [1-100] direction of the n + -type 4H—SiC substrate 102.
  • the “A” side in FIG. 9 corresponds to the [ ⁇ 1 ⁇ 120] direction of the n + -type 4H—SiC substrate 102
  • “A ′” in FIG. The side corresponds to the [11-20] direction of the n + -type 4H—SiC substrate 102. That is, the A ′ direction corresponds to the off direction with the active region as the center.
  • the substantially orthogonal and approximately parallel degrees refer to the degree of accuracy with respect to the crystal orientation of wafer dicing.
  • the shapes of the FLRs 107a, 107b, and 107c are opposite to the [11-20] direction in which the horizontal spread of the metallurgical boundary on the upper surface of the epitaxial layer 103 is the off direction [- Although the ratio of the depth of the metallurgical boundary to the horizontal expansion of the metallurgical boundary is set to 4.4 or less, it is not limited to this.
  • the shape of the FLRs 107a, 107b, and 107c is changed to the [11-20] direction in which the horizontal spread of the metallurgical boundary on the upper surface of the epitaxial layer 103 is the off direction. It may be substantially symmetric with the [ ⁇ 1-120] direction, which is the opposite direction, and the depth of the metallurgical region may be 1 ⁇ m or more.
  • the FLRs 107a, 107b, and 107c have the Al concentration distribution shown in FIG.
  • FIG. 11 is a process diagram illustrating the method for manufacturing the semiconductor device according to the first embodiment.
  • 11 to 17 are cross-sectional views of main parts of the semiconductor device during the manufacturing process according to the first embodiment.
  • an n + type 4H—SiC substrate 102 whose surface is inclined from the (0001) plane of the crystal main surface in the [11-20] direction at an off angle of 4 degrees is prepared.
  • the n-type impurity of the n + -type 4H—SiC substrate 102 is, for example, nitrogen.
  • the impurity concentration of the n + -type 4H—SiC substrate 102 is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • n + -type 4H-SiC on a surface of the substrate 102 n - is formed by epitaxial growth type 4H-SiC epitaxial layer 103 - n which functions as type drift layer.
  • the n-type impurity of the epitaxial layer 103 is, for example, nitrogen.
  • the impurity concentration of the epitaxial layer 103 is lower than that of the n + -type 4H—SiC substrate 102 and is, for example, about 1 ⁇ 10 15 to 4 ⁇ 10 16 cm ⁇ 3 .
  • the thickness of the epitaxial layer 103 is, for example, about 3 to 80 ⁇ m.
  • Each condition of the above epitaxial layer 103 is set according to a required breakdown voltage.
  • a mask material layer 112a is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112a is patterned by a lithography technique. Then, an n-type impurity is ion-implanted into the upper surface of the outer peripheral portion of the epitaxial layer 103 exposed from the mask material layer 112 a, thereby forming a channel stopper 108 on the upper surface of the epitaxial layer 103.
  • the implantation angle may be arbitrary, for example, perpendicular incidence to the surface of the epitaxial layer 103.
  • the n-type impurity of the channel stopper 108 is, for example, nitrogen.
  • the impurity concentration of the channel stopper 108 is, for example, 8 ⁇ 10 19 cm ⁇ 3 , and the ion implantation depth is, for example, 0.2 ⁇ m.
  • a mask material layer 112b made of, for example, silicon oxide is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112b is patterned by a lithography technique. . Then, p-type impurities are obliquely ion-implanted into the upper surface of the epitaxial layer 103 exposed from the mask material layer 112b, thereby forming FLRs 107a, 107b, and 107c on the upper surface of the epitaxial layer 103.
  • the injection angle is set to an angle of 4 degrees or more and 12 degrees or less from the [000-1] direction to the [11-20] direction.
  • the p-type impurity of the FLRs 107a, 107b, and 107c is, for example, Al.
  • the impurity concentration of the FLRs 107a, 107b, and 107c is, for example, 6 ⁇ 10 17 cm ⁇ 3 , and the ion implantation depth is, for example, about 0.8 to 1.2 ⁇ m.
  • a mask material layer 112c made of, for example, silicon oxide is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112c is patterned by a lithography technique. .
  • a guard ring 109 is formed on the upper surface of the epitaxial layer 103 by obliquely implanting p-type impurities into the upper surface of the epitaxial layer 103 exposed from the mask material layer 112c.
  • the injection angle is an angle inclined from 4 ° to 12 ° from the [000-1] direction to the [11-20] direction.
  • the p-type impurity of the guard ring 109 is, for example, Al.
  • the impurity concentration of the guard ring 109 is 2 ⁇ 10 19 cm ⁇ 3 , for example, and the ion implantation depth is, for example, about 0.8 to 1.2 ⁇ m.
  • annealing is performed to activate the implanted impurities.
  • illustration of a protective film covering the front and back surfaces during annealing is omitted.
  • an anode electrode 111 is formed on the upper surface of the epitaxial layer 103 so as to be in contact with the guard ring 109, for example, by sputtering. Further, the cathode electrode 110 is formed on the back surface of the n + -type 4H—SiC substrate 102 by, for example, a sputtering method. Subsequently, an interlayer insulating film (not shown) is formed on the upper surface of the epitaxial layer 103 so that the upper surface of the anode electrode 111 is exposed. As described above, the semiconductor device having the Schottky barrier diode formed on the n-type 4H—SiC substrate according to Example 1 is substantially completed.
  • the implantation angle is inclined by 4 degrees or more and 12 degrees or less from the [000-1] direction to the [11-20] direction.
  • the present invention is not limited to this.
  • the FLRs 107a, 107b, and 107c may be formed by implanting Al ions in a direction inclined by 0 degree or more and less than 4 degrees from the [000-1] direction to the [-1-120] direction. Good.
  • the Schottky barrier diode formed on the n-type 4H—SiC substrate has been described.
  • the present invention is not limited to this, and other carbonization formed on the n-type 4H—SiC substrate.
  • the present invention can also be applied to a silicon semiconductor device.
  • FIG. 18 is a cross-sectional view of an essential part showing an example of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (hereinafter referred to as SiC-MOSFET) formed on an n-type 4H—SiC substrate constituting a switching element. A large number of MOSFETs are connected in parallel to form one switching element. A plurality of FLRs are provided around the SiC-MOSFET according to the second embodiment. 18 is a cross-sectional view of the n + -type 4H—SiC substrate 102 in a direction substantially perpendicular to the [1-100] direction, similar to the cross section taken along the line AA ′ of FIG.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the semiconductor chip 101a has an n + type 4H—SiC substrate 102 whose surface is inclined from the (0001) plane of the crystal main surface in the [11-20] direction at an off angle of 4 degrees.
  • An n ⁇ type 4H—SiC epitaxial layer 103 is formed on the surface.
  • the thickness of the epitaxial layer 103 is, for example, about 5 to 40 ⁇ m.
  • the epitaxial layer 103 functions as an n ⁇ type drift layer that plays a role of securing a breakdown voltage.
  • a p-type body layer 1604 having a predetermined depth from the upper surface of the epitaxial layer 103 is formed in the epitaxial layer 103. Further, in the p-type body layer 1604, an n + -type source layer 1603 having a predetermined depth from the upper surface of the epitaxial layer 103 and spaced from the end of the p-type body layer 1604 is formed. Yes.
  • the n + -type source layer 1603 has a predetermined distance from the upper surface of the epitaxial layer 103 in the p-type body layer 1604 between the end of the p-type body layer 1604 and the n + -type source layer 1603.
  • the n ⁇ type drift layer is connected through a channel formed in this manner.
  • a gate insulating film 1606 is formed on the p-type body layer 1604 in which a channel between the end of the p-type body layer 1604 and the n + -type source layer 1603 is formed.
  • a gate electrode 1607 is formed.
  • a source electrode 1601 that is electrically connected to part of the surface of the n + -type source layer 1603 is formed, and a drain electrode 1602 is electrically connected to the back surface of the n + -type 4H—SiC substrate 102.
  • the SiC-MOSFET is formed in the central region of the semiconductor chip 101a.
  • a plurality of FLRs 107a, 107b, 107c which are p-type annular semiconductor regions, are spaced apart from each other on the upper surface of the epitaxial layer 103 so as to surround the active region where the SiC-MOSFET is formed. Is formed.
  • the p-type body layer 1604 located on the outermost side of the active region and the FLR 107a are formed with an interval 104
  • the FLR 107a and the FLR 107b are formed with an interval 105
  • the FLR 107b and the FLR 107c have an interval 106. It is formed apart.
  • a channel stopper 108 which is an n + type semiconductor region is provided on the upper surface of the epitaxial layer 103 outside the FLRs 107a, 107b and 107c.
  • An interlayer insulating film (not shown) is provided on the FLRs 107a, 107b, and 107c.
  • Al ions are applied to the n-type 4H-SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction.
  • the FLR is formed by injecting from the [000-1] direction to the [11-20] direction in an inclined direction in the range of 4 degrees to 12 degrees.
  • Al ions are [000] to the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction.
  • an example of a SiC-MOSFET is shown, but in addition to this, an FLR similar to that of the second embodiment may be formed in a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a junction FET. .
  • a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a junction FET.
  • FIG. 19 is a circuit diagram illustrating an example of a power converter (inverter) in which the 4H—SiC Schottky barrier diode according to the first embodiment is connected to a switching element as a free wheel diode.
  • the inverter according to the third embodiment includes a control circuit 1701 and a power module 1702.
  • the control circuit 1701 and the power module 1702 are connected by terminals 1703 and 1704.
  • the power module 1702 is connected to the power supply potential (Vcc) via a terminal 1705 and to the ground potential (GND) via a terminal 1706.
  • the output of the power module 1702 is connected to a three-phase motor 1710 via terminals 1707, 1708 and 1709.
  • an IGBT 1711 is mounted as a switching element. Further, a semiconductor chip having a 4H—SiC Schottky barrier diode according to the first embodiment is mounted as a free-wheeling diode 1712 connected to each IGBT.
  • an IGBT 1711 and a freewheeling diode 1712 are connected in antiparallel between the power supply potential (Vcc) and the input potential of the three-phase motor 1710, and the input potential of the three-phase motor 1710 and the ground potential (GND).
  • the IGBT 1711 and the freewheeling diode 1712 are also connected in reverse parallel to each other. That is, two IGBTs 1711 and two free wheeling diodes 1712 are provided in each single phase of the three-phase motor 1710, and six IGBTs 1711 and six free wheeling diodes 1712 are provided in three phases.
  • a control circuit 1701 is connected to the gate electrode of each IGBT 1711, and the IGBT 1711 is controlled by the control circuit 1701. Therefore, the three-phase motor 1710 can be driven by controlling the current flowing through the IGBT 1711 of the power module 1702 by the control circuit 1701.
  • the semiconductor chip 101 according to the first embodiment has excellent withstand voltage uniformity as described above. Therefore, the number of chips obtained from a large-diameter wafer such as 6 inches increases, and the chip cost is reduced. As a result, the power module 1702 is reduced in cost. Can be Therefore, the power module 1702 and the inverter according to the third embodiment, and further, the three-phase motor system including the three-phase motor 1710 in the inverter according to the third embodiment can be manufactured at low cost.
  • the IGBT is used as the switching element.
  • the SiC-MOSFET according to the second embodiment can be used instead of the IGBT.
  • the switching element is also a SiC element, it is possible to operate at a higher temperature and to realize a high current density.
  • the SiC-MOSFET according to Example 2 has excellent withstand voltage uniformity as described above, the number of chips obtained from a large-diameter wafer of 6 inches or the like is increased, and the chip cost is reduced.
  • the cost of the module 1702 can be reduced. Further, by performing synchronous rectification or the like, it is possible to omit the return diode and reduce the size and cost of the power module 1702.
  • FIG. 20 is a schematic diagram illustrating an example of a configuration of an electric vehicle according to the fourth embodiment
  • FIG. 21 is a circuit diagram illustrating an example of a boost converter according to the fourth embodiment.
  • the electric vehicle according to the fourth embodiment drives a three-phase motor 1803 and a three-phase motor 1803 that allow power to be input / output to / from a drive shaft 1802 to which the drive wheels 1801a and 1801b are connected.
  • An inverter 1804 and a battery 1805 are provided.
  • the electric vehicle according to the fourth embodiment includes a boost converter 1808, a relay 1809, and an electronic control unit 1810.
  • the boost converter 1808 includes a power line 1806 to which an inverter 1804 is connected and power to which a battery 1805 is connected. It is connected to the line 1807.
  • the three-phase motor 1803 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil.
  • the inverter 1804 the inverter according to the third embodiment is used.
  • the boost converter 1808 has a configuration in which a reactor 1911 and a smoothing capacitor 1912 are connected to an inverter 1913.
  • the inverter 1913 is the same as the inverter described in the third embodiment, and the configuration of the switching element 1914 and the diode 1915 in the inverter is the same as that described in the third embodiment.
  • the electronic control unit 1810 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 1803, a charge / discharge value of the battery 1805, and the like. Then, a signal for controlling inverter 1804, boost converter 1808, and relay 1809 is output.
  • Example 4 an automobile having a low-cost power conversion device can be realized by a semiconductor device having excellent breakdown voltage characteristics.
  • the electric vehicle has been described in the fourth embodiment, the three-phase motor system according to the third embodiment can be similarly applied to a hybrid vehicle that also uses an engine.
  • the three-phase motor system according to the third embodiment can be used for a railway vehicle.
  • a railway vehicle using the three-phase motor system according to the third embodiment will be described with reference to FIG.
  • a railway vehicle having a low-cost power conversion device can be realized by a semiconductor device having excellent withstand voltage characteristics.
  • FIG. 22 is a circuit diagram illustrating an example of a converter and an inverter provided in the railway vehicle according to the fifth embodiment.
  • electric power is supplied from the overhead line OW (for example, 25 kV) to the railway vehicle according to the fifth embodiment via the panda graph PG.
  • the voltage is stepped down to 1.5 kV through the transformer 2009, and the converter 2007 converts alternating current into direct current.
  • the inverter 2002 converts the direct current input via the capacitor 2008 into alternating current, and drives the wheel WH with a three-phase motor that is the load 2001.
  • the configuration of the switching element 2004 and the diode 2005 in the converter 2007 and the configuration of the switching element 2004 and the diode 2005 in the inverter 2002 are the configurations described in the third embodiment.
  • the control circuit 1701 described in the third embodiment is omitted.
  • the symbol RT indicates a line.

Abstract

Provided is a silicon carbide semiconductor device having superior withstand voltage characteristics. In one embodiment of the present invention, Al ions are injected into an n-type 4H-SiC substrate, having a surface that is 4 degrees off from the (0001) plane in the [11-20] direction, in a direction inclined at least 0 degrees from the [000-1] direction to the [11-20] direction or at least 0 degrees and less than 4 degrees from the [000-1] direction to the [-1-120] direction, forming an FLR at an epitaxial layer of the 4H-SiC formed at the surface of the n-type 4H-SiC substrate. In the shape of the FLR, at the end in the reverse direction from the off direction of the FLR at the top surface of the epitaxial layer, the angle formed by the top surface of the epitaxial layer and the metallurgical boundary of the FLR is less than 90 degrees.

Description

半導体装置およびその製造方法、パワーモジュール、並びに電力変換装置Semiconductor device and manufacturing method thereof, power module, and power conversion device
 本発明は、半導体装置およびその製造方法、パワーモジュール、電力変換装置、3相モータシステム、自動車、並びに鉄道車両に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, a power module, a power conversion device, a three-phase motor system, an automobile, and a railway vehicle.
 本技術分野の背景技術として、特開2009-302436号公報(特許文献1)がある。この公報には、p型ディープ層を形成する際に、オフ角をキャンセルする方向に傾斜させた斜めイオン注入によりp型不純物を注入することによって、より深い位置までp型ディープ層を形成する炭化珪素半導体装置の製造方法が記載されている。 As a background art in this technical field, there is JP 2009-302436 A (Patent Document 1). In this publication, when forming a p-type deep layer, carbonization is performed to form a p-type deep layer to a deeper position by implanting p-type impurities by oblique ion implantation inclined in a direction to cancel the off angle. A method for manufacturing a silicon semiconductor device is described.
特開2009-302436号公報JP 2009-302436 A
 基板口径が6インチのn型4H-SiC基板を用いて、ガードリングおよび1本または複数本のフィールド・リミッティング・リング(Field Limiting Ring:以下、FLRと記す)を有するショットキー・バリア・ダイオードを作製したところ、その耐圧は、基板面内の標準偏差が平均値の100%を超えるほど、ばらつくという問題が生じた。 Schottky barrier diode with a guard ring and one or more field limiting rings (hereinafter referred to as FLR) using an n-type 4H-SiC substrate having a 6-inch substrate diameter As a result, there arises a problem that the withstand voltage varies as the standard deviation in the substrate surface exceeds 100% of the average value.
 そこで、本発明は、耐圧特性の優れる炭化珪素半導体装置を提供する。 Therefore, the present invention provides a silicon carbide semiconductor device having excellent breakdown voltage characteristics.
 上記課題を解決するために、本発明の一実施の形態では、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、p型不純物を[000-1]方向から[11-20]方向へ0度以上、または[000-1]方向から[-1-120]方向へ0度以上、4度未満傾斜した方向にイオン注入して、n型4H-SiC基板の表面に形成された4H-SiCのエピタキシャル層にFLRを形成する。FLRの形状は、エピタキシャル層の上面におけるFLRのオフ方向と反対方向の端部において、エピタキシャル層の上面とFLRの冶金学的境界とがなす角度が90度未満である。 In order to solve the above problems, in one embodiment of the present invention, a p-type impurity is added to an n-type 4H—SiC substrate whose surface is turned off from the (0001) plane by 4 degrees in the [11-20] direction [ The ions are implanted in a direction inclined at an angle of 0 ° or more from the [000-1] direction to the [11-20] direction, or from 0 ° to less than 4 ° from the [000-1] direction to the [−1-120] direction, and n An FLR is formed on the epitaxial layer of 4H—SiC formed on the surface of the mold 4H—SiC substrate. In the shape of the FLR, the angle formed between the upper surface of the epitaxial layer and the metallurgical boundary of the FLR is less than 90 degrees at the end of the upper surface of the epitaxial layer opposite to the off direction of the FLR.
 本発明によれば、耐圧特性の優れる炭化珪素半導体装置を提供することができる。 According to the present invention, a silicon carbide semiconductor device having excellent breakdown voltage characteristics can be provided.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明者らによって検討された、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に、[000-1]方向から[-1-120]方向へ0度から4度傾斜した方向にp型不純物をイオン注入して形成されるFLRの態様を説明するショットキー・バリア・ダイオードの要部断面図である。From the [000-1] direction to the [-1-120] direction, the surface of the n-type 4H—SiC substrate examined by the present inventors was turned off by 4 degrees from the (0001) plane to the [11-20] direction. It is a principal part sectional view of a Schottky barrier diode explaining an aspect of FLR formed by ion implantation of p-type impurities in a direction inclined from 0 degree to 4 degrees. 実施例1による、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に、[000-1]方向から[11-20]方向へ8度傾斜した方向にp型不純物をイオン注入して形成されるFLRの態様を説明するショットキー・バリア・ダイオードの要部断面図である。A direction inclined by 8 degrees from the [000-1] direction to the [11-20] direction on the n-type 4H—SiC substrate having the surface turned off by 4 degrees from the (0001) plane to the [11-20] direction according to Example 1 FIG. 6 is a cross-sectional view of a principal part of a Schottky barrier diode for explaining an embodiment of FLR formed by ion implantation of p-type impurities. 実施例1による、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に形成されたpnダイオードの室温におけるアバランシェ耐圧と、イオン注入傾角との関係を説明するグラフ図である。Explained the relationship between the avalanche breakdown voltage at room temperature and the ion implantation tilt angle of the pn diode formed on the n-type 4H—SiC substrate whose surface was turned off by 4 degrees from the (0001) plane in the [11-20] direction according to Example 1. FIG. 基板口径が6インチのn型4H-SiC基板において、その表面の反りを拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the surface warpage of an n-type 4H—SiC substrate having a substrate diameter of 6 inches. 実施例1によるFLR形状のシミュレーション結果を示す。(a)は、[000-1]方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。(b)は、[000-1]方向から[-1-120]方向へ4度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。(c)は、[000-1]方向から[-1-120]方向へ8度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。The simulation result of the FLR shape by Example 1 is shown. (A) shows the simulation result of the FLR shape when Al ions are implanted in the [000-1] direction. (B) shows the simulation results of the FLR shape when Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [-1-120] direction. (C) shows the simulation results of the FLR shape when Al ions are implanted in the direction inclined by 8 degrees from the [000-1] direction to the [-1-120] direction. 実施例1によるFLR形状のシミュレーション結果を示す。(a)は、[000-1]方向から[11-20]方向へ4度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。(b)は、[000-1]方向から[11-20]方向へ8度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。(c)は、[000-1]方向から[11-20]方向へ12度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。(d)は、[000-1]方向から[11-20]方向へ16度傾斜した方向にAlイオンを注入した場合のFLR形状のシミュレーション結果を示す。The simulation result of the FLR shape by Example 1 is shown. (A) shows the simulation results of the FLR shape when Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [11-20] direction. (B) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined by 8 degrees from the [000-1] direction to the [11-20] direction. (C) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined by 12 degrees from the [000-1] direction to the [11-20] direction. (D) shows the simulation result of the FLR shape when Al ions are implanted in a direction inclined 16 degrees from the [000-1] direction to the [11-20] direction. 実施例1による、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に形成されたpnダイオードの室温におけるアバランシェ耐圧と、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比との関係を説明するグラフ図である。The avalanche breakdown voltage at room temperature of the pn diode formed on the n-type 4H—SiC substrate with the surface turned off by 4 degrees from the (0001) plane in the [11-20] direction according to Example 1, and the horizontal of the metallurgical boundary of the FLR It is a graph explaining the relationship with the ratio of the depth of the metallurgical boundary of FLR with respect to direction expansion. 実施例1による、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に形成されたpnダイオードの室温におけるアバランシェ耐圧と、FLR(冶金学的領域)の深さとの関係を説明するグラフ図である。The avalanche breakdown voltage at room temperature of the pn diode formed on the n-type 4H—SiC substrate whose surface was turned off by 4 degrees from the (0001) plane in the [11-20] direction according to Example 1, and the FLR (metallurgical region) It is a graph explaining the relationship with depth. 実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置の一例を示す要部平面図である。4 is a plan view of a principal part showing one example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1; FIG. 実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置の一例を示す要部断面図(図9のA-A’線に沿った要部断面図)である。FIG. 6 is a main part sectional view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 (main part sectional view taken along the line AA ′ in FIG. 9); is there. 実施例1による半導体装置の製造方法の一例を示す工程図である。6 is a process diagram illustrating an example of a method of manufacturing a semiconductor device according to Example 1. FIG. 実施例1による半導体装置の製造工程の一例を示す要部断面図である。FIG. 10 is a sectional view of a key portion showing one example of a manufacturing process of a semiconductor device according to Example 1. 図12に続く、半導体装置の製造工程を示す要部断面図である。FIG. 13 is a main part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 12; 図13に続く、半導体装置の製造工程を示す要部断面図である。FIG. 14 is an essential part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 13; 図14に続く、半導体装置の製造工程を示す要部断面図である。FIG. 15 is a main-portion cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 14; 図15に続く、半導体装置の製造工程を示す要部断面図である。FIG. 16 is a main-portion cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 15; 図16に続く、半導体装置の製造工程を示す要部断面図である。FIG. 17 is a main part cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 16; 実施例2によるスイッチング素子を構成するn型4H-SiC基板に形成されたMOSFETの一例を示す要部断面図である。FIG. 6 is a cross-sectional view of a principal part showing one example of a MOSFET formed on an n-type 4H—SiC substrate constituting a switching element according to Example 2. 実施例3によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを還流ダイオードとしてスイッチング素子に接続した電力変換装置(インバータ)の一例を示す回路図である。FIG. 6 is a circuit diagram showing an example of a power conversion device (inverter) in which a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 3 is connected to a switching element as a freewheeling diode. 実施例4による電気自動車の構成の一例を示す概略図である。FIG. 6 is a schematic diagram illustrating an example of a configuration of an electric vehicle according to a fourth embodiment. 実施例4による昇圧コンバータの一例を示す回路図である。FIG. 10 is a circuit diagram illustrating an example of a boost converter according to a fourth embodiment. 実施例5による鉄道車両に備えられるコンバータおよびインバータの一例を示す回路図である。FIG. 10 is a circuit diagram illustrating an example of a converter and an inverter provided in a railway vehicle according to a fifth embodiment.
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
 また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In addition, when referring to “consisting of A”, “consisting of A”, “having A”, and “including A”, other elements are excluded unless specifically indicated that only that element is included. It goes without saying that it is not what you do. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本実施の形態を図面に基づいて詳細に説明する。 Also, in the drawings used in the following embodiments, hatching may be added to make the drawings easy to see even if they are plan views. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, the present embodiment will be described in detail with reference to the drawings.
 まず、本発明に先立って本発明者らによって検討されたショットキー・バリア・ダイオードについて説明する。 First, the Schottky barrier diode studied by the present inventors prior to the present invention will be described.
 本発明者らは、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板を用いて、p型の半導体領域からなるガードリングおよび1本または複数本のFLRを有するショットキー・バリア・ダイオードを作製し、その耐圧を測定した。ガードリングおよびFLRは半導体装置の外周部に設けられ、ガードリングはアノード電極の端部における電界集中を緩和し、FLRはガードリングの端部または複数のFLRの場合には1本内側のFLRの端部における電界集中を緩和する機能を有する。 The present inventors use an n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction, and uses a guard ring made of a p-type semiconductor region and one or more of them. A Schottky barrier diode having an FLR was fabricated and its breakdown voltage was measured. The guard ring and the FLR are provided on the outer periphery of the semiconductor device, the guard ring alleviates the electric field concentration at the end of the anode electrode, and the FLR is the end of the guard ring or, in the case of a plurality of FLRs, the inner FLR. It has a function to alleviate electric field concentration at the end.
 例えば図1に示すように、n型4H-SiC基板10の表面に、パターニングされたマスク材料層20を形成し、マスク材料層20から露出するn型4H-SiC基板10にp型不純物をイオン注入することにより、ガードリング30および互いに離間する3本のFLR40を形成した。その結果、基板口径が3インチのn型4H-SiC基板10の場合、[000-1]方向から[-1-120]方向へ0度から4度傾斜した方向にp型不純物をイオン注入して作製したショットキー・バリア・ダイオードの耐圧は、基板面内の標準偏差が平均値の20%以下に揃っていた。 For example, as shown in FIG. 1, a patterned mask material layer 20 is formed on the surface of an n-type 4H—SiC substrate 10, and p-type impurities are ionized into the n-type 4H—SiC substrate 10 exposed from the mask material layer 20. By injecting, a guard ring 30 and three FLRs 40 spaced apart from each other were formed. As a result, in the case of the n-type 4H—SiC substrate 10 having a substrate diameter of 3 inches, p-type impurities are ion-implanted in a direction inclined from 0 ° to 4 ° from the [000-1] direction to the [-1-120] direction. With respect to the breakdown voltage of the Schottky barrier diode fabricated in this way, the standard deviation in the substrate surface was equal to or less than 20% of the average value.
 しかしながら、基板口径が6インチのn型4H-SiC基板10を用いて同様な試作を行ったところ、ショットキー・バリア・ダイオードの耐圧は、基板面内の標準偏差が平均値の100%を超えるほどばらつき、かつ、その耐圧の一部は著しく低下することが分かった。 However, when a similar prototype was made using an n-type 4H—SiC substrate 10 with a substrate diameter of 6 inches, the withstand voltage of the Schottky barrier diode exceeded the standard value of 100% of the average value in the substrate surface. It was found that the dispersion and the part of the withstand voltage significantly decreased.
 (実施例1における基本思想)
 以下に、結晶主面からオフされた表面を有するn型4H-SiC基板に形成されたショットキー・バリア・ダイオードの耐圧の均一性の向上および高耐圧化を実現することのできるFLRの形状および形成方法について説明する。具体的には、基板口径が6インチで、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板にFLRを形成する際、そのn型4H-SiC基板にイオン注入されるp型不純物の適切なイオン注入傾角およびイオン注入エネルギーが、ショットキー・バリア・ダイオードの耐圧に及ぼす効果、作用について詳細に説明する。
(Basic idea in Example 1)
Below, the shape of the FLR capable of realizing improvement in the withstand voltage uniformity and high withstand voltage of the Schottky barrier diode formed on the n-type 4H—SiC substrate having a surface off from the crystal main surface, and A forming method will be described. Specifically, when an FLR is formed on an n-type 4H—SiC substrate having a substrate diameter of 6 inches and a surface of 4 degrees off from the (0001) plane in the [11-20] direction, the n-type 4H—SiC substrate is formed. The effect and action of the appropriate ion implantation tilt angle and ion implantation energy of the p-type impurity ion-implanted on the Schottky barrier diode will be described in detail.
 (1).ショットキー・バリア・ダイオードの耐圧の均一性の向上
 本発明者らは、前記特許文献1に記載された方位とは反対の方向、具体的には、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に、例えば図2に示すように、[000-1]方向から[11-20]方向へ8度傾斜した方向にp型不純物(例えばアルミニウム(以下、Alと記す))をイオン注入した。このイオン注入方法により、基板口径が6インチのn型4H-SiC基板を用いても、ショットキー・バリア・ダイオードの耐圧の基板面内の標準偏差が平均値の10%未満と極めて均一性のよくなる結果が得られた。
(1). Improvement of uniformity of breakdown voltage of Schottky barrier diode The inventors of the present invention have a direction opposite to the orientation described in Patent Document 1, specifically, the surface is [11-20] from the (0001) plane. ] On the n-type 4H—SiC substrate turned off by 4 degrees in the direction, for example, as shown in FIG. In the following, it was written as Al))). With this ion implantation method, even when an n-type 4H—SiC substrate having a substrate diameter of 6 inches is used, the standard deviation of the breakdown voltage of the Schottky barrier diode within the substrate surface is less than 10% of the average value, which is extremely uniform. Better results were obtained.
 この原因を調べるため、1本のFLRを設けたpnダイオードの室温における耐圧をシミュレーションにより求めた。pnダイオードを用いたのは、ショットキー・バリア・ダイオードの逆方向リーク電流を正確にモデリングするのが困難だったからであるが、ガードリングおよびFLRが律速する耐圧を求める上で問題はない。 In order to investigate this cause, the breakdown voltage at room temperature of a pn diode provided with one FLR was obtained by simulation. The pn diode is used because it is difficult to accurately model the reverse leakage current of the Schottky barrier diode. However, there is no problem in obtaining the breakdown voltage that is controlled by the guard ring and the FLR.
 その結果を、FLR幅が5μm、ガードリングからFLRまでの距離が2.5μmの場合について図3に示す。図3の縦軸は、5μm幅の1本のFLRがガードリングから2.5μm隔てて設けられたpnダイオードの室温におけるアバランシェ耐圧であり、横軸は、[000-1]方向から[-1-120]方向へのイオン注入傾角および[000-1]方向から[11-20]方向へのイオン注入傾角である。 The results are shown in FIG. 3 when the FLR width is 5 μm and the distance from the guard ring to the FLR is 2.5 μm. The vertical axis in FIG. 3 is the avalanche breakdown voltage at room temperature of a pn diode in which one FLR having a width of 5 μm is provided 2.5 μm apart from the guard ring, and the horizontal axis is from the [000-1] direction to [−1 -120] direction ion implantation tilt angle and [000-1] direction to [11-20] direction ion implantation tilt angle.
 図3に示すように、(0001)面法線と反対方向である[000-1]方向から[-1-120]方向へのイオン注入傾角が0度以上、4度以下の範囲の場合、イオン注入傾角が増加するに従ってアバランシェ耐圧は低下し、アバランシェ耐圧は900V~300Vの範囲の値を取る。 As shown in FIG. 3, when the ion implantation tilt angle from the [000-1] direction, which is the direction opposite to the (0001) plane normal direction, to the [-1-120] direction is in the range of 0 ° to 4 °, The avalanche breakdown voltage decreases as the ion implantation tilt angle increases, and the avalanche breakdown voltage takes a value in the range of 900V to 300V.
 市販されているn型4H-SiC基板のオフ角仕様は通常±0.5度であるが、図4に模式的に示すように、基板口径が6インチまで大口径化したn型4H-SiC基板10では、その表面の反りが大きい。このため、[000-1]方向から[-1-120]方向へのイオン注入傾角が0度以上、4度以下の範囲の場合は、オフ角の実効ばらつきが大きくなることに起因して、実測アバランシェ耐圧は大きくばらつくと考えられる。 The off-angle specification of a commercially available n-type 4H-SiC substrate is usually ± 0.5 degrees, but as schematically shown in FIG. 4, the n-type 4H-SiC with a large substrate diameter up to 6 inches is used. The substrate 10 has a large warp on its surface. For this reason, when the ion implantation tilt angle from the [000-1] direction to the [-1-120] direction is in the range of 0 ° or more and 4 ° or less, the effective variation in the off-angle increases. The measured avalanche pressure resistance is considered to vary greatly.
 また、[000-1]方向から[11-20]方向へのイオン注入傾角が0度以上、4度以下(言い換えれば、[000-1]方向から[-1-120]方向へのイオン注入傾角が-4度以上、0度以下)の範囲の場合も、イオン注入傾角が増加するに従ってアバランシェ耐圧は低下し、アバランシェ耐圧は900V~200Vの範囲の値を取る。これも上述したように、基板口径が6インチまで大口径化したn型4H-SiC基板では、その表面の反りが大きいため、オフ角の実効ばらつきが大きくなることに起因して、実測アバランシェ耐圧は大きくばらつくと考えられる。 Also, the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is not less than 0 degrees and not more than 4 degrees (in other words, the ion implantation from the [000-1] direction to the [-1-120] direction. Also in the case where the tilt angle is in the range of −4 degrees or more and 0 degrees or less, the avalanche breakdown voltage decreases as the ion implantation tilt angle increases, and the avalanche breakdown voltage takes a value in the range of 900V to 200V. As described above, the n-type 4H-SiC substrate having a substrate diameter of up to 6 inches has a large warp on the surface, so that the effective variation in the off angle increases, resulting in a measured avalanche breakdown voltage. Are considered to vary greatly.
 しかし、[000-1]方向から[11-20]方向へのイオン注入傾角が4度以上、12度以下(言い換えれば、[000-1]方向から[-1-120]方向へのイオン注入傾角が-12度以上、-4度以下)の範囲では、アバランシェ耐圧は200Vと低いが、その値はイオン注入傾角にほとんど依存しない。 However, the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is not less than 4 degrees and not more than 12 degrees (in other words, the ion implantation from the [000-1] direction to the [-1-120] direction. In the range of the tilt angle of −12 degrees or more and −4 degrees or less, the avalanche breakdown voltage is as low as 200 V, but the value hardly depends on the ion implantation tilt angle.
 このことは、[000-1]方向から[11-20]方向へのイオン注入傾角を8度に設定した前記図2に示したショットキー・バリア・ダイオードの実測の場合、n型4H-SiC基板の表面の反りに起因したオフ角の実効ばらつきが最大±4度となっても、アバランシェ耐圧がばらつかないことを意味している。この効果によって、前述したように、基板口径が6インチのn型4H-SiC基板において、均一性のよい耐圧が得られたと考えられる。なお、アバランシェ耐圧の絶対値はFLRの本数を増やすことにより増加できるため、FLRが1本の場合にアバランシェ耐圧が200Vと低いことは実用上の障害とはならない。すなわち、FLRの本数を増やすことにより、ショットキー・バリア・ダイオードの高耐圧化を図ることができる。 This is because n-type 4H—SiC in the actual measurement of the Schottky barrier diode shown in FIG. 2 in which the ion implantation tilt angle from the [000-1] direction to the [11-20] direction is set to 8 degrees. This means that the avalanche breakdown voltage does not vary even if the effective variation of the off angle due to the warpage of the substrate surface is ± 4 degrees at the maximum. With this effect, as described above, it is considered that a uniform withstand voltage was obtained in an n-type 4H—SiC substrate having a substrate diameter of 6 inches. Since the absolute value of the avalanche breakdown voltage can be increased by increasing the number of FLRs, a low avalanche breakdown voltage of 200 V when there is one FLR is not a practical obstacle. That is, by increasing the number of FLRs, it is possible to increase the breakdown voltage of the Schottky barrier diode.
 図5および図6は、モンテカルロシミュレーションを用いて、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板10に対し、種々の方位からAlをイオン注入した場合におけるFLR40の冶金学的境界(n型4H-SiC基板10とFLR40との境界(pn接合面))を求めた結果である。n型4H-SiC基板10中のドナー密度は3×1015cm-3、Alイオンの注入エネルギーの範囲は30keV~150keV、Alイオンの総注入量は2×1014cm-2である。イオン注入マスク50の断面形状は、その側面がn型4H-SiC基板10の表面に対し86度の傾斜を持つようにした。 FIG. 5 and FIG. 6 show a case where Al is ion-implanted from various directions into an n-type 4H—SiC substrate 10 whose surface is turned off by 4 degrees from the (0001) plane to the [11-20] direction using Monte Carlo simulation. This is a result of obtaining the metallurgical boundary (the boundary (pn junction surface) between the n-type 4H—SiC substrate 10 and the FLR 40) of the FLR 40 in the case. The donor density in the n-type 4H—SiC substrate 10 is 3 × 10 15 cm −3 , the range of Al ion implantation energy is 30 keV to 150 keV, and the total amount of Al ion implantation is 2 × 10 14 cm −2 . The cross-sectional shape of the ion implantation mask 50 is such that its side surface has an inclination of 86 degrees with respect to the surface of the n-type 4H—SiC substrate 10.
 図5(a)は、Alイオンを[000-1]方向に注入した場合のシミュレーション結果を示す。この場合、Alイオンのうち、ある割合は格子の間隙を抜けて結晶の奥深くにまで侵入し(チャネリング)、FLR40の冶金学的境界の深さが1.58μmまで達する。その一方で、FLR40の冶金学的境界の水平方向拡がりは[11-20]方向および[-1-120]方向に略対称であり、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりはイオン注入マスク50端から両方向ともに0.27μmと等しい。 FIG. 5 (a) shows the simulation result when Al ions are implanted in the [000-1] direction. In this case, a certain proportion of Al ions penetrates through the gaps of the lattice and penetrates deep into the crystal (channeling), and the depth of the metallurgical boundary of FLR 40 reaches 1.58 μm. On the other hand, the horizontal extent of the metallurgical boundary of the FLR 40 is substantially symmetric in the [11-20] direction and the [−1-120] direction, and the metallurgical engineering of the FLR 40 on the surface of the n-type 4H—SiC substrate 10. The horizontal extent of the boundary is equal to 0.27 μm in both directions from the end of the ion implantation mask 50.
 図5(b)は、Alイオンを[000-1]方向から[-1-120]方向へ4度傾斜した方向に注入、すなわちn型4H-SiC基板10の表面に垂直に注入した場合のシミュレーション結果を示す。この場合、前記図5(a)に見られるチャネリングは抑制されている。しかし、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりは、[-1-120]方向が0.28μm、[11-20]方向が0.17μmと非対称となる。 FIG. 5B shows a case where Al ions are implanted in a direction inclined by 4 degrees from the [000-1] direction to the [-1-120] direction, that is, perpendicularly implanted on the surface of the n-type 4H—SiC substrate 10. The simulation result is shown. In this case, the channeling seen in FIG. 5 (a) is suppressed. However, the horizontal expansion of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is asymmetrical with the [−1-120] direction being 0.28 μm and the [11-20] direction being 0.17 μm. .
 図5(c)は、Alイオンを[000-1]方向から[-1-120]方向へ8度傾斜した方向に注入した場合のシミュレーション結果を示す。この場合、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりの非対称性が、前記図5(b)よりもさらに拡大し、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりは、[-1-120]方向が0.28μm、[11-20]方向が0.10μmとなっている。 FIG. 5 (c) shows a simulation result when Al ions are implanted in the direction inclined by 8 degrees from the [000-1] direction to the [-1-120] direction. In this case, the asymmetry of the horizontal extension of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10 is further expanded as compared with FIG. The horizontal extent of the metallurgical boundary of FLR 40 is 0.28 μm in the [−1-120] direction and 0.10 μm in the [11-20] direction.
 また、図5(b)および(c)に示すように、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりが非対称となっている場合は、オフ方向と反対方向のn型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がり端(FLR40の端部)において、n型4H-SiC基板10の表面とFLR40の冶金学的境界とがなす角度αは90度以上となっている。 Further, as shown in FIGS. 5B and 5C, when the horizontal spread of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is asymmetric, the direction opposite to the off direction Between the surface of the n-type 4H—SiC substrate 10 and the metallurgical boundary of the FLR 40 at the horizontally expanded end of the metallurgical boundary of the FLR 40 (the end of the FLR 40) on the surface of the n-type 4H—SiC substrate 10 α is 90 degrees or more.
 これに対し、図6(a)、(b)および(c)に示すように、Alイオンを[000-1]方向から[11-20]方向へ4度、8度および12度傾斜した方向にそれぞれ注入すると、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりの対称性が回復し、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりは、[-1-120]方向および[11-20]方向のいずれも0.27μmとなる。 In contrast, as shown in FIGS. 6A, 6B, and 6C, directions in which Al ions are inclined from the [000-1] direction to the [11-20] direction by 4 degrees, 8 degrees, and 12 degrees. Are respectively restored to the symmetry of the horizontal extension of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10, and the horizontal of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10 is restored. The direction spread is 0.27 μm in both the [−1-120] direction and the [11-20] direction.
 また、図6(a)、(b)および(c)に示すように、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりが対称となっている場合は、オフ方向と反対方向のn型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がり端(FLR40の端部)において、n型4H-SiC基板10の表面とFLR40の冶金学的境界とがなす角度αは90度未満となっている。 Further, as shown in FIGS. 6A, 6B, and 6C, when the horizontal spread of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H—SiC substrate 10 is symmetric, it is turned off. The metallographic boundary between the surface of the n-type 4H-SiC substrate 10 and the metallurgical boundary of the FLR 40 at the horizontally expanded end (the end of the FLR 40) of the metallurgical boundary of the FLR 40 on the surface of the n-type 4H-SiC substrate 10 opposite to the direction Is less than 90 degrees.
 なお、図6(d)に示すように、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりの対称性は、Alイオンを[000-1]方向から[11-20]方向へ16度傾斜した方向に注入すると消失し、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりは、[-1-120]方向が0.31μm、[11-20]方向が0.05μmとなる。 As shown in FIG. 6D, the symmetry of the horizontal extension of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is that Al ions are [11-1] from the [000-1] direction. 20] direction disappears when implanted in a direction inclined 16 degrees, and the horizontal extension of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is 0.31 μm in the [−1-120] direction, 11-20] direction is 0.05 μm.
 また、図6(d)に示すように、n型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がりが非対称となっている場合は、オフ方向と反対方向のn型4H-SiC基板10の表面におけるFLR40の冶金学的境界の水平方向拡がり端(FLRの端部)において、n型4H-SiC基板10の表面とFLR40の冶金学的境界とがなす角度αは90度以上となっている。 In addition, as shown in FIG. 6D, when the horizontal spread of the metallurgical boundary of FLR 40 on the surface of the n-type 4H—SiC substrate 10 is asymmetric, the n-type 4H in the direction opposite to the off-direction. The angle α formed by the surface of the n-type 4H—SiC substrate 10 and the metallurgical boundary of FLR 40 at the horizontally expanded end (FLR end) of the metallurgical boundary of FLR 40 on the surface of SiC substrate 10 is 90 degrees. That's it.
 図6(a)、(b)および(c)に見られるような「Alイオンのチャネリングを伴わずに、n型4H-SiC基板の表面におけるFLR40の冶金学的境界の水平方向拡がりの対称性が得られる条件」を明確化するため、pnダイオードの室温におけるアバランシェ耐圧と、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比との関係を調べた。その結果を図7に示す。図7の縦軸は、5μm幅の1本のFLRがガードリングから2.5μm隔てて設けられたpnダイオードの室温におけるアバランシェ耐圧である。図7の横軸は、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がりがオフ方向とその反対方向で略対称な場合における、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比である。 Symmetry of the horizontal extent of the metallurgical boundary of FLR40 on the surface of the n-type 4H—SiC substrate without channeling Al ions as seen in FIGS. 6 (a), (b) and (c) In order to clarify the "conditions for obtaining", the relationship between the avalanche breakdown voltage of the pn diode at room temperature and the ratio of the depth of the metallurgical boundary of the FLR to the horizontal extension of the metallurgical boundary of the FLR was investigated. The result is shown in FIG. The vertical axis in FIG. 7 represents the avalanche breakdown voltage at room temperature of a pn diode in which one FLR having a width of 5 μm is provided 2.5 μm apart from the guard ring. The horizontal axis in FIG. 7 indicates that the horizontal extent of the metallurgy boundary of the FLR on the surface of the n-type 4H—SiC substrate whose surface is off by 4 degrees from the (0001) plane in the [11-20] direction is opposite to the off direction. The ratio of the depth of the metallurgical boundary of the FLR to the horizontal extent of the metallurgical boundary of the FLR in the case of being approximately symmetric in direction.
 図7に示すように、FLRにおいて、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比が4.4以下となるAl濃度分布を実現することにより、pnダイオードのアバランシェ耐圧のばらつきは低減する。すなわち、FLRにおいて、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比を4.4以下となるAl濃度分布を実現することにより、ショットキー・バリア・ダイオードにおいても、耐圧ばらつきを低減することができる。 As shown in FIG. 7, in the FLR, a pn diode is realized by realizing an Al concentration distribution in which the ratio of the depth of the metallurgical boundary of the FLR to the horizontal extent of the metallurgical boundary of the FLR is 4.4 or less. The variation in the avalanche breakdown voltage is reduced. That is, in the FLR, by realizing an Al concentration distribution in which the ratio of the depth of the metallurgical boundary of the FLR to the horizontal spread of the metallurgical boundary of the FLR is 4.4 or less, in the Schottky barrier diode, In addition, variations in breakdown voltage can be reduced.
 なお、図7には、FLRが1本の場合の結果を示しているが、複数本のFLRを有する場合も、縦軸の絶対値が大きくなる以外、同様な傾向を示す。 Note that FIG. 7 shows the result in the case of one FLR, but the same tendency is shown in the case of having a plurality of FLRs, except that the absolute value of the vertical axis increases.
 このように、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、Alイオンを[000-1]方向から[11-20]方向へ4度以上、12度以下の範囲の傾斜した方向に注入してFLRを形成することにより、ショットキー・バリア・ダイオードの耐圧ばらつきを低減することができる。この際、FLRの形状は、n型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がりはオフ方向とその反対方向とで略対称となり、かつ、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比は所定の値以下、実施例1では4.4以下となるこという特徴を有する。さらに、FLRの形状は、オフ方向と反対方向のn型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がり端(FLRの端部)において、n型4H-SiC基板の表面とFLRの冶金学的境界とがなす角度が90度未満となることを特徴を有する。 Thus, for the n-type 4H—SiC substrate whose surface is turned off from the (0001) plane by 4 degrees in the [11-20] direction, Al ions are transferred 4 from the [000-1] direction to the [11-20] direction. By injecting in the inclined direction in the range of not less than 12 degrees and not more than 12 degrees to form the FLR, variations in breakdown voltage of the Schottky barrier diode can be reduced. At this time, the shape of the FLR is such that the horizontal spread of the metallurgical boundary of the FLR on the surface of the n-type 4H—SiC substrate is substantially symmetric in the off direction and the opposite direction, and the horizontal of the metallurgical boundary of the FLR. The ratio of the depth of the metallurgical boundary of the FLR to the direction spread is characterized by being a predetermined value or less, and 4.4 or less in Example 1. Further, the shape of the FLR is the same as the surface of the n-type 4H—SiC substrate at the horizontally expanded end (the end of the FLR) of the metallurgical boundary of the FLR on the surface of the n-type 4H—SiC substrate in the direction opposite to the off direction. It is characterized in that the angle formed by the metallurgical boundary of FLR is less than 90 degrees.
 (2).ショットキー・バリア・ダイオードの高耐圧化
 ところで、将来、大口径4H-SiC基板の反りが低減した場合には、ショットキー・バリア・ダイオードの耐圧ばらつきは低減すると考えられる。この耐圧ばらつきとは、例えば前記図3で例示した、[000-1]方向から[-1-120]方向へ0度以上、4度以下の範囲で傾斜した方向、または[000-1]方向から[11-20]方向へ0度以上、4度以下の範囲で傾斜した方向にAlイオンを注入した場合に見られたアバランシェ耐圧のばらつきを示す。この場合は、最大の耐圧を実現するために、[000-1]方向にAlイオンを注入することが望ましい。そして、この場合には、チャネリングにより、Alイオンをn型4H-SiC基板の深くまで注入して、Alイオンの注入に伴うFLR(冶金学的領域)の深さを1μm以上とすべきである。これは、後述の図8に示すシミュレーション結果に基づくものである。
(2). By the way, when the warpage of the large-diameter 4H-SiC substrate is reduced in the future, it is considered that the variation in the breakdown voltage of the Schottky barrier diode is reduced. This withstand voltage variation is, for example, the direction inclined from the [000-1] direction to the [-1-120] direction in the range of 0 degree to 4 degrees, or the [000-1] direction, as exemplified in FIG. The variation of the avalanche breakdown voltage observed when Al ions are implanted in the direction inclined from 0 ° to [11-20] in the range of 0 ° to 4 ° is shown. In this case, it is desirable to implant Al ions in the [000-1] direction in order to achieve the maximum breakdown voltage. In this case, Al ions should be implanted deep into the n-type 4H—SiC substrate by channeling, and the depth of the FLR (metallurgical region) accompanying the implantation of Al ions should be 1 μm or more. . This is based on a simulation result shown in FIG.
 図8は、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に形成されたpnダイオードの室温におけるアバランシェ耐圧と、FLR(冶金学的領域)の深さとの関係を説明するグラフ図である。図8の縦軸は、5μm幅の1本のFLRがガードリングから2.5μm隔てて設けられたpnダイオードの室温におけるアバランシェ耐圧であり、横軸は、FLR(冶金学的領域)のn型4H-SiC基板の表面からの深さである。ここでは、注入エネルギーの最大値が35keV、65keV、95keVおよび145keVの4通りの場合のアバランシェ耐圧をシミュレーションしており、95keVで得られたアバランシェ耐圧を用いて、他のエネルギーで得られたアバランシェ耐圧を規格化している。 FIG. 8 shows the avalanche breakdown voltage at room temperature of the pn diode formed on the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction, and the depth of the FLR (metallurgical region). It is a graph explaining the relationship. The vertical axis of FIG. 8 is the avalanche breakdown voltage at room temperature of a pn diode in which one FLR having a width of 5 μm is provided 2.5 μm apart from the guard ring, and the horizontal axis is the n-type of FLR (metallurgical region). This is the depth from the surface of the 4H—SiC substrate. Here, the avalanche breakdown voltage in the case where the maximum value of the implantation energy is four types of 35 keV, 65 keV, 95 keV and 145 keV is simulated, and the avalanche breakdown voltage obtained at other energy is obtained using the avalanche breakdown voltage obtained at 95 keV. Is standardized.
 図8に示すように、注入エネルギーの最大値が145keVのときに最大のアバランシェ耐圧が得られるが、注入エネルギーの最大値が低くなるに従い、アバランシェ耐圧も低くなる。FLR(冶金学的領域)の深さが1μm未満となる注入エネルギーの最大値が35keVおよび65keVでは、アバランシェ耐圧は急激に低下する。しかし、FLR(冶金学的領域)の深さが約1.0μmまでは、注入エネルギーの最大値が145keVのときのアバランシェ耐圧の80%以上が得られる。 As shown in FIG. 8, the maximum avalanche breakdown voltage is obtained when the maximum value of the implantation energy is 145 keV, but the avalanche breakdown voltage decreases as the maximum value of the implantation energy decreases. When the maximum value of the implantation energy at which the depth of the FLR (metallurgical region) is less than 1 μm is 35 keV and 65 keV, the avalanche breakdown voltage decreases rapidly. However, when the FLR (metallurgical region) depth is about 1.0 μm, 80% or more of the avalanche breakdown voltage when the maximum value of the implantation energy is 145 keV is obtained.
 以上の結果から、最大のアバランシェ耐圧を実現するためには、結晶主面に垂直な方向である[000-1]方向にAlイオンを注入し、かつ、チャネリングによりAlイオンをn型4H-SiC基板の深くまで注入して、FLR(冶金学的領域)の深さを1μm以上とすべきである考えられる。 From the above results, in order to achieve the maximum avalanche breakdown voltage, Al ions are implanted in the [000-1] direction, which is a direction perpendicular to the crystal main surface, and Al ions are n-type 4H—SiC by channeling. It is considered that the depth of the FLR (metallurgical region) should be 1 μm or more by implanting deep into the substrate.
 このように、大口径4H-SiC基板の反りが低減した場合は、結晶主面に垂直な方向である[000-1]方向にAlイオンを注入し、かつ、Alイオンの注入に伴うFLR(冶金学的領域)の深さを1μm以上とすることにより、ショットキー・バリア・ダイオードの最大耐圧を実現することができる。この場合は、FLRの数が少なくてもショットキー・バリア・ダイオードの高耐圧化が実現できることから、半導体チップの平面積を小さくすることができて、半導体チップの小型化が可能となる。これにより、大口径4H-SiC基板からの取得チップ数が増加し、チップコストが低減する。 Thus, when the warpage of the large-diameter 4H—SiC substrate is reduced, Al ions are implanted in the [000-1] direction, which is a direction perpendicular to the crystal main surface, and the FLR ( By setting the depth of the metallurgical region to 1 μm or more, the maximum breakdown voltage of the Schottky barrier diode can be realized. In this case, since the high breakdown voltage of the Schottky barrier diode can be realized even if the number of FLRs is small, the plane area of the semiconductor chip can be reduced, and the semiconductor chip can be miniaturized. This increases the number of chips acquired from the large-diameter 4H—SiC substrate and reduces the chip cost.
 ところで、イオン注入傾角ばらつきまたはイオン注入マスクの形状ばらつきなどの製造ばらつきに起因して、Alイオンが[000-1]方向からずれる虞がある。このような場合を考慮すると、大口径4H-SiC基板の反りが低減した場合であっても、[000-1]方向から[11-20]方向へ傾斜した方向にAlイオンを注入することが好ましい。これは、[000-1]方向から[11-20]方向へ傾斜した方向にAlイオンを注入しても、前述の「(1).ショットキー・バリア・ダイオードの耐圧の均一性の向上」において説明したように、均一な耐圧が得られるからである。 By the way, there is a possibility that the Al ions may deviate from the [000-1] direction due to manufacturing variations such as variations in tilt angle of ion implantation or variations in shape of the ion implantation mask. Considering such a case, even when the warp of the large-diameter 4H—SiC substrate is reduced, Al ions can be implanted in a direction inclined from the [000-1] direction to the [11-20] direction. preferable. This is because, even when Al ions are implanted in a direction inclined from the [000-1] direction to the [11-20] direction, the above-mentioned “(1). Improving the uniformity of the breakdown voltage of the Schottky barrier diode” is described. This is because a uniform withstand voltage can be obtained as described in FIG.
 なお、[000-1]方向から[-1-120]方向へ傾斜した方向にAlイオンを注入してもよい。しかし、[000-1]方向から[-1-120]方向へ4度以上傾斜した方向にAlイオンを注入すると、n型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がりがオフ方向とその反対方向とで非対称性(前記図5(b)および(c)参照)となり、均一な耐圧は得られ難くなる。従って、[000-1]方向から[-1-120]方向へ傾斜した方向にAlイオンを注入する際には、[000-1]方向から[-1-120]方向へ傾斜する傾角は4度よりも小さくする。 Note that Al ions may be implanted in a direction inclined from the [000-1] direction to the [-1-120] direction. However, when Al ions are implanted in a direction inclined by 4 degrees or more from the [000-1] direction to the [-1-120] direction, the horizontal spread of the FLR metallurgical boundary on the surface of the n-type 4H—SiC substrate is increased. Asymmetry occurs between the off direction and the opposite direction (see FIGS. 5B and 5C), and it is difficult to obtain a uniform breakdown voltage. Therefore, when Al ions are implanted in the direction inclined from the [000-1] direction to the [-1-120] direction, the inclination angle inclined from the [000-1] direction to the [-1-120] direction is 4 Make it smaller than degree.
 以下に、実施例1において、これまでに説明したショットキー・バリア・ダイオードの耐圧の均一性の向上およびショットキー・バリア・ダイオードの高耐圧化を実現するためのFLRの形状および形成方法についてまとめる。 In the following, the shape and forming method of the FLR for realizing the improvement of the breakdown voltage uniformity of the Schottky barrier diode and the high breakdown voltage of the Schottky barrier diode described so far in the first embodiment will be summarized. .
 表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、Alイオンを[000-1]方向から[11-20]方向へ4度以上、12度以下の範囲の傾斜した方向に注入して、FLRを形成する。これにより、ショットキー・バリア・ダイオードの耐圧ばらつきを低減することができる。この際、n型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がりをオフ方向とその反対方向とで略対称とし、かつ、FLRの冶金学的境界の水平方向拡がりに対するFLRの冶金学的境界の深さの比は所定の値以下、実施例1では4.4以下とする。さらに、オフ方向と反対方向のn型4H-SiC基板の表面におけるFLRの冶金学的境界の水平方向拡がり端(FLRの端部)において、n型4H-SiC基板の表面とFLRの冶金学的境界とがなす角度を90度未満とする。この場合は、ショットキー・バリア・ダイオードの高耐圧化は、FLRの数を増やすことにより実現することができる。 For an n-type 4H—SiC substrate whose surface is off by 4 degrees from the (0001) plane in the [11-20] direction, Al ions are 4 degrees or more from the [000-1] direction to the [11-20] direction, 12 degrees or more. The FLR is formed by injecting in an inclined direction within a range of less than or equal to degrees. Thereby, it is possible to reduce variations in the breakdown voltage of the Schottky barrier diode. At this time, the horizontal spread of the FLR metallurgical boundary on the surface of the n-type 4H—SiC substrate is made substantially symmetric in the off direction and the opposite direction, and the FLR with respect to the horizontal spread of the metallurgical boundary of the FLR The depth ratio of the metallurgical boundary is set to a predetermined value or less, and 4.4 or less in Example 1. Furthermore, the surface of the n-type 4H—SiC substrate and the metallurgy of the FLR at the horizontally expanded end (FLR end) of the metallurgical boundary of the FLR on the surface of the n-type 4H—SiC substrate in the direction opposite to the off direction. The angle formed by the boundary is less than 90 degrees. In this case, the high breakdown voltage of the Schottky barrier diode can be realized by increasing the number of FLRs.
 また、大口径4H-SiC基板の反りが低減した場合には、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、Alイオンを[000-1]方向から[11-20]方向へ0度以上、または[000-1]方向から[-1-120]方向へ0度以上、4度未満傾斜した方向に注入して、FLRを形成する。これにより、ショットキー・バリア・ダイオードの耐圧ばらつきが低減でき、かつ、高耐圧が得られる。この場合は、FLRの数が少なくてもショットキー・バリア・ダイオードの高耐圧化が実現できるので、半導体チップの小型化が可能であり、大口径4H-SiC基板からの取得チップ数が増加して、チップコストが低減する。 Further, when the warp of the large-diameter 4H—SiC substrate is reduced, Al ions are [000] to the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction. -1] direction to [11-20] direction 0 degree or more, or [000-1] direction [1-1-120] direction 0 degree or more and less than 4 degrees, injecting in a direction inclined to form FLR To do. As a result, variations in the breakdown voltage of the Schottky barrier diode can be reduced, and a high breakdown voltage can be obtained. In this case, a high breakdown voltage of the Schottky barrier diode can be realized even if the number of FLRs is small, so that the semiconductor chip can be miniaturized, and the number of chips obtained from a large-diameter 4H-SiC substrate increases. As a result, the chip cost is reduced.
 このように、実施例1によれば、耐圧特性の優れる炭化珪素半導体装置を実現することができる。 Thus, according to Example 1, it is possible to realize a silicon carbide semiconductor device having excellent breakdown voltage characteristics.
 (半導体装置の構造)
 実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置を図9および図10を用いて説明する。図9は、実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置の一例を示す要部平面図である。図10は、実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置の一例を示す要部断面図(図9のA-A’線に沿った要部断面図)である。
(Structure of semiconductor device)
A semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 will be described with reference to FIGS. FIG. 9 is a principal plan view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to the first embodiment. FIG. 10 is a fragmentary cross-sectional view showing an example of a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 (major portion along the line AA ′ in FIG. 9). FIG.
 半導体装置は、ショットキー・バリア・ダイオードと、その周囲に形成されたガードリングおよびFLRとから構成され、1つの半導体チップに形成されている。 The semiconductor device is composed of a Schottky barrier diode and a guard ring and FLR formed around the Schottky barrier diode, and is formed in one semiconductor chip.
 図9および図10に示すように、実施例1による半導体チップ101は、表面が結晶主面の(0001)面から[11-20]方向にオフ角4度で傾いているn型4H-SiC基板102の表面に、n型4H-SiCのエピタキシャル層103が形成されている。このエピタキシャル層103はn型のドリフト層として機能する。n型4H-SiC基板102の不純物濃度は、例えば1×1018~1×1019cm-3程度である。エピタキシャル層103の不純物濃度は、n型4H-SiC基板102の不純物濃度よりも低く、例えば1×1015~4×1016cm-3程度である。また、エピタキシャル層103の厚さは、例えば3~80μm程度である。半導体チップ101は、例えば6mm×6mmの四角形状である。なお、実施例1では、オフ角は4度であるが、他のオフ角を有するn型4H-SiC基板であってもよい。 As shown in FIGS. 9 and 10, the semiconductor chip 101 according to the first embodiment has an n + type 4H− whose surface is inclined at an off angle of 4 degrees in the [11-20] direction from the (0001) plane of the crystal main surface. An n -type 4H—SiC epitaxial layer 103 is formed on the surface of the SiC substrate 102. The epitaxial layer 103 functions as an n type drift layer. The impurity concentration of the n + -type 4H—SiC substrate 102 is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 . The impurity concentration of the epitaxial layer 103 is lower than the impurity concentration of the n + -type 4H—SiC substrate 102, for example, about 1 × 10 15 to 4 × 10 16 cm −3 . Further, the thickness of the epitaxial layer 103 is, for example, about 3 to 80 μm. The semiconductor chip 101 has a quadrangular shape of 6 mm × 6 mm, for example. In Example 1, the off angle is 4 degrees, but an n + type 4H—SiC substrate having another off angle may be used.
 エピタキシャル層103の上面の中央領域はアクティブ領域であり、その周囲にp型の環状の半導体領域であるガードリング109が形成されている。さらに、ガードリング109を囲むようにエピタキシャル層103の上面には、p型の環状の半導体領域である複数のFLR107a,107b,107cが互いに離間して形成されている。ここで、ガードリング109とFLR107aとは間隔104を隔てて形成され、FLR107aとFLR107bとは間隔105を隔てて形成され、FLR107bとFLR107cとは間隔106を隔てて形成されている。 A central region on the upper surface of the epitaxial layer 103 is an active region, and a guard ring 109 which is a p-type annular semiconductor region is formed around the active region. Further, a plurality of FLRs 107a, 107b, and 107c, which are p-type annular semiconductor regions, are formed on the upper surface of the epitaxial layer 103 so as to surround the guard ring 109. Here, the guard ring 109 and the FLR 107a are formed with an interval 104, the FLR 107a and the FLR 107b are formed with an interval 105, and the FLR 107b and the FLR 107c are formed with an interval 106.
 ガードリング109およびFLR107a,107b,107cのp型不純物は、例えばAlである。FLR107a,107b,107cの幅は、例えば5μm程度である。FLR107a,107b,107cのエピタキシャル層103の上面からの深さは、例えば0.8~1.2μm程度である。ガードリング109およびFLR107a,107b,107cの不純物濃度は、例えば6×1017cm-3である。なお、ガードリング109の不純物濃度は、FLR107a,107b,107cの不純物濃度よりも高くすることもできて、例えば2×1019cm-3とすることもできる。ここで、ガードリング109およびFLR107a,107b,107cの形状は、例えばともにエピタキシャル層103の上面における冶金学的境界(エピタキシャル層103とガードリング109またはFLR107a,107b,107cとの境界(pn接合面))の水平方向拡がりがオフ方向である[11-20]方向とその反対方向である[-1-120]方向とで略対称であり、かつ、冶金学的境界の水平方向拡がりに対する冶金学的境界の深さの比は4.4以下である。具体的には、ガードリング109およびFLR107a,107b,107cは、例えば6(a)、(b)または(c)に示すAl濃度分布を有するものである。 The p-type impurity of the guard ring 109 and the FLRs 107a, 107b, and 107c is, for example, Al. The width of the FLRs 107a, 107b, and 107c is, for example, about 5 μm. The depth of the FLRs 107a, 107b, and 107c from the upper surface of the epitaxial layer 103 is, for example, about 0.8 to 1.2 μm. The impurity concentration of the guard ring 109 and the FLRs 107a, 107b, and 107c is, for example, 6 × 10 17 cm −3 . Note that the impurity concentration of the guard ring 109 can be higher than the impurity concentration of the FLRs 107a, 107b, and 107c, and can be set to 2 × 10 19 cm −3 , for example. Here, the shapes of the guard ring 109 and the FLRs 107a, 107b, and 107c are, for example, metallurgical boundaries on the upper surface of the epitaxial layer 103 (boundaries between the epitaxial layer 103 and the guard ring 109 or FLRs 107a, 107b, and 107c (pn junction surfaces)). ) Is substantially symmetric in the [11-20] direction, which is the off-direction, and the [-1-120] direction, which is the opposite direction, and is metallurgical with respect to the horizontal extension of the metallurgical boundary. The ratio of the boundary depth is 4.4 or less. Specifically, the guard ring 109 and the FLRs 107a, 107b, and 107c have, for example, an Al concentration distribution shown in 6 (a), (b), or (c).
 さらに、エピタキシャル層103の上面にはFLR107a,107b,107cの外側に、n型の半導体領域であるチャネルストッパ108が設けられている。なお、図9および図10は、ガードリング109およびFLR107a,107b,107cの位置関係を分かりやすく説明するために、これらを模式的に示している。 Further, a channel stopper 108 which is an n + type semiconductor region is provided on the upper surface of the epitaxial layer 103 outside the FLRs 107a, 107b and 107c. FIGS. 9 and 10 schematically show the positional relationship between the guard ring 109 and the FLRs 107a, 107b, and 107c in an easy-to-understand manner.
 アノード電極111は、中央領域であるアクティブ領域においてエピタキシャル層103の上面とショットキー接合しているショットキー電極である。また、アノード電極111の電極の端部は、ガードリング109上に位置している。n型4H-SiC基板102の裏面には、カソード電極110が電気的に接続されている。以上により、半導体チップ101には、ショットキー・バリア・ダイオードが形成されている。 The anode electrode 111 is a Schottky electrode that is in Schottky junction with the upper surface of the epitaxial layer 103 in the active region that is the central region. Further, the end portion of the electrode of the anode electrode 111 is located on the guard ring 109. A cathode electrode 110 is electrically connected to the back surface of the n + -type 4H—SiC substrate 102. As described above, a Schottky barrier diode is formed in the semiconductor chip 101.
 さらに、図9および図10には図示していないが、半導体チップ101には、エピタキシャル層103の上面を保護するために、層間絶縁膜が形成されている。この層間絶縁膜には、アノード電極111を露出させるための開口部が設けられている。 Further, although not shown in FIGS. 9 and 10, an interlayer insulating film is formed on the semiconductor chip 101 in order to protect the upper surface of the epitaxial layer 103. The interlayer insulating film is provided with an opening for exposing the anode electrode 111.
 図9に示すA-A´線は、n型4H-SiC基板102の[1-100]方向に略直交する方向に沿っている。ここで、ガードリング109に囲まれたアクティブ領域を中心として、図9の「A」側がn型4H-SiC基板102の[-1-120]方向に対応し、図9の「A’」側がn型4H-SiC基板102の[11-20]方向に対応する。すなわち、アクティブ領域を中心としてA’方向がオフ方向に対応する。なお、実施例1において略直交および略平行の程度は、ウェハのダイシングの結晶方位に対する精度の程度をいう。 The AA ′ line shown in FIG. 9 is along a direction substantially orthogonal to the [1-100] direction of the n + -type 4H—SiC substrate 102. Here, with the active region surrounded by the guard ring 109 as the center, the “A” side in FIG. 9 corresponds to the [−1−120] direction of the n + -type 4H—SiC substrate 102, and “A ′” in FIG. The side corresponds to the [11-20] direction of the n + -type 4H—SiC substrate 102. That is, the A ′ direction corresponds to the off direction with the active region as the center. In the first embodiment, the substantially orthogonal and approximately parallel degrees refer to the degree of accuracy with respect to the crystal orientation of wafer dicing.
 実施例1による半導体装置では、FLR107a,107b,107cの形状を、エピタキシャル層103の上面における冶金学的境界の水平方向拡がりがオフ方向である[11-20]方向とその反対方向である[-1-120]方向とで略対称であり、かつ、冶金学的境界の水平方向拡がりに対する冶金学的境界の深さの比を4.4以下としたが、これに限定されるものではない。 In the semiconductor device according to Example 1, the shapes of the FLRs 107a, 107b, and 107c are opposite to the [11-20] direction in which the horizontal spread of the metallurgical boundary on the upper surface of the epitaxial layer 103 is the off direction [- Although the ratio of the depth of the metallurgical boundary to the horizontal expansion of the metallurgical boundary is set to 4.4 or less, it is not limited to this.
 例えば4H-SiC基板の反りが低減した場合には、FLR107a,107b,107cの形状を、エピタキシャル層103の上面における冶金学的境界の水平方向拡がりがオフ方向である[11-20]方向とその反対方向である[-1-120]方向とで略対称であり、かつ、冶金学的領域の深さを1μm以上としてもよい。具体的には、FLR107a,107b,107cは、図5(a)に示すAl濃度分布を有するものである。 For example, when the warpage of the 4H—SiC substrate is reduced, the shape of the FLRs 107a, 107b, and 107c is changed to the [11-20] direction in which the horizontal spread of the metallurgical boundary on the upper surface of the epitaxial layer 103 is the off direction. It may be substantially symmetric with the [−1-120] direction, which is the opposite direction, and the depth of the metallurgical region may be 1 μm or more. Specifically, the FLRs 107a, 107b, and 107c have the Al concentration distribution shown in FIG.
 (半導体装置の製造方法)
 実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置の製造方法を図11~図17を用いて工程順に説明する。図11は、実施例1による半導体装置の製造方法を説明する工程図である。図11~図17は、実施例1による製造工程中の半導体装置の要部断面図である。
(Method for manufacturing semiconductor device)
A method of manufacturing a semiconductor device having a Schottky barrier diode formed on an n-type 4H—SiC substrate according to Example 1 will be described in the order of steps with reference to FIGS. FIG. 11 is a process diagram illustrating the method for manufacturing the semiconductor device according to the first embodiment. 11 to 17 are cross-sectional views of main parts of the semiconductor device during the manufacturing process according to the first embodiment.
 <工程P1>
 まず、図12に示すように、表面が結晶主面の(0001)面から[11-20]方向にオフ角4度で傾いているn型4H-SiC基板102を準備する。n型4H-SiC基板102のn型不純物は、例えば窒素である。n型4H-SiC基板102の不純物濃度は、例えば1×1018~1×1019cm-3程度である。
<Process P1>
First, as shown in FIG. 12, an n + type 4H—SiC substrate 102 whose surface is inclined from the (0001) plane of the crystal main surface in the [11-20] direction at an off angle of 4 degrees is prepared. The n-type impurity of the n + -type 4H—SiC substrate 102 is, for example, nitrogen. The impurity concentration of the n + -type 4H—SiC substrate 102 is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 続いて、n型4H-SiC基板102の表面にn型のドリフト層として機能するn型4H-SiCのエピタキシャル層103をエピタキシャル成長法により形成する。エピタキシャル層103のn型不純物は、例えば窒素である。エピタキシャル層103の不純物濃度は、n型4H-SiC基板102よりも低く、例えば1×1015~4×1016cm-3程度である。また、エピタキシャル層103の厚さは、例えば3~80μm程度である。以上のエピタキシャル層103の各条件は、必要な耐圧に応じて設定される。 Then, n + -type 4H-SiC on a surface of the substrate 102 n - is formed by epitaxial growth type 4H-SiC epitaxial layer 103 - n which functions as type drift layer. The n-type impurity of the epitaxial layer 103 is, for example, nitrogen. The impurity concentration of the epitaxial layer 103 is lower than that of the n + -type 4H—SiC substrate 102 and is, for example, about 1 × 10 15 to 4 × 10 16 cm −3 . Further, the thickness of the epitaxial layer 103 is, for example, about 3 to 80 μm. Each condition of the above epitaxial layer 103 is set according to a required breakdown voltage.
 <工程P2>
 次に、図13に示すように、エピタキシャル層103の上面にマスク材料層112aを形成し、リソグラフィ技術によりマスク材料層112aをパターニングする。そして、マスク材料層112aから露出するエピタキシャル層103の外周部の上面にn型不純物をイオン注入することにより、エピタキシャル層103の上面にチャネルストッパ108を形成する。この際、注入角は任意でよく、例えばエピタキシャル層103表面に垂直入射とする。チャネルストッパ108のn型不純物は、例えば窒素である。チャネルストッパ108の不純物濃度は、例えば8×1019cm-3であり、イオンの注入深さは、例えば0.2μmである。
<Process P2>
Next, as shown in FIG. 13, a mask material layer 112a is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112a is patterned by a lithography technique. Then, an n-type impurity is ion-implanted into the upper surface of the outer peripheral portion of the epitaxial layer 103 exposed from the mask material layer 112 a, thereby forming a channel stopper 108 on the upper surface of the epitaxial layer 103. At this time, the implantation angle may be arbitrary, for example, perpendicular incidence to the surface of the epitaxial layer 103. The n-type impurity of the channel stopper 108 is, for example, nitrogen. The impurity concentration of the channel stopper 108 is, for example, 8 × 10 19 cm −3 , and the ion implantation depth is, for example, 0.2 μm.
 <工程P3>
 次に、図14に示すように、マスク材料層112aを除去した後、エピタキシャル層103の上面に、例えば酸化シリコン等からなるマスク材料層112bを形成し、リソグラフィ技術によりマスク材料層112bをパターニングする。そして、マスク材料層112bから露出するエピタキシャル層103の上面にp型不純物を斜めイオン注入することにより、エピタキシャル層103の上面にFLR107a,107b,107cを形成する。この際、注入角は[000-1]方向から[11-20]方向に4度以上、12度以下傾けた角度とする。FLR107a,107b,107cのp型不純物は、例えばAlである。FLR107a,107b,107cの不純物濃度は、例えば6×1017cm-3であり、イオンの注入深さは、例えば0.8~1.2μm程度である。
<Process P3>
Next, as shown in FIG. 14, after removing the mask material layer 112a, a mask material layer 112b made of, for example, silicon oxide is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112b is patterned by a lithography technique. . Then, p-type impurities are obliquely ion-implanted into the upper surface of the epitaxial layer 103 exposed from the mask material layer 112b, thereby forming FLRs 107a, 107b, and 107c on the upper surface of the epitaxial layer 103. At this time, the injection angle is set to an angle of 4 degrees or more and 12 degrees or less from the [000-1] direction to the [11-20] direction. The p-type impurity of the FLRs 107a, 107b, and 107c is, for example, Al. The impurity concentration of the FLRs 107a, 107b, and 107c is, for example, 6 × 10 17 cm −3 , and the ion implantation depth is, for example, about 0.8 to 1.2 μm.
 <工程P4>
 次に、図15に示すように、マスク材料層112bを除去した後、エピタキシャル層103の上面に、例えば酸化シリコン等からなるマスク材料層112cを形成し、リソグラフィ技術によりマスク材料層112cをパターニングする。そして、マスク材料層112cから露出するエピタキシャル層103の上面にp型不純物を斜めイオン注入することにより、エピタキシャル層103の上面にガードリング109を形成する。この際、注入角は[000-1]方向から[11-20]方向に4度以上、12度以下傾けた角度とする。ガードリング109のp型不純物は、例えばAlである。ガードリング109の不純物濃度は、例えば2×1019cm-3であり、イオンの注入深さは、例えば0.8~1.2μm程度である。
<Process P4>
Next, as shown in FIG. 15, after removing the mask material layer 112b, a mask material layer 112c made of, for example, silicon oxide is formed on the upper surface of the epitaxial layer 103, and the mask material layer 112c is patterned by a lithography technique. . Then, a guard ring 109 is formed on the upper surface of the epitaxial layer 103 by obliquely implanting p-type impurities into the upper surface of the epitaxial layer 103 exposed from the mask material layer 112c. At this time, the injection angle is an angle inclined from 4 ° to 12 ° from the [000-1] direction to the [11-20] direction. The p-type impurity of the guard ring 109 is, for example, Al. The impurity concentration of the guard ring 109 is 2 × 10 19 cm −3 , for example, and the ion implantation depth is, for example, about 0.8 to 1.2 μm.
 <工程P5>
 次に、図16に示すように、マスク材料層112cを除去した後、アニールを行い、イオン注入した不純物の活性化を行う。なお、図16には、アニール時の表面および裏面を被覆する保護膜の図示を省略している。
<Process P5>
Next, as shown in FIG. 16, after removing the mask material layer 112c, annealing is performed to activate the implanted impurities. In FIG. 16, illustration of a protective film covering the front and back surfaces during annealing is omitted.
 <工程P6>
 次に、図17に示すように、ガードリング109に接するように、エピタキシャル層103の上面にアノード電極111を、例えばスパッタリング法により形成する。また、n型4H-SiC基板102の裏面にカソード電極110を、例えばスパッタリング法により形成する。続いて、アノード電極111の上面を露出するようにエピタキシャル層103の上面に層間絶縁膜(図示は省略)を形成する。以上により、実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオードを有する半導体装置が略完成する。
<Process P6>
Next, as shown in FIG. 17, an anode electrode 111 is formed on the upper surface of the epitaxial layer 103 so as to be in contact with the guard ring 109, for example, by sputtering. Further, the cathode electrode 110 is formed on the back surface of the n + -type 4H—SiC substrate 102 by, for example, a sputtering method. Subsequently, an interlayer insulating film (not shown) is formed on the upper surface of the epitaxial layer 103 so that the upper surface of the anode electrode 111 is exposed. As described above, the semiconductor device having the Schottky barrier diode formed on the n-type 4H—SiC substrate according to Example 1 is substantially completed.
 実施例1による半導体装置の製造方法では、FLR107a,107b,107cを形成する際、注入角を[000-1]方向から[11-20]方向に4度以上、12度以下傾けた角度としたが、これに限定されるものではない。 In the method of manufacturing the semiconductor device according to the first embodiment, when forming the FLRs 107a, 107b, and 107c, the implantation angle is inclined by 4 degrees or more and 12 degrees or less from the [000-1] direction to the [11-20] direction. However, the present invention is not limited to this.
 例えば4H-SiC基板の反りが低減した場合には、[000-1]方向から[11-20]方向へ0度以上、4度以下傾斜した方向にAlイオンを注入してFLR107a,107b,107cを形成してもよく、または[000-1]方向から[-1-120]方向へ0度以上、4度未満傾斜した方向にAlイオンを注入してFLR107a,107b,107cを形成してもよい。 For example, when the warpage of a 4H—SiC substrate is reduced, Al ions are implanted in a direction inclined by 0 ° or more and 4 ° or less from the [000-1] direction to the [11-20] direction, and FLRs 107a, 107b, 107c. Alternatively, the FLRs 107a, 107b, and 107c may be formed by implanting Al ions in a direction inclined by 0 degree or more and less than 4 degrees from the [000-1] direction to the [-1-120] direction. Good.
 なお、実施例1では、n型4H-SiC基板に形成されたショットキー・バリア・ダイオードについて説明したが、これに限定されるものではなく、n型4H-SiC基板に形成された他の炭化珪素半導体装置にも適用することができる。 In the first embodiment, the Schottky barrier diode formed on the n-type 4H—SiC substrate has been described. However, the present invention is not limited to this, and other carbonization formed on the n-type 4H—SiC substrate. The present invention can also be applied to a silicon semiconductor device.
 実施例1ではショットキー・バリア・ダイオードの例を示したが、実施例2ではスイッチング素子の例を示す。図18は、スイッチング素子を構成するn型4H-SiC基板に形成されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)(以下、SiC-MOSFETと記す)の一例を示す要部断面図である。MOSFETが多数並列接続されて、1つのスイッチング素子が構成される。実施例2によるSiC-MOSFETの周囲には、複数のFLRが設けられている。図18は、前記図1のA-A’線の断面と同様に、n型4H-SiC基板102の[1-100]方向に略直交する方向の断面図である。 In the first embodiment, an example of a Schottky barrier diode is shown, but in the second embodiment, an example of a switching element is shown. FIG. 18 is a cross-sectional view of an essential part showing an example of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (hereinafter referred to as SiC-MOSFET) formed on an n-type 4H—SiC substrate constituting a switching element. A large number of MOSFETs are connected in parallel to form one switching element. A plurality of FLRs are provided around the SiC-MOSFET according to the second embodiment. 18 is a cross-sectional view of the n + -type 4H—SiC substrate 102 in a direction substantially perpendicular to the [1-100] direction, similar to the cross section taken along the line AA ′ of FIG.
 図18に示すように、実施例2による半導体チップ101aは、表面が結晶主面の(0001)面から[11-20]方向にオフ角4度で傾いているn型4H-SiC基板102の表面に、n型4H-SiCのエピタキシャル層103が形成されている。エピタキシャル層103の厚さは、例えば5~40μm程度である。このエピタキシャル層103は、耐圧を確保する役目を担うn型のドリフト層として機能する。 As shown in FIG. 18, the semiconductor chip 101a according to the second embodiment has an n + type 4H—SiC substrate 102 whose surface is inclined from the (0001) plane of the crystal main surface in the [11-20] direction at an off angle of 4 degrees. An n type 4H—SiC epitaxial layer 103 is formed on the surface. The thickness of the epitaxial layer 103 is, for example, about 5 to 40 μm. The epitaxial layer 103 functions as an n type drift layer that plays a role of securing a breakdown voltage.
 エピタキシャル層103内には、エピタキシャル層103の上面から所定の深さを有してp型のボディ層1604が形成されている。さらに、p型のボディ層1604内には、エピタキシャル層103の上面から所定の深さを有し、p型のボディ層1604の端部と離間してn型のソース層1603が形成されている。n型のソース層1603は、p型のボディ層1604の端部とn型のソース層1603との間のp型のボディ層1604内にエピタキシャル層103の上面から所定の距離を有して形成されるチャネルを介して、n型のドリフト層と接続する。 A p-type body layer 1604 having a predetermined depth from the upper surface of the epitaxial layer 103 is formed in the epitaxial layer 103. Further, in the p-type body layer 1604, an n + -type source layer 1603 having a predetermined depth from the upper surface of the epitaxial layer 103 and spaced from the end of the p-type body layer 1604 is formed. Yes. The n + -type source layer 1603 has a predetermined distance from the upper surface of the epitaxial layer 103 in the p-type body layer 1604 between the end of the p-type body layer 1604 and the n + -type source layer 1603. The n type drift layer is connected through a channel formed in this manner.
 p型のボディ層1604の端部とn型のソース層1603との間のチャネルが形成されるp型のボディ層1604上にはゲート絶縁膜1606が形成され、ゲート絶縁膜1606上にはゲート電極1607が形成されている。また、n型のソース層1603の表面の一部と電気的に接続するソース電極1601形成され、n型4H-SiC基板102の裏面には、ドレイン電極1602が電気的に接続されている。以上により、半導体チップ101aの中央領域には、SiC-MOSFETが形成されている。 A gate insulating film 1606 is formed on the p-type body layer 1604 in which a channel between the end of the p-type body layer 1604 and the n + -type source layer 1603 is formed. A gate electrode 1607 is formed. In addition, a source electrode 1601 that is electrically connected to part of the surface of the n + -type source layer 1603 is formed, and a drain electrode 1602 is electrically connected to the back surface of the n + -type 4H—SiC substrate 102. . As described above, the SiC-MOSFET is formed in the central region of the semiconductor chip 101a.
 さらに、SiC-MOSFETが形成されたアクティブ領域を囲むようにエピタキシャル層103の上面には、実施例1と同様に、p型の環状の半導体領域である複数のFLR107a,107b,107cが互いに離間して形成されている。ここで、アクティブ領域の最も外側に位置するp型のボディ層1604とFLR107aとは間隔104を隔てて形成され、FLR107aとFLR107bとは間隔105を隔てて形成され、FLR107bとFLR107cとは間隔106を隔てて形成されている。 Further, a plurality of FLRs 107a, 107b, 107c, which are p-type annular semiconductor regions, are spaced apart from each other on the upper surface of the epitaxial layer 103 so as to surround the active region where the SiC-MOSFET is formed. Is formed. Here, the p-type body layer 1604 located on the outermost side of the active region and the FLR 107a are formed with an interval 104, the FLR 107a and the FLR 107b are formed with an interval 105, and the FLR 107b and the FLR 107c have an interval 106. It is formed apart.
 さらに、実施例1と同様に、エピタキシャル層103の上面にはFLR107a,107b,107cの外側に、n型の半導体領域であるチャネルストッパ108が設けられている。また、FLR107a,107b,107cの上には層間絶縁膜(図示は省略)が設けられている。 Further, as in the first embodiment, a channel stopper 108 which is an n + type semiconductor region is provided on the upper surface of the epitaxial layer 103 outside the FLRs 107a, 107b and 107c. An interlayer insulating film (not shown) is provided on the FLRs 107a, 107b, and 107c.
 実施例2によるSiC-MOSFETの場合においても、実施例1と同様に、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、Alイオンを[000-1]方向から[11-20]方向へ4度以上、12度以下の範囲の傾斜した方向に注入して、FLRを形成する。また、大口径4H-SiC基板の反りが低減した場合には、表面が(0001)面から[11-20]方向へ4度オフしたn型4H-SiC基板に対して、Alイオンを[000-1]方向から[11-20]方向へ0度以上、または[000-1]方向から[-1-120]方向へ0度以上、4度未満傾斜した方向に注入して、FLRを形成する。これにより、基板口径が6インチのn型4H-SiC基板を用いても、製造ばらつきが少なく、かつ、高耐圧のSiC-MOSFETを実現することができる。 Also in the case of the SiC-MOSFET according to the second embodiment, as in the first embodiment, Al ions are applied to the n-type 4H-SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction. The FLR is formed by injecting from the [000-1] direction to the [11-20] direction in an inclined direction in the range of 4 degrees to 12 degrees. Further, when the warp of the large-diameter 4H—SiC substrate is reduced, Al ions are [000] to the n-type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction. -1] direction to [11-20] direction 0 degree or more, or [000-1] direction [1-1-120] direction 0 degree or more and less than 4 degrees, injecting in a direction inclined to form FLR To do. As a result, even when an n-type 4H—SiC substrate having a substrate diameter of 6 inches is used, a SiC-MOSFET having a small manufacturing variation and a high breakdown voltage can be realized.
 なお、実施例2では、SiC-MOSFETの例を示したが、この他にもIGBT(Insulated Gate Bipolar Transistor)または接合FETなどのスイッチング素子に、実施例2と同様なFLRを形成してもよい。これにより、基板口径が6インチのn型4H-SiC基板を用いても、製造ばらつきが少なく、かつ、高耐圧のスイッチング素子を実現することができる。 In the second embodiment, an example of a SiC-MOSFET is shown, but in addition to this, an FLR similar to that of the second embodiment may be formed in a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a junction FET. . As a result, even when an n-type 4H—SiC substrate having a substrate diameter of 6 inches is used, it is possible to realize a switching element with a small manufacturing variation and a high withstand voltage.
 実施例1によるn型4H-SiC基板に形成されたショットキー・バリア・ダイオード(以下、4H-SiCショットキー・バリア・ダイオードと記す)を有する半導体装置は、電力変換装置に用いることができる。図19は、実施例1による4H-SiCショットキー・バリア・ダイオードを還流ダイオードとしてスイッチング素子に接続した電力変換装置(インバータ)の一例を示す回路図である。 A semiconductor device having a Schottky barrier diode (hereinafter referred to as a 4H-SiC Schottky barrier diode) formed on an n-type 4H-SiC substrate according to Embodiment 1 can be used for a power conversion device. FIG. 19 is a circuit diagram illustrating an example of a power converter (inverter) in which the 4H—SiC Schottky barrier diode according to the first embodiment is connected to a switching element as a free wheel diode.
 図19に示すように、実施例3によるインバータは、制御回路1701と、パワーモジュール1702とを有する。制御回路1701とパワーモジュール1702とは、端子1703,1704で接続されている。パワーモジュール1702は、電源電位(Vcc)とは端子1705を介して、接地電位(GND)とは端子1706を介して接続されている。パワーモジュール1702の出力は、端子1707,1708,1709を介して3相モータ1710に接続されている。 As illustrated in FIG. 19, the inverter according to the third embodiment includes a control circuit 1701 and a power module 1702. The control circuit 1701 and the power module 1702 are connected by terminals 1703 and 1704. The power module 1702 is connected to the power supply potential (Vcc) via a terminal 1705 and to the ground potential (GND) via a terminal 1706. The output of the power module 1702 is connected to a three-phase motor 1710 via terminals 1707, 1708 and 1709.
 パワーモジュール1702には、スイッチング素子としてIGBT1711が搭載されている。また、各IGBTに接続される還流ダイオード1712として実施例1による4H-SiCショットキー・バリア・ダイオードを有する半導体チップが搭載されている。 In the power module 1702, an IGBT 1711 is mounted as a switching element. Further, a semiconductor chip having a 4H—SiC Schottky barrier diode according to the first embodiment is mounted as a free-wheeling diode 1712 connected to each IGBT.
 各単相において、電源電位(Vcc)と3相モータ1710の入力電位との間にIGBT1711と還流ダイオード1712とが逆並列に接続されており、3相モータ1710の入力電位と接地電位(GND)との間にもIGBT1711と還流ダイオード1712とが逆並列に接続されている。つまり、3相モータ1710の各単相に2つのIGBT1711と2つの還流ダイオード1712が設けられており、3相で6つのIGBT1711と6つの還流ダイオード1712が設けられている。そして、個々のIGBT1711のゲート電極には制御回路1701が接続されており、この制御回路1701によってIGBT1711が制御される。従って、制御回路1701でパワーモジュール1702のIGBT1711に流れる電流を制御することにより、3相モータ1710を駆動することができる。 In each single phase, an IGBT 1711 and a freewheeling diode 1712 are connected in antiparallel between the power supply potential (Vcc) and the input potential of the three-phase motor 1710, and the input potential of the three-phase motor 1710 and the ground potential (GND). The IGBT 1711 and the freewheeling diode 1712 are also connected in reverse parallel to each other. That is, two IGBTs 1711 and two free wheeling diodes 1712 are provided in each single phase of the three-phase motor 1710, and six IGBTs 1711 and six free wheeling diodes 1712 are provided in three phases. A control circuit 1701 is connected to the gate electrode of each IGBT 1711, and the IGBT 1711 is controlled by the control circuit 1701. Therefore, the three-phase motor 1710 can be driven by controlling the current flowing through the IGBT 1711 of the power module 1702 by the control circuit 1701.
 実施例1による半導体チップ101は、上述のように耐圧の均一性が優れるので、6インチ等の大口径ウェハからの取得チップ数が増加し、チップコストが低減する結果、パワーモジュール1702を低コスト化できる。従って、パワーモジュール1702および実施例3によるインバータ、さらには実施例3によるインバータに3相モータ1710を含めた3相モータシステムを低コストで製造することが可能となる。 The semiconductor chip 101 according to the first embodiment has excellent withstand voltage uniformity as described above. Therefore, the number of chips obtained from a large-diameter wafer such as 6 inches increases, and the chip cost is reduced. As a result, the power module 1702 is reduced in cost. Can be Therefore, the power module 1702 and the inverter according to the third embodiment, and further, the three-phase motor system including the three-phase motor 1710 in the inverter according to the third embodiment can be manufactured at low cost.
 また、実施例3ではスイッチング素子にIGBTを用いたが、IGBTの代わりに実施例2によるSiC-MOSFETを用いることもできる。スイッチング素子もSiC素子とすることで、より高温での動作が可能となり、高い電流密度が実現可能となる。この際にも、実施例2によるSiC-MOSFETは、上述のように耐圧の均一性が優れるので、6インチ等の大口径ウェハからの取得チップ数が増加し、チップコストが低減する結果、パワーモジュール1702を低コスト化できる。また、同期整流を行うなどして、還流ダイオードを省略し、パワーモジュール1702を小型・低コスト化することも可能となる。 In the third embodiment, the IGBT is used as the switching element. However, the SiC-MOSFET according to the second embodiment can be used instead of the IGBT. When the switching element is also a SiC element, it is possible to operate at a higher temperature and to realize a high current density. Also in this case, since the SiC-MOSFET according to Example 2 has excellent withstand voltage uniformity as described above, the number of chips obtained from a large-diameter wafer of 6 inches or the like is increased, and the chip cost is reduced. The cost of the module 1702 can be reduced. Further, by performing synchronous rectification or the like, it is possible to omit the return diode and reduce the size and cost of the power module 1702.
 実施例3による3相モータシステムは、ハイブリッド車、電気自動車などの自動車に用いることができる。実施例3による3相モータシステムを用いた自動車を図20および図21を用いて説明する。図20は、実施例4による電気自動車の構成の一例を示す概略図であり、図21は、実施例4による昇圧コンバータの一例を示す回路図である。 The three-phase motor system according to the third embodiment can be used for automobiles such as hybrid cars and electric cars. An automobile using the three-phase motor system according to the third embodiment will be described with reference to FIGS. 20 and 21. FIG. FIG. 20 is a schematic diagram illustrating an example of a configuration of an electric vehicle according to the fourth embodiment, and FIG. 21 is a circuit diagram illustrating an example of a boost converter according to the fourth embodiment.
 図20に示すように、実施例4による電気自動車は、駆動輪1801aおよび駆動輪1801bが接続された駆動軸1802に動力を入出力可能とする3相モータ1803と、3相モータ1803を駆動するためのインバータ1804と、バッテリ1805とを備える。さらに、実施例4による電気自動車は、昇圧コンバータ1808と、リレー1809と、電子制御ユニット1810とを備え、昇圧コンバータ1808は、インバータ1804が接続された電力ライン1806と、バッテリ1805が接続された電力ライン1807とに接続されている。 As shown in FIG. 20, the electric vehicle according to the fourth embodiment drives a three-phase motor 1803 and a three-phase motor 1803 that allow power to be input / output to / from a drive shaft 1802 to which the drive wheels 1801a and 1801b are connected. An inverter 1804 and a battery 1805 are provided. Further, the electric vehicle according to the fourth embodiment includes a boost converter 1808, a relay 1809, and an electronic control unit 1810. The boost converter 1808 includes a power line 1806 to which an inverter 1804 is connected and power to which a battery 1805 is connected. It is connected to the line 1807.
 3相モータ1803は、永久磁石が埋め込まれたロータと、3相コイルが巻回されたステータとを備えた同期発電電動機である。インバータ1804には、実施例3によるインバータを用いる。 The three-phase motor 1803 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil. As the inverter 1804, the inverter according to the third embodiment is used.
 昇圧コンバータ1808は、図21に示すように、インバータ1913に、リアクトル1911および平滑用コンデンサ1912が接続された構成からなる。インバータ1913は、実施例3で説明したインバータと同様であり、インバータ内のスイッチング素子1914およびダイオード1915の構成も実施例3において説明した構成にする。 As shown in FIG. 21, the boost converter 1808 has a configuration in which a reactor 1911 and a smoothing capacitor 1912 are connected to an inverter 1913. The inverter 1913 is the same as the inverter described in the third embodiment, and the configuration of the switching element 1914 and the diode 1915 in the inverter is the same as that described in the third embodiment.
 電子制御ユニット1810は、マイクロプロセッサと、記憶装置と、入出力ポートとを備えており、3相モータ1803のロータ位置を検出するセンサからの信号、またはバッテリ1805の充放電値などを受信する。そして、インバータ1804、昇圧コンバータ1808、およびリレー1809を制御するための信号を出力する。 The electronic control unit 1810 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 1803, a charge / discharge value of the battery 1805, and the like. Then, a signal for controlling inverter 1804, boost converter 1808, and relay 1809 is output.
 実施例4では、耐圧特性に優れる半導体装置により、低コストの電力変換装置を有する自動車を実現できる。なお、実施例4では、電気自動車について説明したが、エンジンも併用するハイブリッド自動車にも同様に、実施例3による3相モータシステムを適用することができる。 In Example 4, an automobile having a low-cost power conversion device can be realized by a semiconductor device having excellent breakdown voltage characteristics. Although the electric vehicle has been described in the fourth embodiment, the three-phase motor system according to the third embodiment can be similarly applied to a hybrid vehicle that also uses an engine.
 実施例3による3相モータシステムは、鉄道車両に用いることができる。実施例3による3相モータシステムを用いた鉄道車両を、図22を用いて説明する。実施例5では、耐圧特性に優れる半導体装置により、低コストの電力変換装置を有する鉄道車両を実現できる。図22は、実施例5による鉄道車両に備えられるコンバータおよびインバータの一例を示す回路図である。 The three-phase motor system according to the third embodiment can be used for a railway vehicle. A railway vehicle using the three-phase motor system according to the third embodiment will be described with reference to FIG. In the fifth embodiment, a railway vehicle having a low-cost power conversion device can be realized by a semiconductor device having excellent withstand voltage characteristics. FIG. 22 is a circuit diagram illustrating an example of a converter and an inverter provided in the railway vehicle according to the fifth embodiment.
 図22に示すように、実施例5による鉄道車両には架線OW(例えば25kV)からパンダグラフPGを介して電力が供給される。トランス2009を介して電圧が1.5kVまで降圧され、コンバータ2007で交流が直流に変換される。さらに、インバータ2002が、キャパシタ2008を介して入力された直流を交流に変換し、負荷2001である3相モータで車輪WHを駆動する。コンバータ2007内のスイッチング素子2004およびダイオード2005の構成、およびインバータ2002内のスイッチング素子2004およびダイオード2005の構成は、実施例3において説明した構成である。なお、図22では、実施例3において説明した制御回路1701は省略している。また、図中、符号RTは線路を示す。 As shown in FIG. 22, electric power is supplied from the overhead line OW (for example, 25 kV) to the railway vehicle according to the fifth embodiment via the panda graph PG. The voltage is stepped down to 1.5 kV through the transformer 2009, and the converter 2007 converts alternating current into direct current. Furthermore, the inverter 2002 converts the direct current input via the capacitor 2008 into alternating current, and drives the wheel WH with a three-phase motor that is the load 2001. The configuration of the switching element 2004 and the diode 2005 in the converter 2007 and the configuration of the switching element 2004 and the diode 2005 in the inverter 2002 are the configurations described in the third embodiment. In FIG. 22, the control circuit 1701 described in the third embodiment is omitted. In the figure, the symbol RT indicates a line.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
10 n型4H-SiC基板
20 マスク材料層
30 ガードリング
40 フィールド・リミッティング・リング
50 イオン注入マスク
101,101a 半導体チップ
102 n型4H-SiC基板
103 エピタキシャル層
104,105,106 間隔
107a,107b,107c フィールド・リミッティング・リング
108 チャネルストッパ
109 ガードリング
110 カソード電極
111 アノード電極
112a,112b,112c マスク材料層
1601 ソース電極
1602 ドレイン電極
1603 n型のソース層
1604 p型のボディ層
1605 層間絶縁膜
1606 ゲート絶縁膜
1607 ゲート電極
1701 制御回路
1702 パワーモジュール
1703~1709 端子
1710 3相モータ
1711 IGBT
1712 還流ダイオード
1801a,1801b 駆動輪
1802 駆動軸
1803 3相モータ
1804 インバータ
1805 バッテリー
1806,1807 電力ライン
1808 昇圧コンバータ
1809 リレー
1810 電子制御ユニット
1911 リアクトル
1912 平滑用コンデンサ
1913 インバータ
1914 スイッチング素子
1915 ダイオード
2001 負荷
2002 インバータ
2004 スイッチング素子
2005 ダイオード
2007 コンバータ
2008 キャパシタ
2009 トランス
OW 架線
PG パンダグラフ
RT 線路
WH 車輪
10 n-type 4H-SiC substrate 20 mask material layer 30 guard ring 40 field limiting ring 50 ion implantation mask 101, 101a semiconductor chip 102 n + -type 4H-SiC substrate 103 epitaxial layers 104, 105, 106 intervals 107a, 107b 107c Field limiting ring 108 Channel stopper 109 Guard ring 110 Cathode electrode 111 Anode electrode 112a, 112b, 112c Mask material layer 1601 Source electrode 1602 Drain electrode 1603 n + type source layer 1604 p type body layer 1605 Interlayer insulation Film 1606 Gate insulating film 1607 Gate electrode 1701 Control circuit 1702 Power module 1703 to 1709 Terminal 1710 Three-phase motor 1711 IGBT
1712 Freewheeling diodes 1801a and 1801b Drive wheel 1802 Drive shaft 1803 Three-phase motor 1804 Inverter 1805 Battery 1806 and 1807 Power line 1808 Boost converter 1809 Relay 1810 Electronic control unit 1911 Reactor 1912 Smoothing capacitor 1913 Inverter 1914 Switching element 1915 Diode 2001 Load 2002 Inverter 2004 switching element 2005 diode 2007 converter 2008 capacitor 2009 transformer OW overhead line PG panda graph RT line WH wheel

Claims (15)

  1.  結晶主面からオフされた表面を有する第1導電型の4H-SiC基板と、
     前記4H-SiC基板の前記表面に形成された、前記第1導電型の4H-SiCからなるエピタキシャル層と、
     前記エピタキシャル層の上面から前記エピタキシャル層内に形成された、前記第1導電型と異なる第2導電型の半導体領域からなるフィールド・リミッティング・リングと、
    を有し、
     前記エピタキシャル層の上面における前記フィールド・リミッティング・リングのオフ方向と反対方向の端部において、前記エピタキシャル層の上面と、前記フィールド・リミッティング・リングと前記エピタキシャル層との境界とがなす角度が90度未満である、半導体装置。
    A 4H—SiC substrate of the first conductivity type having a surface off from the crystal main surface;
    An epitaxial layer made of 4H—SiC of the first conductivity type formed on the surface of the 4H—SiC substrate;
    A field limiting ring made of a semiconductor region of a second conductivity type different from the first conductivity type formed in the epitaxial layer from the upper surface of the epitaxial layer;
    Have
    An angle formed between the upper surface of the epitaxial layer and the boundary between the field limiting ring and the epitaxial layer at the end of the upper surface of the epitaxial layer in the direction opposite to the off direction of the field limiting ring. A semiconductor device which is less than 90 degrees.
  2.  請求項1記載の半導体装置において、
     前記4H-SiC基板の前記表面は、(0001)面から[11-20]方向へ4度オフしている、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein the surface of the 4H—SiC substrate is off by 4 degrees from the (0001) plane in the [11-20] direction.
  3.  請求項1記載の半導体装置において、
     前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の水平方向拡がりが、前記オフ方向と、前記オフ方向と反対方向とで対称であり、かつ、前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の水平方向拡がりに対する前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の深さの比が4.4以下である、半導体装置。
    The semiconductor device according to claim 1,
    The horizontal extent of the boundary between the field limiting ring and the epitaxial layer is symmetric in the off direction and the direction opposite to the off direction, and the field limiting ring and the epitaxial layer The ratio of the depth of the boundary between the field limiting ring and the epitaxial layer to the horizontal expansion of the boundary with the epitaxial layer is 4.4 or less.
  4.  請求項3記載の半導体装置において、
     前記4H-SiC基板の前記表面は、(0001)面から[11-20]方向へ4度オフしており、
     前記オフ方向は[11-20]方向、前記オフ方向と反対方向は[-1-120]方向である、半導体装置。
    The semiconductor device according to claim 3.
    The surface of the 4H—SiC substrate is off by 4 degrees from the (0001) plane in the [11-20] direction,
    The semiconductor device, wherein the off direction is a [11-20] direction, and the opposite direction to the off direction is a [-1-120] direction.
  5.  請求項1記載の半導体装置において、
     前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の水平方向拡がりが、前記オフ方向と、前記オフ方向と反対方向とで対称であり、かつ、前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の深さが1μm以上である、半導体装置。
    The semiconductor device according to claim 1,
    The horizontal extent of the boundary between the field limiting ring and the epitaxial layer is symmetric in the off direction and the direction opposite to the off direction, and the field limiting ring and the epitaxial layer The depth of the boundary between and 1 μm or more.
  6.  請求項5記載の半導体装置において、
     前記4H-SiC基板の前記表面は、(0001)面から[11-20]方向へ4度オフしており、
     前記オフ方向は[11-20]方向、前記オフ方向と反対方向は[-1-120]方向である、半導体装置。
    The semiconductor device according to claim 5.
    The surface of the 4H—SiC substrate is off by 4 degrees from the (0001) plane in the [11-20] direction,
    The semiconductor device, wherein the off direction is a [11-20] direction, and the opposite direction to the off direction is a [-1-120] direction.
  7.  請求項1記載の半導体装置において、
     前記エピタキシャル層の上面に、前記エピタキシャル層と接してショットキー電極が形成されており、
     前記ショットキー電極が形成された領域の外側の前記エピタキシャル層に、環状の前記フィールド・リミッティング・リングが形成されている、半導体装置。
    The semiconductor device according to claim 1,
    On the upper surface of the epitaxial layer, a Schottky electrode is formed in contact with the epitaxial layer,
    The semiconductor device, wherein the annular field limiting ring is formed in the epitaxial layer outside the region where the Schottky electrode is formed.
  8.  請求項1記載の半導体装置において、
     前記エピタキシャル層の上面から第1深さを有して前記エピタキシャル層内に形成された、前記第2導電型のボディ層と、
     前記エピタキシャル層の上面から前記第1深さよりも浅い第2深さを有し、前記ボディ層の端部と離間して前記ボディ層内に形成された前記第1導電型のソース層と、
     前記ボディ層の端部と前記ソース層との間の前記ボディ層上に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に形成されたゲート電極と、
     前記ソース層と接続するソース電極と、
    を備える複数のトランジスタが並列接続されたスイッチング素子を有し、
     前記スイッチング素子が形成された領域の外側の前記エピタキシャル層に、環状の前記フィールド・リミッティング・リングが形成されている、半導体装置。
    The semiconductor device according to claim 1,
    A body layer of the second conductivity type formed in the epitaxial layer with a first depth from an upper surface of the epitaxial layer;
    A source layer of the first conductivity type having a second depth shallower than the first depth from the upper surface of the epitaxial layer, and being formed in the body layer apart from an end of the body layer;
    A gate insulating film formed on the body layer between the end of the body layer and the source layer;
    A gate electrode formed on the gate insulating film;
    A source electrode connected to the source layer;
    A plurality of transistors having switching elements connected in parallel;
    The semiconductor device, wherein the annular field limiting ring is formed in the epitaxial layer outside the region where the switching element is formed.
  9.  (a)表面が(0001)面から[11-20]方向へ4度オフした第1導電型の4H-SiC基板を準備する工程、
     (b)前記4H-SiC基板の前記表面に、前記第1導電型の4H-SiCからなるエピタキシャル層を形成する工程、
     (c)前記エピタキシャル層の上面にパターニングされたマスク材料層を形成する工程、
     (d)前記マスク材料層を介して、前記第1導電型と異なる第2導電型の不純物イオンを前記エピタキシャル層にイオン注入して、前記第2導電型の半導体領域からなるフィールド・リミッティング・リングを形成する工程、
    を含み、
     前記(d)工程では、前記不純物イオンを[000-1]方向から[11-20]方向へ0度以上、または[000-1]方向から[-1-120]方向へ0度以上、4度未満傾斜した方向にイオン注入する、半導体装置の製造方法。
    (A) preparing a first conductivity type 4H—SiC substrate whose surface is turned off by 4 degrees from the (0001) plane in the [11-20] direction;
    (B) forming an epitaxial layer made of 4H—SiC of the first conductivity type on the surface of the 4H—SiC substrate;
    (C) forming a patterned mask material layer on the upper surface of the epitaxial layer;
    (D) Impurity ions of a second conductivity type different from the first conductivity type are ion-implanted into the epitaxial layer through the mask material layer, and field limiting comprising the semiconductor region of the second conductivity type. Forming a ring;
    Including
    In the step (d), the impurity ions are moved from the [000-1] direction to the [11-20] direction by 0 degree or more, or from the [000-1] direction to the [1-120] direction by 0 degree or more. A method of manufacturing a semiconductor device, wherein ions are implanted in a direction inclined at a degree less than 50 degrees.
  10.  請求項9記載の半導体装置の製造方法において、
     前記(d)工程では、前記不純物イオンを[000-1]方向から[11-20]方向へ4度以上、12度以下傾斜した方向にイオン注入する、半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 9,
    In the step (d), the impurity ion is ion-implanted from the [000-1] direction to the [11-20] direction in a direction inclined by 4 degrees or more and 12 degrees or less.
  11.  請求項10記載の半導体装置の製造方法において、
     前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の水平方向拡がりに対する前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の深さの比が4.4以下である、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 10.
    Manufacturing of a semiconductor device, wherein a ratio of a depth of a boundary between the field limiting ring and the epitaxial layer to a horizontal extent of a boundary between the field limiting ring and the epitaxial layer is 4.4 or less Method.
  12.  請求項9記載の半導体装置の製造方法において、
     前記(d)工程では、前記不純物イオンを[000-1]方向にイオン注入する、半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 9,
    In the step (d), the impurity ion is ion-implanted in the [000-1] direction.
  13.  請求項12記載の半導体装置の製造方法において、
     前記フィールド・リミッティング・リングと前記エピタキシャル層との境界の深さは1μm以上である、半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 12,
    The method of manufacturing a semiconductor device, wherein a depth of a boundary between the field limiting ring and the epitaxial layer is 1 μm or more.
  14.  請求項1記載の半導体装置を備える、パワーモジュール。 A power module comprising the semiconductor device according to claim 1.
  15.  請求項14記載のパワーモジュールを備える、電力変換装置。 A power converter comprising the power module according to claim 14.
PCT/JP2014/067841 2014-07-03 2014-07-03 Semiconductor device, method for producing same, power module, and power conversion device WO2016002058A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016530773A JP6282346B2 (en) 2014-07-03 2014-07-03 Manufacturing method of semiconductor device
PCT/JP2014/067841 WO2016002058A1 (en) 2014-07-03 2014-07-03 Semiconductor device, method for producing same, power module, and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067841 WO2016002058A1 (en) 2014-07-03 2014-07-03 Semiconductor device, method for producing same, power module, and power conversion device

Publications (1)

Publication Number Publication Date
WO2016002058A1 true WO2016002058A1 (en) 2016-01-07

Family

ID=55018656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067841 WO2016002058A1 (en) 2014-07-03 2014-07-03 Semiconductor device, method for producing same, power module, and power conversion device

Country Status (2)

Country Link
JP (1) JP6282346B2 (en)
WO (1) WO2016002058A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707404A (en) * 2020-05-28 2020-09-25 西安交通大学 High-temperature-resistant silicon carbide pressure sensor and preparation method thereof
CN112038391A (en) * 2019-06-03 2020-12-04 上海先进半导体制造股份有限公司 Method for manufacturing super junction field effect transistor
JP7476915B2 (en) 2022-02-21 2024-05-01 住友電気工業株式会社 Distortion evaluation device for hexagonal compound semiconductor and manufacturing method for silicon carbide epitaxial substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302436A (en) * 2008-06-17 2009-12-24 Denso Corp Method of manufacturing silicon carbide semiconductor device
JP2010267767A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2013235960A (en) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp Semiconductor device
WO2014045480A1 (en) * 2012-09-21 2014-03-27 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2014060276A (en) * 2012-09-18 2014-04-03 Denso Corp Silicon carbide semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926893B2 (en) * 2011-04-26 2016-05-25 株式会社 日立パワーデバイス Silicon carbide diode
JP5669712B2 (en) * 2011-11-11 2015-02-12 三菱電機株式会社 Manufacturing method of semiconductor device
WO2013103024A1 (en) * 2012-01-05 2013-07-11 三菱電機株式会社 Silicon carbide semiconductor device and fabrication method for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302436A (en) * 2008-06-17 2009-12-24 Denso Corp Method of manufacturing silicon carbide semiconductor device
JP2010267767A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2013235960A (en) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp Semiconductor device
JP2014060276A (en) * 2012-09-18 2014-04-03 Denso Corp Silicon carbide semiconductor device
WO2014045480A1 (en) * 2012-09-21 2014-03-27 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038391A (en) * 2019-06-03 2020-12-04 上海先进半导体制造股份有限公司 Method for manufacturing super junction field effect transistor
CN111707404A (en) * 2020-05-28 2020-09-25 西安交通大学 High-temperature-resistant silicon carbide pressure sensor and preparation method thereof
CN111707404B (en) * 2020-05-28 2021-04-20 西安交通大学 High-temperature-resistant silicon carbide pressure sensor and preparation method thereof
JP7476915B2 (en) 2022-02-21 2024-05-01 住友電気工業株式会社 Distortion evaluation device for hexagonal compound semiconductor and manufacturing method for silicon carbide epitaxial substrate

Also Published As

Publication number Publication date
JPWO2016002058A1 (en) 2017-04-27
JP6282346B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
CN110709997B (en) Semiconductor device and power conversion device
US11158704B2 (en) Semiconductor device and power conversion device
CN106463503B (en) Semiconductor device with a plurality of semiconductor chips
JP6475635B2 (en) Semiconductor device with reduced electric field in gate oxide layer
CN101983431B (en) Semiconductor device
JP6015745B2 (en) Manufacturing method of semiconductor device
KR20210019127A (en) Power semiconductor devices having gate trenches with implanted sidewalls and related methods
EP3046149B1 (en) Semiconductor device, method for manufacturing same, power conversion apparatus, three-phase motor system, automobile, and rail vehicle
WO2013141181A1 (en) Semiconductor device and semiconductor device manufacturing method
WO2018106326A1 (en) Power semiconductor devices having gate trenches and buried termination structures and related methods
US10790386B2 (en) Silicon carbide semiconductor device with horizontal and vertical current flow
JP6241958B2 (en) High voltage semiconductor device and manufacturing method thereof
JP6611532B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2016002057A1 (en) Semiconductor device, power module, power conversion device, three-phase motor system, automobile, and railway vehicle
CN104838500A (en) Semiconductor device and method for manufacturing same
US9722018B2 (en) Vertical high voltage semiconductor apparatus and fabrication method of vertical high voltage semiconductor apparatus
JP6283122B2 (en) Semiconductor switching element and method for manufacturing silicon carbide semiconductor device
JP2013168549A (en) Semiconductor device and manufacturing method of the same
WO2015040675A1 (en) Semiconductor device, power conversion device, rail vehicle, and semiconductor device manufacturing method
CN107819025A (en) The manufacture method of semiconductor device and semiconductor device
JP6282346B2 (en) Manufacturing method of semiconductor device
JP6592083B2 (en) Semiconductor device, manufacturing method thereof, and power module
TWI706562B (en) MOSFET, MOSFET manufacturing method and power conversion circuit
JP2018056220A (en) Semiconductor device and method of manufacturing the same, and power conversion system
Liang et al. Monolithic integration of SiC power BJT and small-signal BJTs for power ICs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896382

Country of ref document: EP

Kind code of ref document: A1