WO2015199054A1 - 多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置 - Google Patents

多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置 Download PDF

Info

Publication number
WO2015199054A1
WO2015199054A1 PCT/JP2015/067968 JP2015067968W WO2015199054A1 WO 2015199054 A1 WO2015199054 A1 WO 2015199054A1 JP 2015067968 W JP2015067968 W JP 2015067968W WO 2015199054 A1 WO2015199054 A1 WO 2015199054A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light source
optical fiber
wavelength
Prior art date
Application number
PCT/JP2015/067968
Other languages
English (en)
French (fr)
Inventor
久我翔馬
Original Assignee
株式会社キーエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キーエンス filed Critical 株式会社キーエンス
Priority to DE112015003040.9T priority Critical patent/DE112015003040T5/de
Priority to JP2016529587A priority patent/JP7010589B2/ja
Priority to CN201580034988.6A priority patent/CN106471332B/zh
Publication of WO2015199054A1 publication Critical patent/WO2015199054A1/ja
Priority to US15/375,190 priority patent/US10180355B2/en
Priority to US16/203,648 priority patent/US11060917B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention provides a confocal displacement meter, an interference displacement meter, a color optical sensor, and the like that can measure a feature quantity such as thickness, distance, displacement, and color of a measurement object using light of multiple wavelengths such as white.
  • the present invention relates to a multi-wavelength photoelectric measurement apparatus.
  • the photoelectric measuring device projects visible light, infrared light, or the like from a light projecting unit, and detects reflected light reflected by the surface of the measurement object or transmitted light transmitted through the measurement object by the light receiving unit.
  • the measurement unit performs feature quantities such as thickness, distance, displacement, color, and the like of the measurement object according to the light intensity distribution for each wavelength in the light receiving unit (see Patent Documents 1 to 4). *
  • a white light source such as a halogen lamp or a xenon lamp, a white LED, an SLD (super luminescent diode) or the like is used as a light source.
  • white light sources such as halogen lamps and xenon lamps have a problem in that they have a short lifetime, and even when white LEDs are used, white LEDs have a small amount of light emission per unit area. There is a problem in that the amount of light irradiated to the light source is small, the measurable measurement object is limited, and the thickness, distance, etc. of the measurement object cannot be detected with high accuracy.
  • the present invention has been made in view of such circumstances, and it is possible to measure feature quantities such as thickness, distance, displacement, and color of a measurement object with high accuracy using light of multiple wavelengths such as white.
  • An object is to provide a multi-wavelength photoelectric measurement device, a confocal measurement device, an interference measurement device, and a color measurement device.
  • a multi-wavelength photoelectric measurement apparatus includes a laser light source, a light source optical member for condensing light from the laser light source, and light collected by the light source optical member. And a light comprising one or a plurality of optical fibers, each having the phosphor excited at the one end and receiving the light emitted from the phosphor from one end and propagating the light received from the other end A fiber part, a head optical member for condensing the light emitted from the other end of the optical fiber part toward the measurement object, and selectively receiving the light from the measurement object according to the wavelength; A light receiving element that performs photoelectric conversion into a signal corresponding to the amount; and a measurement control unit that measures a characteristic amount of the measurement object based on a signal indicating the amount of light received according to the wavelength from the light receiving element. . *
  • the phosphor is fixed in a light-transmitting medium that transmits light from the laser light source and light emitted from the phosphor,
  • the light transmissive medium is fixed to the one end of the optical fiber portion.
  • the multi-wavelength photoelectric measurement apparatus is the first or second aspect of the present invention, wherein light from the laser light source is transmitted between the phosphor and the light source optical member, and the phosphor
  • the optical filter further includes an optical filter that reflects light emitted from the light source.
  • the multi-wavelength photoelectric measurement device according to any one of the first to third aspects, wherein an opening having a shape corresponding to an optical path of light incident on the one end of the optical fiber portion is formed.
  • the opening further includes a frame for accommodating the phosphor.
  • an opening having a shape corresponding to an optical path of light incident on the one end of the optical fiber portion is formed.
  • the multi-wavelength photoelectric measurement apparatus is the first aspect of the invention, wherein the multi-wavelength photoelectric measurement apparatus has an opening having a shape corresponding to an optical path of light incident on the one end of the optical fiber portion,
  • the phosphor further includes a frame for housing, and the phosphor is fixed in a light-transmitting medium that transmits light from the laser light source and light emitted from the phosphor, and the phosphor and the light-transmitting medium are: It is accommodated in the opening of the frame.
  • the multi-wavelength photoelectric measurement apparatus is the first aspect, wherein the multi-wavelength photoelectric measurement apparatus has an opening having a shape corresponding to an optical path of light incident on the one end of the optical fiber portion, and the phosphor is disposed in the opening.
  • the multi-wavelength photoelectric measurement apparatus is characterized in that, in any one of the fourth to seventh inventions, a reflection surface is provided on a wall portion on an inner diameter side of the frame body.
  • the multi-wavelength photoelectric measurement apparatus is characterized in that, in any one of the first to eighth inventions, the light source optical member is composed of one or a plurality of lenses.
  • the multi-wavelength photoelectric measurement apparatus is that, in any one of the first to eighth aspects, the light source optical member is formed of a cylindrical reflecting mirror in which a lens is incorporated.
  • a multi-wavelength photoelectric measurement apparatus includes a laser light source, a light source optical member for condensing light from the laser light source, and the light source optical member.
  • a phosphor that is excited by the collected light a reflecting member that includes the phosphor on a reflecting surface, and that reflects light emitted from the phosphor on the reflecting surface, and condenses the light emitted from the phosphor.
  • a second light source optical member for performing, and an optical fiber portion made of one or a plurality of optical fibers that receive light collected by the second light source optical member from one end and propagate the light to the other end side;
  • a head optical member that condenses the light emitted from the other end of the optical fiber portion toward the measurement object, and selectively receives the light from the measurement object according to the wavelength, corresponding to the amount of light received
  • a light receiving element that performs photoelectric conversion to a signal, and a wavelength from the light receiving element Characterized in that it comprises a measurement control section for measuring a characteristic quantity of the object to be measured based on the signal indicating the received light amount corresponding.
  • a confocal measurement device is a laser light source, a light source optical member for condensing light from the laser light source, and the light source optical member.
  • a light comprising one or a plurality of optical fibers that are excited by the light and the phosphor is provided at one end, receives light emitted from the phosphor from one end, and propagates the light to the other end.
  • a fiber part and a head optical member for condensing the light emitted from the other end of the optical fiber part toward the measurement object and entering the reflected light from the measurement object to the other end of the optical fiber part
  • a branching portion provided in the optical fiber portion for directing at least a part of light incident from the other end of the optical fiber to a second optical path different from the first optical path toward the one end.
  • the second optical path from the measurement object A light receiving element that selectively receives light according to a wavelength using a spectroscope and photoelectrically converts the light into a signal corresponding to the amount of light received, and a signal indicating the amount of light received according to the wavelength from the light receiving element
  • a measurement control unit that measures the thickness or displacement of the measurement object.
  • an interference measuring apparatus is focused by a laser light source, a light source optical member for condensing light from the laser light source, and the light source optical member.
  • a head optical member that is incident on the other end of the optical fiber portion, and a first optical path that is provided in the optical fiber portion and that directs at least part of the light incident from the other end of the optical fiber toward the one end.
  • a light receiving element that selectively receives light according to a wavelength using a spectroscope, and photoelectrically converts the light that has passed through the second optical path from the measurement object into a signal corresponding to the amount of light received; and the light receiving element And a measurement control unit that measures the thickness or displacement of the measurement object based on a signal indicating the amount of received light according to the wavelength from the light source.
  • a color measuring apparatus is focused by a laser light source, a light source optical member for condensing light from the laser light source, and the light source optical member.
  • An optical fiber comprising a phosphor excited by light, and one or a plurality of optical fibers that include the phosphor at one end, receive light emitted from the phosphor from one end, and propagate the light to the other end
  • a head optical member for condensing the light emitted from the other end of the optical fiber portion toward the measurement object, and selectively receiving the light from the measurement object according to the wavelength.
  • a light receiving element that performs photoelectric conversion to a signal corresponding to the signal, and a color of the measurement object based on a signal indicating the amount of light received according to the wavelength from the light receiving element, and a preset reference color range and the measured color
  • a measurement control unit for comparing To.
  • the light emitted from the laser light source can be incident on the optical fiber portion via the phosphor provided at one end of the optical fiber portion on the light source optical member side. Even in the case where the wavelength is converted and diffused, it can be reliably narrowed down, and light can be efficiently incident on the optical fiber portion. Therefore, it is possible to measure the feature quantity such as the thickness, distance, displacement, color, etc. of the measurement object with high accuracy.
  • FIG. 1 is a block diagram schematically showing a multi-wavelength photoelectric measurement apparatus according to an embodiment of the present invention.
  • the multi-wavelength photoelectric measurement apparatus 100 includes a laser light source 101, a light source optical member 200, a phosphor 70, an optical fiber unit 300, a head optical member 400, a light receiving element 500, and a measurement control unit 600. *
  • the laser light source 101 emits light having a single wavelength, and preferably emits blue or ultraviolet light having a wavelength of 450 nm or less. More preferably, when blue light is emitted, light that is used for excitation of the phosphor 70 and wavelength-converted light and light that is not used for excitation of the phosphor 70 and remains blue light is measured. Can project on things. *
  • the phosphor 70 is excited by the light from the laser light source 101 and converted to a different wavelength to emit light.
  • the phosphor 70 is composed of one or a plurality of types of phosphors 70.
  • the phosphor 70 may be excited by blue light and converted into yellow light to emit light. It may be excited by blue light and converted to green to emit light, and excited by blue light and converted to red to emit light. *
  • the phosphor 70 may be fixed in a light-transmitting medium (71 in FIG. 4) such as resin or glass that transmits the light from the laser light source 101 and the light emitted from the phosphor 70.
  • a light-transmitting medium 71 in FIG. 4
  • resin or glass that transmits the light from the laser light source 101 and the light emitted from the phosphor 70.
  • the optical fiber unit 300 includes one or more optical fibers 30.
  • the ferrule 20 may be used at the end of the optical fiber 30.
  • the core diameter of the exit end which is the end of the optical fiber 30 on the head optical member 400 side, has an influence on the spot diameter imaged on the measurement object, and is preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the phosphor 70 is fixed to the incident end side which is one end of the optical fiber 30 on the light source optical member 200 side.
  • the phosphor 70 is fixed in a light-transmitting medium 71 such as resin or glass that transmits light from the laser light source 101 and light emitted from the phosphor 70, and the light-transmitting medium 71 is incident on the optical fiber 30. You may make it fix to.
  • the refractive index of the light transmissive medium 71 is equal to or lower than the refractive index of the core on the incident end side of the optical fiber 30. It is said. *
  • a light transmissive medium 71 is included in order to obtain a desired state of light that is used for excitation of the phosphor 70 and wavelength-converted and light that is not used for excitation of the phosphor 70 and is mixed with blue light.
  • the thickness of the phosphor 70 in the optical path direction is set to about 10 ⁇ m to 200 ⁇ m, and the concentration of the phosphor 70 in the light transmitting medium 71 is set to about 30% to 60%.
  • the thickness of the phosphor 70 or the phosphor 70 including the light transmissive medium 71 in the optical path direction is set to about 10 ⁇ m to 200 ⁇ m
  • the shape corresponds to the optical path of the light incident on the incident end of the optical fiber portion 30. It is preferable to provide a frame (80 in FIG. 5) in which an opening is formed, and accommodate the phosphor 70 or the phosphor 70 including the light transmitting medium 71 in the opening of the frame 80.
  • the optical fiber unit 300 efficiently excites the phosphor 70 and efficiently mixes light that has been used for exciting the phosphor 70 and wavelength-converted with light that is not used for exciting the phosphor 70 and remains blue. Optically reflecting the light emitted from the phosphor 70 by transmitting the light from the laser light source 101 and / or reflecting the light emitted from the laser light source 101.
  • the light source optical member 200 side of the frame 80 may be covered with a filter (reflection filter: 90 in FIG. 7). *
  • the light transmissive medium 71 is disposed in a region where the light from the laser light source 101 is concentrated, a material having high heat resistance and / or a material having high heat dissipation is selected as the light transmissive medium 71.
  • An adhesive resin may be selected as the light transmissive medium 71, and the phosphor 70 may be bonded and fixed to the incident end of the optical fiber 30 with the adhesive resin.
  • the head optical member 400 collects the light emitted from the emission end of the optical fiber unit 300 toward the measurement target (workpiece) W.
  • the light receiving element 500 is constituted by an image pickup element such as a multi-division PD (photodiode) or CCD, CMOS, and the like. Light is selectively received according to the wavelength.
  • image pickup element such as a multi-division PD (photodiode) or CCD, CMOS, and the like. Light is selectively received according to the wavelength.
  • the light receiving element 500 may receive light from the measurement object W via the optical fiber unit 300 or may receive light via another optical path. *
  • the measurement control unit 600 measures a feature amount such as a thickness, a distance, a displacement, and a color of the measurement target W based on a signal indicating the amount of light received according to the wavelength from the light receiving element 500.
  • the head optical member 400 When the head optical member 400 is configured such that the output end of the optical fiber unit 300 is at the confocal position, the light from the measurement target W is transmitted by the spectroscope 501 including a diffraction grating, a prism, and the like. Are separated according to the wavelength, and the wavelength-luminance distribution of the light from the measuring object W is detected by the light receiving position in the light receiving element 500.
  • the measurement control unit 600 detects the light having a longer wavelength when the light to be measured is present at a closer distance when light having a shorter wavelength is detected.
  • the measurement control unit 600 detects that the measurement object W is more detected when light having a shorter wavelength is detected.
  • the thickness and distance of the measuring object W are measured by evaluating that the measuring object W exists at a closer distance when light having a longer wavelength is detected.
  • FIG. 2 is a block diagram schematically showing the configuration of a confocal measurement device that is a multi-wavelength photoelectric measurement device according to Embodiment 1 of the present invention.
  • the confocal measurement apparatus 100 configures a coaxial optical system in which light projection and light reception are coaxial in the head optical member.
  • the light Lb including a plurality of wavelengths the thickness, distance, and the like of the measurement object (hereinafter, workpiece) W are measured.
  • the ferrule 20 holds the end portion of the optical fiber 30 that transmits the light projected from the light projecting unit 10.
  • the optical axis of the light to be projected and the central axis of the ferrule 20 (optical fiber 30) are arranged in a straight line.
  • the splitter 40 is connected to the ferrule 20, the light receiving unit 50, and the head unit 60 via the optical fiber 30.
  • the light incident on the ferrule 20 is transmitted to the head unit 60 as it is, and the reflected light from the head unit 60 is transmitted to the light receiving unit 50.
  • the optical fiber 30 is a transmission medium that transmits the light projected from the light projecting unit 10 to the head unit 60.
  • the optical fiber 30 includes a core wire that is a light guide and a resin film that covers the core wire.
  • the head unit 60 emits light Lb having a plurality of wavelengths to the workpiece W, and a part of the reflected light reflected by the workpiece W surface is incident thereon. Reflected light from the workpiece W is transmitted to the light receiving unit 50 via the optical fiber 30 and the splitter 40. The light receiving unit 50 divides the transmitted reflected light to calculate the thickness, distance, and the like of the workpiece W. *
  • FIG. 3 is a schematic diagram showing the configuration of the head unit 60 according to Embodiment 1 of the invention. As shown in FIG. 3, in the head unit 60 according to the first embodiment, a lens 62 is disposed closer to the workpiece W than the collimating lens 61. *
  • the light emitted from the end of the optical fiber 30 is converted into parallel light by the collimator lens 61, and the parallel light is condensed on the work W by the lens 62, and chromatic aberration is generated along the optical axis direction. Since the light is condensed by the lens 62, the focal length differs depending on the wavelength of light. Therefore, the measurement accuracy greatly depends on the wavelength of light.
  • FIG. 4 is a schematic diagram showing the main configuration of the light projecting unit 10 according to Embodiment 1 of the present invention.
  • the light emitted from the laser light source 101 enters the optical fiber 30 through a lens (optical member) 102. Since the focal position can be easily adjusted to the tip portion of the optical fiber 30 in accordance with the distance from the laser light source 101, it is possible to efficiently enter the optical fiber 30.
  • the phosphor 70 is thinly applied to the tip portion (tip portion of the optical fiber 30) of the ferrule 20 on the lens (optical member) 102 side.
  • it may be fixed in a light-transmitting medium 71 such as resin or glass that transmits light from the laser light source 101 and light emitted from the phosphor 70.
  • a light-transmitting medium 71 such as resin or glass that transmits light from the laser light source 101 and light emitted from the phosphor 70.
  • the phosphor 70 By providing the phosphor 70 at the tip portion of the optical fiber 30 on the lens 102 side, the fluorescence having one or more wavelengths emitted from the laser light source 101 at the tip portion of the optical fiber 30 on the lens 102 side. Light can enter the optical fiber 30 through the body 70. Therefore, even when light is wavelength-converted and diffused by the phosphor 70, the light can be reliably narrowed down to the optical fiber 30, and light can be efficiently incident into the optical fiber 30.
  • FIG. 5 is a schematic diagram showing a configuration provided with a frame body of the light projecting unit 10 according to the first embodiment of the present invention. *
  • the light emitted from the laser light source 101 enters the optical fiber 30 through the lens 102.
  • the phosphor 70 is thinly applied to the tip portion (tip portion of the optical fiber 30) of the ferrule 20 on the lens (optical member) 102 side.
  • FIG. 6 is a partially enlarged schematic diagram showing a configuration in which the frame body of the light projecting unit 10 according to Embodiment 1 of the present invention is provided.
  • 6A is a front view of the tip portion of the ferrule 20
  • FIGS. 6B and 6C are cross-sectional views taken along line AA in FIG. 6A showing the tip portion of the ferrule 20.
  • a phosphor 70 is applied to the tip portion of the ferrule 20, and a frame body 80 is provided so as to surround the periphery.
  • the frame 80 has an annular shape, and an opening having a shape corresponding to the optical path of light incident on the incident end of the optical fiber 30 is formed. It is preferable that the opening of the frame body 80 accommodates the phosphor 70 or the phosphor 70 including the light transmissive medium 71.
  • the reflective surface 81 in the wall part by the side of the internal diameter of the frame 80. As shown in FIG. This is because the light can be made to enter the optical fiber 30 more efficiently.
  • the reflecting surface 81 may be parallel to the optical axis or may be inclined.
  • FIG. 6C by making the opening diameter of the frame 80 different between the optical fiber 30 side and the laser light source 101 side (the opening diameter on the laser light source 101 side is preferably smaller), The reflected light can enter the optical fiber 30 once again at the reflecting surface, and the transmission efficiency can be kept high.
  • FIG. 7 is a schematic diagram showing a configuration in which a reflection type filter of the light projecting unit 10 according to Embodiment 1 of the present invention is provided.
  • FIG. 7A is a schematic diagram illustrating the entire configuration of the light projecting unit 10
  • FIG. 7B is a schematic cross-sectional view of the tip portion of the ferrule 20.
  • a reflection type filter 90 is provided so as to cover a frame body 80 provided so as to surround the periphery of the phosphor 70.
  • the reflection type filter 90 By setting the reflection type filter 90 so as to transmit the light from the laser light source 101 and reflect the light whose wavelength is converted by the phosphor 70, the wavelength-converted light is more efficiently transmitted into the optical fiber 30. It becomes possible to make it enter into.
  • FIG. 8 is a front view and a cross-sectional view showing the configuration of the light projecting unit 10 according to Embodiment 1 of the present invention.
  • 8A is a front view showing the configuration of the light projecting unit 10
  • FIG. 8B is a sectional view taken along the line BB of FIG. 8A showing the configuration of the light projecting unit 10. Yes. *
  • the ferrule 20 in which the optical fiber 30 is incorporated is fixed with a ferrule holder 25.
  • the ferrule holder 25 is fixed so as to cover one end portion of the lens holder 103 that fixes the lens 102.
  • a light source holder 104 to which a laser light source 101 is mounted together with a drive substrate 105 is inserted into the other end portion of the lens holder 103.
  • a phosphor 70 is applied to the tip portion of the ferrule 20 (tip portion of the optical fiber 30), and a frame body 80 is provided so as to surround the phosphor 70.
  • a reflective filter 90 is provided so as to cover the frame body 80 so that the wavelength-converted light can enter the optical fiber 30 more efficiently.
  • the configuration of the tip portion of the ferrule 20 is not limited to this, and the phosphor 70 may be simply applied as shown in FIG. 4, or may be applied as shown in FIG. Alternatively, the frame body 80 may be provided so as to surround the periphery of the phosphor 70. *
  • FIG. 9 is a schematic diagram showing a configuration in which a cylindrical reflecting mirror is used in the light projecting unit 10 according to Embodiment 1 of the present invention.
  • light of one or a plurality of wavelengths emitted from the laser light source 101 is made to enter the optical fiber 30 by the reflecting mirror 111 via the lens (optical member) 110. Since the light diffused to the outside when using a single lens can be made incident into the optical fiber 30 by the reflecting mirror 111, attenuation of light intensity can be suppressed.
  • the phosphor 70 is thinly applied to the tip portion (tip portion of the optical fiber 30) of the ferrule 20 on the lens (optical member) 110 side.
  • fluorescence having one or more wavelengths emitted from the laser light source 101 at the distal end portion of the optical fiber 30 on the lens 110 side is provided.
  • Light can enter the optical fiber 30 through the body 70. Therefore, even when light is wavelength-converted and diffused by the phosphor 70, the light can be reliably narrowed down to the optical fiber 30, and light can be efficiently incident into the optical fiber 30.
  • a frame body 80 surrounding the phosphor may be provided, or a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the wavelength-converted light can be made to enter the optical fiber 30 more efficiently.
  • FIG. 10 is a schematic diagram showing a configuration in which both the lens and the cylindrical reflecting mirror are used in the light projecting unit 10 according to the first embodiment of the present invention.
  • one lens 102 is arranged between the laser light source 101 and the reflecting mirror 111, and the phosphor 70 is arranged with the laser light source 101 and one lens 102 of the reflecting mirror 111. It is applied to the tip of the side. Thereby, it is possible to enter the optical fiber 30 including light that could not enter the optical fiber 30 due to the limitation of the numerical aperture of the optical fiber 30, and to suppress loss of light intensity. It becomes possible. *
  • the frame body 80 surrounding the phosphor 70 may be included, and the reflection surface 81 may be provided on the inner wall portion of the frame body 80. Further, a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the light whose wavelength has been converted by the phosphor 70 can be made to enter the optical fiber 30 more efficiently.
  • FIG. 11 is a schematic diagram showing a configuration in which the arrangement of the laser light sources 101 of the light projecting unit 10 according to Embodiment 1 of the present invention is changed. *
  • a reflecting mirror 150 that reflects the light emitted from the laser light source 101 and reflects it to the optical fiber 30 side is provided.
  • the light having one or more wavelengths emitted from the laser light source 101 is collected by the lens 102 and guided to the reflecting mirror 150.
  • the reflecting mirror 150 is coated with a phosphor 70 on the surface, and reflects the light whose wavelength has been converted by the phosphor 70.
  • the light reflected by the reflecting mirror 150 is collected by the lens 109 and enters the tip of the optical fiber 30 incorporated in the ferrule 20. Thereby, the freedom degree of arrangement
  • the phosphor 70 may generate heat due to the increase in the amount of light. Due to the heat generated by the phosphor 70, the reflection efficiency is lowered, and the light emission may be saturated.
  • the reflecting mirror 150 since the heat generation of the phosphor 70 can be suppressed by rotating or moving the reflecting mirror 150, the above-described problem can be solved.
  • FIG. 12 is a schematic diagram showing a configuration in which a plurality of optical fibers 30 of the light projecting unit 10 according to Embodiment 1 of the present invention are connected. *
  • the optical fiber 30a incorporated in the ferrules 20a and 20b is disposed on the laser light source 101 side, and the optical fiber 30 incorporated in the ferrule 20c is disposed on the opposite side to the laser light source 101 side.
  • the phosphor 70 is applied only between the ferrule 20b and the ferrule 20c on the lens 102 side of the ferrule 20c.
  • FIG. 13 is an enlarged schematic diagram illustrating a configuration of a portion where a plurality of optical fibers 30 of the light projecting unit 10 according to Embodiment 1 of the present invention are connected.
  • the phosphor 70 is applied to the tip portion of the optical fiber 30 of the ferrule 20c on the lens (optical member) 102 side.
  • a frame 80 surrounding the periphery of the phosphor 70 is provided, as in the above-described embodiment.
  • a reflecting surface 81 may be provided on the inner diameter side wall of the body 80.
  • a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the light whose wavelength has been converted by the phosphor 70 can be made to enter the optical fiber 30 more efficiently.
  • one lens 102 is used to collect the light emitted from the laser light source 101 onto the optical fiber 30a incorporated in the ferrule 20a.
  • the present invention is not limited to this. It is needless to say that the reflecting mirror 111 shown in FIG. 9 may be used, or a plurality of lenses 102 and 110 and the reflecting mirror 111 may be used as shown in FIG. *
  • light of one or a plurality of wavelengths emitted from the laser light source 101 is optical fiber via the phosphor 70 provided at the tip portion of the optical fiber 30 on the optical member side. Therefore, even when light is wavelength-converted and diffused by the phosphor 70, it can be surely narrowed down, and light can be efficiently incident into the optical fiber 30. It becomes. Therefore, it is possible to measure the thickness, distance, etc. of the measurement object with high accuracy.
  • FIG. 14 is a block diagram schematically showing a configuration of an interference measuring apparatus which is a multi-wavelength photoelectric measuring apparatus according to Embodiment 2 of the present invention.
  • the interference measuring apparatus 310 uses a light Lb including a plurality of wavelengths projected from the light projecting unit 10 to measure a measurement target (hereinafter referred to as a workpiece) W. Measure thickness, distance, etc. *
  • the ferrule 20 holds the end portion of the optical fiber 30 that transmits the light projected from the light projecting unit 10.
  • the optical axis of the light to be projected and the central axis of the ferrule 20 (optical fiber 30) are arranged in a straight line.
  • the splitter 40 is connected to the ferrule 20, the light receiving unit 50, and the head unit 60 via the optical fiber 30.
  • the light incident on the ferrule 20 is transmitted to the head unit 60 as it is, and the reflected light from the head unit 60 is transmitted to the light receiving unit 50.
  • the optical fiber 30 is a transmission medium that transmits the light projected from the light projecting unit 10 to the head unit 60.
  • the optical fiber 30 includes a core wire that is a light guide and a resin film that covers the core wire.
  • the head unit 60 emits light Lb having a plurality of wavelengths to the workpiece W, and a part of the reflected light reflected by the workpiece W surface is incident thereon. Reflected light from the workpiece W and reflected light generated in the head unit 60 are transmitted to the light receiving unit 50 via the optical fiber 30 and the splitter 40. The light receiving unit 50 calculates the thickness of the workpiece W by dispersing the transmitted reflected light. *
  • FIG. 15 is a schematic diagram showing a configuration of the head unit 60 according to Embodiment 2 of the present invention.
  • the head unit 60 according to the second embodiment includes an interference optical system that generates interference reflected light L ⁇ b> 3 for measuring the film thickness of the workpiece W. *
  • the interference optical system according to the second embodiment is a Milo-type or Mirau-type interference optical system, and includes a condenser lens 131, a glass plate 132, a half mirror 133, and a pin mirror 134.
  • a part of the light L0 emitted from the tip portion of the optical fiber 30 is emitted as the detection light L1, and the reflected light reflected by the surface of the workpiece W enters the tip portion of the optical fiber 30.
  • the interference reflected light L3 is generated by the reflected light reflected by the reference surface of the light L0 and the reflected light of the detection light L1 on the surface of the work W, and is incident on the tip portion of the optical fiber 30.
  • the light L0 collected by the condenser lens 131 is separated into transmitted light and reflected light by the half mirror 133.
  • a pin mirror 134 is disposed at the center of the glass plate 132, and reflects the reflected light of the light L0 at the half mirror 133 toward the half mirror 133 side. Thereby, a virtual reference plane 135 is formed.
  • the pin mirror 134 reflects the reflected light of the light L0 from the reference surface and the reflected light of the detection light L1 on the surface of the workpiece W. Are formed at the same phase. *
  • the detection light L2 obtained by reflecting the light L0 by the half mirror 133 is incident on the pin mirror 134.
  • a part of the detection light L ⁇ b> 2 reflected by the pin mirror 134 is reflected by the half mirror 133 toward the condenser lens 131.
  • the film thickness of the workpiece W is obtained as the distance d between the virtual reference surface 135 and the workpiece W based on the interference reflected light L3.
  • FIG. 16 is a front view and a cross-sectional view showing the configuration of the light projecting unit 10 according to the second embodiment of the present invention.
  • 16A is a front view showing the configuration of the light projecting unit 10
  • FIG. 16B is a sectional view taken along the line BB of FIG. Yes. *
  • the ferrule 20 in which the optical fiber 30 is incorporated is fixed with a ferrule holder 25.
  • the ferrule holder 25 is fixed so as to cover one end portion of the lens holder 103 that fixes the lens 102.
  • a light source holder 104 to which a laser light source 101 is mounted together with a drive substrate 105 is inserted into the other end portion of the lens holder 103.
  • a phosphor 70 is applied to the tip portion of the ferrule 20 (tip portion of the optical fiber 30), and a frame body 80 is provided so as to surround the phosphor 70.
  • a reflective filter 90 is provided so as to cover the frame body 80 so that the wavelength-converted light can enter the optical fiber 30 more efficiently.
  • the configuration of the tip portion of the ferrule 20 is not limited to this, and the phosphor 70 may be applied just like the first embodiment, or the periphery of the applied phosphor 70
  • the frame 80 may be provided so as to surround the frame.
  • FIG. 17 is a schematic diagram showing a configuration in which a cylindrical reflecting mirror is used in the light projecting unit 10 according to Embodiment 2 of the present invention.
  • light having a plurality of wavelengths emitted from the laser light source 101 is made to enter the optical fiber 30 by the reflecting mirror 111 through the lens (optical member) 110. Since the light diffused to the outside when using a single lens can be made incident into the optical fiber 30 by the reflecting mirror 111, attenuation of light intensity can be suppressed.
  • the phosphor 70 is thinly applied to the tip portion (tip portion of the optical fiber 30) of the ferrule 20 on the lens (optical member) 110 side.
  • fluorescence having one or more wavelengths emitted from the laser light source 101 at the distal end portion of the optical fiber 30 on the lens 110 side is provided.
  • Light can enter the optical fiber 30 through the body 70. Therefore, even when light is wavelength-converted and diffused by the phosphor 70, the light can be reliably narrowed down to the optical fiber 30, and light can be efficiently incident into the optical fiber 30.
  • a frame body 80 surrounding the phosphor may be provided, or a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the wavelength-converted light can be made to enter the optical fiber 30 more efficiently.
  • FIG. 18 is a schematic diagram showing a configuration in which both the lens and the cylindrical reflecting mirror are used in the light projecting unit 10 according to the second embodiment of the present invention.
  • one lens 102 is arranged between the laser light source 101 and the reflecting mirror 111, and the phosphor 70 is arranged with the laser light source 101 and one lens 102 of the reflecting mirror 111. It is applied to the tip of the side. Thereby, it is possible to enter the optical fiber 30 including light that could not enter the optical fiber 30 due to the limitation of the numerical aperture of the optical fiber 30, and to suppress loss of light intensity. It becomes possible. *
  • a frame body 80 that surrounds the periphery of the phosphor 70 may be provided, and a reflection surface 81 may be provided on a wall portion on the inner diameter side of the frame body 80. Further, a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the light whose wavelength has been converted by the phosphor 70 can be made to enter the optical fiber 30 more efficiently.
  • FIG. 19 is a schematic diagram showing a configuration in which the arrangement of the laser light sources 101 of the light projecting unit 10 according to Embodiment 2 of the present invention is changed. *
  • a reflecting mirror 150 that reflects the light emitted from the laser light source 101 and reflects the light toward the optical fiber 30 side is provided.
  • the light having one or more wavelengths emitted from the laser light source 101 is collected by the lens 102 and guided to the reflecting mirror 150.
  • the reflecting mirror 150 is coated with a phosphor 70 on the surface, and reflects the light whose wavelength has been converted by the phosphor 70.
  • the light reflected by the reflecting mirror 150 is collected by the lens 109 and enters the tip of the optical fiber 30 incorporated in the ferrule 20. Thereby, the freedom degree of arrangement
  • the phosphor 70 may generate heat due to the increase in the amount of light. Due to the heat generated by the phosphor 70, the reflection efficiency is lowered, and the light emission may be saturated.
  • the reflecting mirror 150 since the heat generation of the phosphor 70 can be suppressed by rotating or moving the reflecting mirror 150, the above-described problem can be solved.
  • FIG. 20 is a schematic diagram showing a configuration in which a plurality of optical fibers 30 of the light projecting unit 10 according to Embodiment 2 of the present invention are connected. *
  • the optical fiber 30a incorporated in the ferrules 20a and 20b is arranged on the laser light source 101 side, and the optical fiber 30 incorporated in the ferrule 20c is arranged on the opposite side to the laser light source 101 side.
  • the phosphor 70 is applied only between the ferrule 20b and the ferrule 20c on the lens 102 side of the ferrule 20c.
  • FIG. 21 is an enlarged schematic diagram showing a configuration of a portion where a plurality of optical fibers 30 of the light projecting unit 10 according to Embodiment 2 of the present invention are connected.
  • the phosphor 70 is applied to the tip portion of the optical fiber 30 of the ferrule 20c on the lens (optical member) 102 side.
  • a frame 80 surrounding the periphery of the phosphor 70 is provided, as in the above-described embodiment.
  • a reflecting surface 81 may be provided on the inner diameter side wall of the body 80.
  • a reflective filter 90 may be provided so as to cover the frame body 80. In either case, the light whose wavelength has been converted by the phosphor 70 can be made to enter the optical fiber 30 more efficiently.
  • the single lens 102 is used to focus the light emitted from the laser light source 101 onto the optical fiber 30a incorporated in the ferrule 20a.
  • the present invention is not limited to this. It is needless to say that the reflecting mirror 111 shown in FIG. 17 may be used, or a plurality of lenses 102 and 110 and the reflecting mirror 111 may be used as shown in FIG. *
  • the phosphors 70 may be dispersedly arranged in the optical fiber 30a.
  • the reflective filter 90 is provided so as to cover the incident end of the optical fiber 30a instead of being provided between the optical fiber 30 and the optical fiber 30a.
  • one or more wavelengths of light emitted from the laser light source 101 are passed through the optical fiber 30 via the phosphor 70 provided at the tip portion on the optical member side. Therefore, even when light is wavelength-converted and diffused by the phosphor 70, it can be surely narrowed down, and light can be efficiently incident into the optical fiber 30. It becomes. Therefore, it is possible to measure the thickness, distance, etc. of the measurement object with high accuracy.
  • the present invention is not limited to the above-described embodiments, and various changes and improvements can be made within the scope of the present invention.
  • the optical members disclosed in the first and second embodiments described above are not limited to these, and a concave lens, a reflector (reflector), or the like may be combined in addition to the convex lens.
  • the types, ratios, coatings, and the like of fluorescent materials used as phosphors can be implemented using appropriate combinations and ratios according to optical characteristics.
  • the multi-wavelength photoelectric measurement apparatus of the present invention is a confocal displacement meter and an interference displacement meter capable of measuring feature quantities such as thickness, distance, displacement, and color of a measurement object using light of multiple wavelengths such as white. And a multi-wavelength photoelectric measuring device such as a color optical sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】白色等の多波長の光を用いて測定対象物の厚み、距離、変位、色等の特徴量を高い精度で測定することが可能な多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置を提供する。【解決手段】レーザ光源と、レーザ光源からの光を集光するための光源光学部材と、光源光学部材により集光された光により励起される蛍光体と、一端に蛍光体を備え、該一端側から蛍光体が発光する光を受け付け、他端側に受け付けた光を伝搬する、一又は複数の光ファイバからなる光ファイバ部と、該光ファイバ部の他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の特徴量を測定する測定制御部とを備える。

Description

多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置
本発明は、白色等の多波長の光を用いて測定対象物の厚み、距離、変位、色等の特徴量を測定することが可能な共焦点変位計、干渉変位計及びカラー光学センサ等の多波長光電測定装置に関する。
光電測定装置は、可視光、赤外光等を投光部から投光し、測定対象物の表面で反射した反射光、あるいは測定対象物を透過した透過光を受光部で検出する。測定部は、受光部における波長ごとの光強度分布に応じて測定対象物の厚み、距離、変位、色等の特徴量をする(特許文献1乃至4参照)。 
従来の多波長光電測定装置では、発光源としてハロゲンランプ、キセノンランプ等の白色光源、白色LED、SLD(スーパールミネッセントダイオード)等を用いている。
米国特許公報4,585,349号 特開2012-021856号公報 特開2010-121977号公報 特開平02-095222号公報
しかし、発光源としてSLD(スーパールミネッセントダイオード)を用いた場合、測定仕様によっては発光する光の波長幅が足りず、所望の測定ができないという問題点があった。また、発光源としてハロゲンランプ、キセノンランプ等の白色光源、白色LED等を用いた場合、発光部の面積が大きいために小さなスポット径となるように結像させることが困難となる。測定対象物へ照射される光のスポット径が大きくなった場合、所望の測定対象領域以外にも光が照射されることになり、適切に測定することができないおそれがあるという問題点があった。 
特に、共焦点変位計や干渉変位計においては、測定対象物へ照射される光のスポット径が大きくなった場合、光軸方向に対して垂直方向の精度だけでなく、光軸方向に沿って測定される厚み、変位等の測定精度も悪化する。 
斯かる問題点を解消するために、測定対象物へ照射される光のスポット径を小さくするべく発光源に絞りを設けることも考えられる。しかし、ハロゲンランプ、キセノンランプ等の白色光源は寿命が短いという問題点があり、また、白色LEDを用いた場合であっても、白色LEDは単位面積当たりの発光量が小さいため、測定対象物へ照射される光の光量が小さく、測定可能な測定対象物が制限されたり、高い精度で測定対象物の厚み、距離等を検出することができないという問題点があった。 
本発明は斯かる事情に鑑みてなされたものであり、白色等の多波長の光を用いて測定対象物の厚み、距離、変位、色等の特徴量を高い精度で測定することが可能な多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置を提供することを目的とする。
課題を解決するための手段及び発明の効果
上記目的を達成するために第1発明に係る多波長光電測定装置は、レーザ光源と、前記レーザ光源からの光を集光するための光源光学部材と、前記光源光学部材により集光された光により励起される蛍光体と、一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に受け付けた光を伝搬する、一又は複数の光ファイバからなる光ファイバ部と、該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の特徴量を測定する測定制御部とを備えることを特徴とする。 
また、第2発明に係る多波長光電測定装置は、第1発明において、前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、かつ、該光透過性媒体が前記光ファイバ部の前記一端に固定されることを特徴とする。 
また、第3発明に係る多波長光電測定装置は、第1又は第2発明において、前記蛍光体と前記光源光学部材との間に、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタをさらに備えることを特徴とする。 
また、第4発明に係る多波長光電測定装置は、第1乃至第3発明のいずれか1つにおいて、前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口が形成された、該開口に前記蛍光体を収容する枠体をさらに備えることを特徴とする。 
また、第5発明に係る多波長光電測定装置は、第1発明において、前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口が形成されており、該開口に前記蛍光体を収容する枠体と、該枠体の前記光源光学部材側を覆い、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタとをさらに備えることを特徴とする。 
また、第6発明に係る多波長光電測定装置は、第1発明において、前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口を有し、該開口に前記蛍光体を収容する枠体をさらに備え、前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、前記蛍光体及び前記光透過性媒体が、前記枠体の開口に収容されることを特徴とする。 
また、第7発明に係る多波長光電測定装置は、第1発明において、前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口を有し、該開口に前記蛍光体を収容する枠体と、前記枠体の前記光源光学部材側を覆い、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタとをさらに備え、前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、前記蛍光体及び前記光透過性媒体が、前記枠体の開口に収容されることを特徴とする。 
また、第8発明に係る多波長光電測定装置は、第4乃至第7発明のいずれか1つにおいて、前記枠体の内径側の壁部に反射面を備えることを特徴とする。 
また、第9発明に係る多波長光電測定装置は、第1乃至第8発明のいずれか1つにおいて、前記光源光学部材は、一又は複数のレンズで構成されていることを特徴とする。 
また、第10発明に係る多波長光電測定装置は、第1乃至第8発明のいずれか1つにおいて、前記光源光学部材は、レンズが組み込まれた筒状の反射鏡で構成されていることを特徴とする。 
次に、上記目的を達成するためにまた、第11発明に係る多波長光電測定装置は、レーザ光源と、前記レーザ光源からの光を集光するための光源光学部材と、前記光源光学部材により集光された光により励起される蛍光体と、反射面に前記蛍光体を備え、該反射面において前記蛍光体が発光する光を反射する反射部材と、前記蛍光体が発光する光を集光するための第2光源光学部材と、該第2光源光学部材で集光された光が一端から入射され、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の特徴量を測定する測定制御部とを備えることを特徴とする。 
次に、上記目的を達成するために第12発明に係る共焦点測定装置は、レーザ光源と、前記レーザ光源からの光を集光するための光源光学部材と、前記光源光学部材により集光された光により励起される蛍光体と、一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光し、測定対象物からの反射光を前記光ファイバ部の前記他端に入射するヘッド光学部材と、前記光ファイバ部に設けられ、前記光ファイバの前記他端から入射された光の少なくとも一部を、前記一端へ向かう第1の光路とは異なる第2の光路へ向けるための分岐部と、測定対象物からの前記第2の光路を経た光を、分光器を用いて波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、前記受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の厚み又は変位を測定する測定制御部とを備えることを特徴とする。 
次に、上記目的を達成するために第13発明に係る干渉測定装置は、レーザ光源と、前記レーザ光源からの光を集光するための光源光学部材と、前記光源光学部材により集光された光により励起される蛍光体と、一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する、一又は複数の光ファイバからなる光ファイバ部と、参照体を有し、前記光ファイバ部の前記他端から出射される光を測定対象物及び該参照体に向けて集光し、測定対象物及び前記参照体からの反射光を前記光ファイバ部の前記他端に入射するヘッド光学部材と、前記光ファイバ部に設けられ、前記光ファイバの前記他端から入射された光の少なくとも一部を、前記一端へ向かう第1の光路とは異なる第2の光路へ向けるための分岐部と、測定対象物からの前記第2の光路を経た光を、分光器を用いて波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の厚み又は変位を測定する測定制御部とを備えることを特徴とする。 
次に、上記目的を達成するために第14発明に係るカラー測定装置は、レーザ光源と、前記レーザ光源からの光を集光するための光源光学部材と、前記光源光学部材により集光された光により励起される蛍光体と、一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の色を測定し、予め設定された基準色範囲と該測定した色とを比較する測定制御部とを備えることを特徴とする。 
本発明によれば、レーザ光源から出射された光を、光ファイバ部の光源光学部材側の一端に備えた蛍光体を介して光ファイバ部へ入光させることができるので、光が蛍光体により波長変換されて拡散された場合であっても確実に絞り込むことができ、光ファイバ部へ効率的に入光させることが可能となる。したがって、高い精度で測定対象物の厚み、距離、変位、色等の特徴量を測定することが可能となる。
本発明の実施の形態に係る多波長光電測定装置を模式的に示すブロック図である。 本発明の実施の形態1に係る多波長光電測定装置である共焦点測定装置の構成を模式的に示すブロック図である。 本発明の実施の形態1に係るヘッドユニットの構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの主要構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの枠体を設けた構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの枠体を設けた構成を示す部分拡大模式図である。 本発明の実施の形態1に係る投光ユニットの反射型フィルタを設けた構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの構成を示す正面図及び断面図である。 本発明の実施の形態1に係る投光ユニットに筒状の反射鏡を用いた構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットにレンズ及び筒状の反射鏡の両方を用いた構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットのレーザ光源の配置を変えた構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの複数の光ファイバを連結した構成を示す模式図である。 本発明の実施の形態1に係る投光ユニットの複数の光ファイバを連結した部分の構成を示す拡大模式図である。 本発明の実施の形態2に係る多波長光電測定装置である干渉測定装置の構成を模式的に示すブロック図である。 本発明の実施の形態2に係るヘッドユニットの構成を示す模式図である。 本発明の実施の形態2に係る投光ユニットの構成を示す正面図及び断面図である。 本発明の実施の形態2に係る投光ユニットに筒状の反射鏡を用いた構成を示す模式図である。 本発明の実施の形態2に係る投光ユニットにレンズ及び筒状の反射鏡の両方を用いた構成を示す模式図である。 本発明の実施の形態2に係る投光ユニットのレーザ光源の配置を変えた構成を示す模式図である。 本発明の実施の形態2に係る投光ユニットの複数の光ファイバを連結した構成を示す模式図である。 本発明の実施の形態2に係る投光ユニットの複数の光ファイバを連結した部分の構成を示す拡大模式図である。
以下、本発明の実施の形態に係る多波長光電測定装置について、図面に基づいて具体的に説明する。 
(多波長光電測定装置) 図1は、本発明の実施の形態に係る多波長光電測定装置を模式的に示すブロック図である。多波長光電測定装置100は、レーザ光源101、光源光学部材200、蛍光体70、光ファイバ部300、ヘッド光学部材400、受光素子500、及び測定制御部600から構成される。 
レーザ光源101は、単一波長の光を発し、好ましくは、波長が450nm以下の青色あるいは紫外光を発するもので構成される。さらに好ましくは、青色の光を発するものであると、蛍光体70の励起に利用され波長変換された光と蛍光体70の励起に利用されず青色のままの光が混じりあった光を測定対象物に投光することができる。 
蛍光体70は、レーザ光源101からの光で励起され異なる波長に変換して光を発する。蛍光体70は、一又は複数種の蛍光体70で構成され、例えば、青色の光で励起され、黄色光に変換して光を発するようにしても良く、また、2種の蛍光体70により青色の光で励起され緑色に変換して光を発するとともに青色の光で励起され赤色に変換して光を発するようにしても良い。 
蛍光体70は、レーザ光源101からの光及び蛍光体70が発光する光を透過する樹脂、ガラス等の光透過性媒体(図4の71)内に固定されても良い。 
光ファイバ部300は、一又は複数の光ファイバ30で構成される。取り扱いを容易にするために、光ファイバ30の端にフェルール20を用いても良い。ヘッド光学部材400側の光ファイバ30の端である出射端のコア径は、測定対象物に結像されるスポット径に影響があるため直径200μm以下が好ましく、直径50μm以下がより好ましい。 
光ファイバ部300は、光ファイバ30の光源光学部材200側の一端である入射端側に蛍光体70が固定されている。蛍光体70は、レーザ光源101からの光及び蛍光体70が発光する光を透過する樹脂、ガラス等の光透過性媒体71内に固定されるとともに光透過性媒体71が光ファイバ30の入射端に固定されるようにしても良い。このときレーザ光源101からの光及び蛍光体70からの光を効率よく光ファイバ30に入射するために、光透過性媒体71の屈折率は、光ファイバ30の入射端側のコアの屈折率以下としている。 
蛍光体70の励起に利用され波長変換された光と蛍光体70の励起に利用されず青色のままの光が混じりあった光とを所望の状態にするために、光透過性媒体71を含む蛍光体70の光路方向の厚みは10μm~200μm程度に設定され、光透過性媒体71中の蛍光体70の濃度は30%~60%程度に設定される。 
蛍光体70、又は光透過性媒体71を含む蛍光体70の光路方向の厚みは10μm~200μm程度に設定される場合、光ファイバ部30の入射端に入射される光の光路に対応した形状の開口が形成された枠体(図5の80)を設け、枠体80の開口に蛍光体70、又は、光透過性媒体71を含む蛍光体70を収容することが好ましい。 
効率的に蛍光体70を励起し、蛍光体70の励起に利用され波長変換された光と蛍光体70の励起に利用されず青色のままの光が混じりあった光を効率よく光ファイバ部300に入射するために、枠体80の内周壁面を反射面(図6の81)とする、及び/又は、レーザ光源101からの光を透過し、蛍光体70が発光する光を反射する光学フィルタ(反射型フィルタ:図7の90)により枠体80の光源光学部材200側を覆うようにしても良い。 
光透過性媒体71は、レーザ光源101からの光が集中する領域に配置されるため、光透過性媒体71としては、耐熱性の高い材料及び/又は放熱性の高い材料が選択される。 
光透過性媒体71として接着性樹脂が選択され、蛍光体70が接着性樹脂により光ファイバ30の入射端に接着固定されても良い。 
ヘッド光学部材400は、光ファイバ部300の出射端から出射される光を測定対象物(ワーク)Wに向けて集光する。 
受光素子500は、多分割PD(フォトダイオード)あるいはCCD、CMOS等の撮像素子で構成され、回折格子、プリズム等により構成される分光器501あるいは色選択光学フィルタを介して測定対象物Wからの光を波長に応じて選択的に受光する。 
受光素子500は、測定対象物Wからの光を、光ファイバ部300を介して受光するものであっても良く、他の光学経路を介して受光するものであっても良い。 
測定制御部600は、受光素子500からの波長に応じた受光量を示す信号に基づいて測定対象物Wの厚み、距離、変位、色等の特徴量を測定する。 
ヘッド光学部材400が、光ファイバ部300の出射端が共焦点位置となるように構成されている場合、測定対象物Wからの光は、回折格子やプリズム等により構成される分光器501により光を波長に応じて分離され、受光素子500における受光位置によって測定対象物Wからの光の波長-輝度分布が検出される。例えば、ヘッド光学部材400として色収差レンズを用いた場合、測定制御部600は、より短い波長の光が検出されると測定対象物Wがより近い距離に存在し、より長い波長の光が検出されると測定対象物Wがより遠い距離に存在すると評価し、ヘッド光学部材400として回折レンズを用いた場合、測定制御部600は、より短い波長の光が検出されると測定対象物Wがより遠い距離に存在し、より長い波長の光が検出されると測定対象物Wがより近い距離に存在すると評価することにより、測定対象物Wの厚み、距離を測定する。 
(実施の形態1) 図2は、本発明の実施の形態1に係る多波長光電測定装置である共焦点測定装置の構成を模式的に示すブロック図である。図2に示すように、本実施の形態1に係る共焦点測定装置100は、ヘッド光学部材において投光と受光とが同軸となる同軸光学系を構成しており、投光ユニット10から投光された複数の波長を含む光Lbを用いて、測定対象物(以下、ワーク)Wの厚み、距離等を測定する。 
フェルール20は、投光ユニット10から投光された光を伝送する光ファイバ30の端部を保持している。投光される光の光軸とフェルール20(光ファイバ30)の中心軸とは一直線上になるよう配置されている。 
スプリッタ40は、光ファイバ30を介してフェルール20、受光ユニット50及びヘッドユニット60に接続されている。フェルール20に入光された光は、そのままヘッドユニット60に伝送され、ヘッドユニット60からの反射光等を受光ユニット50へ伝送する。 
光ファイバ30は、投光ユニット10から投光された光をヘッドユニット60まで伝送する伝送媒体である。光ファイバ30は、導光体である芯線と、芯線を被覆する樹脂膜とで構成される。 
ヘッドユニット60は、ワークWに対して複数の波長の光Lbを出射し、ワークW表面で反射された反射光の一部が入射される。ワークWからの反射光は、光ファイバ30及びスプリッタ40を介して受光ユニット50へ伝送される。受光ユニット50は、伝送された反射光を分光して、ワークWの厚み、距離等を算出する。 
図3は、本発明の実施の形態1に係るヘッドユニット60の構成を示す模式図である。図3に示すように、本実施の形態1に係るヘッドユニット60は、コリメートレンズ61よりワークW側にレンズ62が配置されている。 
光ファイバ30の端部から出射された光は、コリメートレンズ61で平行光に変換され、平行光をレンズ62でワークWに集光されるとともに、光軸方向に沿って色収差が生じている。レンズ62により集光するので、光の波長に依存して焦点距離が異なる。したがって、測定精度は、光の波長に大きく依存する。 
図4は、本発明の実施の形態1に係る投光ユニット10の主要構成を示す模式図である。図4に示すように、レーザ光源101から出射された光をレンズ(光学部材)102により光ファイバ30へ入光させる。レーザ光源101からの距離に応じて焦点位置を光ファイバ30の先端部分に容易に合わせることができるので、光ファイバ30内へ効率的に入光させることができる。フェルール20のレンズ(光学部材)102側の先端部分(光ファイバ30の先端部分)には、蛍光体70を薄く塗布している。なお、レーザ光源101からの光及び蛍光体70が発光する光を透過する樹脂、ガラス等の光透過性媒体71内に固定されていても良い。 
蛍光体70を、光ファイバ30のレンズ102側の先端部分に備えることにより、レーザ光源101から出射された一又は複数の波長の光を、光ファイバ30のレンズ102側の先端部分に備えた蛍光体70を介して光ファイバ30内へ入光させることができる。したがって、光が蛍光体70により波長変換されて拡散された場合であっても、光ファイバ30へと確実に絞り込むことができ、光ファイバ30内へ効率的に入光させることが可能となる。 
より確実に光ファイバ30内に入光させるために、蛍光体70の周囲を囲む枠体を設けることが好ましい。図5は、本発明の実施の形態1に係る投光ユニット10の枠体を設けた構成を示す模式図である。 
図5に示すように、レーザ光源101から出射された光をレンズ102により光ファイバ30へ入光させる。フェルール20のレンズ(光学部材)102側の先端部分(光ファイバ30の先端部分)には、蛍光体70を薄く塗布している。 
そして、蛍光体70の周囲を囲むように、円環状の枠体を備えている。図6は、本発明の実施の形態1に係る投光ユニット10の枠体を設けた構成を示す部分拡大模式図である。図6(a)は、フェルール20の先端部分の正面図を、図6(b)及び(c)は、フェルール20の先端部分を示す図6(a)のA-A断面図を、それぞれ示している。 
図6に示すように、フェルール20の先端部分には蛍光体70を塗布しており、周囲を囲むように枠体80を設けている。枠体80は円環状であり、光ファイバ30の入射端に入射される光の光路に対応した形状の開口が形成されている。枠体80の開口には、蛍光体70、又は光透過性媒体71を含む蛍光体70を収容することが好ましい。 
なお、図6(b)に示すように、枠体80の内径側の壁部に反射面81を備えることが好ましい。光ファイバ30内へより効率的に入
光させることができるからである。もちろん、反射面81は、光軸に平行であっても良いし、傾斜していても良い。例えば図6(c)に示すように、枠体80の開口径を光ファイバ30側とレーザ光源101側とで異ならせる(レーザ光源101側の開口径の方が小さいことが好ましい)ことにより、反射面で反射光を今一度光ファイバ30へと入光させることができ、伝送効率を高く維持することができる。 
もちろん、枠体80を覆うように反射型フィルタを備えても良い。図7は、本発明の実施の形態1に係る投光ユニット10の反射型フィルタを設けた構成を示す模式図である。図7(a)は、投光ユニット10全体の構成を示す模式図を、図7(b)は、フェルール20の先端部分の模式断面図を、それぞれ示している。 
図7に示すように、蛍光体70の周囲を囲むように設けられた枠体80を覆うように、反射型フィルタ90が設けられている。反射型フィルタ90を、レーザ光源101からの光を透過させ、蛍光体70により波長変換された光を反射するよう設定しておくことにより、波長変換された光を光ファイバ30内へより効率的に入光させることが可能となる。 
図8は、本発明の実施の形態1に係る投光ユニット10の構成を示す正面図及び断面図である。図8(a)は、投光ユニット10の構成を示す正面図を、図8(b)は、投光ユニット10の構成を示す図8(a)のB-B断面図を、それぞれ示している。 
図8に示すように、投光ユニット10は、光ファイバ30が組み込まれたフェルール20をフェルール押さえ25で固定している。フェルール押さえ25は、レンズ102を固定しているレンズホルダ103の一端部分にかぶせるように固着されている。また、レンズホルダ103の他端部分には、駆動基板105とともにレーザ光源101が装着された光源ホルダ104が挿入されている。 
フェルール20の先端部分(光ファイバ30の先端部分)には蛍光体70が塗布されており、蛍光体70を囲むように枠体80が設けてある。枠体80を覆うように反射型フィルタ90を設け、波長変換された光が光ファイバ30内へより効率的に入光できるようにしてある。 
もちろん、フェルール20の先端部分の構成は、これに限定されるものではなく、図4に示すように、蛍光体70を塗布しただけであっても良いし、図5に示すように、塗布された蛍光体70の周囲を囲むように枠体80を設けた構成であっても良い。 
なお、上述した実施の形態1では、光学部材としてレンズ102を用いているが、レンズ102の代わりに反射鏡を用いても良い。図9は、本発明の実施の形態1に係る投光ユニット10に筒状の反射鏡を用いた構成を示す模式図である。図9に示すように、レーザ光源101から出射された一又は複数の波長の光をレンズ(光学部材)110を介して反射鏡111により光ファイバ30内へ入光させる。レンズ単体を用いた場合に外部へ拡散していた光も、反射鏡111により光ファイバ30内へ入光させることができるので、光強度の減衰を抑制することができる。 
フェルール20のレンズ(光学部材)110側の先端部分(光ファイバ30の先端部分)には、蛍光体70を薄く塗布している。蛍光体70を、光ファイバ30のレンズ110側の先端部分に備えることにより、レーザ光源101から出射された一又は複数の波長の光を、光ファイバ30のレンズ110側の先端部分に備えた蛍光体70を介して光ファイバ30内へ入光させることができる。したがって、光が蛍光体70により波長変換されて拡散された場合であっても、光ファイバ30へと確実に絞り込むことができ、光ファイバ30内へ効率的に入光させることが可能となる。 
より確実に光ファイバ30内に入光させるために、蛍光体の周囲を囲む枠体80を設けても良いし、枠体80を覆うように、反射型フィルタ90を設けても良い。いずれも、波長変換された光を光ファイバ30内へより効率的に入光させることが可能となる。 
また、フェルール20に組み込まれた光ファイバ30内に光を入光させる光学部材として、一又は複数のレンズ及びレンズが組み込まれた筒状の反射鏡の両方を用いても良い。図10は、本発明の実施の形態1に係る投光ユニット10にレンズ及び筒状の反射鏡の両方を用いた構成を示す模式図である。 
図10の例では、レーザ光源101と反射鏡111との間に一のレンズ102が配置されており、蛍光体70は、反射鏡111の、レーザ光源101及び一のレンズ102が配置されている側の先端部分に塗布されている。これにより、光ファイバ30の開口数の制限で光ファイバ30内に入光することができなかった光も含めて光ファイバ30内へ入光させることができ、光強度のロスを抑制することが可能となる。 
上述した実施例と同様、蛍光体70の周囲を囲む枠体80を有し、枠体80の内径側の壁部に反射面81を備えていても良い。さらに、枠体80を覆うように反射型フィルタ90を備えていても良い。いずれも、蛍光体70により波長変換された光を、光ファイバ30内へより効率的に入光させることが可能となる。 
なお、レーザ光源101から出射される光の光軸と、光ファイバ30(フェルール20)の中心軸とが一直線上に配置されることに限定されるものではない。図11は、本発明の実施の形態1に係る投光ユニット10のレーザ光源101の配置を変えた構成を示す模式図である。 
図11の例では、レーザ光源101から出射される光を反射して、光ファイバ30側へ反射させる反射鏡150を備えている。レーザ光源101から出射された一又は複数の波長の光は、レンズ102で集光され反射鏡150へ誘導される。反射鏡150は、表面に蛍光体70が塗布されており、蛍光体70により波長変換された光を反射する。 
反射鏡150で反射された光はレンズ109で集光され、フェルール20に組み込まれた光ファイバ30の先端部分へ入光される。これにより、光学部材の配置の自由度が高まり、装置全体を小型化することが可能となる。 
なお、光強度を高めるためには、光量を増大する必要があり、光量の増大により蛍光体70が発熱するおそれもある。蛍光体70の発熱により、反射効率は低下し、発光が飽和するおそれも生じる。反射鏡150を用いる場合には、反射鏡150を回転又は移動させることにより、蛍光体70の発熱を抑制することができるので、上述した問題を解決することも可能となる。 
また、投光ユニット10内で複数の光ファイバ30を連結しても良い。図12は、本発明の実施の形態1に係る投光ユニット10の複数の光ファイバ30を連結した構成を示す模式図である。 
図12の例では、フェルール20a、20bに組み込まれた光ファイバ30aをレーザ光源101側に配置し、フェルール20cに組み込まれた光ファイバ30がレーザ光源101側と反対側に配置されている。フェルール20bとフェルール20cとの間、フェルール20cのレンズ102側のみに蛍光体70が塗布されている。 
図13は、本発明の実施の形態1に係る投光ユニット10の複数の光ファイバ30を連結した部分の構成を示す拡大模式図である。図13に示すように、フェルール20cの光ファイバ30のレンズ(光学部材)102側の先端部分に蛍光体70を塗布している。蛍光体70を塗布するだけでも構わないが、より効率良く光ファイバ30内へ光を入光させるために、上述した実施例と同様、蛍光体70の周囲を囲む枠体80を有し、枠体80の内径側の壁部に反射面81を備えていても良い。さらに、枠体80を覆うように反射型フィルタ90を備えていても良い。いずれも、蛍光体70により波長変換された光を、光ファイバ30内へより効率的に入光させることが可能となる。 
なお、図13では、レーザ光源101から発した光をフェルール20aに組み込まれた光ファイバ30aに集光させるのに一のレンズ102を用いているが、特にこれに限定されるものではなく、図9に示す反射鏡111を用いても良いし、図10に示すように複数のレンズ102、110及び反射鏡111を用いても良いことは言うまでもない。 
以上のように本実施の形態1によれば、レーザ光源101から出射された一又は複数の波長の光を、光ファイバ30の光学部材側の先端部分に備えた蛍光体70を介して光ファイバ30内へ入光させることができるので、光が蛍光体70により波長変換されて拡散された場合であっても確実に絞り込むことができ、光ファイバ30内へ効率的に入光させることが可能となる。したがって、高い精度で測定対象物の厚み、距離等を測定することが可能となる。 
(実施の形態2) 図14は、本発明の実施の形態2に係る多波長光電測定装置である干渉測定装置の構成を模式的に示すブロック図である。図14に示すように、本実施の形態2に係る干渉測定装置310は、投光ユニット10から投光された複数の波長を含む光Lbを用いて、測定対象物(以下、ワーク)Wの厚み、距離等を測定する。 
フェルール20は、投光ユニット10から投光された光を伝送する光ファイバ30の端部を保持している。投光される光の光軸とフェルール20(光ファイバ30)の中心軸とは一直線上になるよう配置されている。 
スプリッタ40は、光ファイバ30を介してフェルール20、受光ユニット50及びヘッドユニット60に接続されている。フェルール20に入光された光は、そのままヘッドユニット60に伝送され、ヘッドユニット60からの反射光等を受光ユニット50へ伝送する。 
光ファイバ30は、投光ユニット10から投光された光をヘッドユニット60まで伝送する伝送媒体である。光ファイバ30は、導光体である芯線と、芯線を被覆する樹脂膜とで構成される。 
ヘッドユニット60は、ワークWに対して複数の波長の光Lbを出射し、ワークW表面で反射された反射光の一部が入射される。ワークWからの反射光と、ヘッドユニット60内で生じる反射光とは、光ファイバ30及びスプリッタ40を介して受光ユニット50へ伝送される。受光ユニット50は、伝送された反射光を分光して、ワークWの厚みを算出する。 
図15は、本発明の実施の形態2に係るヘッドユニット60の構成を示す模式図である。図15に示すように、本実施の形態2に係るヘッドユニット60は、ワークWの膜厚を測定するための干渉反射光L3を生成する干渉光学系を備えている。 
本実施の形態2に係る干渉光学系は、ミロー型又はミラウ型の干渉光学系であり、集光レンズ131、ガラス板132、ハーフミラー133、ピンミラー134で構成されている。光ファイバ30の先端部分から出射された光L0の一部が、検出光L1として出射され、ワークWの表面で反射された反射光が光ファイバ30の先端部分へ入射される。そして、光L0の参照面で反射した反射光と、検出光L1のワークWの表面での反射光とで干渉反射光L3が生成され、光ファイバ30の先端部分に入射される。 
集光レンズ131に集光された光L0は、ハーフミラー133により透過光と反射光とに分離される。ガラス板132の中心にピンミラー134が配置されており、光L0のハーフミラー133での反射光をハーフミラー133側へ反射させる。これにより、仮想的な基準面135を形成する。ピンミラー134は、ワークWから仮想的な基準面135までの距離dが0(ゼロ)である場合に、光L0の参照面による反射光と、検出光L1のワークWの表面での反射光とが同位相となる位置に形成される。 
光L0がハーフミラー133により反射された検出光L2は、ピンミラー134に入射する。ピンミラー134により反射された検出光L2は、ハーフミラー133により一部が集光レンズ131に向けて反射される。 
ワークWの膜厚は、干渉反射光L3に基づいて、仮想的
な基準面135とワークWとの間の距離dとして求められる。 
図16は、本発明の実施の形態2に係る投光ユニット10の構成を示す正面図及び断面図である。図16(a)は、投光ユニット10の構成を示す正面図を、図16(b)は、投光ユニット10の構成を示す図16(a)のB-B断面図を、それぞれ示している。 
図16に示すように、投光ユニット10は、光ファイバ30が組み込まれたフェルール20をフェルール押さえ25で固定している。フェルール押さえ25は、レンズ102を固定しているレンズホルダ103の一端部分にかぶせるように固着されている。また、レンズホルダ103の他端部分には、駆動基板105とともにレーザ光源101が装着された光源ホルダ104が挿入されている。 
フェルール20の先端部分(光ファイバ30の先端部分)には蛍光体70が塗布されており、蛍光体70を囲むように枠体80が設けてある。枠体80を覆うように反射型フィルタ90を設け、波長変換された光が光ファイバ30内へより効率的に入光できるようにしてある。 
もちろん、フェルール20の先端部分の構成は、これに限定されるものではなく、実施の形態1と同様に、蛍光体70を塗布しただけであっても良いし、塗布された蛍光体70の周囲を囲むように枠体80を設けた構成であっても良い。 
なお、上述した実施の形態2では、光学部材としてレンズ102を用いているが、レンズ102の代わりに反射鏡を用いても良い。図17は、本発明の実施の形態2に係る投光ユニット10に筒状の反射鏡を用いた構成を示す模式図である。図17に示すように、レーザ光源101から出射された複数の波長の光をレンズ(光学部材)110を介して反射鏡111により光ファイバ30内へ入光させる。レンズ単体を用いた場合に外部へ拡散していた光も、反射鏡111により光ファイバ30内へ入光させることができるので、光強度の減衰を抑制することができる。 
フェルール20のレンズ(光学部材)110側の先端部分(光ファイバ30の先端部分)には、蛍光体70を薄く塗布している。蛍光体70を、光ファイバ30のレンズ110側の先端部分に備えることにより、レーザ光源101から出射された一又は複数の波長の光を、光ファイバ30のレンズ110側の先端部分に備えた蛍光体70を介して光ファイバ30内へ入光させることができる。したがって、光が蛍光体70により波長変換されて拡散された場合であっても、光ファイバ30へと確実に絞り込むことができ、光ファイバ30内へ効率的に入光させることが可能となる。 
より確実に光ファイバ30内に入光させるために、蛍光体の周囲を囲む枠体80を設けても良いし、枠体80を覆うように、反射型フィルタ90を設けても良い。いずれも、波長変換された光を光ファイバ30内へより効率的に入光させることが可能となる。 
また、フェルール20に組み込まれた光ファイバ30内に光を入光させる光学部材として、一又は複数のレンズ及びレンズが組み込まれた筒状の反射鏡の両方を用いても良い。図18は、本発明の実施の形態2に係る投光ユニット10にレンズ及び筒状の反射鏡の両方を用いた構成を示す模式図である。 
図18の例では、レーザ光源101と反射鏡111との間に一のレンズ102が配置されており、蛍光体70は、反射鏡111の、レーザ光源101及び一のレンズ102が配置されている側の先端部分に塗布されている。これにより、光ファイバ30の開口数の制限で光ファイバ30内に入光することができなかった光も含めて光ファイバ30内へ入光させることができ、光強度のロスを抑制することが可能となる。 
実施の形態1と同様、蛍光体70の周囲を囲む枠体80を有し、枠体80の内径側の壁部に反射面81を備えていても良い。さらに、枠体80を覆うように反射型フィルタ90を備えていても良い。いずれも、蛍光体70により波長変換された光を、光ファイバ30内へより効率的に入光させることが可能となる。 
なお、レーザ光源101から出射される光の光軸と、光ファイバ30(フェルール20)の中心軸とが一直線上に配置されることに限定されるものではない。図19は、本発明の実施の形態2に係る投光ユニット10のレーザ光源101の配置を変えた構成を示す模式図である。 
図19の例では、レーザ光源101から出射される光を反射して、光ファイバ30側へ反射させる反射鏡150を備えている。レーザ光源101から出射された一又は複数の波長の光は、レンズ102で集光され反射鏡150へ誘導される。反射鏡150は、表面に蛍光体70が塗布されており、蛍光体70により波長変換された光を反射する。 
反射鏡150で反射された光はレンズ109で集光され、フェルール20に組み込まれた光ファイバ30の先端部分へ入光される。これにより、光学部材の配置の自由度が高まり、装置全体を小型化することが可能となる。 
なお、光強度を高めるためには、光量を増大する必要があり、光量の増大により蛍光体70が発熱するおそれもある。蛍光体70の発熱により、反射効率は低下し、発光が飽和するおそれも生じる。反射鏡150を用いる場合には、反射鏡150を回転又は移動させることにより、蛍光体70の発熱を抑制することができるので、上述した問題を解決することも可能となる。 
また、投光ユニット10内で複数の光ファイバ30を連結しても良い。図20は、本発明の実施の形態2に係る投光ユニット10の複数の光ファイバ30を連結した構成を示す模式図である。 
図20の例では、フェルール20a、20bに組み込まれた光ファイバ30aをレーザ光源101側に配置し、フェルール20cに組み込まれた光ファイバ30がレーザ光源101側と反対側に配置されている。フェルール20bとフェルール20cとの間、フェルール20cのレンズ102側のみに蛍光体70が塗布されている。 
図21は、本発明の実施の形態2に係る投光ユニット10の複数の光ファイバ30を連結した部分の構成を示す拡大模式図である。図21に示すように、フェルール20cの光ファイバ30のレンズ(光学部材)102側の先端部分に蛍光体70を塗布している。蛍光体70を塗布するだけでも構わないが、より効率良く光ファイバ30内へ光を入光させるために、上述した実施例と同様、蛍光体70の周囲を囲む枠体80を有し、枠体80の内径側の壁部に反射面81を備えていても良い。さらに、枠体80を覆うように反射型フィルタ90を備えていても良い。いずれも、蛍光体70により波長変換された光を、光ファイバ30内へより効率的に入光させることが可能となる。 
なお、図20では、レーザ光源101から発した光をフェルール20aに組み込まれた光ファイバ30aに集光させるのに一のレンズ102を用いているが、特にこれに限定されるものではなく、図17に示す反射鏡111を用いても良いし、図18に示すように複数のレンズ102、110及び反射鏡111を用いても良いことは言うまでもない。 
また、枠体80を設けるのに代えて、蛍光体70を光ファイバ30a内に分散配置するようにしてもよい。この場合、反射型フィルタ90は、光ファイバ30と光ファイバ30aとの間に設けるのに代えて、光ファイバ30aの入射端を覆うように設けられる。 
以上のように本実施の形態2によれば、レーザ光源101から出射された一又は複数の波長の光を、光ファイバ30の光学部材側の先端部分に備えた蛍光体70を介して光ファイバ30内へ入光させることができるので、光が蛍光体70により波長変換されて拡散された場合であっても確実に絞り込むことができ、光ファイバ30内へ効率的に入光させることが可能となる。したがって、高い精度で測定対象物の厚み、距離等を測定することが可能となる。 
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲内であれば多種の変更、改良等が可能である。例えば上述した実施の形態1及び2で開示されている光学部材は、これらに限定されるものではなく、凸レンズ以外にも凹レンズ、反射鏡(リフレクタ)等を組み合わせても良い。また、蛍光体として使用する蛍光材料の種類、比率、コーティング等については、光学特性に応じて適切な組み合わせ、比率を用いて実施することが可能である。
本発明の多波長光電測定装置は、白色等の多波長の光を用いて測定対象物の厚み、距離、変位、色等の特徴量を測定することが可能な共焦点変位計、干渉変位計及びカラー光学センサ等の多波長光電測定装置に好適に利用できる。
10 投光ユニット 20、20a、20b、20c フェルール 30、30a 光ファイバ 40 スプリッタ 50 受光ユニット 60 ヘッドユニット 70 蛍光体 80 枠体 81 反射面 90 反射型フィルタ 100 共焦点測定装置(多波長光電測定装置) 101 レーザ光源 102、109、110 レンズ 111、150 反射鏡 310 干渉測定装置(多波長光電測定装置) W ワーク

Claims (14)

  1. レーザ光源と、 前記レーザ光源からの光を集光するための光源光学部材と、 前記光源光学部材により集光された光により励起される蛍光体と、 一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に受け付けた光を伝搬する、一又は複数の光ファイバからなる光ファイバ部と、 該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、 測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、 該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の特徴量を測定する測定制御部と を備えることを特徴とする多波長光電測定装置。
  2. 前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、かつ、該光透過性媒体が前記光ファイバ部の前記一端に固定されることを特徴とする請求項1に記載の多波長光電測定装置。
  3. 前記蛍光体と前記光源光学部材との間に、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタをさらに備えることを特徴とする請求項1又は2に記載の多波長光電測定装置。
  4. 前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口が形成された、該開口に前記蛍光体を収容する枠体をさらに備えることを特徴とする請求項1乃至3のいずれか一に記載の多波長光電測定装置。
  5. 前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口が形成されており、該開口に前記蛍光体を収容する枠体と、 該枠体の前記光源光学部材側を覆い、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタと をさらに備えることを特徴とする請求項1に記載の多波長光電測定装置。
  6. 前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口を有し、該開口に前記蛍光体を収容する枠体をさらに備え、 前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、 前記蛍光体及び前記光透過性媒体が、前記枠体の開口に収容されることを特徴とする請求項1に記載の多波長光電測定装置。
  7. 前記光ファイバ部の前記一端に入射される光の光路に対応した形状の開口を有し、該開口に前記蛍光体を収容する枠体と、 前記枠体の前記光源光学部材側を覆い、前記レーザ光源からの光を透過し、かつ、前記蛍光体が発光する光を反射する光学フィルタと をさらに備え、 前記蛍光体は、前記レーザ光源からの光及び前記蛍光体が発光する光を透過する光透過性媒体内に固定され、 前記蛍光体及び前記光透過性媒体が、前記枠体の開口に収容されることを特徴とする
    請求項1に記載の多波長光電測定装置。
  8. 前記枠体の内径側の壁部に反射面を備えることを特徴とする請求項4乃至7のいずれか一項に記載の多波長光電測定装置。
  9. 前記光源光学部材は、一又は複数のレンズで構成されていることを特徴とする請求項1乃至8のいずれか一項に記載の多波長光電測定装置。
  10. 前記光源光学部材は、レンズが組み込まれた筒状の反射鏡で構成されていることを特徴とする請求項1乃至8のいずれか一項に記載の多波長光電測定装置。
  11. (反射鏡タイプ) レーザ光源と、 前記レーザ光源からの光を集光するための光源光学部材と、 前記光源光学部材により集光された光により励起される蛍光体と、 反射面に前記蛍光体を備え、該反射面において前記蛍光体が発光する光を反射する反射部材と、 前記蛍光体が発光する光を集光するための第2光源光学部材と、 該第2光源光学部材で集光された光が一端から入射され、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、 該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、 測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、 該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の特徴量を測定する測定制御部と を備えることを特徴とする多波長光電測定装置。
  12. (共焦点タイプ) レーザ光源と、 前記レーザ光源からの光を集光するための光源光学部材と、 前記光源光学部材により集光された光により励起される蛍光体と、 一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、 該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光し、測定対象物からの反射光を前記光ファイバ部の前記他端に入射するヘッド光学部材と、 前記光ファイバ部に設けられ、前記光ファイバの前記他端から入射された光の少なくとも一部を、前記一端へ向かう第1の光路とは異なる第2の光路へ向けるための分岐部と、 測定対象物からの前記第2の光路を経た光を、分光器を用いて波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、 前記受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の厚み又は変位を測定する測定制御部と を備えることを特徴とする共焦点測定装置。
  13. (干渉タイプ) レーザ光源と、 前記レーザ光源からの光を集光するための光源光学部材と、 前記光源光学部材により集光された光により励起される蛍光体と、 一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する、一又は複数の光ファイバからなる光ファイバ部と、 参照体を有し、前記光ファイバ部の前記他端から出射される光を測定対象物及び該参照体に向けて集光し、測定対象物及び前記参照体からの反射光を前記光ファイバ部の前記他端に入射するヘッド光学部材と、 前記光ファイバ部に設けられ、前記光ファイバの前記他端から入射された光の少なくとも一部を、前記一端へ向かう第1の光路とは異なる第2の光路へ向けるための分岐部と、 測定対象物からの前記第2の光路を経た光を、分光器を用いて波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、 該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の厚み又は変位を測定する測定制御部と を備えることを特徴とする干渉測定装置。
  14. (カラーセンサ) レーザ光源と、 前記レーザ光源からの光を集光するための光源光学部材と、 前記光源光学部材により集光された光により励起される蛍光体と、 一端に前記蛍光体を備え、該一端側から前記蛍光体が発光する光を受け付け、他端側に該光を伝搬する一又は複数の光ファイバからなる光ファイバ部と、 該光ファイバ部の前記他端から出射される光を測定対象物に向けて集光するヘッド光学部材と、 測定対象物からの光を波長に応じて選択的に受光し、受光量に対応した信号に光電変換する受光素子と、 該受光素子からの波長に応じた受光量を示す信号に基づいて測定対象物の色を測定し、予め設定された基準色範囲と該測定した色とを比較する測定制御部と を備えることを特徴とするカラー測定装置。
PCT/JP2015/067968 2014-06-27 2015-06-23 多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置 WO2015199054A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015003040.9T DE112015003040T5 (de) 2014-06-27 2015-06-23 Fotoelektrisches Multi-Wellenlängen-Messgerät, konfokales Messgerät, Interferenz-Messgerät und Farbmessgerät
JP2016529587A JP7010589B2 (ja) 2014-06-27 2015-06-23 多波長共焦点測定装置
CN201580034988.6A CN106471332B (zh) 2014-06-27 2015-06-23 多波长共焦测量装置
US15/375,190 US10180355B2 (en) 2014-06-27 2016-12-12 Confocal measurement device
US16/203,648 US11060917B2 (en) 2014-06-27 2018-11-29 Confocal displacement measurement device and a confocal thickness measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014133342 2014-06-27
JP2014-133342 2014-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/375,190 Continuation US10180355B2 (en) 2014-06-27 2016-12-12 Confocal measurement device

Publications (1)

Publication Number Publication Date
WO2015199054A1 true WO2015199054A1 (ja) 2015-12-30

Family

ID=54938136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067968 WO2015199054A1 (ja) 2014-06-27 2015-06-23 多波長光電測定装置、共焦点測定装置、干渉測定装置及びカラー測定装置

Country Status (5)

Country Link
US (2) US10180355B2 (ja)
JP (3) JP7010589B2 (ja)
CN (2) CN106471332B (ja)
DE (1) DE112015003040T5 (ja)
WO (1) WO2015199054A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974428A (zh) * 2016-07-29 2016-09-28 北方民族大学 一种激光测距系统
CN106093956A (zh) * 2016-07-01 2016-11-09 北方民族大学 一种激光测距系统
JP2019002721A (ja) * 2017-06-13 2019-01-10 株式会社キーエンス 共焦点変位計
DE102022200370A1 (de) 2021-01-22 2022-07-28 Disco Corporation Messvorrichtung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501352B2 (en) * 2006-02-03 2013-08-06 The United States Of America, As Represented By The Secretary Of The Navy Lithium-metal-oxide composite electrodes
JP7010589B2 (ja) 2014-06-27 2022-01-26 株式会社キーエンス 多波長共焦点測定装置
JP6959027B2 (ja) * 2017-04-25 2021-11-02 三菱重工業株式会社 クリアランス計測装置、クリアランス計測センサ及びクリアランス計測方法
JP2019066259A (ja) * 2017-09-29 2019-04-25 オムロン株式会社 光学センサおよび光学センサにおける異常検出方法
JP6939360B2 (ja) * 2017-10-02 2021-09-22 オムロン株式会社 共焦点計測装置
JP7062518B2 (ja) 2018-05-25 2022-05-06 株式会社キーエンス 共焦点変位計
TWI770182B (zh) * 2018-05-31 2022-07-11 揚明光學股份有限公司 測量系統及測量方法
CN109458939A (zh) * 2018-12-18 2019-03-12 南京理工大学 与快速定心结合的透镜中心厚度测量方法
JP7464055B2 (ja) 2019-08-30 2024-04-09 株式会社ニコン 処理システム及びロボットシステム
US11307367B2 (en) * 2020-08-17 2022-04-19 X Development Llc Method of precision beam collimation using fiber-optic circulator and wavelength tunable source
JP7486902B2 (ja) 2020-11-20 2024-05-20 株式会社ディスコ 計測装置
CN113030038A (zh) * 2021-02-23 2021-06-25 北京理工大学 多波长荧光检测装置及方法
DE102021106766A1 (de) 2021-03-19 2022-09-22 Precitec Optronik Gmbh Chromatisch-konfokales Messsystem für Hochgeschwindigkeits-Abstandsmessung
KR102633654B1 (ko) 2021-09-29 2024-02-06 한국과학기술연구원 광섬유 기반의 센서 모듈 및 이를 구비한 변형 센서 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291748A (ja) * 2004-03-31 2005-10-20 Keyence Corp 色識別装置
WO2010047270A1 (ja) * 2008-10-20 2010-04-29 オムロン株式会社 投光装置およびセンサ
JP2010160948A (ja) * 2009-01-07 2010-07-22 Olympus Corp 光源装置
JP2012021856A (ja) * 2010-07-14 2012-02-02 Keyence Corp 干渉膜厚計
JP2013007986A (ja) * 2010-12-15 2013-01-10 Mitsubishi Pencil Co Ltd 光コネクタ
JP2013061675A (ja) * 2012-12-07 2013-04-04 Casio Comput Co Ltd 光源装置及びプロジェクタ

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH663466A5 (fr) * 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
JPH0690088B2 (ja) 1988-09-30 1994-11-14 ホーヤ株式会社 カラーセンサ回路
JP2596709B2 (ja) * 1994-04-06 1997-04-02 都築 省吾 半導体レーザ素子を用いた照明用光源装置
US7286242B2 (en) 2001-09-21 2007-10-23 Kmac Apparatus for measuring characteristics of thin film by means of two-dimensional detector and method of measuring the same
KR100691143B1 (ko) * 2003-04-30 2007-03-09 삼성전기주식회사 다층 형광층을 가진 발광 다이오드 소자
TWI329208B (en) * 2003-06-03 2010-08-21 Oerlikon Trading Ag Optical substrate for enhanced detectability of fluorescence
JP4445745B2 (ja) * 2003-11-21 2010-04-07 オリンパス株式会社 内視鏡装置
JP5302491B2 (ja) * 2003-12-22 2013-10-02 日亜化学工業株式会社 発光装置及び内視鏡装置
JP2005345328A (ja) * 2004-06-04 2005-12-15 Sharp Corp 光学式物体識別装置
DE602005004332T2 (de) * 2004-06-17 2009-01-08 Cadent Ltd. Verfahren zum Bereitstellen von Daten im Zusammenhang mit der Mundhöhle
DE202005022114U1 (de) * 2004-10-01 2014-02-10 Nichia Corp. Lichtemittierende Vorrichtung
JP5238123B2 (ja) * 2005-03-18 2013-07-17 京セラ株式会社 ファイバ用の光源及びファイバ光源装置とそれを用いた内視鏡
JP2007157764A (ja) 2005-11-30 2007-06-21 Sumita Optical Glass Inc 蛍光ファイバを用いた多波長レーザ光源
EP1995834B1 (en) * 2006-03-10 2017-08-30 Nichia Corporation Light emitting device
JP5019289B2 (ja) * 2007-08-10 2012-09-05 オリンパス株式会社 光ファイバ照明装置
JP2010017305A (ja) * 2008-07-09 2010-01-28 Olympus Corp 光源装置およびこれを用いた内視鏡装置
US20100097779A1 (en) * 2008-10-21 2010-04-22 Mitutoyo Corporation High intensity pulsed light source configurations
JP5124424B2 (ja) 2008-11-17 2013-01-23 株式会社キーエンス 光学式変位計
JP2011114005A (ja) * 2009-11-24 2011-06-09 Central Glass Co Ltd レーザ光源装置
US8142050B2 (en) 2010-06-24 2012-03-27 Mitutoyo Corporation Phosphor wheel configuration for high intensity point source
US20110317171A1 (en) * 2010-06-24 2011-12-29 Mitutoyo Corporation Phosphor wheel configuration for high intensity point source
JP5681402B2 (ja) * 2010-07-09 2015-03-11 東京応化工業株式会社 拡散剤組成物および不純物拡散層の形成方法
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
US20120280144A1 (en) * 2011-03-29 2012-11-08 Guilfoyle Richard A Optical system enabling low power excitation and high sensitivity detection of near infrared to visible upconversion phoshors
US8860931B2 (en) * 2012-02-24 2014-10-14 Mitutoyo Corporation Chromatic range sensor including measurement reliability characterization
US9068822B2 (en) * 2013-07-03 2015-06-30 Mitutoyo Corporation Chromatic range sensor probe detachment sensor
JP7010589B2 (ja) 2014-06-27 2022-01-26 株式会社キーエンス 多波長共焦点測定装置
JP6476970B2 (ja) * 2015-02-17 2019-03-06 セイコーエプソン株式会社 照明装置およびプロジェクター
JP6779234B2 (ja) * 2015-12-25 2020-11-04 株式会社キーエンス 共焦点変位計
JP6971646B2 (ja) * 2017-06-13 2021-11-24 株式会社キーエンス 共焦点変位計

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291748A (ja) * 2004-03-31 2005-10-20 Keyence Corp 色識別装置
WO2010047270A1 (ja) * 2008-10-20 2010-04-29 オムロン株式会社 投光装置およびセンサ
JP2010160948A (ja) * 2009-01-07 2010-07-22 Olympus Corp 光源装置
JP2012021856A (ja) * 2010-07-14 2012-02-02 Keyence Corp 干渉膜厚計
JP2013007986A (ja) * 2010-12-15 2013-01-10 Mitsubishi Pencil Co Ltd 光コネクタ
JP2013061675A (ja) * 2012-12-07 2013-04-04 Casio Comput Co Ltd 光源装置及びプロジェクタ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093956A (zh) * 2016-07-01 2016-11-09 北方民族大学 一种激光测距系统
CN106093956B (zh) * 2016-07-01 2019-04-30 北方民族大学 一种激光测距系统
CN105974428A (zh) * 2016-07-29 2016-09-28 北方民族大学 一种激光测距系统
CN105974428B (zh) * 2016-07-29 2019-04-30 北方民族大学 一种激光测距系统
JP2019002721A (ja) * 2017-06-13 2019-01-10 株式会社キーエンス 共焦点変位計
JP7076954B2 (ja) 2017-06-13 2022-05-30 株式会社キーエンス 共焦点変位計
DE102022200370A1 (de) 2021-01-22 2022-07-28 Disco Corporation Messvorrichtung
KR20220106687A (ko) 2021-01-22 2022-07-29 가부시기가이샤 디스코 계측 장치
US11879717B2 (en) 2021-01-22 2024-01-23 Disco Corporation Measuring apparatus

Also Published As

Publication number Publication date
CN106471332A (zh) 2017-03-01
DE112015003040T5 (de) 2017-03-23
JP2020079807A (ja) 2020-05-28
JPWO2015199054A1 (ja) 2017-04-20
US10180355B2 (en) 2019-01-15
JP7270807B2 (ja) 2023-05-10
US20190094074A1 (en) 2019-03-28
CN106471332B (zh) 2019-07-09
US20170122808A1 (en) 2017-05-04
JP7010589B2 (ja) 2022-01-26
JP2022095987A (ja) 2022-06-28
CN110196020B (zh) 2021-08-10
JP7284114B2 (ja) 2023-05-30
US11060917B2 (en) 2021-07-13
CN110196020A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
JP7270807B2 (ja) 共焦点変位計
JP7408265B2 (ja) 共焦点変位計
TWI452256B (zh) 共焦點測量裝置
US10260859B2 (en) Confocal displacement sensor
JP5297887B2 (ja) 蛍光分析用光分波検出器及び蛍光検出システム
CN109084686B (zh) 共焦位移传感器
JP7069037B2 (ja) レーザベース光源
JP5049173B2 (ja) クロマティック共焦点センサ
WO2020196783A1 (ja) 共焦点顕微鏡ユニット及び共焦点顕微鏡
JP2007198883A (ja) 光ファイバープローブによる分光測定装置
US12019019B2 (en) Light source device and range sensor provided with the same
JP5628903B2 (ja) 小型共焦点分光計
JP2012526972A5 (ja)
JP5800472B2 (ja) 光源装置
JP2019203867A (ja) 共焦点変位計
JP2019002721A (ja) 共焦点変位計
WO2017060992A1 (ja) 内視鏡用照明装置
TWI698625B (zh) 光源裝置以及具備該裝置的測距感測器
JP6753477B2 (ja) 光源装置およびこれを備えた測距センサ
JP6888638B2 (ja) 光源装置およびこれを備えた測距センサ
WO2019188264A1 (ja) 光照射装置
JP2005315680A (ja) 分光装置及び全反射ラマン分光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529587

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003040

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812161

Country of ref document: EP

Kind code of ref document: A1