WO2015198825A1 - 燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ - Google Patents

燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ Download PDF

Info

Publication number
WO2015198825A1
WO2015198825A1 PCT/JP2015/066204 JP2015066204W WO2015198825A1 WO 2015198825 A1 WO2015198825 A1 WO 2015198825A1 JP 2015066204 W JP2015066204 W JP 2015066204W WO 2015198825 A1 WO2015198825 A1 WO 2015198825A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell separator
molding
press
separator
Prior art date
Application number
PCT/JP2015/066204
Other languages
English (en)
French (fr)
Inventor
吉田 裕一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016529230A priority Critical patent/JP6103147B2/ja
Priority to US15/312,971 priority patent/US20170194655A1/en
Priority to CA2950711A priority patent/CA2950711A1/en
Priority to RU2016148652A priority patent/RU2638022C1/ru
Priority to EP15812466.9A priority patent/EP3133683A4/en
Priority to CN201580032554.2A priority patent/CN106463741A/zh
Priority to KR1020167034571A priority patent/KR20170003668A/ko
Publication of WO2015198825A1 publication Critical patent/WO2015198825A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/02Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fine mold for molding a fuel cell separator, a method for producing a fuel cell separator using the mold, and a fuel cell separator.
  • the basic component is a separator having an electrode and a fine uneven channel for supplying fuel gas (reactive gas).
  • the separator is manufactured by press-molding a thin metal plate using a fine uneven mold.
  • the flow path cross section of the separator reduces contact resistance and facilitates the flow of reaction gas (hydrogen and air), so that the top of the convex part is flat, the vertical wall common to the concave part and the convex part is vertical, acute angle A typical rectangular cross section is preferred.
  • titanium thin plates and stainless steel thin plates are used as metal thin plates for separators from the viewpoint of corrosion resistance and durability.
  • the metal thin plates are prevented from cracking due to a decrease in the thickness of the thin metal plates.
  • Several techniques have been proposed in which a metal thin plate is pressed to form irregularities (channels).
  • Patent Document 1 discloses a first step of forming a projecting portion at a portion where a protrusion is to be formed using a first press die in a pressing method of a plate material in which a plurality of protrusions are formed by pressing a plastically deformable plate material. Pressing the inner part closer to the center of the overhanging portion than the peripheral portion of the overhanging portion formed in the first step using a second press die, and a second step of completing the projection Processing methods have been proposed.
  • Patent Document 2 in a method for producing a polymer electrolyte fuel cell separator having a flat portion at the periphery and having a convex portion and a concave portion that serve as gas flow paths in the portion other than the periphery, the material is continuously used as a preform.
  • a method for producing a separator for a polymer electrolyte fuel cell which is formed into a repetitive cross-sectional shape of a convex portion and a concave portion, and then formed into a repetitive cross-sectional shape of a convex portion and a concave portion.
  • Patent Document 3 an apparatus for manufacturing a separator for a polymer electrolyte fuel cell having a flat portion around the periphery, and a portion excluding the periphery having a convex portion and a concave portion serving as a gas flow path, Solid that satisfies the required relational expression in which clearance c (mm), shoulder radius r (mm), groove depth d (mm), and groove period p (mm) include plate thickness t (mm) of the workpiece A separator manufacturing apparatus for polymer fuel cells has been proposed.
  • Patent Document 3 Even if the manufacturing apparatus of Patent Document 3 is used, it is impossible to form an acute rectangular cross section with the top of the convex part being flat, the vertical wall common to the concave part and the convex part being vertical.
  • Patent Document 4 a metal separator for a fuel cell having a gas channel having a concave-convex shape with a draft angle of 50 ° or less and an inner radius of 0.5 mm or less is pressed on a separator material plate with conductive inclusions protruding on the surface.
  • the raw material plate is stretched and molded to a surface area of 80% or more of the surface area of the gas channel to be obtained by using a die having a rounded molding part.
  • a method of manufacturing a metal separator for a fuel cell in which a gas channel is press-molded into a final shape by secondary molding, followed by primary molding.
  • Patent Document 5 discloses a metal separator flow path forming method in which a fuel gas flow path and an oxidizing gas flow path are formed in a fuel battery cell by unevenness formed on a fuel battery cell of a fuel cell and formed by pressing.
  • a second step of forming the concave bottom surface and the convex top surface into a concave curved surface along the longitudinal direction of the concave and convex, and the concave bottom surface formed in the second step is the inner surface of the concave bottom surface.
  • a curved surface is formed on the convex portion in the second step, and the curved surface is crushed and flattened in the third step. Remains on the surface and the surface becomes rough, the top of the convex part is flat, the vertical wall common to the concave part and the convex part is vertical, and an acute-angled rectangular cross section cannot be formed. Moreover, since the 3rd process which crushes the curved surface of a convex part is required for the shaping
  • Patent Document 6 a metal glass plate having a thickness of 0.02 to 0.5 mm is manufactured, and the metal glass plate is pressed in a state where it is heated to a supercooled liquid region having a glass transition temperature to a crystallization temperature.
  • a method for producing a separator for a polymer electrolyte fuel cell has been proposed in which irregularities that serve as gas flow paths are formed, and then an oxide and / or nitride film is formed on the irregular surface.
  • Patent Document 6 is a manufacturing method of a metallic glass separator, and Patent Document 6 shows only the concave shape at the top. Therefore, in the manufacturing method of Patent Document 6, the top of the convex portion is flat, the vertical wall common to the concave portion and the convex portion is vertical, and an acute-angled rectangular cross section cannot be formed.
  • Patent Document 7 describes a separator manufacturing method that suppresses the generation of cracks, distortion, and warpage by partially coining after forming a corrugated separator material into a corrugated section.
  • Patent Document 7 The manufacturing method of Patent Document 7 is performed after the coining process is formed into a corrugated section, and if the first process is attempted, the material inflow in the section stops, so that the tension is excessive and cracking occurs. . For this reason, a plurality of processes are essential, and the production cost increases. In addition, if the vertical wall is applied to a vertical or near-rectangular rectangular cross section, the vertical wall tension increases during coining molding, and cracks may occur.
  • the cross section of the flow path of the separator is such that the top of the convex portion is flat and the concave portion is flat in order to reduce the contact resistance between the separator and the solid polymer film and to facilitate the flow of the reaction gas (hydrogen and air).
  • a vertical wall common to the convex portions is vertical, and an acute-angled rectangular cross section is preferable. The reason is as follows.
  • the separator Since the separator is in contact with the solid polymer film and functions as an electrode, it is preferable that the contact resistance is low. For this reason, it is necessary to make the top of the flow path (convex portion) flat to ensure as wide a contact area as possible.
  • the separator needs to have a function of uniformly supplying the reaction gas from the flow path, the vertical wall of the rectangular cross section of the flow path needs to be vertical and the flow path area needs to be ensured as wide as possible.
  • the fuel cell has a laminated structure, it is necessary to configure a laminated structure in which the vertical wall of the flow path is as vertical as possible to ensure the compressive strength of the separator and to prevent buckling.
  • the present invention based on the current state of the art, reduces the thickness of the metal thin plate when a fuel cell separator is manufactured by press-molding the metal thin plate using a mold having a molding surface with concavities and convexities adjacent to each other. This prevents cracking and suppresses “warping” caused by elastic recovery after press forming, and the top of the unevenness is flat, the vertical wall common to the unevenness is vertical, and the unevenness with a sharp cross section (flow It is an object of the present invention to provide a molding die that solves the problem, a method for manufacturing a fuel cell separator that uses the molding die as an upper and lower molding die, and a fuel cell separator.
  • the present inventors diligently studied a method for solving the above problems. As a result, the present inventors formed an arc-shaped fine concave surface on the upper surface of the unevenness and formed an arc-shaped fine convex surface on the lower surface of the unevenness in the mold having the molding surface with the unevenness adjacent to each other. If the metal sheet is press-molded, cracks associated with the reduction in the thickness of the metal sheet will be prevented, and "warping" due to elastic recovery after press molding will be suppressed.
  • the vertical wall common to the concave and convex portions is vertical, and can form irregularities (channels) with acute rectangular cross sections.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • a molding die having a molding surface with concavities and convexities adjacent to each other at a predetermined cycle, and manufacturing a fuel cell separator by press molding a metal sheet for a fuel cell separator, (I) having an arc-shaped fine concave surface on the top surface of the irregularity, and (Ii) A fine molding die for forming a fuel cell separator, characterized by having an arc-shaped fine convex surface on the lower surface of the irregularity.
  • a method for producing a fuel cell separator by press-molding a metal sheet for a fuel cell separator (I) The metal sheet is pre-formed by press molding so that the cross-section has a wave shape with a predetermined period, (Ii) The micro-molding for molding a fuel cell separator according to any one of [1] to [6], wherein a corrugated metal thin plate having a predetermined period is provided with a molding surface having concavities and convexities adjacent to each other at the same period as the predetermined period.
  • a fuel cell separator that is free from “warping”, has high compressive strength, has low contact resistance with a solid polymer membrane, and can uniformly supply reactive gases (hydrogen and air). Can do.
  • molding die is shown
  • (b) is an arc-shaped fine concave surface on the uneven
  • seat of the wavy cross section of the period p 1.5mm.
  • FIG. 2 shows a concavo-convex cross section formed by press molding using a molding die having a conventional molding surface that does not have an arc-shaped fine convex surface on the lower surface of the concavo-convex surface as an upper and lower molding die. It is a figure which shows the technical significance of a curvature parameter
  • the fine molding die for molding a fuel cell separator of the present invention (hereinafter sometimes referred to as “the molding die of the present invention”) has a molding surface with concavities and convexities, and a fuel cell separator is formed by press molding a metal thin plate for a fuel cell separator.
  • the fuel cell separator production method of the present invention is a method of producing a fuel cell separator by press-molding a metal sheet for a fuel cell separator.
  • the metal sheet is press-molded (pre-molded) so that the cross section has a wave shape with a predetermined period, and then
  • a wavy thin metal plate having a predetermined period in a cross section is press-molded using the molding die of the present invention having a molding surface with concavities and convexities adjacent in the same period as the predetermined period as upper and lower molds.
  • the fuel cell separator of the present invention (hereinafter sometimes referred to as “the separator of the present invention”) is manufactured by the manufacturing method of the present invention.
  • FIG. 1 shows one mode of a molding surface of a fine molding die for molding a fuel cell separator (molding die of the present invention).
  • the molding surface of the molding die is adjacent to a metal sheet for a fuel cell separator (hereinafter simply referred to as “metal sheet”), with irregularities forming an irregular channel adjacent to each other at a predetermined cycle. It is formed with.
  • metal sheet for a fuel cell separator
  • the upper and lower surfaces 1 and 2 of the unevenness are formed on the molding surface of the mold in a manner adjacent to the vertical surface 3 via the shoulder 4 in a predetermined cycle.
  • An arc-shaped fine concave surface 1a is formed on the concave and convex upper surface 1 of the molding surface, and an arc-shaped fine convex surface 2a is similarly formed on the concave and convex lower surface 2 of the processed surface. .
  • This is a structural feature of the mold of the present invention.
  • the metal sheet is not particularly limited to a specific metal sheet for a fuel cell separator.
  • a titanium sheet and an austenitic stainless steel sheet are preferable.
  • the inventors of the present invention will reduce the thickness of the metal thin plate by pressing the metal thin plate that has been previously press-formed into a wavy cross section using the forming die having the forming surface shown in FIG. 1 as the upper and lower forming die. Prevents cracking and suppresses “warping” caused by elastic recovery after press forming, and the top of the convex part is flat on the metal thin plate, and the vertical wall common to the concave part and the convex part is vertical.
  • the present inventors have found that irregularities (channels) having an acute rectangular cross section can be formed. This is the knowledge that forms the basis of the mold of the present invention.
  • the inventors of the present invention have a sharp rectangular cross section in which the molding die of the present invention prevents cracking associated with a reduction in the thickness of a thin metal plate and suppresses “warping” due to elastic recovery after press molding.
  • the reason why the unevenness (channel) can be formed is as follows.
  • the arc-shaped fine concave surface formed on the upper surface of the uneven surface of the forming surface and the arc-shaped fine convex surface formed on the lower surface of the processed surface uneven surface allow the plastic flow of the metal thin plate to flow on the vertical wall side during press forming. Acts toward (shoulder) to complete plastic deformation. As a result, uniform compressive strain is applied to the upper and lower surfaces, deformation due to elastic recovery after press molding is suppressed as much as possible, and an acute rectangular cross-section flow path can be formed.
  • the depth D of the arc-shaped fine concave surface formed on the upper surface of the uneven surface of the processed surface satisfies the following formula (1).
  • R radius of curvature of the shoulder connecting the upper or lower surface of the unevenness and the vertical surface
  • the depth D of the arc-shaped fine concave surface is “0.1 ⁇ R” or less, the plastic flow of the metal thin plate does not occur toward the vertical wall (shoulder), and the top cannot be sufficiently flattened.
  • the depth D is more than “0.1 ⁇ R”. More preferably, it is “0.2 ⁇ R” or more.
  • the depth D is “R” or more, the thickness of the upper surface of the flow path becomes non-uniform or excessively crushed and cracks occur. Therefore, the depth D is less than “R”. And More preferably, it is “0.5 ⁇ R” or less.
  • the height H of the arc-shaped fine convex surface formed on the lower surface of the uneven surface of the processed surface satisfies the following expression (2). preferable. 0.1 ⁇ R ⁇ H ⁇ R (2) R: radius of curvature of the shoulder connecting the upper or lower surface of the unevenness and the vertical surface
  • a more preferable range is 0.2 ⁇ R ⁇ H ⁇ 0.5 ⁇ R as in the case of the depth D of the fine concave surface having an arc shape, and the reason for defining the range is the same.
  • R in the above formulas (1) and (2) (the radius of curvature of the shoulder connecting the upper or lower surface of the irregularities and the vertical surface) has an appropriate value for avoiding cracks in the shoulder and forming a vertical vertical wall.
  • the present inventors experimentally confirmed that the optimum range represented by the following formula (3) exists in relation to the thickness of the metal thin plate.
  • R (mm) ⁇ ⁇ t (3)
  • constant t: thickness of metal sheet for fuel cell separator (mm) ⁇ is a constant determined experimentally, and is 0.5 to 1.5.
  • R (mm) is selected within the range of (0.5 to 1.5) ⁇ (0.05 to 0.2) (mm). Is preferred. If ⁇ is less than 0.5, shoulder cracks are likely to occur, and if ⁇ exceeds 1.5, the shoulder becomes round and difficult to obtain a vertical vertical wall. Preferably, ⁇ ⁇ 0.7 and ⁇ ⁇ 1.3.
  • any of a press die and a roll die may be sufficient as this invention shaping
  • the fuel cell separator production method of the present invention is a method of producing a fuel cell separator by press-molding a metal sheet for a fuel cell separator.
  • the metal sheet is press-molded (pre-molded) so that the cross section has a wave shape with a predetermined period, and then
  • a wavy thin metal plate having a predetermined period in a cross section is press-molded using the molding die of the present invention having a molding surface with concavities and convexities adjacent in the same period as the predetermined period as upper and lower molds.
  • FIG. 2 shows the transition of the cross section of the thin metal plate during the manufacturing process of the fuel cell separator.
  • FIG. 2A shows a wavy cross section having a period P after press molding (preforming), and
  • FIG. 2B shows an uneven cross section having a period P of a thin metal plate for a fuel cell separator.
  • the metal sheet for a fuel cell separator is press-molded (pre-molded) so as to have a cross section shown in FIG.
  • a corrugated thin metal plate with a period P is press-molded using the molding tool of the present invention having a molding surface with irregularities adjacent in the period P as upper and lower molds.
  • a cross section of the press-formed metal sheet is shown in FIG.
  • FIG. 3 shows a cross section of the present invention and a conventional metal thin plate for a fuel cell separator.
  • molding die is shown.
  • molding die is shown.
  • top surface of the concavo-convex section formed by using the mold of the present invention as the upper and lower molds is “flat” and the concavo-convex section is acute is that, as described above, the top surface of the concavo-convex surface of the molding surface in the present mold.
  • the arc-shaped fine concave surface formed on the surface and the arc-shaped fine convex surface formed on the lower surface of the uneven surface of the processed surface direct the plastic flow of the metal thin plate toward the vertical wall (shoulder) during press forming.
  • an acute concavo-convex cross-section is formed by a thin metal plate by the action of the arc-shaped fine concave surface formed on the upper surface of the uneven surface of the molding surface and the arc-shaped fine convex surface formed on the lower surface of the processed surface uneven surface. Since it is formed entirely, it is assumed that “warping” due to elastic recovery after press molding is suppressed.
  • the separator of the present invention since the cross section of the gas flow path is an acute concavo-convex cross section, there is no overall “warping”, high compressive strength, low contact resistance with the solid polymer film, and reactive gas (Hydrogen and air) can be supplied uniformly.
  • Warpage index Z (Hs / L) ⁇ 100 (4) Hs: Warpage height (mm) L: Separator length (mm)
  • Fig. 4 shows the technical significance of the warpage index.
  • the convex surface of the uneven channel is separated from the surface formed by the four ends of the separator (indicated by a line connecting both ends in the figure).
  • the maximum distance was the warp height Hs.
  • the warp index Z is preferably as small as possible.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 2 In normal press molding, 100 ⁇ m thick austenitic stainless steel foil having a wavy cross section with a period of 1.5 mm was subjected to press molding using the molding dies shown in Table 1 as upper and lower molding dies, and the height was 0 A fuel cell separator was manufactured by forming a 6 mm uneven channel. The size of the fuel cell separator was 250 mm ⁇ 150 mm, and the size of the uneven channel portion was 100 mm ⁇ 200 mm.
  • the cross section of the uneven flow path of the fuel cell separator is visually observed, and “warp” is evaluated with a warp index. did.
  • the results are shown in Table 2.
  • the size of the separator in the longitudinal direction is 250 mm, and the warp height is 7.5 mm or less if the warp index is 3.0% or less. If the warp height is 7.5 mm or less, the separator can be assembled without problems when the separator is laminated using a high tension bolt and a sufficiently rigid end plate.
  • the separator of the present invention is a fuel cell separator that has a small contact resistance with the solid polymer membrane and can supply the reaction gas uniformly.
  • the present invention it is possible to provide a fuel cell separator that is free from “warping”, has high compressive strength, has low contact resistance with a solid polymer membrane, and can uniformly supply a reaction gas. it can. If this fuel cell separator is used, the efficiency of the fuel cell is improved. Therefore, the present invention has high applicability in the battery manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

 所定の周期で凹凸が隣接する成形面を備え、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する成形型であって、(i)凹凸の上面に円弧状の微細な凹面を有し、かつ、(ii)凹凸の下面に円弧状の微細な凸面を有することを特徴とする燃料電池セパレータ成形用微細成形型。

Description

燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ
 本発明は、燃料電池セパレータ成形用微細成形型、該成形型を用いる燃料電池セパレータの製造方法、及び、燃料電池セパレータに関する。
 近年、電力を駆動源とする自動車、小規模の発電システムなどに固体高分子型燃料電池が用いられている。その基幹部品は、電極と、燃料ガス(反応ガス)を供給する微細な凹凸形状の流路を有するセパレータである。セパレータは、微細凹凸成形金型を用いて、金属薄板をプレス成形して製造する。
 セパレータの流路断面は、接触抵抗を低減し、かつ、反応ガス(水素及び空気)を流れ易くするため、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角的な矩形断面が好適である。
 通常、セパレータ用の金属薄板として、耐食性と耐久性の点から、チタン薄板や、ステンレス薄板を用いるが、凹凸金型を用いて、金属薄板に、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、上記好適な矩形断面の凹凸(流路)を形成することは技術的に難しく、これまで、凹凸金型を用いて、金属薄板にプレス加工を施し、凹凸(流路)を形成する技術が幾つか提案されている。
 特許文献1には、塑性変形可能な板材にプレスによって複数の突起を形成する板材のプレス加工方法において、第1のプレス型を用いて突起を形成したい部分に張出し部を形成する第1工程と、第2のプレス型を用いて前記第1工程において形成された前記張出し部の周縁部より前記張出し部の中心に近い内側部分を押圧し、突起を完成させる第2工程とを備える板材のプレス加工方法が提案されている。
 特許文献1のプレス加工方法においては、突起形成後の板材の反りを抑制することができるが、突起の縦壁を鉛直に形成することは考慮されていないので、突起の頂部が平坦で、突起の縦壁が鉛直で、鋭角状の矩形断面を備える突起を形成することはできない。
 特許文献2には、周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用セパレータの製造方法において、予備成形として材料を連続的な凸部と凹部の繰り返し断面形状に成形し、その後、最終的な凸部と凹部の繰り返し断面形状に成形する固体高分子型燃料電池用セパレータ製造方法が提案されている。
 しかし、特許文献2の製造方法において、凸部の頂部を平坦にすることは考慮されていないので、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面を形成することはできない。
 特許文献3には、周辺に平坦部を有し、周辺を除く部分はガス流路となる凸部及び凹部を有する固体高分子型燃料電池用セパレータの製造装置において、凹凸部の縦壁部のクリアランスc(mm)、肩部の半径r(mm)、溝深さd(mm)、溝周期p(mm)が、被加工材の板厚t(mm)を含む所要の関係式を満たす固体高分子型燃料電池用セパレータ製造装置が提案されている。
 しかし、特許文献3の製造装置を用いても、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面を形成することはできない。
 特許文献4には、表面に導電性介在物が突出するセパレータの素材板に、抜き角50°以下、内R0.5mm以下の断面凹凸状のガス流路を有する燃料電池用金属製セパレータをプレス成形によって製造するにあたり、前記素材板を、張出し部の成形部がR形状である金型を用いて、前記ガス流路を、得るべき該ガス流路の表面積の80%以上の表面積まで張出し成形を行うことにより一次成形し、この後、二次成形によってガス流路を最終形状にプレス成形する燃料電池用金属製セパレータの製造方法が提案されている。
 しかし、特許文献4の製造方法は、ガス流路の最終形状が不明であり、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面を有するガス流路を形成するものではない。
 特許文献5には、燃料電池の燃料電池セルに積層され、プレスにより成形された凹凸により該燃料電池セルに燃料ガス流路と酸化ガス流路とを形成する金属製セパレータの流路成形方法において、平板状の金属板に縦長の凹凸をプレス加工により形成する第一工程と、第一工程で形成された凹凸の凹部底面を凹部底面の外側面より、また凸部頂面を凸部頂面の外側面より押圧し、凹部底面と凸部頂面とを凹凸の長手方向に沿った凹状の湾曲面に形成する第二工程と、第二工程で形成された凹部底面を凹部底面の内側面より、また凸部頂面の湾曲面を凸部頂面の内側面より押圧し、凹部底面と凸部頂面を平坦面に形成する第三工程と、を備えた金属セパレータの流路成形方法が提案されている。
 特許文献5の成形方法においては、第一工程での予成形後、第二工程で凸部に湾曲面を形成し、第三工程で該湾曲面を潰して平坦化しているが、潰した跡が表面に残り、面が荒れるので、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面を形成することはできない。また、特許文献5の成形方法は、凸部の湾曲面を潰す第三工程が必要となるので、生産性が低い。
 特許文献6には、厚さが0.02~0.5mmの金属ガラス板材を作製し、該金属ガラス板材をガラス遷移温度~結晶化温度の過冷却液体領域に加熱した状態でプレス加工して、ガス流路となる凹凸を形成し、次いで凹凸を形成した表面に酸化物及び/又は窒化物の膜を形成する固体高分子型燃料電池用セパレータの製造方法が提案されている。
 特許文献6の製造方法は、金属ガラス製のセパレータの製造方法であり、特許文献6には、頂部の凹み形状のみが図示されている。それ故、特許文献6の製造方法において、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面を形成することはできない。
 特許文献7には、セパレータ材料に凹凸を付して断面波型に成形した後に部分的にコイニングすることで、割れや歪み、そりの発生を抑制するセパレータ製造方法に関する記載がある。
 特許文献7の製造方法はコイニング工程を断面波型に成形した後に実施しており、1工程目で実施しようとすると断面内の材料流入が止まってしまうため、張力過大となり割れが発生してしまう。そのため、複数工程が必須となり、生産コストが上がってしまう。また、縦壁の角度が鉛直または鉛直に近い鋭角状の矩形断面に適用すると、コイニング成形時に縦壁張力が高まるので、割れが発生することがある。
日本国特開2000-317531号公報 日本国特開2002-313354号公報 日本国特開2004-265856号公報 日本国特開2005-243252号公報 日本国特開2006-120497号公報 日本国特開2007-066817号公報 日本国特開2007―48616号公報
 前述したように、セパレータの流路断面は、セパレータと固体高分子膜との接触抵抗を低減し、かつ、反応ガス(水素及び空気)を流れ易くするため、凸部の頂部が平坦で、凹部と凸部に共通の縦壁が鉛直で、鋭角状の矩形断面が好適である。理由は、次の通りである。
 セパレータは、固体高分子膜と接触し、電極として機能するので、接触抵抗が低いほうが好ましく、そのため、流路(凸部)の頂部は平坦にして、接触面積をできるだけ広く確保する必要がある。
 セパレータは、流路から反応ガスを均一に供給する機能を備える必要があるので、流路の矩形断面の縦壁を鉛直にし、流路面積をできるだけ広く確保する必要がある。また、燃料電池は積層構造であるので、流路の縦壁をできるだけ鉛直にして、セパレータの圧縮強度を確保し、座屈し難い積層構造を構成する必要がある。
 しかし、前述したように、凹凸成形型を用いて、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、上記好適な矩形断面の凹凸(流路)を形成することは技術的に難しい。
 そこで、本発明は、従来技術の現状を踏まえ、凹凸が隣接する成形面を備える成形型を用いて、金属薄板をプレス成形して燃料電池セパレータを製造する際、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、凹凸の頂部が平坦で、凹凸に共通の縦壁が鉛直で、断面が鋭角的な凹凸(流路)を形成することを課題とし、該課題を解決する成形型、該成形型を上下成形型として用いる燃料電池セパレータの製造方法、及び、燃料電池セパレータを提供することを目的とする。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、本発明者らは、凹凸が隣接する成形面を備える成形型において、凹凸の上面に円弧状の微細な凹面を形成し、かつ、凹凸の下面に円弧状の微細な凸面を形成し、金属薄板をプレス成形すれば、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、金属薄板に、凸部の頂部が平坦で、かつ、凹部と凸部に共通の縦壁が鉛直で、鋭角的な矩形断面の凹凸(流路)を形成できることを見いだした。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
 [1]所定の周期で凹凸が隣接する成形面を備え、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する成形型であって、
(i)凹凸の上面に円弧状の微細な凹面を有し、かつ、
(ii)凹凸の下面に円弧状の微細な凸面を有する
ことを特徴とする燃料電池セパレータ成形用微細成形型。
 [2]前記円弧状の微細な凹面の深さDが下記(1)式を満たすことを特徴とする前記(1)に記載の燃料電池セパレータ成形用微細成形型。
     0.1・R<D<R             ・・・(1)
     R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
 [3]前記円弧状の微細な凸面の高さHが下記(2)式を満たすことを特徴とする前記[1]又は[2]に記載の燃料電池セパレータ成形用微細成形型。
     0.1・R<H<R             ・・・(2)
     R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
 [4]前記Rが下記(3)式を満たすことを特徴とする前記[2]又は[3]のいずれかに記載の燃料電池セパレータ成形用微細成形型。
     R=α・t                 ・・・(3)
     α:定数
     t:燃料電池セパレータ用金属薄板の厚さ
 [5]前記燃料電池セパレータ成形用微細成形型がプレス成形金型であることを特徴とする前記[1]~[4]のいずれかに記載の燃料電池セパレータ成形用微細成形型。
 [6]前記燃料電池セパレータ成形用微細成形型がロール型であることを特徴とする前記[1]~[4]のいずれかに記載の燃料電池セパレータ成形用微細成形型。
 [7]燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する方法において、
(i)上記金属薄板を、断面が所定周期の波状になるようにプレス成形で予成形し、次いで、
(ii)断面が所定周期の波状の金属薄板を、該所定周期と同じ周期で凹凸が隣接する成形面を備える前記[1]~[6]のいずれかに記載の燃料電池セパレータ成形用微細成形型を上下の成形型として用いてプレス成形する
ことを特徴とする燃料電池セパレータの製造方法。
 [8]前記上下の成形型がプレス成形金型であることを特徴とする前記[7]に記載の燃料電池セパレータの製造方法。
 [9]前記上下の成形型がロール型であることを特徴とする前記[7]に記載の燃料電池セパレータの製造方法。
 [10]前記[7]~[9]のいずれかに記載の燃料電池セパレータの製造方法で製造した、ガス流路断面が鋭角的で、かつ、反りがないことを特徴とする燃料電池セパレータ。
 [11]前記反りが、下記(4)式で定義する反り指標Zで3.0以下であることを特徴とする[10]に記載の燃料電池セパレータ。
     反り指標Z=(Hs/L)×100      ・・・(4)
     Hs:反り高さ(mm)
     L:セパレータ長さ(mm)
 本発明によれば、“反り”がなくて、圧縮強度が高く、固体高分子膜との接触抵抗が小さく、かつ、反応ガス(水素及び空気)を均一に供給できる燃料電池セパレータを提供することができる。
燃料電池セパレータ成形用微細金型の成形面の一態様を示す図である。 燃料電池セパレータの製造過程における金属薄板の断面の推移を示す図である。(a)は、プレス成形(予成形)後の周期pの波状断面を示し、(b)は、燃料電池セパレータ用金属薄板の周期pの凹凸断面を示す。 本発明と従来の燃料電池セパレータ用金属薄板の断面を示す図である。(a)は、周期p=1.5mmの波状断面の金属薄板を、凹凸の上面に円弧状の微細な凹面を有し、かつ、凹凸の下面に円弧状の微細な凸面を有する成形面を備える成形型を上下成形型として用いてプレス成形して形成した凹凸断面を示し、(b)は、周期p=1.5mmの波状断面の金属薄板を、凹凸の上面に円弧状の微細な凹面を有せず、かつ、凹凸の下面に円弧状の微細な凸面を有しない従来の成形面を備える成形型を上下成形型として用いてプレス成形して形成した凹凸断面を示す。 反り指標の技術的意義を示す図である。 実施例として製造したセパレータの凹凸断面を示す図であり、(a)は比較例、(b)は本発明例を示す。
 本発明の燃料電池セパレータ成形用微細成形型(以下「本発明成形型」ということがある。)は、凹凸が隣接する成形面を備え、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する成形型であって、
(i)凹凸の上面に円弧状の微細な凹面を有し、かつ、
(ii)凹凸の下面に円弧状の微細な凸面を有する
ことを特徴とする。
 本発明の燃料電池セパレータの製造方法(以下「本発明製造方法」ということがある。)は、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する方法において、
(i)上記金属薄板を、断面が所定周期の波状になるようにプレス成形(予成形)し、次いで、
(ii)断面が所定周期の波状の金属薄板を、該所定周期と同じ周期で凹凸が隣接する成形面を備える本発明成形型を上下の成形型として用いてプレス成形する
ことを特徴とする。
 本発明の燃料電池セパレータ(以下「本発明セパレータ」ということがある。)は、本発明製造方法で製造したことを特徴とする。
 まず、本発明成形型について図面に基づいて説明する。
 図1に、燃料電池セパレータ成形用微細成形型(本発明成形型)の成形面の一態様を示す。図1に示すように、成形型の成形面には、燃料電池セパレータ用金属薄板(以下単に「金属薄板」ということがある。)に凹凸状の流路を形成する凹凸が隣接して所定周期で形成されている。即ち、成形型の成形面には、凹凸の上面1と下面2が、肩部4を介して鉛直面3に続く隣接態様で凹凸が、所定周期で形成されている。
 そして、成形面の凹凸の上面1には、円弧状の微細な凹面1aが形成され、かつ、加工面の凹凸の下面2には、同様に、円弧状の微細な凸面2aが形成されている。この点が、本発明成形型の構造的特徴である。
 金属薄板は、特に、特定の燃料電池セパレータ用金属薄板に限定されないが、例えば、チタン薄板、オーステナイト系ステンレス薄鋼板が好ましい。
 本発明者らは、断面を波状に予めプレス成形した金属薄板に、図1に示す成形面を有する成形型を上下成形型として用いてプレス加工を施せば、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、金属薄板に、凸部の頂部が平坦で、かつ、凹部と凸部に共通の縦壁が鉛直で、鋭角的な矩形断面の凹凸(流路)を形成できることを見いだした。この点が、本発明成形型の基礎をなす知見である。
 本発明者らは、本発明成形型が、金属薄板の厚さの減少に伴う割れを防止し、かつ、プレス成形後の弾性回復に起因する“反り”を抑制して、鋭角的な矩形断面の凹凸(流路)を形成することができる理由について、次のように推察している。
 成形面の凹凸の上面に形成された円弧状の微細な凹面、及び、加工面の凹凸の下面に形成された円弧状の微細な凸面が、プレス成形時、金属薄板の塑性流動を縦壁側(肩部)に向くように作用して塑性変形を完了させる。その結果、上下面に均一な圧縮ひずみが付与され、プレス成形後の弾性回復による変形が極力抑制されて、鋭角的な矩形断面の流路を形成することができる。
 図1に示す成形面を備える微細成形型(本発明成形型)において、加工面の凹凸の上面に形成する円弧状の微細な凹面の深さDは下記(1)式を満たすことが好ましい。
     0.1・R<D<R             ・・・(1)
     R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
 円弧状の微細な凹面の深さDが“0.1・R”以下であると、金属薄板の塑性流動が縦壁側(肩部)に向いて起きず、十分に頂部を平坦化できないため、上記深さDは“0.1・R”超とする。より好ましくは“0.2・R”以上である。
 一方、上記深さDが“R”以上であると、流路の上面の厚さが不均一になったり、過度に潰されて割れが生じたりするので、上記深さDは“R”未満とする。より好ましくは“0.5・R”以下である。
 また、図1に示す加工面を備える微細成形型(本発明成形型)において、加工面の凹凸の下面に形成する円弧状の微細な凸面の高さHは下記(2)式を満たすことが好ましい。
     0.1・R<H<R             ・・・(2)
     R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
 円弧状の微細な凸面の高さHを上記範囲に規定する理由は、円弧状の微細な凹面の深さDを上記範囲に規定する理由と同じである。
 より好ましい範囲は、円弧状の微細な凹面の深さDの場合と同じく、0.2・R<H<0.5・Rであり、該範囲に規定する理由も同じである。
 上記(1)及び(2)式中のR(凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径)は、肩部の割れ回避や鉛直な縦壁形成の理由から適正な値が存在し、金属薄板の厚さとの関係で、下記(3)式で示す最適範囲が存在することを本発明者らは実験的に確認した。
     R(mm)=α・t             ・・・(3)
     α:定数
     t:燃料電池セパレータ用金属薄板の厚さ(mm)
 αは、実験的に定まる定数であり、0.5~1.5である。
 金属薄板の厚さは、通常、50~200μmであるので、R(mm)は、(0.5~1.5)×(0.05~0.2)(mm)の範囲で選択するのが好ましい。αが0.5未満であると、肩部の割れが発生し易く、αが1.5を超えると肩部の丸みが大きくなり鉛直な縦壁が得にくくなる。好ましくは、α≧0.7、α≦1.3である。
 なお、本発明成形型は、プレス金型及びロール型のいずれでもよい。
 次に、燃料電池セパレータ成形用微細成形型を上下の成形型として用いる燃料電池セパレータの製造方法について説明する。
 本発明の燃料電池セパレータの製造方法(以下「本発明製造方法」ということがある。)は、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する方法において、
(i)上記金属薄板を、断面が所定周期の波状になるようにプレス成形(予成形)し、次いで、
(ii)断面が所定周期の波状の金属薄板を、該所定周期と同じ周期で凹凸が隣接する成形面を備える本発明成形型を上下の成形型として用いてプレス成形する
ことを特徴とする。
 図2に、燃料電池セパレータの製造過程における金属薄板の断面の推移を示す。図2(a)に、プレス成形(予成形)後の周期Pの波状断面を示し、図2(b)に、燃料電池セパレータ用金属薄板の周期Pの凹凸断面を示す。
 所定周期Pの波状の成形面を備える成形型を用いて、燃料電池セパレータ用金属薄板を、図2(a)に示す断面になるようにプレス成形(予成形)する。次いで、断面が周期Pの波状の金属薄板を、周期Pで凹凸が隣接する成形面を備える本発明成形型を上下の成形型として用いてプレス成形する。プレス成形された金属薄板の断面を図2(b)に示す。
 ここで、図3に、本発明と従来の燃料電池セパレータ用金属薄板の断面を示す。図3(a)に、周期p=1.5mmの波状断面の金属薄板を、凹凸の上面に円弧状の微細な凹面を有し、かつ、凹凸の下面に円弧状の微細な凸面を有する成形面を備える成形型(本発明成形型)を上下成形型として用いてプレス成形して形成した、高さhが0.6mmの凹凸断面を示す。
 図3(b)に、周期p=1.5mmの波状断面の金属薄板を、凹凸の上面に円弧状の微細な凹面を有せず、かつ、凹凸の下面に円弧状の微細な凸面を有しない成形面を備える従来の成形型を上下成形型として用いてプレス成形して形成した、高さhが0.6mmの凹凸断面を示す。
 図3(a)に示す凹凸断面と、図3(b)に示す凹凸断面を比較すると、図3(b)に示す凹凸断面の上面5bが“丸み”を帯びていて、凹凸断面が全体的に鋭角的でないのに対し、図3(a)に示す凹凸断面の上面5aは“平坦”であり、凹凸断面が全体的に鋭角的であることが解る。
 本発明成形型を上下成形型として用いて形成した凹凸断面の上面が“平坦”となり、凹凸断面が鋭角的となる理由は、前述したように、本発明成形型において、成形面の凹凸の上面に形成された円弧状の微細な凹面、及び、加工面の凹凸の下面に形成された円弧状の微細な凸面が、プレス成形時、金属薄板の塑性流動を縦壁側(肩部)に向くように作用して塑性変形が完了し、その結果、上下面に均一な圧縮ひずみが付与され、プレス成形後の弾性回復による変形が極力抑制されて、鋭角的な凹凸断面が形成されると推察される。
 さらに、成形面の凹凸の上面に形成された円弧状の微細な凹面、及び、加工面の凹凸の下面に形成された円弧状の微細な凸面の作用で、鋭角的な凹凸断面が、金属薄板全体に形成されるので、プレス成形後の弾性回復に起因する“反り”が抑制されると推察される。
 次に、本発明セパレータについて説明する。本発明セパレータにおいては、ガス流路の断面が鋭角的な凹凸断面であるので、全体的に“反り”がなく、圧縮強度が高く、固体高分子膜との接触抵抗が小さく、かつ、反応ガス(水素及び空気)を均一に供給することができる。
 本発明者らは、本発明セパレータの“反り”を評価するため、下記(4)式で定義する反り指標を導入した。
  反り指標Z=(Hs/L)×100         ・・・(4)
   Hs:反り高さ(mm)
   L:セパレータ長さ(mm)
 図4に、反り指標の技術的意義を示す。図4に示すように、一辺の長さLの反っているセパレータにおいて、凹凸流路の凸面が、セパレータの4端が形成する面(図では、両端を結ぶ線で表示)から離間している最大距離を反り高さHsとした。図4から明らかなように、反り指標Zは、小さいほど好ましい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例)
 通常のプレス成形で、周期1.5mmの波状断面を形成した、厚さ100μmのオーステナイト系ステンレス箔に、表1に示す成形金型を上下成形金型として用いてプレス成形を施し、高さ0.6mmの凹凸流路を形成して燃料電池セパレータを製造した。燃料電池セパレータの大きさは250mm×150mmとし、凹凸流路部分の大きさは100mm×200mmとした。
Figure JPOXMLDOC01-appb-T000001
 燃料電池セパレータの凹凸流路の断面を目視で観察し、さらに、“反り”を反り指標で評価し、Zが3.0%以下のものを○とし、3.0%を超えるものを×とした。結果を表2に示す。本例セパレータの長尺方向の大きさは250mmであり、反り指数3.0%以下であれば反り高さは7.5mm以下となる。反り高さ7.5mm以下であれば、セパレータを、高張力ボルトと、十分剛性のある終端板を用いて積層する際、問題なく組み立てが可能となる。
Figure JPOXMLDOC01-appb-T000002
 表2から、発明例では、凹凸断面が鋭角的で“反り”がない燃料電池セパレータが得られていることが解る。なお、凹凸断面の上下面の平坦度及び縦壁の垂直度については、図5に示すようにセパレータの凹凸断面において板厚中心線を描き、その中心線形状で定量的に評価した。平坦度については上下面の平坦部長さLを比較し、本発明例のLが従来例のLに対して約2.5倍の長さとなり、良好な平坦形状を得た。また、縦壁高さについては縦壁部の角度θを比較し、本発明例のθが従来例のθに対して約4度下回り良好な縦壁形状を得た。
 したがって、本発明セパレータは、固体高分子膜との接触抵抗が小さく、かつ、反応ガスを均一に供給できる燃料電池セパレータである。
 前述したように、本発明によれば、“反り”がなく、圧縮強度が高く、固体高分子膜との接触抵抗が小さく、かつ、反応ガスを均一に供給できる燃料電池セパレータを提供することができる。この燃料電池セパレータを用いれば、燃料電池の効率が向上するので、本発明は、電池製造産業において利用可能性が高いものである。
1  凹凸の上面
1a 円弧状の微細な凹面
2  凹凸の下面
2a 円弧状の微細な凸面
3  鉛直面
4  肩部
5a、5b 凸部の上面
d  円弧状の微細な凹面の深さ
h  円弧状の微細な凸面の高さ
R  肩部の曲率半径
Hs 反り高さ
L  セパレータ長さ

Claims (11)

  1.  所定の周期で凹凸が隣接する成形面を備え、燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する成形型であって、
    (i)凹凸の上面に円弧状の微細な凹面を有し、かつ、
    (ii)凹凸の下面に円弧状の微細な凸面を有する
    ことを特徴とする燃料電池セパレータ成形用微細成形型。
  2.  前記円弧状の微細な凹面の深さDが下記(1)式を満たすことを特徴とする請求項1に記載の燃料電池セパレータ成形用微細成形型。
         0.1・R<D<R           ・・・(1)
         R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
  3.  前記円弧状の微細な凸面の高さHが下記(2)式を満たすことを特徴とする請求項1又は2に記載の燃料電池セパレータ成形用微細成形型。
         0.1・R<H<R           ・・・(2)
         R:凹凸の上面又は下面と垂直面を繋ぐ肩部の曲率半径
  4.  前記Rが下記(3)式を満たすことを特徴とする請求項2又は3のいずれか1項に記載の燃料電池セパレータ成形用微細成形型。
         R=α・t               ・・・(3)
         α:定数
         t:燃料電池セパレータ用金属薄板の厚さ
  5.  前記燃料電池セパレータ成形用微細成形型がプレス成形金型であることを特徴とする請求項1~4のいずれか1項に記載の燃料電池セパレータ成形用微細成形型。
  6.  前記燃料電池セパレータ成形用微細成形型がロール型であることを特徴とする請求項1~4のいずれか1項に記載の燃料電池セパレータ成形用微細成形型。
  7.  燃料電池セパレータ用金属薄板をプレス成形して燃料電池セパレータを製造する方法において、
    (i)上記金属薄板を、断面が所定周期の波状になるようにプレス成形で予成形し、次いで、
    (ii)断面が所定周期の波状の金属薄板を、該所定周期と同じ周期で凹凸が隣接する成形面を備える請求項1~6のいずれか1項に記載の燃料電池セパレータ成形用微細成形型を上下の成形型として用いてプレス成形する
    ことを特徴とする燃料電池セパレータの製造方法。
  8.  前記上下の成形型がプレス成形金型であることを特徴とする請求項7に記載の燃料電池セパレータの製造方法。
  9.  前記上下の成形型がロール型であることを特徴とする請求項7に記載の燃料電池セパレータの製造方法。
  10.  請求項7~9のいずれか1項に記載の燃料電池セパレータの製造方法で製造した、ガス流路断面が鋭角的で、かつ、反りがないことを特徴とする燃料電池セパレータ。
  11.  前記反りが、下記(4)式で定義する反り指標Zで3.0以下であることを特徴とする請求項10に記載の燃料電池セパレータ。
          反り指標Z=(Hs/L)×100   ・・・(4)
          Hs:反り高さ(mm)
          L:セパレータ長さ(mm)
PCT/JP2015/066204 2014-06-24 2015-06-04 燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ WO2015198825A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016529230A JP6103147B2 (ja) 2014-06-24 2015-06-04 燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ
US15/312,971 US20170194655A1 (en) 2014-06-24 2015-06-04 Fine mold for molding fuel cell separator, method for producing fuel cell separator, and fuel cell separator
CA2950711A CA2950711A1 (en) 2014-06-24 2015-06-04 Fine mold for molding fuel cell separator, method for producing fuel cell separator, and fuel cell separator
RU2016148652A RU2638022C1 (ru) 2014-06-24 2015-06-04 Форма с мелким рельефом для формования разделителя топливного элемента, способ изготовления разделителя топливного элемента и разделитель топливного элемента
EP15812466.9A EP3133683A4 (en) 2014-06-24 2015-06-04 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
CN201580032554.2A CN106463741A (zh) 2014-06-24 2015-06-04 燃料电池隔板成型用微小成型模具、燃料电池隔板的制造方法以及燃料电池隔板
KR1020167034571A KR20170003668A (ko) 2014-06-24 2015-06-04 연료 전지 세퍼레이터 성형용 미세 성형 형, 연료 전지 세퍼레이터의 제조 방법 및 연료 전지 세퍼레이터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-129307 2014-06-24
JP2014129307 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015198825A1 true WO2015198825A1 (ja) 2015-12-30

Family

ID=54937921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066204 WO2015198825A1 (ja) 2014-06-24 2015-06-04 燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ

Country Status (8)

Country Link
US (1) US20170194655A1 (ja)
EP (1) EP3133683A4 (ja)
JP (1) JP6103147B2 (ja)
KR (1) KR20170003668A (ja)
CN (1) CN106463741A (ja)
CA (1) CA2950711A1 (ja)
RU (1) RU2638022C1 (ja)
WO (1) WO2015198825A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008984A (ja) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
CN109985946A (zh) * 2017-12-31 2019-07-09 天津正和瑞科技有限公司 一种锁板工件弧度压制成型机
JP2019114515A (ja) * 2017-12-26 2019-07-11 トヨタ車体株式会社 燃料電池用セパレータの製造装置及び燃料電池用セパレータの製造方法
JP2021163603A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 燃料電池用セパレータの製造方法および燃料電池用セパレータの製造装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563966B2 (ja) * 2017-02-03 2019-08-21 本田技研工業株式会社 発電セル
JP6642534B2 (ja) * 2017-08-04 2020-02-05 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
JP6642535B2 (ja) * 2017-08-04 2020-02-05 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
DE102017219418A1 (de) * 2017-10-30 2019-05-02 Robert Bosch Gmbh Gasverteilerplatte zur Gasverteilung und Strömungsführung in Elektrolyseuren und Brennstoffzellen
JP7017944B2 (ja) * 2018-02-09 2022-02-09 株式会社三井ハイテック 金属成形体の製造方法
JP7110144B2 (ja) * 2019-03-15 2022-08-01 本田技研工業株式会社 車体フレームの製造方法
KR102397872B1 (ko) * 2021-12-23 2022-05-13 주식회사 영진정공 연료전지용 분리판 제조 방법
KR20230102484A (ko) * 2021-12-30 2023-07-07 주식회사 솔룸신소재 연료전지용 분리판 제조 장치 및 제조 방법
KR20240016087A (ko) * 2022-07-28 2024-02-06 현대제철 주식회사 판재의 다단 프레스 성형 방법 및 판재 성형용 금형 장치
CN116493486B (zh) * 2023-06-25 2023-09-22 成都宏明双新科技股份有限公司 一种圆形盖帽内扣成型工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120497A (ja) * 2004-10-22 2006-05-11 Miyoshi Kogyo Kk 金属セパレータの流路成形方法、および金属セパレータ
JP2007048616A (ja) * 2005-08-10 2007-02-22 Toyota Motor Corp 燃料電池セパレータ、セパレータ製造装置及びセパレータ製造方法
JP2007294136A (ja) * 2006-04-21 2007-11-08 Nissan Motor Co Ltd 燃料電池用セパレータ及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317531A (ja) 1999-05-10 2000-11-21 Toyota Central Res & Dev Lab Inc 板材のプレス加工方法
JP3448557B2 (ja) * 2000-09-04 2003-09-22 新日本製鐵株式会社 固体高分子型燃料電池用セパレータ,その製造方法及び固体高分子型燃料電池
CA2373344C (en) * 2001-02-28 2012-03-20 Daido Tokushuko Kabushiki Kaisha Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP2002313354A (ja) 2001-04-11 2002-10-25 Nippon Steel Corp 固体高分子型燃料電池用セパレータ製造方法及びその製造装置
JP4231399B2 (ja) 2003-02-12 2009-02-25 新日本製鐵株式会社 固体高分子型燃料電池用セパレータ製造装置及び製造方法
JP4388389B2 (ja) 2004-02-24 2009-12-24 本田技研工業株式会社 燃料電池用金属製セパレータの製造方法
JP2006228533A (ja) * 2005-02-16 2006-08-31 Nissan Motor Co Ltd 燃料電池用セパレータの成形方法及びセパレータ形状矯正装置
JP4566864B2 (ja) 2005-09-01 2010-10-20 独立行政法人科学技術振興機構 固体高分子型燃料電池用セパレータ及びその製造方法
JP2007224402A (ja) * 2006-02-27 2007-09-06 Toppan Printing Co Ltd Fe−Ni基合金板およびその製造方法、並びにそれを用いた燃料電池セパレータの製造方法および燃料電池
JP5262149B2 (ja) * 2008-02-05 2013-08-14 日産自動車株式会社 燃料電池用金属セパレータの製造方法および製造装置
JP5183342B2 (ja) * 2008-07-25 2013-04-17 株式会社Ihi 固体高分子型燃料電池用セパレータ製造方法及び設備
JP5381647B2 (ja) * 2009-11-26 2014-01-08 トヨタ紡織株式会社 燃料電池用セパレータ及びその製造方法
KR101420176B1 (ko) * 2009-12-21 2014-07-17 가부시키가이샤 아이에이치아이 고체 고분자형 연료전지용 세퍼레이터 제조 방법 및 장치
US10553881B2 (en) * 2011-07-05 2020-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120497A (ja) * 2004-10-22 2006-05-11 Miyoshi Kogyo Kk 金属セパレータの流路成形方法、および金属セパレータ
JP2007048616A (ja) * 2005-08-10 2007-02-22 Toyota Motor Corp 燃料電池セパレータ、セパレータ製造装置及びセパレータ製造方法
JP2007294136A (ja) * 2006-04-21 2007-11-08 Nissan Motor Co Ltd 燃料電池用セパレータ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133683A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008984A (ja) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
JP2019114515A (ja) * 2017-12-26 2019-07-11 トヨタ車体株式会社 燃料電池用セパレータの製造装置及び燃料電池用セパレータの製造方法
CN109985946A (zh) * 2017-12-31 2019-07-09 天津正和瑞科技有限公司 一种锁板工件弧度压制成型机
JP2021163603A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 燃料電池用セパレータの製造方法および燃料電池用セパレータの製造装置
JP7409940B2 (ja) 2020-03-31 2024-01-09 本田技研工業株式会社 燃料電池用セパレータの製造方法および燃料電池用セパレータの製造装置

Also Published As

Publication number Publication date
EP3133683A4 (en) 2018-01-03
EP3133683A1 (en) 2017-02-22
JP6103147B2 (ja) 2017-03-29
US20170194655A1 (en) 2017-07-06
JPWO2015198825A1 (ja) 2017-04-20
KR20170003668A (ko) 2017-01-09
RU2638022C1 (ru) 2017-12-11
CA2950711A1 (en) 2015-12-30
CN106463741A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6103147B2 (ja) 燃料電池セパレータ成形用微細成形型、燃料電池セパレータの製造方法、及び、燃料電池セパレータ
JP6032115B2 (ja) 金属板材の成形方法及び成形装置
US9630229B2 (en) Device for molding and method for molding metal plate
CN104190840B (zh) 一种不锈钢螺栓的热镦锻用模具结构
JP2006272413A (ja) 湾曲状チャンネル部材の成形方法
US10150152B2 (en) Sheet metal forming method and apparatus
CN103691813B (zh) 一种特殊r型板材专用折弯机模具
CA2866719C (en) Flow formed drum with a retention ring and a substantially burr free tooth profile
CN113172158B (zh) 用于盒形件的拉深凹模、组合拉深模具及拉深方法
JP2018089672A (ja) 金属板材の成形方法及び成形装置
JP2007048616A (ja) 燃料電池セパレータ、セパレータ製造装置及びセパレータ製造方法
JP5271728B2 (ja) 凹凸部が形成された金属薄板の製造方法
JP2010075935A (ja) ダイクエンチ加工製品とその製造方法及び製造装置
CN109226375B (zh) 一种等厚度圆弧类零件的辊压面内连续弯曲成形方法
JP4769570B2 (ja) 金属薄板の成形方法
JP7017944B2 (ja) 金属成形体の製造方法
KR102326468B1 (ko) 차량용 알루미늄 배터리 케이스의 제조방법
US9406945B2 (en) Die clearance control for thin sheet stainless steel BPP forming
JP2005349463A (ja) 筋状凹凸成形方法および同筋状凹凸成形方法によって製造される燃料電池用のメタルセパレータ
CN101486057A (zh) 车用安全带带头加工方法
JP4388389B2 (ja) 燃料電池用金属製セパレータの製造方法
CN111618152A (zh) 一种挤压半剪式成型凸包的工艺
WO2023234073A1 (ja) プレス成形方法及びプレス成形品の製造方法
CN206326018U (zh) 轨道客车用圆盘工件的冲压模具
CN101700546B (zh) 金属薄壁工件内长凸键的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529230

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015812466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312971

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2950711

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167034571

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016148652

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE