WO2016000458A1 - 发光二极管 - Google Patents

发光二极管 Download PDF

Info

Publication number
WO2016000458A1
WO2016000458A1 PCT/CN2015/073469 CN2015073469W WO2016000458A1 WO 2016000458 A1 WO2016000458 A1 WO 2016000458A1 CN 2015073469 W CN2015073469 W CN 2015073469W WO 2016000458 A1 WO2016000458 A1 WO 2016000458A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
emitting diode
layer
body portion
Prior art date
Application number
PCT/CN2015/073469
Other languages
English (en)
French (fr)
Inventor
王进
卢怡安
吴俊毅
陶青山
王笃祥
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2016000458A1 publication Critical patent/WO2016000458A1/zh
Priority to US15/384,221 priority Critical patent/US10038120B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the invention relates to a light emitting diode and belongs to the field of semiconductor illumination.
  • LEDs in English abbreviated as Light Emitting Diodes
  • Light Emitting Diodes are used in various fields due to their long life and low energy consumption. Especially with the increasing performance of their lighting performance indicators, LEDs are becoming more and more widely used, for example. Used in optical display devices, traffic signs, data storage devices, communication devices, and lighting devices.
  • a more effective solution is to add a layer of electrically insulating material under the electrode to form a high-reflectivity omnidirectional mirror structure with the electrode to reduce the phenomenon of shading or light absorption caused by the electrode.
  • the flat surface above and below the electrode is liable to cause the metal solder ball or the electrode to be detached during the subsequent package wire bonding process.
  • the present invention provides a light emitting diode that increases the adhesion of the electrode to the epitaxial stack to avoid detachment.
  • a light emitting diode comprising: a substrate; a semiconductor light emitting stack on the substrate, comprising a first semiconductor layer, an active layer and an electrical phase of the second semiconductor layer and the first semiconductor layer from bottom to top a transparent conductive layer on the semiconductor light emitting layer having an opening, the first electrode being electrically connected to the first semiconductor layer; and the second electrode being electrically connected to the second semiconductor layer; wherein The second electrode fills the opening portion, and the portion in contact with the transparent conductive layer has a depressed portion so as to be embedded in the transparent conductive layer to enhance the adhesion of the electrode.
  • the opening portion is narrower and wider than the upper portion, and the second electrode fills the opening portion and is higher than the upper surface of the transparent conductive layer.
  • the opening portion of the transparent conductive layer is an upper portion and a lower portion, wherein the upper portion has a fixed aperture size and the lower portion has a fixed aperture size.
  • the opening portion of the transparent conductive layer is an upper portion and a lower portion, wherein the upper portion has a fixed diameter and a lower portion.
  • the caliber is decremented from bottom to top.
  • the second electrode is higher than a portion of the upper surface of the transparent conductive layer, and an area larger than an area of the upper opening of the opening.
  • the portion of the second electrode located at the opening portion is slightly smaller than the upper portion.
  • the portion of the second electrode located in the opening portion has an inclined side surface.
  • the second electrode is divided into an upper body portion, a middle body portion and a lower body portion, wherein the upper body portion is higher than an upper surface of the transparent conductive layer, and the middle body portion and the lower body portion are located in the opening portion,
  • the middle body portion has the smallest cross section and a fixed area, and the area of the cross section of the lower body portion decreases from bottom to top.
  • the second electrode is divided into an upper body portion, a middle body portion and a lower body portion, wherein the upper body portion is higher than an upper surface of the transparent conductive layer, and the middle body portion and the lower body portion are located in the opening portion,
  • the middle body portion has the smallest cross section and a fixed area, and the area of the cross section of the lower body portion is fixed.
  • the upper surface of the second electrode has a groove.
  • the second electrode has a current blocking layer under it.
  • the invention forms a depressed portion on the second electrode, so that the second electrode is embedded in the transparent conductive layer, so that the light emitting diode structure can enhance the second electrode and the lateral thrust during the packaging process, thereby avoiding peeling during the process of packaging the wire. Case.
  • FIG. 1 and 2 are cross-sectional views of a light emitting diode according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a light emitting diode according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of a light emitting diode according to Embodiment 3 of the present invention.
  • FIG. 5 is a cross-sectional view of a light emitting diode according to Embodiment 4 of the present invention.
  • FIG. 6 is a cross-sectional view of a light emitting diode according to Embodiment 5 of the present invention.
  • 10 substrate; 21: first semiconductor layer; 22: active layer; 23: second semiconductor layer; 30: current blocking layer; 40: transparent conductive layer; 40a: upper surface of transparent conductive layer; 40b: transparent conductive layer Lower surface; 50: second electrode; 50a: lower surface of the second electrode; 50b: upper surface of the second electrode; 51: upper body portion of the second electrode; 52: middle body portion of the second electrode; a lower body portion of the second electrode; 54: a second electrode recess portion; 60: a first electrode; 70: opening portion; 71: upper opening portion; 72: lower opening portion; 80: groove.
  • the LED structure includes a substrate 10, and a semiconductor light emitting stack on the substrate 10.
  • the material of the substrate 10 includes, but is not limited to, an insulating material such as silicone rubber, glass, quartz, ceramic or aluminum nitride.
  • the semiconductor light emitting layer stack includes a first semiconductor layer 21, an active layer 22, and a second semiconductor layer 23.
  • the first semiconductor layer 21 is a p-type semiconductor
  • the second semiconductor layer 23 can be a dissimilar electric n-type semiconductor.
  • the first semiconductor layer 21 is an n-type semiconductor
  • the second semiconductor layer 23 may be a p-type semiconductor which is different in electrical conductivity.
  • the active layer 22 is located between the first semiconductor layer 21 and the second semiconductor layer 23 and may be a neutral, p-type or n-type semiconductor. When an electric current is applied through the semiconductor light emitting laminate, the active layer 22 is excited to emit light. When the active layer 22 is a nitride-based material, blue or green light is emitted; when an aluminum indium gallium phosphide-based material is used, red, orange, and yellow amber light is emitted.
  • a transparent conductive layer 40 is disposed on the semiconductor light emitting stack and has a circular opening 70 having a narrow upper and lower width.
  • the opening portion 70 is divided into an upper opening portion 71 and a lower opening portion 72.
  • the upper opening portion 71 and the lower opening portion 72 are coaxial, and the diameter D1 of the upper opening portion 71 may be 30 to 100 ⁇ m.
  • the diameter D2 of 72 may be 50 to 150 ⁇ m.
  • the upper opening portion is 50 ⁇ m
  • the lower opening portion is 90 ⁇ m.
  • a second electrode 50 is formed on the transparent conductive layer 40 to fill the opening portion 70 to form an ohmic contact with the transparent conductive layer 40.
  • the second electrode 50 is electrically connected to the second semiconductor layer 23 through the transparent conductive layer 40.
  • the uniformity of current dispersion can be increased by the transparent conductive layer 40, thereby avoiding excessive current concentration in the second semiconductor.
  • a first electrode 60 is formed on the first semiconductor layer 21 to form an ohmic contact with the first semiconductor layer 21.
  • the second electrode 50 substantially fills the opening portion 70 in the transparent conductive layer 40 and is divided into an upper body portion 51, a middle body portion 52 and a lower body portion 52, wherein the upper body portion 51 is higher than the upper surface 40a of the transparent conductive layer 40.
  • the cross-sectional area is larger than the area of the upper opening 71 of the opening 70
  • the middle main body portion 52 is located in the upper opening portion 71 of the opening portion 70, and has a cylindrical shape
  • the lower main body portion 53 is located in the lower opening portion of the opening portion 70, which is a cylinder. shape.
  • the middle body portion 71 has the smallest cross section, so that a recess portion 54 is formed in the middle body portion, so that the second electrode 50 is embedded in the transparent conductive layer 40, so that the light emitting diode structure can be in the packaging process. Enhance the second electrode to compete with the lateral thrust to avoid peeling during the package wire.
  • the second electrode 50 may have a multi-layer structure, such as a pad layer and a high reflectivity layer (not shown).
  • the pad layer is used for wire bonding to guide external current into the semiconductor light emitting stack, including but not It is limited to a single layer or a multilayer metal structure of nickel (Ni), titanium (Ti), aluminum (Al), or gold (Au).
  • the high reflectivity layer is in ohmic contact with the transparent conductive layer 40 under the pad layer, including but not limited to a metal having good conductivity and a reflectance greater than 70% in the visible light band, such as aluminum (Al), gold (Au), platinum.
  • a current blocking layer 30 is located between the second semiconductor layer 23 and the second electrode 50 and has a high resistance value, and the blocking current flows directly through the second electrode lower surface 50a so that the amount of light directly under the second electrode is reduced to reduce the light. Absorbed by the second electrode lower surface 50a, the material of the current blocking layer 30 includes but is not limited to organic materials, such as Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy (Epoxy) Acrylic Resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), Fluorocarbon Polymer, inorganic materials such as silica gel, glass, dielectric materials such as alumina (Al2O3), silicon nitride (SiNx), silicon oxide (SiO2) , titanium oxide (TiO 2 ), or a combination of the above materials.
  • a layer of electrically insulating material is added under the electrode to form a high-reflectivity omnidirectional mirror structure with the electrode to reduce the phenomenon of shading or light absorption caused by the electrode.
  • a recessed portion 54 is formed on the second electrode by using the patterned electrode, so that the second electrode 50 is embedded in the transparent conductive layer 40, so that the light emitting diode structure can enhance the second electrode and the lateral thrust during the packaging process, thereby avoiding the package. Peeling occurred during the threading process.
  • FIG. 3 is a cross-sectional view showing a structure of a light emitting diode according to a second embodiment of the present invention, the second embodiment being different from the first embodiment in that the current blocking layer 30 is located on the surface layer of the second semiconductor layer 23, the upper surface thereof and the second semiconductor layer It is flush and forms a rough structure on the surface of the second semiconductor layer 23.
  • the current blocking layer 30 can form a high resistance region by ion implantation or ion ICP dry etching through the second semiconductor layer under the second electrode, and has a thickness of 10 to 100 nm. Before the transparent conductive layer 40 is formed, a portion of the upper surface of the second semiconductor layer 23 may be etched to form a rough surface by a etch or dry etch.
  • the current blocking layer 30 is implanted into the surface layer of the second semiconductor layer 23, the thickness of the transparent conductive layer 40 is reduced, and a rough surface is formed on the upper surface of the second semiconductor layer 23, thereby improving the external light extraction efficiency of the light emitting diode. .
  • FIG. 4 is a cross-sectional view showing the structure of a light emitting diode according to a third embodiment of the present invention.
  • the third embodiment differs from the first embodiment in that a groove 80 is formed on the upper surface 50b of the second electrode 50 to increase wire bonding metal welding.
  • the ball contacts the area of the second electrode to increase adhesion.
  • the groove 80 may be annular and has an area of about 1/5 to 1/3 of the upper surface 50b of the second electrode 50, and the depth is not more than the upper body portion 50a of the second electrode 50.
  • FIG. 5 is a cross-sectional view showing the structure of a light emitting diode according to a fourth embodiment of the present invention.
  • the fourth embodiment differs from the first embodiment in that the opening portion 70 of the transparent conductive layer 40 has inclined sidewalls, and the second electrode 50 is transparent.
  • the portion of the conductive layer 40 has an inclined side surface, while the current blocking layer 30 is located on the surface layer of the second semiconductor layer 23, the upper surface of which is flush with the second semiconductor layer 23, and the surface of the second semiconductor layer 23 and the first semiconductor layer 21 Part of the surface forms a rough structure.
  • the inclination angle of the side wall of the opening portion 70 of the transparent conductive layer 40 may be 80 to 40 degrees, preferably 50 to 60 degrees.
  • the current blocking layer 30 may be formed by ion implantation or ion ICP dry etching of the second semiconductor layer 23 under the second electrode 50 to form a high resistance region having a thickness of 10 to 100 nm.
  • portions of the upper surfaces of the first semiconductor layer 21 and the second semiconductor layer 23 may be etched by chemical etching or dry etching to form a rough surface.
  • the opening portion is designed to have an inclined frustum shape
  • the current blocking layer is designed on the surface layer of the second semiconductor layer 23 to ensure that the second electrode forms a depressed portion at the contact with the upper surface of the transparent conductive layer.
  • the thickness of the transparent conductive layer is reduced as much as possible, and a rough surface is formed on the upper surface of the portions of the first semiconductor layer 21 and the second semiconductor layer 23, so that the external light extraction efficiency of the light emitting diode can be improved.
  • FIG. 6 is a cross-sectional view showing the structure of a light emitting diode according to a fifth embodiment of the present invention.
  • the fourth embodiment differs from the first embodiment in that the opening portion 70 of the transparent conductive layer 40 is divided into an upper portion 71 and a lower portion 72, wherein the upper portion has a diameter D1 is fixed in size, the lower diameter D2 is decreasing from bottom to top, and the second electrode 50 completely fills the opening portion 70, wherein the upper body portion 51 and the middle body portion 52 are cylindrical bodies, and the lower body portion 53 is a frustum, and
  • the upper surface 50b is provided with a groove 80, which can increase the contact area of the wire bonding metal ball with the second electrode, thereby increasing the adhesion.
  • the second electrode forms a recess 54 such that the second electrode 50 is embedded in the transparent conductive layer 40, so that the LED structure can enhance the second electrode to compete with the lateral thrust during the packaging process;
  • the second electrode The lower body portion 53 has inclined sides to enhance the resistance of the second electrode to the longitudinal tensile force;
  • the upper surface 50b of the second electrode has a groove structure to increase the contact area between the wire bonding metal ball and the electrode, thereby increasing the adhesion and avoiding the package. Peeling occurred during the threading process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光二极管,包括:基板(10);半导体发光叠层,位于基板(10)上,自下而上包含一第一半导体层(21)、有源层(22)及一第二半导体层(23)与第一半导体层(21)的电性相异;透明导电层(40),位于半导体发光叠层上,具有开口部(70),第一电极(60)与第一半导体层(21)电性相连;及第二电极(50)与第二半导体层(23)电性相连;其中,第二电极(50)填充开口部(70),其与透明导电层(40)接触的位置具有一凹陷部(54),并镶嵌在透明导电层(40)内。从而在发光二极管结构封装过程中可以增强第二电极与横向推力抗衡,避免在封装打线的过程中发生剥离的情况。

Description

发光二极管
本申请要求于2014年7月1日提交中国专利局、申请号为201410308320.3、发明名称为“发光二极管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种发光二极管,属于半导体照明领域。
背景技术
发光二极管(英文为LED,缩写为Light Emitting Diode)由于具有寿命长、耗能低等优点,应用于各种领域,尤其随着其照明性能指标日益大幅提升,LED的应用越来越广泛,例如用于光学显示装置、交通标志、数据储存装置、通信装置及照明装置等。
目前,大尺寸发光二极管的应用越来越广泛,伴随着面积增加,电极也随之增大,电极的遮光或吸光现象就会越来越严重,出光减少,从而降低发光效率。一种较为有效的方案为:在电极下面增加一层电绝缘材料,与电极形成高反射率的全方位反射镜结构,以减少因电极造成遮光或吸光的现象。但电极上下的平整表面在后续封装打线过程中易造成金属焊球或者电极的脱离。
发明内容
本发明提供了一种发光二极管,其增加电极与外延叠层的附着力,避免脱离现象。
一种发光二极管,包括:基板;半导体发光叠层,位于所述基板上,自下而上包含一第一半导体层、有源层及一第二半导体层与该第一半导体层的电性相异;透明导电层,位于所述半导体发光叠层上,具有开口部,第一电极与该第一半导体层电性相连;及第二电极与该第二半导体层电性相连;其中,所述第二电极填充所述开口部,其与所述透明导电层接触的位置具有一凹陷部,从而镶嵌在所述透明导电层内,增强电极的粘附力。
优选的,所述开口部呈上窄下宽,所述第二电极填满所述开口部,并高出所述透明导电层的上表面。
优选的,所述透明导电层的开口部分为上部和下部,其中上部的口径大小固定,下部的口径大小固定。
优选的,所述透明导电层的开口部分为上部和下部,其中上部的口径大小固定,下部 的口径从下到上呈递减。
优选的,所述第二电极高出所述透明导电层上表面的部分,面积大于所述开口部的上开口的面积。
优选的,所述第二电极位于所述开口部的部分呈上小下大状。
优选的,所述第二电极位于所述开口部内的部分具有倾斜的侧面。
优选的,所述第二电极分为上主体部、中主体部和下主体部,其中上主体部高出所述透明导电层的上表面,中主体部和下主体部位于所述开口部内,所述中主体部的横截面最小且面积固定,所述下主体部的横截面的面积从下到上呈递减。
优选的,所述第二电极分为上主体部、中主体部和下主体部,其中上主体部高出所述透明导电层的上表面,中主体部和下主体部位于所述开口部内,所述中主体部的横截面最小且面积固定,所述下主体部的横截面的面积固定。
优选的,所述第二电极的上表面具有凹槽。
优选的,所述第二电极下方具有电流阻挡层。
本发明在第二电极形成一凹陷部,使得第二电极镶嵌在透明导电层内,可以使得发光二极管结构在封装过程,增强第二电极与横向推力抗衡,避免在封装打线的过程中发生剥离的情况。
附图说明
本发明之其他的特征及功效,将于参照图式的实施方式中清楚地呈现。其中
图1和图2为本发明实施例一所述发光二极管的剖视图;
图3为本发明实施例二所述发光二极管的剖视图;
图4为本发明实施例三所述发光二极管的剖视图;
图5为本发明实施例四所述发光二极管的剖视图;
图6为本发明实施例五所述发光二极管的剖视图;
图中各标号表示如下:
10:基板;21:第一半导体层;22:有源层;23:第二半导体层;30:电流阻挡层;40:透明导电层;40a:透明导电层的上表面;40b:透明导电层的下表面;50:第二电极;50a:第二电极的下表面;50b:第二电极的上表面;51:第二电极的上主体部;52:第二电极的中主体部;53:第二电极的下主体部;54:第二电极凹陷部;60:第一电极; 70:开口部;71:上开口部;72:下开口部;80:凹槽。
具体实施方式
在本发明被详细描述之前,应当注意在以下的说明内容中,类似的元件是以相同的编号来表示。
图1显示根据本发明第一实施例的发光二极管的结构剖面图,此发光二极管结构包含一基板10,一位于该基板10上的半导体发光叠层。基板10的材料包含但不限于绝缘材料,例如硅橡胶、玻璃、石英、陶瓷或氮化铝。半导体发光叠层包含第一半导体层21、一有源层22及一第二半导体层23,当第一半导体层21为p型半导体,第二半导体层23可为相异电性的n型半导体,反之,当第一半导体层21为n型半导体,第二半导体层23可为相异电性的p型半导体。有源层22位于第一半导体层21及第二半导体层23之间,可为中性、p型或n型电性的半导体。施以电流通过半导体发光叠层时,激发有源层22发光出光线。当有源层22以氮化物为基础的材料时,会发出蓝或绿光;当以磷化铝铟镓为基础的材料时,会发出红、橙、黄光的琥珀色系的光。
一透明导电层40位于该半导体发光叠层上,具有一上窄下宽的圆形开口部70。请参看图2,该开口部70分为上开口部71、下开口部72,其中上开口部71和下开口部72同轴,上开口部71的直径D1可为30~100μm,下开口部72的直径D2可为50~150μm,在本实施例中,上开口部取50μm,下开口部取90μm。
一第二电极50形成在透明导电层40上填充开口部70,与透明导电层40形成欧姆接触。第二电极50通过透明导电层40与第二半导体层23电性相连,当电流从第二电极50注入时,可通过透明导电层40增加电流散布的均匀度,避免电流过度集中在第二半导体层23的部分区域。一第一电极60形成在第一半导体层21上与第一半导体层21形成欧姆接触。
第二电极50基本填满透明导电层40中的开口部70,分为上主体部51、中主体部52和下主体部52,其中上主体部51为高出透明导电层40上表面40a的部分,横截面积大于开口部70的上开口71的面积,中主体部52位于开口部70的上开口部内71,呈圆柱状,下主体部53位于开口部70的下开口部内72,呈圆柱状。在该第二电极50结构中,中主体部71的横截面最小,从而在中主体部形成一凹陷部54,使得第二电极50镶嵌在透明导电层40内,可以使得发光二极管结构在封装过程,增强第二电极与横向推力抗衡,避免在封装打线的过程中发生剥离的情况。
第二电极50可为以多层结构,如包含焊垫层及高反射率层(图中未示出),焊垫层用于打线连接,引导外部电流进入半导体发光叠层,包含但不限于镍(Ni)、钛(Ti)、铝(Al)、金(Au)的单层或多层金属结构。高反射率层位于焊垫层下方与透明导电层40欧姆接触,包含但不限于导电性佳,且于可见光波段的反射率大于70%的金属,例如铝(Al)、金(Au)、铂(Pt)、银(Ag)、铑(Rh)及其合金的单层或多层金属结构。
一电流阻挡层30位于第二半导体层23和第二电极50之间,具有高的电阻值,阻挡电流直接流过第二电极下表面50a使得第二电极正下方的发光量降低,以减少光被第二电极下表面50a所吸收,电流阻挡层30的材料包含但不限于有机材料,例如Su8、苯并环丁烯(BCB)、过氟环丁烷(PFCB)、环氧树脂(Epoxy)、丙烯酸树脂(Acrylic Resin)、环烯烃聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚酰亚胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer),无机材料,例如硅胶(Silicone)、玻璃(Glass),介电材料,例如氧化铝(Al2O3)、氮化硅(SiNx)、氧化硅(SiO2)、氧化钛(TiO2),或上述材料的组合。
在本实施例中,在电极下面增加一层电绝缘材料,与电极形成高反射率的全方位反射镜结构,以减少因电极造成遮光或吸光的现象。同时,利用图形化电极在第二电极形成一凹陷部54,使得第二电极50镶嵌在透明导电层40内,可以使得发光二极管结构在封装过程,增强第二电极与横向推力抗衡,避免在封装打线的过程中发生剥离的情况。
图3显示根据本发明第二实施例的发光二极管的结构剖面图,第二实施例与第一实施例差异在于电流阻挡层30位于第二半导体层23表层,其上表面与该第二半导体层齐平,并在第二半导体层23表面形成粗糙结构。电流阻挡层30可通过在第二电极下方的第二半导体层采用离子注入法植入离子或ICP干蚀刻形成高阻区,其厚度10~100nm。在形成透明导电层40前,可以化采用学蚀刻或干蚀刻方式,蚀刻部分第二半导体层23上表面以形成粗糙表面。在本实施例中,将电流阻挡层30植入第二半导体层23表层,减少透明导电层40的厚度,并在第二半导体层23上表面形成粗糙表面,可以提高发光二极管的外部取光效率。
图4显示根据本发明第三实施例的发光二极管的结构剖面图,第三实施例与第一实施例差异在于:在第二电极50的上表面50b形成凹槽80,可以增加打线金属焊球与第二电极接触面积,从而增加附着力。该凹槽80可以为环状,其面积约占第二电极50上表面50b的1/5~1/3,深度以不超过第二电极50的上主体部50a为宜。
图5显示根据本发明第四实施例的发光二极管的结构剖面图,第四实施例与第一实施例差异在于:透明导电层40的开口部70具有倾斜的侧壁,第二电极50位于透明导电层40内的部分具有倾斜侧面,同时电流阻挡层30位于第二半导体层23表层,其上表面与该第二半导体层23齐平,并在第二半导体层23表面及第一半导体层21的部分表面形成粗糙结构。透明导电层40的开口部70侧壁的倾斜角度可采80~40°,较佳取50~60°。电流阻挡层30可通过在第二电极50下方的第二半导体层23采用离子注入法植入离子或ICP干蚀刻形成高阻区,其厚度10~100nm。在形成透明导电层40前,可以采用化学蚀刻或干蚀刻方式,蚀刻部分第一半导体层21及第二半导体层23上表面以形成粗糙表面。在本实施例中,将开口部设计为倾斜的锥台状,并将电流阻挡层设计在第二半导体层23的表层,保证第二电极在与透明导电层上表面接触处形成凹陷部的同时,尽可能减少透明导电层的厚度,在第一半导体层21和第二半导体层23的部分上表面形成粗糙表面,可以提高发光二极管的外部取光效率。
图6显示根据本发明第五实施例的发光二极管的结构剖面图,第四实施例与第一实施例差异在于:透明导电层40的开口部70分为上部71和下部72,其中上部的口径D1大小固定,下部的口径D2从下到上呈递减,第二电极50完全填充该开口部70,其中上主体部51和中主体部52为圆柱体,下主体部53为锥台,并在上表面50b设置有凹槽80,可以增加打线金属焊球与第二电极接触面积,从而增加附着力。
请参看附图6,第二电极形成一凹陷部54,使得第二电极50镶嵌在透明导电层40内,可以使得发光二极管结构在封装过程,增强第二电极与横向推力抗衡;第二电极的下主体部53具有倾斜侧边,增强第二电极与纵向拉力的抗衡;第二电极的上表面50b具有凹槽结构,增加打线金属焊球与电极接触面积,从而增加附着力,避免在封装打线的过程中发生剥离的情况。
惟以上所述者,仅为本发明之较佳实施例而已,当不能以此限定本发明实施之范围,即大凡依本发明申请专利范围及专利说明书内容所作之简单的等效变化与修饰,皆仍属本发明专利涵盖之范围内。

Claims (11)

  1. 发光二极管,包括:
    基板;
    半导体发光叠层,位于所述基板上,至下而上包含一第一半导体层、有源层及一第二半导体层与该第一半导体层的电性相异;
    透明导电层,位于所述半导体发光叠层上,具有开口部,
    第一电极与该第一半导体层电性相连;及
    第二电极与该第二半导体层电性相连;
    其中,所述第二电极填充所述开口部,其与所述透明导电层接触的位置具有一凹陷部,并镶嵌在所述透明导电层内。
  2. 根据权利要求1所述的发光二极管,其特征在于:所述开口部呈上窄下宽,所述第二电极填满所述开口部,并高出所述透明导电层的上表面。
  3. 根据权利要求2所述的发光二极管,其特征在于:所述透明导电层的开口部分为上部和下部,其中上部的口径大小固定,下部的口径大小固定。
  4. 根据权利要求2所述的发光二极管,其特征在于:所述透明导电层的开口部分为上部和下部,其中上部的口径大小固定,下部的口径从下到上呈递减。
  5. 根据权利要求1所述的发光二极管,其特征在于:所述第二电极高出所述透明导电层上表面的部分,面积大于所述开口部的上开口的面积。
  6. 根据权利要求1所述的发光二极管,其特征在于:所述第二电极位于所述开口部的部分呈上小下大状。
  7. 根据权利要求6所述的发光二极管,其特征在于:所述第二电极位于所述开口部内的部分具有倾斜的侧面。
  8. 根据权利要求7所述的发光二极管,其特征在于:所述第二电极分为上主体部、中主体部和下主体部,其中上主体部高出所述透明导电层的上表面,中主体部和下主体部位于所述开口部内,所述中主体部的横截面最小且面积固定,所述下主体部的横截面的面积从下到上 呈递减。
  9. 根据权利要求6所述的发光二极管,其特征在于:所述第二电极分为上主体部、中主体部和下主体部,其中上主体部高出所述透明导电层的上表面,中主体部和下主体部位于所述开口部内,所述中主体部的横截面最小且面积固定,所述下主体部的横截面的面积固定。
  10. 根据权利要求1所述的发光二极管,其特征在于:所述第二电极的上表面具有凹槽。
  11. 根据权利要求1所述的发光二极管,其特征在于:所述第二电极下方具有电流阻挡层。
PCT/CN2015/073469 2014-07-01 2015-03-02 发光二极管 WO2016000458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/384,221 US10038120B2 (en) 2014-07-01 2016-12-19 Light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410308320.3A CN104091874B (zh) 2014-07-01 2014-07-01 发光二极管
CN201410308320.3 2014-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/384,221 Continuation US10038120B2 (en) 2014-07-01 2016-12-19 Light emitting diode

Publications (1)

Publication Number Publication Date
WO2016000458A1 true WO2016000458A1 (zh) 2016-01-07

Family

ID=51639572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073469 WO2016000458A1 (zh) 2014-07-01 2015-03-02 发光二极管

Country Status (3)

Country Link
US (1) US10038120B2 (zh)
CN (1) CN104091874B (zh)
WO (1) WO2016000458A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091874B (zh) * 2014-07-01 2017-01-18 天津三安光电有限公司 发光二极管
CN105070799B (zh) * 2015-09-01 2017-05-24 湘能华磊光电股份有限公司 一种led芯片的制作方法
CN106025028B (zh) * 2016-05-20 2018-06-26 天津三安光电有限公司 倒装发光二极管芯片及其制作方法
TWI630729B (zh) * 2017-08-28 2018-07-21 友達光電股份有限公司 發光裝置
CN107681035B (zh) * 2017-09-18 2019-12-17 厦门三安光电有限公司 一种透明导电层及其制作方法、发光二极管
US10868217B2 (en) 2018-03-07 2020-12-15 Kunshan New Flat Panel Display Technology Center Co., Ltd. LED chips, method of manufacturing the same, and display panels
CN110246945B (zh) * 2018-03-07 2021-08-17 成都辰显光电有限公司 Led芯片及其制造方法、显示面板以及电子设备
CN109980059A (zh) * 2019-04-17 2019-07-05 厦门乾照半导体科技有限公司 一种电极具有开口的led芯片结构
CN110752276B (zh) * 2019-11-08 2021-07-06 安徽三安光电有限公司 发光二极管及其制作方法
CN112909153B (zh) * 2019-12-03 2022-12-16 深圳市聚飞光电股份有限公司 倒装led芯片、线路板以及电子设备
CN112713228B (zh) * 2021-03-23 2021-07-06 北京芯海视界三维科技有限公司 发光单元、发光器件及显示器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527339A (zh) * 2008-03-04 2009-09-09 广镓光电股份有限公司 发光二极管器件及其制造方法
CN102709434A (zh) * 2012-05-30 2012-10-03 安徽三安光电有限公司 一种抗电极沾污的发光二极管及其制作方法
CN102738346A (zh) * 2011-04-01 2012-10-17 广镓光电股份有限公司 半导体发光结构
CN103137800A (zh) * 2013-02-26 2013-06-05 西安神光皓瑞光电科技有限公司 一种发光二极管制作方法
CN103311379A (zh) * 2012-03-08 2013-09-18 无锡华润华晶微电子有限公司 一种GaN基LED以及制造GaN基LED的方法
CN104091874A (zh) * 2014-07-01 2014-10-08 天津三安光电有限公司 发光二极管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393353B1 (ko) * 2007-10-29 2014-05-13 서울바이오시스 주식회사 발광다이오드
JP5494005B2 (ja) * 2010-02-26 2014-05-14 豊田合成株式会社 半導体発光素子
CN103325905B (zh) * 2012-03-20 2016-01-06 山东浪潮华光光电子股份有限公司 一种具有电流阻挡结构的GaN基发光二极管芯片及其制作方法
CN103700742B (zh) * 2013-12-18 2016-09-07 同辉电子科技股份有限公司 具有高反射率电极的发光二极管及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527339A (zh) * 2008-03-04 2009-09-09 广镓光电股份有限公司 发光二极管器件及其制造方法
CN102738346A (zh) * 2011-04-01 2012-10-17 广镓光电股份有限公司 半导体发光结构
CN103311379A (zh) * 2012-03-08 2013-09-18 无锡华润华晶微电子有限公司 一种GaN基LED以及制造GaN基LED的方法
CN102709434A (zh) * 2012-05-30 2012-10-03 安徽三安光电有限公司 一种抗电极沾污的发光二极管及其制作方法
CN103137800A (zh) * 2013-02-26 2013-06-05 西安神光皓瑞光电科技有限公司 一种发光二极管制作方法
CN104091874A (zh) * 2014-07-01 2014-10-08 天津三安光电有限公司 发光二极管

Also Published As

Publication number Publication date
CN104091874B (zh) 2017-01-18
US10038120B2 (en) 2018-07-31
US20170098738A1 (en) 2017-04-06
CN104091874A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2016000458A1 (zh) 发光二极管
TWI616004B (zh) 半導體發光元件
TWI544658B (zh) 發光二極體結構
US11658269B2 (en) Light-emitting device
KR101064082B1 (ko) 발광 소자
TWI572054B (zh) 高亮度發光二極體結構與其製造方法
TWI569472B (zh) 發光裝置
TWI703744B (zh) 發光元件
US11005007B2 (en) Light-emitting device and manufacturing method thereof
TWI755245B (zh) 發光元件
TWI632692B (zh) 半導體發光元件
JP2011060966A (ja) 発光装置
CN107068831B (zh) 发光装置
CN111106212A (zh) 垂直结构深紫外发光二极管及其制备方法
TWI672837B (zh) 半導體發光元件
TWI672826B (zh) 發光元件
TW201543710A (zh) 半導體發光元件及其製造方法
KR101051326B1 (ko) 화합물 반도체 발광소자
JP2006128296A (ja) 発光素子およびそれを用いた照明装置
TW201442281A (zh) 發光二極體晶粒
CN103606604A (zh) 一种发光二极管的制造方法
TW202218181A (zh) 發光元件
CN102456793A (zh) 发光二极管元件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814604

Country of ref document: EP

Kind code of ref document: A1