WO2015198554A1 - 変換方法および変換装置 - Google Patents

変換方法および変換装置 Download PDF

Info

Publication number
WO2015198554A1
WO2015198554A1 PCT/JP2015/002974 JP2015002974W WO2015198554A1 WO 2015198554 A1 WO2015198554 A1 WO 2015198554A1 JP 2015002974 W JP2015002974 W JP 2015002974W WO 2015198554 A1 WO2015198554 A1 WO 2015198554A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
value
luminance value
conversion
hdr
Prior art date
Application number
PCT/JP2015/002974
Other languages
English (en)
French (fr)
Inventor
小塚 雅之
遠間 正真
健吾 寺田
西 孝啓
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016514199A priority Critical patent/JP5991502B2/ja
Priority to MX2016016116A priority patent/MX357793B/es
Priority to EP15812305.9A priority patent/EP3174280A1/en
Priority to CN201580001443.5A priority patent/CN105493490B/zh
Publication of WO2015198554A1 publication Critical patent/WO2015198554A1/ja
Priority to US15/075,228 priority patent/US9736419B2/en
Priority to US15/613,494 priority patent/US9948884B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/02Networking aspects
    • G09G2370/022Centralised management of display operation, e.g. in a server instead of locally
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/04Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller

Definitions

  • the present disclosure relates to a conversion method and a conversion apparatus.
  • Patent Document 1 an image signal processing apparatus for improving the displayable luminance level is disclosed (see, for example, Patent Document 1).
  • a conversion method is a conversion method for converting the luminance of an input video in order to display the video on a display device, and the luminance of the video has a maximum luminance value exceeding 100 nit.
  • the first brightness signal is obtained by obtaining the first brightness signal indicating the first brightness value of the image, which is composed of the first brightness value in the first brightness range defined to the one maximum brightness value, and the first brightness signal indicated by the obtained first brightness signal.
  • a plurality of luminance values for converting values into second luminance values corresponding to a second luminance range defined as a second maximum luminance value having a maximum luminance value smaller than said first maximum luminance value and larger than 100 nit Performing luminance conversion to execute one of the conversion processing, the luminance conversion being performed according to a reference luminance value corresponding to a reference reflectance included in the first metadata of the acquired first luminance signal; Switch the brightness conversion process, The serial switch luminance conversion processing for converting the first luminance value to said second luminance value.
  • FIG. 1 is a diagram for explaining the evolution of video technology.
  • FIG. 2A is a diagram for describing SDR display processing in SDRTV.
  • FIG. 2B is a diagram for describing an SDR display process in an SDRTV with a peak luminance of 300 nit.
  • FIG. 3A is a view showing an example of an EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
  • FIG. 3B is a diagram showing an example of inverse EOTF corresponding to each of HDR and SDR.
  • FIG. 4 is an explanatory diagram of a method of determining the code value of the luminance signal stored in the content, and a process of restoring the luminance value from the code value at the time of reproduction.
  • FIG. 4 is an explanatory diagram of a method of determining the code value of the luminance signal stored in the content, and a process of restoring the luminance value from the code value at the time of reproduction.
  • FIG. 5A is a diagram illustrating an example of display processing for converting an HDR signal and performing HDR display in HDRTV.
  • FIG. 5B is a diagram showing an example of display processing for performing HDR display using the HDR compatible playback device and the SDRTV.
  • FIG. 5C is a diagram showing an example of display processing for performing HDR display using the HDR compatible playback device and the SDR TV connected to each other via the standard interface.
  • FIG. 6 is a block diagram showing configurations of the conversion device and the display device according to the embodiment.
  • FIG. 7 is a flowchart showing a conversion method and a display method performed by the conversion device and the display device of the embodiment.
  • FIG. 8A is a diagram for describing an example of the first luminance conversion.
  • FIG. 8A is a diagram for describing an example of the first luminance conversion.
  • FIG. 8B is a diagram for describing another example of the first luminance conversion.
  • FIG. 9 is a diagram for describing the second luminance conversion.
  • FIG. 10 is a flowchart showing a detailed process of display setting.
  • FIG. 11 is a diagram for explaining the third luminance conversion.
  • FIG. 12 is a diagram for describing conversion processing from HDR to pseudo-HDR.
  • FIG. 13 is a diagram showing a scale of luminance at the time of image capturing.
  • FIG. 14 is a view showing an example of the luminance value of the photographed image.
  • FIG. 15 is a diagram for explaining the relationship between a flow for producing a master for home entertainment corresponding to SDR, a distribution medium, and a display device.
  • FIG. 16A is a diagram showing an example of luminance values as a result of mastering the original image shown in FIG. 14 into an SDR image.
  • FIG. 16B is a diagram showing an example of the relationship between the original signal value and the SDR signal value for converting (mastering) the original signal value into the SDR signal value.
  • FIG. 17 is a diagram for explaining the relationship between the master, the distribution method, and the display device when HDR is introduced.
  • FIG. 18A is a diagram showing an example of luminance values as a result of mastering the original image shown in FIG. 14 into an HDR image.
  • FIG. 18B is a diagram showing an example of the relationship between the original signal value and the HDR signal value for converting (mastering) the original signal value into the HDR signal value.
  • FIG. 18A is a diagram showing an example of luminance values as a result of mastering the original image shown in FIG. 14 into an HDR image.
  • FIG. 18B is a diagram showing an example of the relationship between the original signal value
  • FIG. 19A is a view showing another example of the luminance value as a result of mastering the original image shown in FIG. 14 into the HDR image.
  • FIG. 19B is a diagram showing another example of the relationship between the original signal value and the HDR signal value for converting (mastering) the original signal value into the HDR signal value.
  • FIG. 20 is a diagram illustrating display processing of converting an HDR signal to generate an HDR video in the HDR TV.
  • FIG. 21 is a flowchart showing a conversion method according to the second embodiment. That is, FIG. 21 is a diagram showing an algorithm at the time of luminance conversion processing.
  • FIG. 22A is a diagram showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG.
  • FIG. 22B is a diagram showing an example of the relationship between the HDR signal value and the TV signal value for luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 23A is a view showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 18A and performing luminance conversion for a display device having a maximum luminance value of 500 nit.
  • FIG. 23B is a diagram showing another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 24A is a diagram showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device having a maximum luminance value of 500 nit.
  • FIG. 24B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 25A is a diagram showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device having a maximum luminance value of 500 nit.
  • FIG. 25B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 26A is a diagram showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device having a maximum luminance value of 500 nit.
  • FIG. 26B is a diagram showing another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 27A is a diagram showing an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG.
  • FIG. 27B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • FIG. 28 is a flowchart showing a conversion method according to the first modification of the second embodiment.
  • FIG. 29 is a diagram showing an example of the relationship between an HDR signal value and a TV signal value for performing luminance conversion of an HDR signal value to a TV signal value, which is used in luminance conversion processing based on metadata on the HDR TV side.
  • FIG. 30 is a flowchart showing an operation of performing luminance conversion processing based on the offset luminance value.
  • FIG. 31 is a flowchart showing an operation of luminance conversion processing when metadata of an HDR signal and metadata on the HDR TV side are used in combination.
  • FIG. 32 is a diagram showing an example in which the reference luminance value is dynamically changed in the continuously reproduced stream.
  • FIG. 33 is a flow chart showing an operation example of a display device for reproducing a stream in which metadata of an HDR signal is dynamically updated as shown in FIG.
  • linear luminance is calculated for each pixel based on linear RGB values calculated from pixels constituting an object, and for each pixel based on linear RGB values and linear luminance.
  • the correction linear luminance and the correction linear RGB value of the composite pixel combining the plurality of pixels including the pixel are calculated, and the correction linear luminance and the correction linear RGB value are gamma corrected to calculate the display luminance and the display RGB value.
  • the number of displayable gradations is increased by correcting the linear luminance based on the corrected linear RGB values.
  • a display method is a conversion method of converting the luminance of an input video to display the video on a display device, wherein the luminance of the video has a maximum luminance value exceeding 100 nit.
  • the first brightness signal is obtained by obtaining the first brightness signal indicating the first brightness value of the image, which is composed of the first brightness value in the first brightness range defined to the one maximum brightness value, and the first brightness signal indicated by the obtained first brightness signal.
  • a plurality of luminance values for converting values into second luminance values corresponding to a second luminance range defined as a second maximum luminance value having a maximum luminance value smaller than said first maximum luminance value and larger than 100 nit Performing luminance conversion to execute one of the conversion processing, the luminance conversion being performed according to a reference luminance value corresponding to a reference reflectance included in the first metadata of the acquired first luminance signal; Switch the brightness conversion process, The serial switch luminance conversion processing for converting the first luminance value to said second luminance value.
  • luminance conversion is performed by switching the luminance conversion processing according to the reference luminance value corresponding to the reference reflectance, the luminance can be appropriately converted.
  • the luminance conversion processing may be switched based on whether the reference luminance value is a first reference value.
  • the first luminance signal indicating the luminance value not more than the second reference value larger than the first reference value is the first luminance signal.
  • the first luminance value indicated by the luminance signal is determined as the second luminance value, and for the first luminance signal indicating a luminance value exceeding the second reference value, from the second reference value to the first maximum luminance value.
  • the first luminance value is converted to the second luminance value by performing linear conversion on the first luminance value corresponding to the second maximum luminance value that can be displayed on the display device. It may be converted to a luminance value.
  • the luminance conversion includes at least the first luminance signal indicating a luminance value equal to or less than the second reference value, in the second metadata indicating display characteristics of the display device.
  • the displayable minimum luminance value may be added to the value after the linear conversion, and the value after the addition may be determined as the second luminance value.
  • the first luminance signal indicating a luminance value that is equal to or less than a second maximum luminance value that can be displayed on the display device is The first luminance value indicated by the first luminance signal is determined as the second luminance value, and the first luminance signal indicated by the first luminance signal is indicated with respect to the first luminance signal indicating a luminance value exceeding the second maximum luminance value.
  • the second maximum luminance value may be determined as the second luminance value.
  • the first that indicates a luminance value equal to or less than a fourth reference value larger than the third reference value is determined as the second luminance value, and the first luminance signal indicating a luminance value exceeding the fourth reference value is determined from the fourth reference value.
  • the first luminance value up to a second maximum luminance value that can be displayed on the display device is obtained.
  • the luminance value may be converted to the second luminance value.
  • the first luminance signal indicating the luminance value not more than the second reference value larger than the first reference value is the first luminance signal.
  • the first luminance value indicated by the luminance signal is determined as the second luminance value, and for the first luminance signal indicating a luminance value exceeding the second reference value, from the second reference value to the first maximum luminance value.
  • the first luminance value is converted to the second luminance value by performing linear conversion on the first luminance value corresponding to the second maximum luminance value that can be displayed on the display device.
  • the luminance conversion is performed, and in the luminance conversion, when the reference luminance value is a third reference value different from the first reference value, the luminance value is equal to or less than a fourth reference value larger than the third reference value.
  • the first luminance signal is The first luminance value determined as the second luminance value, and for the first luminance signal indicating a luminance value exceeding the fourth reference value, a second maximum value that can be displayed on the display device from the fourth reference value
  • the first luminance value is converted to the second luminance value by performing linear conversion in which the first maximum luminance value corresponds to the second maximum luminance value with respect to the first luminance value up to the luminance value.
  • the second reference value and the fourth reference value may be luminance values corresponding to a reflectance larger than the reference reflectance.
  • the luminance value is equal to or less than a second maximum luminance value that can be displayed on the display device.
  • the first luminance value indicated by the first luminance signal is determined as the second luminance value, and the first luminance signal indicating the luminance value exceeding the second maximum luminance value is determined.
  • the second maximum luminance value may be determined as the second luminance value with respect to the first luminance value indicated by the luminance signal.
  • the first luminance value in the case where the reference luminance value is a third reference value different from the first reference value, the first that indicates a luminance value equal to or less than a fourth reference value larger than the third reference value.
  • the first luminance value is converted into the second luminance value according to a ratio between the first reference value and the third reference value, and the luminance value exceeds the third reference value.
  • the first luminance signal corresponds to the second maximum luminance value that can be displayed on the display device with respect to the first luminance value from the fourth reference value to the first maximum luminance value.
  • the first luminance value may be converted to the second luminance value by performing linear conversion.
  • the first that indicates a luminance value equal to or less than a fourth reference value larger than the third reference value in the case where the reference luminance value is a third reference value different from the first reference value, the first that indicates a luminance value equal to or less than a fourth reference value larger than the third reference value.
  • the first luminance value is converted to the second luminance value according to the ratio between the first reference value and the third reference value, and the fourth reference value is converted to the fourth reference value.
  • the fifth reference value may be used in the display device with respect to the first luminance value from the fourth reference value to the fifth reference value.
  • the first luminance signal indicating the luminance value exceeding the fifth luminance value is converted into the second luminance value by performing linear conversion corresponding to the second maximum luminance value that can be displayed.
  • the second maximum luminance value is determined as the second luminance value. It may be.
  • second metadata indicating display characteristics of the display device is further acquired from the display device, and in the luminance conversion, the luminance conversion process is further switched according to the acquired second metadata.
  • the first luminance value may be converted to the second luminance value by the switched luminance conversion process.
  • the second metadata may be data indicating a viewing environment or a display mode of the display device.
  • the first section and the second section of the reproduction stream correspond to the reference reflectance indicated by the metadata of the HDR signal.
  • the first luminance value corresponds to the second luminance value according to the reference luminance value corresponding to the section. May be converted to
  • Embodiment 1 The present disclosure relates to an HDR (High Dynamic Range) signal which is a high luminance signal having a high luminance range, and a luminance range different from the maximum luminance value (maximum luminance value or peak luminance value) in the luminance range to which the HDR signal corresponds.
  • the present invention relates to an HDR signal format, a conversion method of the HDR signal, and a conversion device for realizing display on a display device (for example, a TV, a projector, a tablet, a smartphone, etc.) having a display capability.
  • FIG. 1 is a diagram for explaining the evolution of video technology.
  • HDR Dynamic Range extension
  • the conventional TV signal is called SDR (Standard Dynamic Range), and it is assumed that the maximum luminance value is expanded to 1000 nit or more in HDR while the maximum luminance value is 100 nit.
  • HDR is also in the process of being standardized for mastering display standards, such as in the Society of Motion Picture & Television Engineers (SMPTE) and the International Telecommunications Union Radiocommunications Sector (ITU-R).
  • SMPTE Society of Motion Picture & Television Engineers
  • ITU-R International Telecommunications Union Radiocommunications Sector
  • HDR As a specific application destination of HDR, as with HD and UHD, it is assumed to be used in broadcasting, packaged media (Blu-ray (registered trademark, the same applies hereinafter) Disc, etc.), Internet distribution, and the like.
  • the brightness of the video is the brightness value in the brightness range of HDR defined as the first maximum brightness value having the maximum brightness value exceeding 100 nit, and the brightness value of the video is The luminance signal shown is called an HDR signal.
  • the brightness of the video is composed of the brightness value of the brightness range of the SDR, and the brightness signal indicating the brightness value of the video is called an SDR signal.
  • the HDR luminance range is a luminance range in which the maximum luminance value is larger than that of the SDR.
  • the minimum luminance value of the luminance range of HDR is the same as the minimum luminance value of the luminance range of SDR, and is 0 nit.
  • SDRTV In a TV (hereinafter referred to as "SDRTV”) corresponding only to display of an image corresponding to SDR (hereinafter referred to as "SDR display”), an input signal having a luminance value of up to 100 nit is generally input. For this reason, the SDRTV is sufficient to represent the luminance value of the input signal if its display capability is 100 nit.
  • SDRTV actually has the function of reproducing an image with the optimal luminance value according to the viewing environment (dark room: cinema mode, bright room: dynamic mode, etc.), and is capable of image expression of 200 nit or more
  • SDRTV can display an image up to the maximum luminance (for example, 300 nit) of the display capability by selecting the display mode according to the viewing environment.
  • the luminance upper limit of the input signal is determined to 100 nit, so as long as the SDR input interface is used as before, a video with high luminance exceeding 100 nit possessed by SDRTV It is difficult to use the playback capability for the playback of the HDR signal (see FIGS. 2A and 2B).
  • FIG. 3A is a view showing an example of an EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
  • EOTF Electro-Optical Transfer Function
  • EOTF is generally called a gamma curve, which indicates the correspondence between a code value and a luminance value, and converts the code value into a luminance value. That is, EOTF is relationship information indicating the correspondence between a plurality of code values and luminance values.
  • FIG. 3B is a diagram showing an example of inverse EOTF corresponding to each of HDR and SDR.
  • the inverse EOTF indicates the correspondence between the luminance value and the code value, and quantizes the luminance value to convert it into a code value, contrary to the EOTF. That is, the reverse EOTF is relationship information indicating the correspondence between the luminance value and the plurality of code values.
  • the luminance values in the luminance range of HDR up to 10,000 nit are quantized and 1024 to 0 to 1023 Is mapped to an integer value of That is, by quantizing based on the inverse EOTF, the luminance value (luminance value of the image corresponding to HDR) in the luminance range up to 10,000 nit is converted into the HDR signal which is a 10-bit code value.
  • HDR EOTF an EOTF corresponding to HDR
  • HDR inverse EOTF an EOTF corresponding to HDR
  • SDR EOTF or HDR inverse EOTF an EOTF corresponding to SDR
  • SDR reverse EOTF a reverse EOTF corresponding to SDR
  • the value (peak luminance) is 10,000 nit. That is, the luminance range of HDR includes all the luminance range of SDR, and the peak luminance of HDR is larger than the peak luminance of SDR.
  • the luminance range of the HDR is the luminance range obtained by expanding the maximum value from 100 nit, which is the maximum value of the SDR luminance range, to 10,000 nit.
  • HDR EOTF and HDR reverse EOTF are, as an example, SMPTE 2084 standardized by the American Society of Motion Picture and Television Engineers (SMPTE).
  • FIG. 4 is an explanatory diagram of a method of determining the code value of the luminance signal stored in the content, and a process of restoring the luminance value from the code value at the time of reproduction.
  • the luminance signal indicating the luminance in the present example is an HDR signal corresponding to HDR.
  • the image after grading is quantized by inverse EOTF of HDR, and the code value corresponding to the luminance value of the image is determined. Image coding or the like is performed based on this code value to generate a video stream.
  • the stream decoding result is dequantized based on the HDR EOTF to be converted into a linear signal, and the luminance value for each pixel is restored.
  • quantization using an inverse EOTF of HDR is referred to as “inverse HDR EOTF conversion”.
  • Inverse quantization using HDR EOTF is called "HDR EOTF conversion”.
  • quantization using SDR inverse EOTF is referred to as "inverse SDR EOTF conversion”.
  • Dequantization using SDR EOTF is called "SDR EOTF conversion”.
  • FIG. 5A is a diagram illustrating an example of display processing for converting an HDR signal and performing HDR display in HDRTV.
  • the maximum value of the luminance range of HDR peak luminance (HPL (HDR Peak Luminance): example 1500 nit)
  • the linear signal after inverse quantization using HDR EOTF is adjusted to the maximum value of the luminance range of the display device (peak luminance (DPL (Display Peak Iuminance): example 750 nit)).
  • DPL Display Peak Iuminance
  • FIG. 5B is a diagram showing an example of display processing for performing HDR display using the HDR compatible playback device and the SDRTV.
  • the display device is an SDRTV, using the fact that the maximum value (peak brightness (DPL: example 300 nit)) of the brightness range of SDRTV to be displayed exceeds 100 nit.
  • peak brightness (DPL: example 300 nit) peak brightness of the brightness range of SDRTV to be displayed exceeds 100 nit.
  • DPL peak brightness
  • the HDR-compatible playback device (Blu-ray device) in FIG. 5B it is the maximum value of the “HDR to EOTF conversion” and the brightness range of SDRTV, which is performed in HDRTV in “HDR to pseudo HDR conversion processing”.
  • SDRTV can not be realized because there is no means for directly inputting such a signal from the outside.
  • FIG. 5C is a diagram showing an example of display processing for performing HDR display using the HDR compatible playback device and the SDR TV connected to each other via the standard interface.
  • a signal input through the input interface passes through “SDR to EOTF conversion”, “brightness conversion for each mode”, and “display device” in this order, and an image adjusted to the maximum brightness range of the display device Display Therefore, a signal (pseudo-HDR signal) that can cancel “EDR conversion of SDR” and “Luma conversion for each mode”, which passes immediately after the input interface in SDRTV, in the HDR compatible Blu-ray device Generate That is, in the HDR compatible Blu-ray device, immediately after "HDR EOTF conversion” and “brightness conversion” using SDRTV peak brightness (DPL), "inverse brightness conversion for each mode” and “reverse SDR” By performing “EOTF conversion”, the same effect as in the case where the signal immediately after “brightness conversion” is input to the “display device” (broken line arrow in FIG. 5C) is artificially realized.
  • DPL peak brightness
  • FIG. 6 is a block diagram showing configurations of the conversion device and the display device according to the embodiment.
  • FIG. 7 is a flowchart showing a conversion method and a display method performed by the conversion device and the display device of the embodiment.
  • the conversion device 100 includes an HDR EOTF converter 101, a luminance converter 102, an inverse luminance converter 103, and an inverse SDR EOTF converter 104.
  • the display device 200 further includes a display setting unit 201, an SDR EOTF converter 202, a luminance converter 203, and a display unit 204.
  • the luminance range (0 to HPL [nit]) of HDR will be referred to as “first luminance range”.
  • the luminance range (0 to DPL [nit]) of the display is referred to as the “second luminance range”.
  • the luminance range (0 to 100 (nit)) of the SDR is referred to as a “third luminance range”.
  • the HDR EOTF conversion unit 101 of the conversion apparatus 100 acquires the HDR video on which the inverse HDR EOTF conversion has been performed.
  • the HDR EOTF conversion unit 101 of the conversion device 100 performs HDR EOTF conversion on the acquired HDR signal of the HDR video (S101).
  • the HDR EOTF converter 101 converts the acquired HDR signal into a linear signal indicating a luminance value.
  • the HDR EOTF is, for example, SMPTE 2084.
  • the luminance conversion unit 102 of the conversion device 100 performs a first luminance conversion that converts the linear signal converted by the EOTF conversion unit 101 of HDR using the display characteristic information and the content luminance information (S102). .
  • a luminance value corresponding to the luminance range of HDR which is the first luminance range (hereinafter referred to as "the luminance value of HDR") is a luminance value corresponding to the luminance range of the display which is the second luminance range. (Hereinafter referred to as "display luminance value"). Details will be described later.
  • the EOTF conversion unit 101 of the HDR functions as an acquisition unit that acquires the HDR signal as the first luminance signal indicating the code value obtained by quantizing the luminance value of the video.
  • the HDR EOTF conversion unit 101 and the luminance conversion unit 102 determine the code value indicated by the HDR signal acquired by the acquisition unit based on the luminance range of the display (display device 200), and the maximum of the HDR luminance range It functions as a conversion unit that converts a display luminance value corresponding to the display luminance range that is a maximum value (DPL) smaller than the value (HPL) and larger than 100 nit.
  • DPL maximum value
  • the HDR EOTF conversion unit 101 uses the acquired HDR signal and the HDR EOTF in step S101 to obtain an HDR code value as a first code value indicated by the acquired HDR signal.
  • the HDR signal is obtained by quantizing the luminance value of the video (content) using the inverse EOTF of the HDR in which the luminance value in the luminance range of the HDR and the code values of a plurality of HDRs are associated. Indicates the HDR code value.
  • step S102 the luminance conversion unit 102 determines, for the luminance value of HDR determined in step S101, a display luminance value corresponding to the luminance range of the display, which is previously associated with the luminance value of the HDR, The first luminance conversion is performed to convert the luminance value of the HDR corresponding to the luminance range of (1) into the display luminance value corresponding to the luminance range of the display.
  • the conversion apparatus 100 performs content luminance information including at least one of the maximum value (CPL: Content Peak luminance) of the luminance of the video (content) and the average luminance value (CAL: Content Average luminance) of the video.
  • CPL first maximum luminance value
  • CAL is, for example, an average luminance value which is an average of luminance values of a plurality of images constituting an HDR video.
  • the conversion apparatus 100 has acquired the display characteristic information of the display apparatus 200 from the display apparatus 200 before step S102.
  • the display characteristic information refers to the maximum value of the luminance (DPL) that can be displayed by the display device 200, the display mode of the display device 200 (see later), and the input / output characteristics (EOTF corresponding to the display device). It is information indicating display characteristics.
  • the conversion device 100 may transmit recommended display setting information (see later, also referred to as “setting information” below) to the display device 200.
  • the inverse luminance conversion unit 103 of the conversion device 100 performs inverse luminance conversion according to the display mode of the display device 200. Thereby, the inverse luminance conversion unit 103 converts the second luminance conversion for converting the luminance value corresponding to the luminance range of the display which is the second luminance range into the luminance value corresponding to the luminance range of the SDR which is the third luminance range. Perform (S103). Details will be described later. That is, the reverse luminance conversion unit 103 sets the third display luminance value obtained in step S102 as the third luminance value corresponding to the luminance range of SDR having the maximum value of 100 nit, which is previously associated with the display luminance value.
  • SDR luminance value The luminance value corresponding to SDR (hereinafter referred to as "SDR luminance value") SDR luminance value is determined, and the display luminance value corresponding to the display luminance range is set to the SDR luminance value corresponding to the SDR luminance range A second luminance conversion to convert is performed.
  • the reverse SDR EOTF conversion unit 104 of the conversion device 100 performs reverse SDR EOTF conversion to generate a pseudo HDR video (S104). That is, the inverse SDR EOTF converter 104 performs inverse EOTF (Electro-Optical) of SDR (Standard Dynamic Range), which is third relationship information in which the luminance value in the luminance range of HDR and the plurality of third code values are associated. Quantify the determined SDR luminance value using Transfer Function), determine the third code value obtained by quantization, and indicate the third code value with the SDR luminance value corresponding to the SDR luminance range. By converting into the SDR signal as the third luminance signal, a pseudo HDR signal is generated.
  • SDR Standard Dynamic Range
  • the third code value is a code value corresponding to the SDR, and is hereinafter referred to as a "SDR code value". That is, the SDR signal is an SDR signal obtained by quantizing the luminance value of the video using the inverse EOTF of the SDR in which the luminance value in the luminance range of the SDR and the code values of the plurality of SDRs are associated. Represented by a code value. Then, the conversion device 100 outputs the pseudo HDR signal (SDR signal) generated in step S104 to the display device 200.
  • SDR code value the pseudo HDR signal
  • the conversion apparatus 100 performs the first luminance conversion and the second luminance conversion on the luminance value of HDR obtained by inverse quantizing the HDR signal to generate the luminance value of SDR corresponding to the pseudo HDR Then, the SDR signal value corresponding to the pseudo HDR is generated by quantizing the luminance value of the SDR using the SDR EOTF.
  • the SDR luminance value is a numerical value within the 0 to 100 nit luminance range corresponding to SDR, but since conversion is performed based on the display luminance range, HDR EOTF and SDR are performed on the HDR luminance value.
  • the luminance value within the range of 0 to 100 nit corresponding to the SDR obtained by performing luminance conversion using the EOTF is a numerical value different from that of the SDR.
  • the display method includes steps S105 to S108 described below.
  • the display setting unit 201 of the display device 200 sets the display setting of the display device 200 using the setting information acquired from the conversion device 100 (S105).
  • the display device 200 is an SDR TV.
  • the setting information is information indicating display setting recommended for the display device, and information indicating how to perform EOTF on the pseudo HDR video and by which setting it is possible to display a beautiful video (that is, Information for switching the display setting of the display device 200 to the optimal display setting).
  • the setting information includes, for example, gamma curve characteristics at the time of output in the display device, a display mode such as a living mode (normal mode) or a dynamic mode, a numerical value of a backlight (brightness), and the like.
  • a message may be displayed on the display device 200 (hereinafter, also referred to as “SDR display”) that prompts the user to manually change the display setting of the display device 200. Details will be described later.
  • the display device 200 acquires an SDR signal (pseudo-HDR signal) and setting information indicating display settings recommended for the display device 200 when displaying an image.
  • SDR signal prseudo-HDR signal
  • the display device 200 may obtain the SDR signal (pseudo-HDR signal) before step S106 or may perform step S105.
  • the SDR EOTF converter 202 of the display device 200 performs SDR EOTF conversion on the acquired pseudo HDR signal (S106). That is, the SDR EOTF conversion unit 202 inversely quantizes the SDR signal (pseudo-HDR signal) using the SDR EOTF. Thereby, the SDR EOTF converter 202 converts the SDR code value indicated by the SDR signal into the SDR luminance value.
  • the luminance conversion unit 203 of the display device 200 performs luminance conversion according to the display mode set in the display device 200.
  • the luminance conversion unit 203 converts the SDR luminance value corresponding to the SDR luminance range (0 to 100 (nit)) into the display luminance value corresponding to the display luminance range (0 to DPL (nit)).
  • the third luminance conversion is performed (S107). Details will be described later.
  • step S106 and step S107 the display device 200 uses the third code value indicated by the acquired SDR signal (pseudo-HDR signal) using the setting information acquired in step S105 to display the luminance range of the display ( Convert to a display luminance value corresponding to 0 to DPL (nit).
  • step S106 an EOTF in which the luminance value in the luminance range of the SDR is associated with a plurality of third code values is used.
  • the luminance value of the SDR associated with the SDR code value by the SDR EOTF is determined.
  • step S107 a display luminance value corresponding to the luminance range of the display, which is previously associated with the determined SDR luminance value, is determined, and the SDR corresponding to the SDR luminance range is determined.
  • a third luminance conversion is performed to convert the luminance values into display luminance values corresponding to the display luminance range.
  • the display unit 204 of the display device 200 displays the pseudo HDR video on the display device 200 based on the converted display luminance value (S108).
  • FIG. 8A is a diagram for describing an example of the first luminance conversion.
  • the luminance conversion unit 102 of the conversion device 100 performs a first luminance conversion that converts the linear signal (luminance value of HDR) obtained in step S101 using the display characteristic information and the content luminance information of the HDR video. .
  • the first luminance conversion converts the luminance value (input luminance value) of HDR into a display luminance value (output luminance value) which does not exceed the display peak luminance (DPL).
  • the DPL is determined using the maximum brightness and display mode of the SDR display, which is display characteristic information.
  • the display mode is, for example, mode information such as a theater mode for displaying dark on the SDR display or a dynamic mode for displaying brightly.
  • DPL second maximum luminance value
  • DPL is the maximum value of luminance that can be displayed in the display mode in which the SDR display is currently set. That is, in the first luminance conversion, DPL as the second maximum luminance value is determined using display characteristic information which is information indicating the display characteristic of the SDR display.
  • CAL and CPL of the content luminance information are used, and the luminance values below and around CAL are made identical before and after conversion, and the luminance values are changed only for luminance values above CPL.
  • the luminance value of the HDR is less than or equal to CAL
  • the luminance value of the HDR is not converted but the luminance value of the HDR is determined as the display luminance value.
  • DPL as the second maximum luminance value is determined as the display luminance value.
  • the peak luminance (CPL) of the HDR image in the luminance information is used, and when the luminance value of the HDR is CPL, the DPL is determined as the display luminance value.
  • the linear signal (luminance value of HDR) obtained in step S101 may be converted to a value not exceeding DPL.
  • the processing in the conversion device 100 can be simplified, and the device can be reduced in size, power can be reduced, and the processing can be speeded up.
  • FIG. 8B is a diagram for describing another example of the first luminance conversion.
  • FIG. 9 is a diagram for describing the second luminance conversion.
  • the inverse luminance conversion unit 103 of the conversion device 100 performs inverse luminance conversion according to the display mode with respect to the display luminance value of the display luminance range (0 to DPL [nit]) converted by the first luminance conversion of step S102. Apply.
  • the inverse luminance conversion when the luminance conversion processing (step S107) according to the display mode by the SDR display is performed, the display luminance value of the display luminance range (0 to DPL [nit]) after the processing in step S102 is acquired It is a process to make it possible. That is, the second luminance conversion is inverse luminance conversion of the third luminance conversion.
  • the second luminance conversion is performed by using the display luminance value (input luminance value) of the display luminance range which is the second luminance range and the SDR luminance value (output luminance of the SDR luminance range which is the third luminance range). Convert to value).
  • the conversion equation is switched according to the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode, the luminance conversion is performed to a directly proportional value that is directly proportional to the display luminance value.
  • the inverse function is used to reduce the low luminance pixels.
  • the brightness value of the SDR of the is converted to a value higher than a direct proportional value directly proportional to the display brightness value, and the brightness value of the SDR of the high brightness pixel is converted to a lower value than the direct proportional value directly proportional to the display brightness value.
  • the display luminance value determined in step S102 is related to the display luminance value using luminance relation information according to display characteristic information which is information indicating the display characteristic of the SDR display.
  • the luminance value is determined as the luminance value of SDR, and the luminance conversion processing is switched according to the display characteristic information.
  • the luminance relation information corresponding to the display characteristic information is, for example, a display luminance value (input luminance value) determined for each display parameter (display mode) of the SDR display as shown in FIG. It is information in which the luminance value (output luminance value) is associated.
  • FIG. 10 is a flowchart showing a detailed process of display setting.
  • step S105 the display setting unit 201 of the SDR display performs the processing of steps S201 to S208 described below.
  • the display setting unit 201 determines whether the EOTF (ETRF for SDR display) set in the SDR display matches the EOTF assumed at the time of generation of the pseudo HDR video (SDR signal). It determines (S201).
  • the display setting unit 201 determines that the EOTF set in the SDR display is different from the EOTF indicated by the setting information (the EOTF matched to the pseudo HDR video) (Yes in S201), the system for the EDR for SDR display is used. It is determined whether switching is possible on the side (S202).
  • the display setting unit 201 determines that switching is possible, the setting information is used to switch the SDR display EOTF to an appropriate EOTF (S203).
  • step S105 in the setting of display setting (S105), the EOTF set in the SDR display is set as a recommended EOTF according to the acquired setting information. Moreover, thereby, in step S106 performed after step S105, the luminance value of SDR can be determined using the recommended EOTF.
  • a message prompting the user to manually change the EOTF is displayed on the screen (S204). For example, the message "Set display gamma to 2.4" is displayed on the screen. That is, when the display setting unit 201 can not switch the EOTF set in the SDR display in the display setting setting (S105), the display setting unit 201 switches the EOTF (SDR display EOTF) set in the SDR display to the recommended EOTF. Display a message on the SDR display to prompt the user.
  • a pseudo HDR video (SDR signal) is displayed, but before display, it is determined whether the display parameter of the SDR display matches the setting information using the setting information (S205).
  • the display setting unit 201 determines whether the display parameter of the SDR display can be switched (S206) .
  • the display setting unit 201 determines that the display parameter of the SDR display can be switched (Yes in S206)
  • the display parameter of the SDR display is switched according to the setting information (S207).
  • step S105 in display setting setting (S105), the display parameter set in the SDR display is set as a recommended display parameter according to the acquired setting information.
  • a message prompting the user to manually change the display parameter set in the SDR display is displayed on the screen (S208). For example, a message “Please set display mode to dynamic mode and maximize backlight” is displayed on the screen. That is, in the setting (S105), when the display parameter set in the SDR display can not be switched, a message for prompting the user to switch the display parameter set in the SDR display to the recommended display parameter is displayed on the SDR display Display on
  • FIG. 11 is a diagram for explaining the third luminance conversion.
  • the luminance conversion unit 203 of the display device 200 converts the SDR luminance value in the luminance range (0 to 100 (nit)) of SDR into (0 to DPL (nit)) according to the display mode set in step S105. .
  • This processing is performed so as to be an inverse function of the inverse luminance conversion for each mode in S103.
  • the conversion formula is switched according to the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode (that is, when the set display parameter is a parameter corresponding to the normal mode), the display luminance value is converted to a direct proportional value proportional to the luminance value of SDR. .
  • the display luminance value of the low luminance pixel is SDR
  • the display luminance value of the high luminance pixel is converted to a value lower than a direct proportion value directly proportional to the luminance value to a value higher than the direct proportional value directly proportional to the SDR luminance value. That is, in the third luminance conversion, for the luminance value of SDR determined in step S106, the luminance relationship information corresponding to the display parameter indicating the display setting of the SDR display is used to relate the luminance value of the SDR in advance to the luminance value.
  • the value is determined as the display luminance value, and the luminance conversion processing is switched according to the display parameter.
  • the luminance relation information corresponding to the display parameter means, for example, the SDR luminance value (input luminance value) determined for each display parameter (display mode) of the SDR display as shown in FIG. It is information in which the value (output luminance value) is associated.
  • a normal SDRTV has an input signal of 100 nit, but has the ability to be able to express an image of 200 nit or more according to the viewing environment (dark room: cinema mode, bright room: dynamic mode, etc.). However, since the upper limit of the luminance of the input signal to SDRTV was set to 100 nit, it was not possible to directly use that capability.
  • HDR video When HDR video is displayed on SDRTV, the peak luminance of SDRTV to be displayed exceeds 100 nit (usually 200 nit or more), and the HDR video is not converted to SDR video of 100 nit or less, but luminance over 100 nit "HDR to pseudo-HDR conversion processing" is performed so as to maintain the gradation of the range to some extent. For this reason, it can be displayed on SDRTV as a pseudo-HDR image close to the original HDR.
  • the HDR signal sent by broadcasting, package media such as Blu-ray, Internet distribution such as OTT is converted into a pseudo HDR signal by performing HDR-pseudo-HDR conversion processing. As a result, it becomes possible to display the HDR signal as a pseudo HDR video on an existing SDRTV.
  • the luminance conversion process to be performed is switched according to the reference luminance value corresponding to the reference reflectance included in the first metadata of the acquired HDR signal as the first luminance signal, and the switched luminance conversion process To convert the luminance value of HDR into the display luminance value.
  • the reference reflectance will be described in detail below.
  • FIG. 13 is a diagram showing a scale of luminance at the time of image capturing.
  • 18% gray which is gray whose reflectance is 18%, as a reference point of brightness. That is, 18% gray is a reference reflectance which is a reference of brightness.
  • the Stop number is defined to increase by one each time the luminance value is doubled, with the luminance value at 18% gray as a reference point.
  • a luminance value obtained from an image sensor such as a CMOS of a camera when an image is actually photographed by the camera changes in accordance with an exposure by an aperture, a shutter speed, a sensitivity setting, and the like. That is, the luminance value obtained from the image sensor becomes a different value according to the exposure, even if the camera photographs a portion of the same luminance. For this reason, the value of the Stop number itself is not an absolute value but a relative value. That is, the Stop number can not represent luminance.
  • the shutter speed may be reduced, the aperture may be changed, and the exposure may be changed.
  • Make exposure settings to the camera such as discarding bright areas, leaving the gradation of.
  • an exposure setting is performed on the camera such that the balance between the dark part and the bright part is improved. Further, when shooting an outdoor scene of daytime (3) in FIG. 13, the exposure setting is performed on the camera with a reduced exposure in order to prevent the white portion of the bright part from being crushed.
  • FIG. 14 is a view showing an example of the luminance value of the photographed image.
  • the photographed image (hereinafter referred to as “original image”) 10 has a luminance value (hereinafter referred to as “18 stop gray” which is a reference reflectance as a reference of brightness. , “Reference luminance value” or “18% gray (Gray) value”.
  • B) of the original image 10 shows pixels having a luminance value corresponding to 90% reflectance (90% gray) (2.3 Stops).
  • C) of the HDR original image 10 shows pixels having luminance values corresponding to approximately black 2.3% gray (-3 Stops).
  • D) of the original image 10 shows pixels obtained by photographing the sun, and a very bright luminance value is obtained, and has a luminance value corresponding to 1150% gray (6 Stops).
  • E) of the original image 10 shows a pixel obtained by photographing a position causing specular reflection, and has a luminance value corresponding to 290% gray (4 Stops).
  • FIG. 15 is a diagram for explaining the relationship between a flow for producing a master for home entertainment corresponding to SDR, a distribution medium, and a display device.
  • the original image 10 as described in FIG. 14 is an image having a maximum luminance value of 1300 nit. That is, when producing a master image (SDR image) corresponding to an SDR with a maximum luminance value of 100 nit using the original image 10, the SDR can not represent a pixel having a luminance value of 100 nit or more. It is not possible to produce a master image compatible with SDR by using the luminance value of as it is without conversion. That is, in order to produce a master image corresponding to SDR using the original image 10, it is necessary to convert the luminance value of the original image 10 into the luminance value in the luminance range corresponding to the SDR.
  • FIG. 16A is a diagram showing an example of luminance values as a result of mastering the original image shown in FIG. 14 into an SDR image.
  • FIG. 16B is a diagram showing an example of the relationship between the original signal value and the SDR signal value for converting (mastering) the original signal value into the SDR signal value.
  • the original signal value is a luminance value in the luminance range of 0 to 1300 n of the original image 10 (hereinafter referred to as "luminance value of the original image”)
  • the SDR signal value is a luminance value in the luminance range of SDR (hereinafter , “SDR luminance value”.
  • the pixel corresponding to 18% gray (0 Stop) which is the reference reflectance has a reference luminance value to be the reference of brightness. It is a pixel that has. Therefore, in the mastering to the SDR image, even after the original image 10 is converted to the SDR image 11, the luminance value (18 nit) of the original image 10 corresponding to 18% gray in the original image 10 is not changed. , SDR luminance value.
  • the original image 10 is converted to the SDR image 11 as described above. Even after conversion, the luminance value (2 nit) of the original image corresponding to 2.3% gray in the original image 10 is determined as the luminance value of SDR without changing.
  • the luminance value (1150 nit) of the original image corresponding to 1150% gray in the original image 10 Is converted to 100 nit which is the maximum luminance value of the luminance range of SDR.
  • the luminance value of the original image corresponding to 290% gray in the original image 10 Convert to 95 nit.
  • FIG. 17 is a diagram for explaining the relationship between the master, the distribution method, and the display device when HDR is introduced.
  • the original image 10 shown in FIG. 14 since the maximum luminance value of the original image 10 is 1300 nit, the original image 10 can be expressed using the luminance value as it is.
  • FIG. 18A is a diagram showing an example of luminance values as a result of mastering the original image shown in FIG. 14 into an HDR image.
  • FIG. 18B is a diagram showing an example of the relationship between the original signal value and the HDR signal value for converting (mastering) the original signal value into the HDR signal value.
  • the HDR signal value is a luminance value in the luminance range of HDR (hereinafter referred to as “the luminance value of HDR”).
  • the luminance value of HDR In the mastering from the original image to the HDR image in this example, since luminance values up to 2000 nit are allowed to be allocated as the luminance values of HDR, the luminance value of the original image can be held as it is in the HDR image.
  • a pixel corresponding to 18% gray (0 Stop) which is a reference reflectance, such as A) of the HDR image 12 is a pixel having a reference luminance value to be a reference of brightness,
  • the luminance value (18 nit) of the original image 10 corresponding to 18% gray in the original image 10 is determined as the luminance value of HDR without changing Do.
  • pixels corresponding to 90% gray such as B) of HDR image 12 and 2.3% gray (-3 Stops) such as C) of HDR image 12
  • Pixels corresponding to 1150% gray (6 Stops), such as D) of HDR image 12, and 290% gray (4 Stops), such as E) of HDR image 12)
  • the luminance value of the original image is determined as the luminance value of the HDR without changing it.
  • FIG. 19A is a view showing another example of the luminance value as a result of mastering the original image shown in FIG. 14 into the HDR image.
  • FIG. 19B is a diagram showing another example of the relationship between the original signal value and the HDR signal value for converting (mastering) the original signal value into the HDR signal value.
  • it is permitted to allocate luminance values up to 2000 nit as the luminance values of HDR.
  • the overall balance of the HDR image 13 is considered for the pixel corresponding to 18% gray (0 Stop) which is the reference reflectance
  • a value twice as high as the reference luminance value of the original image is determined as the reference luminance value of the HDR image 13 which is the luminance value of the pixel.
  • the brightness value of the original image corresponding to 90% gray in the original image 10 A value twice (90 nit) (180 nit) is determined as the luminance value of HDR.
  • the luminance value of the original image corresponding to 1150% gray in the original image 10 is determined as the luminance value of HDR.
  • the luminance value of the original image corresponding to 290% gray in the original image 10 is determined as the luminance value of HDR.
  • the maximum luminance value (second maximum luminance value) that can be displayed is a value lower than the first maximum luminance value (HPL: example 1500 nit) that is the maximum luminance value of the HDR signal, such as 750 nit. Because of this, the HDR signal can not be displayed on the HDRTV as it is. Therefore, it is necessary to perform luminance conversion on a linear signal after EOTF conversion of HDR, in accordance with the second maximum luminance value (DPL: example 750 nit) that can be displayed on the display device.
  • DPL example 750 nit
  • FIG. 20 is a block diagram showing the configuration of the conversion device of the second embodiment. Specifically, FIG. 20 is a diagram showing display processing for converting an HDR signal to generate an HDR video within the HDR TV.
  • FIG. 21 is a flowchart showing a conversion method according to the second embodiment. That is, FIG. 21 is a diagram showing an algorithm at the time of luminance conversion processing.
  • the conversion device 300 includes an EOTF conversion unit 301 of HDR, a luminance conversion unit 302, and a display unit 303.
  • the conversion device 300 is, for example, a device that is included in the HDR TV and converts the luminance of the video to display the video on the HDR TV.
  • the conversion method performed by the conversion device 300 will be described with reference to FIG.
  • the conversion method includes steps S301 to S304 described below.
  • the HDR EOTF conversion unit 301 of the conversion device 300 acquires a luminance value (reference luminance value) corresponding to 18% gray transmitted as first metadata of the HDR signal (S301).
  • the EOTF conversion unit 301 of the HDR may acquire the reference luminance value by measuring the luminance value of the HDR indicated by the HDR signal.
  • the EOTF conversion unit 301 of HDR also functions as an acquisition unit that acquires an HDR signal indicating a luminance value of HDR of a video.
  • the HDR EOTF conversion unit 301 converts the HDR signal into the HDR luminance value corresponding to the HDR signal by performing the HDR EOTF conversion on the acquired HDR signal of the HDR video.
  • the luminance conversion unit 302 determines whether the acquired reference luminance value is 18 nit (S302).
  • the luminance conversion unit 302 When it is determined that the acquired reference luminance value is 18 nit (Yes in S302), the luminance conversion unit 302 performs normal luminance conversion processing (S303) because it is known that the reference luminance value has not changed. On the other hand, when the acquired reference luminance value is different from 18 nit (No in S302), the luminance conversion unit 302 knows that the manufacturer intentionally changed the reference luminance value, and thus the value of the reference luminance value After the correction is performed based on the luminance, a luminance conversion process is performed (S304).
  • the luminance conversion unit 302 sets the luminance value of HDR indicated by the acquired HDR signal (that is, the luminance value of HDR obtained by converting the HDR signal by the EOTF conversion unit 301 of HDR) to the maximum luminance value.
  • Display brightness corresponding to the display brightness range defined in the second brightness maximum (DPL) which is smaller than the maximum value (HPL) of the brightness range of HDR and larger than the maximum value (100 nit) of the brightness range of SDR Luminance conversion is performed to execute one of a plurality of luminance conversion processes to be converted into values.
  • the luminance conversion unit 302 switches the luminance conversion processing according to whether or not the reference luminance value in the metadata (first metadata) of the acquired HDR signal is 18 nit, and switches the luminance conversion processing by switching. Convert the luminance values into display luminance values.
  • the luminance conversion unit 302 converts the display luminance value corresponding to the luminance range of the display as in the luminance conversion unit 102 according to the first embodiment, but unlike the luminance conversion unit 102, the display is not SDRTV but HDRTV. It is. As described above, by inputting the converted HDR signal to the HDRTV, the display unit 303 can display, on the HDRTV, an HDR video that matches the display luminance range of the maximum value, which is the limit of the HDRTV.
  • FIG. 22A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 18A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 22B is a diagram showing an example of the relationship between the HDR signal value and the TV signal value for luminance conversion of the HDR signal value to the TV signal value.
  • the TV signal value is a signal indicating the luminance value in the luminance range of the display of the HDRTV.
  • the second maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, it is understood that the HDR signal indicating the luminance value of the HDR image 12 holds 18 nit as the reference luminance value. Therefore, step S303 is performed, and for the luminance value indicated by the HDR signal that is equal to or less than the luminance value (90 nit) corresponding to 90% gray, the luminance value indicated by the HDR signal is retained as it is.
  • the first maximum luminance value (HPL: 1300 nit) indicated by the HDR signal is the second maximum that HDRTV can display.
  • a linear conversion is performed to obtain a luminance value (DPL: 500 nit).
  • the HDR signal indicating the luminance value of 90 nit or less as the second reference value larger than 18 nit is HDR
  • the luminance value of HDR indicated by the signal is determined as the display luminance value.
  • the HDR signal showing the luminance value exceeding 90 nit is from 90 nit to the first maximum luminance value (HPL: eg, 1300 nit)
  • the luminance value of HDR is converted into the display luminance value by performing a linear conversion corresponding to the second maximum luminance value (DPL: for example 500 nit) that can be displayed in HDRTV with respect to the luminance value of HDR of .
  • the pixel A corresponding to 18% gray of the HDR image 12 the pixel B corresponding to 90% gray of the HDR image 12, and 2.3% gray of the HDR image 12
  • the luminance value in each of the corresponding pixels C) is determined as the display luminance value without changing the luminance value of the HDR image 12 as it is.
  • 450 nit obtained by performing the linear conversion is determined as a display luminance value
  • the value of 163 nit obtained by performing the linear transformation is determined as the display luminance value.
  • FIG. 23A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 18A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 23B is a diagram showing another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • the second maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, it is understood that the HDR signal indicating the luminance value of the HDR image 12 holds 18 nit as the reference luminance value. Therefore, step S303 is performed, and for the luminance value indicated by the HDR signal that is equal to or less than the luminance value (90 nit) corresponding to 90% gray, the luminance value indicated by the HDR signal is retained as it is.
  • step S303 for the luminance value indicated by the HDR signal, the luminance value corresponding to 90% gray (90 nit) or more and less than the second maximum luminance value (500 nit) of HDRTV, the luminance value indicated by the HDR signal Hold the value as it is.
  • the luminance value indicated by the HDR signal for the luminance value indicated by the HDR signal that is equal to or greater than the second maximum luminance value (500 nit) of HDRTV, the luminance value indicated by the HDR signal is obtained by clipping at 500 nit. The luminance value is determined as the display luminance value.
  • the luminance value of the HDR indicated by the HDR signal is determined as the display luminance value.
  • DPL is determined as a display luminance value with respect to the HDR luminance value indicated by the HDR signal for the HDR signal indicating a luminance value exceeding DPL.
  • the pixel A corresponding to 18% gray of the HDR image 12 the pixel B corresponding to 90% gray of the HDR image 12, and 2.3% gray of the HDR image 12
  • the pixel C) and the pixel E corresponding to 290% gray of the HDR image 12 are determined as display luminance values without changing the luminance value of the HDR image 12 as it is.
  • 500 nit obtained by clipping at 500 nit is determined as the display luminance value.
  • FIG. 24A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 24B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • the second maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, the HDR signal indicating the luminance value of the HDR image 13 holds 36 nit as the reference luminance value, and it is understood that the manufacturer intentionally changed the reference luminance value. Therefore, step S304 is performed, and for the luminance value indicated by the HDR signal that is equal to or less than the luminance value (180 nit) corresponding to 90% gray, the luminance value indicated by the HDR signal is retained as it is.
  • the first maximum luminance value (HPL: 1300 nit) indicated by the HDR signal is the second maximum that HDRTV can display.
  • a linear conversion is performed to obtain a luminance value (DPL: 500 nit).
  • the luminance value of the HDR indicated by the HDR signal is determined as the display luminance value.
  • the first maximum luminance value is applied to the HDR luminance value from 90 nit to the second maximum luminance value (DPL) that can be displayed in HDRTV for the HDR signal indicating the luminance value exceeding 90 nit.
  • the luminance value of the HDR is converted into the display luminance value by performing linear conversion in which (HPL) corresponds to the second maximum luminance value (DPL).
  • the pixel A corresponding to 18% gray of the HDR image 13, the pixel B corresponding to 90% gray of the HDR image 13, and 2.3% gray of the HDR image 13 The corresponding pixel C) is determined as a display luminance value without changing the luminance value of the HDR image 13 as it is.
  • the pixel D) corresponding to 1150% gray of the HDR image 13 446 nit obtained by performing the linear conversion is determined as a display luminance value, and a pixel E corresponding to 290% gray of the HDR image 13)
  • the value of 313 nit obtained by performing the linear conversion is determined as the display luminance value.
  • FIG. 25A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 25B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • the second maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, the HDR signal indicating the luminance value of the HDR image 13 holds 36 nit as the reference luminance value, and it is understood that the manufacturer intentionally changed the reference luminance value. Therefore, step S304 is performed, and for the luminance value indicated by the HDR signal that is less than the second maximum luminance value (500 nit) that can be displayed by the HDRTV, the luminance value indicated by the HDR signal is retained as it is.
  • a luminance value indicated by the HDR signal that is greater than or equal to the second maximum luminance value (500 nit) that can be displayed by HDRTV, a luminance value obtained by clipping at 500 nit to the luminance value indicated by the HDR signal Is determined as the display luminance value.
  • the second maximum luminance value (DPL) that can be displayed in the HDRTV about 500 nit) or less about the HDR signal which shows the luminosity value
  • the luminosity value of HDR which a HDR signal shows is determined as a display luminosity value.
  • DPL is determined as a display luminance value with respect to the HDR luminance value indicated by the HDR signal for the HDR signal indicating a luminance value exceeding DPL.
  • the pixel A corresponding to 18% gray of the HDR image 13 the pixel B corresponding to 90% gray of the HDR image 13, and 2.3% gray of the HDR image 13
  • the pixel C) and the pixel E corresponding to 290% gray of the HDR image 13 are determined as display luminance values without changing the luminance value of the HDR image 13 as it is.
  • 500 nit obtained by clipping at 500 nit is determined as the display luminance value.
  • FIG. 26A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 26B is a diagram showing another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • the second maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, the HDR signal indicating the luminance value of the HDR image 13 holds 36 nit as the reference luminance value, and it is understood that the manufacturer intentionally changed the reference luminance value. However, since the second maximum luminance value of HDRTV is 500 nit, which is not so high compared to HPL, the reference luminance value displayed on the HDRTV side is converted to 18 nit.
  • the first maximum luminance value (HPL: 1300 nit) indicated by the HDR signal is HDRTV. Perform a linear transformation so as to be the second maximum luminance value that can be displayed (DPL: 500 nit).
  • the reference luminance value is the third reference value (36 nit) different from the first reference value (18 nit)
  • the fourth reference value (180 nit) or more larger than 36 nit The HDR luminance value is converted into the display luminance value according to the ratio (1/2) of 18 nit and 36 nit with respect to the HDR signal indicating the luminance value of.
  • HPL is displayed in HDRTV with respect to the HDR luminance values from 180 nit to the first maximum luminance value (HPL: for example, 1300 nit)
  • the luminance value of the HDR is converted into the display luminance value by performing linear conversion corresponding to the possible second maximum luminance value (DPL: for example 500 nit).
  • the display luminance value is obtained from 18 nit obtained by multiplying the luminance value (36 nit) of HDR by 1 ⁇ 2. Decide as.
  • the pixel B) corresponding to 90% gray in the HDR image 13 90 nit obtained by multiplying the luminance value (180 nit) of HDR by 1 ⁇ 2 is determined as the display luminance value.
  • the pixel C) corresponding to 2% gray in the HDR image 13 2 nit obtained by multiplying the luminance value of HDR by 1 ⁇ 2 is determined as the display luminance value.
  • pixel D) corresponding to 1150% gray of the HDR image 13 450 nit obtained by performing the above linear conversion on the luminance value (1160 nit) of the HDR is determined as the display luminance value.
  • pixel E) corresponding to 290% gray of the HDR image 13 190 nit obtained by performing the above linear conversion on the luminance value (360 nit) of the HDR is determined as the display luminance value.
  • FIG. 27A is an example of a result obtained by acquiring an HDR image obtained by the mastering of FIG. 19A and performing luminance conversion for a display device whose second maximum luminance value is 500 nit.
  • FIG. 27B is a diagram illustrating another example of the relationship between the HDR signal value and the TV signal value for performing luminance conversion of the HDR signal value to the TV signal value.
  • the maximum luminance value that can be displayed by the HDRTV is limited to 500 nit. Therefore, it is necessary to convert the HDR luminance value indicated by the HDR signal into the display luminance value in the luminance range of the display.
  • step S301 a luminance value (reference luminance value) corresponding to 18% gray (0 Stop) serving as a reference of brightness is extracted from the acquired HDR signal. Then, in step S302, the HDR signal indicating the luminance value of the HDR image 13 holds 36 nit as the reference luminance value, and it is understood that the manufacturer intentionally changed the reference luminance value. However, since the second maximum luminance value of HDRTV is 500 nit, which is not so high compared to HPL, the reference luminance value displayed on the HDRTV side is converted to 18 nit.
  • step S304 the luminance value indicated by the HDR signal that exceeds the reference luminance value (180 nit) corresponding to 90% gray and is less than the second maximum luminance value (500 nit) that can be displayed by the HDRTV is , Linear conversion is performed, and for the luminance value indicated by the HDR signal that is higher than the second maximum luminance value (500 nit) that can be displayed by the HDRTV, by clipping the luminance value indicated by the HDR signal at 500 nit The obtained luminance value is determined as a display luminance value.
  • the fourth reference value (180 nit) or more larger than 36 nit The HDR luminance value is converted into the display luminance value according to the ratio of 18 nit and 36 nit with respect to the HDR signal indicating the luminance value of.
  • the fifth reference value is HDRTV with respect to the HDR luminance value from 180 nit to the fifth reference value.
  • the luminance value of the HDR is converted into the display luminance value by performing linear conversion corresponding to the displayable second maximum luminance value (DPL: for example, 500 nit).
  • DPL is determined as the display luminance value for the HDR signal indicating the luminance value exceeding the fifth luminance value.
  • the display luminance value is obtained from 18 nit obtained by multiplying the luminance value (36 nit) of HDR by 1 ⁇ 2. Decide as.
  • the pixel B) corresponding to 90% gray in the HDR image 13 90 nit obtained by multiplying the luminance value (180 nit) of HDR by 1 ⁇ 2 is determined as the display luminance value.
  • the pixel C) corresponding to 2% gray in the HDR image 13 2 nit obtained by multiplying the luminance value of HDR by 1 ⁇ 2 is determined as the display luminance value.
  • mapping may be performed so that the reference luminance value is larger than when the room is dark. Further, even in a display mode in which the luminance value is displayed as a whole such as the dynamic mode, the reference luminance value may be mapped so as to be large. On the other hand, in the case of a display mode which places importance on the reproducibility of the low luminance area, such as a cinema mode, the reference luminance value may be fixed at 18 nit.
  • FIG. 28 is a flowchart showing a conversion method according to the first modification of the second embodiment. That is, FIG. 28 is a flowchart showing an operation in the case where the luminance conversion processing is performed based on the metadata on the HDR TV side such as the viewing environment and the display mode.
  • the luminance conversion unit 302 determines whether to perform luminance conversion processing according to the metadata on the HDR TV side (S401). From the above, the luminance conversion unit 302 acquires, from the HDRTV, the HDRTV-side metadata indicating the display characteristics of the HDRTV.
  • the luminance conversion unit 302 sets a reference luminance value according to the metadata on the HDRTV side and corrects the luminance conversion process. (S402).
  • the luminance conversion unit 302 performs the normal luminance conversion processing (S403).
  • the luminance conversion unit 302 further switches the luminance conversion processing according to the acquired metadata on the HDRTV side, and converts the luminance value of HDR into the display luminance value by the switched luminance conversion processing.
  • FIG. 29 is a diagram showing an example of the relationship between an HDR signal value and a TV signal value for performing luminance conversion of an HDR signal value to a TV signal value, which is used in luminance conversion processing based on metadata on the HDR TV side.
  • a general HDRTV has a function of measuring the brightness around the HDRTV and adjusting the display brightness of the HDRTV using a light amount sensor or the like built in the HDRTV.
  • HDRTV for example, when the periphery is bright, processing for raising the luminance value as a whole and displaying an image is performed.
  • HDRTV is set to a display mode for emphasizing a signal in a high luminance range, such as a dynamic mode, processing is performed to raise an overall luminance value of a backlight such as liquid crystal to display an image.
  • the metadata on the HDRTV side is metadata indicating a viewing environment or display mode of the HDRTV.
  • the minimum displayable luminance value is a reference luminance value (offset luminance value: 5 nit, for example)
  • the display luminance value TV signal value
  • the offset luminance value to the luminance value of HDR indicated by the HDR signal.
  • the reference luminance value is 18 nit in the input HDR signal
  • the offset luminance value is 5 nit
  • the reference luminance value in the TV signal value is offset luminance to the reference luminance value 18 nit in the HDR signal. It becomes 23 nit obtained by adding the value 5 nit.
  • the ratio of the HDR luminance value corresponding to 18% gray to the display luminance value corresponding to 18% gray is converted to the display luminance value.
  • the display luminance value to be output is a value obtained by adding the offset luminance value to the output value in the luminance conversion processing in the present embodiment.
  • the HDR luminance value in the case of converting the HDR luminance value to the display luminance value is 90
  • the luminance value corresponding to 90% gray is an example. That is, with regard to the upper and lower limit luminance values in the case of converting the HDR luminance value to the display luminance value while maintaining the ratio between the HDR luminance value corresponding to 18% gray and the display luminance value corresponding to 18% gray It may be determined by an arbitrary value preset in HDRTV, or may be separately acquired according to the acquired metadata by acquiring metadata indicating the upper limit and lower limit luminance values.
  • FIG. 30 is a flowchart showing an operation of performing luminance conversion processing based on the offset luminance value.
  • the luminance conversion process shown in FIG. 30 may be performed in step S402 of FIG.
  • the luminance conversion unit 302 determines an offset luminance value according to the metadata on the HDRTV side (S501).
  • the luminance conversion unit 302 adds an offset luminance value to the luminance value of the HDR with respect to the luminance value of the HDR in the luminance range for holding and outputting the luminance value of the HDR indicated by the HDR signal (S502) ).
  • the luminance conversion unit 302 performs second conversion (metadata on the HDRTV side) indicating display characteristics of the HDRTV with respect to the HDR signal indicating at least the luminance value equal to or less than the second reference value (90 nit) in the luminance conversion. Is added to the value after linear conversion of the minimum luminance value that can be displayed in the HDRTV, and the value after addition is determined as the second luminance value.
  • FIG. 31 is a flowchart showing an operation of luminance conversion processing when metadata of an HDR signal and metadata on the HDR TV side are used in combination.
  • the HDR EOTF conversion unit 301 of the conversion device 300 acquires a reference luminance value sent as first metadata of the HDR signal (S601).
  • the luminance conversion unit 302 determines whether the acquired reference luminance value is 18 nit (S602).
  • the luminance conversion unit 302 determines whether to perform luminance conversion processing according to the metadata on the HDRTV side (S603).
  • the luminance conversion unit 302 sets a reference luminance value according to the metadata on the HDRTV side and corrects the luminance conversion process. (S604).
  • the luminance conversion unit 302 performs the normal luminance conversion processing (S605).
  • the luminance conversion unit 302 determines whether or not to perform luminance conversion processing according to the metadata on the HDRTV side (S606).
  • the luminance conversion unit 302 When it is determined that the luminance conversion processing according to the metadata on the HDRTV side is to be performed (Yes in S606), the luminance conversion unit 302 combines the reference luminance value included in the metadata of the HDR signal and the metadata on the HDRTV side Then, the luminance conversion process is corrected (S607). Specifically, in step S607, at least the luminance value of the area to be output while maintaining the ratio between the HDR luminance value corresponding to 18% gray and the display luminance value corresponding to 18% gray with respect to the reference luminance value. Luminance conversion is performed so that the relative luminance value relationship is maintained.
  • the display luminance value converted from the HDR luminance value of the luminance range corresponding to 90% gray or less in the luminance conversion described in FIG. 24B a value obtained by adding the offset luminance value to the display luminance value The display luminance value (TV signal value) after correction is used.
  • FIG. 32 is a diagram showing an example in which the reference luminance value is dynamically changed in the continuously reproduced stream.
  • the reference luminance value is 18 nit in Section 1, Section 2 and Section 4 but is 36 nit in Section 3.
  • the metadata of the HDR signal can be updated dynamically, the metadata is transmitted in synchronization with the frame in which the reference luminance value is updated, or in the vicinity of the frame in which the luminance value is updated.
  • the luminance conversion processing is performed by reflecting the update content from the frame for which updating of the metadata of the HDR signal is instructed, or from the first frame after which updating of the metadata is possible.
  • the metadata of the HDR signal may be updated only at the beginning of a random access unit such as GOP (Group Of Pictures) in video, and may be fixed in the random access unit. Alternatively, it may be fixed in units that are seamlessly reproduced continuously. For example, it may be fixed between play items seamlessly connected in BD.
  • GOP Group Of Pictures
  • FIG. 33 is a flow chart showing an operation example of a display device for reproducing a stream in which metadata of an HDR signal is dynamically updated as shown in FIG.
  • the luminance conversion unit 302 sets in advance a default value of the reference luminance value (S701).
  • the luminance conversion unit 302 determines whether metadata of the HDR signal has been acquired (S702).
  • the luminance conversion unit 302 When it is determined that the metadata of the HDR signal has been acquired (Yes in S702), the luminance conversion unit 302 resets the reference luminance value according to the content of the acquired metadata, and according to the reset reference luminance value. A luminance conversion process is performed (S703).
  • the luminance conversion unit 302 determines that the metadata of the HDR signal is not acquired (No in S702), identification is performed from the default value set in step S701 or the metadata of the HDR signal acquired first A luminance conversion process is determined based on the reference luminance value to be calculated (S704).
  • the luminance conversion process may be changed only at the beginning of the play item not connected seamlessly or at the switching time of the program in the broadcast.
  • the luminance conversion unit 302 has different reference luminance values indicated by the metadata of the HDR signal in the first section and the second section of the reproduction stream.
  • the first luminance value is converted to the second luminance value in accordance with the reference luminance value corresponding to the section.
  • the HDR video is, for example, a Blu-ray Disc, a DVD, a video distribution site on the Internet, a broadcast, and a video in the HDD.
  • the conversion device 100 (HDR to pseudo-HDR conversion processing unit) may be present inside a disc player, a disc recorder, a set top box, a television, a personal computer, and a smartphone.
  • the conversion apparatus 100 may exist inside a server apparatus in the Internet.
  • the display device 200 (SDR display unit) is, for example, a television, a personal computer, or a smartphone.
  • the display characteristic information acquired by the conversion device 100 may be acquired from the display device 200 via an HDMI cable or a LAN cable using HDMI or another communication protocol.
  • the display characteristic information acquired by the conversion device 100 may acquire display characteristic information included in model information of the display device 200 or the like via the Internet.
  • the user may manually operate and set the display characteristic information in the conversion device 100.
  • the display characteristic information of the conversion apparatus 100 may be acquired immediately before the pseudo HDR video generation (steps S101 to S104), or may be at the time of initial setting of the device or at the timing of display connection.
  • the display characteristic information may be acquired immediately before the conversion into the display luminance value, or may be performed at the timing when the conversion device 100 is first connected to the display device 200 with an HDMI cable.
  • CPL and CAL of HDR video may be one for one content or may be present for each scene. That is, in the conversion method, it is luminance information corresponding to each of a plurality of scenes of video, and for each scene, a first maximum luminance value which is a maximum value among luminance values for a plurality of images constituting the scene And luminance information (CPL, CAL) including at least one of an average luminance value which is an average of luminance values of a plurality of images constituting the scene, and in the first luminance conversion, for each of the plurality of scenes, The display luminance value may be determined according to the luminance information corresponding to the scene.
  • CPL and CAL may be included in the same medium (Blu-ray Disc, DVD, etc.) as HDR video, or may be acquired from a different place from HDR video, such as conversion device 100 acquiring from the Internet You may That is, luminance information including at least one of CPL and CAL may be acquired as meta information of a video, or may be acquired via a network.
  • a fixed value may be used without using CPL, CAL, and display peak luminance (DPL).
  • the fixed value may be changeable from the outside.
  • CPL, CAL, and DPL may be switched in several types.
  • DPL may be only three types of 200 nit, 400 nit, and 800 nit, or the value closest to display characteristic information is used. You may do it.
  • the HDR EOTF may not be SMPTE 2084, and other types of HDR EOTF may be used.
  • the maximum luminance (HPL) of the HDR image may not be 10,000 nit, and may be 4,000 nit or 1,000 nit, for example.
  • bit width of the code value may be 16, 14, 12, 10, or 8 bits, for example.
  • inverse SDR EOTF conversion is determined from display characteristic information
  • a fixed conversion function (which can be changed from the outside) may be used.
  • the reverse SDR EOTF conversion is described, for example, in Rec. ITU-R BT.
  • the function defined in 1886 may be used.
  • the number of types of inverse SDR EOTF conversion may be narrowed down, and one closest to the input / output characteristics of the display device 200 may be selected and used.
  • the display mode may use a fixed mode, and may not be included in the display characteristic information.
  • the conversion device 100 may not transmit the setting information, may have a fixed display setting in the display device 200, or may not change the display setting. In this case, the display setting unit 201 is unnecessary.
  • the setting information may be flag information indicating whether it is a pseudo HDR video or, for example, in the case of a pseudo HDR video, the setting may be changed to the brightest display. That is, in the setting of display setting (S105), when the acquired setting information indicates that the signal indicates the pseudo HDR video converted using DPL, the setting for displaying the brightness setting of the display device 200 most brightly You may switch to
  • the first luminance conversion (HPL ⁇ DPL) of the conversion device 100 is converted by, for example, the following formula.
  • L represents a luminance value normalized to 0 to 1
  • S1, S2, a, b, and M are values set based on CAL, CPL, and DPL.
  • ln is a natural logarithm.
  • V is a converted luminance value normalized to 0 to 1.
  • CAL is 300 nit
  • CPL is 2,000 nit
  • DPL is 750 nit
  • CAL + 50 nit is not converted, and conversion is performed for 350 nit or more, each value is It becomes such a value.
  • the conversion formula can be changed according to the content, and conversion can be performed so as to maintain the gradation of the HDR as much as possible. It becomes. In addition, adverse effects such as too dark or too bright can be suppressed. Specifically, the gradation is kept as much as possible by mapping the content peak luminance of the HDR video to the display peak luminance. Also, by not changing pixel values below the average brightness, the overall brightness is kept from changing.
  • the conversion formula can be changed according to the display environment of the SDR display, and the HDR feeling can be obtained according to the performance of the SDR display
  • a video (pseudo HDR video) can be displayed with the same gradation and brightness as the original HDR video.
  • the display peak luminance is determined according to the maximum luminance of the SDR display and the display mode, and the HDR image is converted so as not to exceed the peak luminance value.
  • the display is performed with almost no reduction in gradation, and the non-displayable brightness is lowered to the displayable brightness.
  • the overall brightness is maintained by converting into a pseudo-HDR image suppressed to a peak luminance of 1,000 nit, and the luminance value changes depending on the display mode of the display. Therefore, according to the display mode of the display, the conversion formula of luminance is changed. If a pseudo-HDR image allows luminance greater than the display's peak luminance, the high luminance may be replaced with the peak luminance on the display side and displayed, in which case the entire HDR image is darker than the original HDR video. Become.
  • the small luminance is replaced with the peak luminance on the display side, and the entire image becomes brighter than the original HDR video.
  • the display is smaller than the peak luminance on the display side, the gradation performance of the display is not used at maximum.
  • the pseudo HDR video can be displayed better by switching the display setting using the setting information. For example, when the brightness is set to be dark, high-brightness display can not be performed, so the sense of HDR is lost. In that case, the display performance is maximized to display a high-graded image by displaying a message prompting the user to change the display setting or to have the user change the display setting.
  • the Blu-ray device that plays back 4K compatible BD or HDR compatible BD needs to support 4 TV of 2K_SDR compatible TV, 2K_HDR compatible TV, 4K_SDR compatible TV, and 4K_HDR compatible TV.
  • Blu-ray devices need to support three sets of HDMI / HDCP standards (HDMI 1.4 / HDCP 1.4, HDMI 2.0 / HDCP 2.1, HDMI 2.1 / HDCP 2.2).
  • the Blu-ray device when playing back four types of Blu-ray discs (BD compatible with 2K_SDR, BD compatible with 2K_HDR, BD compatible with 4K_SDR, and BD compatible with 4K_HDR), the Blu-ray device is connected to each BD (content) and connected. It is necessary to select the appropriate processing and HDMI / HDCP for each display device (TV) being used. Furthermore, when combining graphics with video, processing needs to be changed depending on the type of BD and the type of display device (TV) connected.
  • the third embodiment provides various methods for relatively simplifying the Blu-ray device internal processing.
  • the graphic stream is restricted to reduce the types of combinations of video stream and graphic stream.
  • the HDR video when the HDR video is displayed on the SDRTV, the HDR video is converted to the SDR video of 100 nit or less by utilizing the fact that the peak brightness of the SDRTV to be displayed exceeds 100 nit (usually 200 nit or more). Rather, it converts so as to maintain the gradation of an area exceeding 100 nit to some extent, and realizes “HDR ⁇ pseudo HDR conversion processing” that can be converted to a pseudo HDR video close to the original HDR and displayed on SDRTV.
  • the conversion method of “HDR ⁇ pseudo HDR conversion processing” may be switched according to the display characteristics (maximum luminance value, input / output characteristics, and display mode) of the SDR TV.
  • the display characteristic information can be acquired by (1) automatically acquiring through HDMI or network, (2) generating by inputting information such as maker name and part number to the user, and (3) maker name and part number It is possible to acquire from the cloud etc. using the information of.
  • the conversion method may be switched according to the luminance information (CAL, CPL) of the HDR video.
  • the luminance information of the HDR video of the conversion device 100 (1) acquiring as meta information attached to the HDR video, (2) acquiring by causing the user to input content title information, And (3) It is conceivable to obtain information from a cloud or the like using input information made powerful to the user.
  • the conversion method it is also possible to transmit display settings such as the display mode of the SDRTV, display parameters, etc. to the display device 200 to enhance the effect of the pseudo-HDR, for example.
  • a message may be displayed on the screen.
  • the metadata of the HDR signal is not limited to the luminance value corresponding to 18% gray, but may be another value as long as it can be used as a gray level reference in HDRTV.
  • the upper and lower luminance values in the case of converting the HDR luminance value to the display luminance value while maintaining the ratio between the HDR luminance value corresponding to 18% gray and the display luminance value corresponding to 18% gray are HDRTV You may set according to the maximum luminance value which can be output, and the minimum luminance value. For example, if the maximum brightness value of HDRTV is a brightness value corresponding to 80% gray, a display corresponding to 18% gray and a brightness value of HDR corresponding to 18% gray up to a brightness value corresponding to 70% gray The ratio with respect to the luminance value may be maintained, and linear conversion may be performed according to the second maximum luminance value (DPL) of HDRTV for luminance higher than that.
  • DPL second maximum luminance value
  • the minimum luminance value can be similarly processed.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure is not limited to the embodiments. Without departing from the spirit of the present disclosure, various modifications that may occur to those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is one or more of the present disclosure. It may be included within the scope of the embodiments.
  • the present disclosure is useful as a conversion method, a conversion device, and the like that can appropriately convert luminance from the first luminance range to the second luminance range in which the luminance range is reduced.
  • HDR EOTF conversion unit 102 luminance conversion unit 103 inverse luminance conversion unit 104 inverse SDR EOTF conversion unit 200 display device 201 display setting unit 202 EDR conversion unit 203 SDR luminance conversion unit 204 display unit 301 HDR EOTF conversion Unit 302 Brightness converter 303 Display unit

Abstract

 映像を表示装置に表示するために、入力された映像の輝度を変換する変換方法であって、映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、映像の第1輝度値を示す第1輝度信号を取得し、取得した第1輝度信号が示す第1輝度値を、最大輝度値が第1最大輝度値よりも小さく、かつ、100nitよりも大きい第2最大輝度値に定義された第2輝度範囲に対応する第2輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行い、輝度変換では、取得した第1輝度信号の第1メタデータに含まれる基準反射率に対応する基準輝度値に応じて、実行する輝度変換処理を切り替え、切り替えた輝度変換処理により第1輝度値を第2輝度値に変換する。

Description

変換方法および変換装置
 本開示は、変換方法および変換装置に関する。
 従来、表示可能な輝度レベルを改善するための画像信号処理装置が開示されている(例えば特許文献1参照)。
特開2008-167418号公報
 本開示の一態様に係る変換方法は、映像を表示装置に表示するために、入力された映像の輝度を変換する変換方法であって、前記映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像の第1輝度値を示す第1輝度信号を取得し、前記取得した第1輝度信号が示す前記第1輝度値を、最大輝度値が、前記第1最大輝度値よりも小さく、かつ、100nitよりも大きい第2最大輝度値に定義された第2輝度範囲に対応する第2輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行い、前記輝度変換では、前記取得した第1輝度信号の第1メタデータに含まれる、基準反射率に対応する基準輝度値に応じて、実行する前記輝度変換処理を切り替え、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換する。
図1は、映像技術の進化について説明するための図である。 図2Aは、SDRTV内のSDR表示処理について説明するための図である。 図2Bは、ピーク輝度が300nitのSDRTV内のSDR表示処理について説明するための図である。 図3Aは、HDRおよびSDRのそれぞれに対応したEOTF(Electro-Optical Transfer Function)の例について示す図である。 図3Bは、HDRおよびSDRのそれぞれに対応した逆EOTFの例について示す図である。 図4は、コンテンツに格納される輝度信号のコード値の決定方法、および、再生時にコード値から輝度値を復元するプロセスの説明図である。 図5Aは、HDRTV内で、HDR信号を変換してHDR表示を行う表示処理の一例を示す図である。 図5Bは、HDR対応の再生装置とSDRTVとを用いて、HDR表示を行う表示処理の一例を示す図である。 図5Cは、標準インターフェースを介して互いに接続したHDR対応の再生装置とSDRTVと用いて、HDR表示を行う表示処理の一例を示す図である。 図6は、実施の形態の変換装置および表示装置の構成を示すブロック図である。 図7は、実施の形態の変換装置および表示装置により行われる変換方法および表示方法を示すフローチャートである。 図8Aは、第1輝度変換の一例について説明するための図である。 図8Bは、第1輝度変換の他の一例について説明するための図である。 図9は、第2輝度変換について説明するための図である。 図10は、表示設定の詳細な処理を示すフローチャートである。 図11は、第3輝度変換について説明するための図である。 図12は、HDRから疑似HDRへの変換処理について説明するための図である。 図13は、画像撮影時の輝度の尺度を示す図である。 図14は、撮影した画像の輝度値の例に示す図である。 図15は、SDRに対応したホームエンターテイメント用マスターを制作するフロー、配信媒体および表示装置の関係について説明するための図である。 図16Aは、図14で示した原画像をSDR画像にマスタリングした結果の輝度値の一例を示す図である。 図16Bは、原信号値をSDR信号値に変換する(マスタリングする)ための、原信号値とSDR信号値との関係の一例を示す図である。 図17は、HDR導入時のマスター、配信方式、および表示装置の関係について説明するための図である。 図18Aは、図14で示した原画像をHDR画像にマスタリングした結果の輝度値の一例を示す図である。 図18Bは、原信号値をHDR信号値に変換する(マスタリングする)ための、原信号値とHDR信号値との関係の一例を示す図である。 図19Aは、図14で示した原画像をHDR画像にマスタリングした結果の輝度値の別の一例を示す図である。 図19Bは、原信号値をHDR信号値に変換する(マスタリングする)ための、原信号値とHDR信号値との関係の別の一例を示す図である。 図20は、HDRTV内で、HDR信号を変換してHDR映像を生成する表示処理を示す図である。 図21は、実施の形態2に係る変換方法を示すフローチャートである。つまり、図21は、輝度変換処理の際のアルゴリズムを示す図である。 図22Aは、図18Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図22Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の一例を示す図である。 図23Aは、図18Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図23Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。 図24Aは、図19Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図24Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。 図25Aは、図19Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図25Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。 図26Aは、図19Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図26Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。 図27Aは、図19Aのマスタリングにより得られたHDR画像を取得して、最大輝度値が500nitの表示機器用に輝度変換した結果の一例を示す図である。 図27Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。 図28は、実施の形態2の変形例1に係る変換方法を示すフローチャートである。 図29は、HDRTV側のメタデータに基づく輝度変換処理において用いられる、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の一例を示す図である。 図30は、オフセット輝度値に基づいて輝度変換処理を行う動作を示すフローチャートである。 図31は、HDR信号のメタデータとHDRTV側のメタデータを併用した場合の輝度変換処理の動作を示すフローチャートである。 図32は、連続して再生されるストリームにおいて、基準輝度値が動的に変更される例を示す図である。 図33は、図32のようにHDR信号のメタデータが動的に更新されるストリームを再生する表示装置の動作例を示すフローチャートである。
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した、画像信号処理装置に関し、以下の課題が生じることを見出した。
 特許文献1に開示されている画像信号処理装置では、被写体を構成する画素から算出されたリニアRGB値に基づいて画素毎にリニア輝度を算出し、リニアRGB値およびリニア輝度に基づいて画素毎の補正リニア輝度および当該画素を含む複数の画素を合成した合成画素の補正リニアRGB値を算出し、補正リニア輝度および補正リニアRGB値をそれぞれガンマ補正して表示用輝度および表示用RGB値を算出する。このように、画像信号処理装置では、補正リニアRGB値に基づいてリニア輝度を補正することにより、表示可能な階調数の増加を図っている。
 しかしながら、特許文献1に開示されている画像信号処理装置などの輝度の補正(変換)においては、第1輝度範囲から輝度範囲が縮小された第2輝度範囲に輝度を補正(変換)するときの輝度の変換方法については考慮されていなかった。
 以上の検討を踏まえ、本発明者は、上記課題を解決するために、下記の改善策を検討した。
 本開示の一態様に係る表示方法は、映像を表示装置に表示するために、入力された映像の輝度を変換する変換方法であって、前記映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像の第1輝度値を示す第1輝度信号を取得し、前記取得した第1輝度信号が示す前記第1輝度値を、最大輝度値が、前記第1最大輝度値よりも小さく、かつ、100nitよりも大きい第2最大輝度値に定義された第2輝度範囲に対応する第2輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行い、前記輝度変換では、前記取得した第1輝度信号の第1メタデータに含まれる、基準反射率に対応する基準輝度値に応じて、実行する前記輝度変換処理を切り替え、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換する。
 これによれば、基準反射率に対応する基準輝度値に応じて、輝度変換処理を切り替えて輝度変換を行うため、輝度を適切に変換できる。
 また、例えば、前記輝度変換では、前記基準輝度値が第1基準値であるか否かに基づいて、前記輝度変換処理を切り替えてもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値である場合、前記第1基準値より大きい第2基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第2基準値を超える輝度値を示す前記第1輝度信号について、前記第2基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を、前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換してもよい。
 また、例えば、前記輝度変換では、少なくとも、前記第2基準値以下の輝度値を示す前記第1輝度信号に対して、前記表示装置の表示特性を示す第2メタデータに含まれる前記表示装置において表示可能な最小輝度値を前記線形変換した後の値に加算し、加算後の値を前記第2輝度値として決定してもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値である場合、前記表示装置において表示可能な第2最大輝度値以下である輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第2最大輝度値を超える輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値に対して、前記第2最大輝度値を前記第2輝度値として決定してもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第4基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記表示装置において表示可能な第2最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換してもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値である場合、前記第1基準値より大きい第2基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第2基準値を超える輝度値を示す前記第1輝度信号について、前記第2基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を、前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第4基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記表示装置において表示可能な第2最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、前記第2基準値および前記第4基準値は、前記基準反射率よりも大きい反射率に対応する輝度値であってもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、前記表示装置において表示可能な第2最大輝度値以下である輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、前記第2最大輝度値を超える輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値に対して、前記第2最大輝度値を前記第2輝度値として決定してもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1基準値と、前記第3基準値との比率に応じて、前記第1輝度値を前記第2輝度値に変換し、前記第3基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換してもよい。
 また、例えば、前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1基準値と、前記第3基準値との比率に応じて、前記第1輝度値を前記第2輝度値に変換し、前記第4基準値から前記第4基準値より大きい第5基準値までの輝度値を示す前記第1輝度信号について、前記第4基準値から前記第5基準値までの前記第1輝度値に対して、前記第5基準値を前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、前記第5輝度値を超える輝度値を示す前記第1輝度信号について、前記第2最大輝度値を前記第2輝度値として決定してもよい。
 また、例えば、さらに、前記表示装置の表示特性を示す第2メタデータを、前記表示装置から取得し、前記輝度変換では、前記取得した第2メタデータに応じて前記輝度変換処理をさらに切り替えて、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換してもよい。
 また、例えば、前記第2メタデータは、前記表示装置の視聴環境または表示モードを示すデータであってもよい。
 また、例えば、前記第1輝度信号に基づいて連続して再生される再生ストリームにおいて、前記再生ストリームの第1区間と第2区間とで前記HDR信号のメタデータが示す前記基準反射率に対応する基準輝度値が異なる場合は、前記輝度変換では、前記第1区間と前記第2区間とのそれぞれについて、当該区間に対応する基準輝度値に応じて、前記第1輝度値を前記第2輝度値に変換してもよい。
 なお、これらの全般包括的または具体的な態様は、装置、システム、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 以下、添付の図面を参照して、本開示の一態様に係る変換方法および変換装置について、具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 本開示は、輝度範囲が高い高輝度信号であるHDR(High Dynamic Range)信号を、HDR信号が対応している輝度範囲における最大輝度値(最高輝度値またはピーク輝度値)とは異なる輝度範囲の表示能力を有する表示装置(例えば、TV、プロジェクタ、タブレット、スマートホン等)で表示させることを実現するための、HDR信号形式とそのHDR信号の変換方法、変換装置に関する。
 [1-1.背景]
 まず、映像技術の変遷について、図1を用いて説明する。図1は、映像技術の進化について説明するための図である。
 これまで、映像の高画質化としては、表示画素数の拡大に主眼がおかれ、Standard Definition(SD)の720×480画素の映像から、High Definition(HD)の1920×1080画素の、所謂2K映像が普及している。
 近年、更なる高画質化を目指して、Ultra High Definition(UHD)の3840×1920画素、あるいは、4Kの4096x1920画素の、所謂4K映像の導入が開始された。
 4Kの導入による映像の高解像度化を行うと共に、ダイナミックレンジ拡張や色域の拡大、あるいは、フレームレートの追加、向上などを行うことで映像を高画質化することが検討されている。
 ダイナミックレンジ拡張(HDR)については、デジタルカメラやCMOS(Complementary metal-oxide-semiconductor)イメージセンサの性能向上により、露出を示すStop数が14Stops以上の広いダイナミックレンジの画像の撮影が可能になっている。このため、暗部階調を維持しつつ、100%反射光以上に明るい光(鏡面反射光などの明るい光)を撮影することが可能になっている。このカメラまたはイメージセンサの性能向上を表現力の向上に活かすために、より高輝度な信号も伝送可能にする信号規格として、HDR(High Dynamic Range)が注目されている。
 これまでのTV信号は、SDR(Standard Dynamic Range)と呼ばれ、最大輝度値が100nitであったのに対して、HDRでは1000nit以上まで最大輝度値を拡大することが想定されている。HDRは、SMPTE(Society of Motion Picture & Television Engineers)やITU-R(International Telecommunications Union Radiocommunications Sector)などにおいて、マスタリングディスプレー用規格の標準化も進行中である。
 HDRの具体的な適用先としては、HDやUHDと同様に、放送やパッケージメディア(Blu-ray(登録商標、以下同様) Disc等)、インターネット配信などで使われることが想定されている。
 なお、以下では、HDRに対応した映像において、当該映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義されたHDRの輝度範囲における輝度値からなり、当該映像の輝度値を示す輝度信号をHDR信号と呼ぶ。SDRに対応した映像において、当該映像の輝度は、SDRの輝度範囲の輝度値からなり、当該映像の輝度値を示す輝度信号をSDR信号と呼ぶ。また、HDRの輝度範囲は、SDRの輝度範囲よりも最大輝度値が大きい輝度範囲である。なお、HDRの輝度範囲の最小輝度値は、SDRの輝度範囲の最小輝度値は同じであり、0nitである。
 [1-2.SDRTV]
 SDRに対応した映像の表示(以下、「SDR表示」という。)のみに対応したTV(以下、「SDRTV」という。)は、通常、輝度値が100nitまでの入力信号が入力される。このため、SDRTVは、その表示能力が100nitであれば入力信号の輝度値を表現するのに十分である。しかし、SDRTVは、実際は、視聴環境(暗い部屋:シネマモード、明るい部屋:ダイナミックモード等)に合わせて、最適な輝度値の映像を再生する機能を有し、200nit以上の映像表現が可能な能力を持っているものが多い。つまり、このようなSDRTVは、視聴環境に応じた表示モードを選択することで、表示能力の最大輝度(例えば、300nit)までの映像を表示できる。
 しかし、SDRTVに入力されるSDR方式の入力信号では、入力信号の輝度上限が100nitに決められているため、従来通りにSDR方式の入力インターフェースを使う限り、SDRTVが持つ100nitを超える高輝度の映像再生能力をHDR信号の再生用に使うことは難しい(図2Aおよび図2B参照)。
 [1-3.EOTFについて]
 ここで、EOTFについて、図3Aおよび図3Bを用いて説明する。
 図3Aは、HDRおよびSDRのそれぞれに対応したEOTF(Electro-Optical Transfer Function)の例について示す図である。
 EOTFは、一般的にガンマカーブと呼ばれるものであり、コード値と輝度値との対応を示し、コード値を輝度値に変換するものである。つまり、EOTFは、複数のコード値と輝度値との対応関係を示す関係情報である。
 また、図3Bは、HDRおよびSDRのそれぞれに対応した逆EOTFの例について示す図である。
 逆EOTFは、輝度値とコード値との対応を示し、EOTFとは逆に輝度値を量子化してコード値に変換するものである。つまり、逆EOTFは、輝度値と複数のコード値との対応関係を示す関係情報である。例えば、HDRに対応した映像の輝度値を10ビットの階調のコード値で表現する場合、10,000nitまでのHDRの輝度範囲における輝度値は、量子化されて、0~1023までの1024個の整数値にマッピングされる。つまり、逆EOTFに基づいて量子化することで、10,000nitまでの輝度範囲の輝度値(HDRに対応した映像の輝度値)を、10ビットのコード値であるHDR信号に変換する。HDRに対応したEOTF(以下、「HDRのEOTF」という。)またはHDRに対応した逆EOTF(以下、「HDRの逆EOTF」という。)においては、SDRに対応したEOTF(以下、「SDRのEOTF」という。)またはSDRに対応した逆EOTF(以下、「SDRの逆EOTF」という。)よりも高い輝度値を表現することが可能であり、例えば、図3Aおよび図3Bにおいては、輝度の最大値(ピーク輝度)は、10,000nitである。つまり、HDRの輝度範囲は、SDRの輝度範囲を全て含み、HDRのピーク輝度は、SDRのピーク輝度より大きい。HDRの輝度範囲は、SDRの輝度範囲の最大値である100nitから、10,000nitまで、最大値を拡大した輝度範囲である。
 例えば、HDRのEOTFおよびHDRの逆EOTFは、一例として、米国映画テレビ技術者協会(SMPTE)で規格化されたSMPTE 2084がある。
 [1-4.EOTFの使い方]
 図4は、コンテンツに格納される輝度信号のコード値の決定方法、および、再生時にコード値から輝度値を復元するプロセスの説明図である。
 本例における輝度を示す輝度信号はHDRに対応したHDR信号である。グレーディング後の画像は、HDRの逆EOTFにより量子化され、当該画像の輝度値に対応するコード値が決定する。このコード値に基づいて画像符号化などが行われ、ビデオのストリームが生成される。再生時には、ストリームの復号結果に対して、HDRのEOTFに基づいて逆量子化することによりリニアな信号に変換され、画素毎の輝度値が復元される。以下、HDRの逆EOTFを用いた量子化を「逆HDRのEOTF変換」という。HDRのEOTFを用いた逆量子化を「HDRのEOTF変換」という。同様に、SDRの逆EOTFを用いた量子化を「逆SDRのEOTF変換」という。SDRのEOTFを用いた逆量子化を「SDRのEOTF変換」という。
 [1-5.疑似HDRの必要性]
 次に、疑似HDRの必要性について図5A~図5Cを用いて説明する。
 図5Aは、HDRTV内で、HDR信号を変換してHDR表示を行う表示処理の一例を示す図である。
 図5Aに示すように、HDR映像を表示する場合、表示装置がHDRTVであっても、HDRの輝度範囲の最大値(ピーク輝度(HPL(HDR Peak Luminance):例1500nit))をそのまま表示することができない場合がある。この場合、HDRのEOTFを用いた逆量子化を行った後のリニアな信号を、その表示装置の輝度範囲の最大値(ピーク輝度(DPL(Display Peak Iuminance):例750nit))に合わせるための輝度変換を行う。そして、輝度変換を行うことで得られた映像信号を表示装置に入力することで、その表示装置の限界である最大値の輝度範囲に合わせたHDR映像を表示することができる。
 図5Bは、HDR対応の再生装置とSDRTVとを用いて、HDR表示を行う表示処理の一例を示す図である。
 図5Bに示すように、HDR映像を表示する場合、表示装置がSDRTVであれば、表示するSDRTVの輝度範囲の最大値(ピーク輝度(DPL:例300nit))が100nitを超えることを利用して、図5BのHDR対応の再生装置(Blu-ray機器)内の「HDR→疑似HDR変換処理」で、HDRTV内で行っている、「HDRのEOTF変換」とSDRTVの輝度範囲の最大値であるDPL(例:300nit)を使った「輝度変換」を行い、「輝度変換」を行うことで得られた信号をSDRTVの「表示装置」に直接入力できれば、SDRTVを使っても、HDRTVと同じ効果を実現することができる。
 しかしながら、SDRTVには、このような信号を、外部から直接入力するための手段が無いため、実現できない。
 図5Cは、標準インターフェースを介して互いに接続したHDR対応の再生装置とSDRTVと用いて、HDR表示を行う表示処理の一例を示す図である。
 図5Cに示すように、通常、SDRTVが備える入力インターフェース(HDMI(登録商標、以下同様)等)を使って、図5Bの効果を得られるような信号をSDRTVに入力する必要がある。SDRTVでは、入力インターフェースを介して入力した信号は、「SDRのEOTF変換」と「モード毎の輝度変換」と「表示装置」を順に通過し、その表示装置の最大値の輝度範囲に合わせた映像を表示する。このため、HDR対応のBlu-ray機器内で、SDRTVで入力インターフェースの直後に通過する、「SDRのEOTF変換」と「モード毎の輝度変換」とをキャンセルできるような信号(疑似HDR信号)を生成する。つまり、HDR対応のBlu-ray機器内で、「HDRのEOTF変換」とSDRTVのピーク輝度(DPL)を使った「輝度変換」との直後に、「モード毎の逆輝度変換」と「逆SDRのEOTF変換」とを行うことで、「輝度変換」直後の信号を「表示装置」に入力した場合(図5Cの破線矢印)と同じ効果を疑似的実現する。
 [1-6.変換装置および表示装置]
 図6は、実施の形態の変換装置および表示装置の構成を示すブロック図である。図7は、実施の形態の変換装置および表示装置により行われる変換方法および表示方法を示すフローチャートである。
 図6に示すように、変換装置100は、HDRのEOTF変換部101、輝度変換部102、逆輝度変換部103、および逆SDRのEOTF変換部104を備える。また、表示装置200は、表示設定部201、SDRのEOTF変換部202、輝度変換部203、および表示部204を備える。
 変換装置100および表示装置200の各構成要素についての詳細な説明は、変換方法および表示方法の説明において行う。
 以下、HDRの輝度範囲(0~HPL〔nit〕)を「第1輝度範囲」と示す。ディスプレイの輝度範囲(0~DPL〔nit〕)を「第2輝度範囲」と示す。SDRの輝度範囲(0~100〔nit〕)を「第3輝度範囲」と示す。
 [1-7.変換方法および表示方法]
 変換装置100が行う変換方法について、図7を用いて説明する。なお、変換方法は、以下で説明するステップS101~ステップS104を含む。
 まず、変換装置100のHDRのEOTF変換部101は、逆HDRのEOTF変換が行われたHDR映像を取得する。変換装置100のHDRのEOTF変換部101は、取得したHDR映像のHDR信号に対して、HDRのEOTF変換を実施する(S101)。これにより、HDRのEOTF変換部101は、取得したHDR信号を、輝度値を示すリニアな信号に変換する。HDRのEOTFは、例えばSMPTE 2084がある。
 次に、変換装置100の輝度変換部102は、HDRのEOTF変換部101により変換されたリニアな信号を、ディスプレイ特性情報とコンテンツ輝度情報とを用いて変換する第1輝度変換を行う(S102)。第1輝度変換において、第1輝度範囲であるHDRの輝度範囲に対応した輝度値(以下、「HDRの輝度値」という。)を、第2輝度範囲であるディスプレイの輝度範囲に対応した輝度値(以下、「ディスプレイ輝度値」という。)に変換する。詳細は後述する。
 上記のことから、HDRのEOTF変換部101は、映像の輝度値が量子化されることで得られたコード値を示す第1輝度信号としてのHDR信号を取得する取得部として機能する。また、HDRのEOTF変換部101および輝度変換部102は、取得部により取得されたHDR信号が示すコード値を、ディスプレイ(表示装置200)の輝度範囲に基づいて決定する、HDRの輝度範囲の最大値(HPL)よりも小さく、かつ、100nitよりも大きい最大値(DPL)であるディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する変換部として機能する。
 より具体的には、HDRのEOTF変換部101は、ステップS101において、取得したHDR信号と、HDRのEOTFとを用いて、取得したHDR信号が示す第1コード値としてのHDRのコード値について、HDRのコード値にHDRのEOTFにおいて関係付けられたHDRの輝度値を決定する。なお、HDR信号は、HDRの輝度範囲における輝度値と、複数のHDRのコード値とを関係付けたHDRの逆EOTFを用いて、映像(コンテンツ)の輝度値が量子化されることで得られたHDRのコード値を示す。
 また、輝度変換部102は、ステップS102において、ステップS101で決定したHDRの輝度値について、当該HDRの輝度値に予め関係付けられた、ディスプレイの輝度範囲に対応するディスプレイ輝度値を決定し、HDRの輝度範囲に対応するHDRの輝度値を、ディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する第1輝度変換を行う。
 また、変換装置100は、ステップS102の前に、映像(コンテンツ)の輝度の最大値(CPL:Content Peak luminance)および映像の平均輝度値(CAL:Content Average luminance)の少なくとも一方を含むコンテンツ輝度情報をHDR信号に関する情報として取得している。CPL(第1最大輝度値)は、例えば、HDR映像を構成する複数の画像に対する輝度値のうちの最大値である。また、CALは、例えば、HDR映像を構成する複数の画像に対する輝度値の平均である平均輝度値である。
 また、変換装置100は、ステップS102の前に、表示装置200から表示装置200のディスプレイ特性情報を取得している。なお、ディスプレイ特性情報とは、表示装置200が表示できる輝度の最大値(DPL)、表示装置200の表示モード(後述参照)、入出力特性(表示装置が対応するEOTF)などの表示装置200の表示特性を示す情報である。
 また、変換装置100は、推奨表示設定情報(後述参照、以下、「設定情報」ともいう。)を表示装置200に送信してもよい。
 次に、変換装置100の逆輝度変換部103は、表示装置200の表示モードに応じた逆輝度変換を行う。これにより、逆輝度変換部103は、第2輝度範囲であるディスプレイの輝度範囲に対応した輝度値を、第3輝度範囲であるSDRの輝度範囲に対応する輝度値に変換する第2輝度変換を行う(S103)。詳細は後述する。つまり、逆輝度変換部103は、ステップS102で得られたディスプレイ輝度値について、当該ディスプレイ輝度値に予め関係付けられた、100nitを最大値とするSDRの輝度範囲に対応する第3輝度値としてのSDRに対応した輝度値(以下、「SDRの輝度値」という。)SDRの輝度値を決定し、ディスプレイの輝度範囲に対応するディスプレイ輝度値を、SDRの輝度範囲に対応するSDRの輝度値へ変換する第2輝度変換を行う。
 そして、変換装置100の逆SDRのEOTF変換部104は、逆SDRのEOTF変換を行うことで、疑似HDR映像を生成する(S104)。つまり、逆SDRのEOTF変換部104は、HDRの輝度範囲における輝度値と、複数の第3コード値とを関係付けた第3関係情報であるSDR(Standard Dynamic Range)の逆EOTF(Electro-Optical Transfer Function)を用いて、決定したSDRの輝度値を量子化し、量子化により得られた第3コード値を決定し、SDRの輝度範囲に対応するSDRの輝度値を、第3コード値を示す第3輝度信号としてのSDR信号へ変換することで、疑似HDR信号を生成する。なお、第3コード値は、SDRに対応したコード値であり、以下では、「SDRのコード値」という。つまり、SDR信号は、SDRの輝度範囲における輝度値と、複数のSDRのコード値とを関係付けたSDRの逆EOTFを用いて、映像の輝度値が量子化されることで得られたSDRのコード値で表される。そして、変換装置100は、ステップS104で生成した疑似HDR信号(SDR信号)を表示装置200へ出力する。
 変換装置100は、HDR信号を逆量子化することで得られたHDRの輝度値に対して、第1輝度変換および第2輝度変換を行うことで、疑似HDRに対応したSDRの輝度値を生成し、SDRの輝度値をSDRのEOTFを用いて量子化することで、疑似HDRに対応したSDR信号を生成する。なお、SDRの輝度値は、SDRに対応した0~100nitの輝度範囲内の数値であるが、ディスプレイの輝度範囲に基づく変換を行っているため、HDRの輝度値に対してHDRのEOTFおよびSDRのEOTFを用いた輝度変換を行うことで得られたSDRに対応した0~100nitの輝度範囲内の輝度値とは異なる数値である。
 次に、表示装置200が行う表示方法について、図7を用いて説明する。なお、表示方法は、以下で説明するステップS105~ステップS108を含む。
 まず、表示装置200の表示設定部201は、変換装置100から取得した設定情報を用いて、表示装置200の表示設定を設定する(S105)。ここで、表示装置200は、SDRTVである。設定情報は、表示装置に対して推奨する表示設定を示す情報であり、疑似HDR映像をどのようにEOTFし、どの設定で表示すれば美しい映像を表示することができるかを示す情報(つまり、表示装置200の表示設定を最適な表示設定に切り替えるための情報)である。設定情報は、例えば、表示装置における出力時のガンマカーブ特性や、リビングモード(ノーマルモード)やダイナミックモード等の表示モード、バックライト(明るさ)の数値などを含む。また、ユーザに、表示装置200の表示設定をマニュアル操作で変更することを促すようなメッセージを、表示装置200(以下、「SDRディスプレイ」ともいう)に表示してもよい。詳細は後述する。
 なお、表示装置200は、ステップS105の前に、SDR信号(疑似HDR信号)と、映像の表示にあたって表示装置200に対して推奨する表示設定を示す設定情報とを取得する。
 また、表示装置200は、SDR信号(疑似HDR信号)の取得を、ステップS106の前に行えばよく、ステップS105の後に行ってもよい。
 次に、表示装置200のSDRのEOTF変換部202は、取得した疑似HDR信号に対し、SDRのEOTF変換を行う(S106)。つまり、SDRのEOTF変換部202は、SDR信号(疑似HDR信号)を、SDRのEOTFを用いて逆量子化を行う。これにより、SDRのEOTF変換部202は、SDR信号が示すSDRのコード値を、SDRの輝度値に変換する。
 そして、表示装置200の輝度変換部203は、表示装置200に設定された表示モードに応じた輝度変換を行う。これにより、輝度変換部203は、SDRの輝度範囲(0~100〔nit〕)に対応したSDRの輝度値を、ディスプレイの輝度範囲(0~DPL〔nit〕)に対応したディスプレイ輝度値に変換する第3輝度変換を行う(S107)。詳細は後述する。
 上記のことから、表示装置200は、ステップS106およびステップS107において、取得したSDR信号(疑似HDR信号)が示す第3コード値を、ステップS105で取得した設定情報を用いて、ディスプレイの輝度範囲(0~DPL〔nit〕)に対応するディスプレイ輝度値へ変換する。
 より具体的には、SDR信号(疑似HDR信号)からディスプレイ輝度値への変換では、ステップS106において、SDRの輝度範囲における輝度値と、複数の第3コード値とを関係付けたEOTFを用いて、取得したSDR信号が示すSDRのコード値について、SDRのコード値にSDRのEOTFで関係付けられたSDRの輝度値を決定する。
 そして、ディスプレイ輝度値への変換では、ステップS107において、決定したSDRの輝度値に予め関係付けられた、ディスプレイの輝度範囲に対応するディスプレイ輝度値を決定し、SDRの輝度範囲に対応するSDRの輝度値を、ディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する第3輝度変換を行う。
 最後に、表示装置200の表示部204は、変換したディスプレイ輝度値に基づいて、疑似HDR映像を表示装置200に表示する(S108)。
 [1-8.第1輝度変換]
 次に、ステップS102の第1輝度変換(HPL→DPL)の詳細について、図8Aを用いて説明する。図8Aは、第1輝度変換の一例について説明するための図である。
 変換装置100の輝度変換部102は、ステップS101で得られたリニアな信号(HDRの輝度値)を、ディスプレイ特性情報と、HDR映像のコンテンツ輝度情報とを用いて変換する第1輝度変換を行う。第1輝度変換は、HDRの輝度値(入力輝度値)を、ディスプレイピーク輝度(DPL)を超えないディスプレイ輝度値(出力輝度値)に変換する。DPLは、ディスプレイ特性情報であるSDRディスプレイの最大輝度および表示モードを用いて決定する。表示モードは、例えば、SDRディスプレイに暗めに表示するシアターモードや、明るめに表示するダイナミックモード等のモード情報である。表示モードが、例えば、SDRディスプレイの最大輝度が1,500nitであり、かつ、表示モードが最大輝度の50%の明るさにするモードである場合、DPLは、750nitとなる。ここで、DPL(第2最大輝度値)とは、SDRディスプレイが現在設定されている表示モードにおいて表示できる輝度の最大値である。つまり、第1輝度変換では、SDRディスプレイの表示特性を示す情報であるディスプレイ特性情報を用いて、第2最大輝度値としてのDPLを決定する。
 また、第1輝度変換では、コンテンツ輝度情報のうちのCALとCPLとを用い、CAL付近以下の輝度値は、変換の前後で同一とし、CPL付近以上の輝度値に対してのみ輝度値を変更する。つまり、図8Aに示すように、第1輝度変換では、当該HDRの輝度値がCAL以下の場合、当該HDRの輝度値を変換せず、当該HDRの輝度値を、ディスプレイ輝度値として決定し、当該HDRの輝度値がCPL以上の場合、第2最大輝度値としてのDPLを、ディスプレイ輝度値として決定する。
 また、第1輝度変換では、輝度情報のうちのHDR映像のピーク輝度(CPL)を用い、HDRの輝度値がCPLの場合、DPLを、ディスプレイ輝度値として決定する。
 なお、第1輝度変換では、図8Bのように、ステップS101で得られたリニアな信号(HDRの輝度値)を、DPLを超えない値にクリップするように変換してもよい。このような輝度変換を行うことで、変換装置100での処理を簡素化することができ、装置の縮小化、低電力化、処理の高速化が図れる。なお、図8Bは、第1輝度変換の他の一例について説明するための図である。
 [1-9.第2輝度変換]
 次に、ステップS103の第2輝度変換(DPL→100〔nit〕)の詳細について、図9を用いて説明する。図9は、第2輝度変換について説明するための図である。
 変換装置100の逆輝度変換部103は、ステップS102の第1輝度変換で変換されたディスプレイの輝度範囲(0~DPL〔nit〕)のディスプレイ輝度値に対し、表示モードに応じた逆輝度変換を施す。逆輝度変換は、SDRディスプレイによる表示モードに応じた輝度変換処理(ステップS107)が行われた場合に、ステップS102処理後のディスプレイの輝度範囲(0~DPL〔nit〕)のディスプレイ輝度値を取得できるようにするための処理である。つまり、第2輝度変換は、第3輝度変換の逆輝度変換である。
 上記の処理により、第2輝度変換は、第2輝度範囲であるディスプレイの輝度範囲のディスプレイ輝度値(入力輝度値)を、第3輝度範囲であるSDRの輝度範囲のSDRの輝度値(出力輝度値)に変換する。
 第2輝度変換では、SDRディスプレイの表示モードによって変換式を切り替える。例えば、SDRディスプレイの表示モードがノーマルモードの場合、ディスプレイ輝度値に正比例する正比例値に輝度変換する。また、第2輝度変換では、SDRディスプレイの表示モードがノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、その逆関数を用いることで、低輝度画素のSDRの輝度値は、ディスプレイ輝度値に正比例する正比例値より高い値に、高輝度画素のSDRの輝度値は、ディスプレイ輝度値に正比例する正比例値より低い値に輝度変換する。つまり、第2輝度変換では、ステップS102において決定したディスプレイ輝度値について、SDRディスプレイの表示特性を示す情報であるディスプレイ特性情報に応じた輝度関係情報を用いて、当該ディスプレイ輝度値に関係付けられた輝度値をSDRの輝度値として決定し、ディスプレイ特性情報に応じて輝度変換処理を切り替える。ここで、ディスプレイ特性情報に応じた輝度関係情報とは、例えば図9に示すような、SDRディスプレイの表示パラメータ(表示モード)毎に定められた、ディスプレイ輝度値(入力輝度値)と、SDRの輝度値(出力輝度値)とを関係付けた情報である。
 [1-10.表示設定]
 次に、ステップS105の表示設定の詳細について、図10を用いて説明する。図10は、表示設定の詳細な処理を示すフローチャートである。
 SDRディスプレイの表示設定部201は、ステップS105において、下記のステップS201~ステップS208の処理を行う。
 まず、表示設定部201は、設定情報を用いて、SDRディスプレイに設定されているEOTF(SDRディスプレイ用EOTF)が、疑似HDR映像(SDR信号)の生成時に想定したEOTFと整合しているかどうかを判定する(S201)。
 表示設定部201は、SDRディスプレイに設定されているEOTFが、設定情報が示すEOTF(疑似HDR映像に整合するEOTF)と異なっていると判定した場合(S201でYes)、SDRディスプレイ用EOTFをシステム側で切り替え可能かを判定する(S202)。
 表示設定部201は、切り替え可能であると判定した場合、設定情報を用いて、SDRディスプレイ用EOTFを適切なEOTFに切り替える(S203)。
 ステップS201~ステップS203から、表示設定の設定(S105)では、SDRディスプレイに設定されているEOTFを、取得した設定情報に応じた推奨EOTFに設定する。また、これにより、ステップS105の後に行われるステップS106では、推奨EOTFを用いて、SDRの輝度値を決定することができる。
 システム側で切り替え可能でないと判定した場合(S202でNo)、EOTFをユーザがマニュアル操作で変更することを促すメッセージを画面に表示する(S204)。例えば、「表示ガンマを2.4に設定して下さい」というメッセージを画面に表示する。つまり、表示設定部201は、表示設定の設定(S105)において、SDRディスプレイに設定されているEOTFを切り替えできない場合、SDRディスプレイに設定されているEOTF(SDRディスプレイ用EOTF)を、推奨EOTFに切り替えることをユーザに促すためのメッセージを、SDRディスプレイに表示する。
 次に、SDRディスプレイでは、疑似HDR映像(SDR信号)を表示するが、表示の前に設定情報を用いてSDRディスプレイの表示パラメータが設定情報に合っているかを判定する(S205)。
 表示設定部201は、SDRディスプレイに設定されている表示パラメータが、設定情報とは異なっていると判定した場合(S205でYes)、SDRディスプレイの表示パラメータを、切り替え可能かを判定する(S206)。
 表示設定部201は、SDRディスプレイの表示パラメータを切り替え可能であると判定した場合(S206でYes)、設定情報に合わせて、SDRディスプレイの表示パラメータを切り替える(S207)。
 ステップS204~ステップS207から、表示設定の設定(S105)では、SDRディスプレイに設定されている表示パラメータを、取得した設定情報に応じた推奨表示パラメータに設定する。
 システム側で切り替え可能でないと判定した場合(S206でNo)、SDRディスプレイに設定されている表示パラメータをユーザがマニュアル操作で変更することを促すメッセージを画面に表示する(S208)。例えば、「表示モードをダイナミックモードにし、バックライトを最大にして下さい」というメッセージを画面に表示する。つまり、設定(S105)では、SDRディスプレイに設定されている表示パラメータを切り替えできない場合、SDRディスプレイに設定されている表示パラメータを、推奨表示パラメータに切り替えることをユーザに促すためのメッセージを、SDRディスプレイに表示する。
 [1-11.第3輝度変換]
 次に、ステップS107の第3輝度変換(100→DPL〔nit〕)の詳細について、図11を用いて説明する。図11は、第3輝度変換について説明するための図である。
 表示装置200の輝度変換部203は、SDRの輝度範囲(0~100〔nit〕)のSDRの輝度値をステップS105で設定された表示モードに応じて(0~DPL〔nit〕)に変換する。本処理はS103のモード毎の逆輝度変換の逆関数となるように処理する。
 第3輝度変換では、SDRディスプレイの表示モードによって変換式を切り替える。例えば、SDRディスプレイの表示モードがノーマルモードの場合(つまり、設定された表示パラメータがノーマルモードに対応したパラメータである場合)、ディスプレイ輝度値は、SDRの輝度値に正比例する正比例値に輝度変換する。また、第3輝度変換では、SDRディスプレイの表示モードがノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、低輝度画素のディスプレイ輝度値は、SDRの輝度値に正比例する正比例値より低い値に、高輝度画素のディスプレイ輝度値は、SDRの輝度値に正比例する正比例値より高い値に輝度変換する。つまり、第3輝度変換では、ステップS106において決定したSDRの輝度値について、SDRディスプレイの表示設定を示す表示パラメータに応じた輝度関係情報を用いて、当該SDRの輝度値に予め関係付けられた輝度値をディスプレイ輝度値として決定し、表示パラメータに応じて輝度変換処理を切り替える。ここで、表示パラメータに応じた輝度関係情報とは、例えば図11に示すような、SDRディスプレイの表示パラメータ(表示モード)毎に定められた、SDRの輝度値(入力輝度値)と、ディスプレイ輝度値(出力輝度値)とを関係付けた情報である。
 [1-12.効果等]
 通常のSDRTVは入力信号が100nitであるが、視聴環境(暗い室:シネマモード、明るい部屋:ダイナミックモード等)に合わせて200nit以上の映像表現が可能な能力を持つ。しかし、SDRTVへの入力信号の輝度上限が100nitに決められていたため、その能力を直接つかうことはできなかった。
 HDR映像をSDRTVで表示する場合において、表示するSDRTVのピーク輝度が100nitを超える(通常200nit以上)ことを利用して、HDR映像を100nit以下のSDR映像に変換するのではなく、100nitを超える輝度範囲の階調をある程度保つように、「HDR→疑似HDR変換処理」を行っている。このため、元のHDRに近い疑似HDR映像としてSDRTVに表示させることができる。
 この「HDR→疑似HDR変換処理」技術をBlu-rayに応用した場合は、図12に示すように、HDRディスクにはHDR信号のみを格納し、Blu-ray機器にSDRTVを接続した場合、Blu-ray機器が、「HDR→疑似HDR変換処理」を行い、HDR信号を疑似HDR信号に変換してSDRTVに送る。これにより、SDRTVは、受信した疑似HDR信号から輝度値に変換することで、疑似的なHDR効果を持った映像を表示させることができる。このように、HDR対応TVが無い場合でも、HDR対応のBDとHDR対応のBlu-ray機器を用意すれば、SDRTVであっても、SDR映像よりも高画質な疑似HDR映像を表示させることができる。
 従って、HDR映像を見るためにはHDR対応TVが必要と考えられていたが、HDR的な効果を実感できる疑似HDR映像を、既存のSDRTVで見ることができる。これにより、HDR対応Blu-rayの普及が期待できる。
 放送、Blu-ray等のパッケージメディア、OTT等のインターネット配信により送られてきたHDR信号を、HDR-疑似HDR変換処理を行うことで、疑似HDR信号に変換する。これにより、HDR信号を疑似HDR映像として既存のSDRTVで表示することが可能となる。
 (実施の形態2)
 次に、実施の形態2について説明する。
 実施の形態2では、実施の形態1の図5Aで説明したHDRTV内で、HDR信号を変換してHDR表示を行う表示処理において行われる、変換方法の詳細について説明する。つまり、図5Aにおいて説明した、表示装置がHDRTVであっても、HDRの輝度範囲の最大値をHDRTVにそのまま表示することができない場合、HDRのEOTFを用いた逆量子化を行った後のリニアな信号を、HDRTVの輝度範囲の最大値(DPL)に合わせるための輝度変換処理の詳細について説明する。
 輝度変換処理では、取得した第1輝度信号としてのHDR信号の第1メタデータに含まれる、基準反射率に対応する基準輝度値に応じて、実行する輝度変換処理を切り替え、切り替えた輝度変換処理によりHDRの輝度値をディスプレイ輝度値に変換する。
 以下では、基準反射率について詳細に説明する。
 [2-1.画像撮影時の輝度の尺度の考え方]
 図13は、画像撮影時の輝度の尺度を示す図である。
 図13に示すように、カメラで画像を撮影する場合、反射率が18%になるグレーである18%グレーを明るさの基準点として撮影を行う。つまり、18%グレーは、明るさの基準になる基準反射率である。Stop数は、18%グレーにおける輝度値を基準点とし、輝度値が2倍になる毎に、1ずつ増加する用に定義されている。
 実際にカメラで画像を撮影したときにカメラのCMOS等のイメージセンサから得られる輝度値は、絞り、シャッタースピード、感度設定等による露出に応じて変化する。つまり、イメージセンサから得られる輝度値は、カメラで同じ輝度の部分を撮影したとしても、露出に応じて異なる値となる。このために、Stop数の値自体は絶対的な値では無く、相対的な値である。つまり、Stop数では、輝度を表すことはできない。
 例えば、図13の(1)の夜のシーンを撮影するような場合、黒潰れを起こさないようにするためには、シャッタースピードを遅くする、絞りを開ける等により露出を変えることで、暗い部分の階調を残して、明るい部分を捨てるような露出の設定をカメラに対して行う。
 また、図13の(2)の昼の室内のシーンを撮影するような場合、暗い部分と明るい部分とのバランスが良くなるような露出の設定をカメラに対して行う。また、図13の(3)の昼の屋外のシーンを撮影するような場合、明るい部分の白潰れを防ぐために露出を絞った露出の設定をカメラに対して行う。
 このようにして得られた相対的な輝度値を、絶対的な輝度値に変換するためには、18%グレーとの相対関係を計算する必要がある。
 [2-2.画像撮影時の輝度値]
 図14は、撮影した画像の輝度値の例に示す図である。
 図14に示すように、撮影した画像(以下、「原画像」という)10のA)は、明るさの基準になる基準反射率である18%グレー(0 Stop)に対応する輝度値(以下、「基準輝度値」または「18%グレー(Gray)値」という。)を持つ画素を示す。原画像10のB)は、90%の反射率(90%グレー)(2.3 Stops)に対応する輝度値を持つ画素を示す。HDR原画像10のC)は、ほぼ黒の2.3%グレー(-3 Stops)に対応する輝度値を持つ画素を示す。原画像10のD)は、太陽を撮影することで得られた画素を示し、非常に明るい輝度値が得られており、1150%グレー(6 Stops)に対応する輝度値を持つ。原画像10のE)は、鏡面反射を起こしている位置を撮影することで得られた画素を示し、290%グレー(4 Stops)に対応する輝度値を持つ。
 [2-3.マスター生成、配信方式、および表示装置の関係]
 図15は、SDRに対応したホームエンターテイメント用マスターを制作するフロー、配信媒体および表示装置の関係について説明するための図である。
 図14で説明したような原画像10は、最大輝度値が1300nitの画像である。つまり、原画像10を用いて最大輝度値が100nitのSDRに対応したマスター画像(SDR画像)を制作する場合、SDRでは100nit以上の輝度値を有する画素を表現することはできないため、原画像10の輝度値を変換せずにそのまま用いてSDRに対応したマスター画像を制作することはできない。つまり、原画像10を用いてSDRに対応したマスター画像を制作しようとすれば、原画像10の輝度値をSDRに対応した輝度範囲の輝度値に変換する必要がある。
 [2-4.原画像からSDR画像へのマスタリング]
 図16Aは、図14で示した原画像をSDR画像にマスタリングした結果の輝度値の一例を示す図である。図16Bは、原信号値をSDR信号値に変換する(マスタリングする)ための、原信号値とSDR信号値との関係の一例を示す図である。なお、原信号値は、原画像10の0~1300nitの輝度範囲における輝度値(「以下、原画像の輝度値」という。)であり、SDR信号値は、SDRの輝度範囲における輝度値(以下、「SDRの輝度値」という。)である。
 図16Bに示すように、この例における原画像10からSDR画像11へのマスタリングでは、基準反射率である18%グレー(0 Stop)に対応する画素は、明るさの基準になる基準輝度値を持つ画素である。このため、SDR画像へのマスタリングでは、原画像10をSDR画像11に変換した後であっても、原画像10における18%グレーに対応する原画像10の輝度値(18nit)を変更せずに、SDRの輝度値として決定する。
 ここで、図16Bに示すように、原画像10からSDR画像11へのマスタリングでは、原画像10の90%グレーに対応する原画像の輝度値(90nit)以下の輝度範囲(0~90nit)においては、原画像の輝度値を変更せずに、SDRの輝度値として決定する。また、図16Bに示すように、原画像10の90%グレーに対応する原画像の輝度値(90nit)より大きい原画像10の輝度範囲(90~1300〔nit〕)における原画像の輝度値を、90~100nitの輝度範囲のSDRの輝度値に、線形変換により割り付ける。
 例えば、SDR画像11のB)のような、90%グレー(2.3 Stops)に対応する画素についてのSDR画像11へのマスタリングでは、原画像10をSDR画像11に変換した後であっても、原画像10における90%グレーに対応する原画像の輝度値(90nit)を変更せずに、SDRの輝度値として決定する。
 また、例えば、SDR画像11のC)のような、2.3%グレー(-3 Stops)に対応する画素についてのSDR画像へのマスタリングでは、上記と同様に、原画像10をSDR画像11に変換した後であっても、原画像10における2.3%グレーに対応する原画像の輝度値(2nit)を変更せずに、SDRの輝度値として決定する。
 例えば、SDR画像11のD)のような、1150%グレー(6 Stops)に対応する画素についてのSDR画像へのマスタリングでは、原画像10における1150%グレーに対応する原画像の輝度値(1150nit)をSDRの輝度範囲の最大輝度値である100 nitに変換する。
 また、例えば、SDR画像11のE)のような、290%グレー(4 Stops)に対応する画素についてのSDR画像へのマスタリングでは、原画像10における290%グレーに対応する原画像の輝度値を95 nitに変換する。
 [2-5.HDR導入時のマスター、配信方式、および表示装置の関係]
 図17は、HDR導入時のマスター、配信方式、および表示装置の関係について説明するための図である。図14で示した原画像10の場合は、原画像10の最大輝度値が1300nitであるため、原画像10をそのままの輝度値を用いて表現することができる。
 [2-6.原画像からHDR画像への第1のマスタリング]
 図18Aは、図14で示した原画像をHDR画像にマスタリングした結果の輝度値の一例を示す図である。図18Bは、原信号値をHDR信号値に変換する(マスタリングする)ための、原信号値とHDR信号値との関係の一例を示す図である。なお、HDR信号値は、HDRの輝度範囲における輝度値(以下、「HDRの輝度値」という。)である。なお、この例における原画像からHDR画像へのマスタリングでは、2000nitまでの輝度値をHDRの輝度値として割り付けることが許されているため、HDR画像においても原画像の輝度値をそのまま保持できる。
 例えば、HDR画像12のA)のような、基準反射率である18%グレー(0 Stop)に対応する画素は、明るさの基準になる基準輝度値を持つ画素であるため、HDR画像へのマスタリングでは、原画像10をHDR画像12に変換した後であっても、原画像10における18%グレーに対応する原画像10の輝度値(18nit)を変更せずに、HDRの輝度値として決定する。
 同様にして、例えば、HDR画像12のB)のような、90%グレー(2.3 Stops)に対応する画素と、HDR画像12のC)のような、2.3%グレー(-3 Stops)に対応する画素と、HDR画像12のD)のような、1150%グレー(6 Stops)に対応する画素と、HDR画像12のE)のような、290%グレー(4 Stops)に対応する画素とのそれぞれについて、HDR画像へのマスタリングでは、当該原画像の輝度値を変更せずに、HDRの輝度値として決定する。
 [2-7.原画像からHDR画像への第2のマスタリング]
 図19Aは、図14で示した原画像をHDR画像にマスタリングした結果の輝度値の別の一例を示す図である。図19Bは、原信号値をHDR信号値に変換する(マスタリングする)ための、原信号値とHDR信号値との関係の別の一例を示す図である。なお、この例における原画像からHDR画像へのマスタリングでは、2000nitまでの輝度値をHDRの輝度値として割り付けることが許されている。
 図19Bに示すように、この例における原画像10からHDR画像13へのマスタリングでは、基準反射率である18%グレー(0 Stop)に対応する画素について、HDR画像13の全体のバランスを考えて、制作者の意図で、原画像の基準輝度値の2倍の値を、当該画素の輝度値であるHDR画像13の基準輝度値として決定する。
 ここで、図19Bに示すように、原画像10からHDR画像13へのマスタリングでは、原画像10の90%グレーに対応する原画像の輝度値(90nit)以下の輝度範囲(0~90nit)においては、HDRの輝度値として、原画像の輝度値の2倍の値に決定する。また、図19Bに示すように原画像10からHDR画像13へのマスタリングでは、原画像10の90%グレーに対応する原画像の輝度値(90nit)を超える輝度範囲(90~1300〔nit〕)における原画像の輝度値を、180~HPL(HDR Peak Luminance)のHDRの輝度値に、線形変換により割り付ける。ここで、HPLとは、HDRの輝度範囲の最大値である。
 例えば、HDR画像13のB)のような、90%グレー(2.3 Stops)に対応する画素についてのHDR画像13へのマスタリングでは、原画像10における90%グレーに対応する原画像の輝度値(90nit)の2倍の値(180nit)を、HDRの輝度値として決定する。
 また、例えば、HDR画像13のC)のような、2.3%グレー(-3 Stops)に対応する画素についてのHDR画像13へのマスタリングでは、原画像10における2.3%グレーに対応する原画像の輝度値の2倍の値を、HDRの輝度値として決定する。
 また、例えば、HDR画像13のD)のような、1150%グレー(6 Stops)に対応する画素についてのHDR画像13へのマスタリングでは、原画像10における1150%グレーに対応する原画像の輝度値に対して、上述した線形変換を行うことにより得られた輝度値(1160nit)をHDRの輝度値として決定する。
 また、例えば、HDR画像13のE)のような、290%グレー(4 Stops)に対応する画素についてのHDR画像13へのマスタリングでは、原画像10における290%グレーに対応する原画像の輝度値に対して、上述した線形変換を行うことにより得られた輝度値(360nit)をHDRの輝度値として決定する。
 [2-8.HDRTV内のHDRの表示処理]
 HDRTVであっても表示可能な最大輝度値(第2最大輝度値)が例えば750nitなどのように、HDR信号の最大輝度値である第1最大輝度値(HPL:例1500nit)よりも低い値であるため、HDR信号をそのままHDRTVに表示することはできない。このため、HDRのEOTF変換を行った後のリニアな信号に対して、表示装置において表示可能な第2最大輝度値(DPL:例750nit)に応じて、輝度変換する必要がある。
 図20は、実施の形態2の変換装置の構成を示すブロック図である。具体的には、図20は、HDRTV内で、HDR信号を変換してHDR映像を生成する表示処理を示す図である。図21は、実施の形態2に係る変換方法を示すフローチャートである。つまり、図21は、輝度変換処理の際のアルゴリズムを示す図である。
 図20に示すように、変換装置300は、HDRのEOTF変換部301、輝度変換部302、および表示部303を備える。なお、変換装置300は、例えば、HDRTVが備え、HDRTVに映像を表示するために映像の輝度を変換する装置である。
 変換装置300の各構成要素についての詳細な説明は、変換方法の説明において行う。
 変換装置300が行う変換方法について、図21を用いて説明する。なお、変換方法は、以下で説明するステップS301~S304を含む。
 まず、変換装置300のHDRのEOTF変換部301は、HDR信号の第1メタデータとして送られてくる18%グレーに対応する輝度値(基準輝度値)を取得する(S301)。なお、HDRのEOTF変換部301は、HDR信号が示すHDRの輝度値を計測することにより、基準輝度値を計測することで取得してもよい。上記のことから、HDRのEOTF変換部301は、映像のHDRの輝度値を示すHDR信号を取得する取得部としても機能する。また、HDRのEOTF変換部301は、取得したHDR映像のHDR信号に対して、HDRのEOTF変換を実施することで、HDR信号をHDR信号に対応するHDRの輝度値に変換する。
 次に、輝度変換部302は、取得した基準輝度値が18nitであるか否かを判定する(S302)。
 輝度変換部302は、取得した基準輝度値が18nitであると判定した場合(S302でYes)、基準輝度値が変化していないことが解るため、通常の輝度変換処理を行う(S303)。一方で、輝度変換部302は、取得した基準輝度値が18nitと異なる値の場合(S302でNo)、製作者が意図的に基準輝度値を変更したことが解るため、基準輝度値の値を基に補正を行った上で、輝度変換処理を行う(S304)。つまり、輝度変換部302は、取得したHDR信号が示すHDRの輝度値(つまり、HDRのEOTF変換部301でHDR信号を変換することにより得られたHDRの輝度値)を、最大輝度値が、HDRの輝度範囲の最大値(HPL)よりも小さく、かつ、SDRの輝度範囲の最大値(100nit)よりも大きい第2輝度最大値(DPL)に定義されたディスプレイの輝度範囲に対応するディスプレイ輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行う。そして、輝度変換部302は、取得したHDR信号のメタデータ(第1メタデータ)における基準輝度値が18nitであるか否かに応じて、輝度変換処理を切り替え、切り替えた輝度変換処理によりHDRの輝度値をディスプレイ輝度値に変換する。
 なお、輝度変換部302は、実施の形態1の輝度変換部102と同様に、ディスプレイの輝度範囲に対応するディスプレイ輝度値に変換するが、輝度変換部102とは異なり、ディスプレイがSDRTVではなくHDRTVである。このように、変換済のHDR信号をHDRTVに入力することで、表示部303は、HDRTVの限界である最大値のディスプレイの輝度範囲に合わせたHDR映像をHDRTVに表示することができる。
 以下、輝度変換処理の具体的な例を説明する。
 [2-9.具体例1]
 図22Aは、図18Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図22Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の一例を示す図である。なお、TV信号値は、HDRTVのディスプレイの輝度範囲における輝度値を示す信号である。
 この例では、HDRTVが表示可能な第2最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像12の輝度値を示すHDR信号は、基準輝度値として18nitを保持していることが解る。このため、ステップS303が行われ、90%グレーに対応する輝度値(90nit)以下の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値そのままの値を保持し、90%グレーに対応する輝度値(90nit)を超える、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す第1最大輝度値(HPL:1300nit)が、HDRTVが表示可能な第2最大輝度値(DPL:500nit)になるように線形変換を行う。
 つまり、この例の場合の輝度変換(S303)では、基準輝度値が第1基準値としての18nitである場合、18nitより大きい第2基準値としての90nit以下の輝度値を示すHDR信号について、HDR信号が示すHDRの輝度値をディスプレイ輝度値として決定する。また、輝度変換(S303)では、基準輝度値が第1基準値としての18nitである場合、90nitを超える輝度値を示すHDR信号について、90nitから第1最大輝度値(HPL:例えば、1300nit)までのHDRの輝度値に対して、HPLを、HDRTVにおいて表示可能な第2最大輝度値(DPL:例えば500nit)に対応させた線形変換を行うことにより、HDRの輝度値をディスプレイ輝度値に変換する。
 このように輝度変換を行うことにより、HDR画像12の18%グレーに対応する画素A)、HDR画像12の90%グレーに対応する画素B)、および、HDR画像12の2.3%グレーに対応する画素C)のそれぞれにおける輝度値については、そのままHDR画像12の輝度値を変更せずにディスプレイ輝度値として決定する。そして、HDR画像12の1150%グレーに対応する画素D)については、上記線形変換を行うことにより得られた450nitをディスプレイ輝度値として決定し、HDR画像12の290%グレーに対応する画素E)については、上記線形変換を行うことにより得られた163nitをディスプレイ輝度値として決定する。
 [2-10.具体例2]
 図23Aは、図18Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図23Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。
 この例では、HDRTVが表示可能な第2最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像12の輝度値を示すHDR信号は、基準輝度値として18nitを保持していることが解る。このため、ステップS303が行われ、90%グレーに対応する輝度値(90nit)以下の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値そのままの値を保持する。また、ステップS303では、90%グレーに対応する輝度値(90nit)以上HDRTVの第2最大輝度値(500nit)未満の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値そのままの値を保持する。また、ステップS303では、HDRTVの第2最大輝度値(500nit)以上の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値に対して500nitでクリップすることにより得られた輝度値をディスプレイ輝度値として決定する。
 つまり、この例の場合の輝度変換(S303)では、基準輝度値が第1基準値としての18nitである場合、HDRTVにおいて表示可能な第2最大輝度値(DPL:500nit)以下である輝度値を示すHDR信号について、HDR信号が示すHDRの輝度値をディスプレイ輝度値として決定する。また、輝度変換(S303)では、DPLを超える輝度値を示すHDR信号について、HDR信号の示すHDRの輝度値に対して、DPLをディスプレイ輝度値として決定する。
 このように輝度変換を行うことにより、HDR画像12の18%グレーに対応する画素A)、HDR画像12の90%グレーに対応する画素B)、HDR画像12の2.3%グレーに対応する画素C)、および、HDR画像12の290%グレーに対応する画素E)については、そのままHDR画像12の輝度値を変更せずにディスプレイ輝度値として決定する。そして、HDR画像12の1150%グレーに対応する画素D)については、500nitでクリップすることにより得られた500nitをディスプレイ輝度値として決定する。
 [2-11.具体例3]
 図24Aは、図19Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図24Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。
 この例では、HDRTVが表示可能な第2最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像13の輝度値を示すHDR信号は、基準輝度値として36nitを保持しており、基準輝度値を製作者が意図的に変えたことが解る。このため、ステップS304が行われ、90%グレーに対応する輝度値(180nit)以下の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値そのままの値を保持し、90%グレーに対応する輝度値(180nit)を超える、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す第1最大輝度値(HPL:1300nit)が、HDRTVが表示可能な第2最大輝度値(DPL:500nit)になるように線形変換を行う。
 つまり、この例の場合の輝度変換(S304)では、基準輝度値が第1基準値(18nit)とは異なる第3基準値(36nit)である場合、36nitより大きい第4基準値(90nit)以下の輝度値を示すHDR信号について、HDR信号が示すHDRの輝度値をディスプレイ輝度値として決定する。また、輝度変換(S304)では、90nitを超える輝度値を示すHDR信号について、90nitからHDRTVにおいて表示可能な第2最大輝度値(DPL)までのHDRの輝度値に対して、第1最大輝度値(HPL)を第2最大輝度値(DPL)に対応させた線形変換を行うことにより、HDRの輝度値をディスプレイ輝度値に変換する。
 このように輝度変換を行うことにより、HDR画像13の18%グレーに対応する画素A)、HDR画像13の90%グレーに対応する画素B)、および、HDR画像13の2.3%グレーに対応する画素C)については、そのままHDR画像13の輝度値を変更せずにディスプレイ輝度値として決定する。そして、HDR画像13の1150%グレーに対応する画素D)については、上記線形変換を行うことにより得られた446nitをディスプレイ輝度値として決定し、HDR画像13の290%グレーに対応する画素E)については、上記線形変換を行うことにより得られた313nitをディスプレイ輝度値として決定する。
 [2-12.具体例4]
 図25Aは、図19Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図25Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。
 この例では、HDRTVが表示可能な第2最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像13の輝度値を示すHDR信号は、基準輝度値として36nitを保持しており、基準輝度値を製作者が意図的に変えたことが解る。このため、ステップS304が行われ、HDRTVが表示可能な第2最大輝度値(500nit)未満の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値そのままの値を保持し、HDRTVが表示可能な第2最大輝度値(500nit)以上の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値に対して500nitでクリップすることにより得られた輝度値をディスプレイ輝度値として決定する。
 つまり、この例の場合の輝度変換(S304)では、基準輝度値が第1基準(18nit)とは異なる第3基準値(36nit)である場合、HDRTVにおいて表示可能な第2最大輝度値(DPL:500nit)以下である輝度値を示すHDR信号について、HDR信号が示すHDRの輝度値をディスプレイ輝度値として決定する。また、輝度変換(S304)では、DPLを超える輝度値を示すHDR信号について、HDR信号が示すHDRの輝度値に対して、DPLをディスプレイ輝度値として決定する。
 このように輝度変換を行うことにより、HDR画像13の18%グレーに対応する画素A)、HDR画像13の90%グレーに対応する画素B)、HDR画像13の2.3%グレーに対応する画素C)、および、HDR画像13の290%グレーに対応する画素E)については、そのままHDR画像13の輝度値を変更せずにディスプレイ輝度値として決定する。そして、HDR画像13の1150%グレーに対応する画素D)については、500nitでクリップすることにより得られた500nitをディスプレイ輝度値として決定する。
 [2-13.具体例5]
 図26Aは、図19Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図26Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。
 この例では、HDRTVが表示可能な第2最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像13の輝度値を示すHDR信号は、基準輝度値として36nitを保持しており、基準輝度値を製作者が意図的に変えたことが解る。しかしながら、HDRTVの第2最大輝度値が500nitであり、HPLと比較するとそれほど高くないため、HDRTV側で表示する基準輝度値を18nitに変換する。この場合、ステップS304が行われ、HDR画像13における90%グレーに対応する輝度値(180nit)以下の、当該HDR信号が示す輝度値に対しては、変換後の基準輝度値と、元の基準輝度値との比(18/36=1/2)を乗じた値に変換する。また、ステップS304では、90%グレーに対応する輝度値(180nit)を超える、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す第1最大輝度値(HPL:1300nit)が、HDRTVが表示可能な第2最大輝度値(DPL:500nit)になるように線形変換を行う。
 つまり、この例の場合の輝度変換(S304)では、基準輝度値が第1基準値(18nit)とは異なる第3基準値(36nit)である場合、36nitより大きい第4基準値(180nit)以下の輝度値を示すHDR信号について、18nitと、36nitとの比率(1/2)に応じて、HDRの輝度値をディスプレイ輝度値に変換する。また、輝度変換(S304)では、36nitを超える輝度値を示すHDR信号について、180nitから第1最大輝度値(HPL:例えば、1300nit)までのHDRの輝度値に対して、HPLを、HDRTVにおいて表示可能な第2最大輝度値(DPL:例えば500nit)に対応させた線形変換を行うことにより、HDRの輝度値をディスプレイ輝度値に変換する。
 このように輝度変換を行うことにより、HDR画像13の18%グレーに対応する画素A)については、HDRの輝度値(36nit)に1/2が乗じられることにより得られた18nitをディスプレイ輝度値として決定する。また、HDR画像13の90%グレーに対応する画素B)については、HDRの輝度値(180nit)に1/2が乗じられることにより得られた90nitをディスプレイ輝度値として決定する。また、HDR画像13の2%グレーに対応する画素C)については、HDRの輝度値に1/2が乗じられることにより得られた2nitをディスプレイ輝度値として決定する。また、HDR画像13の1150%グレーに対応する画素D)については、HDRの輝度値(1160nit)に上記線形変換を行うことにより得られた450nitをディスプレイ輝度値として決定する。また、HDR画像13の290%グレーに対応する画素E)については、HDRの輝度値(360nit)に上記線形変換を行うことにより得られた190nitをディスプレイ輝度値として決定する。
 [2-14.具体例6]
 図27Aは、図19Aのマスタリングにより得られたHDR画像を取得して、第2最大輝度値が500nitの表示機器用に輝度変換した結果の一例である。図27Bは、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の別の一例を示す図である。
 この例では、HDRTVが表示可能な最大輝度値が500nitに制限されている。このため、HDR信号が示すHDRの輝度値をディスプレイの輝度範囲におけるディスプレイ輝度値に変換する必要がある。
 ステップS301において、取得したHDR信号から、明るさの基準になる18%グレー(0 Stop)に対応する輝度値(基準輝度値)を取り出す。そしてステップS302において、HDR画像13の輝度値を示すHDR信号は、基準輝度値として36nitを保持しており、基準輝度値を製作者が意図的に変えたことが解る。しかしながら、HDRTVの第2最大輝度値が500nitであり、HPLと比較するとそれほど高くないため、HDRTV側で表示する基準輝度値を18nitに変換する。この場合、ステップS304が行われ、HDR画像13における90%グレーに対応する輝度値(180nit)以下の、当該HDR信号が示す輝度値に対しては、変換後の基準輝度値と、元の基準輝度値との比(18/36=1/2)を乗じた値に変換する。また、ステップS304では、90%グレーに対応する基準輝度値(180nit)を超え、かつ、HDRTVが表示可能な第2最大輝度値(500nit)未満の、当該HDR信号が示す輝度値に対しては、線形変換を行い、HDRTVが表示可能な第2最大輝度値(500nit)以上の、当該HDR信号が示す輝度値に対しては、当該HDR信号が示す輝度値に対して500nitでクリップすることにより得られた輝度値をディスプレイ輝度値として決定する。
 つまり、この例の場合の輝度変換(S304)では、基準輝度値が第1基準値(18nit)とは異なる第3基準値(36nit)である場合、36nitより大きい第4基準値(180nit)以下の輝度値を示すHDR信号について、18nitと、36nitとの比率に応じて、HDRの輝度値をディスプレイ輝度値に変換する。また、輝度変換(S304)では、180nitから180nitより大きい第5基準値までの輝度値を示すHDR信号について、180nitから第5基準値までのHDRの輝度値に対して、第5基準値をHDRTVにおいて表示可能な第2最大輝度値(DPL:例えば500nit)に対応させた線形変換を行うことにより、HDRの輝度値をディスプレイ輝度値に変換する。また、輝度変換(S304)では、第5輝度値を超える輝度値を示すHDR信号について、DPLをディスプレイ輝度値として決定する。
 このように輝度変換を行うことにより、HDR画像13の18%グレーに対応する画素A)については、HDRの輝度値(36nit)に1/2が乗じられることにより得られた18nitをディスプレイ輝度値として決定する。また、HDR画像13の90%グレーに対応する画素B)については、HDRの輝度値(180nit)に1/2が乗じられることにより得られた90nitをディスプレイ輝度値として決定する。また、HDR画像13の2%グレーに対応する画素C)については、HDRの輝度値に1/2が乗じられることにより得られた2nitをディスプレイ輝度値として決定する。また、HDR画像13の1150%グレーに対応する画素D)については、HDRの輝度値(1160nit)に対してクリップすることにより得られた500nitをディスプレイ輝度値として決定する。また、HDR画像13の290%グレーに対応する画素E)については、HDRの輝度値(360nit)に上記線形変換を行うことにより得られた290nitをディスプレイ輝度値として決定する。
 [2-15.実施の形態2の変形例1]
 上記実施の形態2では、では、HDR信号の第1メタデータとして伝送される18%グレーに対応する輝度値(基準輝度値)に応じてHDRTVにおける輝度変換処理の方法を切替えて、HDR信号を表示部303に出力する際の信号値を決定する処理について述べた。HDRTVにおいては、入力として取得するHDR信号だけでなく、部屋の明るさなどの視聴環境、あるいは、ダイナミックモードやシネマモードなど、HDRTVにおける各種の表示モードに応じて、トーンマッピング(輝度変換処理)の方法を切替えることも可能である。つまり、変換装置300は、HDR信号の第1メタデータに応じて輝度変換処理を切り替えるだけでなく、さらにHDRTV側のメタデータ(第2メタデータ)に応じて輝度変換処理を切り替えてもよい。
 例えば、HDRTVを視聴する部屋が明るい場合には、暗い場合に比べて、基準輝度値が大きくなるようにマッピングしてもよい。また、ダイナミックモードなど、全体的に輝度値が高くなるように表示する表示モードにおいても、基準輝度値が大きくなるようにマッピングしてもよい。反対に、シネマモードなど、低輝度域の再現性を重視する表示モードである場合には、基準輝度値が18nitで固定となるように動作させてもよい。
 図28は、実施の形態2の変形例1に係る変換方法を示すフローチャートである。つまり、図28は、視聴環境や表示モードなどのHDRTV側のメタデータに基づいて輝度変換処理を行う場合の動作を示すフローチャートである。
 まず、輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行うか否かを判定する(S401)。上記のことから、輝度変換部302は、HDRTVの表示特性を示すHDRTV側のメタデータを、HDRTVから取得する。
 輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行うと判定した場合(S401でYes)、HDRTV側のメタデータに応じて基準輝度値を設定し、輝度変換処理を補正する(S402)。
 一方で、輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行わないと判定した場合(S402でNo)、通常の輝度変換処理を行う(S403)。
 つまり、輝度変換部302は、輝度変換として、取得したHDRTV側のメタデータに応じて輝度変換処理をさらに切り替えて、切り替えた輝度変換処理によりHDRの輝度値をディスプレイ輝度値に変換する。
 図29は、HDRTV側のメタデータに基づく輝度変換処理において用いられる、HDR信号値をTV信号値に輝度変換するための、HDR信号値とTV信号値との関係の一例を示す図である。
 一般的なHDRTVでは、HDRTVに内蔵された光量センサなどにより、HDRTV周辺の明るさを測定し、HDRTVの表示輝度を調整する機能が搭載されている。このようなHDRTVでは、例えば、周辺が明るい場合には、全体的に輝度値を持ち上げて画像を表示する処理を行う。あるいは、ダイナミックモードなど、高輝度域の信号を強調する表示モードにHDRTVが設定されている場合においても、液晶などのバックライトの輝度値を全体的に持ち上げて画像を表示する処理を行う。ここで、HDRTV側のメタデータは、HDRTVの視聴環境または表示モードを示すメタデータである。
 このように、HDRTVにより全体的に輝度値を持ち上げて画像を表示する処理を行った結果として、HDRTVに表示可能な最小輝度値(最低輝度値)にオフセットがかかり、所謂、黒浮した状態になることがある。このようなケースでは、HDR信号における低輝度域の信号値を、そのままの値で表示することができない。例えば、上記の処理を行ったことで表示可能な最小輝度値が5nitになった場合、5nitまでの信号は表現できなくなる。
 したがって、表示可能な最小輝度値を基準輝度値(オフセット輝度値:例えば5nit)とした場合、5nitまでに対応するHDR信号を表現するために、ディスプレイ輝度値(TV信号値)を決定する際には、HDR信号が示すHDRの輝度値に対してオフセット輝度値を加算することが考えられる。具体的には、入力されるHDR信号において、基準輝度値が18nitである場合、オフセット輝度値が5nitであれば、TV信号値における基準輝度値は、HDR信号における基準輝度値18nitに、オフセット輝度値5nitを加算することで得られる23nitとなる。
 本実施の形態における輝度変換処理においては、90%グレーに対応する輝度値以下の輝度値については、18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイ輝度値との比率を保って、HDRの輝度値をディスプレイ輝度値に変換している。図29に示す輝度変換処理においては、18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイ輝度値との比率を保って出力する領域の輝度値に関しては、少なくとも、オフセット輝度値に対する相対的な輝度値の関係が保たれることを保証する。つまり、出力されるディスプレイ輝度値は、本実施の形態における輝度変換処理での出力値にオフセット輝度値を加算した値となる。ここで、18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイ輝度値との比率を保って、HDRの輝度値をディスプレイ輝度値に変換する場合のHDRの輝度値を、90%グレーに対応する輝度値以下の輝度値としているが、90%グレーに対応する輝度値は一例である。つまり、18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイ輝度値との比率を保って、HDRの輝度値をディスプレイ輝度値に変換する場合の上限および下限の輝度値に関しては、HDRTVで予め設定した任意の値で決定されてもよいし、別途、上限および下限の輝度値を示すメタデータを取得し、取得したメタデータに応じて決定されてもよい。
 図30は、オフセット輝度値に基づいて輝度変換処理を行う動作を示すフローチャートである。なお、図30に示す輝度変換処理は、図28のステップS402において行われてもよい。
 まず、輝度変換部302は、HDRTV側のメタデータに応じてオフセット輝度値を決定する(S501)。
 次に、輝度変換部302は、HDR信号が示すHDRの輝度値を保持して出力する輝度範囲のHDRの輝度値に対しては、HDRの輝度値に対してオフセット輝度値を加算する(S502)。
 つまり、輝度変換部302は、輝度変換において、少なくとも、第2基準値(90nit)以下の輝度値を示すHDR信号に対して、HDRTVの表示特性を示す第2メタデータ(HDRTV側のメタデータ)に含まれるHDRTVにおいて表示可能な最小輝度値を線形変換した後の値に加算し、加算後の値を第2輝度値として決定する。
 [2-16.実施の形態2の変形例2]
 上記実施の形態2の変形例1では、HDRTV側のメタデータに応じて輝度変換処理を切り替えることを説明したが、これに限らずに、HDR信号のメタデータとHDRTV側のメタデータとのそれぞれに応じて輝度変換処理を切り替えてもよい。
 図31は、HDR信号のメタデータとHDRTV側のメタデータを併用した場合の輝度変換処理の動作を示すフローチャートである。
 まず、変換装置300のHDRのEOTF変換部301は、HDR信号の第1メタデータとして送られてくる基準輝度値を取得する(S601)。
 次に、輝度変換部302は、取得した基準輝度値が18nitであるか否かを判定する(S602)。
 輝度変換部302は、取得した基準輝度値が18nitであると判定した場合(S602でYes)、HDRTV側のメタデータに応じた輝度変換処理を行うか否かを判定する(S603)。
 輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行うと判定した場合(S603でYes)、HDRTV側のメタデータに応じて基準輝度値を設定し、輝度変換処理を補正する(S604)。
 一方で、輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行わないと判定した場合(S604でNo)、通常の輝度変換処理を行う(S605)。
 一方で、輝度変換部302は、取得した基準輝度値が18nitと異なる値の場合(S602でNo)、HDRTV側のメタデータに応じた輝度変換処理を行うか否かを判定する(S606)。
 輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行うと判定した場合(S606でYes)、HDR信号のメタデータに含まれる基準輝度値と、HDRTV側のメタデータとを併用して輝度変換処理を補正する(S607)。具体的には、ステップS607では、少なくとも、18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイ輝度値との比率を保って出力する領域の輝度値に関しては、基準輝度値に対する相対的な輝度値の関係が保たれるように輝度変換を行う。例えば、図24Bで説明した輝度変換において、90%グレーに対応する輝度値以下の輝度範囲のHDRの輝度値から変換されたディスプレイ輝度値ついては、当該ディスプレイ輝度値にオフセット輝度値を加算した値を補正した後のディスプレイ輝度値(TV信号値)とする。
 一方で、輝度変換部302は、HDRTV側のメタデータに応じた輝度変換処理を行わないと判定した場合(S606でNo)、HDR信号のメタデータに含まれる基準輝度値に応じて輝度変換処理を補正する(S608)。
 [2-17.実施の形態2の変形例3]
 上記実施の形態2およびその変形例では、基準輝度値が固定された例を説明したが、これに限らずに、HDR映像の複数の区間毎に基準輝度値として互いに異なる輝度値が設定されていてもよい。
 図32は、連続して再生されるストリームにおいて、基準輝度値が動的に変更される例を示す図である。
 図32に示すように、基準輝度値は、区間1、区間2、および区間4では18nitであるが、区間3では36nitである。HDR信号のメタデータは、動的に更新することができるため、基準輝度値が更新されるフレームと同期して、あるいは、当該輝度値が更新されるフレームの近傍において、メタデータを送信する。HDRTVでは、HDR信号のメタデータの更新が指示されるフレーム、あるいは、当該フレーム以降でメタデータの更新が可能となる最初のフレームから、更新内容を反映して輝度変換処理を行う。ここで、HDR信号のメタデータの更新は、ビデオにおけるGOP(Group Of Pictures)などのランダムアクセス単位の先頭においてのみ可能とし、ランダムアクセス単位内では固定としてもよい。あるいは、シームレスに連続再生される単位においては固定としてもよい。例えば、BDにおいてシームレスに接続されるプレイアイテム間では固定としてもよい。
 図33は、図32のようにHDR信号のメタデータが動的に更新されるストリームを再生する表示装置の動作例を示すフローチャートである。
 まず、輝度変換部302は、基準輝度値のデフォルト値を予め設定する(S701)。
 次に、輝度変換部302は、HDR信号のメタデータを取得したか否かを判定する(S702)。
 輝度変換部302は、HDR信号のメタデータを取得したと判定した場合(S702でYes)、取得したメタデータの内容に応じて基準輝度値を再設定し、再設定した基準輝度値に応じて輝度変換処理を行う(S703)。
 一方で、輝度変換部302は、HDR信号のメタデータを取得していないと判定した場合(S702でNo)、ステップS701で設定したデフォルト値、あるいは、最初に取得したHDR信号のメタデータから特定される基準輝度値に基づいて、輝度変換処理を決定する(S704)。なお、BDなどの蓄積メディアにおいては、シームレス接続されないプレイアイテムの先頭、または、放送における番組の切替わり時点などにおいてのみ、輝度変換処理を変更することにしてもよい。
 上記のことから、輝度変換部302は、HDR信号に基づいて連続して再生される再生ストリームにおいて、再生ストリームの第1区間と第2区間とでHDR信号のメタデータが示す基準輝度値が異なる場合は、輝度変換では、第1区間と第2区間とのそれぞれについて、当該区間に対応する基準輝度値に応じて、第1輝度値を前記第2輝度値に変換する。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下では、他の実施の形態を例示する。
 HDR映像は、例えばBlu-ray Disc、DVD、インターネットの動画配信サイト、放送、HDD内の映像である。
 変換装置100(HDR→疑似HDR変換処理部)は、ディスクプレイヤー、ディスクレコーダ、セットトップボックス、テレビ、パソコン、スマートフォンの内部に存在していてもよい。変換装置100は、インターネット内のサーバ装置の内部に存在していてもよい。
 表示装置200(SDR表示部)は、例えばテレビ、パソコン、スマートフォンである。
 変換装置100が取得するディスプレイ特性情報は、表示装置200からHDMIや他の通信プトロコルを用いてHDMIケーブルやLANケーブルを介して取得してもよい。変換装置100が取得するディスプレイ特性情報は、インターネットを介して表示装置200の機種情報等に含まれるディスプレイ特性情報を取得してもよい。また、ユーザがマニュアル操作を行い、ディスプレイ特性情報を、変換装置100に設定してもよい。また、変換装置100のディスプレイ特性情報の取得は、疑似HDR映像生成(ステップS101~S104)時の直前でもよいし、機器の初期設定時やディスプレイ接続時のタイミングでもよい。例えば、ディスプレイ特性情報の取得は、ディスプレイ輝度値への変換の直前に行ってもよいし、変換装置100がHDMIケーブルで最初に表示装置200に接続したタイミングで行ってもよい。
 また、HDR映像のCPLやCALは、コンテンツ1つに対して1つでもよいし、シーン毎に存在していてもよい。つまり、変換方法では、映像の複数のシーンのそれぞれに対応した輝度情報であって、当該シーン毎に、当該シーンを構成する複数の画像に対する輝度値のうちの最大値である第1最大輝度値と、当該シーンを構成する複数の画像に対する輝度値の平均である平均輝度値との少なくとも一方を含む輝度情報(CPL、CAL)を取得し、第1輝度変換では、複数のシーンのそれぞれについて、当該シーンに対応した輝度情報に応じてディスプレイ輝度値を決定してもよい。
 また、CPLおよびCALは、HDR映像と同じ媒体(Blu-ray Disc、DVD等)に同梱していてもよいし、変換装置100がインターネットから取得する等、HDR映像とは別の場所から取得してもよい。つまり、CPLおよびCALの少なくとも一方を含む輝度情報を映像のメタ情報として取得してもよいし、ネットワーク経由で取得してもよい。
 また、変換装置100の第1輝度変換(HPL→DPL)において、CPL、CAL、およびディスプレイピーク輝度(DPL)は使用せずに、固定値を用いてもよい。また、その固定値を外部から変更可能にしてもよい。また、CPL、CAL、およびDPLは、数種類で切り替えるようにしてもよく、例えば、DPLは200nit、400nit、800nitの3種類のみとするようにしてもよいし、ディスプレイ特性情報に最も近い値を使用するようにしてもよい。
 また、HDRのEOTFはSMPTE 2084でなくてもよく、他の種類のHDRのEOTFを用いてもよい。また、HDR映像の最大輝度(HPL)は10,000nitでなくてもよく、例えば4,000nitや1,000nitでもよい。
 また、コード値のビット幅は、例えば16,14,12,10,8bitでもよい。
 また、逆SDRのEOTF変換は、ディスプレイ特性情報から決定するが、(外部からも変更可能な)固定の変換関数を用いてもよい。逆SDRのEOTF変換は、例えばRec. ITU-R BT.1886で規定されている関数を用いてもよい。また、逆SDRのEOTF変換の種類を数種類に絞り、表示装置200の入出力特性に最も近いものを選択して使用するようにしてもよい。
 また、表示モードは、固定のモードを使うようにしてもよく、ディスプレイ特性情報の中に含めなくてもよい。
 また、変換装置100は、設定情報を送信しなくてもよく、表示装置200では固定の表示設定としてもよいし、表示設定を変更しなくてもよい。この場合、表示設定部201は不要となる。また、設定情報は、疑似HDR映像かどうかのフラグ情報でもよく、例えば、疑似HDR映像である場合は最も明るく表示する設定に変更するようにしてもよい。つまり、表示設定の設定(S105)では、取得した設定情報が、DPLを用いて変換された疑似HDR映像を示す信号であることを示す場合、表示装置200の明るさ設定を最も明るく表示する設定に切り替えてもよい。
 また、変換装置100の第1輝度変換(HPL→DPL)は例えば次の算式で変換する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Lは、0~1に正規化された輝度値を示し、S1、S2、a、b、MはCAL、CPL、およびDPLに基づいて設定する値である。lnは自然対数である。Vは0~1に正規化された変換後の輝度値である。図8Aの例のように、CALを300nitとし、CPLを2,000nitとし、DPLを750nitとし、CAL + 50nitまでは変換しないとし、350nit以上に対して変換する場合、それぞれの値は例えば次のような値となる。
  S1 =  350/10000
  S2 = 2000/10000
  M  =  750/10000
  a  = 0.023
  b  = S1 - a*ln(S1) = 0.112105
 つまり、第1輝度変換では、SDRの輝度値が、平均輝度値(CAL)と第1最大輝度値(CPL)との間である場合、自然対数を用いて、当該HDRの輝度値に対応するディスプレイ輝度値を決定する。
 HDR映像のコンテンツピーク輝度やコンテンツ平均輝度等の情報を用いてHDR映像を変換することにより、コンテンツに応じて変換式を変えることができ、HDRの階調をなるべく保つように変換することが可能となる。また、暗すぎる、明るすぎるといった悪影響を抑制することができる。具体的には、HDR映像のコンテンツピーク輝度をディスプレイピーク輝度にマッピングすることにより、階調をなるべく保つようにしている。また、平均輝度付近以下の画素値を変えないことにより、全体的な明るさが変わらないようにしている。
 また、SDRディスプレイのピーク輝度値および表示モードを用いてHDR映像を変換することにより、SDRディスプレイの表示環境に応じて変換式を変えることができ、SDRディスプレイの性能に合わせて、HDR感のある映像(疑似HDR映像)を、元のHDR映像と同様の階調や明るさで表示することができる。具体的には、SDRディスプレイの最大輝度および表示モードによってディスプレイピーク輝度を決定し、そのピーク輝度値を超えないようにHDR映像を変換することにより、SDRディスプレイで表示可能な明るさまではHDR映像の階調をほとんど減らさずに表示し、表示不可能な明るさは表示可能な明るさまで輝度値を下げている。
 以上により、表示不可能な明るさ情報を削減し、表示可能な明るさの階調を落とさず、元のHDR映像に近い形で表示することが可能となる。例えば、ピーク輝度1,000nitのディスプレイ用には、ピーク輝度1,000nitに抑えた疑似HDR映像に変換することにより、全体的な明るさを維持し、ディスプレイの表示モードによって輝度値は変わる。このため、ディスプレイの表示モードに応じて、輝度の変換式を変更するようにしている。もし、ディスプレイのピーク輝度よりも大きな輝度を疑似HDR映像で許容すると、その大きな輝度をディスプレイ側でのピーク輝度に置き換えて表示する場合があり、その場合は元のHDR映像よりも全体的に暗くなる。逆にディスプレイのピーク輝度よりも小さな輝度を最大輝度として変換すると、その小さな輝度をディスプレイ側でのピーク輝度に置き換え、元のHDR映像よりも全体的に明るくなる。しかもディスプレイ側のピーク輝度よりも小さいためにディスプレイの階調に関する性能を最大限使っていないことになる。
 また、ディスプレイ側では、設定情報を用いて表示設定を切り替えることにより、疑似HDR映像をよりよく表示することが可能となる。例えば、明るさを暗く設定している場合には高輝度表示ができないため、HDR感が損なわれる。その場合には表示設定を変更するもしくは、変更してもらうよう促すメッセージを表示することにより、ディスプレイの性能を最大限引出し、高階調な映像を表示できるようにする。
 4K対応BDまたはHDR対応BDを再生するBlu-ray機器は、2K_SDR対応TV、2K_HDR対応TV、4K_SDR対応TV、及び、4K_HDR対応TVの4つのTVに対応する必要がある。具体的には、Blu-ray機器は、3組のHDMI/HDCP規格(HDMI1.4/HDCP1.4、HDMI2.0/HDCP2.1、HDMI2.1/HDCP2.2)をサポートする必要がある。
 さらに、Blu-ray機器は、4種類のBlu-rayディスク(2K_SDR対応BD、2K_HDR対応BD、4K_SDR対応BD、及び、4K_HDR対応BD)の再生を行う場合、そのBD(コンテンツ)毎、及び、接続されている表示装置(TV)毎に、適切な処理とHDMI/HDCPとを選択する必要がある。さらに、ビデオにグラフィックを合成する場合も、BDの種類と接続されている表示装置(TV)の種類により、処理を変える必要がある。
 このため、Blu-ray機器の内部処理が非常に複雑になる。上記実施の形態3においては、Blu-ray機器内部処理を比較的簡単にするための各種手法を提供した。
 [1]例えば、HDR非対応のTVにHDR信号を表示する場合は、HDRからSDRへの変換が必要になる。これに対し、上記実施の形態3では、この変換をBlu-ray機器においてオプション化するために、デュアルストリームディスク(Dual Streams Disc)というBDの構成を提案した。
 [2]また、上記実施の形態3では、グラフィックストリームに制限を加え、ビデオストリームとグラフィックストリームとの組み合わせの種類を減らした。
 [3]上記実施の形態3では、デュアルストリームディスクと、グラフィックストリームの制限とにより、Blu-ray機器内での複雑な処理の組み合わせ数を大幅に減らしている。
 [4]上記実施の形態3では、疑似HDR変換を導入した場合でも、デュアルストリームディスクの処理に対して矛盾が生じない、内部処理及びHDMI処理を提示した。
 本開示の変換方法では、HDR映像をSDRTVで表示する場合において、表示するSDRTVのピーク輝度が100nitを超える(通常200nit以上)ことを利用して、HDR映像を100nit以下のSDR映像に変換するのではなく、100nitを超える領域の階調をある程度保つよう変換し、元のHDRに近い疑似HDR映像に変換してSDRTVに表示させることができる「HDR→疑似HDR変換処理」を実現する。
 また、変換方法では、SDRTVのディスプレイ特性(最大輝度値、入出力特性、および表示モード)によって「HDR→疑似HDR変換処理」の変換方法を切り替えてもよい。
 ディスプレイ特性情報の取得方法としては、(1)HDMIやネットワークを通して自動取得すること、(2)ユーザにメーカー名、品番等の情報入力させることで生成すること、および(3)メーカー名や品番等の情報を使ってクラウド等から取得することが考えられる。
 また、変換装置100のディスプレイ特性情報の取得タイミングとしては、(1)疑似HDR変換する直前に取得すること、および(2)表示装置200(SDRTV等)と初めて接続する時(接続が確立した時)に取得することが考えられる。
 また、変換方法では、HDR映像の輝度情報(CAL、CPL)によって変換方法を切り替えてもよい。
 例えば、変換装置100のHDR映像の輝度情報の取得方法としては、(1)HDR映像に付随したメタ情報として取得すること、(2)ユーザにコンテンツのタイトル情報を入力させることで取得すること、および(3)ユーザに有力させた入力情報を使ってクラウド等から取得すること等が考えられる。
 また、変換方法の詳細としては、(1)DPLを超えないように変換し、(2)CPLがDPLになるように変換し、(3)CALおよびその周辺以下の輝度は変更せず、(4)自然対数を用いて変換し、(5)DPLでクリップ処理をする。
 また、変換方法では、疑似HDRの効果を高めるために、SDRTVの表示モード、表示パラメータなどの表示設定を、表示装置200に送信して切り替えることも可能であり、例えば、ユーザに表示設定を促すメッセージを画面に表示してもよい。
 HDR信号のメタデータは、18%グレーに対応する輝度値に限定されるものではなく、HDRTVにおけるグレーレベルのリファレンスとして使用できれば他の値であってもよい。
 18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイの輝度値との比率を保って、HDRの輝度値をディスプレイ輝度値に変換する場合の上限および下限の輝度値は、HDRTVが出力できる最大輝度値、および、最小輝度値に応じて設定してもよい。例えば、HDRTVの最大輝度値が80%グレーに対応する輝度値である場合には、70%グレーに対応する輝度値までは18%グレーに対応するHDRの輝度値と18%グレーに対応するディスプレイの輝度値との比率を保って出力し、それ以上の輝度に対しては、HDRTVの第2最大輝度値(DPL)に応じて線形変換を行ってもよい。なお、最小輝度値についても、同様に処理することができる。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 以上、本開示の一つまたは複数の態様に係る表示方法および表示装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、異なる実施の形態における構成要素を組み合わせて構築される形態なども、本開示の一つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、第1輝度範囲から輝度範囲が縮小された第2輝度範囲に輝度を適切に変換することができる変換方法、変換装置などとして有用である。
100 変換装置
101 HDRのEOTF変換部
102 輝度変換部
103 逆輝度変換部
104 逆SDRのEOTF変換部
200 表示装置
201 表示設定部
202 SDRのEOTF変換部
203 輝度変換部
204 表示部
301 HDRのEOTF変換部
302 輝度変換部
303 表示部

Claims (14)

  1.  映像を表示装置に表示するために、入力された映像の輝度を変換する変換方法であって、
     前記映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像の第1輝度値を示す第1輝度信号を取得し、
     前記取得した第1輝度信号が示す前記第1輝度値を、最大輝度値が、前記第1最大輝度値よりも小さく、かつ、100nitよりも大きい第2最大輝度値に定義された第2輝度範囲に対応する第2輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行い、
     前記輝度変換では、前記取得した第1輝度信号の第1メタデータに含まれる、基準反射率に対応する基準輝度値に応じて、実行する前記輝度変換処理を切り替え、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換する
     変換方法。
  2.  前記輝度変換では、前記基準輝度値が第1基準値であるか否かに基づいて、前記輝度変換処理を切り替える
     請求項1に記載の変換方法。
  3.  前記輝度変換では、前記基準輝度値が前記第1基準値である場合、
     前記第1基準値より大きい第2基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第2基準値を超える輝度値を示す前記第1輝度信号について、前記第2基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を、前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換する
     請求項2に記載の変換方法。
  4.  前記輝度変換では、少なくとも、前記第2基準値以下の輝度値を示す前記第1輝度信号に対して、前記表示装置の表示特性を示す第2メタデータに含まれる前記表示装置において表示可能な最小輝度値を前記線形変換した後の値に加算し、加算後の値を前記第2輝度値として決定する
     請求項3に記載の変換方法。
  5.  前記輝度変換では、前記基準輝度値が前記第1基準値である場合、
     前記表示装置において表示可能な第2最大輝度値以下である輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第2最大輝度値を超える輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値に対して、前記第2最大輝度値を前記第2輝度値として決定する
     請求項2に記載の変換方法。
  6.  前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、
     前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第4基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記表示装置において表示可能な第2最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換する
     請求項2に記載の変換方法。
  7.  前記輝度変換では、前記基準輝度値が前記第1基準値である場合、
     前記第1基準値より大きい第2基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第2基準値を超える輝度値を示す前記第1輝度信号について、前記第2基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を、前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、
     前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、
     前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第4基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記表示装置において表示可能な第2最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、
     前記第2基準値および前記第4基準値は、前記基準反射率よりも大きい反射率に対応する輝度値である
     請求項2に記載の変換方法。
  8.  前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、
     前記表示装置において表示可能な第2最大輝度値以下である輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値を前記第2輝度値として決定し、
     前記第2最大輝度値を超える輝度値を示す前記第1輝度信号について、前記第1輝度信号が示す前記第1輝度値に対して、前記第2最大輝度値を前記第2輝度値として決定する
     請求項2に記載の変換方法。
  9.  前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、
     前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1基準値と、前記第3基準値との比率に応じて、前記第1輝度値を前記第2輝度値に変換し、
     前記第3基準値を超える輝度値を示す前記第1輝度信号について、前記第4基準値から前記第1最大輝度値までの前記第1輝度値に対して、前記第1最大輝度値を前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換する
     請求項2に記載の変換方法。
  10.  前記輝度変換では、前記基準輝度値が前記第1基準値とは異なる第3基準値である場合、
     前記第3基準値より大きい第4基準値以下の輝度値を示す前記第1輝度信号について、前記第1基準値と、前記第3基準値との比率に応じて、前記第1輝度値を前記第2輝度値に変換し、
     前記第4基準値から前記第4基準値より大きい第5基準値までの輝度値を示す前記第1輝度信号について、前記第4基準値から前記第5基準値までの前記第1輝度値に対して、前記第5基準値を前記表示装置において表示可能な第2最大輝度値に対応させた線形変換を行うことにより、前記第1輝度値を前記第2輝度値に変換し、
     前記第5輝度値を超える輝度値を示す前記第1輝度信号について、前記第2最大輝度値を前記第2輝度値として決定する
     請求項2に記載の変換方法。
  11.  さらに、
     前記表示装置の表示特性を示す第2メタデータを、前記表示装置から取得し、
     前記輝度変換では、前記取得した第2メタデータに応じて前記輝度変換処理をさらに切り替えて、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換する
     請求項1に記載の変換方法。
  12.  前記第2メタデータは、前記表示装置の視聴環境または表示モードを示すデータである
     請求項11に記載の変換方法。
  13.  前記第1輝度信号に基づいて連続して再生される再生ストリームにおいて、前記再生ストリームの第1区間と第2区間とで前記HDR信号のメタデータが示す前記基準反射率に対応する基準輝度値が異なる場合は、
     前記輝度変換では、前記第1区間と前記第2区間とのそれぞれについて、当該区間に対応する基準輝度値に応じて、前記第1輝度値を前記第2輝度値に変換する
     請求項1に記載の変換方法。
  14.  映像を表示装置に表示するために、入力された映像の輝度を変換する変換装置であって、
     前記映像の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像の第1輝度値を示す第1輝度信号を取得する取得部と、
     前記取得部が取得した第1輝度信号が示す前記第1輝度値を、最大輝度値が、前記第1最大輝度値よりも小さく、かつ、100nitよりも大きい第2最大輝度値に定義された第2輝度範囲に対応する第2輝度値に変換する複数の輝度変換処理の1つを実行する輝度変換を行う変換部と、を備え、
     前記変換部は、前記取得した第1輝度信号の第1メタデータに含まれる、基準反射率に対応する基準輝度値に応じて、実行する前記輝度変換処理を切り替え、前記切り替えた輝度変換処理により前記第1輝度値を前記第2輝度値に変換する
     変換装置。
PCT/JP2015/002974 2014-06-23 2015-06-15 変換方法および変換装置 WO2015198554A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016514199A JP5991502B2 (ja) 2014-06-23 2015-06-15 変換方法および変換装置
MX2016016116A MX357793B (es) 2014-06-23 2015-06-15 Metodo de conversion y aparato de conversion.
EP15812305.9A EP3174280A1 (en) 2014-06-23 2015-06-15 Conversion method and conversion apparatus
CN201580001443.5A CN105493490B (zh) 2014-06-23 2015-06-15 变换方法和变换装置
US15/075,228 US9736419B2 (en) 2014-06-23 2016-03-21 Converting method and converting apparatus for converting luminance value of an input video into a second luminance value
US15/613,494 US9948884B2 (en) 2014-06-23 2017-06-05 Converting method and converting apparatus for converting luminance value of an input video into a second luminance value

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462015702P 2014-06-23 2014-06-23
US62/015,702 2014-06-23
JP2015113504 2015-06-03
JP2015-113504 2015-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/075,228 Continuation US9736419B2 (en) 2014-06-23 2016-03-21 Converting method and converting apparatus for converting luminance value of an input video into a second luminance value

Publications (1)

Publication Number Publication Date
WO2015198554A1 true WO2015198554A1 (ja) 2015-12-30

Family

ID=54937665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002974 WO2015198554A1 (ja) 2014-06-23 2015-06-15 変換方法および変換装置

Country Status (6)

Country Link
US (2) US9736419B2 (ja)
EP (1) EP3174280A1 (ja)
JP (2) JP5991502B2 (ja)
CN (1) CN105493490B (ja)
MX (1) MX357793B (ja)
WO (1) WO2015198554A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175459A (ja) * 2016-03-24 2017-09-28 シャープ株式会社 信号変換装置、信号変換方法、テレビジョン受像機、プログラム、および記録媒体
JP2017181668A (ja) * 2016-03-29 2017-10-05 キヤノン株式会社 投影装置およびその制御方法
JP2017182064A (ja) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 表示装置及びその制御方法
JP2017203823A (ja) * 2016-05-09 2017-11-16 キヤノン株式会社 表示装置及びその制御方法
JP2018007133A (ja) * 2016-07-06 2018-01-11 キヤノン株式会社 画像処理装置とその制御方法及びプログラム
JP2018017931A (ja) * 2016-07-28 2018-02-01 キヤノン株式会社 画像処理装置及びその制御方法、表示装置
JP2018017953A (ja) * 2016-07-29 2018-02-01 株式会社Jvcケンウッド 処理装置、表示システム、表示方法、及びプログラム
JP2018128593A (ja) * 2017-02-09 2018-08-16 シャープ株式会社 表示装置、テレビジョン受像機、映像処理方法、制御プログラム、及び記録媒体
JP2018129706A (ja) * 2017-02-09 2018-08-16 シャープ株式会社 受信装置、テレビジョン受像機、映像信号生成装置、送信装置、映像信号伝送システム、受信方法、プログラム、及び記録媒体
WO2018147196A1 (ja) * 2017-02-09 2018-08-16 シャープ株式会社 表示装置、テレビジョン受像機、映像処理方法、バックライト制御方法、受信装置、映像信号生成装置、送信装置、映像信号伝送システム、受信方法、プログラム、制御プログラム、及び記録媒体
JP2018180266A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 表示装置およびその制御方法
WO2019039111A1 (ja) * 2017-08-25 2019-02-28 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP2019087844A (ja) * 2017-11-06 2019-06-06 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、表示装置、および画像処理方法
JPWO2019053916A1 (ja) * 2017-09-13 2019-11-07 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948619B2 (ja) * 2014-06-10 2016-07-06 パナソニックIpマネジメント株式会社 表示システム、表示方法および表示装置
BR112017019754A2 (pt) * 2015-03-24 2018-05-29 Sony Corp dispositivos de transmissão e recepçao, e, métodos de transmissão e recepção
WO2016172394A1 (en) * 2015-04-21 2016-10-27 Arris Enterprises Llc Adaptive perceptual mapping and signaling for video coding
EP3139342A1 (en) * 2015-09-02 2017-03-08 Thomson Licensing Methods, systems and apparatus for over-exposure correction
TWI631505B (zh) * 2016-08-26 2018-08-01 晨星半導體股份有限公司 應用於播放裝置的影像處理方法及相關的電路
WO2018047557A1 (ja) 2016-09-06 2018-03-15 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP6751233B2 (ja) * 2016-09-12 2020-09-02 オンキヨー株式会社 映像処理装置
JP6872693B2 (ja) * 2016-09-28 2021-05-19 パナソニックIpマネジメント株式会社 調整装置、調整方法およびプログラム
US10726315B2 (en) 2016-11-17 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Image processing device, image processing method, and program
JP7180610B2 (ja) * 2017-11-17 2022-11-30 ソニーグループ株式会社 再生装置、再生方法、およびプログラム
US10600163B2 (en) 2017-11-22 2020-03-24 Interdigital Vc Holdings, Inc. Method and device for reconstructing a display adapted HDR image
US10832613B2 (en) 2018-03-07 2020-11-10 At&T Intellectual Property I, L.P. Image format conversion using luminance-adaptive dithering
WO2019172100A1 (ja) * 2018-03-08 2019-09-12 キヤノン株式会社 映像表示装置
US10917583B2 (en) * 2018-04-27 2021-02-09 Apple Inc. Standard and high dynamic range display systems and methods for high dynamic range displays
CN108881758B (zh) * 2018-05-29 2020-11-13 联发科技股份有限公司 电子设备及其处理图像的方法
EP3764346A1 (en) * 2019-07-09 2021-01-13 Koninklijke Philips N.V. Adjustment of display optimization behaviour for hdr images
US11412174B2 (en) * 2020-09-22 2022-08-09 Microsoft Technology Licensing, Llc Efficient electro-optical transfer function (EOTF) curve for standard dynamic range (SDR) content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147018A2 (en) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Apparatuses and methods for hdr image encoding and decoding
WO2013046095A1 (en) * 2011-09-27 2013-04-04 Koninklijke Philips Electronics N.V. Apparatus and method for dynamic range transforming of images

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497395B1 (ko) * 2003-06-30 2005-06-23 삼성전자주식회사 화질을 자동으로 설정하는 방법
JP5145017B2 (ja) 2006-12-05 2013-02-13 日本放送協会 画像信号処理装置
JP5220118B2 (ja) * 2008-10-10 2013-06-26 シャープ株式会社 画像表示装置及び画像表示方法
JP4803284B2 (ja) * 2009-07-08 2011-10-26 カシオ計算機株式会社 画像処理装置、及び画像処理プログラム
TWI690211B (zh) * 2011-04-15 2020-04-01 美商杜比實驗室特許公司 高動態範圍影像的解碼方法、其處理器非暫態可讀取媒體及電腦程式產品
EP2707868B1 (en) * 2011-05-10 2024-04-03 Koninklijke Philips N.V. High dynamic range image signal generation and processing
CN102842288B (zh) * 2011-06-21 2017-03-01 飞思卡尔半导体公司 具有动态亮度缩放的背光视频显示器
WO2014128586A1 (en) * 2013-02-21 2014-08-28 Koninklijke Philips N.V. Improved hdr image encoding and decoding methods and devices
CN105284106B8 (zh) * 2013-06-20 2020-01-24 索尼公司 再现装置以及再现方法
US9584786B2 (en) * 2014-03-05 2017-02-28 Dolby Laboratories Licensing Corporation Graphics blending for high dynamic range video
JP6443857B2 (ja) * 2014-06-05 2018-12-26 キヤノン株式会社 画像処理装置、画像処理方法、及び、プログラム
TWI530927B (zh) * 2014-06-06 2016-04-21 瑞軒科技股份有限公司 顯示亮度的調校方法、畫面顯示方法以及顯示裝置
WO2015194102A1 (ja) * 2014-06-20 2015-12-23 パナソニックIpマネジメント株式会社 再生方法および再生装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147018A2 (en) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Apparatuses and methods for hdr image encoding and decoding
WO2013046095A1 (en) * 2011-09-27 2013-04-04 Koninklijke Philips Electronics N.V. Apparatus and method for dynamic range transforming of images

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175459A (ja) * 2016-03-24 2017-09-28 シャープ株式会社 信号変換装置、信号変換方法、テレビジョン受像機、プログラム、および記録媒体
WO2017163692A1 (ja) * 2016-03-24 2017-09-28 シャープ株式会社 信号変換装置、信号変換方法、テレビジョン受像機、プログラム、および記録媒体
JP2017181668A (ja) * 2016-03-29 2017-10-05 キヤノン株式会社 投影装置およびその制御方法
JP2017182064A (ja) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 表示装置及びその制御方法
JP2017203823A (ja) * 2016-05-09 2017-11-16 キヤノン株式会社 表示装置及びその制御方法
JP2018007133A (ja) * 2016-07-06 2018-01-11 キヤノン株式会社 画像処理装置とその制御方法及びプログラム
JP2018017931A (ja) * 2016-07-28 2018-02-01 キヤノン株式会社 画像処理装置及びその制御方法、表示装置
JP2018017953A (ja) * 2016-07-29 2018-02-01 株式会社Jvcケンウッド 処理装置、表示システム、表示方法、及びプログラム
JP2018128593A (ja) * 2017-02-09 2018-08-16 シャープ株式会社 表示装置、テレビジョン受像機、映像処理方法、制御プログラム、及び記録媒体
JP2018129706A (ja) * 2017-02-09 2018-08-16 シャープ株式会社 受信装置、テレビジョン受像機、映像信号生成装置、送信装置、映像信号伝送システム、受信方法、プログラム、及び記録媒体
WO2018147196A1 (ja) * 2017-02-09 2018-08-16 シャープ株式会社 表示装置、テレビジョン受像機、映像処理方法、バックライト制御方法、受信装置、映像信号生成装置、送信装置、映像信号伝送システム、受信方法、プログラム、制御プログラム、及び記録媒体
JP2018180266A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 表示装置およびその制御方法
WO2019039111A1 (ja) * 2017-08-25 2019-02-28 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP2019041269A (ja) * 2017-08-25 2019-03-14 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JPWO2019053916A1 (ja) * 2017-09-13 2019-11-07 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JP2019087844A (ja) * 2017-11-06 2019-06-06 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、表示装置、および画像処理方法
US10825153B2 (en) 2017-11-06 2020-11-03 Sony Interactive Entertainment Inc. Image processing apparatus, display apparatus, and image processing method

Also Published As

Publication number Publication date
CN105493490B (zh) 2019-11-29
US9948884B2 (en) 2018-04-17
JPWO2015198554A1 (ja) 2017-04-20
JP2017005737A (ja) 2017-01-05
EP3174280A1 (en) 2017-05-31
US9736419B2 (en) 2017-08-15
JP5991502B2 (ja) 2016-09-14
MX357793B (es) 2018-07-25
US20170272687A1 (en) 2017-09-21
MX2016016116A (es) 2017-04-25
CN105493490A (zh) 2016-04-13
US20160205338A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP5991502B2 (ja) 変換方法および変換装置
JP7065376B2 (ja) 表示装置、変換装置、表示方法、および、コンピュータプログラム
US10891722B2 (en) Display method and display device
JP6731722B2 (ja) 表示方法および表示装置
JP6575875B2 (ja) 変換方法および変換装置
WO2016181584A1 (ja) 表示方法および表示装置
JP6868797B2 (ja) 変換方法及び変換装置
JP2020195137A (ja) 表示方法および表示装置
WO2016189774A1 (ja) 表示方法および表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001443.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514199

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015812305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016116

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE