WO2016002023A1 - 熱源装置及びその熱源装置を備えた熱源システム - Google Patents

熱源装置及びその熱源装置を備えた熱源システム Download PDF

Info

Publication number
WO2016002023A1
WO2016002023A1 PCT/JP2014/067620 JP2014067620W WO2016002023A1 WO 2016002023 A1 WO2016002023 A1 WO 2016002023A1 JP 2014067620 W JP2014067620 W JP 2014067620W WO 2016002023 A1 WO2016002023 A1 WO 2016002023A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat source
heat medium
machine room
source device
Prior art date
Application number
PCT/JP2014/067620
Other languages
English (en)
French (fr)
Inventor
和之 石田
靖 大越
拓也 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14896571.8A priority Critical patent/EP3165849B1/en
Priority to JP2016530742A priority patent/JP6310077B2/ja
Priority to PCT/JP2014/067620 priority patent/WO2016002023A1/ja
Priority to CN201480079900.8A priority patent/CN106461276A/zh
Publication of WO2016002023A1 publication Critical patent/WO2016002023A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/28Refrigerant piping for connecting several separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/36Modules, e.g. for an easy mounting or transport

Definitions

  • the present invention relates to a heat source device that supplies cold / hot heat to a heat medium such as cold / hot water and brine, and a heat source system including the heat source device.
  • the heat source device refers to a device that generates cold water or hot water mainly using a heat pump refrigeration cycle.
  • Cold water and hot water refer to a heat medium generated by heat exchange in an evaporator or condenser of a refrigeration cycle (see, for example, Patent Document 1).
  • a plurality of heat source devices are installed, and each heat medium heat exchanger is installed. The heat medium connected to the heat medium pipe and heated or cooled by each heat source device may be collected in the heat medium pipe.
  • a first heat pump device in which a heat exchanger is disposed in the vicinity of one of the left and right side surfaces, a compressor is disposed in the vicinity of the other side surface, and an inlet / outlet pipe joint is installed on one side surface, and a second heat pump
  • the compressor, the heat exchanger, the refrigerant circuit, and the inlet / outlet pipe joint that comprise the second heat pump device are approximately 180 degrees with respect to the normal of the first heat pump device passing through the center of the bottom surface of the first heat pump device.
  • the first and second heat pump devices 1A and 1B are arranged in a rotated manner, and at least one set is arranged with the side surfaces having the inlet / outlet pipe joints facing each other.
  • JP 2013-29215 A JP 2008-267724 A (summary, FIGS. 1 to 5)
  • the present invention has been made to solve such problems.
  • the heat source device is configured in a compact manner, and simplifies the handling and storage of the cold / hot water piping when the heat source device is installed on the rooftop or machine room. It is an object of the present invention to provide a heat source device capable of minimizing the installation space and reducing labor in field construction and a heat source system including the heat source device.
  • a heat source device includes a refrigeration cycle in which a compressor, a heat source heat exchanger, an expansion valve, and a heat medium heat exchanger are connected, and includes at least a heat exchange chamber that houses the heat source heat exchanger, A heat source device having a compressor and a heat chamber heat exchanger.
  • a heat medium pipe is connected to the heat medium heat exchanger, and one end portion of the heat medium pipe is placed in the machine room. The other end of the heat medium pipe is located outside the machine room.
  • one end of the heat medium pipe is arranged in the machine room, and the other end of the heat medium pipe is arranged outside the machine room, so that the heat source device can be placed on the roof or machine room.
  • the installation and installation of the heat medium piping during installation can be simplified, the installation space can be minimized, and the labor for on-site construction can be reduced.
  • FIG. 2 is a configuration diagram illustrating a thermal circuit of the heat source device according to Embodiment 1.
  • FIG. 2 is a side sectional view of a single unit of the heat source device according to Embodiment 1.
  • FIG. FIG. 6 is a front sectional view of a single heat source device in another example according to Embodiment 1.
  • 3 is a perspective view of a condenser of the heat source device according to Embodiment 1.
  • FIG. It is the block diagram which showed the thermal circuit at the time of connecting the heat source apparatus which concerns on Embodiment 1 in multiple numbers. It is side surface sectional drawing at the time of connecting the heat source apparatus which concerns on Embodiment 1 in multiple numbers.
  • the heat source device RS of the present invention functions as a heat source for the cold / hot water supply system.
  • generates cold water with heat source apparatus RS is mainly demonstrated.
  • FIG. 1 is a configuration diagram illustrating a thermal circuit of the heat source device according to the first embodiment.
  • FIG. 2 is a side sectional view of a single unit of the heat source device according to the first embodiment.
  • FIG. 3 is a front sectional view of a single heat source device according to another example of the first embodiment.
  • the heat source device RS according to Embodiment 1 has a built-in thermal circuit as shown in FIG.
  • the thermal circuit has a refrigeration cycle device, and is configured by connecting the refrigerant through the compressor 1, the condenser 2, the air-cooled condenser blower 3, the expansion valve 4, and the evaporator 5 with refrigerant piping in order. .
  • a chilled water inlet pipe 6 a and a chilled water outlet pipe 6 b in the chilled water pipe 6 are connected to the evaporator 5 of the refrigeration cycle apparatus.
  • the heat source device RS is provided with a machine room 10 having a substantially rectangular parallelepiped shape in which a compressor 1, an evaporator 5, a cold water pipe 6 and the like are housed.
  • a heat exchange chamber 11 is formed above the machine room 10 so as to expand upward in a side view.
  • the heat exchange chamber 11 is provided with a pair of condensers 2 so that the upper side is widened in a side view.
  • the upper surface of the heat exchange chamber 11 is closed by a top plate 11a, and an air-cooled condenser blower 3 for exhausting air in the heat exchange chamber is installed on the top plate 11a.
  • the cold water pipe 6 connected to the evaporator 5 is disposed so as to penetrate the machine room 10 in the horizontal direction in a side view as shown in FIGS.
  • one end of each of the cold water inlet pipe 6a and the cold water outlet pipe 6b is provided at a position protruding from the machine room 10 on one side of the side part 10a facing the machine room 10
  • the other ends of the inlet pipe 6a and the cold water outlet pipe 6b are provided at positions stored in the machine room 10 on the other side of the side face 10a facing each other.
  • the heat source device RS can be easily installed even on a rooftop or a machine room.
  • FIG. 4 is a perspective view of the condenser of the heat source device according to Embodiment 1.
  • the condenser 2 is, for example, a fin tube heat constituted by a flat tube 2 a in which a plurality of refrigerant flow paths 2 b are open and a flat plate-like heat radiation fin 2 c joined between the flat tubes 2 a. It is an exchanger.
  • the flat tube 2a and the radiation fin 2c are made of, for example, copper or aluminum and are thermally connected. Since the flat tube 2a can be installed with a step pitch smaller than that of the circular tube, it can be mounted at a high density in the fin tube heat exchanger.
  • the following formula 1 shows the heat exchange performance (Ao ⁇ K) of the entire heat exchanger.
  • the heat transfer area on the air side is Ao
  • the air-side heat exchange performance (Ao / ⁇ ao) is defined as follows. If the air-side heat transfer area is Ao and the air-side heat transfer coefficient is ⁇ ao, the installation density of the flat tubes 2a increases. Ao increases and improves.
  • the contact heat exchange performance (Ac ⁇ ⁇ c) between the radiating fin 2c and the flat tube 2a is improved by increasing the heat transfer coefficient ⁇ c because of brazing each other.
  • the pipe heat exchange performance (Ai ⁇ ⁇ i) is such that, when the heat transfer area on the refrigerant side is Ai and the heat transfer coefficient on the refrigerant side is ⁇ i, the installation density of the flat tubes 2a increases, and the refrigerant flow path 2b Since a plurality are provided, the heat transfer area Ai is increased and improved.
  • the size of the condenser 2 can be reduced as compared with a heat exchanger having the same heat exchange capacity using a circular tube as a heat transfer tube.
  • the refrigerant container such as an accumulator can be downsized, and the heat source device RS can be downsized. For this reason, installation of the heat source device RS becomes easy even on a rooftop or a machine room where installation space is limited.
  • the air-cooled condenser blower 3 when the condenser 2 becomes large, the air-cooled condenser blower 3 and the condenser 2 are increased. Although the distance from the lower stage increases and the heat exchange air volume in the lower stage decreases and the performance deteriorates, the size of the condenser 2 is reduced to maintain the heat exchange air volume distribution within the specified value, thereby exchanging heat. It is possible to suppress a decrease in performance.
  • the cold water pump 7 installed in the cold water pipe 6 to which the heat source device RS is connected is driven.
  • the compressor 1 mounted on the heat source device RS and the air-cooled condenser blower 3 start driving.
  • the compressor 1 compresses a low-pressure gas refrigerant into a high-pressure gas refrigerant.
  • the gas from the compressor 1 is sent to the condenser 2 via an oil separator (not shown).
  • the format of the compressor 1 is not particularly limited. For example, a scroll compressor, a rotary compressor, a screw compressor, or the like is used.
  • the compressor 1 is configured to be capable of capacity control, for example, by a combination of the number control by a plurality of compressors and the rotation speed control of a single compressor.
  • the condenser 2 cools and liquefies the high-pressure gas refrigerant sent from the compressor 1 by exchanging heat with the outside air.
  • the condenser 2 is an air-cooled heat exchanger including an air-cooled condenser blower 3.
  • the air-cooled condenser blower 3 When the air-cooled condenser blower 3 is driven, the outside air passes through the condenser 2 to exchange heat and flows into the heat exchange chamber 11. And it exhausts upwards with the air-cooling condenser air blower 3 installed in the top plate 11a of the heat exchange chamber 11.
  • the liquid refrigerant condensed in the condenser 2 is sent to the expansion valve 4.
  • the expansion valve 4 performs a closing function, a flow rate control function by adjusting the opening degree according to the cooling load of the evaporator 5, and a decompression expansion function with a single valve.
  • the expansion valve 4 includes a temperature sensor (not shown) and a pressure sensor (not shown) for detecting the refrigerant temperature and refrigerant pressure on the downstream side of the evaporator 5, and a controller that inputs signals from these sensors.
  • the opening degree is controlled so that the degree of superheat of the outlet refrigerant is constant.
  • the expansion valve 4 reduces the pressure of the refrigerant by allowing the liquid refrigerant condensed in the condenser 2 to pass therethrough.
  • the evaporator 5 is a heat exchanger which takes in heat from secondary side water (heat medium) by evaporation of a refrigerant
  • the evaporator 5 is an indirect heat exchanger having a refrigerant channel and a water channel and exchanging heat between the refrigerant and water in a non-contact manner.
  • the evaporator 5 of the present embodiment employs, for example, a plate heat exchanger.
  • the refrigerant evaporated in the evaporator 5 is returned to the compressor 1 through an accumulator (not shown).
  • the heat circuit of the heat source device RS of the present embodiment is configured as described above to supply cold water to the cold / hot water supply system.
  • the configuration in which cold water is extracted from the heat source device RS as a heat medium has been described.
  • a four-way valve is provided in the refrigeration cycle device, and the four-way valve is switched to form a heat pump cycle.
  • it is good also as a structure which makes the condenser 2 function as an evaporator, makes the evaporator 5 function as a condenser, and takes out warm water.
  • FIG. 5 is a configuration diagram showing a thermal circuit when a plurality of heat source devices according to Embodiment 1 are connected.
  • FIG. 6 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 1 are connected.
  • FIG. 7 is a front sectional view when a plurality of heat source devices in another example according to Embodiment 1 are connected.
  • the heat source device RS according to Embodiment 1 can be used by connecting a plurality of units as shown in FIG.
  • Each heat source device RS includes a thermal circuit portion surrounded by a dashed line as one unit.
  • the cold water piping 6 is connected and functions as a thermal circuit. That is, the evaporator 5 is connected in parallel to the cold water inlet pipe 6a, and the cold water flowing from the cold water inlet pipe 6a is branched and cooled by each evaporator 5.
  • the cooled cold water flows into the cold water outlet pipe 6b, merges for each heat source device RS, and is discharged from the most downstream heat source device RS.
  • the connection position of the cold water piping 6 when a plurality of heat source devices RS are connected will be described.
  • the chilled water pipe 6 is disposed so as to penetrate the machine room 10 of the heat source device RS in the horizontal direction in a side view, and both ends of the chilled water inlet pipe 6 a and the chilled water outlet pipe 6 b are opposed to the machine room 10.
  • the other side of the chilled water inlet pipe 6a and the chilled water outlet pipe 6b is provided at a position projecting out of the machine room 10 on one surface side of the side surface part 10a. It is provided at a position stored in the inside.
  • connection part 6c of the cold water pipe 6 is located in the machine room 10 as shown in FIG.
  • a general steel pipe joint can be adopted.
  • a flange joint or the like can be appropriately selected. Is possible.
  • a plug stop is applied to end portions of the cold water inlet pipe 6a and the cold water outlet pipe 6b to which the cold water pipe 6 is not connected from the outside so that the cold water as a heat medium does not flow out, and a water stop treatment is performed.
  • connection portion 6c a flexible joint having flexibility can be interposed in the connection portion 6c.
  • the flexible joint may be a rubber bellows shape or a well-known stainless steel braid shape.
  • connection portion 6c of the chilled water pipe 6 is stored in advance, the connection portion 6c having a large diameter is not exposed outside the heat source device RS, and around the heat source device RS. Piping fits better. Moreover, it is not necessary to construct the cold water pipe 6 on the outside of the heat source device RS, and the installation space can be minimized.
  • connection part 6c of the cold water piping 6 is set to the position prescribed
  • the heat source devices RS can surely exhibit the rated capacity. Furthermore, since the cold water piping 6 protrudes on the one side surface of the machine room 10, the installation direction of the heat source device RS can be easily determined during installation. Further, by interposing the flexible joint in the connection portion 6c, even when the pipe axis is slightly shifted when connecting the cold water pipes 6 of the adjacent heat source devices RS, the position adjustment is performed within the flexible joint flexibility range. Can do.
  • the chilled water piping in the front view direction of the heat source apparatus RS as shown in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
  • FIG. The heat source device RS according to the second embodiment has the same basic configuration as the heat source device RS according to the first embodiment, but the position of the end of the cold water pipe 6 with respect to the machine room 10 is different. Therefore, the position of the edge part of the cold water piping 6 of the heat source apparatus RS which concerns on Embodiment 2 is demonstrated.
  • FIG. 8 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 2 are connected.
  • FIG. 9 is a front cross-sectional view when a plurality of heat source devices in another example according to Embodiment 2 are connected. In FIG.
  • one end side of the cold water inlet pipe 6 a protrudes from the left side surface of the machine room 10 in the drawing, and the other end side of the cold water inlet pipe 6 a is located in the machine room 10.
  • one end side of the cold water outlet pipe 6 b is located in the machine room 10 in the drawing, and the other end side of the cold water outlet pipe 6 b protrudes from the right side surface of the machine room 10. That is, the cold water inlet pipe 6 a and the cold water outlet pipe 6 b have different directions protruding from the side surface of the machine room 10.
  • connection portion 6c of the cold water pipe 6 is stored in advance, the connection portion 6c having a large diameter is exposed to the outside of the heat source device RS as in the first embodiment.
  • the piping around the heat source device RS fits better.
  • the most downstream heat source apparatus RS has a configuration in which only the chilled water outlet pipe 6b protrudes from the machine room 10.
  • the cold water pipe 6 on the inflow side and the cold water pipe 6 on the outflow side can be connected to each from the outside of the machine room 10. It is not necessary to connect the chilled water pipe 6 on the outflow side to the heat source apparatus RS on the most upstream side, and it is not necessary to connect the chilled water pipe 6 on the inflow side to the heat source apparatus RS on the most downstream side.
  • the connecting portion 6 c of the cold water pipe 6 is not exposed to the outside of the machine room 10. Therefore, the fitting of the piping is good, and the connecting portion 6c of the cold water piping 6 that is unnecessary in terms of design is not visible.
  • the chilled water piping in the front view direction of the heat source device RS as shown in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
  • FIG. 10 is a side cross-sectional view when a plurality of heat source devices according to Embodiment 3 are connected.
  • FIG. 11 is a front sectional view when a plurality of heat source devices in another example according to Embodiment 3 are connected.
  • both ends of the cold water inlet pipe 6a are located in the machine room 10 on the drawing.
  • both ends of the cold water outlet pipe 6b are located in the machine room 10 on the drawing. That is, all four ends of the cold water inlet pipe 6 a and the cold water outlet pipe 6 b are arranged in the machine room 10.
  • Adjacent connecting portions 6c are connected to each other by a short tube 6d interposed therebetween.
  • a flexible joint having flexibility instead of the short pipe 6d.
  • As the flexible joint a rubber bellows shape or a well-known stainless steel braid shape can be adopted.
  • the connection portion 6c having a large diameter is exposed to the outside of the heat source device RS as in the first embodiment.
  • the piping around the heat source device RS fits better.
  • the position of the flexible joint can be adjusted within the flexibility range even when the pipe axis is slightly displaced when connecting the cold water pipes 6 of the adjacent heat source devices RS. Can do.
  • the chilled water piping in the front view direction of the heat source device RS as illustrated in FIG. 6 may be configured to penetrate the machine room 10. Also in this case, since the connection part 6c is arrange
  • the heat source devices RS according to the first to third embodiments are appropriately combined and installed.
  • a heat source system may be used.
  • the condenser 2 described in the first to third embodiments corresponds to the heat source heat exchanger of the present invention.
  • the evaporator 5 corresponds to a heat medium heat exchanger
  • the cold water pipe 6 corresponds to a heat medium pipe
  • the side surface portion 10a corresponds to a side wall portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 圧縮機と、熱源熱交換器と、膨張弁と、熱媒体熱交換器とを接続した冷凍サイクルを備え、少なくとも熱源熱交換器を収納する熱交換室と、少なくとも圧縮機と熱媒体熱交換器とを収納する機械室と、を有する熱源装置であって、熱媒体熱交換器には、熱媒体配管が接続され、熱媒体配管の一端部は、機械室内に位置し、熱媒体配管の他端部は、機械室外に位置している。

Description

熱源装置及びその熱源装置を備えた熱源システム
 本発明は、例えば冷温水やブライン等の熱媒体に冷温熱を供給する熱源装置及びその熱源装置を備えた熱源システムに関するものである。
 従来、オフィスビルなどの建物において、空気調和機を各階に設置し、これらの空気調和機に熱源装置から冷水や温水等の熱媒体を供給して、空調空気を生成し空調対象室に供給する冷温水供給システムが広く採用されている。ここで、熱源装置とは、主にヒートポンプ式冷凍サイクルを用いて冷水または温水を生成する装置を指す。また、冷水、温水とは冷凍サイクルの蒸発器または凝縮器で熱交換して生成される熱媒体を指す(例えば特許文献1を参照)。
 また、このような熱源装置においては、熱源装置1台の能力を超える量の熱媒体を加熱又は冷却する必要が有る場合、複数の熱源装置を複数台設置し、各々の熱媒体熱交換器を熱媒体配管に接続し、各々の熱源装置で加熱又は冷却された熱媒体を熱媒体配管に集約することがある。
 このように複数の熱源装置を連結設置する場合、各熱源装置と熱媒体配管の接続工事における省工事化(工事工数の削減)や、設置スペースの省スペース化が課題となる。このため、接続工事の省工事化や設置スペースの省スペース化を図った従来の熱源装置として、例えば「ヒートポンプ装置1の左右に出入口配管継ぎ手を設置する。または、操作部を設置した側面に隣接した左右側面の一方の側面の近傍に熱交換器を配し、他方の側面の近傍に圧縮機を配し、出入口配管継ぎ手を一方の側面に設置した第1のヒートポンプ装置と、第2のヒートポンプ装置を備え、第2のヒートポンプ装置を構成する圧縮機、熱交換器、冷媒回路、出入口配管継ぎ手は、第1のヒートポンプ装置のそれらを第1のヒートポンプ装置底面中心を通る法線に関してほぼ180度回転させた態様に配置されており、それら第1と第2のヒートポンプ装置1A,1Bを出入口配管継ぎ手を有する側面を向かい合わせて少なくとも1組配置する。」という構成のものが提案されている(特許文献2を参照)。
特開2013-29215号公報 特開2008-267724号公報(要約、図1~5)
 特許文献2に記載の熱源装置を用いることにより、各熱源装置を接続する熱媒体配管の長さを削減することが可能となる。このため、設置スペースの省スペース化に対して一定の効果が得られるようになった。しかしながら、特許文献2に記載の熱源装置は、熱媒体熱交換器の接続口がケーシングの外部に突出しており、当該接続口と熱媒体配管との接続はケーシングの外部となっている。したがって、各熱源装置を接続する熱媒体配管が熱源装置の外部に設置されることとなるため、特に冷温水を送水する口径の大きい冷温水配管の取り回しや納まりについて現場施工での工夫が必要となり、熱源装置の設置に制約を与えてしまう問題があった。また、特許文献2に記載の熱源装置は、各熱源装置を接続する熱媒体配管が熱源装置の外部に設置されることとなるため、設置現場での熱媒体配管の接続工事の工数はあまり削減されず、依然として省工事化が要望されているという課題があった。
 本発明は、このような問題点を解決するためになされたもので、熱源機器をコンパクトに構成するとともに、熱源機器を屋上や機械室に設置する際の冷温水配管の取り回しや納まりを簡易化して設置スペースの最小化を図り、また、現場施工での手間を軽減することが可能な熱源装置及びその熱源装置を備えた熱源システムを提供することを目的とする。
 本発明に係る熱源装置は、圧縮機と、熱源熱交換器と、膨張弁と、熱媒体熱交換器とを接続した冷凍サイクルを備え、少なくとも熱源熱交換器を収納する熱交換室と、少なくとも圧縮機と熱媒体熱交換器とを収納する機械室と、を有する熱源装置であって、熱媒体熱交換器には、熱媒体配管が接続され、熱媒体配管の一端部は、機械室内に位置し、熱媒体配管の他端部は、機械室外に位置するものである。
 本発明に係る熱源装置によれば、熱媒体配管の一端部は、機械室内に配置され、熱媒体配管の他端部は、機械室外に配置されているため、熱源機器を屋上や機械室に設置する際の熱媒体配管の取り回しや納まりを簡易化して設置スペースの最小化を図り、また、現場施工での手間を軽減することができる。
実施の形態1に係る熱源装置の熱回路を示した構成図である。 実施の形態1に係る熱源装置の単体の側面断面図である。 実施の形態1に係る別の例における熱源装置の単体の正面断面図である。 実施の形態1に係る熱源装置の凝縮器の斜視図である。 実施の形態1に係る熱源装置を複数接続した際の熱回路を示した構成図である。 実施の形態1に係る熱源装置を複数接続した際の側面断面図である。 実施の形態1に係る別の例における熱源装置を複数接続した際の正面断面図である。 実施の形態2に係る熱源装置を複数接続した際の側面断面図である。 実施の形態2に係る別の例における熱源装置を複数接続した際の正面断面図である。 実施の形態3に係る熱源装置を複数接続した際の側面断面図である。 実施の形態3に係る別の例における熱源装置を複数接続した際の正面断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。
 本発明の熱源装置RSは、冷温水供給システムの熱源として機能している。
 以下、熱源装置RSにより冷水を生成する構成を主に説明する。
 図1は、実施の形態1に係る熱源装置の熱回路を示した構成図である。
 図2は、実施の形態1に係る熱源装置の単体の側面断面図である。
 図3は、実施の形態1に係る別の例における熱源装置の単体の正面断面図である。
 実施の形態1に係る熱源装置RSは、図1に示すような熱回路を内蔵している。熱回路は、冷凍サイクル装置を有し、圧縮機1、凝縮器2、空冷凝縮器用送風機3、膨張弁4、蒸発器5を冷媒が順に循環するように冷媒配管で接続して構成されている。冷凍サイクル装置の蒸発器5には、冷水配管6における冷水入口配管6aと冷水出口配管6bとが接続されている。
 熱源装置RSは、図2、3に示すように下部に圧縮機1、蒸発器5、冷水配管6等を収納する略直方体形状の機械室10が設けられている。また、機械室10の上方には、側面視で上方が広がる形状の熱交換室11が設けられている。熱交換室11には、側面視で上方が広がるように一対の凝縮器2が設けられている。熱交換室11の上面は天板11aにより閉塞されており、天板11aには熱交換室内の空気を排気する空冷凝縮器用送風機3が設置されている。
 蒸発器5に接続された冷水配管6は、図2、3に示すように機械室10を側面視で水平方向に貫通するように配置されている。図2に示すように冷水入口配管6a、冷水出口配管6bの一端部は共に機械室10の対向する側面部10aの一面側において機械室10外に突出した位置に設けられている、また、冷水入口配管6a、冷水出口配管6bの他端部は共に対向する側面部10aの他面側において機械室10内に格納された位置に設けられている。
 このように、機械室10内に冷水配管6を貫通させることで、外部配管を施工する手間が無くなるとともに、熱源装置RSの周囲に冷水配管6を設けるスペースが不要になるため、設置スペースに制約のある屋上や機械室内でも熱源装置RSの設置が容易になる。
 ここで、凝縮器2の構成について説明する。
 図4は、実施の形態1に係る熱源装置の凝縮器の斜視図である。
 凝縮器2は、図4に示すように、例えば複数の冷媒流路2bが開口する扁平管2aと、扁平管2aの間に接合された平板状の放熱フィン2cとにより構成されたフィンチューブ熱交換器である。扁平管2aと放熱フィン2cとは、例えば銅やアルミにより形成され、熱的に接続されている。
 扁平管2aは、円管よりも段ピッチを小さく設置することができるため、フィンチューブ熱交換器内で高密度に実装することが可能である。
 以下の式1は、熱交換器全体の熱交換性能(Ao・K)を示したものである。なお、空気側の伝熱面積をAo、熱交換器の外表面積基準の熱通過率をKとする。
1/Ao・K=1/Ao・αao+1/Ac・αc+1/Ai・αi(式1)
 空気側の熱交換性能(Ao・αao)は、空気側の伝熱面積をAo、空気側の熱伝達率をαaoとすると、扁平管2aの設置密度が高くなるため空気側の伝熱面積をAoが大きくなり向上する。
 また、放熱フィン2cと扁平管2aとの接触熱交換性能(Ac・αc)は、相互間をろう付けするため熱伝達率αcが大きくなり向上する。
 さらに、管内熱交換性能(Ai・αi)は、冷媒側の伝熱面積をAi、冷媒側の熱伝達率をαiとすると、扁平管2aの設置密度が高くなり、また、冷媒流路2bが複数設けられるため伝熱面積Aiが大きくなり向上する。
 よって、熱交換器全体の熱交換性能(Ao・K)が大きくなるため、円管を伝熱管として使用した同一熱交換容量の熱交換器に比べて凝縮器2の寸法を小さくすることができる。また、冷凍サイクル内に充填する冷媒量も少なくなるため、アキュムレータ等の冷媒容器の小型化も可能となり熱源装置RSの小型化を図ることができる。
 このため、設置スペースに制約のある屋上や機械室内でも熱源装置RSの設置が容易になる。
 さらに、本実施の形態のように空冷凝縮器用送風機3が熱交換室11の上部に設置されているトップフロー形の熱源装置RSでは、凝縮器2が大きくなると空冷凝縮器用送風機3と凝縮器2の下段との距離が大きくなり、下段の熱交換風量が少なくなって性能が低下するが、凝縮器2の寸法を小さくすることにより、熱交換風量の分布を規定値内に維持し、熱交換性能の低下を抑制することが可能となる。
 次に、実施の形態1に係る熱源装置RSが運転したときの動作について説明する。
 冷温水供給システムに起動信号が入ると、はじめに熱源装置RSが接続された冷水配管6に設置されている冷水ポンプ7が駆動する。
 次に、熱源装置RSに搭載された圧縮機1と空冷凝縮器用送風機3とが駆動をはじめる。
 圧縮機1は、低圧のガス冷媒を圧縮して高圧のガス冷媒にする。圧縮機1からのガスは、油分離器(図示省略)を介して凝縮器2へ送られる。圧縮機1は、その形式を特に問わないが、例えばスクロール圧縮機やロータリー圧縮機、スクリュー圧縮機等が用いられる。圧縮機1は、例えば複数台の圧縮機による台数制御と、単独の圧縮機の回転数制御との組合せにより、容量制御を可能に構成されている。
 凝縮器2は、圧縮機1から送られた高圧のガス冷媒を外気と熱交換させて冷却し凝縮液化する。凝縮器2は、空冷凝縮器用送風機3を備える空冷式の熱交換器である。空冷凝縮器用送風機3が駆動すると、外気は凝縮器2を通過し熱交換を行って熱交換室11に流入する。そして熱交換室11の天板11aに設置された空冷凝縮器用送風機3により上方に排気される。
 凝縮器2で凝縮した液冷媒は、膨張弁4へ送られる。膨張弁4は、閉止機能,蒸発器5の冷却負荷に応じた開度調整による流量制御機能、及び減圧膨張機能を単一の弁で行うものである。膨張弁4は、蒸発器5の下流側の冷媒温度及び冷媒圧力を検出する温度センサ(図示しない)及び圧力センサ(図示しない)と、これらセンサの信号を入力する制御器により、蒸発器5の出口冷媒の過熱度が一定となるように開度が制御される。
 膨張弁4は、凝縮器2で凝縮した液冷媒を通過させることで、冷媒の圧力を低下させる。そして、蒸発器5は、冷媒の蒸発により二次側の水(熱媒体)から熱を奪い冷水を生成する熱交換器である。蒸発器5は、冷媒流路と水流路とを有し、冷媒と水とを非接触で熱交換させる間接熱交換器である。本実施の形態の蒸発器5は、例えばプレート式熱交換器を採用している。
 蒸発器5にて気化された冷媒は、アキュムレータ(図示省略)を介して圧縮機1へ戻される。本実施の形態の熱源装置RSの熱回路は、以上のように構成されることで冷水を冷温水供給システムに供給する。
 なお、上記実施の形態1に係る熱源装置RSの説明では、熱源装置RSから熱媒体として冷水を取り出す構成を説明したが、冷凍サイクル装置に四方弁を設け、四方弁を切り替えてヒートポンプサイクルを形成し、凝縮器2を蒸発器として、蒸発器5を凝縮器として機能させ、温水を取り出す構成としてもよい。
 ここで、実施の形態1に係る熱源装置RSを複数台連結して設置した熱源システムについて説明する。
 図5は、実施の形態1に係る熱源装置を複数接続した際の熱回路を示した構成図である。
 図6は、実施の形態1に係る熱源装置を複数接続した際の側面断面図である。
 図7は、実施の形態1に係る別の例における熱源装置を複数接続した際の正面断面図である。
 実施の形態1に係る熱源装置RSは、図5に示すように複数台を連結して使用することができる。各熱源装置RSは一点破線で囲まれた熱回路部分を1ユニットとして備えている。
 各熱源装置RSの間は、冷水配管6が接続されて熱回路として機能する。すなわち、冷水入口配管6aに対して並列に蒸発器5が接続され、冷水入口配管6aから流入した冷水が分岐して各蒸発器5で冷却される。冷却された冷水は、冷水出口配管6bに流入し、熱源装置RS毎に合流して最も下流側の熱源装置RSから排出される。
 次に、熱源装置RSを複数台接続した際の冷水配管6の接続位置について説明する。
 上記のように、冷水配管6は、熱源装置RSの機械室10を側面視で水平方向に貫通するように配置され、冷水入口配管6a、冷水出口配管6bの一端部は共に機械室10の対向する側面部10aの一面側において機械室10外に突出した位置に設けられ、また、冷水入口配管6a、冷水出口配管6bの他端部は共に対向する側面部10aの他面側において機械室10内に格納された位置に設けられている。
 すると、冷水配管6の接続部6cは、図6に示すように機械室10内に位置することになる。接続部6cは一般的な鋼管の継ぎ手を採用することができ、例えば、鋼管の外ねじに螺合されるソケットやユニオン、冷水配管6の口径が大きくなればフランジ継ぎ手などを適宜選択することが可能である。なお、外部から冷水配管6が接続されない冷水入口配管6a、冷水出口配管6bの端部には、熱媒体である冷水が流出しないようにプラグ止めを施工し、止水処理を行う。
 また、接続部6cには可とう性を有するフレキシブル継ぎ手を介在させることが可能である。フレキシブル継ぎ手は、ゴム製の蛇腹形状のものや、ステンレス製の編み込み形状の周知のものを採用することが可能である。
 このように、機械室10内に冷水配管6の接続部6cが予め納まるようにスペースを設けることにより、熱源装置RSの外部に口径の大きい接続部6cが露出することがなく熱源装置RSまわりの配管の納まりが良くなる。また、冷水配管6を熱源装置RSの外部に現場施工する必要がなくなり、設置スペースを最小化することができる。
 そして、複数の熱源装置RSを接続する際に、予め規定された位置に冷水配管6の接続部6cが設定されているため、熱源装置RSの位置決めが容易となり、熱交換用の気流を設計通りに流通させることができ、各熱源装置RSが確実に定格能力を発揮することが可能になる。さらに、冷水配管6が機械室10の一方側の側面に突出しているため、設置の際に熱源装置RSの設置方向を容易に判断することができる。
 さらに、フレキシブル継ぎ手を接続部6cに介在させることで、隣接する熱源装置RSの冷水配管6同士を接続する際に多少管軸がずれていてもフレキシブル継ぎ手の可とう性の範囲内で位置の調整をすることができる。
 なお、図6に示すように熱源装置RSの側面視方向において冷水配管6が機械室10を貫通する構成の例を説明したが、図7に示すように熱源装置RSの正面視方向において冷水配管6が機械室10を貫通する構成としてもよい。
 この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
 実施の形態2.
 実施の形態2に係る熱源装置RSは、実施の形態1に係る熱源装置RSと基本構成は同じであるが、機械室10に対する冷水配管6の端部の位置が異なる。
 よって、実施の形態2に係る熱源装置RSの冷水配管6の端部の位置について説明する。
 図8は、実施の形態2に係る熱源装置を複数接続した際の側面断面図である。
 図9は、実施の形態2に係る別の例における熱源装置を複数接続した際の正面断面図である。
 図8において、冷水入口配管6aの一端側は、図面上の機械室10の左側面から突出しており、冷水入口配管6aの他端側は、機械室10内に位置している。
 また、冷水出口配管6bの一端側は、図面上の機械室10内に位置しており、冷水出口配管6bの他端側は、機械室10の右側面から突出している。
 すなわち、冷水入口配管6aと冷水出口配管6bとで、機械室10の側面から突出する方向を異ならせている。
 このように、機械室10内に冷水配管6の接続部6cが予め納まるようにスペースを設けることにより、実施の形態1と同様に熱源装置RSの外部に口径の大きい接続部6cが露出することがなく熱源装置RSまわりの配管の納まりが良くなる。
 さらに、一番上流側の熱源装置RSの冷水入口配管6aが機械室10から突出するように配置すると、一番下流側の熱源装置RSは、冷水出口配管6bのみが機械室10から突出する構成となり、それぞれに機械室10の外部から流入側の冷水配管6と流出側の冷水配管6を接続することができる。一番上流側の熱源装置RSには流出側の冷水配管6を接続する必要がなく、また、一番下流側の熱源装置RSには流入側の冷水配管6を接続する必要がないため、不要な冷水配管6の接続部6cが機械室10の外部に露出することがない。よって、配管の納まりがよく、意匠上も不要な冷水配管6の接続部6cが見えることがない。
 なお、図8に示すように熱源装置RSの側面視方向において冷水配管6が機械室10を貫通する構成の例を説明したが、図9に示すように熱源装置RSの正面視方向において冷水配管6が機械室10を貫通する構成としてもよい。
 この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
 実施の形態3.
 実施の形態3に係る熱源装置RSは、実施の形態1に係る熱源装置RSと基本構成は同じであるが、機械室10に対する冷水配管6の端部の位置が異なる。
 よって、実施の形態3に係る熱源装置RSの冷水配管6の端部の位置について説明する。
 図10は、実施の形態3に係る熱源装置を複数接続した際の側面断面図である。
 図11は、実施の形態3に係る別の例における熱源装置を複数接続した際の正面断面図である。
 図10において、冷水入口配管6aの両端は、図面上の機械室10内に位置している。
 また、冷水出口配管6bの両端も同様には、図面上の機械室10内に位置している。
 すなわち、冷水入口配管6aと冷水出口配管6bとの4つの端部を全て機械室10内に配置するものである。
 隣接する接続部6cは、間に介在する短管6dにより互いに接続される。
 またこの短管6dに代えて可とう性を有するフレキシブル継ぎ手を採用することが可能である。フレキシブル継ぎ手は、ゴム製の蛇腹形状のものや、ステンレス製の編み込み形状の周知のものを採用することできる。
 このように、機械室10内に冷水配管6の接続部6cが予め納まるようにスペースを設けることにより、実施の形態1と同様に熱源装置RSの外部に口径の大きい接続部6cが露出することがなく熱源装置RSまわりの配管の納まりが良くなる。
 また、フレキシブル継ぎ手を接続部6cに介在させることで、隣接する熱源装置RSの冷水配管6同士を接続する際に多少管軸がずれていてもフレキシブル継ぎ手の可とう性の範囲内で位置の調整をすることができる。
 なお、図10に示すように熱源装置RSの側面視方向において冷水配管6が機械室10を貫通する構成の例を説明したが、図11に示すように熱源装置RSの正面視方向において冷水配管6が機械室10を貫通する構成としてもよい。
 この場合も接続部6cは、機械室10内に配置されるため、上記と同様の効果を得ることが可能である。
 また、実施の形態1~3では、それぞれ機械室10に対する冷水配管6の端部の位置が異なる態様を説明したが、これら実施の形態1~3に係る熱源装置RSを適宜組み合わせて連結設置した熱源システムとしてもよい。
 なお、実施の形態1~3に記載の凝縮器2は、本発明の熱源熱交換器に相当する。
 同様に、蒸発器5は、熱媒体熱交換器に相当し、冷水配管6は、熱媒体配管に相当し、側面部10aは、側壁部に相当する。
 1 圧縮機、2 凝縮器(熱源熱交換器)、2a 扁平管、2b 冷媒流路、2c 放熱フィン、3 空冷凝縮器用送風機、4 膨張弁、5 蒸発器(熱媒体熱交換器)、6 冷水配管(熱媒体配管)、6a 冷水入口配管、6b 冷水出口配管、6c 接続部、6d 短管、7 冷水ポンプ、10 機械室、10a 側面部(側壁面)、11 熱交換室、11a 天板、RS 熱源装置。

Claims (9)

  1.  圧縮機と、熱源熱交換器と、膨張弁と、熱媒体熱交換器とを接続した冷凍サイクルを備え、
     少なくとも前記熱源熱交換器を収納する熱交換室と、
     少なくとも前記圧縮機と前記熱媒体熱交換器とを収納する機械室と、
     を有する熱源装置であって、
     前記熱媒体熱交換器には、熱媒体配管が接続され、
     前記熱媒体配管の一端部は、前記機械室内に位置し、
     前記熱媒体配管の他端部は、前記機械室外に位置している熱源装置。
  2.  前記熱媒体配管は、第1熱媒体配管と第2熱媒体配管とで構成され、
     前記機械室は、対向する第1側壁面と第2側壁面とを有し、
     前記第1熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
     前記第1熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置し、
     前記第2熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
     前記第2熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置する
     請求項1に記載の熱源装置。
  3.  前記熱媒体配管は、第1熱媒体配管と第2熱媒体配管とで構成され、
     前記機械室は、対向する第1側壁面と第2側壁面とを有し、
     前記第1熱媒体配管の前記一端部は、前記機械室の前記第1側壁面内に位置し、
     前記第1熱媒体配管の前記他端部は、前記機械室の前記第2側壁面外に位置し、
     前記第2熱媒体配管の前記一端部は、前記機械室の前記第1側壁面外に位置し、
     前記第2熱媒体配管の前記他端部は、前記機械室の前記第2側壁面内に位置する
     請求項1に記載の熱源装置。
  4.  前記第1熱媒体配管は、前記熱媒体熱交換器に熱媒体を供給する熱媒体入口配管であり、
     前記第2熱媒体配管は、前記熱媒体熱交換器から熱交換後の熱媒体を排出する熱媒体出口配管である請求項2または3に記載の熱源装置。
  5.  前記熱源熱交換器は、伝熱管を扁平管としたフィンチューブ式熱交換器である請求項1~4のいずれか1項に記載の熱源装置。
  6.  請求項1または請求項1に従属する請求項5に記載された熱源装置を複数接続した熱源システムであって、
     前記熱媒体配管の前記一端部と、前記一端部に隣接する前記熱媒体配管の前記他端部とは、接続部にて接続される熱源システム。
  7.  前記接続部には可とう性を有するフレキシブル継ぎ手が設けられる請求項6に記載の熱源システム。
  8.  請求項2または3、請求項2または3従属する請求項4または5に記載された熱源装置を複数接続した熱源システムであって、
     前記第1熱媒体配管の前記一端部と、該一端部に隣接する前記第1熱媒体配管の前記他端部とは、第1接続部にて接続され、
     前記第2熱媒体配管の前記一端部と、該一端部に隣接する前記第2熱媒体配管の前記他端部とは、第2接続部にて接続される熱源システム。
  9.  前記第1接続部及び第2接続部には、可とう性を有するフレキシブル継ぎ手が設けられる請求項8に記載の熱源システム。



     
PCT/JP2014/067620 2014-07-02 2014-07-02 熱源装置及びその熱源装置を備えた熱源システム WO2016002023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14896571.8A EP3165849B1 (en) 2014-07-02 2014-07-02 Heat source device and heat source system provided with heat source device
JP2016530742A JP6310077B2 (ja) 2014-07-02 2014-07-02 熱源システム
PCT/JP2014/067620 WO2016002023A1 (ja) 2014-07-02 2014-07-02 熱源装置及びその熱源装置を備えた熱源システム
CN201480079900.8A CN106461276A (zh) 2014-07-02 2014-07-02 热源装置以及具备该热源装置的热源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067620 WO2016002023A1 (ja) 2014-07-02 2014-07-02 熱源装置及びその熱源装置を備えた熱源システム

Publications (1)

Publication Number Publication Date
WO2016002023A1 true WO2016002023A1 (ja) 2016-01-07

Family

ID=55018622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067620 WO2016002023A1 (ja) 2014-07-02 2014-07-02 熱源装置及びその熱源装置を備えた熱源システム

Country Status (4)

Country Link
EP (1) EP3165849B1 (ja)
JP (1) JP6310077B2 (ja)
CN (1) CN106461276A (ja)
WO (1) WO2016002023A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035945A1 (ja) * 2018-08-17 2020-02-20 三菱電機株式会社 フリークーリングユニット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199238A1 (ja) * 2015-06-10 2016-12-15 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクルシステム
JP2019007642A (ja) * 2017-06-21 2019-01-17 日立ジョンソンコントロールズ空調株式会社 冷凍装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991876A (en) * 1989-07-28 1991-02-12 Euroflex, S.A. Connector assembly for hot water heaters and other appliances
JPH0812023B2 (ja) * 1984-07-24 1996-02-07 マルチスタック インターナショナル リミテッド モジュール式冷凍装置
JP2003279194A (ja) * 2002-03-20 2003-10-02 Denso Corp 熱交換器
US20080127662A1 (en) * 2006-06-19 2008-06-05 Stanfield Michael E Method, System, and Apparatus for Modular Central Plant
US20090151388A1 (en) * 2007-11-13 2009-06-18 Platt Mark Dedicated heat recovery chiller
US20110197617A1 (en) * 2010-02-16 2011-08-18 Lg Electronics Inc. Chiller
US20120131935A1 (en) * 2009-05-11 2012-05-31 Lg Electronics Inc. Air conditioner and method for operating same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692630B2 (ja) * 1995-10-24 2005-09-07 ダイキン工業株式会社 熱搬送装置
JP2977809B1 (ja) * 1998-08-05 1999-11-15 株式会社移動体通信先端技術研究所 冷凍装置
JP2009236340A (ja) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd チラーユニット
US20090242172A1 (en) * 2008-03-26 2009-10-01 Sanyo Electric Co., Ltd. Chiller unit
JP2012247168A (ja) * 2011-05-31 2012-12-13 Mitsubishi Electric Corp 冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812023B2 (ja) * 1984-07-24 1996-02-07 マルチスタック インターナショナル リミテッド モジュール式冷凍装置
US4991876A (en) * 1989-07-28 1991-02-12 Euroflex, S.A. Connector assembly for hot water heaters and other appliances
JP2003279194A (ja) * 2002-03-20 2003-10-02 Denso Corp 熱交換器
US20080127662A1 (en) * 2006-06-19 2008-06-05 Stanfield Michael E Method, System, and Apparatus for Modular Central Plant
US20090151388A1 (en) * 2007-11-13 2009-06-18 Platt Mark Dedicated heat recovery chiller
US20120131935A1 (en) * 2009-05-11 2012-05-31 Lg Electronics Inc. Air conditioner and method for operating same
US20110197617A1 (en) * 2010-02-16 2011-08-18 Lg Electronics Inc. Chiller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165849A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035945A1 (ja) * 2018-08-17 2020-02-20 三菱電機株式会社 フリークーリングユニット

Also Published As

Publication number Publication date
JP6310077B2 (ja) 2018-04-11
EP3165849A1 (en) 2017-05-10
CN106461276A (zh) 2017-02-22
EP3165849B1 (en) 2023-04-26
EP3165849A4 (en) 2018-02-21
JPWO2016002023A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
KR101568200B1 (ko) 다른 튜브 간격을 갖는 멀티채널 열 교환기
WO2012073746A1 (ja) 一体型空調システム、その内気ユニット、外気ユニット、積層体
US20080141709A1 (en) Multi-Block Circuit Multichannel Heat Exchanger
KR20180108762A (ko) 냉장 시스템을 제어하는 시스템 및 방법
WO2013099898A1 (ja) 冷凍装置
WO2015125743A1 (ja) 空気調和装置
EP3607252B1 (en) Chiller system with an economizer module and method of operating such a system
JP2014102050A (ja) 冷凍装置
JP6888102B2 (ja) 熱交換器ユニットおよび冷凍サイクル装置
WO2014122922A1 (ja) 暖房システム
JP2010501826A (ja) 通信装備用冷房装置
WO2015125219A1 (ja) 空気調和装置
JP5831467B2 (ja) 暖房システム
JP6310077B2 (ja) 熱源システム
WO2014115496A1 (ja) 暖房システム
JP2009139012A (ja) 冷凍空調装置
WO2016151655A1 (ja) 空気調和装置及びその性能判定方法
JP2010121844A (ja) 冷凍サイクル装置
WO2018073894A1 (ja) 冷凍サイクル装置
KR19990046726A (ko) 열전소자를이용한공기조화기
JP4605725B2 (ja) 増設凝縮装置及びこれを用いた増設凝縮システム付冷凍サイクル装置
WO2015053168A1 (ja) 冷凍装置
JP2003222448A (ja) 高層建築物などの空調装置
KR101423137B1 (ko) 실외기 없는 난방장치
CN114264002B (zh) 空调式油烟机、空调模块及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530742

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014896571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896571

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE