WO2015199443A1 - 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품 - Google Patents

향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2015199443A1
WO2015199443A1 PCT/KR2015/006436 KR2015006436W WO2015199443A1 WO 2015199443 A1 WO2015199443 A1 WO 2015199443A1 KR 2015006436 W KR2015006436 W KR 2015006436W WO 2015199443 A1 WO2015199443 A1 WO 2015199443A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
elastomer composition
weight
styrene
rubber
Prior art date
Application number
PCT/KR2015/006436
Other languages
English (en)
French (fr)
Inventor
박승빈
김찬준
김인우
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to CN201580034787.6A priority Critical patent/CN106459520B/zh
Priority to JP2016574446A priority patent/JP6336630B2/ja
Priority to US15/320,846 priority patent/US10844207B2/en
Priority to EP15812659.9A priority patent/EP3162847A4/en
Publication of WO2015199443A1 publication Critical patent/WO2015199443A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to thermoplastic elastomer compositions having improved vibration insulation and heat resistance and molded articles formed therefrom.
  • thermoplastic elastomers also referred to as thermoplastic rubbers, are a mixture of copolymers or polymers that are both thermoplastic and elastic. Compared with general elastomers having thermosetting properties, thermoplastic elastomers are relatively easy to process, and thus molding products may be manufactured through extrusion molding, foam molding, and the like.
  • thermoplastic and elastomer In the production of such thermoplastic and elastomer, a composition containing an ethylene-propylene-diene monomer rubber (EPDM) component and an olefin resin is generally used.
  • EPDM ethylene-propylene-diene monomer rubber
  • thermoplastic elastomers are poor in heat resistance and have a problem in that mechanical properties are rapidly degraded when exposed to a high temperature environment for a long time:
  • thermoplastic elastomer since the general thermoplastic elastomer exhibits poor vibration insulation in the vibration frequency range that can be felt by humans, it is particularly required to supplement mechanical properties such as storage modulus.
  • the present invention is to provide a thermoplastic elastomer composition having improved vibration insulation and heat resistance.
  • the present invention is to provide a molded article formed using the thermoplastic elastomer composition.
  • thermoplastic elastomer composition comprising a.
  • the thermoplastic elastomer composition may have a storage modulus of 16 MPa or less under a silver degree of 20 ° C. and a vibration frequency of 100 MHz.
  • the thermoplastic elastomer composition may have a storage modulus that is at a minimum of 7.5 MPa and a maximum of 37 MPa or less, in a silver degree of 20 ° C. and a vibration frequency range of 0 to 100 MHz.
  • the thermoplastic elastomer composition may have a loss modulus of 30 MPa or more at a temperature of 20 ° C. and a vibration frequency of 100 MHz.
  • thermoplastic elastomer composition is 630% according to ISO 37 It can have more than elongation.
  • the olefin-based rubber contained in the thermoplastic elastomer composition is butadiene rubber, nitrile-butadiene rubber, isobutylene-isoprene rubber, and ethylene-propylene-least one member selected from the group consisting of diene monomer rubber It may be rubber.
  • the eulre pingye rubber is 4.5 to 10 parts by weight 0/0 ethylidene norbornene and containing an ethylene of 50 to 80% by weight and a viscosity of 45 to 70 Mooney of (Mooney viscosity, L1 + 8, 125 ° C) may be an ethylene propylene diene monomer rubber having a.
  • the styrenic block copolymer is a styrene-containing block styrene of 28 to 35 parts by weight 0/0 and having a 50,000 to 150,000 weight-average molecular weight may be a styrenic block copolymer-ethylene / butylene.
  • the oil may be a paraffin ' oil having a kinematic viscosity of 90 to 180 cSt at 40 ° C.
  • the high melt strength polypropylene is from 200,000 to 200,000
  • It may have a weight average molecular weight of 500,000.
  • the inorganic layering agent has a number average particle diameter of 1 to 30, and may include kaolin, talc, clay, or a combination thereof.
  • thermoplastic elastomer composition a molded article formed using the thermoplastic elastomer composition.
  • thermoplastic elastomer composition and the molded article formed therefrom according to the embodiments of the present invention will be described.
  • styrene-butylene-styrene block copolymer and styrene-ethylene / butylene-styrene block copolymer with a melt flow index value of 0.8 to 1.2 g / 10min (200 ° C., 2.16 kg) 5 to 50% by weight of the above styrenic block copolymer;
  • Inorganic fillers from 0.1 to 15 parts by weight 0/0;
  • thermoplastic elastomer composition comprising a.
  • the composition comprising a styrene block copolymer and a high melt-tension polypropylene in a specific content ratio in combination with the leuurene-based rubber, has excellent mechanical properties and particularly improved vibration insulation and heat resistance It has been confirmed that it is possible to provide a molded article having. That is, the molded article formed using the composition can not only exhibit excellent vibration insulation in the vibration frequency range (for example, 100 MHz) that humans can feel, but also maintain excellent mechanical properties even after prolonged exposure to a high temperature environment. have.
  • the olefinic rubber may be a general purpose olefinic rubber known in the art.
  • the olefinic rubber is butadiene rubber (BR), nitrile-butadiene rubber (NR), isobutylene-isoprene rubber (IIR), and At least one rubber selected from the group consisting of ethylene-propylene-diene monomer rubber (EPDM).
  • EPDM ethylene-propylene-diene monomer rubber
  • the EPDM is a kind of terpolymer derived from at least two or more monoolefin monomers (2 to 10 carbon atoms, preferably 2 to 4 carbon atoms), and at least one poly-unsaturated olefin (5 to 20 carbon atoms).
  • the poly-unsaturated leulevine may be straight chained, branched, cyclic, bicyclic, bridged ring, or the like, preferably a nonconjugated diene. May be).
  • Such poly-unsaturated olefins may comprise 0.4 to 10% by weight, based on the total weight of EP13M.
  • the EPDM is ethylidene norbornene (ethylidene norbornene, ENB) of the content is 45 parts by weight 0/0 or more, preferably 4.5 to 10 parts by weight 0/0, more preferably 4.5 to 9 parts by weight 0/0;
  • Ethylene (ethylene) content of 50 wt. 0/0 or more, preferably 50 to 80 parts by weight 0/0, more preferably from 60 to 75 weight 0/0, and the;
  • Mooney viscosity (Money viscosity, ML1 + 8, 125 ° C) is 45 or more, preferably 45 to 70, more preferably 45 to 60 may be advantageous to ensure the moldability and uniformity.
  • olefin-based rubber may be contained at 10 to 85 weight 0/0, or 15 to 80 weight 0/0, or 25 to 80 weight 0/0, or 30 to 60% by weight relative to the total weight of the composition eu i.e., thermoplastic for the expression of appropriate elasticity required of the elastomer composition
  • the olefin-based rubber is preferably included in 10 parts by weight 0/0 or more, based on the total weight of the composition.
  • the flowability and moldability may be lowered due to the rapid increase in viscosity when the excessive amount of the olefinic rubber is added. Therefore, the olefin-based rubber is preferably contained to less than 85 parts by weight 0/0 relative to the total weight of the composition. ' Styrenic block copolymer
  • the styrenic block copolymer is a block copolymer including at least one styrene repeating unit.
  • thermoplastic elastomer composition includes the styrene-based block copolymer in a specific content ratio together with the above-described olefinic rubber
  • the thermoplastic elastomer composition may exhibit excellent vibration insulation, particularly in a vibration frequency range where a human can feel.
  • this property improvement effect can be better expressed by applying a styrenic block copolymer having a specific range of melt flow index (MFI) values.
  • MFI melt flow index
  • the styrene-based block copolymer at least one block copolymer selected from the group consisting of styrene-butylene-styrene (SBS) block copolymers and styrene-ethylene / butylene-styrene (SEBS) block copolymers may be used.
  • SBS styrene-butylene-styrene
  • SEBS styrene-ethylene / butylene-styrene
  • the SEBS block copolymer shows excellent elongation even without chemical crosslinking, does not smell like rubber, has excellent color tone and feel and can be used more preferably.
  • the content of the styrenic block copolymer may be determined in a range capable of exhibiting improved vibration insulation while maintaining physical properties that can be exhibited by compounding with the above-described olefinic rubber, particularly appropriate elasticity.
  • the styrenic block copolymer may comprise from 5 to 50 parts by weight 0/0, or 10 to 35 weight 0/0, or 15 to 30% by weight based on the total weight of the composition. That is, in order to fully express the physical property improvement effect by the compounding of the olefin-based rubber and the styrene-based block copolymer, the styrene-based block copolymer is contained in 5% by weight or more based on the total weight of the composition. desirable. However, the heat resistance of the composition and the molded article may be lowered when the styrene-based block copolymer is added in an excessive amount. Thus, the styrenic block copolymer is preferably included as less than 50 parts by weight 0/0 relative to the total weight of the composition.
  • the styrenic block copolymer has a melt flow of 0.8 to 1.2 g / 10 min, or 0.8 to 1.0 g / lOmin, or 1.0 to 1.2 g / 10 min (200 ° C., 2.16 kg). It is desirable to have an index (MFI) value.
  • the styrene-based block copolymer is certified 0. 8 g / 10min (200 ° C, 2.16kg) or more of MFI It is desirable to have a value.
  • the MFI value of the styrenic block copolymer when the MFI value of the styrenic block copolymer is too large, it may be difficult to secure vibration insulation, such as high composition and storage modulus and low loss modulus.
  • the ⁇ value of the styrenic block copolymer when the ⁇ value of the styrenic block copolymer is too large, the moldability of the composition may decrease.
  • a styrenic block copolymer having an MFI value of too high has a low melt tension, so that the resin may squeeze out of the die portion of the extruder during extrusion, and may not be smoothly distributed, resulting in uneven appearance.
  • the MFI value of the styrene-based block copolymer may act as an important factor. Therefore, the styrenic block copolymer preferably has an MFI value of less than L2 g / 10 min (200 ° C., 2.16 kg).
  • the SEBS block copolymer used as the styrene-based block copolymer wherein the SEBS block copolymer is at least 28 parts by weight 0/0, or 28 to 35 weight 0/0, or 28 to 33 wt%, or 29 Containing from 32% by weight of styrene blocks may be advantageous for the development of the aforementioned physical properties.
  • the SEBS block copolymer has a weight average molecular weight of 50,000 to 150,000, or 80,000 to 120,000, or 100,000 to 120,000.
  • the SEBS block copolymer may have a number average molecular weight of 50,000 to 150,000, or 80,000 to 120,000, or 100,000 to 120,000.
  • the styrene block included in the SEBS block copolymer preferably has a number average molecular weight of 9,000 to 12,000, or 10,000 to 11,000, and the ethylene-butylene block has a number average molecular weight of 45,000 to 55,000, or 50,000 to 54,000. It is desirable to have. oil
  • the olepin-based rubber and styrene-based block copolymer has a higher viscosity, the rubber properties such as elasticity is improved, while the flowability is reduced, there may be a difficulty in the manufacturing process of the elastomer. That is, since the viscosity is high only by the olefinic rubber and the styrene-based blotting copolymer itself, it is required to secure fluidity and formability. Accordingly, the thermoplastic elastomer composition according to the embodiment includes an oil having compatibility with the olefinic rubber and the styrene block copolymer.
  • the oil may be a paraffin oil commonly used as a process oil.
  • the paraffin oil has a kinematic viscosity of 90 cSt or more, or 90 , to 180 cSt, or 100 to 150 cSt at 40 ° C. It may be desirable.
  • the oil may be included as about content suitable for the production of the preparation and of the molded article of the composition, preferably from 0.1 to 50 parts by weight 0/0 relative to the total weight of the composition, or 1 to 50 increment 0/0, or 5 to 40 may be included in a weight 0/0, or 10 to 25% by weight.
  • the content of the oil is preferably adjusted within the above range.
  • the oil-containing commercial article is used as the olepin-based rubber and styrene-based block copolymer
  • thermoplastic elastomer composition includes high melt strength polypropylene (hereinafter referred to as "HMS-PP").
  • the HMS-PP is a kind of high melt strength poly olefin or long-chain branched polyolefin, and in one embodiment, thermoplastic In addition, excellent moldability, heat resistance, tensile strength, tear strength and the like can be imparted.
  • the HMS-PP compensates for the shortcomings of general polypropylene having low melt tension due to the molding structure of the polymer chain, and increases the molecular weight, broadens the molecular weight distribution (MWD), and increases the content of branched polymer chains. It can be prepared through.
  • the HMS-PP may be obtained by introducing a long chain branch into the back bone of the polypropylene to increase the melt tension, and for this purpose, the backbone of the polypropylene is cut off. Afterwards, a method of introducing branches through secondary re-arrangement can be applied.
  • the HMS-PP has a higher melt tension than the general polypropylene, and is included in the thermoplastic elastomer composition of one embodiment to provide a molded article having improved tensile strength, flexural strength, flexural modulus, and heat resistance.
  • the stretching viscosity increases to some extent and then saturates.
  • HMS-PP having a long chain structure increases the stretching viscosity even at the saturation point of the general polypropylene. Can be represented.
  • thermoplastic elastomer composition including the HMS-PP of such physical properties and the aforementioned olefinic rubber and styrene block copolymer in a specific content ratio can exhibit excellent mechanical properties (particularly vibration insulation) and improved heat resistance, thereby improving the high temperature environment. Excellent physical properties can be maintained even when exposed for a long time.
  • the HMS-PP in order to ensure that the physical properties required in the present invention, it may be advantageous that the HMS-PP has a melt tension of 0.12 to 0.9 N. It may also be advantageous for the HMS-PP to have a melt flow index of 2.0 to 3.0 g / 10 min, or 2.3 to 2.5 g / 10 min.
  • the HMS-PP is a density of 0.890 to 0.910 g / cm 3 ; Tensile strength of 350 to 450 kgf / cm 2 ; Elongation at break of 50 to 70%; Flexural modulus of 18,000 to 25,000 kgf / cm 2 , or 19,000 to 23,000 kgf / cm 2 ; It may be advantageous to have an impact strength of 5 to 15 kgf cm / cm, or 10 to 15 kgf cm / cm. .
  • the HMS-PP is 120 ° C or more, or 120 to 135, or 125 to 135 t under a load of 4.6 kgf / cm 2 Or, having a heat deflection temperature of 125 to 130 ° C.
  • the HMS-PP may be more beneficial to the improvement of the heat resistance with the elongational viscosity of ⁇ . ⁇ ⁇ ⁇ 5 to 7 poise l.OxlO, or ⁇ . ⁇ ⁇ ⁇ 6 to l.OxlO 7 poise.
  • the HMS-PP may have a weight average molecular weight of 200,000 to 500,000, or 250,000 to 450,000, or 300,000 to 400,000, or 300,000 to 350,000, which may be more advantageous for securing mechanical properties.
  • such HMS-PP may be included in 1 to 50 parts by weight 0/0, or 5 to 50 parts by weight 0/0, or 5 to 40 parts by weight 0/0, or 10 to 35 weight 0/0 relative to the total increased composition . That is, it is desirable that the HMS-PP is included in one weight 0/0 or more, based on the total composition increased in order to ensure that the expression properties required in the invention (especially improvement of the vibration insulating properties and heat resistance). However, when the HMS-PP is included in excess, proper elasticity and mechanical properties may not be secured. Thus, the HMS-PP is preferably included by 50 wt. 0/0 relative to the total weight of the composition. Inorganic filler
  • thermoplastic elastomer composition includes an inorganic filler (inorganic filler).
  • the inorganic layer thickener may be added to reinforce the heat resistance and mechanical properties of the molded article, and those conventional in the art to which the present invention pertains may be applied without particular limitation.
  • the inorganic layering agent may be used talc, clay, carbon carbonate, wollastonite, calcium sulfate, magnesium oxide, calcium stearate, mica, calcium silicate, carbon black and the like; Among them, kaolin, talc, clay and the like can be used more suitably.
  • an organic-modified inorganic layering agent may be used as necessary. For organically modified inorganic fillers, Even if added, the same effect as the general filler can be expressed, it can be used more suitably to lower the specific gravity of the composition.
  • the shape of the inorganic filler is not particularly limited. However, in consideration of dispersibility of the inorganic filler and ⁇ upperability in extrusion molding of the composition, the inorganic filler may have a number average particle diameter of 1 to 30 urn, or 1 to 20 iM, or 5 to 20.
  • the inorganic layer jinje is ⁇ to 15 parts by weight 0/0, or 1 to 15 parts by weight 0 /, based on the total weight of the composition., or 5 to 15 may be included in a weight 0/0.
  • a crosslinking agent for crosslinking the rubber part which is a soft segment
  • the crosslinking agent may be dynamically crosslinked using an extruder or the like to express viscosity and elasticity such as rubber.
  • the crosslinking agent may be selected from those conventional in the art to which the present invention pertains, and preferably, a phenol resin crosslinking agent, a peroxide crosslinking agent, a silane crosslinking agent, or the like may be used.
  • the crosslinking agent may be benzoyl peroxide, dicumyl peroxide, isobutyryl peroxide, 2,2-bis (t-butylperoxy) butane and the like.
  • the crosslinking agent may comprise from 0.1 to 10 parts by weight 0/0, or 1 to 10 parts by weight 0/0, or 1 to 5% by weight relative to the total weight of the composition.
  • the cross-linking agent in order not to be made to the cross-linking cheungbun to prevent the physical properties of the molded product is lowered, the cross-linking agent is preferably included at least 0.1 0/0 relative to the total weight of the composition.
  • foreign substances such as protrusions, gels, and scratches may be observed on the surface of the molded article, may affect the color of the product, and the moldability may be reduced by rapid crosslinking reaction.
  • the cross-linking agent is preferably included as less than 10 parts by weight 0/0 relative to the total weight of the composition.
  • a crosslinking aid may be further used as necessary.
  • the crosslinking aid may be a metal oxide, a metal halide, or the like. Compounds may be used, specifically, ZnO, SnCl 2 / steric acid, zinc stearate and the like.
  • Such crosslinking aid may be included in the amount of 0.05 to 5% by weight based on the total weight of the composition for the same reason as the crosslinking agent.
  • thermoplastic elastomer composition may further comprise a reaction agent terminator.
  • the reaction terminator may be added to properly terminate the crosslinking reaction during molding of the composition to prevent degradation of physical properties.
  • reaction stopper conventional phenolic stabilizers, phosphorus oxidative stabilizers, phosphite thermal stabilizers and the like may be used.
  • reaction terminator may be included in an amount of 0.05 to 5% by weight based on the total weight of the composition, in consideration of the effects of adding the reaction terminator and the blooming phenomenon of the surface of the molded product that may occur when an excessive amount is added.
  • thermoplastic elastomer composition comprising the above-mentioned components exhibits improved vibration insulation, especially in the human vibration-sensing vibration frequency range (for example, 100 MHz), and maintains excellent mechanical properties even after prolonged exposure to high temperature environments. It can exhibit heat resistance.
  • the vibration insulation may be evaluated through physical properties such as storage modulus and loss modulus of the composition.
  • storage modulus when the storage elastic modulus is relatively high, it means that the resilience is high and the absorption rate of the lattice applied from the outside is low.
  • loss modulus when the loss modulus is relatively high, the resilience is low, which means that the absorption rate of the lattice is high. Therefore, it can be interpreted as having excellent vibration insulation when having a relatively low storage modulus or a high loss modulus.
  • thermoplastic elastomer composition has a storage elasticity of 16 MPa or less, or 5 to 16 MPa, or 9 to 15.5 MPa, or 9.5 to 15.5 MPa, at a temperature of 20 ° C. and a vibration frequency of 100 MHz. Having It is preferable in view of the expression of vibration insulation.
  • the thermoplastic elastomer composition preferably has a minimum value of storage modulus of 7.5 MPa or less, or 7 MPa or less, or 2 to 7 MPa at a temperature of 20 ⁇ and a vibration frequency range of 0 to 100 MHz;
  • the maximum value of the storage modulus is preferably 37 MPa or less, or 30 to 37 MPa, or 32 to 37 MPa, in view of the expression of vibration insulation.
  • thermoplastic elastomer composition preferably has a loss modulus of 30 MPa or more, or 30 to 35 MPa at a temperature of 20 " C and a vibration frequency of 100 MHz.
  • thermoplastic elastomer composition may have excellent vibration insulation properties and satisfy excellent mechanical properties at 3 ⁇ 4.
  • the thermoplastic elastomer composition may exhibit a Shore A hardness of at least 50, or from 50 to 70, or from 55 to 65.
  • the composition may have an elongation of at least 630% or from 630 to 660% according to ISO 37.
  • thermoplastic elastomer composition may exhibit excellent heat resistance that can be maintained even without prolonged change in the above-described physical properties even after prolonged exposure to a high temperature environment.
  • thermoplastic elastomer composition of the above-described embodiment.
  • the molded article may exhibit improved vibration insulation in a vibration frequency range that can be felt by humans, and may exhibit improved heat resistance such as maintaining excellent mechanical properties even when exposed to a high temperature environment for a long time. have.
  • Such molded articles can be obtained by conventional methods such as extrusion molding, except that they are formed using the above-mentioned thermoplastic elastomer composition.
  • the molded article may be applied to various fields in which the aforementioned characteristics are required.
  • the molded article may be used for automobile parts or automobiles.
  • interior and exterior materials, interior materials for buildings, etc. it can be suitably used in various fields such as various household goods and medical supplies.
  • thermoplastic elastomer composition according to the present invention has improved vibration insulation and heat resistance. Accordingly, the thermoplastic elastomer composition may exhibit excellent vibration insulation in a vibration frequency range that can be felt by a person, and maintain excellent mechanical properties even when exposed to a high silver environment for a long time.
  • the molded article formed using such a thermoplastic elastomer composition may be suitably used in various fields such as various household articles, medical articles, automotive parts, automotive interior and exterior materials, interior materials for buildings, and the like.
  • thermoplastic elastomer compositions according to Examples and Comparative Examples were obtained using the components of the composition ratios shown in Table 1 below.
  • a twin screw extruder having an internal mixer and an extruder and having a length (L) / outer diameter (D) ratio of 52 was used, and the reaction temperature was 160 to 220 ° C. Was adjusted.
  • EPDM of pure EPDM the (manufacturer: 49 Kumho Polychem, product name: KEP-960NF, ENB content: 5.7 wt. 0 /, ethylene content: 70 wt. 0/0, the Mooney viscosity (ML1 + 8, 125 ° C )) the content was added to 30 parts by weight 0/0, based on the total composition, such that.
  • the EPDM product (KEP-960NF) has a paraffin oil content of 50
  • the product is added such that the amount of pure EPDM 30 weight 0/0, based on the total composition, in view of the content of the paraffin contained in the product, by default, the total composition
  • the content of paraffin oil contained in the US was adjusted to 15% by weight.
  • the additional paraffin oil was used as a product of Michang Petrochemical Co., Ltd. (product name: W-1900H, kinematic viscosity (40 ° C): 137 cSt).
  • HMS-PP (Note) Lotte Chemical Manufacturing [SMS-514F]; elongational viscosity of about l.OxlO 6 poise;; about 130 ° C (4.6 kgf / cm 2) heat distortion temperature of from about 330,000 Weight average molecular weight; melt flow index of about 2.4 g / 10 min; density of about 0.905 g / cm 3 ; tensile strength of about 400 kgf / cm 2 ; elongation at break of about 60%; flexural modulus of about 19,000 kgf / cm 2 Impact strength of about lO kgf cm / cm);
  • crosslinker dimethylol phenolic resin
  • reaction reaction terminator phenolic 1,2-complex oxidation stabilizer, product name: TCMB-2300
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1. Comparative Example 1 and Comparative Example 2
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that the modulus of elasticity; impact strength of about 4.0 kgf cm / cm) was used. Comparative Example 3
  • thermoplastic elastomer composition (4.6 kgf / cm 2 ); melt flow index of about 0.5 g / 10 min; Density of about 0.9 g / cm 3 ; tensile strength of about 290 kgf / cm 2 ; flexural modulus of about 12,000 kgf / cm 2 ; about 4.5 kgf cm / cm
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that SEBS having a melt flow index of 0.8 g / 10 min (200 ° C., 2.16 kg) was used.
  • SEBS having a melt flow index of 0.8 g / 10 min (200 ° C., 2.16 kg) was used.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that SEBS having a melt flow index of 1.2 g / 10 min (200 ° C., 2.16 kg) was used. Comparative Example 6
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that SEBS having a melt flow index of 0.6 g / 10 min (200 ° C., 2.16 kg) was used. Comparative Example 7
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that SEBS having a melt flow index of 1.5 g / 10 min (200 ° C., 2.16 kg) was used.
  • SEBS having a melt flow index of 1.5 g / 10 min (200 ° C., 2.16 kg) was used.
  • thermoplastic elastomer compositions obtained through Examples and Comparative Examples were measured at room temperature (about 20 t) in the following manner, and the results are shown in Tables 2 to 5 below.
  • Density Density (g / cm 3 ) was measured on specimens 10 mm wide, 10 mm long, and 2.0 mm thick according to the method of ISO 1183.
  • Hardness ISO using Analogue Shore Hardness Tester Hardness was measured according to the method of 868 provision.
  • melt index was measured under a load of 230 ° C and 10 kg according to the method of ISO 1133.
  • Tensile strength, tear strength and elongation were measured using the Universal materials testing machine according to the method of ISO 37.
  • Elastic Modulus Storage modulus and loss modulus were measured under a vibration frequency of 100 MHz using a dynamic mechanical analysis (DMA) instrument. Among them, the storage modulus was measured together with the maximum value and the minimum value in the vibration frequency range of 0 to 100 MHz.
  • DMA dynamic mechanical analysis
  • thermoplastic elastomers according to the embodiments exhibited mechanical properties equivalent to or higher than those of the elastomers of the comparative examples under normal temperature conditions, and also had improved vibration insulation.
  • thermoplastic elastomer according to the embodiments was confirmed to have excellent heat resistance by maintaining the initial excellent physical properties without large change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품에 관한 것이다. 본 발명에 따른 열가소성 엘라스토머 조성물은 향상된 진동 절연성과 내열성을 갖는다. 그에 따라, 상기 열가소성 엘라스토머 조성물은 사람이 느낄 수 있는 진동 주파수 영역에서 우수한 진동 절연성을 나타낼 수 있고, 고온 환경에 장시간 노출되어도 우수한 기계적 물성을 유지할 수 있다. 이러한 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품은 각종 생활 용품, 의료 용품, 자동차용 부품, 자동차용 내외장재, 건축물용 내장재 등 다양한 분야에 적합하게 사용될 수 있다.

Description

【명세서】
【발명의 명칭】
향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품
【관련 출원과의 상호 인용】
본 출원은 2014 년 6 월 26 일자 한국 특허 출원 제 10-2014-0078942 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야】
본 발명은 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품에 관한 것이다.
【발명의 배경이 되는 기술】
열가소성 고무로도 지칭되는 열가소성 엘라스토머는 열가소성과 탄성을 동시에 갖는 공중합체 또는 중합체의 흔합물이다. 열경화성을 갖는 일반적인 엘라스토머에 비하여, 열가소성 엘라스토머는 상대적으로 가공이 용이하여 압출 성형, 발포 성형 등을 통한 성형품의 제조가가능하다.
이러한 열가소성 , 엘라스토머의 제조에는 일반적으로 에틸렌-프로필렌 -디엔 모노머 고무 (EPDM) 성분과 올레핀계 수지를 포함하는 조성물이 사용되고 있다. 그러나, 일반적으로 열가소성 엘라스토머는 내열성이 취약하여 고온 환경에 장시간 노출될 경우 기계적 물성이 급격히 저하되는 문제점이 있다:
또한, 일반적인 열가소성 엘라스토머는 사람이 느낄 수 있는 진동 주파수 영역에서 층분하지 못한 진동 절연성을 나타내기 때문에, 특히 저장 탄성율과 같은 기계적 물성의 보완이 요구되고 있다.
그리고, 최근 산업 발전의 추세에 따라, 수지 성형품의 기계적 또는 화학적 물성뿐 아니라, 촉감 및 냄새와 같은 감성적인 물성의 향상에 관심이 높아지고 있으며, 이러한 추세에 맞추어 다양한 종류의 열가소성 엘라스토머들이 제안되고 있다. 그러나, 지금까지 제안된 열가소성 엘라스토머들은 전술한 바와 같은 다양한 물성의 균형을 이루지 못하고 있어, 이에 대한 보완이 여전히 요구되고 있다. 【발명의 내용】
【해결하고자 하는 과제】
본 발명은 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품을 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명에 따르면,
을레핀계 고무 10 내지 85 중량0 /0; .
0.8 내지 L2 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스 값을 가지며, 스티렌-부틸렌-스티렌 블록 공중합체 및 스티렌-에틸렌 /부틸렌-스티렌 블록 공중합체로 이루어진 군에서 선택된 1종 이상의 스티렌계 블록 공중합체 5 내지 50 중량0 /0;
오일 0.1 내지 50 중량0 /0;
4.6 kgf/cm2의 하중 하에서 120 내지 135 °C의 열변형 온도와 Ι.ΟχΙΟ5 내지 l.OxlO7 poise의 연신 점도를 갖는 고용융장력 폴리프로필렌 1 내지 50 중량0 /0;
무기 충진제 0.1 내지 15 중량 %; 및
가 ^제 0.1 내지 10 중량0 /0
를 포함하는 열가소성 엘라스토머 조성물이 제공된다.
상기 열가소성 엘라스토머 조성물은 20 °C의 은도 및 100 MHz의 진동 주파수 하에서 16 MPa 이하의 저장 탄성율 (storage modulus)을 가질 수 있다.
상기 열가소성 엘라스토머 조성물은 20 °C의 은도 및 0 내지 100 MHz의 진동 주파수 범위에서, 7.5 MPa 이하의 최소값과 37 MPa 이하의 최대값인 저장 탄성율을 가질 수 있다.
상기 열가소성 엘라스토머 조성물은 20 °C의 온도 및 100 MHz의 진동 주파수 하에서 30 MPa 이상의 손실 탄성율 (loss modulus)을 가질 수 있다.
상기 열가소성 엘라스토머 조성물은 ISO 37 규정에 따른 630 % 이상의 신율을 가질 수 있다.
그리고, 본 '발명에 따르면, 상기 열가소성 엘라스토머 조성물에 포함되는 올레핀계 고무는 부타디엔 고무, 니트릴-부타디엔 고무, 이소부틸렌-이소프렌 고무, 및 에틸렌-프로필렌 -디엔 모노머 고무로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다.
또한, 본 발명에 따르면, 상기 을레핀계 고무는 4.5 내지 10 중량0 /0의 에틸리덴 노보넨과 50 내지 80 중량 %의 에틸렌을 함유하며 45 내지 70의 무니점도 (Mooney viscosity, L1+8, 125 °C)를 갖는 에틸렌 프로필렌 디엔 모노머 고무일 수 있다.
본 발명에 따르면, 상기 스티렌계 블록 공중합체는 28 내지 35 중량0 /0의 스티렌 블록을 함유하고 50,000 내지 150,000의 중량 평균 분자량을 갖는 스티렌-에틸렌 /부틸렌-스티렌 블록 공중합체일 수 있다.
본 발명에 따르면, 상기 오일은 40 °C에서 90 내지 180 cSt의 동점도를 갖는 파라핀 '오일일 수 있다.
본 발명에 따르면, 상기 고용융장력 폴리프로필렌은 200,000 내지
500,000의 중량 평균 분자량을 갖는 것일 수 있다.
본 발명에 따르면, 상기 무기 층진제는 1 내지 30 의 수평균 입경을 가지며, 카을린, 탈크, 클레이, 또는 이들의 흔합물을 포함할 수 있다.
한편, 본 발명에 따르면, 상기 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품이 제공된다. 이하, 본 발명의 구현 예들에 따른 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품에 대하여 설명하기로 한다.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 '포함 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다. I. 열가소성 엘라스토머 조성물
발명의 일 구현 예에 따르면,
을레핀계 고무 10 내지 85 중량0 /0;
0.8 내지 1.2 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스 값을 가지며, 스티렌-부틸렌-스티렌 블록 공중합체 및 스티렌-에틸렌 /부틸렌-스티렌 블록 공중합체로 이루어진 군에서 선택된 1종 이상의 스티렌계 블록 공중합체 5 내지 50 중량%;
오일 0.1 내지 50 중량0 /0;
4.6 kgf/cm2의 하중 하에서 120 내지 135 °C의 열변형 은도와 Ι.ΟχΙΟ5 내지 l.OxlO7 poise의 연신 점도를 갖는 고용융장력 폴리프로필렌 1 내지 50 중량%;
무기 충진제 0.1 내지 15 중량0 /0; 및
가교제 0.1 내지 10 중량 %
를 포함하는 열가소성 엘라스토머 조성물이 제공된다.
본 발명자들의 계속적인 연구 결과, 을레핀계 고무와 함께 특정 물성을 만족하는 스티렌계 블록 공중합체와 고융용장력 폴리프로필렌을 특정 함량비로 포함하는 조성물은, 기계적 물성이 우수하면서도 특히 향상된 진동 절연성과 내열성을 갖는 성형품의 제공을 가능케 함이 확인되었다. 즉, 상기 조성물을 사용하여 형성된 성형품은 사람이 느¾ 수 있는 진동 주파수 영역 (예를 들어, 100 MHz)에서 우수한 진동 절연성을 나타낼 수 있을 뿐 아니라, 고온 환경에 장시간 노출되어도 우수한 기계적 물성을 유지할 수 있다.
이하, 상기 열가소성 엘라스토머 조성물에 포함될 수 있는 성분들 및 조성물의 물ᅳ성에 대하여 설명한다. 을레핀계 고무
상기 올레핀계 고무는 본 발명이 속하는 기술분야에 알려진 범용의 올레핀계 고무일 수 있다. 바람직하게는, 상기 올레핀계 고무는 부타디엔 고무 (BR), 니트릴-부타디엔 고무 (NR), 이소부틸렌-이소프렌 고무 (IIR), 및 에틸렌-프로필렌 -디엔 모노머 고무 (EPDM)로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다. 상기 예들 중에서, 조성물의 성형성 및 균일성 등을 감안하여, 상기 을레핀계 고무는 EPDM인 것이 유리할 수 있다.
상기 EPDM은 적어도 2 종 이상의 모노올레핀 모노머 (탄소수 2 내지 10, 바람직하게는 2 내지 4), 및 적어도 1 종 이상의 폴리-불포화 올레핀 (탄소수 5 내지 20)으로부터 유도되는 삼원 중합체 (terpolymer)의 일종이다. 상기 모노올레핀 모노머는 각각 CH2=CH-R (R은 H 또는 탄소수 1 내지 12의 알킬기)일 수 있으며, 바람직하게 에틸렌 또는 프로필렌일 수 있다. 적어도 2 종 이상의 모노을레핀 모노머에 의해 바람직한 반복단위는 EPDM 전체 중량을 기준으로 90 내지 99.6 중량 %로 포함될 수 있다. 상기 폴리-불포화 을레핀은 직쇄형 (straight chained), 가지형 (branched), 환형 (cyclic), 이환형 (bicyclic), 가교링형 (bridged ring) 등일 수 있으며, 바람직하게는 비공액 디엔 (nonconjugated diene)일 수 있다. 이러한 폴리-불포화 올레핀은 EP13M 전체 중량을 기준으로 0.4 내지 10 중량 %로 포함될 수 있다.
그리고, 상기 EPDM은 에틸리덴 노보넨 (ethylidene norbornene, ENB)의 함량이 45 중량0 /0 이상, 바람직하게는 4.5 내지 10 중량0 /0, 보다 바람직하게는 4.5 내지 9 중량0 /0이고; 에틸렌 (ethylene)의 함량이 50 중량0 /0 이상, 바람직하게는 50 내지 80 중량0 /0, 보다 바람직하게는 60 내지 75 중량0 /0이며; 무니점도 (Mooney viscosity, ML1+8, 125°C)가 45 이상, 바람직하게는 45 내지 70, 보다 바람직하게는 45 내지 60인 것이 성형성 및 균일성의 확보에 유리할 수 있다.
이러한 올레핀계 고무는 조성물 전체 중량에 대하여 10 내지 85 중량0 /0, 또는 15 내지 80 중량0 /0, 또는 25 내지 80 중량0 /0, 또는 30 내지 60 중량 %로 포함될 수 있다ᅳ 즉, 열가소성 엘라스토머 조성물에 요구되는 적절한 탄성의 발현을 위하여, 상기 올레핀계 고무는 조성물 전체 중량에 대하여 10 중량0 /0 이상으로 포함되는 것이 바람직하다. 다만, 올레핀계 고무의 과량 첨가시 점도의 급격한 상승으로 인해 흐름성 및 성형성이 저하될 수 있다. 따라서, 상기 올레핀계 고무는 조성물 전체 중량에 대하여 85 중량0 /0 이하로 포함되는 것이 바람직하다. ' 스티렌계 블록 공중합체
상기 스티렌계 블록 공증합체는 적어도 하나의 스티렌계 반복단위를 포함하는 블록 공중합체이다.
발명의 구현 예에 따른 열가소성 엘라스토머 조성물에는 전술한 올레핀계 고무와 함께 상기 스티렌계 블록 공중합체가 특정 함량비로 포함됨에 따라, 특히 사람이 느낄 수 있는 진동 주파수 영역에서 우수한 진동 절연성을 나타낼 수 있다. 특히, 이러한 물성 향상 효과는 특정 범위의 멜트 플로우 인덱스 (MFI) 값을 갖는 스티렌계 블록 공중합체를 적용함으로써 보다 잘 발현될 수 있다.
상기 스티렌계 블록 공중합체로는 스티렌-부틸렌-스티렌 (SBS) 블록 공중합체 및 스티렌-에틸렌 /부틸렌-스티렌 (SEBS) 블록 공증합체로 이루어진 군에서 선택된 1종 이상의 블록 공중합체가 사용될 수 있다. 그 중에서도 상기 SEBS 블록 공중합체는 화학적 가교 없이도 우수한 신율을 나타내며, 고무 특유의 냄새가 나지 않고, 조색성 및 촉감이 우수한 특성을 가져, 보다 바람직하게 사용될 수 있다.
상기 스티렌계 블록 공중합체의 함량은 상술한 을레핀계 고무와의 컴파운딩에 의해 나타낼 수 있는 물성, 특히 적절한 탄성을 유지하면서도 향상된 진동 절연성을 나타낼 수 있는 범위에서 결정될 수 있다.
예를 들어, 상기 스티렌계 블록 공중합체는 조성물 전체 중량에 대하여 5 내지 50 중량0 /0, 또는 10 내지 35 중량0 /0, 또는 15 내지 30 중량 %로 포함될 수 있다. 즉, 상기 올레핀계 고무와 스티렌계 블록 공증합체의 컴파운딩에 의한 물성 향상 효과가 층분히 발현될 수 있도록 하기 위하여, 상기 스티렌계 블록 공중합체는 조성물 전체 중량에 대하여 5 중량 % 이상으로 포함되는 것이 바람직하다. 다만, 스티렌계 블록 공중합체의 과량 첨가시 조성물 및 성형품의 내열성이 저하될 수 있다. 따라서, 상기 스티렌계 블록 공중합체는 조성물 전체 중량에 대하여 50 중량0 /0 이하로 포함되는 것이 바람직하다.
특히, 상기 스티렌계 블록 공중합체는 0.8 내지 1.2 g/10min, 또는 0.8 내지 1.0 g/lOmin, 또는 1.0 내지 1.2 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스 (MFI) 값을 갖는 것이 바람직하다.
즉, 을레핀계 고무와의 컴파운딩에 의한 탄성 및 신율을 유지하면서도 향상된 진동 절연성을 나타낼 수 있도록 하기 위하여, 상기 스티렌계 블록 공증합체는 0.8 g/10min (200°C, 2.16kg) 이상의 MFI 값을 갖는 것이 바람직하다.
다만, 스티렌계 블록 공중합체의 MFI 값이 너무 클 경우 조성물와 저장 탄성율이 높아지고 손실 탄성율이 낮아지는 등 진동 절연성의 확보가 어려워질 수 있다. 또한, 스티렌계 블록 공중합체의 ΜΠ 값이 너무 클 경우 조성물의 성형성이 저하될 수 있다. 예를 들어, MFI 값이 너무 큰 스티렌계 블록 공중합체는 melt tension이 낮아, 압출 성형시 압출기의 다이 부분에서 수지가 쳐질 수 있고, 분배가 원활히 이루어지지 못해 외관이 고르지 못할 수 있다. 특히, 진동 절연 특성이 중요시되는 자동차 소재 분야의 경우 압출 블로운 성형이 주로 적용되기 때문에, 상기 스티렌계 블록 공증합체의 MFI 값이 중요한 요소로 작용할 수 있다. 그러므로, 상기 스티렌계 블록 공중합체는 L2 g/10min (200 °C, 2.16kg) 이하의 MFI 값을 갖는 것이 바람직하다ᅳ
그리고, 상기 스티렌계 블록 공중합체로 상기 SEBS 블록 공중합체가 사용되는 경우, 상기 SEBS 블록 공중합체는 적어도 28 중량0 /0, 또는 28 내지 35 중량0 /0, 또는 28 내지 33 중량 %, 또는 29 내지 32 중량 %의 스티렌 블록을 함유하는 것이 전술한 물성의 발현에 유리할 수 있다.
또한, 마찬가지 이유로, 상기 SEBS 블록 공중합체는 50,000 내지 150,000, 또는 80,000 내지 120,000, 또는 100,000 내지 120,000의 중량 평균 분자량을 갖는 것이 바람직하다. 그리고, 상기 SEBS 블록 공중합체는 50,000 내지 150,000, 또는 80,000 내지 120,000, 또는 100,000 내지 120,000의 수 평균 분자량을 갖는 것이 바람직할 수 있다. 나아가, 상기 SEBS 블록 공중합체에 포함된 스티렌 블록은 9,000 내지 12,000, 또는 10,000 내지 11,000의 수 평균 분자량을 갖는 것이 바람직하며, 에틸렌-부틸렌 블록은 45,000 내지 55,000, 또는 50,000 내지 54,000의 수 평균 분자량을 갖는 것이 바람직하다. 오일
한편, 상기 을레핀계 고무와 스티렌계 블록 공중합체는 점도가 클수록 탄성 등의 고무 성질이 향상되는 반면에 흐름성이 감소하여, 엘라스토머의 제조 공정상 어려움이 있을 수 있다. 즉, 상기 올레핀계 고무와 스티렌계 블톡 공중합체 자체만으로는 점도가 높기 때문에 유동성과 성형성의 확보가 요구된다. 그에 따라, 상기 일 구현 예에 따른 열가소성 엘라스토머 조성물에는 상기 올레핀계 고무 및 스티렌계 블록 공중합체와 상용성을 갖는 오일이 포함된다.
상기 오일로는 프로세스 오일로 통상적으로 사용되는 파라핀 오일이 적용될 수 있다. 다만, 본 발명에서 요구되는 조성물의 물성을 유지하면서도 유동성과 성형성의 확보하기 위하여, 상기 파라핀 오일은 40 °C에서 90 cSt 이상, 또는 90,내지 180 cSt, 또는 100 내지 150 cSt의 동점도를 갖는 것이 바람직할 수 있다.
그리고, 상기 오일은 조성물의 준비 및 성형품의 제조에 적합한 정도의 함량으로 포함될 수 있으며, 바람직하게는 조성물 전체 중량에 대하여 0.1 내지 50 중량0 /0, 또는 1 내지 50 증량0 /0, 또는 5 내지 40 중량0 /0, 또는 10 내지 25 중량 %로 포함될 수 있다. 이때, 상기 오일이 과량으로 포함될 경우, 흡수되지 못한 오일이 성형품의 외부로 용출되거나 성형품의 기계적 물성을 저하시킬 수 있다. 그러므로, 상기 오일의 함량은 전술한 범위 내에서 조절되는 것이 바람직하다. 그리고, 상기 을레핀계 고무 및 스티렌계 블록 공중합체로 오일이 함유된 상용품이 사용될 경우, 상용품에 포함된 오일의 함량을 감안하여 조성물에 포함되는 오일의 함량이 전술한 범위 내로 조절되는 것이 바람직하다. 고용융장력 폴리프로필렌
한편, 일 구현 예에 따른 열가소성 엘라스토머 조성물에는 고용융장력 폴리프로필렌 (High Melt Strength Polypropylene, 이하 'HMS-PP라 함)이 포함된다.
상기 HMS-PP는 high melt strength poly olefin 또는 long-chain branched polyolefin의 일종으로서, 일 구현 예의 조성물에 열가소성을 부여하고, 나아가 우수한 성형성, 내열성, 인장강도, 인열강도 등을 부여할 수 있다.
상기 HMS-PP는 고분자 체인의 성형 구조로 인해 용융장력이 낮은 일반적인 폴리프로필렌의 단점을 보완한 것으로서, 분자량을 높이거나 분자량분포 (MWD)를 넓히거나 branched된 고분자 사슬의 함량을 높이는 등의 방법을 통해 제조될 수 있다. 예를 들어, 상기 HMS-PP는 폴리프로필렌의 백 본 (back bone)에 긴 사슬 분지 (long chain branch)를 도입하여 용융장력을 높이는 방법으로 얻어질 수 있으며, 이를 위하여 폴리프로필렌의 백 본을 끊은 후 2 차적으로 재배열 (re-arrangement)을 통하여 분지 (branch)를 도입하는 방법이 적용될 수 있다.
이러한 HMS-PP은 일반적인 폴리프로필렌에 비하여 높은 용융장력을 가지며, 일 구현 예의 열가소성 엘라스토머 조성물에 포함되어 인장강도, 굴곡강도, 굴곡탄성률, 내열성 등이 향상된 성형품의 제공을 가능케 한다. 특히, 일반적인 폴리프로필렌의 경우 연신 점도가 시간의 증가에 따라 일정부분 증가하다가 포화되는 거동을 보이지만, 긴 사슬 구조를 가진 HMS-PP는 일반적인 폴리프로필렌의 연신 점도 포화 지점에서도 연신 점도가 증가하는 양상을 나타낼 수 있다.
그에 따라, 이러한 물성의 HMS-PP와 전술한 올레핀계 고무 및 스티렌계 블록 공중합체를 특정 함량비로 포함하는 열가소성 엘라스토머 조성물은 우수한 기계적 물성 (특히 진동 절연성)과 향상된 내열성을 나타낼 수 있어, 고온 환경에 장시간 노출될 경우에도 우수한 물성을 유지할 수 있다.
일 구현 예에 따르면, 본 발명에서 요구되는 물성이 층족될 수 있도록 하기 위하여, 상기 HMS-PP는 0.12 내지 0.9 N의 용융장력을 갖는 것이 유리할 수 있다. 또한, 상기 HMS-PP는 2.0 내지 3.0 g/10min, 또는 2.3 내지 2.5 g/10min의 멜트 플로우 인덱스를 갖는 것이 유리할 수 있다. 그리고, 상기 HMS-PP는 0.890 내지 0.910 g/cm3의 밀도; 350 내지 450 kgf/cm2의 인장 강도; 50 내지 70%의 파단 신율; 18,000 내지 25,000 kgf/cm2, 또는 19,000 내지 23,000 kgf/ cm2의 굴곡 탄성율; 5 내지 15 kgf cm/cm, 또는 10 내지 15 kgf cm/ cm의 충격 강도를 갖는 것이 유리할 수 있다. . 특히, 일 구현 예에 따르면, 본 발명에서 요구되는 물성이 충족될 수 있도록 하기 위하여, 상기 HMS-PP는 4.6 kgf/cm2의 하중 하에서 120 °C 이상, 또는 120 내지 135 , 또는 125 내지 135 t, 또는 125 내지 130 °C의 열변형 온도를 갖는 것이 바람직하다.
나아가, 상기 HMS-PP는 Ι.ΟχΙΟ5 내지 l.OxlO7 poise, 또는 Ι.ΟχΙΟ6 내지 l.OxlO7 poise의 연신 점도를 갖는 것이 내열성의 향상에 보다 유리할 수 있다.
또한, 상기 HMS-PP는 200,000 내지 500,000, 또는 250,000 내지 450,000, 또는 300,000 내지 400,000, 또는 300,000 내지 350,000의 중량 평균 분자량을 갖는 것이 기계적 물성의 확보에 보다 유리할 수 있다.
그리고, 이러한 HMS-PP는 조성물 전체 증량에 대하여 1 내지 50 중량0 /0, 또는 5 내지 50 중량0 /0, 또는 5 내지 40 중량0 /0, 또는 10 내지 35 중량0 /0로 포함될 수 있다. 즉, 본 발명에서 요구되는 물성 (특히 진동 절연성 및 내열성의 향상)이 발현될 수 있도록 하기 위하여, 상기 HMS-PP는 조성물 전체 증량에 대하여 1 중량0 /0 이상으로 포함되는 것이 바람직하다. 다만, 상기 HMS-PP가 과량으로 포함될 경우 적절한 탄성과 기계적 물성이 확보되지 못할 수 있다. 따라서, 상기 HMS-PP는 조성물 전체 중량에 대하여 50 중량0 /0 이하로 포함되는 것이 바람직하다. 무기 충전제
한편, 일 구현 예에 따른 열가소성 엘라스토머 조성물에는 무기 층진제 (inorganic filler)가 포함된다.
상기 무기 층진제는 성형품의 내열성 및 기계적 물성을 보강하기 위하여 첨가될 수 있는 것으로서, 본 발명이 속하는 기술분야에서 통상적인 것이 특별한 제한 없이 적용될 수 있다. 비제한적인 예로, 상기 무기 층진제로는 탈크, 클레이, 탄산칼슴, 월라스토나이트, 황산칼슴, 산화마그네슴, 칼슘스테아레이트, 마이카, 규산칼슘, 카본블랙 등이 사용될 수 있으며; 그 중 카올린, 탈크, 클레이 등이 보다 적합하게 사용될 수 있다. 그리고, 무기 층진제의 분산성 확보를 위하여, 필요에 따라 유기 개질된 무기 층진제가 사용될 수 있다. 유기 개질된 무기 충진제의 경우 상대적으로 적은 양을 첨가하더라도 일반적인 충진제와 동등한 정도의 효과가 발현될 수 있어, 조성물의 비중을 낮추는데 보다 적합하게 사용될 수 있다.
그리고, 상기 무기 충진제의 형상은 특별히 제한되지 않다. 다만, 무기 충진제의 분산성과 조성물의 압출 성형시 ^업성 등을 고려하여, 상기 무기 충진제는 1 내지 30 urn, 또는 1 내지 20 iM, 또는 5 내지 20 의 수평균 입경을 갖는 것이 바람직할 수 있다.
또한, 무기 충진제의 첨가에 따른 물성 향상 효과, 조성물의 비중 및 성형성 등을 고려하여, 상기 무기 층진제는 조성물 전체 중량에 대하여 ι 내지 15 중량0 /0, 또는 1 내지 15 중량0 /。, 또는 5 내지 15 중량0 /0로 포함될 수 있다. 가교제
상기 열가소성 엘라스토머의 제조에는 소프트 세그먼트인 고무 부분을 가교시키기 위한 가교제가 첨가되는데, 압출기 등을 이용하여 동적으로 가교시켜 고무와 같은 점성과 탄성이 발현될 수 있다.
상기 가교제로 사용 가능한 것은 본 발명이 속하는 기술분야에서 통상적인 것에서 선택 가능하며, 바람직하게는 페놀수지 가교제, 퍼옥사이드 가교제, 실란 가교제 등이 사용될 수 있다. 비제한적인 예로, 상기 가교제는 벤조일퍼옥사이드, 디큐밀퍼옥사이드, 이소부티릴퍼옥사이드, 2,2-비스 (t-부틸퍼옥시)부탄 등일 수 있다.
상기 가교제는 조성물 전체 중량에 대하여 0.1 내지 10 중량0 /0, 또는 1 내지 10 중량0 /0, 또는 1 내지 5 중량 %로 포함될 수 있다. 즉, 가교가 층분하게 이루어지지 않아 성형품의 물성이 저하되는 것을 방지하기 위하여, 상기 가교제는 조성물 전체 중량에 대하여 0.1 중량0 /0 이상 포함되는 것이 바람직하다. 그리고, 가교제의 과량 첨가시 성형품의 표면에 돌기, 겔 (gel), 혹점과 같은 이물질이 관찰될 수 있고 제품 컬러에 영향을 끼칠 수 있으며, 급격한 가교 반웅에 의해 성형성이 저하될 수 있다. 따라서, 상기 가교제는 조성물 전체 중량에 대하여 10 중량0 /0 이하로 포함되는 것이 바람직하다. 이때, 필요에 따라 가교 조제가 더 사용될 수 있다. 상기 가교 조제로는 메탈 옥사이드 (metal oxide), 메탈 할라이드 (metal halide) 등과 같은 화합물이 사용할 수 있으며, 구체적으로 ZnO, SnCl2/ steric acid, zinc stearate 등을 예로 들 수 있다. 이러한 가교 조제도 상기 가교제와 마찬가지 이유에서 조성물 전체 중량에 대하여 0.05 내지 5 중량 %로 포함될 수 있다. 반응 종결제
한편, 일 구현 예에 따른 열가소성 엘라스토머 조성물에는 반웅 종결제가 더욱 포함될 수 있다.
상기 반응 종결제는 조성물의 성형시 가교 반웅을 적절히 종결시켜 물성의 저하를 방지하기 위해 첨가될 수 있다. 이러한 반웅 종결제로는 통상적인 페놀계 산화안정제, 인계 산화안정제, 포스파이트계 열안정제 등이 사용될 수 있다.
그리고, 상기 반웅 종결제의 첨가에 따른 효과와 과량 첨가시 발생할 수 있는 성형품 표면의 블루밍 (blooming) 현상 등을 감안하여, 상기 반응 종결제는 조성물 전체 중량에 대하여 0.05 내지 5 중량 %로 포함될 수 있다. 물성
상술한 성분들을 포함하는 열가소성 엘라스토머 조성물은, 특히 사람이 느낄 수 있는 진동 주파수 영역 (예를 들어 100 MHz)에서 향상된 진동 절연성을 나타내면서도, 고온 환경에 장시간 노출되어도 우수한 기계적 물성을 유지하는 등 보다 우수한 내열성을 나타낼 수 있다.
일 구현 예에 따르면, 진동 절연성은 조성물의 저장 탄성율 (storage modulus) 및 손실 탄성율 (loss modulus)과 같은 물성을 통해 평가될 수 있다. 예를 들어, 저장 탄성율이 상대적으로 높을 경우 반발 탄성이 높아 외부로부터 가해지는 층격의 흡수율이 낮음을 의미한다. 그리고, 손실 탄성율이 상대적으로 높을 경우 반발 탄성이 낮아 층격의 흡수율이 높음을 의미한다. 따라서 , 상대적으로 낮은 저장 탄성율 또는 높은 손실 탄성율을 가질 경우 우수한 진동 절연성을 갖는 것으로 해석될 수 있다.
이러한 점을 고려할 때, 상기 열가소성 엘라스토머 조성물은 , 20 °C의 온도 및 100 MHz의 진동 주파수 하에서 16 MPa 이하, 또는 5 내지 16 MPa, 또는 9 내지 15.5 MPa, 또는 9.5 내지 15.5 MPa의 저장 탄성을을 갖는 것이 진동 절연성의 발현 측면에서 바람직하다.
그리고, 상기 열가소성 엘라스토머 조성물은, 20 ^의 온도 및 0 내지 100 MHz의 진동 주파수 범위에서 저장 탄성율의 최소값이 7.5 MPa 이하, 또는 7 MPa 이하, 또는 2 내지 7 MPa인 것이 바람직하고; 저장 탄성율의 최대값이 37 MPa 이하, 또는 30 내지 37 MPa, 또는 32 내지 37 MPa인 것이 진동 절연성의 발현 측면에서 바람직하다.
또한, 상기 열가소성 엘라스토머 조성물은, 20 "C의 온도 및 100 MHz의 진동 주파수 하에서 30 MPa 이상, 또는 30 내지 35 MPa의 손실 탄성율을 갖는 것이 진동 절연성의 발현 측며에서 바람직하다.
나아가, 상기 열가소성 엘라스토머 조성물은 우수한 진동 절연성을 가짐과 ¾·시에, 우수한 기계적 물성을 만족할 수 있다. 예를 들어, 상기 열가소성 엘라스토머 조성물은 50 이상, 또는 50 내지 70, 또는 55 내지 65의 Shore A 경도를 나타낼 수 있다. 특히, 상기 조성물은 ISO 37 규정에 따른 630 % 이상, 또는 630 내지 660 %의 신율을 가질 수 있다.
상기 열가소성 엘라스토머 조성물은 고온 환경에 장시간 노출되어도 상술한 물성들의 큰 변화 없이 유지될 수 있는 우수한 내열성을 나타낼 수 있다.
IL 성형품
한편, 발명의 다른 구현 예에 따르면, 전술한 일 구현 예의 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품이 제공된다.
상기 성형품은 전술한 열가소성 엘라스토머 조성물을 사용하여 형성됨에 따라, 사람이 느낄 수 있는 진동 주파수 영역에서 향상된 진동 절연성을 나타내면서도, 고온 환경에 장시간 노출되어도 우수한 기계적 물성을 유지하는 등 보다 향상된 내열성을 나타낼 수 있다.
이러한 성형품은 전술한 열가소성 엘라스토머 조성물을 사용하여 형성되는 것을 제외하고, 압출 성형 등 통상적인 방법에 의해 얻어질 수 있다.
그리고, 이러한 성형품은 전술한 특성이 요구되는 다양한 분야에 적용될 수 있다. 예를 들어, 상기 성형품은 자동차용 부품, 자동차용 내외장재, 건축물용 내장재 등은 물론, 각종 생활 용품과 의료 용품 등 다양한 분야에 적합하게 사용될 수 있다.
【발명의 효과】
본 발명에 따른 열가소성 엘라스토머 조성물은 향상된 진동 절연성과 내열성을 갖는다. 그에 따라, 상기 열가소성 엘라스토머 조성물은 사람이 느낄 수 있는 진동 주파수 영역에서 우수한 진동 절연성을 나타낼 수 있고, 고은 환경에 장시간 노출되어도 우수한 기계적 물성을 유지할 수 있다. 이러한 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품은 각종 생활 용품, 의료 용품, 자동차용 부품, 자동차용 내외장재, 건축물용 내장재 등 다양한 분야에 적합하게 사용될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
하기 표 1에 나타낸 조성비의 성분들을 사용하여 실시예 및 비교예에 따른 열가소성 엘라스토머 조성물을 각각 얻었다. 이때, 인터널 믹서 (internal mixer)와 압출기 (extruder)가 구비되어 있고 길이 (L)/외경 (D)의 비가 52 인 이축 압출기 (twin screw extruder)가 이용되었으며, 반웅온도는 160 내지 220 °C로 조절되었다.
【표 1】
Figure imgf000015_0001
실시예 1
EPDM (제조사: 금호폴리켐, 제품명: KEP-960NF, ENB 함량: 5.7 중량0 /。, 에틸렌 함량: 70 중량0 /0, 무니점도 (ML1+8, 125°C): 49)을 순수 EPDM의 함량이 전체 조성물에 대하여 30 중량0 /0가,되도록 첨가하였다.
즉, 상기 EPDM 제품 (KEP-960NF)은 파라핀 오일 함유량이 50
PHR(Part per Hundred Resin)인 제품으로서, 상기 제품을 전체 조성물에 대하여 순수 EPDM의 함량이 30 중량0 /0가 되도록 첨가하되, 상기 제품에 기본적으로 포함된 파라핀 오일의 함량을 감안하여, 전체 조성물에 포함되는 파라핀 오일의 함량미 15 중량 %가 되도록 조절하였다. 이때 추가로 첨가한 파라핀 오일은 미창석유공업의 제품 (제품명: W-1900H, 동점도 (40°C): 137 cSt)을 사용하였다.
그리고, 15 중량0 /0의 SEBS 블록 공중합체 (약 29 중량 %의 스티렌 블록 함량; 약 LO g/10min (200°C, 2.16kg)의 멜트 플로우 인덱스; 약 112,368 g/m이의 중량 평균 분자량; 약 100,943 g/mol의 수 평균 분자량; 스티렌 블록 = 약 10,300 g/mol의 수 평균 분자량; 에틸렌-부틸렌 블록 = 약 53,300 g/mol의 수 평균 분자량; 약 50 Pa s in Toluene at 25°C의 점도; Kraton사 제조 [Kraton G 1651]);
20 중량0 /0의 HMS-PP ( (주)롯데케미칼 제조 [SMS-514F]; 약 130 °C(4.6 kgf/cm2)의 열변형 온도; 약 l.OxlO6 poise의 연신 점도; 약 330,000의 중량 평균 분자량; 약 2.4 g/10min의 멜트 플로우 인덱스; 약 0.905 g/cm3의 밀도; 약 400 kgf/cm2의 인장 강도; 약 60 %의 파단 신율; 약 19,000 kgf/cm2의 굴곡 탄성율; 약 lO kgf cm/cm의 충격 강도);
3.5 중량 %의 가교제 (dimethylol phenolic resin);
13 중량0 /0의 탈크 (수평균 입경 약 4.0 urn, 제조사: KCM, 제품명: KCM-6300); 및
3.5 중량 %의 반웅 종결제 (페놀계 1,2차 복합 산화안정제, 제품명: TCMB-2300)가사용되었다. 실시예 2
상기 표 1과 같이 EPDM, SEBS 및 파라핀 오일의 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 비교예 1 및 비교예 2
상기 표 1과 같이 EPDM과 파라핀 오일의 함량을 조절하였고, SEBS 및 HMS-PP를 첨가하지 않았으며, HMS-PP 대신 폴리프로필렌 호모 중합체 ( (주)롯데케미칼 제조 [Y-130]; 약 116 °C (4.6 kgf/cm2)의 열변형 온도; 약 4.0 g/10min의 멜트 플로우 인덱스; 약 0.90 g/cm3의 밀도; 약 350 kgf/cm2의 인장 강도; 약 16,000 kgf/cm2의 굴곡 탄성율; 약 4.0 kgf cm/ cm의 충격 강도)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 비교예 3
상기 표 1과 같이 SEBS와 파라핀 오일의 함량올 조절하였고, EPDM 및 HMS-PP를 첨가하지 않았으며, HMS-PP 대신 폴리프로필렌 호모 중합체 ( (주)롯데케미칼 제조 [Y-130]; 약 116 °C(4.6 kgf/cm2)의 열변형 온도; 약 4.0 g/10min의 멜트 플로우 인덱스; 약 0.90 g/cm3의 밀도; 약 350 kgf/ cm2의 인장 강도; 약 16,000 kgf/cm2의 굴곡 탄성율; 약 4.0 kgf cm/ cm의 충격 강도)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 비교예 4 및 비교예 5
상기 표 1과 같이 EP I, SEBS 및 파라핀 오일의 함량을 조절하였고, HMS-PP 대신 폴리프로필렌 호모 중합체 ( (주)롯데케미칼 제조 [Y-130]; 약 116 °C(4.6 kgf/cm2)의 열변형 은도; 약 4.0 g/10min의 멜트 플로우 인덱스; 약 0.90 g/cm3의 밀도; 약 350 kgf/cm2의 인장 강도; 약 16,000 kgf/cm2의 굴곡 탄성율; 약 4.0 kgf cm/ cm의 층격 강도) 또는 에틸렌-프로필렌 블록 공중합체 ( (주)롯데케미칼 제조 [B-31CI]; 약 100 °C(4.6 kgf/cm2)의 열변형 온도; 약 0.5 g/10min의 멜트 플로우 인덱스; 약 0.9 g/cm3의 밀도; 약 290 kgf/cm2의 인장 강도; 약 12,000 kgf/cm2의 굴곡 탄성율; 약 4.5 kgf cm/cm의 충격 강도)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 실시예 3
0.8 g/10min (200 °C, 2.16kg)의 멜트 플로우 인텍스를 갖는 SEBS를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 실시예 4
1.2 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스를 갖는 SEBS를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 비교예 6
0.6 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스를 갖는 SEBS를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 비교예 7
1.5 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스를 갖는 SEBS를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 엘라스토머 조성물을 얻었다. 시험예
실시예 및 비교예를 통해 얻은 열가소성 엘라스토머 조성물에 대하여 상온 (약 20 t ) 하에서 다음과 같은 방법으로 물성을 측정하였고, 그 결과를 하기 표 2 내지 5에 나타내었다.
1) 밀도: ISO 1183 규정의 방법에 따라 가로 10mm, 세로 10 mm, 및 두께 2.0 mm의 시편에 대하여 밀도 (g/ cm3)를 측정하였다.
2) 경도 (Shore A): Analogue Shore Hardness Tester를 이용하여 ISO 868 규정의 방법에 따라 경도를 측정하였다.
3) 용융지수 (Melt Index): ISO 1133 규정의 방법에 따라 230 °C 및 10kg의 하중 하에서 용융지수를 측정하였다.
4) 인장 강도, 인열 강도 및 신율: Universal materials testing machine을 이용하여 ISO 37 규정의 방법에 따라 인장강도, 인열 강도 및 신율을 측정하였다.
5) 탄성율: Dynamic mechanical analysis (DMA) 장비를 이용하여 100 MHz의 진동 주파수 하에서 저장 탄성율 (storage modulus) 및 손실 탄성율 (loss modulus)을 측정하였다. 그 중 저장 탄성율은 0 내지 100 MHz의 진동 주파수 영역에서의 최대값과 최소값을 함께 측정하였다.
6) 내열성: 열가소성 엘라스토머 조성물을 각각 약 125 °C 하에서 168 시간 동안 보관한 후, 상술한 인장 강도, 인열 강도 및 신율을 측정하였다.
【표 2]
Figure imgf000019_0001
【표 4]
Figure imgf000020_0001
상기 표 2 내지 표 5를 참조하면, 실시예들에 따른 열가소성 엘라스토머는 상온 조건 하에서 비교예들의 엘라스토머와 동등 또는 그 이상의 기계적 물성을 나타내면서도, 향상된 진동 절연성을 갖는 것으로 확인되었다. 그리고, 고온에서의 노화 후 물성에 있어서, 실시예들에 따른 열가소성 엘라스토머는 초기의 우수한 물성이 큰 변화 없이 유지되어 우수한 내열성을 갖는 것으로 확인되었다.

Claims

【특허청구범위】
【청구항 11
올레핀계 고무 10 내지 85 중량0 /0;
0.8 내지 1.2 g/10min (200 °C, 2.16kg)의 멜트 플로우 인덱스 값을 가지며, 스티렌-부틸렌-스티렌 블록 공중합체 및 스티렌-에틸렌 /부틸렌-스티렌 블록 공중합체로 이루어진 군에서 선택된 1종 이상의 스티렌계 블록 공중합체 5 내지 50 중량0 /0;
오일 αΐ 내지 50 증량0 /0;
4.6 kgf/cm2의 하중 하에서 120 내지 135 °C의 열변형 온도와 Ι.ΟχΙΟ5 내지 l.OxlO7 poise의 연신 점도를 갖는 고용융장력 폴리프로필렌 1 내지 50 중량%;
무기 충진제 0.1 내지 15 중량0 /0; 및
가교제 01 내지 10 중량0 /0
를 포함하는 열가소성 엘라스토머 조성물.
【청구항 2】
제 1 항에 있어서,
20 °C의 온도 및 100 MHz의 진동 주파수 하에서 16 MPa 이하의 저장 탄성율을 갖는, 열가소성 엘라스토머 조성물.
【청구항 3】
제 1 항에 있어서,
20 °C의 온도 및 0 내지 100 MHz의 진동 주파수 범위에서, 7.5 MPa 이하의 최소값과 37 MPa 이하의 최대값인 저장 탄성율을 갖는, 열가소성 엘라스토머 조성물.
【청구항 4】
제 1 항에 있어서,
20 °C의 온도 및 100 MHz의 진동 주파수 하에서 30 MPa 이상의 손실 탄성율을 갖는, 열가소성 엘라스토머 조성물.
【청구항 5]
제 1 항에 있어서,
ISO 37 규정에 따른 630 % 이상의 신율을 갖는, 열가소성 엘라스토머 조성물.
【청구항 6】
제 1 항에 있어서,
상기 을레핀계 고무는 부타디엔 고무, 니트릴-부타디엔 고무, 이소부틸렌-이소프렌 고무, 및 에틸렌-프로필렌 -디엔 모노머 고무로 이루어진 군에서 선택된 1종 이상의 고무인, 열가소성 엘라스토머 조성물.
【청구항 7]
제 1 항에 있어서,
상기 올레핀계 고무는 4.5 내지 10 중량0 /0의 에틸리덴 노보넨과 50 내지 80 중량 %의 에틸렌을 함유하며 45 내지 70의 무니점도 (Mooney viscosity, ML1+8, 125°C)를 갖는 에틸렌 프로필렌 디엔 모노머 고무인, 열가소성 엘라스토머 조성물.
【청구항 8】
제 1 항에 있어서,
상기 스티렌계 블록 공중합체는 28 내지 35 중량 %의 스티렌 블록을 함유하고 50,000 내지 150,000의 중량 평균 분자량을 갖는 스티렌-에틸렌 /부틸렌-스티렌 블록 공중합체인, 열가소성 엘라스토머 조성물.
【청구항 9】
제 1 항에 있어서,
상기 오일은 40 °C에서 90 내지 180 cSt의 동점도를 갖는 파라핀 오일인, 열가소성 엘라스토머 조성물.
【청구항 10]
제 1 항에 있어서,
상기 고용융장력 폴리프로필렌은 200,000 내지 500,000의 중량 평균 분자량을 갖는, 열가소성 엘라스토머 조성물.
【청구항 11】
제 1 항에 있어서,
상기 무기 충진제는 1 내지 30 의 수평균 입경을 가지며, 카올린, 탈크, 클레이, 또는 이들의 흔합물을 포함하는, 열가소성 엘라스토머 조성물.
【청구항 12]
제 1 항에 따른 열가소성 엘라스토머 조성물을 사용하여 형성된 성형품.
PCT/KR2015/006436 2014-06-26 2015-06-24 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품 WO2015199443A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580034787.6A CN106459520B (zh) 2014-06-26 2015-06-24 具有改进的隔振性和耐热性的热塑性弹性体组合物以及由此制造的模制物品
JP2016574446A JP6336630B2 (ja) 2014-06-26 2015-06-24 向上した振動絶縁性と耐熱性を有する熱可塑性エラストマー組成物およびこれから形成された成形品
US15/320,846 US10844207B2 (en) 2014-06-26 2015-06-24 Thermoplastic elastomer composition having advanced vibration isolation and thermal resistance, and molded article manufactured therefrom
EP15812659.9A EP3162847A4 (en) 2014-06-26 2015-06-24 Thermoplastic elastomer composition having improved vibration insulation and heat resistance, and molded product formed therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0078942 2014-06-26
KR1020140078942A KR101577363B1 (ko) 2014-06-26 2014-06-26 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품

Publications (1)

Publication Number Publication Date
WO2015199443A1 true WO2015199443A1 (ko) 2015-12-30

Family

ID=54938445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006436 WO2015199443A1 (ko) 2014-06-26 2015-06-24 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품

Country Status (6)

Country Link
US (1) US10844207B2 (ko)
EP (1) EP3162847A4 (ko)
JP (1) JP6336630B2 (ko)
KR (1) KR101577363B1 (ko)
CN (1) CN106459520B (ko)
WO (1) WO2015199443A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154821A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 熱可塑性エラストマー組成物
JP2018178006A (ja) * 2017-04-17 2018-11-15 三井化学株式会社 熱可塑性エラストマー組成物、並びにその用途及び製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018015232A (es) * 2016-06-10 2019-04-25 Fiero Paul Parches de capa restringida de butilo de densidad baja y ultrabaja.
CN106916384B (zh) * 2017-04-08 2020-07-14 际华三五一七橡胶制品有限公司 一种耐高温耐老化的三元乙丙橡胶密封件及其制备方法
CN111448253A (zh) * 2017-12-11 2020-07-24 三井化学株式会社 聚合物组合物及其用途
EP3936567A4 (en) * 2019-03-07 2022-11-30 Kuraray Co., Ltd. ELASTOMERIC RESIN COMPOSITION, ADHESIVE FILM AND METHOD FOR PRODUCTION, FILM AND MOLDED BODY
KR20200142635A (ko) * 2019-06-12 2020-12-23 현대자동차주식회사 열가소성 탄성체 조성물
WO2023225203A1 (en) * 2022-05-18 2023-11-23 Mcpp Innovation Llc Split-proof automotive corner molding compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006124A (ko) * 2002-07-09 2004-01-24 현대자동차주식회사 분체 성형용 열가소성 엘라스토머 조성물
KR20060055981A (ko) * 2004-11-19 2006-05-24 주식회사 대우일렉트로닉스 다중 오디오 채널 출력 시스템의 자동 볼륨 초기화 방법
JP2008543978A (ja) * 2005-03-17 2008-12-04 ダウ グローバル テクノロジーズ インコーポレイティド エチレン/α−オレフィンの共重合体由来のポリマーブレンドおよびそれから製造される可撓性成形品
KR20110137568A (ko) * 2010-06-17 2011-12-23 호남석유화학 주식회사 발포 성형성이 향상된 열가소성 가교 탄성체 조성물, 및 상기 조성물에 의해 형성된 성형품
KR101350890B1 (ko) * 2012-09-25 2014-01-13 롯데케미칼 주식회사 용융장력이 우수한 열가소성 엘라스토머 수지 조성물과 이를 이용한 열가소성 엘라스토머 발포체 및 그 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380300B2 (ja) 1993-08-10 2003-02-24 三菱化学株式会社 自動車インストルメントパネル用樹脂組成物
JPH08176394A (ja) 1994-12-21 1996-07-09 Sumitomo Bakelite Co Ltd 熱可塑性樹脂組成物
KR100344231B1 (ko) 2000-01-21 2002-07-24 금호석유화학 주식회사 내충격성이 우수한 열가소성 수지조성물
JP3723472B2 (ja) 2000-10-31 2005-12-07 三ツ星ベルト株式会社 スラッシュ成形用熱可塑性エラストマー組成物、粉末物およびこれを用いた表皮体
WO2005012170A1 (fr) 2003-08-05 2005-02-10 S.A. Nanocyl Composites a base de polymere comprenant comme charge des nanotubes de carbone: procede d'obtention et utilisations associes
US7351762B2 (en) 2004-02-13 2008-04-01 The Goodyear Tire & Rubber Company Polymeric composition for seals and gaskets
US7319121B2 (en) * 2005-10-07 2008-01-15 Advanced Elestomer Systems, Inc. Microcellular foams of thermoplastic vulcanizates
JP5228277B2 (ja) 2006-02-03 2013-07-03 横浜ゴム株式会社 熱可塑性エラストマー組成物およびそれを用いるグレイジングガスケット
JP2009532570A (ja) 2006-04-06 2009-09-10 ダウ グローバル テクノロジーズ インコーポレイティド 発泡性ポリオレフィン組成物およびポリオレフィン発泡体を含む遮音・防振車両部品
US20080071029A1 (en) 2006-09-19 2008-03-20 Riken Technos Corporation Resin composition
KR100828620B1 (ko) 2006-12-28 2008-05-09 호남석유화학 주식회사 내열성 및 고유동성이 우수한 스티렌계 열가소성 탄성체조성물
KR100891836B1 (ko) * 2007-01-23 2009-04-07 주식회사 엘지화학 내스크래치성이 우수한 고유동 올레핀계 열가소성 수지조성물
JP4475472B2 (ja) 2007-06-12 2010-06-09 住友ゴム工業株式会社 導電性熱可塑性エラストマー組成物の製造方法、および該組成物を用いた導電性ローラ
KR20100025211A (ko) 2008-08-27 2010-03-09 엘에스전선 주식회사 기계적 특성이 우수한 폴리프로필렌 기반 난연성 수지 조성물과 이를 이용한 전선
CN101550257B (zh) * 2009-05-14 2011-07-20 威海洁瑞医用制品有限公司 热塑性弹性体复合材料
KR101155065B1 (ko) 2010-02-22 2012-06-11 (주) 화승소재 자동차용 웨더스트립 조성물 및 이를 이용한 자동차용 웨더스트립
KR101190733B1 (ko) 2010-06-24 2012-10-11 현대자동차주식회사 셀룰로오스 분말 충전 웨더스트립 조성물
KR20120117131A (ko) 2011-04-14 2012-10-24 삼성토탈 주식회사 이어폰 전선용 열가소성 엘라스토머 수지 조성물
CN103012952B (zh) * 2012-10-10 2016-02-24 天津金发新材料有限公司 一种汽车安全气囊盖板用聚丙烯热塑性弹性体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006124A (ko) * 2002-07-09 2004-01-24 현대자동차주식회사 분체 성형용 열가소성 엘라스토머 조성물
KR20060055981A (ko) * 2004-11-19 2006-05-24 주식회사 대우일렉트로닉스 다중 오디오 채널 출력 시스템의 자동 볼륨 초기화 방법
JP2008543978A (ja) * 2005-03-17 2008-12-04 ダウ グローバル テクノロジーズ インコーポレイティド エチレン/α−オレフィンの共重合体由来のポリマーブレンドおよびそれから製造される可撓性成形品
KR20110137568A (ko) * 2010-06-17 2011-12-23 호남석유화학 주식회사 발포 성형성이 향상된 열가소성 가교 탄성체 조성물, 및 상기 조성물에 의해 형성된 성형품
KR101350890B1 (ko) * 2012-09-25 2014-01-13 롯데케미칼 주식회사 용융장력이 우수한 열가소성 엘라스토머 수지 조성물과 이를 이용한 열가소성 엘라스토머 발포체 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162847A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154821A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 熱可塑性エラストマー組成物
JP2018178006A (ja) * 2017-04-17 2018-11-15 三井化学株式会社 熱可塑性エラストマー組成物、並びにその用途及び製造方法

Also Published As

Publication number Publication date
US10844207B2 (en) 2020-11-24
JP6336630B2 (ja) 2018-06-06
CN106459520B (zh) 2019-02-01
KR101577363B1 (ko) 2015-12-14
JP2017519879A (ja) 2017-07-20
US20170198127A1 (en) 2017-07-13
CN106459520A (zh) 2017-02-22
EP3162847A1 (en) 2017-05-03
EP3162847A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2015199443A1 (ko) 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품
JP6014594B2 (ja) 架橋組成物、架橋組成物の製造方法、及び成形体
KR101180874B1 (ko) 발포 성형성이 향상된 열가소성 가교 탄성체 조성물, 및 상기 조성물에 의해 형성된 성형품
EP1561783A1 (en) Thermoplastic elastomer composition
JPS6114248A (ja) 熱可塑性樹脂組成物
JP4153577B2 (ja) 耐油性に優れた熱可塑性エラストマー
TW201922893A (zh) 彈性體樹脂組合物及成形體
JP2001261901A (ja) オレフィン系エラストマー組成物
JP4160379B2 (ja) 熱可塑性エラストマー組成物
JP2003192867A (ja) 熱可塑性エラストマー樹脂組成物
JP5167900B2 (ja) 熱可塑性エラストマー組成物、発泡体、及び発泡体の製造方法
JP6512054B2 (ja) 樹脂組成物の製造方法
JP5498207B2 (ja) 架橋組成物、架橋組成物の製造方法、成形体
JP2022157827A (ja) 熱可塑性エラストマー組成物及びその用途
JPWO2002072690A1 (ja) オレフィン系熱可塑性エラストマー組成物
JP2003183450A (ja) 熱可塑性エラストマー組成物
JP2003213050A (ja) オレフィン系熱可塑性エラストマー
WO2019116669A1 (ja) 重合体組成物及びその用途
KR101501688B1 (ko) 열가소성 엘라스토머 조성물 및 이를 사용하여 형성된 고내열성 성형품
JP2000169640A (ja) 熱可塑性エラストマー組成物
JPS61247747A (ja) 熱可塑性エラストマ−状組成物
JP6838439B2 (ja) 熱可塑性エラストマー組成物
JP2003183448A (ja) チューブまたはホース用熱可塑性エラストマー組成物
JP2023137853A (ja) 熱可塑性エラストマー組成物、射出成形体および自動車内装部品
JP2004307564A (ja) スチレン系熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574446

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15320846

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015812659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE