WO2016002025A1 - 光均一化装置 - Google Patents
光均一化装置 Download PDFInfo
- Publication number
- WO2016002025A1 WO2016002025A1 PCT/JP2014/067659 JP2014067659W WO2016002025A1 WO 2016002025 A1 WO2016002025 A1 WO 2016002025A1 JP 2014067659 W JP2014067659 W JP 2014067659W WO 2016002025 A1 WO2016002025 A1 WO 2016002025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- rod integrator
- incident
- fiber
- angle
- Prior art date
Links
- 238000000265 homogenisation Methods 0.000 title abstract 2
- 239000000835 fiber Substances 0.000 claims description 92
- 230000003287 optical effect Effects 0.000 claims description 48
- 238000009826 distribution Methods 0.000 claims description 17
- 230000001902 propagating effect Effects 0.000 claims description 12
- 230000000644 propagated effect Effects 0.000 claims description 5
- 239000013307 optical fiber Substances 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0994—Fibers, light pipes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0006—Coupling light into the fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0019—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
Definitions
- the present invention relates to a light homogenizing device for homogenizing a light luminance distribution and a light spread angle.
- Patent Document 1 discloses a light homogenizing device using an optical integrator as a light homogenizing device for homogenizing the luminance distribution of light emitted from an illumination light source.
- This optical integrator is composed of a rod integrator made of an internal reflection type glass rod using an optical material such as quartz glass or fluorite.
- the rod integrator can emit light having a uniform luminance distribution from the exit surface by propagating the light incident from the entrance surface while totally reflecting.
- the multiple light beams with different spread angles are incident at the same incident angle from the incident surface of the rod integrator, even if the brightness distribution of each light is uniformed, the multiple light beams remain in the rod integrator with different spread angles. Since the light is emitted from the emission surface, an image of the emission surface of the rod integrator is transferred using a transfer optical system.
- the transfer optical system is used to transfer the image of the exit surface of the rod integrator.
- the luminance distribution made uniform by the rod integrator becomes non-uniform due to the influence of aberrations caused by the lenses in the transfer optical system, and the non-uniformity varies depending on the wavelength of light.
- a plurality of light sources that emit laser beams having different wavelengths for example, a red laser, a green laser, and a blue laser
- the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a light homogenizing apparatus capable of adjusting a plurality of light spread angles to the same angle.
- the light homogenizing apparatus includes a propagation optical system for propagating light, and light propagated by the propagation optical system is incident from an incident surface, and propagates while totally reflecting the light incident from the incident surface. And a rod integrator that emits light having a uniform luminance distribution from the exit surface, and when a plurality of lights having different spread angles are propagated by the propagation optical system, the spread angles of the plurality of lights after entering the rod integrator A plurality of light beams are incident on the incident surface of the rod integrator at an incident angle that coincides with each other.
- the plurality of lights when a plurality of lights having different spread angles are propagated by the propagation optical system, the plurality of lights are incident on the rod integrator at an incident angle that matches the spread angles of the plurality of lights after entering the rod integrator. Since it is configured to be incident on the incident surface, there is an effect that the spread angles of a plurality of lights can be adjusted to the same angle.
- FIG. 2 is a cross-sectional view taken along the line A-A ′ in the light homogenizing apparatus of FIG. 1. It is a perspective view which shows the light equalization apparatus by Embodiment 2 of this invention.
- FIG. 4 is a cross-sectional view taken along the line A-A ′ in the light homogenizing apparatus of FIG. 3. It is explanatory drawing which shows the inclination-angle of the output end surface 12a of the fiber 12 of the light equalization apparatus by Embodiment 2 of this invention. It is a perspective view which shows the light equalization apparatus by Embodiment 3 of this invention.
- FIG. 7 is a cross-sectional view taken along the line A-A ′ in the light homogenizing apparatus of FIG. 6.
- FIG. FIG. 1 is a perspective view showing a light homogenizer according to Embodiment 1 of the present invention
- FIG. 2 is a cross-sectional view taken along the line AA ′ in the light homogenizer of FIG.
- the light homogenizing device is composed of condensing optical systems 1 and 3 that are propagation optical systems that propagate light and a rod integrator 5.
- the condensing optical system 1 is composed of, for example, a lens, and is an optical component that condenses the light 2 on the incident surface 5 a of the rod integrator 5.
- the condensing optical system 3 includes, for example, a lens, and is an optical component that condenses the light 4 on the incident surface 5 a of the rod integrator 5.
- the divergence angles of the light 2 and 4 collected by the condensing optical systems 1 and 3 are different, and the divergence angle of the light 2 is assumed to be larger than the divergence angle of the light 4.
- FIG. 1 shows an example in which each of the condensing optical systems 1 and 3 condenses one light, but one condensing optical system condenses a plurality of lights 2 and 4. May be.
- the rod integrator 5 receives the light beams 2 and 4 collected by the condensing optical systems 1 and 3 from the incident surface 5a, and propagates the incident light beams 2 and 4 while totally reflecting the light. It is an optical component that emits light 2 and 4 having a uniform distribution.
- the incident surfaces 5a and the exit surfaces 5b of the light 2 and 4 are parallel, and the entrance surface 5a and the exit surface 5b are optically polished.
- Side surfaces 5c to 5f of the rod integrator 5 are reflection surfaces for the light 2 and 4, and are optically polished on the entire surface.
- FIG. 1 shows an example in which the shape of the rod integrator 5 is a quadrangular prism
- the present invention is not limited to this.
- the shape of the rod integrator 5 may be a cylinder or a polygonal column.
- the rod integrator 5 may be a light pipe having a hollow inside and side surfaces 5c to 5f formed of mirrors.
- the spread angle of the light 2 and the spread angle of the light 4 are different (in the example of FIG. 1, the spread angle of the light 2 is larger than the spread angle of the light 4), and after entering the rod integrator 5.
- the incident angles of the light beams 2 and 4 with respect to the incident surface 5a of the rod integrator 5 are made different.
- the light 2 is incident vertically on the incident surface 5 a of the rod integrator 5, while the light 4 is incident obliquely on the incident surface 5 a of the rod integrator 5.
- the reflectance of the incident surface 5a is determined by Fresnel reflection obtained from the refractive index of the rod integrator 5 and the incident angles of the light 2 and 4 with respect to the incident surface 5a. .
- the reflectance of the exit surface 5b of the rod integrator 5 is the same as that of the entrance surface 5a.
- the condensing optical system 1 condenses the light 2 on the incident surface 5 a of the rod integrator 5, and the condensing optical system 3 condenses the light 4 on the incident surface 5 a of the rod integrator 5.
- the light 2 and 4 are incident from the incident surface 5 a of the rod integrator 5, but the light 2 and 4 are refracted by the incident surface 5 a of the rod integrator 5.
- the light 2, 4 is refracted by the incident surface 5a, so that the spread angle of the light 2, 4 changes before and after being incident on the rod integrator 5.
- the light 2 incident on the rod integrator 5 propagates in the rod integrator 5, but the light 2 has a spread, so that it travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light travels toward the side surface 5f of the rod integrator 5 (in FIG. 2, the light traveling toward the side surface 5d is represented by 2a, and the light traveling toward the side surface 5f is represented by 2b).
- the light 2a traveling toward the side surface 5d of the light 5 is reflected by the side surface 5d
- the light 2b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the light 4 incident on the rod integrator 5 propagates in the rod integrator 5, but the light 4 has a spread, and thus travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light traveling toward the side surface 5f of the rod integrator 5 in FIG. 2, light traveling toward the side surface 5d is represented by 4a, and light traveling toward the side surface 5f is represented by 4b
- the light 4a traveling toward the side surface 5d of the rod integrator 5 is reflected by the side surface 5d
- the light 4b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the light 2 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 2 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 2 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 2 that has reached the emission surface 5b of the rod integrator 5 is emitted from the emission surface 5b to the outside of the rod integrator 5.
- the light 2 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 4 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 4 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 4 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 4 that has reached the exit surface 5b of the rod integrator 5 is emitted from the exit surface 5b to the outside of the rod integrator 5.
- the light 4 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 2 and 4 are repeatedly reflected by the side surfaces 5d and 5f of the rod integrator 5, and the reflection at the side surfaces 5c and 5e of the rod integrator 5 is not mentioned. Similar to the reflection at 5d and 5f, the light 2 and 4 are also repeatedly reflected between the side surface 5c and the side surface 5e of the rod integrator 5.
- the spread angle of the light 2 and 4 is changed before and after being incident on the rod integrator 5, as described above.
- the divergence angle of the light 4 before entering the rod integrator 5 is smaller than the divergence angle of the light 2 before entering the rod integrator 5, it is assumed that the incident surface 5a of the rod integrator 5 If the incident angles of the lights 2 and 4 are the same, the spread angle of the light 4 after entering the rod integrator 5 is also smaller than the spread angle of the light 2 after entering the rod integrator 5.
- the incidence of the rod integrator 5 is performed.
- the incident angles of the light beams 2 and 4 with respect to the surface 5a are made different.
- the light 2 is incident vertically on the incident surface 5 a of the rod integrator 5, while the light 4 is incident obliquely on the incident surface 5 a of the rod integrator 5.
- the outermost spread angle of light 2 is, for example, 25 ° at half angle
- the outermost spread angle of light 4 is, for example, 15 ° at half angle.
- the rod integrator 5 since the angle difference between the outermost spread angles of the light 2 and the light 4 is 10 ° in half angle, if the central axis 4c of the light 4 is inclined by 10 ° with respect to the central axis 2c of the light 2, the rod integrator 5 The divergence angles of the light 2 and 4 after being incident coincide with each other. Therefore, if the central axis 2c of the light 2 is perpendicular to the incident surface 5a of the rod integrator 5, the light 4 is condensed so that the light 4 is incident on the incident surface 5a of the rod integrator 5 at an incident angle of 10 °. The position or angle of the optical system 3 is adjusted.
- the light 2 is incident on the incident surface 5a of the rod integrator 5 perpendicularly, while the light 4 is incident on the incident surface 5a of the rod integrator 5 at an angle. Since the outermost divergence angle of the light 4 after being incident on the beam coincides with the outermost divergence angle of the light 2 after being incident on the rod integrator 5, there is no need to mount a transfer optical system. For this reason, even when a plurality of light sources that emit laser beams having different wavelengths (for example, a red laser, a green laser, and a blue laser) are used, color unevenness associated with mounting a transfer optical system does not occur. As described above, according to the first embodiment, a uniform luminance distribution can be obtained on the emission surface 5b of the rod integrator 5, and the spread angles of the plurality of lights 2 and 4 having different spread angles are adjusted to the same angle. There is an effect that can be.
- the present invention can be similarly applied to the case where three or more lights having different divergence angles are incident.
- three of the three or more lights with respect to the incident surface 5a of the rod integrator 5 are matched so that the outermost divergence angles of the three or more lights incident on the rod integrator 5 coincide with each other.
- the incident angle of the above light differ.
- light having the largest divergence angle may be incident perpendicularly to the incident surface 5a, and light having a smaller divergence angle may be incident obliquely to the incident surface 5a.
- it can apply also to several laser beams (for example, red laser beam, green laser beam, blue laser beam) from which a divergence angle differs.
- FIG. FIG. 3 is a perspective view showing a light homogenizer according to Embodiment 2 of the present invention
- FIG. 4 is a cross-sectional view taken along the line AA ′ in the light homogenizer of FIG.
- FIG. 5 is an explanatory view showing the inclination angle of the exit end face 12a of the fiber 12 of the light homogenizing apparatus according to Embodiment 2 of the present invention.
- the light homogenizing device includes fibers 11 and 12 that are propagation optical systems that propagate light, and a rod integrator 5.
- the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and thus the description thereof is omitted.
- the fiber 11 propagates the light 2 and exits from the exit end face 11 a toward the entrance face 5 a of the rod integrator 5.
- the exit end face 11 a of the fiber 11 is perpendicular to the central axis of the fiber 11 so as to be arranged in parallel with the entrance face 5 a of the rod integrator 5.
- the fiber 12 propagates the light 4 and exits from the exit end face 12 a toward the entrance face 5 a of the rod integrator 5.
- the central axis of the fiber 12 is parallel to the central axis of the fiber 11, and the exit end surface 12 a of the fiber 12 is oblique to the central axis of the fiber 12 so that the angle with respect to the incident surface 5 a of the rod integrator 5 is oblique. Has been cut.
- the emission end face 11a of the fiber 11 is perpendicular to the central axis of the fiber 11 and is highly reflected on the fiber 11, so that it is highly necessary to apply an antireflection film. Since the output end face 12a of the fiber 12 is cut obliquely and the reflection on the fiber 11 is small, an antireflection film is not necessary depending on the inclination angle of the output end face 12a.
- the fiber 11 and the fiber 12 are illustrated as separate members, but a bundle fiber in which the fiber 11 and the fiber 12 are bundled may be used.
- the light 2 emitted from the fiber 11 is incident on the incident surface 5a of the rod integrator 5 after propagating through the space.
- the light 4 emitted from the fiber 12 propagates through the space and then enters from the incident surface 5a of the rod integrator 5.
- the light 4 is incident on the rod integrator 5, it is refracted by the incident surface 5 a of the rod integrator 5.
- the light 2 incident on the rod integrator 5 propagates in the rod integrator 5, but the light 2 has a spread, and therefore travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light travels toward the side surface 5f of the rod integrator 5 (in FIG. 4, the light traveling toward the side surface 5d is represented by 2a, and the light traveling toward the side surface 5f is represented by 2b).
- the light 2a traveling toward the side surface 5d of the light 5 is reflected by the side surface 5d
- the light 2b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the light 4 incident on the rod integrator 5 propagates in the rod integrator 5, but the light 4 has a spread, and therefore travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light traveling toward the side surface 5f of the rod integrator 5 in FIG. 4, the light traveling toward the side surface 5d is represented by 4a, and the light traveling toward the side surface 5f is represented by 4b
- the light 4a traveling toward the side surface 5d of the rod integrator 5 is reflected by the side surface 5d
- the light 4b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the side surfaces 5d and 5f of the rod integrator 5 are the interface between air and the rod integrator 5, as described above, the light having an incident angle larger than the critical angle determined by the refractive index of the air and the rod integrator 5 is The light that is reflected by the side surfaces 5 d and 5 f of the rod integrator 5 but has an incident angle smaller than the critical angle is refracted by the side surfaces 5 d and 5 f of the rod integrator 5 and is emitted to the outside of the rod integrator 5.
- the light 2 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 2 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 2 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 2 that has reached the emission surface 5b of the rod integrator 5 is emitted from the emission surface 5b to the outside of the rod integrator 5.
- the light 2 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 4 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 4 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 4 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 4 that has reached the exit surface 5b of the rod integrator 5 is emitted from the exit surface 5b to the outside of the rod integrator 5.
- the light 4 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 2 and 4 are repeatedly reflected by the side surfaces 5d and 5f of the rod integrator 5, and the reflection at the side surfaces 5c and 5e of the rod integrator 5 is not mentioned. Similar to the reflection at 5d and 5f, the light 2 and 4 are also repeatedly reflected between the side surface 5c and the side surface 5e of the rod integrator 5.
- the emission end face 12a of the fiber 12 is cut obliquely with respect to the central axis.
- the inclination angle of the emission end face 12a of the fiber 12 will be described.
- the difference between the outermost spread angle of the light 2 and the outermost spread angle of the light 4 is ⁇
- the light emitted from the fiber 12 with respect to the optical axis of the light 2 emitted from the fiber 11. 4 is inclined by ⁇ , the outermost divergence angle of the light 2 after entering the rod integrator 5 and the outermost divergence angle of the light 4 after entering the rod integrator 5 coincide with each other.
- the light 4 is emitted from the fiber 12, the light 4 is refracted at the interface between the core of the fiber 12 and the air.
- This refraction angle is the inclination ⁇ ′ of the optical axis of the light 4 (the light 4 emitted from the emission end face 12a of the fiber 12) with respect to the central axis of the fiber 12. Therefore, if the refractive index at the interface between the core of the fiber 12 and the air is n, the inclination angle of the exit end face 12a is ⁇ , and the refraction angle at the interface between the core of the fiber 12 and the air is ⁇ ′′,
- the relationship between the angle ⁇ and the refraction angle ⁇ ′′ can be expressed by the following formula (1).
- n ⁇ sin ⁇ sin ⁇ ”
- ⁇ ′ ⁇ ′′ ⁇ (1) Therefore, the inclination angle ⁇ of the emission end face 12a can be calculated from the following equation (2).
- the core of the fiber 12 is made of synthetic quartz and the wavelength of the light 4 is 633 nm, the refractive index n is 1.457.
- the angle difference between the outermost divergence angle of the light 2 and the outermost divergence angle of the light 4 is, for example, 10 ° as a half angle, the outermost divergence angle of the light 2 after entering the rod integrator 5.
- the inclination angle ⁇ of the emission end face 12a of the fiber 12 necessary for the outermost spread angle of the light 4 after entering the rod integrator 5 to be 20.19 degrees.
- the exit end face 11a of the fiber 11 is arranged in parallel with the entrance face 5a of the rod integrator 5, while the exit end face 12a of the fiber 12 is inclined with respect to the entrance face 5a of the rod integrator 5.
- the outermost spreading angle of the light 4 after entering the rod integrator 5 is changed to the incident light after entering the rod integrator 5. Therefore, it is not necessary to mount a transfer optical system.
- the case where two lights 2 and 4 having different divergence angles are incident is shown.
- the inclination angle ⁇ of the emission end faces of the plurality of fibers may be set in consideration of chromatic dispersion.
- a plurality of light beams with respect to the incident surface 5a of the rod integrator 5 are matched so that the divergence angles of the three or more lights after entering the rod integrator 5 are matched.
- the exit end face of the fiber that emits light having the largest divergence angle is arranged in parallel to the entrance face 5a of the rod integrator 5, and the entrance face 5a of the rod integrator 5 is closer to the exit end face of the fiber that emits light having the smaller spread angle.
- the entrance face 5a of the rod integrator 5 is closer to the exit end face of the fiber that emits light having the smaller spread angle.
- FIG. 6 is a perspective view showing a light homogenizer according to Embodiment 3 of the present invention
- FIG. 7 is a cross-sectional view taken along the line AA ′ in the light homogenizer of FIG.
- the light homogenizing device is configured by fibers 11 and 13 and a rod integrator 5 which are propagation optical systems for propagating light. 6 and FIG. 7, the same reference numerals as those in FIG. 3 and FIG.
- the fiber 13 propagates the light 4 and exits from the exit end face 13 a toward the entrance face 5 a of the rod integrator 5.
- the exit end face 13a of the fiber 13 is perpendicular to the center axis of the fiber 13, but the center axis of the fiber 13 is the fiber so that the exit end face 13a of the fiber 13 is inclined with respect to the entrance face 5a of the rod integrator 5. 11 is inclined with respect to the central axis.
- the fiber 13 is composed of a core and a clad, and the refractive index of the clad is lower than the refractive index of the core.
- a material that absorbs light 4 is small.
- the exit end face 13a of the fiber 13 is perpendicular to the central axis of the fiber 13 and is highly reflected on the fiber 13, so that it is highly necessary to apply an antireflection film.
- the light 2 emitted from the fiber 11 is incident on the incident surface 5a of the rod integrator 5 after propagating through the space.
- the light 4 emitted from the fiber 13 propagates through the space and then enters from the incident surface 5 a of the rod integrator 5.
- the light 4 is incident on the rod integrator 5, it is refracted by the incident surface 5 a of the rod integrator 5.
- the light 2 incident in the rod integrator 5 propagates in the rod integrator 5, but the light 2 has a spread, so that it travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light travels toward the side surface 5f of the rod integrator 5 (in FIG. 7, the light traveling toward the side surface 5d is represented by 2a, and the light traveling toward the side surface 5f is represented by 2b).
- the light 2a traveling toward the side surface 5d of the light 5 is reflected by the side surface 5d
- the light 2b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the light 4 incident on the rod integrator 5 propagates in the rod integrator 5, but the light 4 has a spread, and therefore travels toward the side surface 5d of the rod integrator 5 as shown in FIG.
- the light traveling toward the side surface 5d is represented by 4a
- the light traveling toward the side surface 5f is represented by 4b
- the light 4a traveling toward the side surface 5d of the rod integrator 5 is reflected by the side surface 5d
- the light 4b traveling toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f.
- the side surfaces 5d and 5f of the rod integrator 5 are the interface between air and the rod integrator 5, as described above, the light having an incident angle larger than the critical angle determined by the refractive index of the air and the rod integrator 5 is The light that is reflected by the side surfaces 5 d and 5 f of the rod integrator 5 but has an incident angle smaller than the critical angle is refracted by the side surfaces 5 d and 5 f of the rod integrator 5 and is emitted to the outside of the rod integrator 5.
- the light 2 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 2 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 2 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 2 that has reached the emission surface 5b of the rod integrator 5 is emitted from the emission surface 5b to the outside of the rod integrator 5.
- the light 2 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 4 reflected by the side surface 5d of the rod integrator 5 travels toward the side surface 5f of the rod integrator 5, and the light 4 traveled toward the side surface 5f of the rod integrator 5 is reflected by the side surface 5f. After the reflection of the light 4 is repeated between the side surface 5d and the side surface 5f of the rod integrator 5, the light 4 that has reached the exit surface 5b of the rod integrator 5 is emitted from the exit surface 5b to the outside of the rod integrator 5.
- the light 4 incident on the rod integrator 5 has a uniform luminance distribution on the exit surface 5 b of the rod integrator 5 by mixing the central portion and the peripheral portion of the light while propagating through the rod integrator 5.
- the light 2 and 4 are repeatedly reflected by the side surfaces 5d and 5f of the rod integrator 5, and the reflection at the side surfaces 5c and 5e of the rod integrator 5 is not mentioned. Similar to the reflection at 5d and 5f, the light 2 and 4 are also repeatedly reflected between the side surface 5c and the side surface 5e of the rod integrator 5.
- the fiber 11 Is arranged in parallel with the incident surface 5a of the rod integrator 5, while the central axis of the fiber 13 is set so that the outgoing end surface 13a of the fiber 13 is inclined with respect to the incident surface 5a of the rod integrator 5. 11 is inclined with respect to the central axis.
- the outermost spread angle of light 2 (angle of light 2a) is, for example, 25 ° at half angle
- the outermost spread angle of light 4 (angle of light 4a) is, for example, 15 ° at half angle.
- the angle difference between the outermost spread angles of the light 2 and the light 4 is 10 ° in half angle
- the central axis 4c of the light 4 is inclined by 10 ° with respect to the central axis 2c of the light 2
- the rod integrator 5 The divergence angles of the light 2 and 4 after being incident coincide with each other.
- the center of the fiber 13 is such that the light 4 is incident on the incident surface 5a of the rod integrator 5 at an incident angle of 10 °.
- the axis is inclined with respect to the central axis of the fiber 11.
- the outermost spread angle of the light 4 after entering the rod integrator 5 matches the outermost spread angle of the light 2 after entering the rod integrator 5, so it is necessary to mount a transfer optical system. Absent. For this reason, even when a plurality of light sources that emit laser beams having different wavelengths (for example, a red laser, a green laser, and a blue laser) are used, color unevenness associated with mounting a transfer optical system does not occur. As described above, according to the third embodiment, a uniform luminance distribution can be obtained on the emission surface 5b of the rod integrator 5, and the spread angles of the light beams 2 and 4 having different spread angles are adjusted to the same angle. There is an effect that can be.
- the case where two lights 2 and 4 having different spread angles are incident is shown.
- the inclinations of the central axes of the plurality of fibers may be set in consideration of chromatic dispersion.
- a plurality of light beams with respect to the incident surface 5a of the rod integrator 5 are matched so that the divergence angles of the three or more lights after entering the rod integrator 5 are matched. What is necessary is just to make it the inclination of the central axis of a fiber differ.
- the exit end face of the fiber that emits light having the largest divergence angle is arranged in parallel to the entrance face 5a of the rod integrator 5, and the entrance face 5a of the rod integrator 5 is closer to the exit end face of the fiber that emits light having the smaller spread angle.
- the central axis of the fiber may be tilted so that the angle with respect to is oblique. Thereby, it can apply also to several laser beams (for example, red laser beam, green laser beam, blue laser beam) from which a divergence angle differs.
- the light homogenizing device is suitable not only for uniforming the light luminance distribution but also for those that need to uniformize the spread angles of a plurality of lights.
- Condensing optical system (propagation optical system), 2, 2a, 2b light, 2c, central axis of light 2, 3 Condensing optical system (propagation optical system), 4, 4a, 4b light, 4c, central axis of light 4, 5 Rod integrator, 5a entrance surface, 5b exit surface, 5c-5f side surface, 11 fiber (propagation optical system), 11a fiber 11 exit end surface, 12 fiber (propagation optical system), 12a fiber 12 exit end surface, 13 fiber ( Propagation optical system), 13a.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Optical Couplings Of Light Guides (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
このオプティカルインテグレータは、石英ガラスや蛍石のような光学材料を用いている内面反射型のガラスロッドからなるロッドインテグレータで構成されている。
ロッドインテグレータは、入射面から入射された光を全反射しながら伝搬することで、出射面から輝度分布が均一な光を出射することができる。
ただし、ロッドインテグレータの入射面から広がり角が異なる複数の光が同じ入射角で入射された場合、各々の光の輝度分布が均一化されても、広がり角が異なるまま複数の光がロッドインテグレータの出射面から出射されるため、転写光学系を用いて、ロッドインテグレータの出射面の像を転写するようにしている。
図1はこの発明の実施の形態1による光均一化装置を示す斜視図であり、図2は図1の光均一化装置におけるA-A’断面図である。
この実施の形態1では、光均一化装置が、光を伝搬する伝搬光学系である集光光学系1,3とロッドインテグレータ5から構成されている例を説明する。
図1及び図2において、集光光学系1は例えばレンズなどから構成されており、ロッドインテグレータ5の入射面5aに光2を集光する光学部品である。
集光光学系3は例えばレンズなどから構成されており、ロッドインテグレータ5の入射面5aに光4を集光する光学部品である。
この実施の形態1では、集光光学系1,3により集光される光2,4の広がり角は異なっており、光2の広がり角が光4の広がり角より大きいものとして説明する。
図1では、各々の集光光学系1,3が1つの光を集光している例を示しているが、1つの集光光学系が複数の光2,4を集光するものであってもよい。
ロッドインテグレータ5における光2,4の入射面5aと出射面5bは平行であり、入射面5aと出射面5bは全面光学研磨されている。
ロッドインテグレータ5の側面5c~5fは光2,4の反射面になっており、全面光学研磨されている。
また、ロッドインテグレータ5は、内部を中空にして、側面5c~5fがミラーで構成されているライトパイプであってもよい。
図1の例では、ロッドインテグレータ5の入射面5aに対して光2を垂直に入射する一方で、ロッドインテグレータ5の入射面5aに対して光4を斜めに入射するようにしている。
ロッドインテグレータ5の入射面5aと出射面5bに対して、光の反射防止膜を施すことで、光2,4が入射される際の損失を小さく抑えることができる。
なお、ロッドインテグレータ5は、光2,4の吸収が小さい材料が用いられるものとする。例えば、光2,4の波長が可視域の場合には、BK7などの光学ガラスや合成石英等の材料が用いられる。
集光光学系1は、ロッドインテグレータ5の入射面5aに光2を集光し、集光光学系3は、ロッドインテグレータ5の入射面5aに光4を集光する。
これにより、光2,4がロッドインテグレータ5の入射面5aから入射されるが、光2,4はロッドインテグレータ5の入射面5aで屈折する。
光2,4が入射面5aで屈折することで、光2,4の広がり角は、ロッドインテグレータ5に入射される前と入射された後で変化する。
ロッドインテグレータ5の内に入射された光2は、ロッドインテグレータ5の内を伝搬するが、光2は広がりを持つため、図2に示すように、ロッドインテグレータ5の側面5dに向かって進むものと、ロッドインテグレータ5の側面5fに向かって進むものがあり(図2では、側面5dに向かっている光を2aで表記し、側面5fに向かっている光を2bで表記している)、ロッドインテグレータ5の側面5dに向かって進んだ光2aは側面5dで反射され、ロッドインテグレータ5の側面5fに向かって進んだ光2bは側面5fで反射される。
ロッドインテグレータ5の側面5dと側面5fの間で光2の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光2は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光2は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
ロッドインテグレータ5の側面5dと側面5fの間で光4の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光4は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光4は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
図1の例では、ロッドインテグレータ5の入射面5aに対して光2を垂直に入射する一方で、ロッドインテグレータ5の入射面5aに対して光4を斜めに入射するようにしている。
具体的には、光2の最外広がり角(光2aの角度)が、例えば、半角で25°、光4の最外広がり角(光4aの角度)が、例えば、半角で15°である場合、光2と光4の最外広がり角の角度差が半角で10°であるため、光2の中心軸2cに対して光4の中心軸4cを10°傾ければ、ロッドインテグレータ5に入射された後の光2,4の広がり角が一致する。このため、光2の中心軸2cがロッドインテグレータ5の入射面5aに対して垂直であれば、光4が10°の入射角でロッドインテグレータ5の入射面5aに入射されるように、集光光学系3の位置又は角度を調整する。
以上より、この実施の形態1によれば、ロッドインテグレータ5の出射面5b上で均一な輝度分布を得ることができるとともに、広がり角が異なる複数の光2,4の広がり角を同じ角度に合わせることができる効果を奏する。
広がり角が異なる3つ以上の光が入射される場合、ロッドインテグレータ5に入射された後の3つ以上の光の最外広がり角が一致するように、ロッドインテグレータ5の入射面5aに対する3つ以上の光の入射角が異なるようにすればよい。
例えば、最も広がり角が大きい光を入射面5aに対して垂直に入射し、広がり角が小さい光ほど、入射面5aに対して斜めに入射するようにすればよい。
これにより、広がり角が異なる複数のレーザ光(例えば、赤色レーザ光、緑色レーザ光、青色レーザ光)についても適用することができる。
図3はこの発明の実施の形態2による光均一化装置を示す斜視図であり、図4は図3の光均一化装置におけるA-A’断面図である。
また、図5はこの発明の実施の形態2による光均一化装置のファイバー12の出射端面12aの傾斜角度を示す説明図である。
この実施の形態2では、光均一化装置が、光を伝搬する伝搬光学系であるファイバー11,12とロッドインテグレータ5から構成されている例を説明する。
図3から図5において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
ファイバー11の出射端面11aは、ロッドインテグレータ5の入射面5aと平行に配置されるように、ファイバー11の中心軸に対して垂直である。
ファイバー12は光4を伝搬して、出射端面12aからロッドインテグレータ5の入射面5aに向けて出射する。
ファイバー12の中心軸は、ファイバー11の中心軸と平行であり、ファイバー12の出射端面12aは、ロッドインテグレータ5の入射面5aに対する角度が斜めになるように、ファイバー12の中心軸に対して斜めにカットされている。
特に、ファイバー11の出射端面11aは、ファイバー11の中心軸に対して垂直であり、ファイバー11への反射が大きいため、反射防止膜を施す必要性が高い。ファイバー12の出射端面12aは、斜めにカットされており、ファイバー11への反射が小さいため、出射端面12aの傾斜角度によっては、反射防止膜が不要である。
図3では、ファイバー11とファイバー12を別々の部材として記載しているが、ファイバー11とファイバー12が束ねられているバンドルファイバーであってもよい。
ファイバー11から出射された光2は、空間を伝搬したのち、ロッドインテグレータ5の入射面5aから入射される。光2はロッドインテグレータ5に入射される際、ロッドインテグレータ5の入射面5aで屈折する。
ファイバー12から出射された光4は、空間を伝搬したのち、ロッドインテグレータ5の入射面5aから入射される。光4はロッドインテグレータ5に入射される際、ロッドインテグレータ5の入射面5aで屈折する。
ロッドインテグレータ5の側面5dと側面5fの間で光2の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光2は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光2は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
ロッドインテグレータ5の側面5dと側面5fの間で光4の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光4は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光4は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
以下、ファイバー12の出射端面12aの傾斜角度について説明する。
ファイバー12から光4を出射するとき、ファイバー12のコアと空気の界面で光4が屈折する。この屈折角は、ファイバー12の中心軸に対する光4(ファイバー12の出射端面12aから出射された光4)の光軸の傾きθ’になる。
したがって、ファイバー12のコアと空気の界面での屈折率をn、出射端面12aの傾斜角度をθ、ファイバー12のコアと空気の界面での屈折角をθ”とすると、スネルの法則より、傾斜角度θと屈折角θ”の関係は、下記の式(1)で表すことができる。
n×sinθ=sinθ”
θ’=θ”-θ (1)
このため、出射端面12aの傾斜角度θは、下記の式(2)より算出することができる。
以上より、この実施の形態2によれば、ロッドインテグレータ5の出射面5b上で均一な輝度分布を得ることができるとともに、広がり角が異なる複数の光2,4の広がり角を同じ角度に合わせることができる効果を奏する。
波長が異なる場合は、波長分散を考慮して、複数のファイバーの出射端面の傾斜角度θを設定すればよい。また、広がり角が異なる3つ以上の光が入射される場合、ロッドインテグレータ5に入射された後の3つ以上の光の広がり角が一致するように、ロッドインテグレータ5の入射面5aに対する複数のファイバーの出射端面の傾斜角度θが異なるようにすればよい。
例えば、最も広がり角が大きい光を出射するファイバーの出射端面をロッドインテグレータ5の入射面5aと平行に配置し、広がり角が小さい光を出射するファイバーの出射端面ほど、ロッドインテグレータ5の入射面5aに対する角度が斜めになるように、中心軸に対して斜めにカットされているようにすればよい。
これにより、広がり角が異なる複数のレーザ光(例えば、赤色レーザ光、緑色レーザ光、青色レーザ光)についても適用することができる。
図6はこの発明の実施の形態3による光均一化装置を示す斜視図であり、図7は図6の光均一化装置におけるA-A’断面図である。
この実施の形態3では、光均一化装置が、光を伝搬する伝搬光学系であるファイバー11,13とロッドインテグレータ5から構成されている例を説明する。
図6及び図7において、図3及び図4と同一符号は同一または相当部分を示すので説明を省略する。
ファイバー13は光4を伝搬して、出射端面13aからロッドインテグレータ5の入射面5aに向けて出射する。
ファイバー13の出射端面13aはファイバー13の中心軸に対して垂直であるが、ファイバー13の出射端面13aがロッドインテグレータ5の入射面5aに対して斜めになるように、ファイバー13の中心軸がファイバー11の中心軸に対して傾いている。
ファイバー13の出射端面13aに対して、光の反射防止膜を施すことで、光4を出射する際の損失を小さく抑えることができる。また、ファイバー13の出射端面13aでの反射に伴う光源(ファイバー13と接続されている光源)の破壊や特性の変化を抑制することが可能になる。ファイバー13の出射端面13aは、ファイバー13の中心軸に対して垂直であり、ファイバー13への反射が大きいため、反射防止膜を施す必要性が高い。
ファイバー11から出射された光2は、空間を伝搬したのち、ロッドインテグレータ5の入射面5aから入射される。光2はロッドインテグレータ5に入射される際、ロッドインテグレータ5の入射面5aで屈折する。
ファイバー13から出射された光4は、空間を伝搬したのち、ロッドインテグレータ5の入射面5aから入射される。光4はロッドインテグレータ5に入射される際、ロッドインテグレータ5の入射面5aで屈折する。
ロッドインテグレータ5の側面5dと側面5fの間で光2の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光2は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光2は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
ロッドインテグレータ5の側面5dと側面5fの間で光4の反射が繰り返されたのち、ロッドインテグレータ5の出射面5bに到達した光4は、出射面5bからロッドインテグレータ5の外側に出射される。
ロッドインテグレータ5に入射された光4は、ロッドインテグレータ5内を伝搬される間に光の中心部と周辺部が混ぜ合わされることで、ロッドインテグレータ5の出射面5b上で均一な輝度分布になる。
以上より、この実施の形態3によれば、ロッドインテグレータ5の出射面5b上で均一な輝度分布を得ることができるとともに、広がり角が異なる複数の光2,4の広がり角を同じ角度に合わせることができる効果を奏する。
波長が異なる場合は、波長分散を考慮して、複数のファイバーの中心軸の傾きを設定すればよい。また、広がり角が異なる3つ以上の光が入射される場合、ロッドインテグレータ5に入射された後の3つ以上の光の広がり角が一致するように、ロッドインテグレータ5の入射面5aに対する複数のファイバーの中心軸の傾きが異なるようにすればよい。
例えば、最も広がり角が大きい光を出射するファイバーの出射端面をロッドインテグレータ5の入射面5aと平行に配置し、広がり角が小さい光を出射するファイバーの出射端面ほど、ロッドインテグレータ5の入射面5aに対する角度が斜めになるように、当該ファイバーの中心軸を傾けるようにすればよい。
これにより、広がり角が異なる複数のレーザ光(例えば、赤色レーザ光、緑色レーザ光、青色レーザ光)についても適用することができる。
Claims (5)
- 光を伝搬する伝搬光学系と、
前記伝搬光学系により伝搬された光が入射面から入射され、前記入射面から入射された光を全反射しながら伝搬することで、出射面から輝度分布が均一な光を出射するロッドインテグレータとを備え、
前記伝搬光学系により広がり角が異なる複数の光が伝搬される場合、前記ロッドインテグレータに入射された後の前記複数の光の広がり角が一致する入射角度で前記複数の光が前記ロッドインテグレータの入射面に入射されることを特徴とする光均一化装置。 - 前記伝搬光学系は、前記ロッドインテグレータの入射面に光を集光する集光光学系で構成されていることを特徴とする請求項1記載の光均一化装置。
- 前記伝搬光学系は、前記ロッドインテグレータの入射面に向けて光を出射する複数のファイバーで構成されており、
前記ロッドインテグレータに入射された後の前記複数の光の広がり角が一致するように、前記ロッドインテグレータの入射面に対する前記複数のファイバーの出射端面の角度が決定されていることを特徴とする請求項1記載の光均一化装置。 - 前記複数のファイバーの中で、広がり角が小さい光を出射するファイバーの出射端面ほど、前記ロッドインテグレータの入射面に対する角度が斜めになるように、前記広がり角が小さい光を出射するファイバーの出射端面が当該ファイバーの中心軸に対して斜めにカットされていることを特徴とする請求項3記載の光均一化装置。
- 前記複数のファイバーの中で、広がり角が小さい光を出射するファイバーの出射端面ほど、前記ロッドインテグレータの入射面に対する角度が斜めになるように、前記広がり角が小さい光を出射するファイバーの中心軸が傾いていることを特徴とする請求項3記載の光均一化装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14896814.2A EP3165952A4 (en) | 2014-07-02 | 2014-07-02 | Light homogenization device |
CN201480080068.3A CN106461852B (zh) | 2014-07-02 | 2014-07-02 | 光均匀化装置 |
US15/317,993 US9690106B2 (en) | 2014-07-02 | 2014-07-02 | Light homogenization device |
JP2016513554A JP5963993B2 (ja) | 2014-07-02 | 2014-07-02 | 光均一化装置 |
PCT/JP2014/067659 WO2016002025A1 (ja) | 2014-07-02 | 2014-07-02 | 光均一化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/067659 WO2016002025A1 (ja) | 2014-07-02 | 2014-07-02 | 光均一化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002025A1 true WO2016002025A1 (ja) | 2016-01-07 |
Family
ID=55018624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067659 WO2016002025A1 (ja) | 2014-07-02 | 2014-07-02 | 光均一化装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9690106B2 (ja) |
EP (1) | EP3165952A4 (ja) |
JP (1) | JP5963993B2 (ja) |
CN (1) | CN106461852B (ja) |
WO (1) | WO2016002025A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017146496A (ja) * | 2016-02-18 | 2017-08-24 | 三菱電機株式会社 | 照明用光源 |
JP2019124841A (ja) * | 2018-01-17 | 2019-07-25 | セイコーエプソン株式会社 | 照明装置およびプロジェクター |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7429689B2 (ja) * | 2019-04-22 | 2024-02-08 | 株式会社小糸製作所 | 車両用ヘッドアップディスプレイおよびそれに用いられる光源ユニット |
CN110575121A (zh) * | 2019-09-02 | 2019-12-17 | 重庆金山医疗器械有限公司 | 一种内窥镜合光照明系统及方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005115094A (ja) * | 2002-10-09 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 照明装置及びそれを用いた投写型画像表示装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3585097B2 (ja) * | 1998-06-04 | 2004-11-04 | セイコーエプソン株式会社 | 光源装置,光学装置および液晶表示装置 |
JP2003057514A (ja) * | 2001-08-10 | 2003-02-26 | Fuji Photo Optical Co Ltd | ロッドインテグレータおよびこれを用いた照明光学系 |
JP2003142387A (ja) | 2001-11-07 | 2003-05-16 | Nikon Corp | 照明光学装置、露光装置および露光方法 |
US7316484B2 (en) | 2002-10-09 | 2008-01-08 | Matsushita Electric Industrial Co., Ltd. | Illuminator and projection image display employing it |
EP1701199A1 (en) * | 2003-12-10 | 2006-09-13 | Matsushita Electric Industrial Co., Ltd. | Optical element, laser beam source, and 2-d image forming device |
WO2005057743A1 (ja) * | 2003-12-10 | 2005-06-23 | Matsushita Electric Industrial Co., Ltd. | レーザ光源、及び2次元画像形成装置 |
US7387954B2 (en) * | 2004-10-04 | 2008-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device |
US7832878B2 (en) * | 2006-03-06 | 2010-11-16 | Innovations In Optics, Inc. | Light emitting diode projection system |
WO2008069143A1 (ja) * | 2006-12-05 | 2008-06-12 | Nikon Corporation | 照明光源及び画像投影装置 |
EP2184818A1 (de) * | 2008-11-10 | 2010-05-12 | High Q Technologies GmbH | Laserpumpanordnung und Laserpumpverfahren mit Strahlhomogenisierung |
JP5305946B2 (ja) * | 2009-01-27 | 2013-10-02 | 富士フイルム株式会社 | ライトガイド及び光源装置並びに内視鏡システム |
KR101509370B1 (ko) * | 2011-02-15 | 2015-04-07 | 미쓰비시덴키 가부시키가이샤 | 면광원 장치 및 액정 표시 장치 |
CN103597400B (zh) * | 2011-04-12 | 2017-05-03 | 巴库股份有限公司 | 散斑减少的激光投影仪 |
US9228710B2 (en) * | 2011-06-13 | 2016-01-05 | Sharp Kabushiki Kaisha | Light projection apparatus, light condensing unit, and light emitting apparatus |
EP2793077A4 (en) * | 2011-12-12 | 2015-07-22 | Mitsubishi Electric Corp | LASER LIGHT SOURCE APPARATUS AND IMAGE DISPLAY |
KR20150033614A (ko) * | 2012-06-21 | 2015-04-01 | 가부시키가이샤 니콘 | 조명 장치, 처리 장치, 및 디바이스 제조 방법 |
JP6073636B2 (ja) * | 2012-10-17 | 2017-02-01 | 株式会社フジクラ | レーザモジュール |
CN103279005B (zh) * | 2013-05-13 | 2015-08-19 | 深圳市绎立锐光科技开发有限公司 | 激光光源、波长转换光源、合光光源及投影系统 |
JP6177144B2 (ja) * | 2014-01-20 | 2017-08-09 | 三菱電機株式会社 | 広がり角均一化装置 |
-
2014
- 2014-07-02 JP JP2016513554A patent/JP5963993B2/ja not_active Expired - Fee Related
- 2014-07-02 WO PCT/JP2014/067659 patent/WO2016002025A1/ja active Application Filing
- 2014-07-02 CN CN201480080068.3A patent/CN106461852B/zh not_active Expired - Fee Related
- 2014-07-02 EP EP14896814.2A patent/EP3165952A4/en not_active Withdrawn
- 2014-07-02 US US15/317,993 patent/US9690106B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005115094A (ja) * | 2002-10-09 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 照明装置及びそれを用いた投写型画像表示装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017146496A (ja) * | 2016-02-18 | 2017-08-24 | 三菱電機株式会社 | 照明用光源 |
JP2019124841A (ja) * | 2018-01-17 | 2019-07-25 | セイコーエプソン株式会社 | 照明装置およびプロジェクター |
JP7003678B2 (ja) | 2018-01-17 | 2022-01-20 | セイコーエプソン株式会社 | 照明装置およびプロジェクター |
Also Published As
Publication number | Publication date |
---|---|
EP3165952A1 (en) | 2017-05-10 |
JPWO2016002025A1 (ja) | 2017-04-27 |
US20170115494A1 (en) | 2017-04-27 |
CN106461852B (zh) | 2018-02-27 |
CN106461852A (zh) | 2017-02-22 |
JP5963993B2 (ja) | 2016-08-03 |
US9690106B2 (en) | 2017-06-27 |
EP3165952A4 (en) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI770234B (zh) | 通過光導光學元件的矽基液晶照明器 | |
US9575403B2 (en) | Illumination optical system, projector, and projector system | |
TWI328125B (en) | Light source module | |
US20160091783A1 (en) | Light-emitting device and projection system | |
JP5963993B2 (ja) | 光均一化装置 | |
TWI459122B (zh) | 光學系統 | |
JP2014126604A (ja) | 光源装置、照明光学系及び画像表示装置 | |
US9664988B2 (en) | Light source system with light coupling module and display apparatus comprising the same | |
US20100321596A1 (en) | Projection optical system and projection display unit using the same | |
US20090161076A1 (en) | Projection apparatus | |
JP6631839B2 (ja) | 照明装置および画像表示装置 | |
US10386031B2 (en) | Light device with movable scanning means and optical fiber | |
TW201833653A (zh) | 投影系統 | |
US20070171384A1 (en) | Light guiding member, optical unit, and projector | |
JP2022546939A (ja) | 横方向ライトパイプ | |
TW201303364A (zh) | 投影裝置及其分光單元以及合光單元 | |
US7499218B1 (en) | Illumination system | |
US20060268417A1 (en) | A Refractive Scheme for Dual Lamp High Brightness Projection System | |
US20160341972A1 (en) | Laser light source device and image projection device | |
US20170168313A1 (en) | Laser light source device and image projection device | |
TWI383177B (zh) | 光學系統 | |
JP6177144B2 (ja) | 広がり角均一化装置 | |
US10971882B2 (en) | Light source module | |
WO2021143445A1 (zh) | 光源装置及投影设备 | |
JP5013315B2 (ja) | 照明光源装置、液晶表示装置、およびプロジェクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896814 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016513554 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014896814 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014896814 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15317993 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |