WO2021143445A1 - 光源装置及投影设备 - Google Patents

光源装置及投影设备 Download PDF

Info

Publication number
WO2021143445A1
WO2021143445A1 PCT/CN2020/137117 CN2020137117W WO2021143445A1 WO 2021143445 A1 WO2021143445 A1 WO 2021143445A1 CN 2020137117 W CN2020137117 W CN 2020137117W WO 2021143445 A1 WO2021143445 A1 WO 2021143445A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fly
eye lens
lens
wavelength conversion
Prior art date
Application number
PCT/CN2020/137117
Other languages
English (en)
French (fr)
Inventor
陈晨
胡飞
莫美妮
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021143445A1 publication Critical patent/WO2021143445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • This application relates to the field of optical technology, and in particular to a light source device and projection equipment.
  • Optical expansion is an important concept in non-imaging optics. It is used to describe the geometric characteristics of a beam with a certain aperture angle and cross-sectional area. It is defined as the integral of the area through which the beam passes and the solid angle occupied by the beam, namely
  • is the area micro-element
  • dA is the normal and solid-angle micro-element
  • d ⁇ is the angle between the central axis.
  • the dilution of the optical expansion means a larger spot area or a larger divergence angle.
  • the spot area will increase with the increase of the distance, thereby diluting the optical extension.
  • the dilution of the optical extension will bring about a series of problems. For example, a larger spot area requires larger optical components and optical systems, and a larger divergence angle requires optical components (especially lenses) and optical system F# (F number) to change. Small, will make the optical system processing more difficult and cost higher. Therefore, in optical design, it is always desirable to keep the amount of optical expansion as conserved as possible.
  • the present application provides a light source device and a projection device, which can reduce the optical expansion dilution.
  • the present application provides a light source device, including: a light source for emitting first excitation light; a wavelength conversion device, the wavelength conversion device includes a wavelength conversion section and a non-wavelength conversion section, the wavelength conversion section absorbs the The first excitation light emits the received laser light, the non-wavelength conversion section emits the second excitation light after receiving the first excitation light; a light combining device is placed between the light source and the wavelength conversion device, and In guiding the first excitation light to the wavelength conversion device, it is also used to guide the received laser light and the second excitation light emitted by the wavelength conversion device to exit; the optical expansion control component is used to The expansion amount of the received laser light and the second excitation light is controlled, and the optical expansion amount control component includes an aspheric lens; and/or a beam adjustment element, which is placed on the exit light path of the light source and is used to The first excitation light is adjusted.
  • the application also provides a projection device, including a light modulation device and the aforementioned light source device.
  • the light source device and the projection device of the embodiments of the present application perform angle correction on the received laser light and the second excitation light or the first excitation light through the optical expansion control component or the beam modulation element, so as to prevent the optical expansion of the light beam from increasing during the propagation process.
  • Fig. 1 is a schematic structural diagram of a light source device provided by a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of the light source device provided by the first embodiment of the present application, in which the number of lenses of the optical diffusion control component is three.
  • Fig. 3 is a schematic structural diagram of a light source device provided by a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of the principle that the positive and negative lenses in the light source device provided in the second embodiment of the present application reduce the beam diameter of incident excitation light.
  • Fig. 5 is a schematic structural diagram of a light source device provided by a third embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a light source device provided by a fourth embodiment of the present application.
  • FIG. 7 is a schematic diagram of angle correction of the light beam by the fly-eye lens group provided by the fourth embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a light source device provided by a fifth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a light source device provided by a sixth embodiment of the present application.
  • FIG. 10 is a schematic diagram of a structure of a fly-eye lens group of a light source device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a structure of a fly-eye lens group of a light source device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the imaging relationship between two fly-eye lenses and an optical diffusion control component provided by an embodiment of the present application.
  • Fig. 13 is a functional relationship between the refractive index n and the wavelength ⁇ of the optical diffusion control component provided by an embodiment of the application.
  • Fig. 14 is a block diagram of a projection device provided by a seventh embodiment of the present application.
  • An embodiment of the application provides a light source device, including: a light source for emitting first excitation light; a wavelength conversion device, the wavelength conversion device includes a wavelength conversion section and a non-wavelength conversion section, the wavelength conversion section Absorb the first excitation light and emit the received laser light, the non-wavelength conversion section emits the second excitation light after receiving the first excitation light; a light combining device is placed between the light source and the wavelength conversion device , Used to guide the first excitation light to the wavelength conversion device, and also used to guide the received laser light and the second excitation light emitted by the wavelength conversion device to exit; the optical expansion control component is used For controlling the expansion amount of the received laser light and the second excitation light, the optical expansion amount control component has a light incident end and a light emission end, and the optical expansion amount control component includes a non-transistor close to the light emission end.
  • the light incident end of the optical extension control component refers to the end surface where the received laser light and the second excitation light enter the optical extension control component
  • the light exit end of the optical extension control component refers to the received laser and the second excitation light leaving the optical extension
  • the end face of the control component; and/or the beam adjusting element is placed on the exit light path of the light source for adjusting the first excitation light.
  • the light source device 100 includes a light source 10, a wavelength conversion device 20, a light combining device 40 and an optical diffusion control component 30.
  • the light source 10 is used to emit the first excitation light L1; in one embodiment, the first excitation light may be a collimated parallel light beam.
  • the light combining device 40 includes a reflection area and a transmission area surrounding the reflection area.
  • the first excitation light L1 is incident on the reflection area of the light combining device 40, and after being reflected by the reflection area of the light combining device 40, it is incident on the optical diffusion amount control component 30, and the optical diffusion amount control component 30 guides the first excitation light L1 to the wavelength conversion device 20.
  • the wavelength conversion device 20 includes a wavelength conversion section and a non-wavelength conversion section.
  • the wavelength conversion section includes a wavelength conversion material or a wavelength conversion structure, which can absorb the first excitation light L1 and emit the laser light L3 with a wavelength different from the first excitation light L1; the non-wavelength conversion section does not change The wavelength of the first excitation light L1, the non-wavelength conversion zone diffuses the laser, and the first excitation light L1 emits the second excitation light L2 after being acted by the non-wavelength conversion zone; wherein, the non-wavelength conversion zone
  • the wavelength conversion zone can be provided with scattering particles, and scattering sheets, diffusers, etc., to scatter the first excitation light, so that, on the one hand, the divergence angle of the second excitation light can be consistent with the divergence angle of the fluorescence, and the display effect is better. On the one hand, scattering can eliminate the coherence of laser light.
  • the optical expansion control component 30 is also used to collect the received laser light L3 and the second excitation light L2 emitted from the wavelength conversion device 20, and guide the received laser light L3 and the second excitation light L2 to the light combining device 40 After that, the received laser light L3 and the second excitation light L2 are transmitted through the transmission area of the light combining device 40.
  • a very small amount of the second excitation light L2 and the received laser light L3 may enter the reflection area of the light combining device 40 and be lost, but this part of the light beam is very small and can be ignored.
  • the second excitation light L2 transmitted from the light combining device 40 and the received laser light L3 transmitted from the light combining device 40 are emitted along the same optical path.
  • the optical extension control component 30 includes an aspheric lens 301; the aspheric lens 301 can reduce spherical aberration, thereby improving the imaging quality of the laser imaging spot of the second excitation light L2 and the outgoing beam of the received laser light L3.
  • the optical expansion control component 30 may include a plurality of lenses, the aspheric lens 301 is one of the plurality of lenses, and the diameter of the aspheric lens 301 is the plurality of lenses. The largest of the lenses.
  • the lens that is the farthest away from the wavelength conversion device 20 is an aspheric lens 301, which can better reduce the influence of spherical aberration.
  • the optical extension control component 30 includes two convergent lenses, which are an aspheric lens 301 close to the fly-eye lens group 30 and a collector far away from the fly-eye lens group 30.
  • the lens 302, the diameter of the aspheric lens 301 is larger than the diameter of the collecting lens 302.
  • the optical expansion control component 30 includes three converging lenses, from the side far from the wavelength conversion device 20 to the side close to the wavelength conversion device 20, respectively.
  • the number of lenses in the optical expansion control assembly 30 can also be greater than three.
  • more lenses in the optical extension control assembly 30 may be set as aspheric lenses.
  • the collection lens 302 and/or the collection lens 302 and/or in the foregoing embodiments may be set at the same time.
  • the collecting lens 303 is an aspheric lens.
  • the light source device 100 a includes a light source 10, a wavelength conversion device 20, a light combining device 40 and a beam adjusting element 60.
  • the light source 10 is used to emit the first excitation light L1; in one embodiment, the first excitation light may be a collimated parallel light beam.
  • the light combining device 40 includes a reflection area and a transmission area surrounding the reflection area.
  • the first excitation light L1 is adjusted by the beam adjusting element 60 to enter the reflection area of the light combining device 40, and after being reflected by the reflection area of the light combining device 40, it enters the wavelength conversion device 20.
  • the wavelength conversion device 20 includes a wavelength conversion section and a non-wavelength conversion section.
  • the wavelength conversion section includes a wavelength conversion material or a wavelength conversion structure, which can absorb the first excitation light L1 and emit the laser light L3 with a wavelength different from the first excitation light L1; the non-wavelength conversion section does not change The wavelength of the first excitation light L1, the non-wavelength conversion zone diffuses the laser, and the first excitation light L1 emits the second excitation light L2 after being acted by the non-wavelength conversion zone; wherein, the non-wavelength conversion zone
  • the wavelength conversion zone can be provided with scattering particles, and scattering sheets, diffusers, etc., to scatter the first excitation light, so that, on the one hand, the divergence angle of the second excitation light can be consistent with the divergence angle of the fluorescence, and the display effect is better. On the one hand, scattering can eliminate the coherence of laser light.
  • the laser light L3 and the second excitation light L2 emitted from the wavelength conversion device 20 are transmitted through the transmission area of the light combining device 40.
  • a very small amount of the second excitation light L2 and the received laser light L3 may enter the reflection area of the light combining device 40 and be lost, but this part of the light beam is very small and can be ignored.
  • the second excitation light L2 transmitted from the light combining device 40 and the received laser light L3 transmitted from the light combining device 40 are emitted along the same optical path.
  • the beam adjusting element 60 includes a positive and negative lens group, and the positive and negative lens group is used to reduce the beam diameter of the first excitation light.
  • the positive and negative lens group includes a positive lens 601 close to the light source 10 and a negative lens 602 close to the fly-eye lens group 50; Between the fly-eye lens group 50 and the light source 10, the first excitation light L1 is emitted from the light source 10 and sequentially passes through the positive lens and the negative lens to the light combining device 40; the positive and negative lenses The group is used to reduce the beam diameter of the incident first excitation light L1 to reduce the spherical aberration and improve the imaging quality of the outgoing beam.
  • A is the area of the beam
  • B is the area of the beam after passing through the positive and negative lens groups
  • f 1 is the focal length of the positive lens 601 in the positive and negative lens groups
  • the beam area of the first excitation light L1 is reduced, thereby making the imaging quality of the beam of the first excitation light L1 better.
  • the distance between the positive lens 601 and the negative lens 602 can be set as required.
  • the distance between the positive lens 601 and the negative lens 602 can be equal to that of the positive lens 601. focal length.
  • the light source device 100 b includes a light source 10, a wavelength conversion device 20, a light combining device 40, an optical diffusion control component 30 and a beam adjusting element 60.
  • the light source 10 is used to emit the first excitation light L1; in one embodiment, the first excitation light may be a collimated parallel light beam.
  • the light combining device 40 includes a reflection area and a transmission area surrounding the reflection area.
  • the first excitation light L1 is incident on the reflection area of the light combining device 40 through the beam adjusting element 60, and after being reflected by the reflection area of the light combining device 40, is incident on the optical diffusion control component 30,
  • the optical diffusion amount control component 30 guides the first excitation light L1 to the wavelength conversion device 20.
  • the wavelength conversion device 20 includes a wavelength conversion section and a non-wavelength conversion section.
  • the wavelength conversion section includes a wavelength conversion material or a wavelength conversion structure, which can absorb the first excitation light L1 and emit the laser light L3 with a wavelength different from the first excitation light L1; the non-wavelength conversion section does not change The wavelength of the first excitation light L1, the non-wavelength conversion zone diffuses the laser, and the first excitation light L1 emits the second excitation light L2 after being acted by the non-wavelength conversion zone; wherein, the non-wavelength conversion zone
  • the wavelength conversion zone can be provided with scattering particles, and scattering sheets, diffusers, etc., to scatter the first excitation light, so that, on the one hand, the divergence angle of the second excitation light can be consistent with the divergence angle of the fluorescence, and the display effect is better. On the one hand, scattering can eliminate the coherence of laser light.
  • the optical expansion control component 30 is also used to collect the received laser light L3 and the second excitation light L2 emitted from the wavelength conversion device 20, and guide the received laser light L3 and the second excitation light L2 to the light combining device 40 After that, the received laser light L3 and the second excitation light L2 are transmitted through the transmission area of the light combining device 40.
  • a very small amount of the second excitation light L2 and the received laser light L3 may enter the reflection area of the light combining device 40 and be lost, but this part of the light beam is very small and can be ignored.
  • the second excitation light L2 transmitted from the light combining device 40 and the received laser light L3 transmitted from the light combining device 40 are emitted along the same optical path.
  • the optical extension control component 30 includes an aspheric lens 301; the aspheric lens 301 can reduce spherical aberration, thereby improving the imaging of the laser imaging spot of the second excitation light L2 and the outgoing beam of the laser light L3. quality.
  • the optical expansion control component 30 may include a plurality of lenses, the aspheric lens 301 is one of the plurality of lenses, and the diameter of the aspheric lens 301 is the plurality of lenses. The largest of the lenses.
  • the lens that is the furthest away from the wavelength conversion device 20 is an aspheric lens 301, which can better reduce the influence of spherical aberration.
  • the optical extension control component 30 includes two convergent lenses, which are an aspheric lens 301 close to the fly-eye lens group 30 and a collector far away from the fly-eye lens group 30.
  • the lens 302, the diameter of the aspheric lens 301 is larger than the diameter of the collecting lens 302.
  • the optical extension control component 30 includes three converging lenses, from the side far from the wavelength conversion device 20 to the side close to the wavelength conversion device 20, respectively. These are an aspheric lens 301, a first collecting lens 302, and a second collecting lens 303.
  • the diameter of the aspheric lens 301 is larger than the diameter of the first collecting lens 302 and the second collecting lens 303.
  • the number of lenses in the optical extension control assembly 30 may also be greater than three.
  • more lenses in the optical extension control assembly 30 may be set as aspheric lenses.
  • the collection lens 302 and/or the collection lens 302 and/or in the foregoing embodiments may be set at the same time.
  • the collecting lens 303 is an aspheric lens.
  • the beam adjusting element 60 includes a positive and negative lens group, and the positive and negative lens group is used to reduce the beam diameter of the first excitation light.
  • the positive and negative lens group includes a positive lens 601 close to the light source 10 and a negative lens 602 close to the fly-eye lens group 50; Between the fly-eye lens group 50 and the light source 10, the first excitation light L1 is emitted from the light source 10 and sequentially passes through the positive lens and the negative lens to the light combining device 40; the positive and negative lenses The group is used to reduce the beam diameter of the incident first excitation light L1 to reduce the spherical aberration and improve the imaging quality of the outgoing beam.
  • the distance between the positive lens 601 and the negative lens 602 can be set as required.
  • the distance between the positive lens 601 and the negative lens 602 can be equal to that of the positive lens 601. focal length.
  • the light source device 100c provided by the fourth embodiment of this application is similar to the light source device 100 of the first embodiment, the difference is that the light source device 100c in this embodiment also Includes fly eye lens group 50.
  • the fly-eye lens group 50 is disposed between the light source 10 and the optical expansion control component 30.
  • the fly-eye lens group 50 includes a first fly-eye lens 501, a second fly-eye lens 502 and a third fly-eye lens 503.
  • the fly-eye lens group is roughly U-shaped, the first fly-eye lens 501 is parallel to the second fly-eye lens 502, and the first fly-eye lens 501 is perpendicular to the third fly-eye lens 503.
  • the first fly eye lens 501 and the second fly eye lens 502 form a double compound eye structure, and the third fly eye lens 503 and the first fly eye lens 501 also form a double compound eye structure.
  • the light combining device 40 is located between the first fly-eye lens 501 and the second fly-eye lens 502, and is inclined with respect to the first fly-eye lens 501 and the third fly-eye lens 503.
  • the first excitation light L1 is incident on the reflection area of the light combining device 40 after being homogenized by the third fly-eye lens 503, and is incident on the first compound eye after being reflected by the reflection area of the light combining device 40
  • the lens 501 performs further homogenization.
  • the first excitation light L1 after homogenization by the first fly-eye lens 501 is emitted to the optical diffusion control component 30, and the optical diffusion control component 30
  • the first excitation light L1 is guided to the wavelength conversion device 20; the received laser light L3 and the second excitation light L2 emitted from the wavelength conversion device 20 are guided to the first fly-eye lens 501 through the optical diffusion control component 30
  • the light is transmitted to the second fly-eye lens 502 through the transmission area of the light combining device 40 to perform the light homogenization again.
  • the first and third fly-eye lenses 501 and 503 are provided on one side of the optical diffusion control assembly 30 to adjust the first excitation light L1 incident on the fly-eye lens group 50, thereby adjusting and correcting the incident light
  • the direction of the first excitation light L1 of the optical diffusion amount control assembly 30 By setting the first and second fly-eye lenses 501 and 502 in the light path of the light beam, the second excitation light L2 and the received laser light L3 incident on the fly-eye lens group 50 are adjusted to adjust and correct the optical diffusion control.
  • FIG. 7 it is a schematic diagram of the principle of angle correction of the fly-eye lens group 50.
  • the fly-eye lens group 50 has a good function of correcting the optical path.
  • the second excitation light L2 is incident on the first and second fly-eye lenses 501, 502 is taken as an example for description; when the beam 1 is incident along the optical axis parallel to the first fly-eye lens 501, the direction of the main optical axis of the outgoing light remains unchanged, and is still parallel to the optical axis of the first fly-eye lens 501; when the beam 2 is along and
  • the optical axis of the first fly-eye lens 501 is incident at an angle of ⁇ , the main optical axis of the outgoing light beam 2 and the optical axis of the first fly-eye lens 501 are at an angle of ⁇ , ⁇ > ⁇ ; that is, the fly-eye lens group 50 has a reduced beam tilt angle
  • is about 1°
  • is about 0.2°
  • the angle correction principle of the fly-eye lens group 50 is the same as that of the aforementioned second excitation light L2 incident on the first and second fly-eye lenses 501
  • the angle correction principle of 502 is similar; specifically, when the light beam is incident along the optical axis parallel to the third fly-eye lens 503, the main optical axis of the emitted light is parallel to the first fly-eye lens 501 through the reflection of the light combining device 40
  • the main optical axis of the outgoing light beam is at an angle of ⁇ with the optical axis of the first fly-eye lens 501, ⁇ > ⁇ ; that is, the fly-eye lens group 50 has the function of reducing the inclination angle of the beam.
  • is about 1°
  • is about 0.2°
  • the size of the exit light angle ⁇ can be adjusted, and the adjustment accuracy is higher than that of directly adjusting ⁇ .
  • this technical solution can be used to control the distance between the edge of the first excitation light L1 incident on the optical diffusion control component 30 and the central axis of the optical diffusion control component 30 within the range of 0.2 to 0.5 mm,
  • the imaging quality of the light spot on the surface of the wavelength conversion device 20 is greatly improved, and a basic condition is provided for the subsequent light distribution on the exit surface of the entire light source device.
  • the fly-eye lens group 50 also has the function of correcting the angle of the received laser light L3, and the principle is also similar to the correction principle of the first excitation light L1 and the second excitation light L2; After being incident parallel to the optical axis of the first fly-eye lens 501, the direction of the main optical axis of the outgoing light remains unchanged and is still parallel to the optical axis of the first fly-eye lens 501; when the beam of the received laser light L3 is along the optical axis of the first fly-eye lens 501 When incident at an angle of ⁇ , the main optical axis of the outgoing light beam is at an angle of ⁇ with the optical axis of the first fly-eye lens 501, ⁇ > ⁇ ; that is, the fly-eye lens group 50 has the function of reducing the inclination angle of the beam, for example, when ⁇ is about 1.
  • is about 0.2°; by adjusting the size of ⁇ , the size of the exit light angle ⁇ can be adjusted, and the adjustment accuracy is higher than that of directly adjusting ⁇ , so that the beam edge of the second excitation light L2 and the optical diffusion amount control assembly
  • the distance between the central axes of 30 is as small as possible, so as to eliminate the problem of the angle of the fluorescence emission, avoid the dilution of the fluorescence optical extension, and improve the imaging quality of the fluorescence.
  • the fly-eye lens group 50 also has the function of uniformly imaging the light spot.
  • the first fly-eye lens 501 includes a first lens array 5012
  • the third fly-eye lens 503 includes a third lens array 5032, wherein the first lens array 5012 and the third lens array 5032 are composed of a plurality of one by one.
  • the optical axes of the two lens arrays are vertical, and the focal length of the lens unit of the third lens array 5032 is equal to the distance between the lens unit of the first lens array 5012 and the lens unit corresponding to the third lens array 5032 Light path distance.
  • Each lens unit of the first lens array 5012 overlaps and image the lens unit corresponding to the third lens array 5032 at the infinity position, and then the overlapped image at the infinity position is used by the other lenses in the light source device, and the wavelength conversion device 20 Surface overlap imaging. That is, the first excitation light L1 passes through the third microlens array 5032 of the third fly-eye lens 503 and is condensed on the light combining device 40 into multiple converging points, forming multiple point light sources, and multiple point light sources.
  • the light rays passing through the first microlens array 5012 of the first fly-eye lens 501 are condensed, so that a uniform spot is obtained by superimposing the spots of each of the point light sources; in simple terms, it forms a third lens array
  • the lens units of 5032 overlap and form images on the surface of the wavelength conversion device.
  • This technical solution eliminates and compensates the influence of the possible non-uniformity of individual light spots on the total light spot by superimposing the imaging light spots of each lens unit, and provides a guarantee for the subsequent uniform light distribution on the exit surface of the entire light source device 100c.
  • the imaging process from the fly-eye lens group 50 to the surface of the wavelength conversion device is established, once the imaging relationship is established, the object, image, and lens are determined. Even if the light incident on the fly-eye lens group 50 is deflected, the wavelength will not be converted.
  • the position and uniformity of the spot on the surface of the device have an impact (only the light distribution of the beam before or after the imaging position is affected).
  • the fly-eye lens group 50 also has the function of uniformly imaging the spots of the second excitation light L2 and the received laser light L3, and the principle is similar to the foregoing; wherein, the second fly-eye lens 502 includes a second lens Array 5022, the optical axis of the first lens array 5012 and the second lens array 5022 are parallel, and the focal point of the lens unit of the first lens array 5012 coincides with the center of the corresponding lens unit in the second lens array 5022.
  • the second excitation light L1 and the received laser light L3 are condensed by the first microlens array 5012 of the first fly-eye lens 501, they are formed by the action of the second microlens array 5022 of the second fly-eye lens 502 Uniform parallel light emerges.
  • the first excitation light L1 incident to the wavelength adjustment device 20 and the second excitation light L1 emitted from the wavelength adjustment device 20 can be excited Both the light L2 and the received laser light are corrected and homogenized. That is to say, the first group of fly-eye lens pair 503 and 501, and the second group of fly-eye lens pair 501 and 502, share the fly-eye lens 501, which can reduce the number of optical components The use of it helps to reduce the volume of the projection device while homogenizing the beam.
  • FIG. 8 is a light source device 100d provided by a fifth embodiment of this application.
  • the light source device 100d is similar to the light source device 100a of the second embodiment, except that the light source device 100d in this embodiment also includes a fly-eye lens. Group 50.
  • the fly-eye lens group 50 is disposed between the light beam adjusting element 60 and the wavelength conversion device 20.
  • the fly-eye lens group 50 includes a first fly-eye lens 501, a second fly-eye lens 502 and a third fly-eye lens 503.
  • the fly-eye lens group is roughly U-shaped, the first fly-eye lens 501 is parallel to the second fly-eye lens 502, and the first fly-eye lens 501 is perpendicular to the third fly-eye lens 503.
  • the first fly eye lens 501 and the second fly eye lens 502 form a double compound eye structure, and the third fly eye lens 503 and the first fly eye lens 501 also form a double compound eye structure.
  • the light combining device 40 is located between the first fly-eye lens 501 and the second fly-eye lens 502, and is inclined with respect to the first fly-eye lens 501 and the third fly-eye lens 503.
  • the first excitation light L1 is adjusted by the beam adjusting element 60 and then enters the third fly-eye lens 503, passes through the third fly-eye lens 503, and then enters the reflection area of the light combining device 40. After the reflection area of the light combining device 40 is reflected, it is incident on the first fly-eye lens 501 for further homogenization, and the first excitation light L1 homogenized by the first fly-eye lens 501 is emitted to the The wavelength conversion device 20; the laser light L3 and the second excitation light L2 emitted from the wavelength conversion device 20 are incident on the first fly-eye lens 501 and transmitted to the light through the transmission area of the light combining device 40 The second fly-eye lens 502 is homogenized.
  • FIG. 9 is a light source device 100e provided by a sixth embodiment of this application.
  • the light source device 100e is similar to the light source device 100b of the third embodiment. The difference is that the light source device 100e in this embodiment also includes a fly-eye lens. Group 50.
  • the fly-eye lens group 50 is disposed between the light beam adjusting element 60 and the wavelength conversion device 20.
  • the fly-eye lens group 50 includes a first fly-eye lens 501, a second fly-eye lens 502 and a third fly-eye lens 503.
  • the fly-eye lens group is roughly U-shaped, the first fly-eye lens 501 is parallel to the second fly-eye lens 502, and the first fly-eye lens 501 is perpendicular to the third fly-eye lens 503.
  • the first fly eye lens 501 and the second fly eye lens 502 form a double compound eye structure, and the third fly eye lens 503 and the first fly eye lens 501 also form a double compound eye structure.
  • the light combining device 40 is located between the first fly-eye lens 501 and the second fly-eye lens 502, and is inclined with respect to the first fly-eye lens 501 and the third fly-eye lens 503.
  • the first excitation light L1 is adjusted by the beam adjusting element 60 and then enters the third fly-eye lens 503, passes through the third fly-eye lens 503, and then enters the reflection area of the light combining device 40. After the reflection area of the light combining device 40 is reflected, it is incident on the first fly-eye lens 501 for further homogenization, and the first excitation light L1 homogenized by the first fly-eye lens 501 is emitted to the
  • the optical diffusion amount control component 30 guides the first excitation light L1 to the wavelength conversion device 20; the received laser light L3 and the second excitation light emitted from the wavelength conversion device 20 After L2 is guided to the first fly-eye lens 501 through the optical diffusion control component 30 to homogenize the light, it is transmitted to the second fly-eye lens 502 through the transmission area of the light combining device 40 for homogenization again.
  • fly-eye lens group 50 The functions and principles of the fly-eye lens group 50 can be referred to in the fourth embodiment, and will not be repeated here.
  • the light source 10 may be a blue laser or a blue laser array, and the light source 10 emits a blue laser beam, wherein the laser has a small divergence angle, a concentrated beam, and a roughly Gaussian distribution, so that the reflected excitation
  • the light can easily distinguish the light path from the excitation light emitted by the light source 10; in another embodiment, the light source 10 may be a blue-emitting LED, and the light source 10 emits blue LED light.
  • the present invention does not limit this, but it is preferable that the excitation light emitted by the light source 10 is light with a small divergence angle.
  • the third fly-eye lens 503 and the first fly-eye lens 501 may be connected and arranged, that is, the third fly-eye lens 503 and the end of the first fly-eye lens 501 may be connected; In one embodiment, for example, the third fly-eye lens 503 and the first fly-eye lens 501 may be integrally formed.
  • the third fly-eye lens 503 and the second fly-eye lens 502 may be connected to each other, that is, the ends of the third fly-eye lens 503 and the second fly-eye lens 502 may be connected; In one embodiment, for example, the third fly-eye lens 503 and the second fly-eye lens 502 may be integrally formed.
  • the third fly-eye lens 503 may be connected between the first fly-eye lens 501 and the second fly-eye lens 502; in one embodiment, for example, the third fly-eye lens 503 and the second fly-eye lens 1.
  • the second fly-eye lenses 501 and 502 can be integrally formed.
  • first, second, and third fly-eye lenses 501, 502, and 503 may not be connected to each other, that is, they may be arranged separately.
  • the fly-eye lens group 50 may also include a lens group composed of two triangular prisms, the two triangular prisms being a first triangular prism and a second triangular prism, respectively. mirror.
  • the long sides of the first triangular prism 51 and the second triangular prism 52 are spliced and arranged, and the light combining device 40 is arranged in the splicing gap.
  • Two short sides of the first prism 51 are respectively provided with lens arrays 5012 and 5032 to form a first fly-eye lens 501 and a third fly-eye lens 503, and one short side of the second prism 52 is provided with a lens array 5022 to form a second compound eye Lens 502.
  • the light combining device 40 is used for guiding the excitation light incident on the third fly-eye lens 503 to the first fly-eye lens 501 for exit, and is also used for guiding the laser light incident on the first fly-eye lens 501 and excited The light is guided to the second fly-eye lens 502 to exit.
  • the light combining device may be a dichroic plate, a filter, etc., and the light combining device may be arranged at the joint of the first triangular prism 51 and the second triangular prism by bonding, clamping, or the like.
  • the light combining device can also be a coated surface. On the splicing surface of the first prism and the second prism, the first prism can be coated, or the second prism can be coated.
  • the coating surface may be plated on the surface where the long side of the first prism 51 is located, or the coating surface may be plated on the surface where the long side of the second prism 52 is located.
  • the third fly-eye lens 503 is formed on the right side of the triangular prism facing the light source 10 in the fly-eye lens group 50, which is close to the right side of the triangular prism of the wavelength conversion device 20
  • the first fly-eye lens 501 is formed, and the second fly-eye lens 502 is formed on the side away from the right angle side of the triangular prism of the wavelength conversion device 20; Lens arrays are formed on the surfaces.
  • first, second, and third microlens arrays 5012, 5022, 5032 are respectively formed on the three right-angle sides of the two triangular prisms.
  • the length and width of the third fly-eye lens 503 and the first fly-eye lens 501 are substantially equal; the third fly-eye lens 503, the first fly-eye lens 501, and the The light combining device 40 is roughly arranged in an isosceles right triangle.
  • the first microlens array 5012 includes a plurality of first microlenses
  • the second microlens array 5022 includes a plurality of second microlenses
  • the third microlens array 5032 includes a plurality of first microlenses.
  • Three microlenses; the first microlens, the second microlens, and the third microlens include convex surfaces, and the convex surfaces are spherical or aspherical, that is, the first, second, and third microlenses are spherical lenses Or aspherical mirror.
  • an anti-reflection coating may be formed on the surfaces of a plurality of the first microlens, the second microlens, and the third microlens to reduce the reflection of the light beam and increase the intensity of the transmitted light.
  • the first fly-eye lens 501 includes a first outer surface 5011
  • the second fly-eye lens 502 includes a second outer surface 5021
  • the first to third outer surfaces 5011 , 5021, 5031 are substantially U-shaped
  • the third fly-eye lens 503 includes a third outer surface 5031
  • the first outer surface 5011 and the third outer surface 5031 are substantially parallel
  • the first outer surface 5011 and The second outer surface 5021 is substantially vertical; the excitation light emitted from the light source 10 first enters the third outer surface 5031, is reflected at the light combining device 40, and then exits through the first outer surface 5011.
  • the first microlens array 5012 is arranged on the first outer surface 5011
  • the second microlens array 5022 is arranged on the second outer surface 5021
  • the third microlens The array 5032 is arranged on the third outer surface 5031; the third microlens array 5032 divides the incident light beam into multiple convergent beams, and the multiple convergent beams are reflected by the light combining device 40 in the first outer surface.
  • a plurality of point light sources are converged on the surface 5011, and the first microlens array 5012 diffuses the light of each point light source.
  • the reflective structure (light combining device 40) that realizes the turning of the light path and the compound eye structure in a triangle
  • the space occupied by the reflective structure and the compound eye structure in the projection device is reduced, which is beneficial to the miniaturization of the projection device and can also reduce
  • the length of the light path improves the uniformity of the illumination beam and the brightness of the illumination.
  • the specifications of the first fly-eye lens 501, the second fly-eye lens 502, and the third fly-eye lens 503 may be the same; the focal length of each of the fly-eye lenses is equal to the light beam propagated in the fly-eye lens group 50
  • the optical axis of the third microlens and the first microlens are in one-to-one correspondence, so that the optical path of the excitation light beam propagating from the third microlens to the first microlens in the corresponding column is each of the fly-eye lenses Focal length.
  • the focal lengths of the plurality of microlenses on each fly-eye lens are the same, and the excitation light beams are condensed by each third microlens, and then propagate to the corresponding position of the first microlens, and the optical path traversed is the same.
  • the third microlens in the first row of the third microlens array 5032 corresponds to the first microlens in the first row of the first microlens array 5012
  • the third microlens in the Nth row of the third microlens array 5032 The first microlenses in the Nth row of the first microlens array 5012 are in one-to-one correspondence with each other.
  • the first fly-eye lens 501 and the second fly-eye lens 502 are arranged in parallel, the third fly-eye lens 503 and the first fly-eye lens 501 are arranged in a triangle shape, and the light combining device 40
  • the angle between the reflective surface and the first outer surface of the first fly-eye lens 501 may be, for example, 20 degrees to 70 degrees.
  • the first fly-eye lens 501 and the second fly-eye lens 502 are arranged in parallel, the third fly-eye lens 503 and the first fly-eye lens 501 are arranged in an isosceles right triangle, and the excitation light beam is arranged from
  • the optical path of the third microlens propagating to the first microlens in the corresponding column is equal to the distance between the first fly-eye lens 501 and the second fly-eye lens 502, so that the focal length of each fly-eye lens is equal to the first fly-eye lens.
  • the light problem of the fly-eye lens group 50 and its related devices is relatively complicated, and the fly-eye lens group 50 and its related devices can be designed with reference to the following discussion.
  • FIG. 12 it is the imaging relationship between the two fly-eye lenses and the optical diffusion control component 30 (condensing lens).
  • Fig. 13 shows the functional relationship between the refractive index n of the converging lens and the wavelength ⁇ .
  • the distance between the two fly-eye lenses is L (equal to the focal length of the lens unit of the fly-eye lens f MLA )
  • the compound-eye unit passes through the optical diffusion control assembly 30 (equivalent focal length After f Lens )
  • f( ⁇ ) R/(n ( ⁇ ) -1); where R is the radius of curvature of the equivalent spherical lens unit, n ( ⁇ ) is the refractive index of the lens material, and n ( ⁇ ) is usually As a function of wavelength, as shown in Figure 13. Therefore, the greater the refractive index, the shorter the equivalent focal length of the lens.
  • the focal length of the corresponding blue light is smaller than the focal length of the fluorescence wavelength that it excites, that is, the blue light f B ⁇ f fluorescence .
  • the optical diffusion control component 30 is an ideal lens group, so that the blue light spot on the fluorescent wheel can be an ideal compound eye unit image.
  • the excited fluorescent spot is collected by the optical diffusion control component 30 and then enters the double compound eye composed of the first compound eye lens 501 and the second compound eye lens 502 and then exits. Due to the principle of light reversibility, the fluorescence emitted through the second fly-eye lens 502 can be equivalently regarded as the fluorescent light incident from the compound eye of the second fly-eye lens 502, and the compound-eye unit will also be imaged on the wavelength conversion device 20. In the process of optical design, priority is given to the fluorescent optical path to design the fluorescent optical diffusion control component 30 and the double fly eye lens corresponding to the fluorescent light.
  • the equivalent focal length of the fluorescent optical diffusion control component 30 is f Lens-Phosphor
  • the equivalent focal length of the fly-eye lens for fluorescence is f MLA-Phosphor
  • the size of the fluorescent spot can be expressed as
  • the equivalent focal length of the laser to the fluorescence optical diffusion control component 30 is f Lens-Laser
  • the equivalent focal length of the fly-eye lens to the laser is f MLA-Laser
  • the size of the laser spot can be expressed as
  • the dispersion of the optical diffusion control component 30 is smaller than the dispersion of the fly-eye lens, so that the combination of the fly-eye lens and the optical diffusion control component corresponds to a fluorescence magnification greater than the magnification of the laser, that is In a further step, it is preferable that the dispersion of the collecting lens material is small, so that f Lens-Phosphor ⁇ f Lens-Laser , that is, the laser and fluorescence have close focal positions.
  • the angle of the laser incident on the third fly-eye lens 503 is relatively small, it can be considered that the distance between the third fly-eye lens 503 and the first fly-eye lens 501 is greater than f MLA-Laser , which is also to reduce the wavelength conversion device An optional scheme of laser spot size on 20.
  • this solution will also change the imaging position of the laser passing through the optical diffusion control component, making it different from f Lens-Laser . Therefore, in actual design, it is necessary to comprehensively consider the dispersion relationship between the optical diffusion control component and the fly-eye lens material, the distance between the third fly-eye lens 503 and the first fly-eye lens 501, and the size of the lens unit of the fly-eye lens.
  • the reflection area of the light combining device 40 is located approximately at the center of the light combining device 40. Since the first excitation light L1 beam is relatively concentrated, it only needs to be relatively large when passing through the reflection area. The area of the reflection area is small, therefore, the area of the transmission area of the light combining device 40 can be set to be much larger than the area of the reflection area; further, the area of the transmission area of the light combining device 40 is much larger than that of the reflection area. Area, so that the second excitation light L2 and the received laser light L3 entering the reflection area of the light combining device 40 are as small as possible, so as to improve the transmission of the second excitation light L2 and the received laser light L3 Rate.
  • the reflection area of the light combining device 40 may be a filter/filter film/dichroic that reflects the first excitation light L1 and transmits the laser light L3, so as to increase the laser light L3.
  • the transmittance may be a filter/filter film/dichroic that reflects the first excitation light L1 and transmits the laser light L3, so as to increase the laser light L3. The transmittance.
  • the light combining device 40, the first compound eye lens 501 and the third compound eye lens 503 form an isosceles right-angled triangle structure, and the light combining device 40 serves as the base of the isosceles right-angled triangle.
  • the first compound eye lens 501 and the third compound eye lens 503 are isosceles right triangle waists.
  • the wavelength conversion device 20 is a roulette structure (fluorescent color wheel), including a wavelength conversion section and a reflection section arranged in a fan ring on the roulette structure, that is, the non-wavelength
  • the conversion section is a reflection section, which is driven by a driving device (such as a motor) to rotate around the central axis of the wheel;
  • the wavelength conversion device 20 may also be a fluorescent color barrel/color barrel, including an edge
  • the barrel/tube surface surrounds the distributed wavelength conversion section and the reflection section, and the color barrel/color barrel rotates around its axis, so that different sections are periodically irradiated by the excitation light according to the time sequence; or, the wavelength conversion device 20 can also be a fluorescent color plate, which includes a wavelength conversion section and a reflection section arranged in a straight line direction, the color plate vibrates linearly along the line direction, so that different sections are periodically irradiated by the excitation light in time sequence , Thus emitting sequential light.
  • the wavelength conversion section of the wavelength conversion device 20 includes a fluorescent material layer.
  • the fluorescent material layer may be a phosphor-organic adhesive layer (by organic adhesives such as silica gel, epoxy resin, etc.)
  • the separated phosphor is bonded into a layer), it can also be a phosphor-inorganic adhesive layer (the separated phosphor is bonded into a layer by inorganic adhesives such as glass), or it can be a fluorescent ceramic (including 1 with continuous
  • the ceramic is used as the matrix and the phosphor particles are distributed in the ceramic; 2The pure phase ceramic is doped with activator elements, such as Ce-doped YAG ceramic; 3On the basis of the pure phase ceramic doped with activator elements, in the ceramic Disperse phosphor particles).
  • the wavelength conversion section includes a quantum dot layer, and the photoluminescence function is realized by the quantum dot material.
  • the wavelength conversion device 20 may have only one wavelength conversion section (such as a yellow wavelength conversion section), may also have two wavelength conversion sections (such as a green wavelength conversion section and a red wavelength conversion section), and may also include two wavelength conversion sections. More than one wavelength conversion zone.
  • the wavelength conversion section is provided with phosphors of at least one color.
  • the illumination beam is a blue laser beam
  • the wavelength conversion section is divided into a green wavelength conversion section and a red wavelength conversion section.
  • the red wavelength conversion section is provided with a phosphor layer that can excite and generate red light or a phosphor layer that can excite and generate a red light band.
  • the phosphor layer that can be excited to generate the red light band may be a yellow phosphor layer.
  • the phosphor layer that can be excited to generate red light or the phosphor layer that can be excited to generate the red light band is collectively referred to as the "red phosphor layer".
  • the green wavelength conversion section is provided with a phosphor layer that can excite to produce green light or a phosphor layer that can excite to produce a green light band.
  • the phosphor layer that can be excited to generate the green light band may be a yellow phosphor layer.
  • the yellow phosphor layer is excited to generate fluorescence containing the green light band, and then the green fluorescence is filtered out by the green filter film.
  • the phosphor layer that can be excited to produce green light or the phosphor layer that can be excited to produce the green light band is collectively referred to as the "green phosphor layer". Therefore, the above-mentioned wavelength conversion zone may be provided with a red phosphor layer or a phosphor layer containing red phosphor and a green phosphor layer.
  • the blue laser beam is projected to the red wavelength conversion section to excite a red fluorescent light beam
  • the blue laser beam is projected to the green wavelength conversion section to excite a green fluorescent light beam.
  • the red fluorescent light beam and the green fluorescent light beam generated by the excitation of the blue laser beam are formed into parallel light beams by the fly-eye lens group 50, and three primary colors of light are generated, namely, a red fluorescent light beam, a green fluorescent light beam and a blue laser light beam.
  • the above technical solutions are also applicable to dual-color light sources.
  • the lasers that generate the two-color light source are blue lasers and red lasers
  • the green phosphor layer needs to be provided on the reflective wavelength conversion device 20 (fluorescent wheel); at the same time, the reflective area of the reflective fluorescent wheel needs to be based on the blue laser Set the blue reflection area and red reflection area corresponding to the lighting sequence of the red laser; the blue laser and the red laser excite the green phosphor, the reflective phosphor wheel excites the green fluorescence, and the blue laser and the red laser reflect the blue laser and the red laser, which can also form three Base color light. I won't repeat them here.
  • the reflection section of the wavelength conversion device 20 includes a metal reflection surface, which specularly reflects the excitation light.
  • the reflective section includes a dielectric reflective film, which specularly reflects the excitation light.
  • the reflective section may also adopt other reflective structures to reflect the excitation light.
  • the non-wavelength conversion section of the wavelength conversion device 20 may also be a transmission section.
  • an optical path turning element may be provided on the transmission light path of the wavelength conversion device 20 to convert the transmitted light to The compound eye lens group 50.
  • the light source devices 100a to 100e may further include a relay lens, and the relay lens may be disposed on the side where the fly-eye lens group 50 emits the received laser light; the relay lens may be Concave lens, convex lens, concave lens group, convex lens group or a combination thereof, etc.
  • a seventh embodiment of the present application further provides a projection device 200 that includes one or more of the light source devices 100, 100a to 100e.
  • the projection device 200 may further include a light modulation device 202 and a lens device 203, for example, by projecting the light emitted from the light source device onto the light modulator of the light modulation device 202, and perform the correction according to the input image signal.
  • the spatial distribution of the light is modulated, and the modulated light is emitted through the lens device 203 to form an image, thereby realizing the projection display function.
  • the projection device 200 may be, for example, an educational machine, a cinema machine, an engineering machine, a micro projector, a laser TV, and other products with a laser fluorescent light source.
  • the light source devices 100, 100a to 100e of the present invention can also be applied to scenes such as image projection lights, vehicles (vehicles, ships, and airplanes) lights, search lights, stage lights, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种光源装置(100),包括:光源(10),用于发射第一激发光(L1);波长转换装置(20),波长转换装置(20)包括波长转换区段和非波长转换区段,波长转换区段吸收第一激发(L1)光并出射受激光(L3),非波长转换区段接收第一激发光(L1)后出射第二激发光(L2);合光装置(40),置于光源(10)与波长转换装置(20)之间,用于将第一激发光(L1)引导至波长转换装置(20),还用于将波长转换装置(20)出射的受激光(L3)及第二激发光(L2)引导出射;光学扩展量控制组件(30),用于将受激光(L3)及第二激发光(L2)的扩展量进行控制,光学扩展量控制组件(30)包括非球面透镜(301);和/或光束调整元件(60),置于光源(10)的出射光路上,用于对第一激发光(L1)进行调整。还提供一种投影设备(200)。

Description

光源装置及投影设备 技术领域
本申请涉及光学技术领域,具体涉及一种光源装置及投影设备。
背景技术
光学扩展量是非成像光学中的重要概念,用于描述具有一定孔径角和截面积的光束的几何特性,定义为光束所通过的面积和光束所占立体角的积分,即
Etendue≡n 2∫∫cos θdAdΩ
其中θ是面积微元,dA为法线与立体角微元,dΩ为中心轴之间的夹角。对于不考虑散射、吸收造成能量损失的理想光学系统中,光束经光学系统后光学扩展量保持守恒。它度量了当光束通过光学系统时光束源面积和立体角扩散这两者之间的变化。光束角越大或者光束源面积越大,得到的光学扩展量越大。在光束在光学系统中逐步变大的过程叫做扩展量稀释。
光学扩展量的稀释意味着更大的光斑面积或者更大的发散角度。激光束和荧光光束在传输过程中光斑面积都会随着距离的增长而增大,从而使光学扩展量稀释。光学扩展量稀释会带来一系列问题,比如:更大的光斑面积要求光学元件和光学系统体积变大,更大的发散角度要求光学元件(尤其是镜头)和光学系统F#(F数)变小,都会使得光学系统加工难度提高并且成本升高。因此光学设计中总是希望尽可能保持光学扩展量维持守恒。
发明内容
针对上述问题,本申请提供一种光源装置及投影设备,可以减弱光学扩展量稀释。
本申请提供了一种光源装置,包括:光源,用于发射第一激发光;波长转换装置,所述波长转换装置包括波长转换区段和非波长转换区段,所述波长转换区段吸收所述第一激发光并出射受激光,所述非波长转换区段接收所述第一激发光后出射第二激发光;合光装置,置于所述光源与所述波长转换装置之间,用于将所述第一激发光引导至所述波长转换装置,还用于将所述波长转换装置 出射的所述受激光及所述第二激发光引导出射;光学扩展量控制组件,用于将所述受激光及所述第二激发光的扩展量进行控制,所述光学扩展量控制组件包括非球面透镜;和/或光束调整元件,置于所述光源的出射光路上,用于对所述第一激发光进行调整。
本申请还提供一种投影设备,包括光调制装置及前述的光源装置。
本申请实施例的光源装置及投影设备通过光学扩展量控制组件或者光束调制元件对受激光及第二激发光或者第一激发光进行角度校正,以避免光束在传播过程中光学扩展量变大。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的光源装置的结构示意图。
图2是本申请第一实施例提供的光源装置的结构示意图,其中所述光学扩散量控制组件的透镜数量为三个。
图3是本申请第二实施例提供的光源装置的结构示意图。
图4是本申请第二实施例提供的光源装置中的正负透镜减小入射激发光的光束直径的原理示意图。
图5是本申请第三实施例提供的光源装置的结构示意图。
图6是本申请第四实施例提供的光源装置的结构示意图。
图7是本申请第四实施例提供的复眼透镜组对光束的角度校正示意图。
图8是本申请第五实施例提供的光源装置的结构示意图。
图9是本申请第六实施例提供的光源装置的结构示意图。
图10是本申请实施例提供的光源装置的一种复眼透镜组的结构示意图。
图11是本申请实施例提供的光源装置的一种复眼透镜组的结构示意图。
图12是本申请实施例提供的两个复眼透镜与光学扩散量控制组件之间的成像关系示意图。
图13为本申请实施例提供的光学扩散量控制组件的折射率n与波长λ之间的 函数关系。
图14是本申请第七实施例提供的投影设备的框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
本申请实施例提供了一种光源装置,包括:光源,用于发射第一激发光;波长转换装置,所述波长转换装置包括波长转换区段和非波长转换区段,所述波长转换区段吸收所述第一激发光并出射受激光,所述非波长转换区段接收所述第一激发光后出射第二激发光;合光装置,置于所述光源与所述波长转换装置之间,用于将所述第一激发光引导至所述波长转换装置,还用于将所述波长转换装置出射的所述受激光及所述第二激发光引导出射;光学扩展量控制组件,用于将所述受激光及所述第二激发光的扩展量进行控制,所述光学扩展量控制组件具有光入射端和光出射端,所述光学扩展量控制组件包括一靠近所述光出射端的非球面透镜,光学扩展量控制组件的光入射端指受激光及第二激发光进入光学扩展量控制组件的端面,光学扩展量控制组件的光出射端指受激光及第二激发光离开光学扩展量控制组件的端面;和/或光束调整元件,置于所述光源的出射光路上,用于对所述第一激发光进行调整。
请参阅图1至图2,在本申请第一实施例的光源装置100中,所述光源装置100包括光源10、波长转换装置20、合光装置40及光学扩散量控制组件30。
所述光源10用于发出第一激发光L1;在一实施方式中,所述第一激发光可以是准直平行光束。
所述合光装置40包括反射区及环绕所述反射区的透射区。
所述第一激发光L1入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述光学扩散量控制组件30,所述光学扩散量控制组件30将所述第一激发光L1引导至所述波长转换装置20。
所述波长转换装置20包括波长转换区段和非波长转换区段。其中,波长转换区段包括波长转换材料或波长转换结构,能够吸收所述第一激发光L1并出射波长不同于所述第一激发光L1的受激光L3;所述非波长转换区段不改变所述第一激发光L1的波长,所述非波长转换区对激光进行扩散,所述第一激发光L1经所述非波长转换区段作用后出射第二激发光L2;其中,所述非波长转换区段可以设置散射粒子,散射片、扩散片等对第一激发光进行散射,从而,一方面可以使第二激发光的发散角与荧光的发散角一致,使显示效果更好,另一方面,散射可以消除激光的相干性。
所述光学扩展量控制组件30还用于收集自所述波长转换装置20出射的受激光L3和第二激发光L2,并将受激光L3和第二激发光L2引导至所述合光装置40,之后所述受激光L3和第二激发光L2自所述合光装置40的透射区透射。
其中,可能会有极少量的所述第二激发光L2及所述受激光L3进入所述合光装置40的反射区从而被损耗掉,但是此部分光束非常少量从而可以忽略不计。
自所述合光装置40透射后的第二激发光L2与自所述合光装置40透射后的受激光L3沿同一光路出射。
所述光学扩展量控制组件30包括非球面透镜301;非球面透镜301可以减弱球差,从而可以提高第二激发光L2的激光成像光斑与受激光L3的出射光束的成像质量。
在一实施方式中,所述光学扩展量控制组件30可以包括多个透镜,所述非球面透镜301为所述多个透镜中的一个,且所述非球面透镜301的直径为所述多个透镜中最大的。
在一些实施方式中,设置距离所述波长转换装置20距离最远的透镜为非球 面透镜301,可以比较好的减弱球差的影响。
在一些实施方式中,如图1所示,所述光学扩展量控制组件30包括两个会透镜,分别为靠近所述复眼透镜组30的非球面透镜301及远离所述复眼透镜组30的收集透镜302,所述非球面透镜301的直径大于所述收集透镜302的直径。
在一些实施例中,如图2所示,所述光学扩展量控制组件30包括三个会聚透镜,自远离所述波长转换装置20的一侧至靠近所述波长转换装置20的一侧分别为非球面透镜301、第一收集透镜302及第二收集透镜303,所述非球面透镜301的直径大于所述第一收集透镜302及所述第二收集透镜303的直径。
在另一些实施方式中,所述光学扩展量控制组件30中的透镜的数量还可以为大于三个。
在另一些实施例中,如果不考虑成本,也可以设置所述光学扩展量控制组件30中的更多的透镜为非球面透镜,例如,同时设置前述实施例中的所述收集透镜302及/或收集透镜303为非球面透镜。
请参阅图3至图4,在本申请第二实施例的光源装置100a中,所述光源装置100a包括光源10、波长转换装置20、合光装置40及光束调整元件60。
所述光源10用于发出第一激发光L1;在一实施方式中,所述第一激发光可以是准直平行光束。
所述合光装置40包括反射区及环绕所述反射区的透射区。
所述第一激发光L1经所述光束调整元件60调整后入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述波长转换装置20。
所述波长转换装置20包括波长转换区段和非波长转换区段。其中,波长转换区段包括波长转换材料或波长转换结构,能够吸收所述第一激发光L1并出射波长不同于所述第一激发光L1的受激光L3;所述非波长转换区段不改变所述第一激发光L1的波长,所述非波长转换区对激光进行扩散,所述第一激发光L1经所述非波长转换区段作用后出射第二激发光L2;其中,所述非波长转换区段可以设置散射粒子,散射片、扩散片等对第一激发光进行散射,从而,一方面可以使第二激发光的发散角与荧光的发散角一致,使显示效果更好,另一方面,散射可以消除激光的相干性。
自所述波长转换装置20出射的受激光L3和第二激发光L2自所述合光装置40的透射区透射。
其中,可能会有极少量的所述第二激发光L2及所述受激光L3进入所述合光装置40的反射区从而被损耗掉,但是此部分光束非常少量从而可以忽略不计。
自所述合光装置40透射后的第二激发光L2与自所述合光装置40透射后的受激光L3沿同一光路出射。
所述光束调整元件60包括正负透镜组,所述正负透镜组用于减小所述第一激发光的光束直径。
所述正负透镜组包括靠近所述光源10的正透镜601及靠近所述复眼透镜组50的负透镜602;所述正负透镜组设置于所述光源10的出射光路上,且位于所述复眼透镜组50与所述光源10之间,所述第一激发光L1自所述光源10出射后依次经过所述正透镜和所述负透镜至所述合光装置40;所述正负透镜组用于减小入射的所述第一激发光L1的光束直径,以减弱球差,提高出射光束的成像质量。
所述正负透镜组对光路的调整原理为:如图4所示,A为光束的面积,B为经过正负透镜组后的光束的面积,f 1为正负透镜组中正透镜601的焦距,f 2为正负透镜组中负透镜602的焦距;由于A/B=f 1/f 2,因此,B=f 2/f 1,也就是说经过正负透镜压缩后光源10出射的第一激发光L1的光束面积减小,进而使得第一激发光L1的光束的成像质量更好。
在一些实施例中,所述正透镜601与所述负透镜602之间的距离可以根据需要设置,例如所述正透镜601与所述负透镜602之间的距离可以等于所述正透镜601的焦距。
请参阅图5,在本申请第三实施例的光源装置100b中,所述光源装置100b包括光源10、波长转换装置20、合光装置40、光学扩散量控制组件30及光束调整元件60。
所述光源10用于发出第一激发光L1;在一实施方式中,所述第一激发光可以是准直平行光束。
所述合光装置40包括反射区及环绕所述反射区的透射区。
所述第一激发光L1经所述光束调整元件60入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述光学扩散量控制组件30,所述光学扩散量控制组件30将所述第一激发光L1引导至所述波长转换装置20。
所述波长转换装置20包括波长转换区段和非波长转换区段。其中,波长转 换区段包括波长转换材料或波长转换结构,能够吸收所述第一激发光L1并出射波长不同于所述第一激发光L1的受激光L3;所述非波长转换区段不改变所述第一激发光L1的波长,所述非波长转换区对激光进行扩散,所述第一激发光L1经所述非波长转换区段作用后出射第二激发光L2;其中,所述非波长转换区段可以设置散射粒子,散射片、扩散片等对第一激发光进行散射,从而,一方面可以使第二激发光的发散角与荧光的发散角一致,使显示效果更好,另一方面,散射可以消除激光的相干性。
所述光学扩展量控制组件30还用于收集自所述波长转换装置20出射的受激光L3和第二激发光L2,并将受激光L3和第二激发光L2引导至所述合光装置40,之后所述受激光L3和第二激发光L2自所述合光装置40的透射区透射。
其中,可能会有极少量的所述第二激发光L2及所述受激光L3进入所述合光装置40的反射区从而被损耗掉,但是此部分光束非常少量从而可以忽略不计。
自所述合光装置40透射后的第二激发光L2与自所述合光装置40透射后的受激光L3沿同一光路出射。
在一些实施例中,所述光学扩展量控制组件30包括非球面透镜301;非球面透镜301可以减弱球差,从而可以提高第二激发光L2的激光成像光斑与受激光L3的出射光束的成像质量。
在一实施方式中,所述光学扩展量控制组件30可以包括多个透镜,所述非球面透镜301为所述多个透镜中的一个,且所述非球面透镜301的直径为所述多个透镜中最大的。
在一些实施方式中,设置距离所述波长转换装置20距离最远的透镜为非球面透镜301,可以比较好的减弱球差的影响。
在一些实施方式中,如图5所示,所述光学扩展量控制组件30包括两个会透镜,分别为靠近所述复眼透镜组30的非球面透镜301及远离所述复眼透镜组30的收集透镜302,所述非球面透镜301的直径大于所述收集透镜302的直径。
在一些实施例中,可参图2所示,所述光学扩展量控制组件30包括三个会聚透镜,自远离所述波长转换装置20的一侧至靠近所述波长转换装置20的一侧分别为非球面透镜301、第一收集透镜302及第二收集透镜303,所述非球面透镜301的直径大于所述第一收集透镜302及所述第二收集透镜303的直径。
在另一些实施方式中,所述光学扩展量控制组件30中的透镜还可以为大于 三个。
在另一些实施例中,如果不考虑成本,也可以设置所述光学扩展量控制组件30中的更多的透镜为非球面透镜,例如,同时设置前述实施例中的所述收集透镜302及/或收集透镜303为非球面透镜。
所述光束调整元件60包括正负透镜组,所述正负透镜组用于减小所述第一激发光的光束直径。
所述正负透镜组包括靠近所述光源10的正透镜601及靠近所述复眼透镜组50的负透镜602;所述正负透镜组设置于所述光源10的出射光路上,且位于所述复眼透镜组50与所述光源10之间,所述第一激发光L1自所述光源10出射后依次经过所述正透镜和所述负透镜至所述合光装置40;所述正负透镜组用于减小入射的所述第一激发光L1的光束直径,以减弱球差,提高出射光束的成像质量。
所述正负透镜组对光路的调整原理为可参本申请第二实施例及图4所示,此处不再赘述。
在一些实施例中,所述正透镜601与所述负透镜602之间的距离可以根据需要设置,例如所述正透镜601与所述负透镜602之间的距离可以等于所述正透镜601的焦距。
请参阅图6至图7,为本申请第四实施例提供的光源装置100c,所述光源装置100c与第一实施例的光源装置100类似,其区别在于,本实施例中的光源装置100c还包括复眼透镜组50。所述复眼透镜组50设置于所述光源10与所述光学扩展量控制组件30之间。
所述复眼透镜组50包括第一复眼透镜501、第二复眼透镜502及第三复眼透镜503。所述复眼透镜组大致呈U形,所述第一复眼透镜501与所述第二复眼透镜502相平行,所述第一复眼透镜501与所述第三复眼透镜503相垂直。所述第一复眼透镜501与所述第二复眼透镜502组成双复眼结构,所述第三复眼透镜503与所述第一复眼透镜501也组成双复眼结构。
所述合光装置40位于所述第一复眼透镜501与所述第二复眼透镜502之间,且与所述第一复眼透镜501及所述第三复眼透镜503均相倾斜。
所述第一激发光L1经过所述第三复眼透镜503匀光后入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述第一复眼透镜 501进行进一步的匀光,经所述第一复眼透镜501匀光后的所述第一激发光L1被发射至所述光学扩散量控制组件30,所述光学扩散量控制组件30将所述第一激发光L1引导至所述波长转换装置20;自所述波长转换装置20出射的受激光L3和第二激发光L2经所述光学扩散量控制组件30引导至所述第一复眼透镜501匀光后,经所述合光装置40的透射区透射至所述第二复眼透镜502进行再次匀光。
在本申请中,通过在光学扩散量控制组件30的一侧设置第一及第三复眼透镜501、503,对入射到复眼透镜组50的第一激发光L1进行调节,从而调整并校正入射到光学扩散量控制组件30的第一激发光L1的方向。通过在光束返回的光路中,设置第一及第二复眼透镜501、502,对入射到复眼透镜组50的第二激发光L2及受激光L3进行调节,从而调整并校正入射到光学扩散量控制组件30的第二激发光L2及受激光L3的方向。
如图7所示,为复眼透镜组50的角度校正原理示意图,复眼透镜组50具有很好的校正光路的作用,其中,图7以第二激发光L2入射第一及第二复眼透镜501、502为例进行说明;以当光束1沿平行于第一复眼透镜501的光轴入射后,出射光主光轴方向不变,仍然平行于第一复眼透镜501的光轴;当光束2沿与第一复眼透镜501的光轴呈α角入射时,出射光光束2的主光轴与第一复眼透镜501的光轴呈β角,α>β;即复眼透镜组50具有减小光束倾斜角的功能,例如当α约为1°时,β约为0.2°;通过调节α的大小,可以调节出射光角度β的大小,而且调节精度高于直接调节β的精度,使得第二激发光L2的光束边缘与光学扩散量控制组件30的中心轴的间距尽可能缩小,为后续整个光源装置出射面分布均匀的光提供了基础条件。
其中,所述第一激发光L1入射至第三及第一复眼透镜503、501时,所述复眼透镜组50的角度校正原理与前述的第二激发光L2入射第一及第二复眼透镜501、502的角度矫正原理类似;具体地,以当光束沿平行于第三复眼透镜503的光轴入射后,经由所述合光装置40的反射,出射光主光轴平行于第一复眼透镜501的光轴;当光束沿与第三复眼透镜503的光轴呈α角入射时,出射光光束的主光轴与第一复眼透镜501的光轴呈β角,α>β;即复眼透镜组50具有减小光束倾斜角的功能,例如当α约为1°时,β约为0.2°;通过调节α的大小,可以调节出射光角度β的大小,而且调节精度高于直接调节β的精度,使得入射到光学 扩散量控制组件30的第一激发光L1的光束边缘与光学扩散量控制组件30的中心轴的间距尽可能缩小。本发明在实际应用中,可利用该技术方案将第一激发光L1入射至光学扩散量控制组件30的光束边缘与光学扩散量控制组件30中心轴的间距控制在0.2~0.5mm范围内,极大的提高了波长转换装置20表面的光斑成像质量,为后续整个光源装置出射面分布均匀的光提供了基础条件。
所述复眼透镜组50对所述受激光L3的角度也有校正的作用,原理也与对第一激发光L1及第二激发光L2的校正原理类似;具体地,以当受激光L3的光束沿平行于第一复眼透镜501的光轴入射后,出射光主光轴方向不变,仍然平行于第一复眼透镜501的光轴;当受激光L3的光束沿与第一复眼透镜501的光轴呈α角入射时,出射光光束的主光轴与第一复眼透镜501的光轴呈β角,α>β;即复眼透镜组50具有减小光束倾斜角的功能,例如当α约为1°时,β约为0.2°;通过调节α的大小,可以调节出射光角度β的大小,而且调节精度高于直接调节β的精度,使得第二激发光L2的光束边缘与光学扩散量控制组件30的中心轴的间距尽可能缩小,从而可以消除荧光出射有角度的问题,避免了荧光光学扩展量被稀释,提高了荧光的成像质量。
除了角度校正的作用,复眼透镜组50还具有使光斑均匀成像的功能。
在本实施例中,第一复眼透镜501包括第一透镜阵列5012,所述第三复眼透镜503包括第三透镜阵列5032,其中第一透镜阵列5012和第三透镜阵列5032分别由多个一一对应透镜单元组成,两个透镜阵列的光轴垂直,第三透镜阵列5032的透镜单元的焦距等于所述第一透镜阵列5012的透镜单元与对应所述第三透镜阵列5032的透镜单元之间的光路距离。第一透镜阵列5012的每个透镜单元将第三透镜阵列5032对应的透镜单元重叠成像在无限远位置,然后该无限远位置的重叠像经光源装置中的其他透镜的作用,在波长转换装置20表面重叠成像。即,所述第一激发光L1经所述第三复眼透镜503的第三微透镜阵列5032后在所述合光装置40上会聚成为多个会聚点,形成多个点光源,多个点光源的光线再经过所述第一复眼透镜501的第一微透镜阵列5012发生会聚,从而相对于将每个所述点光源的光斑叠加得到一个均匀的光斑;简单来说,即组成第三透镜阵列5032的各透镜单元在所述波长转换装置表面重叠成像。该技术方案通过将各透镜单元的成像光斑叠加,消弭、补偿了可能存在的个别光斑的不均匀性对总光斑的影响,为后续整个光源装置100c出射面分布均匀的光提供了保障。 此外,由于从复眼透镜组50到波长转换装置表面为成像过程,一旦该成像关系确立,物、像和透镜都确定了,即使入射到复眼透镜组50的光发生偏斜也不会对波长转换装置表面的光斑位置和均匀性产生影响(只会影响光束在成像位置之前或者之后的光分布)。
在本实施例中,所述复眼透镜组50还对所述第二激发光L2及所述受激光L3的光斑均匀成像的功能,原理与前述类似;其中,第二复眼透镜502包括第二透镜阵列5022,所述第一透镜阵列5012与所述第二透镜阵列5022的光轴平行,且第一透镜阵列5012的透镜单元的焦点与第二透镜阵列5022中对应的透镜单元的中心重合。所述第二激发光L1及所述受激光L3经所述第一复眼透镜501的第一微透镜阵列5012会聚后,再经过所述第二复眼透镜502的第二微透镜阵列5022作用后形成均匀的平行光出射。
也就是说,本申请中,通过一个复眼透镜组50与一个合光装置40的配合,能够对入射至波长调整装置20的第一激发光L1及自所述波长调整装置20出射的第二激发光L2及受激光都进行角度的校正及匀光,也就是说,第一组复眼透镜对503和501,与第二复眼透镜对501和502,有共同使用复眼透镜501,可以减少光器元件的使用,在对光束均匀化的同时有助于减小投影设备的体积。
请参阅图8,为本申请第五实施例提供的光源装置100d,所述光源装置100d与第二实施例的光源装置100a类似,其区别在于,本实施例中的光源装置100d还包括复眼透镜组50。所述复眼透镜组50设置于所述光束调整元件60与所述波长转换装置20之间。
所述复眼透镜组50包括第一复眼透镜501、第二复眼透镜502及第三复眼透镜503。所述复眼透镜组大致呈U形,所述第一复眼透镜501与所述第二复眼透镜502相平行,所述第一复眼透镜501与所述第三复眼透镜503相垂直。所述第一复眼透镜501与所述第二复眼透镜502组成双复眼结构,所述第三复眼透镜503与所述第一复眼透镜501也组成双复眼结构。
所述合光装置40位于所述第一复眼透镜501与所述第二复眼透镜502之间,且与所述第一复眼透镜501及所述第三复眼透镜503均相倾斜。
所述第一激发光L1经所述光束调整元件60调整后入射至所述第三复眼透镜503,经过所述第三复眼透镜503匀光后入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述第一复眼透镜501进行进一步 的匀光,经所述第一复眼透镜501匀光后的所述第一激发光L1被发射至所述波长转换装置20;自所述波长转换装置20出射的受激光L3和第二激发光L2入射至所述第一复眼透镜501匀光后,经所述合光装置40的透射区透射至所述第二复眼透镜502匀光。
所述复眼透镜组50的作用及原理可参第四实施例所述,此处不再赘述。
请参阅图9,为本申请第六实施例提供的光源装置100e,所述光源装置100e与第三实施例的光源装置100b类似,其区别在于,本实施例中的光源装置100e还包括复眼透镜组50。所述复眼透镜组50设置于所述光束调整元件60与所述波长转换装置20之间。
所述复眼透镜组50包括第一复眼透镜501、第二复眼透镜502及第三复眼透镜503。所述复眼透镜组大致呈U形,所述第一复眼透镜501与所述第二复眼透镜502相平行,所述第一复眼透镜501与所述第三复眼透镜503相垂直。所述第一复眼透镜501与所述第二复眼透镜502组成双复眼结构,所述第三复眼透镜503与所述第一复眼透镜501也组成双复眼结构。
所述合光装置40位于所述第一复眼透镜501与所述第二复眼透镜502之间,且与所述第一复眼透镜501及所述第三复眼透镜503均相倾斜。
所述第一激发光L1经所述光束调整元件60调整后入射至所述第三复眼透镜503,经过所述第三复眼透镜503匀光后入射至所述合光装置40的反射区,经所述合光装置40的反射区反射后,入射至所述第一复眼透镜501进行进一步的匀光,经所述第一复眼透镜501匀光后的所述第一激发光L1被发射至所述光学扩散量控制组件30,所述光学扩散量控制组件30将所述第一激发光L1引导至所述波长转换装置20;自所述波长转换装置20出射的受激光L3和第二激发光L2经所述光学扩散量控制组件30引导至所述第一复眼透镜501匀光后,经所述合光装置40的透射区透射至所述第二复眼透镜502进行再次匀光。
所述复眼透镜组50的作用及原理可参第四实施例所述,此处不再赘述。
以上为本发明实施例一的基本技术方案,在此基础上,本发明光源装置的各个组件根据实际的应用环境,可以衍生出多种特定的技术方案,各技术方案之间可以相互组合,以下进行举例说明。
在一实施方式中,所述光源10可为蓝色激光器或蓝色激光器阵列,所述光源10发出蓝色激光光束,其中激光发散角小、光束集中,大致呈高斯分布,使 得反射后的激发光能够很容易与光源10发出的激发光区分光路;在另一实施方式中,所述光源10可为发蓝光的LED,所述光源10发出蓝色LED光。本发明对此不进行限制,但以所述光源10发出的激发光为小发散角的光为优。
在一实施方式中,所述第三复眼透镜503与所述第一复眼透镜501可以连接设置,也即,所述第三复眼透镜503与所述第一复眼透镜501的端部可以连接;在一实施方式中,例如所述第三复眼透镜503与所述第一复眼透镜501可以为一体成型得到的。
在一实施方式中,所述第三复眼透镜503与所述第二复眼透镜502可以连接设置,也即,所述第三复眼透镜503与所述第二复眼透镜502的端部可以连接;在一实施方式中,例如所述第三复眼透镜503与所述第二复眼透镜502可以为一体成型得到的。
在一实施方式中,所述第三复眼透镜503可以连接于所述第一复眼透镜501与第二复眼透镜502之间;在一实施方式中,例如所述第三复眼透镜503与所述第一、第二复眼透镜501、502可以为一体成型得到的。
在另一实施例中,所述第一、第二及第三复眼透镜501、502、503也可以互不连接,即分离设置。
在一实施方式中,如图10所示,所述复眼透镜组50还可以为包括由两个三棱镜组合而成的透镜组,所述两个三棱镜分别为第一三棱镜和第二三棱镜。第一三棱镜51和第二三棱镜52的长边拼接设置,拼接的缝隙设置所述合光装置40。第一三棱镜51的两短边分别设置有透镜阵列5012、5032以形成第一复眼透镜501和第三复眼透镜503,第二棱镜52的一短边设置有透镜阵列5022以形成第二复眼透镜502。所述合光装置40用于将入射至所述第三复眼透镜503的激发光引导至所述第一复眼透镜501出射,还用于将入射至所述第一复眼透镜501的受激光及激发光引导至所述第二复眼透镜502出射。合光装置可以为二向色片、滤光片等,该合光装置可以通过粘接、夹设等方式设置于第一三棱镜51和第二三棱镜的拼接处。合光装置也可以是镀膜面,在第一三棱镜与第二三棱镜的拼接面上,可以在第一三棱镜所在面上镀膜,或者也可以在第二三棱镜所在面上镀膜,以使入射至合光装置的光能在镀膜面上实现透射或反射。具体地,镀膜面可以镀设于第一三棱镜51的长边所在面,或者镀膜面镀设于第二三棱镜52的长边所在面。
结合到具体的光源装置中,例如,复眼透镜组50中朝向所述光源10的三棱镜的直角边一侧形成所述第三复眼透镜503,靠近所述波长转换装置20的三棱镜的直角边一侧形成所述第一复眼透镜501,远离所述波长转换装置20的三棱镜的直角边一侧形成所述第二复眼透镜502;所述第一、第二、第三复眼透镜501、502、503的表面均形成有透镜阵列,具体地,如图10所示,两个三棱镜的三条直角边上分别形成有第一、第二及第三微透镜阵列5012、5022、5032。
在一实施方式中,优选地,所述第三复眼透镜503与所述第一复眼透镜501长、宽等尺寸均大致相等;所述第三复眼透镜503、所述第一复眼透镜501及所述合光装置40大致呈等腰直角三角形设置。
在一实施方式中,所述第一微透镜阵列5012包括多个第一微透镜,所述第二微透镜阵列5022包括多个第二微透镜,所述第三微透镜阵列5032包括多个第三微透镜;所述第一微透镜、第二微透镜及第三微透镜包括凸面,凸面为球面或非球面,即,所述第一微透镜、第二微透镜及第三微透镜为球面镜或非球面镜。
在一实施方式中,多个所述第一微透镜、第二微透镜及第三微透镜表面可以形成有增透膜,以减少光束的反射,增加透射光的强度。
在一具体实施方式中,请参阅图11,所述第一复眼透镜501包括第一外表面5011,所述第二复眼透镜502包括第二外表面5021,所述第一至第三外表面5011、5021、5031连接大致呈U形,所述第三复眼透镜503包括第三外表面5031,所述第一外表面5011与所述第三外表面5031大致平行,所述第一外表面5011与所述第二外表面5021大致垂直;从所述光源10出射的激发光先自所述第三外表面5031入射,在所述合光装置40处进行反射后经过第一外表面5011出射。
在一实施方式中,所述第一微透镜阵列5012排布于所述第一外表面5011,所述第二微透镜阵列5022排布于所述第二外表面5021,所述第三微透镜阵列5032排布于所述第三外表面5031;所述第三微透镜阵列5032将入射光束分为多束会聚光,多束会聚光经所述合光装置40反射后在所述第一外表面5011上汇聚成多个点光源,第一微透镜阵列5012将各点光源的光扩散发出。通过将实现光路转折的反光结构(合光装置40)与复眼结构成三角形布设,减小反光结构和复眼结构在投影装置中所占的空间,有利于投影装置的小型化,同时还能减小光路长度,提高照明光束的均匀性和照明亮度。
在一实施方式中,所述第一复眼透镜501、第二复眼透镜502及第三复眼透镜503的规格可以相同;各所述复眼透镜的焦距等于激发光光束在复眼透镜组50内传播的光程;所述第三微透镜与第一微透镜的光轴分别一一对应,从而,激发光光束从第三微透镜传播至对应列的第一微透镜的光程即为各所述复眼透镜的焦距。各所述复眼透镜上的多个微透镜的焦距相同,则激发光光束经各第三微透镜会聚之后,对应传播到相应的第一微透镜的位置处,所经过的光程相等。如,第三微透镜阵列5032的第一排的第三微透镜与第一微透镜阵列5012的第一排的第一微透镜对应,第三微透镜阵列5032的第N排的第三微透镜与第一微透镜阵列5012的第N排的第一微透镜分别一一对应。
在一实施方式中,所述第一复眼透镜501与所述第二复眼透镜502平行设置,所述第三复眼透镜503与所述第一复眼透镜501呈三角形设置,所述合光装置40的反射面与所述第一复眼透镜501的第一外表面的夹角可以例如为20度至70度。
在一实施方式中,所述第一复眼透镜501与所述第二复眼透镜502平行设置,所述第三复眼透镜503与所述第一复眼透镜501呈等腰直角三角形设置,激发光光束从第三微透镜传播至对应列的第一微透镜的光程等于所述第一复眼透镜501与所述第二复眼透镜502之间的距离,从而即各所述复眼透镜的焦距等于所述第一复眼透镜501与所述第二复眼透镜502之间的距离。
其中,所述复眼透镜组50及其相关装置的光线问题比较复杂,可以参照如下的论述对所述复眼透镜组50及其相关装置进行设计。
如图12所示,为两个复眼透镜与光学扩散量控制组件30(会聚透镜)之间的成像关系。图13为会聚透镜的折射率n与波长λ之间的函数关系。假设复眼透镜的单个透镜单元的尺寸为a*b,两个复眼透镜之间的距离为L(等于复眼透镜的透镜单元的焦距f MLA),复眼单元经过光学扩散量控制组件30(等效焦距为f Lens)之后成像的尺寸为A*B,则存在A=f Lens/f MLA*a;B=f Lens/f MLA*b。对于理想球面镜,存在f(λ)=R/(n (λ)-1);其中,R为等效球面镜单元的曲率半径,n (λ)是透镜材料的折射率,n (λ)通常是波长的函数,如图13所示。因此,折射率越大,透镜等效焦距越短。使用透镜材料,对应的蓝光的焦距小于其激发的荧光波长对应的焦距,即蓝光f B<f 荧光。假设光学扩散量控制组件30是理想的透镜组,使 得荧光轮上蓝光光斑可以呈理想的复眼单元的像。另外,被激发的荧光光斑被光学扩散量控制组件30收集之后进入由第一复眼透镜501与第二复眼透镜502组成的双复眼后出射。由于光线可逆原理,经过第二复眼透镜502出射的荧光可以等效看成自第二复眼透镜502复眼入射的荧光,同样会把复眼单元成像到波长转换装置20上。在光学设计的过程中,优先考虑荧光光路进行设计荧光所对应的荧光光学扩散量控制组件30以及双复眼透镜。荧光光学扩散量控制组件30的等效焦距为f Lens-Phosphor,复眼透镜对于荧光的等效焦距为f MLA-Phosphor,荧光光斑的大小可以表示为
Figure PCTCN2020137117-appb-000001
类似地,激光对于荧光光学扩散量控制组件30的等效焦距为f Lens-Laser,复眼透镜对于激光的等效焦距为f MLA-Laser,激光光斑的大小可以表示为
Figure PCTCN2020137117-appb-000002
在设计激光光斑时,需要考虑激光激发荧光时在波长转换装置20上的光斑扩散,因此要求激光光斑要小于荧光光斑。在这种前提下,优选光学扩散量控制组件30的色散小于复眼透镜的色散,使得复眼透镜与光学扩散量控制组件的组合对应荧光的放大率大于对激光的放大率,即
Figure PCTCN2020137117-appb-000003
更近一步地,优选收集透镜材料色散较小,使得f Lens-Phosphor≈f Lens-Laser,即激光和荧光有接近的焦点位置。另外一方面,由于一般而言,激光入射第三复眼透镜503角度较小,可以考虑使第三复眼透镜503与第一复眼透镜501之间的距离大于f MLA-Laser,也是减小波长转换装置20上激光光斑大小的一个可选方案。但这种方案也会改变激光通过光学扩散量控制组件的成像位置,使其不同于f Lens-Laser。因此实际设计中,需要综合考虑光学扩散量控制组件与复眼透镜材料的色散关系、第三复眼透镜503与第一复眼透镜501之间的距离,以及复眼透镜的透镜单元的大小。
在一实施方式中,所述合光装置40的反射区位于所述合光装置40的大致中心位置,因所述第一激发光L1光束较为集中,故在通过所述反射区时仅需要较小的反射区面积,故,可以设置所述合光装置40的透射区的面积远大于所述反射区的面积;进一步,所述合光装置40的透射区的面积远大于所述反射区的 面积,也使进入所述合光装置40的反射区的所述第二激发光L2及所述受激光L3尽可能的少,以提高所述第二激发光L2及所述受激光L3的透射率。
在一实施方式中,所述合光装置40的反射区可以为一反射第一激发光L1且透射受激光L3的滤光片/滤光膜/二向色片,以提高所述受激光L3的透射率。
在一实施方式中,所述合光装置40与所述第一复眼透镜501及所述第三复眼透镜503组成等腰直角三角形结构,所述合光装置40作为等腰直角三角形的底边,所述第一复眼透镜501及所述第三复眼透镜503为等腰直角三角形的腰。
在一实施方式中,所述波长转换装置20为一轮盘结构(荧光色轮),包括在轮盘结构上呈扇环形排布的波长转换区段和反射区段,也即所述非波长转换区段为反射区段,通过一驱动装置(如马达)驱动而绕轮盘中轴转动;在另一实施方式中,所述波长转换装置20还可以为荧光色桶/色筒,包括沿桶/筒面环绕分布的波长转换区段和反射区段,色桶/色筒绕其轴线方向旋转,以使不同区段依时序周期性处于激发光的照射下;或者,所述波长转换装置20还可以为荧光色板,包括沿一直线方向依次排布的波长转换区段和反射区段,色板沿该直线方向线性振动,以使不同区段依时序周期性处于激发光的照射下,从而出射时序光。
在一个实施方式中,所述波长转换装置20的波长转换区段包括荧光材料层,该荧光材料层既可以是荧光粉-有机粘接剂层(通过硅胶、环氧树脂等有机粘接剂将分离的荧光粉粘结成层),也可以是荧光粉-无机粘接剂层(通过玻璃等无机粘接剂将分离的荧光粉粘结成层),还可以是荧光陶瓷(包括①以连续的陶瓷作为基质且陶瓷内分布着荧光粉颗粒的结构;②纯相陶瓷掺杂激活剂元素,如Ce掺杂的YAG陶瓷;③在纯相陶瓷掺杂激活剂元素的基础上,在陶瓷内分散设置荧光粉颗粒)。在另一个实施方式中,波长转换区段包括量子点层,通过量子点材料实现光致发光功能。所述波长转换装置20可以只有一个波长转换区段(如黄色波长转换区段),也可以有两个波长转换区段(如绿色波长转换区段和红色波长转换区段),还可以包括两个以上波长转换区段。
在一个实施方式中,波长转换区段设有至少一种颜色的荧光粉。具体地,照明光束为蓝色激光光束,波长转换区段分为绿色波长转换区段、红色波长转换区段。红色波长转换区段设有能够激发产生红光的荧光粉层或者是能够激发产生包含红光波段的荧光粉层。能够激发产生红光波段的荧光粉层可以为黄色荧光粉层,通过激发黄色荧光粉层,产生包含有红光波段的荧光,再通过红色 滤光膜将红色荧光过滤出。为方便说明,能够激发产生红光的荧光粉层或者是能够激发产生包含红光波段的荧光粉层统称为“红色荧光粉层”。绿色波长转换区段设有能够激发产生绿光的荧光粉层或者是能够激发产生包含绿光波段的荧光粉层。能够激发产生绿光波段的荧光粉层可以为黄色荧光粉层,通过激发黄色荧光粉层,产生包含有绿光波段的荧光,再通过绿色滤光膜将绿色荧光过滤出。为方便说明,能够激发产生绿光的荧光粉层或者是能够激发产生包含绿光波段的荧光粉层统称为“绿色荧光粉层”。因此,上述波长转换区段可以设有红色荧光粉层或含有红色荧光粉的荧光层、绿色荧光粉层。蓝色激光光束投射到上述红色波长转换区段,激发产生红色荧光光束,蓝色激光光束投射到上述绿色波长转换区段,激发产生绿色荧光光束。经蓝色激光光束激发产生的红色荧光光束及绿色荧光光束,经所述复眼透镜组50整形成平行光束,产生了三基色光,即红色荧光光束、绿色荧光光束及蓝色激光光束。
需要说明的是,上述技术方案同样适用于双色光源。当产生双色光源的激光器为蓝色激光器和红色激光器时,反射式波长转换装置20(荧光轮)上只需要设置绿色荧光粉层即可;同时,反射式荧光轮的反射区需要根据蓝色激光器和红色激光器的点亮时序对应设置蓝色反射区和红色反射区;蓝色激光和红色激光激发绿色荧光粉,反射式荧光轮激发产生绿色荧光,反射蓝色激光、红色激光,同样能够形成三基色光。此处不再赘述。
在一个实施方式中,所述波长转换装置20的反射区段包括金属反射面,对激发光进行镜面反射。在另一个实施方式中,所述反射区段包括介质反射膜(dielectric reflecting film),对激发光进行镜面反射。在本发明的其他实施方式中,反射区段也可以采用其他的反射结构,对激发光进行反射。
在另一实施方式中,所述波长转换装置20的非波长转换区段也可以为透射区段,此时可以在所述波长转换装置20的透射光路上配合设置光路转折元件将透射光转折至所述复眼透镜组50。
在一些实施方式中,所述光源装置100a至100e还可以包括中继透镜,所述中继透镜可以设置于所述复眼透镜组50出射所述受激光的一侧;所述中继透镜可以为凹透镜、凸透镜、凹透镜组、凸透镜组或其组合等。
请参阅图14,本申请第七实施例还提供一种投影设备200,所述投影设备200包含所述光源装置100、100a至100e中的一个或多个。如图14所示,所述 投影设备200例如还可以包括光调制装置202及镜头装置203,通过将光源装置的出射光投射到光调制装置202的光调制器上,并根据输入的图像信号对该光的空间分布进行调制,经调制后的光经镜头装置203出射形成图像,从而实现投影显示功能。
所述投影设备200可以为例如:教育机、影院机、工程机、微投、激光电视等具有激光荧光光源产品。
本发明的光源装置100、100a至100e也可以应用于图像照明如图像投影灯、交通工具(车船飞机)灯、探照灯、舞台灯等场景。
在本文中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (11)

  1. 一种光源装置,其特征在于,包括:
    光源,用于发射第一激发光;
    波长转换装置,所述波长转换装置包括波长转换区段和非波长转换区段,所述波长转换区段吸收所述第一激发光并出射受激光,所述非波长转换区段接收所述第一激发光后出射第二激发光;
    合光装置,置于所述光源与所述波长转换装置之间,用于将所述第一激发光引导至所述波长转换装置,还用于将所述波长转换装置出射的所述受激光及所述第二激发光引导出射;
    光学扩展量控制组件,用于将所述受激光及所述第二激发光的扩展量进行控制,所述光学扩展量控制组件包括一非球面透镜;和/或
    光束调整元件,置于所述光源的出射光路上,用于对所述第一激发光进行调整。
  2. 如权利要求1所述的光源装置,其特征在于,所述光源装置包括所述光学扩展量控制组件,所述光学扩展量控制组件包括多个透镜,所述非球面透镜为所述多个透镜中的一个,且所述非球面透镜的直径为所述多个透镜中最大的。
  3. 如权利要求2所述的光源装置,其特征在于,所述光学扩展量控制组件的非球面透镜为所述多个透镜中最远离所述波长转换装置的透镜。
  4. 如权利要求1所述的光源装置,其特征在于,所述光源装置包括光束调整元件;所述光束调整元件包括正负透镜组,所述正负透镜组用于减小所述第一激发光的光束直径。
  5. 如权利要求2所述的光源装置,其特征在于,所述正负透镜组包括正透镜和负透镜,所述第一激发光依次经过所述正透镜和所述负透镜,所述正透镜与所述负透镜之间的距离等于所述正透镜的焦距。
  6. 如权利要求1至5任一所述的光源装置,其特征在于,所述光源装置还包 括置于所述波长转换装置的出射光路上的复眼透镜组,所述复眼透镜组包括第一复眼透镜、第二复眼透镜及第三复眼透镜;
    所述第一复眼透镜与所述第二复眼透镜平行设置,所述第三复眼透镜与所述第一复眼透镜相垂直;所述第一复眼透镜与所述第三复眼透镜组成双复眼结构,用于对所述光源发出的所述第一激发光进行匀光后入射到所述波长转换装置;所述第一复眼透镜与所述第二复眼透镜组成双复眼结构,用于对所述受激光及所述第二激发光进行匀光并出射。
  7. 如权利要求6所述的光源装置,其特征在于,所述复眼透镜组整体呈U形设置,所述合光装置位于所述第一复眼透镜和所述第二复眼透镜之间;所述复眼透镜组包括位于所述第一复眼透镜的第一外表面、位于所述第二复眼透镜的第二外表面及位于所述第三复眼透镜的第三外表面;所述第一外表面形成有第一透镜阵列,所述第二外表面形成有第二透镜阵列,所述第三外表面形成有第三透镜阵列。
  8. 如权利要求1所述的光源装置,其特征在于,所述复眼透镜组包括第一三棱镜和第二三棱镜;所述第一三棱镜的长边和所述第二三棱镜的长边拼接设置,拼接的缝隙设置有所述合光装置,所述第一三棱镜的两短边均设置有透镜阵列以形成第一复眼透镜和第三复眼透镜,所述第二棱镜的一短边设置有透镜阵列以形成第二复眼透镜。
  9. 如权利要求6所述的光源装置,其特征在于,所述合光装置设置有反射区,所述反射区用于将自所述第三复眼透镜入射的所述第一激发光反射至所述第一复眼透镜;所述合光装置还设置有透射区,所述透射区包围所述反射区;所述透射区用于将自所述第一复眼透镜出射的所述受激光及所述第二激发光透射至所述第二复眼透镜。
  10. 如权利要求9所述的光源装置,其特征在于,所述反射区为反射所述第一激发光且透射所述受激光的滤光片、滤光膜或二向色片。
  11. 一种投影设备,其特征在于,包括光调制装置及如权利要求1至10任一项所述的光源装置。
PCT/CN2020/137117 2020-01-19 2020-12-17 光源装置及投影设备 WO2021143445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010060192.0 2020-01-19
CN202010060192.0A CN113138523A (zh) 2020-01-19 2020-01-19 光源装置及投影设备

Publications (1)

Publication Number Publication Date
WO2021143445A1 true WO2021143445A1 (zh) 2021-07-22

Family

ID=76808759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137117 WO2021143445A1 (zh) 2020-01-19 2020-12-17 光源装置及投影设备

Country Status (2)

Country Link
CN (1) CN113138523A (zh)
WO (1) WO2021143445A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253197A1 (en) * 2006-05-01 2007-11-01 Coretronic Corporation Light-emitting diode light source system
CN107861178A (zh) * 2017-10-10 2018-03-30 青岛海信电器股份有限公司 复眼透镜组及应用其的投影装置
CN108008593A (zh) * 2016-10-28 2018-05-08 深圳市光峰光电技术有限公司 光源系统及显示设备
CN207457687U (zh) * 2017-09-26 2018-06-05 深圳市光峰光电技术有限公司 光源系统及投影设备
CN108572497A (zh) * 2017-03-14 2018-09-25 深圳市光峰光电技术有限公司 光源装置及投影系统
CN109164589A (zh) * 2018-09-18 2019-01-08 无锡视美乐激光显示科技有限公司 一种分光合光装置及光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253197A1 (en) * 2006-05-01 2007-11-01 Coretronic Corporation Light-emitting diode light source system
CN108008593A (zh) * 2016-10-28 2018-05-08 深圳市光峰光电技术有限公司 光源系统及显示设备
CN108572497A (zh) * 2017-03-14 2018-09-25 深圳市光峰光电技术有限公司 光源装置及投影系统
CN207457687U (zh) * 2017-09-26 2018-06-05 深圳市光峰光电技术有限公司 光源系统及投影设备
CN107861178A (zh) * 2017-10-10 2018-03-30 青岛海信电器股份有限公司 复眼透镜组及应用其的投影装置
CN109164589A (zh) * 2018-09-18 2019-01-08 无锡视美乐激光显示科技有限公司 一种分光合光装置及光源系统

Also Published As

Publication number Publication date
CN113138523A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
US10845694B2 (en) Light source apparatus and projection system
US11243460B2 (en) Light source device and projection system
CN109557752B (zh) 光源系统及投影装置
US8573779B2 (en) Lighting device with plural light sources illuminating distinct regions of integrator
CN1608228A (zh) 具有改善的彩色平衡的图像投影系统
WO2020110464A1 (en) Light source optical system, light source device, and image projection apparatus
US11537037B2 (en) Light source device, image projection apparatus, and light source optical system
JP2017111287A (ja) 投射装置
CN118119890A (zh) 激光投影设备
US20100321596A1 (en) Projection optical system and projection display unit using the same
CN114911123A (zh) 激光光源系统和投影设备
WO2021259276A1 (zh) 光源组件和投影设备
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
CN212207949U (zh) 照明系统与投影装置
WO2021105790A1 (en) Light-source optical system, light-source device, and image display apparatus
JP2017053876A (ja) 投写型画像表示装置
WO2021143445A1 (zh) 光源装置及投影设备
WO2021259268A1 (zh) 光源组件和投影设备
WO2021259274A1 (zh) 光源组件和投影设备
WO2021259270A1 (zh) 光源组件和投影设备
CN206352734U (zh) Rgb全激光光源模组
CN218957014U (zh) 激光光源及激光投影设备
WO2021039752A1 (ja) 光源照明装置及び投写型画像表示装置
US12130544B2 (en) Light-source optical system, light-source device, and image display apparatus
CN221039763U (zh) 光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913906

Country of ref document: EP

Kind code of ref document: A1