WO2016002023A1 - 熱源装置及びその熱源装置を備えた熱源システム - Google Patents
熱源装置及びその熱源装置を備えた熱源システム Download PDFInfo
- Publication number
- WO2016002023A1 WO2016002023A1 PCT/JP2014/067620 JP2014067620W WO2016002023A1 WO 2016002023 A1 WO2016002023 A1 WO 2016002023A1 JP 2014067620 W JP2014067620 W JP 2014067620W WO 2016002023 A1 WO2016002023 A1 WO 2016002023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- heat source
- heat medium
- machine room
- source device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/26—Refrigerant piping
- F24F1/28—Refrigerant piping for connecting several separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/022—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/26—Refrigerant piping
- F24F1/30—Refrigerant piping for use inside the separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/36—Modules, e.g. for an easy mounting or transport
Definitions
- the present invention relates to a heat source device that supplies cold / hot heat to a heat medium such as cold / hot water and brine, and a heat source system including the heat source device.
- the heat source device refers to a device that generates cold water or hot water mainly using a heat pump refrigeration cycle.
- Cold water and hot water refer to a heat medium generated by heat exchange in an evaporator or condenser of a refrigeration cycle (see, for example, Patent Document 1).
- a plurality of heat source devices are installed, and each heat medium heat exchanger is installed. The heat medium connected to the heat medium pipe and heated or cooled by each heat source device may be collected in the heat medium pipe.
- a first heat pump device in which a heat exchanger is disposed in the vicinity of one of the left and right side surfaces, a compressor is disposed in the vicinity of the other side surface, and an inlet / outlet pipe joint is installed on one side surface, and a second heat pump
- the compressor, the heat exchanger, the refrigerant circuit, and the inlet / outlet pipe joint that comprise the second heat pump device are approximately 180 degrees with respect to the normal of the first heat pump device passing through the center of the bottom surface of the first heat pump device.
- the first and second heat pump devices 1A and 1B are arranged in a rotated manner, and at least one set is arranged with the side surfaces having the inlet / outlet pipe joints facing each other.
- JP 2013-29215 A JP 2008-267724 A (summary, FIGS. 1 to 5)
- the present invention has been made to solve such problems.
- the heat source device is configured in a compact manner, and simplifies the handling and storage of the cold / hot water piping when the heat source device is installed on the rooftop or machine room. It is an object of the present invention to provide a heat source device capable of minimizing the installation space and reducing labor in field construction and a heat source system including the heat source device.
- a heat source device includes a refrigeration cycle in which a compressor, a heat source heat exchanger, an expansion valve, and a heat medium heat exchanger are connected, and includes at least a heat exchange chamber that houses the heat source heat exchanger, A heat source device having a compressor and a heat chamber heat exchanger.
- a heat medium pipe is connected to the heat medium heat exchanger, and one end portion of the heat medium pipe is placed in the machine room. The other end of the heat medium pipe is located outside the machine room.
- one end of the heat medium pipe is arranged in the machine room, and the other end of the heat medium pipe is arranged outside the machine room, so that the heat source device can be placed on the roof or machine room.
- the installation and installation of the heat medium piping during installation can be simplified, the installation space can be minimized, and the labor for on-site construction can be reduced.
- FIG. 2 is a configuration diagram illustrating a thermal circuit of the heat source device according to Embodiment 1.
- FIG. 2 is a side sectional view of a single unit of the heat source device according to Embodiment 1.
- FIG. FIG. 6 is a front sectional view of a single heat source device in another example according to Embodiment 1.
- 3 is a perspective view of a condenser of the heat source device according to Embodiment 1.
- FIG. It is the block diagram which showed the thermal circuit at the time of connecting the heat source apparatus which concerns on Embodiment 1 in multiple numbers. It is side surface sectional drawing at the time of connecting the heat source apparatus which concerns on Embodiment 1 in multiple numbers.
- the heat source device RS of the present invention functions as a heat source for the cold / hot water supply system.
- generates cold water with heat source apparatus RS is mainly demonstrated.
- FIG. 1 is a configuration diagram illustrating a thermal circuit of the heat source device according to the first embodiment.
- FIG. 2 is a side sectional view of a single unit of the heat source device according to the first embodiment.
- FIG. 3 is a front sectional view of a single heat source device according to another example of the first embodiment.
- the heat source device RS according to Embodiment 1 has a built-in thermal circuit as shown in FIG.
- the thermal circuit has a refrigeration cycle device, and is configured by connecting the refrigerant through the compressor 1, the condenser 2, the air-cooled condenser blower 3, the expansion valve 4, and the evaporator 5 with refrigerant piping in order. .
- a chilled water inlet pipe 6 a and a chilled water outlet pipe 6 b in the chilled water pipe 6 are connected to the evaporator 5 of the refrigeration cycle apparatus.
- the heat source device RS is provided with a machine room 10 having a substantially rectangular parallelepiped shape in which a compressor 1, an evaporator 5, a cold water pipe 6 and the like are housed.
- a heat exchange chamber 11 is formed above the machine room 10 so as to expand upward in a side view.
- the heat exchange chamber 11 is provided with a pair of condensers 2 so that the upper side is widened in a side view.
- the upper surface of the heat exchange chamber 11 is closed by a top plate 11a, and an air-cooled condenser blower 3 for exhausting air in the heat exchange chamber is installed on the top plate 11a.
- the cold water pipe 6 connected to the evaporator 5 is disposed so as to penetrate the machine room 10 in the horizontal direction in a side view as shown in FIGS.
- one end of each of the cold water inlet pipe 6a and the cold water outlet pipe 6b is provided at a position protruding from the machine room 10 on one side of the side part 10a facing the machine room 10
- the other ends of the inlet pipe 6a and the cold water outlet pipe 6b are provided at positions stored in the machine room 10 on the other side of the side face 10a facing each other.
- the heat source device RS can be easily installed even on a rooftop or a machine room.
- FIG. 4 is a perspective view of the condenser of the heat source device according to Embodiment 1.
- the condenser 2 is, for example, a fin tube heat constituted by a flat tube 2 a in which a plurality of refrigerant flow paths 2 b are open and a flat plate-like heat radiation fin 2 c joined between the flat tubes 2 a. It is an exchanger.
- the flat tube 2a and the radiation fin 2c are made of, for example, copper or aluminum and are thermally connected. Since the flat tube 2a can be installed with a step pitch smaller than that of the circular tube, it can be mounted at a high density in the fin tube heat exchanger.
- the following formula 1 shows the heat exchange performance (Ao ⁇ K) of the entire heat exchanger.
- the heat transfer area on the air side is Ao
- the air-side heat exchange performance (Ao / ⁇ ao) is defined as follows. If the air-side heat transfer area is Ao and the air-side heat transfer coefficient is ⁇ ao, the installation density of the flat tubes 2a increases. Ao increases and improves.
- the contact heat exchange performance (Ac ⁇ ⁇ c) between the radiating fin 2c and the flat tube 2a is improved by increasing the heat transfer coefficient ⁇ c because of brazing each other.
- the pipe heat exchange performance (Ai ⁇ ⁇ i) is such that, when the heat transfer area on the refrigerant side is Ai and the heat transfer coefficient on the refrigerant side is ⁇ i, the installation density of the flat tubes 2a increases, and the refrigerant flow path 2b Since a plurality are provided, the heat transfer area Ai is increased and improved.
- the size of the condenser 2 can be reduced as compared with a heat exchanger having the same heat exchange capacity using a circular tube as a heat transfer tube.
- the refrigerant container such as an accumulator can be downsized, and the heat source device RS can be downsized. For this reason, installation of the heat source device RS becomes easy even on a rooftop or a machine room where installation space is limited.
- the air-cooled condenser blower 3 when the condenser 2 becomes large, the air-cooled condenser blower 3 and the condenser 2 are increased. Although the distance from the lower stage increases and the heat exchange air volume in the lower stage decreases and the performance deteriorates, the size of the condenser 2 is reduced to maintain the heat exchange air volume distribution within the specified value, thereby exchanging heat. It is possible to suppress a decrease in performance.
- the cold water pump 7 installed in the cold water pipe 6 to which the heat source device RS is connected is driven.
- the compressor 1 mounted on the heat source device RS and the air-cooled condenser blower 3 start driving.
- the compressor 1 compresses a low-pressure gas refrigerant into a high-pressure gas refrigerant.
- the gas from the compressor 1 is sent to the condenser 2 via an oil separator (not shown).
- the format of the compressor 1 is not particularly limited. For example, a scroll compressor, a rotary compressor, a screw compressor, or the like is used.
- the compressor 1 is configured to be capable of capacity control, for example, by a combination of the number control by a plurality of compressors and the rotation speed control of a single compressor.
- the condenser 2 cools and liquefies the high-pressure gas refrigerant sent from the compressor 1 by exchanging heat with the outside air.
- the condenser 2 is an air-cooled heat exchanger including an air-cooled condenser blower 3.
- the air-cooled condenser blower 3 When the air-cooled condenser blower 3 is driven, the outside air passes through the condenser 2 to exchange heat and flows into the heat exchange chamber 11. And it exhausts upwards with the air-cooling condenser air blower 3 installed in the top plate 11a of the heat exchange chamber 11.
- the liquid refrigerant condensed in the condenser 2 is sent to the expansion valve 4.
- the expansion valve 4 performs a closing function, a flow rate control function by adjusting the opening degree according to the cooling load of the evaporator 5, and a decompression expansion function with a single valve.
- the expansion valve 4 includes a temperature sensor (not shown) and a pressure sensor (not shown) for detecting the refrigerant temperature and refrigerant pressure on the downstream side of the evaporator 5, and a controller that inputs signals from these sensors.
- the opening degree is controlled so that the degree of superheat of the outlet refrigerant is constant.
- the expansion valve 4 reduces the pressure of the refrigerant by allowing the liquid refrigerant condensed in the condenser 2 to pass therethrough.
- the evaporator 5 is a heat exchanger which takes in heat from secondary side water (heat medium) by evaporation of a refrigerant
- the evaporator 5 is an indirect heat exchanger having a refrigerant channel and a water channel and exchanging heat between the refrigerant and water in a non-contact manner.
- the evaporator 5 of the present embodiment employs, for example, a plate heat exchanger.
- the refrigerant evaporated in the evaporator 5 is returned to the compressor 1 through an accumulator (not shown).
- the heat circuit of the heat source device RS of the present embodiment is configured as described above to supply cold water to the cold / hot water supply system.
- the configuration in which cold water is extracted from the heat source device RS as a heat medium has been described.
- a four-way valve is provided in the refrigeration cycle device, and the four-way valve is switched to form a heat pump cycle.
- it is good also as a structure which makes the condenser 2 function as an evaporator, makes the evaporator 5 function as a condenser, and takes out warm water.
- FIG. 5 is a configuration diagram showing a thermal circuit when a plurality of heat source devices according to Embodiment 1 are connected.
- FIG. 6 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 1 are connected.
- FIG. 7 is a front sectional view when a plurality of heat source devices in another example according to Embodiment 1 are connected.
- the heat source device RS according to Embodiment 1 can be used by connecting a plurality of units as shown in FIG.
- Each heat source device RS includes a thermal circuit portion surrounded by a dashed line as one unit.
- the cold water piping 6 is connected and functions as a thermal circuit. That is, the evaporator 5 is connected in parallel to the cold water inlet pipe 6a, and the cold water flowing from the cold water inlet pipe 6a is branched and cooled by each evaporator 5.
- the cooled cold water flows into the cold water outlet pipe 6b, merges for each heat source device RS, and is discharged from the most downstream heat source device RS.
- the connection position of the cold water piping 6 when a plurality of heat source devices RS are connected will be described.
- the chilled water pipe 6 is disposed so as to penetrate the machine room 10 of the heat source device RS in the horizontal direction in a side view, and both ends of the chilled water inlet pipe 6 a and the chilled water outlet pipe 6 b are opposed to the machine room 10.
- the other side of the chilled water inlet pipe 6a and the chilled water outlet pipe 6b is provided at a position projecting out of the machine room 10 on one surface side of the side surface part 10a. It is provided at a position stored in the inside.
- connection part 6c of the cold water pipe 6 is located in the machine room 10 as shown in FIG.
- a general steel pipe joint can be adopted.
- a flange joint or the like can be appropriately selected. Is possible.
- a plug stop is applied to end portions of the cold water inlet pipe 6a and the cold water outlet pipe 6b to which the cold water pipe 6 is not connected from the outside so that the cold water as a heat medium does not flow out, and a water stop treatment is performed.
- connection portion 6c a flexible joint having flexibility can be interposed in the connection portion 6c.
- the flexible joint may be a rubber bellows shape or a well-known stainless steel braid shape.
- connection portion 6c of the chilled water pipe 6 is stored in advance, the connection portion 6c having a large diameter is not exposed outside the heat source device RS, and around the heat source device RS. Piping fits better. Moreover, it is not necessary to construct the cold water pipe 6 on the outside of the heat source device RS, and the installation space can be minimized.
- connection part 6c of the cold water piping 6 is set to the position prescribed
- the heat source devices RS can surely exhibit the rated capacity. Furthermore, since the cold water piping 6 protrudes on the one side surface of the machine room 10, the installation direction of the heat source device RS can be easily determined during installation. Further, by interposing the flexible joint in the connection portion 6c, even when the pipe axis is slightly shifted when connecting the cold water pipes 6 of the adjacent heat source devices RS, the position adjustment is performed within the flexible joint flexibility range. Can do.
- the chilled water piping in the front view direction of the heat source apparatus RS as shown in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
- FIG. The heat source device RS according to the second embodiment has the same basic configuration as the heat source device RS according to the first embodiment, but the position of the end of the cold water pipe 6 with respect to the machine room 10 is different. Therefore, the position of the edge part of the cold water piping 6 of the heat source apparatus RS which concerns on Embodiment 2 is demonstrated.
- FIG. 8 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 2 are connected.
- FIG. 9 is a front cross-sectional view when a plurality of heat source devices in another example according to Embodiment 2 are connected. In FIG.
- one end side of the cold water inlet pipe 6 a protrudes from the left side surface of the machine room 10 in the drawing, and the other end side of the cold water inlet pipe 6 a is located in the machine room 10.
- one end side of the cold water outlet pipe 6 b is located in the machine room 10 in the drawing, and the other end side of the cold water outlet pipe 6 b protrudes from the right side surface of the machine room 10. That is, the cold water inlet pipe 6 a and the cold water outlet pipe 6 b have different directions protruding from the side surface of the machine room 10.
- connection portion 6c of the cold water pipe 6 is stored in advance, the connection portion 6c having a large diameter is exposed to the outside of the heat source device RS as in the first embodiment.
- the piping around the heat source device RS fits better.
- the most downstream heat source apparatus RS has a configuration in which only the chilled water outlet pipe 6b protrudes from the machine room 10.
- the cold water pipe 6 on the inflow side and the cold water pipe 6 on the outflow side can be connected to each from the outside of the machine room 10. It is not necessary to connect the chilled water pipe 6 on the outflow side to the heat source apparatus RS on the most upstream side, and it is not necessary to connect the chilled water pipe 6 on the inflow side to the heat source apparatus RS on the most downstream side.
- the connecting portion 6 c of the cold water pipe 6 is not exposed to the outside of the machine room 10. Therefore, the fitting of the piping is good, and the connecting portion 6c of the cold water piping 6 that is unnecessary in terms of design is not visible.
- the chilled water piping in the front view direction of the heat source device RS as shown in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
- FIG. 10 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 3 are connected.
- FIG. 11 is a front sectional view when a plurality of heat source devices in another example according to Embodiment 3 are connected.
- both ends of the cold water inlet pipe 6a are located in the machine room 10 on the drawing.
- both ends of the cold water outlet pipe 6b are located in the machine room 10 on the drawing. That is, all four ends of the cold water inlet pipe 6 a and the cold water outlet pipe 6 b are arranged in the machine room 10.
- Adjacent connecting portions 6c are connected to each other by a short tube 6d interposed therebetween.
- a flexible joint having flexibility instead of the short pipe 6d.
- As the flexible joint a rubber bellows shape or a well-known stainless steel braid shape can be adopted.
- the connection portion 6c having a large diameter is exposed to the outside of the heat source device RS as in the first embodiment.
- the piping around the heat source device RS fits better.
- the position of the flexible joint can be adjusted within the flexibility range even when the pipe axis is slightly displaced when connecting the cold water pipes 6 of the adjacent heat source devices RS. Can do.
- the chilled water piping in the front view direction of the heat source device RS as illustrated in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
- the heat source devices RS according to the first to third embodiments are appropriately combined and installed.
- a heat source system may be used.
- the condenser 2 described in the first to third embodiments corresponds to the heat source heat exchanger of the present invention.
- the evaporator 5 corresponds to a heat medium heat exchanger
- the cold water pipe 6 corresponds to a heat medium pipe
- the side surface portion 10a corresponds to a side wall portion.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
また、このような熱源装置においては、熱源装置1台の能力を超える量の熱媒体を加熱又は冷却する必要が有る場合、複数の熱源装置を複数台設置し、各々の熱媒体熱交換器を熱媒体配管に接続し、各々の熱源装置で加熱又は冷却された熱媒体を熱媒体配管に集約することがある。
本発明の熱源装置RSは、冷温水供給システムの熱源として機能している。
以下、熱源装置RSにより冷水を生成する構成を主に説明する。
図2は、実施の形態1に係る熱源装置の単体の側面断面図である。
図3は、実施の形態1に係る別の例における熱源装置の単体の正面断面図である。
実施の形態1に係る熱源装置RSは、図1に示すような熱回路を内蔵している。熱回路は、冷凍サイクル装置を有し、圧縮機1、凝縮器2、空冷凝縮器用送風機3、膨張弁4、蒸発器5を冷媒が順に循環するように冷媒配管で接続して構成されている。冷凍サイクル装置の蒸発器5には、冷水配管6における冷水入口配管6aと冷水出口配管6bとが接続されている。
図4は、実施の形態1に係る熱源装置の凝縮器の斜視図である。
凝縮器2は、図4に示すように、例えば複数の冷媒流路2bが開口する扁平管2aと、扁平管2aの間に接合された平板状の放熱フィン2cとにより構成されたフィンチューブ熱交換器である。扁平管2aと放熱フィン2cとは、例えば銅やアルミにより形成され、熱的に接続されている。
扁平管2aは、円管よりも段ピッチを小さく設置することができるため、フィンチューブ熱交換器内で高密度に実装することが可能である。
1/Ao・K=1/Ao・αao+1/Ac・αc+1/Ai・αi(式1)
さらに、管内熱交換性能(Ai・αi)は、冷媒側の伝熱面積をAi、冷媒側の熱伝達率をαiとすると、扁平管2aの設置密度が高くなり、また、冷媒流路2bが複数設けられるため伝熱面積Aiが大きくなり向上する。
このため、設置スペースに制約のある屋上や機械室内でも熱源装置RSの設置が容易になる。
冷温水供給システムに起動信号が入ると、はじめに熱源装置RSが接続された冷水配管6に設置されている冷水ポンプ7が駆動する。
次に、熱源装置RSに搭載された圧縮機1と空冷凝縮器用送風機3とが駆動をはじめる。
圧縮機1は、低圧のガス冷媒を圧縮して高圧のガス冷媒にする。圧縮機1からのガスは、油分離器(図示省略)を介して凝縮器2へ送られる。圧縮機1は、その形式を特に問わないが、例えばスクロール圧縮機やロータリー圧縮機、スクリュー圧縮機等が用いられる。圧縮機1は、例えば複数台の圧縮機による台数制御と、単独の圧縮機の回転数制御との組合せにより、容量制御を可能に構成されている。
図5は、実施の形態1に係る熱源装置を複数接続した際の熱回路を示した構成図である。
図6は、実施の形態1に係る熱源装置を複数接続した際の側面断面図である。
図7は、実施の形態1に係る別の例における熱源装置を複数接続した際の正面断面図である。
各熱源装置RSの間は、冷水配管6が接続されて熱回路として機能する。すなわち、冷水入口配管6aに対して並列に蒸発器5が接続され、冷水入口配管6aから流入した冷水が分岐して各蒸発器5で冷却される。冷却された冷水は、冷水出口配管6bに流入し、熱源装置RS毎に合流して最も下流側の熱源装置RSから排出される。
上記のように、冷水配管6は、熱源装置RSの機械室10を側面視で水平方向に貫通するように配置され、冷水入口配管6a、冷水出口配管6bの一端部は共に機械室10の対向する側面部10aの一面側において機械室10外に突出した位置に設けられ、また、冷水入口配管6a、冷水出口配管6bの他端部は共に対向する側面部10aの他面側において機械室10内に格納された位置に設けられている。
さらに、フレキシブル継ぎ手を接続部6cに介在させることで、隣接する熱源装置RSの冷水配管6同士を接続する際に多少管軸がずれていてもフレキシブル継ぎ手の可とう性の範囲内で位置の調整をすることができる。
この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
実施の形態2に係る熱源装置RSは、実施の形態1に係る熱源装置RSと基本構成は同じであるが、機械室10に対する冷水配管6の端部の位置が異なる。
よって、実施の形態2に係る熱源装置RSの冷水配管6の端部の位置について説明する。
図8は、実施の形態2に係る熱源装置を複数接続した際の側面断面図である。
図9は、実施の形態2に係る別の例における熱源装置を複数接続した際の正面断面図である。
図8において、冷水入口配管6aの一端側は、図面上の機械室10の左側面から突出しており、冷水入口配管6aの他端側は、機械室10内に位置している。
また、冷水出口配管6bの一端側は、図面上の機械室10内に位置しており、冷水出口配管6bの他端側は、機械室10の右側面から突出している。
すなわち、冷水入口配管6aと冷水出口配管6bとで、機械室10の側面から突出する方向を異ならせている。
この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
実施の形態3に係る熱源装置RSは、実施の形態1に係る熱源装置RSと基本構成は同じであるが、機械室10に対する冷水配管6の端部の位置が異なる。
よって、実施の形態3に係る熱源装置RSの冷水配管6の端部の位置について説明する。
図10は、実施の形態3に係る熱源装置を複数接続した際の側面断面図である。
図11は、実施の形態3に係る別の例における熱源装置を複数接続した際の正面断面図である。
図10において、冷水入口配管6aの両端は、図面上の機械室10内に位置している。
また、冷水出口配管6bの両端も同様には、図面上の機械室10内に位置している。
すなわち、冷水入口配管6aと冷水出口配管6bとの4つの端部を全て機械室10内に配置するものである。
またこの短管6dに代えて可とう性を有するフレキシブル継ぎ手を採用することが可能である。フレキシブル継ぎ手は、ゴム製の蛇腹形状のものや、ステンレス製の編み込み形状の周知のものを採用することできる。
このように、機械室10内に冷水配管6の接続部6cが予め納まるようにスペースを設けることにより、実施の形態1と同様に熱源装置RSの外部に口径の大きい接続部6cが露出することがなく熱源装置RSまわりの配管の納まりが良くなる。
また、フレキシブル継ぎ手を接続部6cに介在させることで、隣接する熱源装置RSの冷水配管6同士を接続する際に多少管軸がずれていてもフレキシブル継ぎ手の可とう性の範囲内で位置の調整をすることができる。
この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
同様に、蒸発器5は、熱媒体熱交換器に相当し、冷水配管6は、熱媒体配管に相当し、側面部10aは、側壁部に相当する。
Claims (9)
- 圧縮機と、熱源熱交換器と、膨張弁と、熱媒体熱交換器とを接続した冷凍サイクルを備え、
少なくとも前記熱源熱交換器を収納する熱交換室と、
少なくとも前記圧縮機と前記熱媒体熱交換器とを収納する機械室と、
を有する熱源装置であって、
前記熱媒体熱交換器には、熱媒体配管が接続され、
前記熱媒体配管の一端部は、前記機械室内に位置し、
前記熱媒体配管の他端部は、前記機械室外に位置している熱源装置。 - 前記熱媒体配管は、第1熱媒体配管と第2熱媒体配管とで構成され、
前記機械室は、対向する第1側壁面と第2側壁面とを有し、
前記第1熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
前記第1熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置し、
前記第2熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
前記第2熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置する
請求項1に記載の熱源装置。 - 前記熱媒体配管は、第1熱媒体配管と第2熱媒体配管とで構成され、
前記機械室は、対向する第1側壁面と第2側壁面とを有し、
前記第1熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
前記第1熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置し、
前記第2熱媒体配管の前記一端部は、前記機械室の前記第1側壁面外に位置し、
前記第2熱媒体配管の前記他端部は、前記機械室の前記第2側壁面内に位置する
請求項1に記載の熱源装置。 - 前記第1熱媒体配管は、前記熱媒体熱交換器に熱媒体を供給する熱媒体入口配管であり、
前記第2熱媒体配管は、前記熱媒体熱交換器から熱交換後の熱媒体を排出する熱媒体出口配管である請求項2または3に記載の熱源装置。 - 前記熱源熱交換器は、伝熱管を扁平管としたフィンチューブ式熱交換器である請求項1~4のいずれか1項に記載の熱源装置。
- 請求項1または請求項1に従属する請求項5に記載された熱源装置を複数接続した熱源システムであって、
前記熱媒体配管の前記一端部と、前記一端部に隣接する前記熱媒体配管の前記他端部とは、接続部にて接続される熱源システム。 - 前記接続部には可とう性を有するフレキシブル継ぎ手が設けられる請求項6に記載の熱源システム。
- 請求項2または3、請求項2または3従属する請求項4または5に記載された熱源装置を複数接続した熱源システムであって、
前記第1熱媒体配管の前記一端部と、該一端部に隣接する前記第1熱媒体配管の前記他端部とは、第1接続部にて接続され、
前記第2熱媒体配管の前記一端部と、該一端部に隣接する前記第2熱媒体配管の前記他端部とは、第2接続部にて接続される熱源システム。 - 前記第1接続部及び第2接続部には、可とう性を有するフレキシブル継ぎ手が設けられる請求項8に記載の熱源システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14896571.8A EP3165849B1 (en) | 2014-07-02 | 2014-07-02 | Heat source device and heat source system provided with heat source device |
JP2016530742A JP6310077B2 (ja) | 2014-07-02 | 2014-07-02 | 熱源システム |
PCT/JP2014/067620 WO2016002023A1 (ja) | 2014-07-02 | 2014-07-02 | 熱源装置及びその熱源装置を備えた熱源システム |
CN201480079900.8A CN106461276A (zh) | 2014-07-02 | 2014-07-02 | 热源装置以及具备该热源装置的热源系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/067620 WO2016002023A1 (ja) | 2014-07-02 | 2014-07-02 | 熱源装置及びその熱源装置を備えた熱源システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002023A1 true WO2016002023A1 (ja) | 2016-01-07 |
Family
ID=55018622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067620 WO2016002023A1 (ja) | 2014-07-02 | 2014-07-02 | 熱源装置及びその熱源装置を備えた熱源システム |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3165849B1 (ja) |
JP (1) | JP6310077B2 (ja) |
CN (1) | CN106461276A (ja) |
WO (1) | WO2016002023A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020035945A1 (ja) * | 2018-08-17 | 2020-02-20 | 三菱電機株式会社 | フリークーリングユニット |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016199238A1 (ja) * | 2015-06-10 | 2016-12-15 | 三菱電機株式会社 | 冷凍サイクル装置及び冷凍サイクルシステム |
JP2019007642A (ja) * | 2017-06-21 | 2019-01-17 | 日立ジョンソンコントロールズ空調株式会社 | 冷凍装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4991876A (en) * | 1989-07-28 | 1991-02-12 | Euroflex, S.A. | Connector assembly for hot water heaters and other appliances |
JPH0812023B2 (ja) * | 1984-07-24 | 1996-02-07 | マルチスタック インターナショナル リミテッド | モジュール式冷凍装置 |
JP2003279194A (ja) * | 2002-03-20 | 2003-10-02 | Denso Corp | 熱交換器 |
US20080127662A1 (en) * | 2006-06-19 | 2008-06-05 | Stanfield Michael E | Method, System, and Apparatus for Modular Central Plant |
US20090151388A1 (en) * | 2007-11-13 | 2009-06-18 | Platt Mark | Dedicated heat recovery chiller |
US20110197617A1 (en) * | 2010-02-16 | 2011-08-18 | Lg Electronics Inc. | Chiller |
US20120131935A1 (en) * | 2009-05-11 | 2012-05-31 | Lg Electronics Inc. | Air conditioner and method for operating same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3692630B2 (ja) * | 1995-10-24 | 2005-09-07 | ダイキン工業株式会社 | 熱搬送装置 |
JP2977809B1 (ja) * | 1998-08-05 | 1999-11-15 | 株式会社移動体通信先端技術研究所 | 冷凍装置 |
JP2009236340A (ja) * | 2008-03-26 | 2009-10-15 | Sanyo Electric Co Ltd | チラーユニット |
US20090242172A1 (en) * | 2008-03-26 | 2009-10-01 | Sanyo Electric Co., Ltd. | Chiller unit |
JP2012247168A (ja) * | 2011-05-31 | 2012-12-13 | Mitsubishi Electric Corp | 冷凍サイクル装置 |
-
2014
- 2014-07-02 WO PCT/JP2014/067620 patent/WO2016002023A1/ja active Application Filing
- 2014-07-02 JP JP2016530742A patent/JP6310077B2/ja active Active
- 2014-07-02 CN CN201480079900.8A patent/CN106461276A/zh active Pending
- 2014-07-02 EP EP14896571.8A patent/EP3165849B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812023B2 (ja) * | 1984-07-24 | 1996-02-07 | マルチスタック インターナショナル リミテッド | モジュール式冷凍装置 |
US4991876A (en) * | 1989-07-28 | 1991-02-12 | Euroflex, S.A. | Connector assembly for hot water heaters and other appliances |
JP2003279194A (ja) * | 2002-03-20 | 2003-10-02 | Denso Corp | 熱交換器 |
US20080127662A1 (en) * | 2006-06-19 | 2008-06-05 | Stanfield Michael E | Method, System, and Apparatus for Modular Central Plant |
US20090151388A1 (en) * | 2007-11-13 | 2009-06-18 | Platt Mark | Dedicated heat recovery chiller |
US20120131935A1 (en) * | 2009-05-11 | 2012-05-31 | Lg Electronics Inc. | Air conditioner and method for operating same |
US20110197617A1 (en) * | 2010-02-16 | 2011-08-18 | Lg Electronics Inc. | Chiller |
Non-Patent Citations (1)
Title |
---|
See also references of EP3165849A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020035945A1 (ja) * | 2018-08-17 | 2020-02-20 | 三菱電機株式会社 | フリークーリングユニット |
Also Published As
Publication number | Publication date |
---|---|
JP6310077B2 (ja) | 2018-04-11 |
EP3165849A1 (en) | 2017-05-10 |
CN106461276A (zh) | 2017-02-22 |
EP3165849B1 (en) | 2023-04-26 |
EP3165849A4 (en) | 2018-02-21 |
JPWO2016002023A1 (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101568200B1 (ko) | 다른 튜브 간격을 갖는 멀티채널 열 교환기 | |
WO2012073746A1 (ja) | 一体型空調システム、その内気ユニット、外気ユニット、積層体 | |
US20080141709A1 (en) | Multi-Block Circuit Multichannel Heat Exchanger | |
KR20180108762A (ko) | 냉장 시스템을 제어하는 시스템 및 방법 | |
WO2013099898A1 (ja) | 冷凍装置 | |
WO2015125743A1 (ja) | 空気調和装置 | |
EP3607252B1 (en) | Chiller system with an economizer module and method of operating such a system | |
JP2014102050A (ja) | 冷凍装置 | |
JP6888102B2 (ja) | 熱交換器ユニットおよび冷凍サイクル装置 | |
WO2014122922A1 (ja) | 暖房システム | |
JP2010501826A (ja) | 通信装備用冷房装置 | |
WO2015125219A1 (ja) | 空気調和装置 | |
JP5831467B2 (ja) | 暖房システム | |
JP6310077B2 (ja) | 熱源システム | |
WO2014115496A1 (ja) | 暖房システム | |
JP2009139012A (ja) | 冷凍空調装置 | |
WO2016151655A1 (ja) | 空気調和装置及びその性能判定方法 | |
JP2010121844A (ja) | 冷凍サイクル装置 | |
WO2018073894A1 (ja) | 冷凍サイクル装置 | |
KR19990046726A (ko) | 열전소자를이용한공기조화기 | |
JP4605725B2 (ja) | 増設凝縮装置及びこれを用いた増設凝縮システム付冷凍サイクル装置 | |
WO2015053168A1 (ja) | 冷凍装置 | |
JP2003222448A (ja) | 高層建築物などの空調装置 | |
KR101423137B1 (ko) | 실외기 없는 난방장치 | |
CN114264002B (zh) | 空调式油烟机、空调模块及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896571 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016530742 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014896571 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014896571 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |