WO2015194520A1 - アンチセンス核酸 - Google Patents

アンチセンス核酸 Download PDF

Info

Publication number
WO2015194520A1
WO2015194520A1 PCT/JP2015/067238 JP2015067238W WO2015194520A1 WO 2015194520 A1 WO2015194520 A1 WO 2015194520A1 JP 2015067238 W JP2015067238 W JP 2015067238W WO 2015194520 A1 WO2015194520 A1 WO 2015194520A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
antisense oligomer
oligomer
hydrate
pharmaceutically acceptable
Prior art date
Application number
PCT/JP2015/067238
Other languages
English (en)
French (fr)
Inventor
渡辺 直樹
悠一郎 戸根
武田 伸一
永田 哲也
Original Assignee
日本新薬株式会社
国立研究開発法人国立精神・神経医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/314,535 priority Critical patent/US9840706B2/en
Priority to EP19208809.4A priority patent/EP3660154A1/en
Priority to SG11201610130VA priority patent/SG11201610130VA/en
Priority to RU2017101172A priority patent/RU2695430C2/ru
Application filed by 日本新薬株式会社, 国立研究開発法人国立精神・神経医療研究センター filed Critical 日本新薬株式会社
Priority to LTEP15810097.4T priority patent/LT3159409T/lt
Priority to NZ728103A priority patent/NZ728103B2/en
Priority to ES15810097T priority patent/ES2765463T3/es
Priority to RS20200002A priority patent/RS59764B1/sr
Priority to PL15810097T priority patent/PL3159409T3/pl
Priority to DK15810097.4T priority patent/DK3159409T3/da
Priority to EP15810097.4A priority patent/EP3159409B1/en
Priority to UAA201700424A priority patent/UA121117C2/uk
Priority to JP2016529346A priority patent/JP6208349B2/ja
Priority to MX2016016526A priority patent/MX2016016526A/es
Priority to AU2015277924A priority patent/AU2015277924B2/en
Priority to CN201580037016.2A priority patent/CN106661577B/zh
Priority to BR112016029369-0A priority patent/BR112016029369B1/pt
Priority to KR1020167036291A priority patent/KR102335810B1/ko
Priority to BR122020020864-3A priority patent/BR122020020864B1/pt
Priority to CA2951221A priority patent/CA2951221A1/en
Priority to SI201531057T priority patent/SI3159409T1/sl
Priority to MYPI2016704648A priority patent/MY194170A/en
Publication of WO2015194520A1 publication Critical patent/WO2015194520A1/ja
Priority to PH12016502501A priority patent/PH12016502501A1/en
Priority to IL249574A priority patent/IL249574B/en
Priority to ZA2017/00142A priority patent/ZA201700142B/en
Priority to CONC2017/0000357A priority patent/CO2017000357A2/es
Priority to US15/677,071 priority patent/US11193125B2/en
Priority to CY20201100011T priority patent/CY1122462T1/el
Priority to HRP20200042TT priority patent/HRP20200042T1/hr
Priority to AU2021203383A priority patent/AU2021203383B2/en
Priority to US17/517,006 priority patent/US20220049257A1/en
Priority to AU2024201290A priority patent/AU2024201290A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to an antisense oligomer for exon skipping comprising a nucleotide sequence complementary to two or more different sequences in a target exon. More specifically, it relates to an antisense oligomer that enables skipping of the 44th exon of the human dystrophin gene and a pharmaceutical composition comprising the oligomer.
  • DMD Duchenne muscular dystrophy
  • DMD is known to be caused by mutations in the dystrophin gene.
  • the dystrophin gene exists on the X chromosome and is a huge gene consisting of 2.2 million bases of DNA. Transcripts from DNA to mRNA precursors, introns removed by splicing, and 79 exons bound to mRNA are 13,993 bases. This mRNA is translated into 3,685 amino acids to produce dystrophin protein.
  • Dystrophin protein is involved in maintaining the membrane stability of muscle cells, and is necessary to make muscle cells difficult to break. Since the dystrophin gene of DMD patients has a mutation, dystrophin protein having a function in muscle cells is hardly expressed. Therefore, in the DMD patient body, the structure of muscle cells cannot be maintained, and a large amount of calcium ions flow into the muscle cells. As a result, a reaction similar to inflammation occurs and fibrosis advances, making it difficult for muscle cells to regenerate.
  • BMD Becker muscular dystrophy
  • DMD Becker muscular dystrophy
  • the symptoms are generally muscular weakness, but are generally milder than DMD, and the progression of muscular weakness is slow, often occurring in adulthood.
  • the difference in clinical symptoms between DMD and BMD is thought to be due to whether the amino acid reading frame when dystrophin mRNA is translated into dystrophin protein due to mutation is destroyed or maintained (non-patented) Reference 1).
  • DMD has a mutation that shifts the amino acid reading frame, so that almost no functional dystrophin protein is expressed, but in BMD, a part of the exon is deleted due to the mutation, but the amino acid reading frame is maintained. Therefore, a dystrophin protein having a function although it is incomplete is produced.
  • Exxon skipping is expected as a treatment method for DMD.
  • This method restores the amino acid reading frame of dystrophin mRNA by modifying splicing and induces the expression of dystrophin protein partially restored in function (Non-patent Document 2).
  • the part of the amino acid sequence targeted for exon skipping will be lost.
  • the dystrophin protein expressed by this treatment is shorter than the normal one, but the function of stabilizing muscle cells is partially retained because the amino acid reading frame is maintained.
  • exon skipping is expected to cause DMD to exhibit symptoms similar to milder BMD.
  • the exon skipping method has been tested in human DMD patients through animal experiments using mice and dogs.
  • Exon skipping can be induced by binding of antisense nucleic acids targeting either or both 5 'or 3' splice sites, or the interior of exons. Exons are only included in mRNA if both splice sites are recognized by the spliceosome complex. Thus, exon skipping can be induced by targeting the splice site with an antisense nucleic acid. In addition, it is thought that binding of serine and arginine-rich SR protein to exon splicing enhancer (ESE) is necessary for exon to be recognized by splicing mechanism, and exon skipping is also possible by targeting ESE. Can be induced.
  • ESE exon splicing enhancer
  • the present invention provides a novel linking antisense oligomer that induces exon skipping targeting two different nucleotide sequences within the same exon of the dystrophin gene and a muscular dystrophy therapeutic agent comprising the same
  • the main purpose is to do.
  • the present inventors have obtained an antisense obtained by ligating oligomers that target two different sites of exon 44 of the human dystrophin gene. It was found that the oligomer can induce skipping of the exon. The present inventors have completed the present invention based on this finding.
  • the present invention is as follows. [1] (A) a first unit oligomer comprising a base sequence complementary to a first nucleotide sequence of 7 to 15 bases continuous in the target exon; and (b) a 7 to 15 base base sequence in the target exon.
  • a second unit oligomer comprising a base sequence complementary to the nucleotide sequence of 2, Is an antisense oligomer of 15 to 30 bases in length,
  • the first nucleotide sequence and the second nucleotide sequence are not contiguous or overlapping each other;
  • [4] The antisense oligomer according to [1] or [2] above, wherein the first nucleotide sequence is a nucleotide sequence of 7 to 15 consecutive nucleotides selected from the nucleotide sequence shown in SEQ ID NO: 1, or a pharmaceutically acceptable product thereof An acceptable salt or hydrate.
  • [5] The antisense oligomer according to any one of [1] to [3] above, wherein the second nucleotide sequence is a nucleotide sequence of 7 to 15 consecutive nucleotides selected from the nucleotide sequence shown in SEQ ID NO: 2; Or a pharmaceutically acceptable salt or hydrate thereof.
  • [6] The antisense oligomer according to [1] or [2] above, wherein two unit oligomers selected from the group consisting of the following (c) to (e) are linked: (C) a unit oligomer consisting of a base sequence complementary to a continuous nucleotide sequence of 7 to 15 bases selected from the nucleotide sequence shown in SEQ ID NO: 3; (D) a unit oligomer consisting of a base sequence complementary to a continuous nucleotide sequence of 7 to 15 bases selected from the nucleotide sequence shown in SEQ ID NO: 4; and (e) a continuation selected from the nucleotide sequence shown in SEQ ID NO: 5.
  • a unit oligomer consisting of a base sequence complementary to a nucleotide sequence of 7 to 15 bases, or a pharmaceutically acceptable salt or hydrate thereof.
  • the sugar moiety of at least one nucleotide constituting the oligonucleotide has a 2′-position —OH group, OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 ,
  • the above R represents alkyl or aryl, and the above R ′ represents alkylene.
  • the phosphate binding part of at least one nucleotide constituting the oligonucleotide is selected from the group consisting of a phosphorothioate bond, a phosphorodithioate bond, an alkylphosphonate bond, a phosphoramidate bond, and a boranophosphate bond.
  • the antisense oligomer according to any one of [8] to [10], or a pharmaceutically acceptable salt or hydrate thereof, which is any one of the above.
  • a pharmaceutical composition for treating muscular dystrophy comprising the antisense oligomer according to any one of [1] to [14], or a pharmaceutically acceptable salt or hydrate thereof as an active ingredient.
  • the antisense oligomer according to any one of the above [1] to [12], or a pharmaceutically acceptable salt or hydrate thereof, or the pharmaceutical composition according to the above [1] or [16] A method for treating muscular dystrophy comprising the step of administering to a muscular dystrophy patient.
  • the treatment method according to [17] wherein the muscular dystrophy patient has a mutation that causes exon 44 skip in the dystrophin gene.
  • a second unit oligomer comprising a base sequence complementary to the nucleotide sequence of 2
  • the antisense oligomer of the present invention can induce skipping of exon 44 of the human dystrophin gene with high efficiency. Moreover, the symptoms of Duchenne muscular dystrophy can be effectively reduced by administering the pharmaceutical composition of the present invention.
  • Antisense oligomers The present invention provides: (a) a first unit oligomer comprising a base sequence complementary to a first nucleotide sequence of 7 to 15 consecutive bases in a target exon; and (b) a continuous in the target exon.
  • a second unit oligomer comprising a base sequence complementary to a second nucleotide sequence of 7 to 15 bases, Is an antisense oligomer of 15 to 30 bases in length,
  • an antisense oligomer, or a pharmaceutically acceptable salt or hydrate thereof that induces skipping of the target exon, wherein the first nucleotide sequence and the second nucleotide sequence are not contiguous or overlapping each other.
  • antisense oligomer, or a pharmaceutically acceptable salt or hydrate thereof is sometimes simply referred to as “antisense oligomer”.
  • the antisense oligomer is (A) a first unit oligomer comprising a base sequence complementary to a first nucleotide sequence of 7 to 15 bases continuous in the target exon; and (b) a 7 to 15 base base sequence in the target exon.
  • a second unit oligomer comprising a base sequence complementary to the nucleotide sequence of 2
  • the first nucleotide sequence and the second nucleotide sequence can be produced by a production method that is not continuous or overlapping each other.
  • the manufacturing method includes a step of measuring the skipping efficiency of the antisense oligomer obtained in the step, and a second step of selecting an antisense oligomer having skipping efficiency exceeding a reference value, May further be included.
  • the skipping efficiency is obtained by recovering mRNA of a gene containing a target exon from a test cell, and among the mRNA, the amount of polynucleotide "A" in a band skipped by the target exon and the target
  • the amount of polynucleotide “B” in the band that the exon did not skip is measured, and can be calculated according to the following formula based on the measured values of “A” and “B”.
  • Skipping efficiency (%) A / (A + B) x 100
  • International Publication No. 2012/029986 can be referred to for the calculation of skipping efficiency.
  • the standard skipping efficiency is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more is there.
  • a first unit oligomer comprising a base sequence complementary to a first nucleotide sequence of 7 to 15 bases consecutive in the target exon; and (ii) 7 to 15 consecutive in the target exon
  • a second unit oligomer comprising a base sequence complementary to the second nucleotide sequence of the base, (Wherein the first nucleotide sequence and the second nucleotide sequence are not contiguous or overlapping each other),
  • a method for screening an antisense oligomer is provided.
  • the first unit oligomer and the second unit oligomer may be linked to each other on the 5 ′ side or the 3 ′ side.
  • the first unit oligomer is on the 5 ′ side.
  • the second unit oligomer is located on the 3 ′ side and is linked.
  • the antisense oligomer may include a third unit oligomer that includes a base sequence complementary to a third nucleotide sequence of 7 to 15 consecutive bases in the target exon.
  • linked means that the two unit oligomers are directly linked or linked via a mediator.
  • the mediator include 1 to 5 residue nucleic acids (strands) and known ones commonly used for linking nucleic acids and morpholino nucleic acid derivatives. For example, 3-aminopropyl , Succinyl, 2,2′-diethanolsulfonyl, and long chain alkylamino (LCAA).
  • X represents —OH, —CH 2 R 1 , —O—CH 2 R 1 , —S—CH 2 R 1 , —NR 2 R 3 or F;
  • R 1 represents H, alkyl;
  • R 2 and R 3 are the same or different and each represents H, alkyl, cycloalkyl, or aryl;
  • Y 1 represents 0, S, CH 2 or NR 1 ;
  • Y 2 represents 0, S or NR 1 ;
  • Z represents 0 or S.
  • the first and / or second unit oligomer may include a base sequence complementary to a partial nucleotide sequence of an intron adjacent to the target exon.
  • the 5 ′ side of the first unit oligomer is 5 ′ of the target exon.
  • a nucleotide sequence complementary to the nucleotide sequence around the 3 ′ end of the intron adjacent to the side and / or 3 ′ of the second unit oligomer, 5 ′ of the intron adjacent to the 3 ′ side of the target exon 'A base sequence complementary to the nucleotide sequence around the terminal may be contained.
  • the first and / or second unit oligomer may include a base sequence complementary to a partial nucleotide sequence of an exonic splicing enhancer (ESE) of the target exon.
  • ESE exonic splicing enhancer
  • the target exon is not particularly limited, but in one embodiment is an exon of a human gene, and further an exon of a human dystrophin gene. More specifically, it is the 44th exon of the human dystrophin gene.
  • the present invention provides, in one embodiment, an antisense oligomer (hereinafter referred to as “the oligomer of the present invention”) capable of skipping the 44th exon of the human dystrophin gene.
  • the oligomer of the present invention capable of skipping the 44th exon of the human dystrophin gene.
  • “gene” includes cDNA, mRNA precursor and mRNA in addition to genomic genes.
  • the gene is an mRNA precursor, ie pre-mRNA.
  • the human dystrophin gene is present at locus Xp21.2.
  • the human dystrophin gene has a size of 3.0 Mbp and is the largest known human gene.
  • the coding region of the human dystrophin gene is only 14 kb, and the coding region is dispersed in the dystrophin gene as 79 exons (Roberts, RG., Et al., Genomics, 16: 536-538 ( 1993)).
  • Pre-mRNA a transcript of the human dystrophin gene, is spliced to produce a 14 kb mature mRNA.
  • the base sequence of the human wild-type dystrophin gene is known (GenBank Accession No. NM_004006).
  • SEQ ID NO: 10 shows the base sequence of exon 44 of the human wild-type dystrophin gene.
  • the oligomer of the present invention is prepared for the purpose of modifying a protein encoded by the DMD dystrophin gene into a BMD dystrophin protein by skipping exon 44 of the human dystrophin gene. Therefore, exon 44 of the dystrophin gene to be subjected to exon skipping of the oligomer of the present invention includes not only the wild type but also the mutant type. Exon 44 of the mutant human dystrophin gene is specifically a polynucleotide described in the following (I) or (II).
  • polynucleotide means DNA or RNA.
  • a polynucleotide that hybridizes under stringent conditions means, for example, a colony high using a whole or part of a polynucleotide comprising a base sequence complementary to the base sequence of SEQ ID NO: 10 as a probe.
  • hybridization methods include “Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 3, Cold Spring Harbor, Laboratory Press 2001” and “Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997". Can be used.
  • the “complementary base sequence” is not limited to a base sequence that forms a Watson-Crick pair with the target base sequence, but a base that forms a wobble base pair. Includes sequences.
  • the Watson-Crick pair means a base pair in which a hydrogen bond is formed between adenine-thymine, adenine-uracil and guanine-cytosine
  • the fluctuation base pair means guanine-uracil, inosine-uracil, inosine.
  • the “complementary base sequence” may not have 100% complementarity with the target base sequence. For example, 1 to 3 or 1 to 3 with respect to the target base sequence Two or one non-complementary base may be included.
  • “stringent conditions” may be any of low stringent conditions, moderately stringent conditions, and highly stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 32 ° C.
  • the “medium stringent conditions” include, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C. or 5 ⁇ SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5 ), 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. or 0.2 ⁇ SSC, 0.1% SDS, 65 ° C.
  • the hybridized polynucleotide can be detected.
  • a probe based on the whole or a part of the base sequence complementary to the base sequence of SEQ ID NO: 10 using a commercially available reagent (for example, PCR labeling mix (Roche Diagnostics) etc.)
  • PCR labeling mix for example, PCR labeling mix (Roche Diagnostics) etc.
  • DIG digoxigenin
  • hybridization can be detected using a DIG nucleic acid detection kit (Roche Diagnostics).
  • polynucleotide other than the above hybridizable polynucleotide 90% or more of the sequence consisting of the polynucleotide of SEQ ID NO: 10, when calculated using BLAST, which is homology search software, using the default parameters, 91 % Or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more And polynucleotides having 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more.
  • the oligomer of the present invention is specifically an antisense oligomer having a length of 15 to 30 bases in which two unit oligomers selected from the group consisting of the following (a) and (b) are linked.
  • a unit oligomer comprising a base sequence complementary to a nucleotide sequence of 7 to 15 bases, for example, wherein the first nucleotide sequence is a nucleotide sequence of 7 to 15 bases selected from the nucleotide sequence shown in SEQ ID NO: 1 And / or the second nucleotide sequence may be a continuous 7-15 base nucleotide sequence selected from the nucleotide sequence shown in SEQ ID NO: 2.
  • the oligomer of the present invention is an antisense oligomer having a length of 15 to 30 bases in which two unit oligomers selected from the group consisting of the following (c) to (e) are linked.
  • nucleotide sequences shown in SEQ ID NOs: 1 and 2 consist of nucleotides -1 to 44 in the nucleotide sequence of exon 44 of human wild-type dystrophin gene (SEQ ID NO: 10), counting from the 5 ′ end, respectively.
  • the nucleotide sequence shown in SEQ ID NO: 3 is a sequence consisting of the 18th to 34th bases counted from the 5 'end of the nucleotide sequence (SEQ ID NO: 10) of exon 44 of the human wild type dystrophin gene.
  • nucleotide sequences shown in SEQ ID NOs: 4 and 5 are a sequence consisting of the 61st to 77th bases and a sequence consisting of the 88th to 104th bases, respectively.
  • each of the above unit oligomers (a) to (e) (hereinafter sometimes simply referred to as “unit”) is 7 to 15 bases, preferably 8 to 15 bases, preferably 9 to 15 bases 10-15 base length, 10-14 base length, 10-13 base length, 11-13 base length.
  • the size of each unit (a) to (e) may be the same or different.
  • the two unit oligomers may be a combination of the same unit oligomers or a combination of different unit oligomers. That is, the two unit oligomers may be a combination of (a) and (a) or a combination of (b) and (b), or a combination of (a) and (b). Further, when selecting two unit oligomers from the group consisting of (c) to (e), the two unit oligomers may be a combination of the same unit oligomers, or may be a combination of different unit oligomers. Preferably, different types of units are selected one by one.
  • the other unit when (c) is selected as one unit, the other unit is preferably (d) or (e). Similarly, when unit (d) is selected for one, the other unit is preferably (c) or (e), and when unit (e) is selected for one, the other unit is (c) Or (d) is preferred.
  • either of the two selected units may be arranged on the 5 ′ end side, but if (a) and (b) are selected, the unit (A) is preferably linked to the 3 ′ end.
  • the unit (c) is linked to the 3 'end, and if (d) and (e) are selected, unit (d) is linked to the 3' end and (c) and (e) are selected. In such a case, the unit (c) is preferably linked to the 3 ′ end.
  • connection means that two units selected from (a) and (b) or two units selected from (c) to (e) are directly connected. That is, when two units are linked, the 3 ′ end of the unit located on the 5 ′ end side and the 5 ′ end of the unit located on the 3 ′ end side form a phosphate bond or the following group: Means that.
  • X represents —OH, —CH 2 R 1 , —O—CH 2 R 1 , —S—CH 2 R 1 , —NR 2 R 3 or F;
  • R 1 represents H, alkyl;
  • R 2 and R 3 are the same or different and each represents H, alkyl, cycloalkyl, or aryl;
  • Y 1 represents 0, S, CH 2 or NR 1 ;
  • Y 2 represents 0, S or NR 1 ;
  • Z represents 0 or S.
  • the 44th exon of the human dystrophin gene can be skipped means that the oligomer of the present invention binds to a site corresponding to exon 44 of a transcript (eg, pre-mRNA) of the human dystrophin gene.
  • a transcript eg, pre-mRNA
  • the transcript is spliced, for example, in a DMD patient having a deletion in exon 45, the base sequence corresponding to the 5 ′ end of exon 46 is linked to the base sequence corresponding to the 3 ′ end of exon 43. This means that mature mRNA is formed in which no codon frame shift occurs.
  • the “binding” means that when the oligomer of the present invention and the transcript of the human dystrophin gene are mixed, they hybridize to form a double strand under physiological conditions.
  • the “physiological condition” means a condition adjusted to a pH, salt composition, and temperature similar to those in a living body. For example, the conditions are 25 to 40 ° C., preferably 37 ° C., pH 5 to 8, preferably pH 7.4, and a sodium chloride concentration of 150 mM.
  • exon 44 skipping of the human dystrophin gene occurred was determined by introducing the oligomer of the present invention into a dystrophin-expressing cell (for example, human rhabdomyosarcoma cell), and from the total RNA of the dystrophin-expressing cell, The region around exon 44 of mRNA can be confirmed by performing RT-PCR amplification and performing nested PCR or sequence analysis on the PCR amplification product.
  • the skipping efficiency was determined by recovering human dystrophin gene mRNA from the test cells, and among the mRNA, the amount of polynucleotide in the band exon 44 skipped and the amount of polynucleotide in the band exon 44 not skipped.
  • Skipping efficiency (%) A / (A + B) x 100
  • International Publication No. 2012/029986 can be referred to for the calculation of skipping efficiency.
  • the antisense oligomer of the present invention is targeted at an efficiency of 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more Skip exon (eg exon 44).
  • the antisense oligomer of the present invention examples include oligonucleotides, morpholino oligomers, and peptide nucleic acid (Peptide Nucleic Acid: PNA) oligomers having a length of 15 to 30 bases.
  • the antisense oligomer of the present invention has 16-30 bases, 17-30 bases, 18-30 bases, 19-30 bases, 20-30 bases, 20-29 bases, 20-28 bases, 20-27 bases. 20 to 26 bases, 21 to 26 bases or 22 to 26 bases in length, and preferably a morpholino oligomer.
  • oligonucleotide of the present invention is an oligomer of the present invention having nucleotide as a structural unit, and such nucleotide may be any of ribonucleotide, deoxyribonucleotide and modified nucleotide.
  • the modified nucleotide refers to one in which all or part of the nucleobase, sugar moiety, and phosphate binding moiety constituting the ribonucleotide or deoxyribonucleotide is modified.
  • nucleobase examples include adenine, guanine, hypoxanthine, cytosine, thymine, uracil, and modified bases thereof.
  • modified bases include pseudouracil, 3-methyluracil, dihydrouracil, 5-alkylcytosine (eg, 5-methylcytosine), 5-alkyluracil (eg, 5-ethyluracil), 5-halouracil (5 -Bromouracil), 6-azapyrimidine, 6-alkylpyrimidine (6-methyluracil), 2-thiouracil, 4-thiouracil, 4-acetylcytosine, 5- (carboxyhydroxymethyl) uracil, 5'-carboxymethylaminomethyl -2-thiouracil, 5-carboxymethylaminomethyluracil, 1-methyladenine, 1-methylhypoxanthine, 2,2-dimethylguanine, 3-methylcytosine, 2-methyladenine, 2-methylguanine, N6-methyladenine 7-
  • modification of the sugar moiety examples include modification of the 2 ′ position of ribose and modification of other parts of the sugar.
  • modification at the 2 ′ position of ribose examples include, for example, the —OH group at the 2 ′ position of ribose is OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl , Br and I can be substituted.
  • R represents alkyl or aryl.
  • R ′ represents alkylene.
  • modifications of other parts of the sugar include, for example, those in which 4'-position O of ribose or deoxyribose is replaced with S, and those in which the 2'-position and 4'-position of the sugar are cross-linked, such as LNA (Locked Nucleic Acid ) Or ENA (2′-O, 4′-C-Ethylene-bridged Nucleic Acids), etc., but is not limited thereto.
  • LNA Locked Nucleic Acid
  • ENA (2′-O, 4′-C-Ethylene-bridged Nucleic Acids
  • Examples of the modification of the phosphate binding moiety include a phosphodiester bond, a phosphorothioate bond, a phosphorodithioate bond, an alkylphosphonate bond, a phosphoramidate bond, a boranophosphate bond (Enya et al: Bioorganic & Medicinal Chemistry, 2008 , 18, 9154-9160) (see, for example, Patent Reissue Publication Nos. 2006/129594 and 2006/038608).
  • alkyl linear or branched alkyl having 1 to 6 carbon atoms is preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl and isohexyl. It is done.
  • the alkyl may be substituted, and examples of the substituent include halogen, alkoxy, cyano, and nitro, and 1 to 3 of these may be substituted.
  • cycloalkyl having 5 to 12 carbon atoms is preferable. Specific examples include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, and cyclododecyl.
  • halogen include fluorine, chlorine, bromine and iodine.
  • Alkoxy includes linear or branched alkoxy having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n- Examples include pentyloxy, isopentyloxy, n-hexyloxy, isohexyloxy and the like.
  • alkoxy having 1 to 3 carbon atoms is preferable.
  • aryl aryl having 6 to 10 carbon atoms is preferable. Specific examples include phenyl, ⁇ -naphthyl, and ⁇ -naphthyl. Particularly preferred is phenyl.
  • the aryl may be substituted, and examples of the substituent include alkyl, halogen, alkoxy, cyano, and nitro, and 1 to 3 of these may be substituted.
  • alkylene linear or branched alkylene having 1 to 6 carbon atoms is preferable. Specific examples include methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, 2- (ethyl) trimethylene, and 1- (methyl) tetramethylene.
  • Examples of acyl include linear or branched alkanoyl or aroyl.
  • alkanoyl examples include formyl, acetyl, 2-methylacetyl, 2,2-dimethylacetyl, propionyl, butyryl, isobutyryl, pentanoyl, 2,2-dimethylpropionyl, hexanoyl and the like.
  • alkanoyl examples include formyl, acetyl, 2-methylacetyl, 2,2-dimethylacetyl, propionyl, butyryl, isobutyryl, pentanoyl, 2,2-dimethylpropionyl, hexanoyl and the like.
  • aroyl examples include benzoyl, toluoyl, and naphthoyl. Such aroyl may be substituted at substitutable positions and may be substituted with alkyl.
  • the oligonucleotide of the present invention preferably has a group represented by the following general formula in which the —OH group at the 2′-position of ribose is substituted with methoxy and the phosphate bond portion is a phosphorothioate bond. Oligomer. (In the formula, Base represents a nucleobase.)
  • the oligonucleotide of the present invention can be easily synthesized using various automatic synthesizers (for example, AKTA oligopilot plus 10/100 (GE Healthcare)), or a third-party organization (for example, Promega or It can also be manufactured by consigning to Takara).
  • automatic synthesizers for example, AKTA oligopilot plus 10/100 (GE Healthcare)
  • third-party organization for example, Promega or It can also be manufactured by consigning to Takara.
  • the morpholino oligomer is an oligomer of the present invention having a group represented by the following general formula as a structural unit.
  • Base is as defined above; W represents a group represented by any of the following formulas.
  • X represents —CH 2 R 1 , —O—CH 2 R 1 , —S—CH 2 R 1 , —NR 2 R 3 or F;
  • R 1 represents H, alkyl;
  • R 2 and R 3 are the same or different, H, alkyl, cycloalkyl, or an aryl;
  • Y 1 represents 0, S, CH 2 or NR 1 ;
  • Y 2 represents 0, S or NR 1 ;
  • Z represents 0 or S.
  • the morpholino oligomer is preferably an oligomer (a phosphorodiamidate morpholino oligomer (hereinafter referred to as “PMO”)) having a group represented by the following formula as a structural unit. (In the formula, Base, R 2 and R 3 are as defined above.)
  • PMO phosphorodiamidate morpholino oligomer
  • the morpholino oligomer can be produced, for example, according to International Publication No. 1991/009033 or International Publication No. 2009/064471.
  • PMO can be produced according to the method described in WO 2009/064471, or can be produced according to the method described in WO 2013/100190.
  • PMO manufacturing method As one embodiment of PMO, for example, a compound represented by the following general formula (I) (hereinafter referred to as PMO (I)) can be mentioned.
  • PMO (I) a compound represented by the following general formula (I) (hereinafter referred to as PMO (I))
  • PMO (I) a compound represented by the following general formula (I) (hereinafter referred to as PMO (I))
  • n is an arbitrary integer within the range of 1 to 99, preferably an arbitrary integer within the range of 18 to 28. ]
  • PMO (I) can be produced according to a known method, and can be produced, for example, by carrying out an operation in the following steps.
  • the compounds and reagents used in the following steps are not particularly limited as long as they are generally used in the production of PMO.
  • all the following steps can be performed by a liquid phase method or a solid phase method (using a manual or a commercially available solid phase automatic synthesizer).
  • a method using an automatic synthesizer is desirable from the viewpoint of simplification of operation procedures and accuracy of synthesis.
  • Process A By reacting an acid with a compound represented by the following general formula (II) (hereinafter referred to as compound (II)), a compound represented by the following general formula (III) (hereinafter referred to as compound (III)) )).
  • a compound represented by the following general formula (III) hereinafter referred to as compound (III))
  • n, R 2 and R 3 are as defined above;
  • Each BP independently represents an optionally protected nucleobase;
  • T represents a trityl group, a monomethoxytrityl group, or a dimethoxytrityl group;
  • L represents hydrogen, acyl, or a group represented by the following general formula (IV) (hereinafter referred to as group (IV)).
  • Examples of the “nucleobase” related to BP include the same “nucleobase” as Base. However, the amino group or hydroxyl group of the nucleobase according to BP may be protected.
  • the amino-protecting group is not particularly limited as long as it is used as a protecting group for nucleic acids. Specifically, for example, benzoyl, 4-methoxybenzoyl, acetyl, propionyl, butyryl, isobutyryl, phenylacetyl Phenoxyacetyl, 4-tert-butylphenoxyacetyl, 4-isopropylphenoxyacetyl, (dimethylamino) methylene.
  • hydroxyl-protecting group examples include 2-cyanoethyl, 4-nitrophenethyl, phenylsulfonylethyl, methylsulfonylethyl, trimethylsilylethyl, substituted with 1 to 5 electron-withdrawing groups at any substitutable position.
  • the “solid phase carrier” is not particularly limited as long as it is a carrier that can be used for a solid phase reaction of nucleic acid.
  • a reagent that can be used for the synthesis of a morpholino nucleic acid derivative for example, dichloromethane, acetonitrile, tetrazole, N-methylimidazole, pyridine, acetic anhydride, lutidine, trifluoroacetic acid
  • chemically stable to reagents that can be used to synthesize morpholino nucleic acid derivatives for example, dichloromethane, acetonitrile, tetrazole, N-methylimidazole, pyridine, acetic anhydride, lutidine, trifluoroacetic acid
  • chemical modification (Iv) can be loaded with the desired morpholino nucleic acid derivative, (v) has sufficient strength to withstand the high pressures applied during processing, and (vi) has a certain particle size range and distribution.
  • swellable polystyrene for example, aminomethylpolystyrene resin 1% dibenzylbenzene crosslinked (200 to 400 mesh) (2.4 to 3.0 mmol / g) (manufactured by Tokyo Chemical Industry Co., Ltd.), Aminomethylated Polystyrene Resin ⁇ HCl [dibenzyl Benzene 1%, 100-200 mesh] (Peptide Laboratories)), non-swellable polystyrene (eg, Primer Support (GE Healthcare)), PEG chain-bonded polystyrene (eg, NH 2 -PEG resin (Watanabe) Chemical)), TentaGel resin), controlled pore glass (CPG) (for example, CPG), oxalylated-constant glass (for example, Alul et al., Nucleic Acids Research, Vol.
  • CPG controlled pore glass
  • oxalylated-constant glass for example, Alul et
  • This step can be carried out by allowing an acid to act on compound (II).
  • Examples of the “acid” that can be used in this step include trifluoroacetic acid, dichloroacetic acid, and trichloroacetic acid.
  • the amount of the acid used is, for example, suitably in the range of 0.1 molar equivalent to 1000 molar equivalents, preferably in the range of 1 molar equivalent to 100 molar equivalents, relative to 1 mole of compound (II).
  • an organic amine can be used together with the acid. Although it does not specifically limit as an organic amine, For example, a triethylamine can be mentioned.
  • the amount of the organic amine to be used is, for example, suitably in the range of 0.01 molar equivalent to 10 molar equivalents, preferably in the range of 0.1 molar equivalents to 2 molar equivalents with respect to 1 mole of the acid.
  • a salt or a mixture of trifluoroacetic acid and triethylamine can be mentioned, and more specifically, with respect to 2 equivalents of trifluoroacetic acid. Examples thereof include a mixture of 1 equivalent of triethylamine.
  • the acid that can be used in this step can be used by diluting with an appropriate solvent so as to have a concentration within the range of 0.1% to 30%.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, acetonitrile, alcohols (ethanol, isopropanol, trifluoroethanol, etc.), water, and mixtures thereof.
  • the reaction temperature in the above reaction is, for example, preferably within the range of 10 ° C. to 50 ° C., more preferably within the range of 20 ° C. to 40 ° C., and even more preferably within the range of 25 ° C. to 35 ° C.
  • the reaction time varies depending on the type of acid used and the reaction temperature, but it is usually within the range of 0.1 minute to 24 hours. Preferably, it is within the range of 1 minute to 5 hours.
  • a base can be added.
  • the “base” is not particularly limited, and examples thereof include diisopropylamine.
  • the base can be used by diluting with a suitable solvent so that the concentration is within the range of 0.1% (v / v) to 30% (v / v).
  • the solvent used in this step is not particularly limited as long as it is not involved in the reaction, and examples thereof include dichloromethane, acetonitrile, alcohols (ethanol, isopropanol, trifluoroethanol, etc.), water, or a mixture thereof.
  • the reaction temperature is, for example, preferably within the range of 10 ° C to 50 ° C, more preferably within the range of 20 ° C to 40 ° C, and even more preferably within the range of 25 ° C to 35 ° C. While the reaction time varies depending on the type of base used and the reaction temperature, it is usually within the range of 0.1 minute to 24 hours, and preferably within the range of 1 minute to 5 hours.
  • Process 1 The process of manufacturing the compound (henceforth a compound (VI)) represented by the following general formula (VI) by making an acylating agent act on the compound represented by the following general formula (V).
  • a compound (VI) represented by the following general formula (VI)
  • V general formula (V)
  • This step can be carried out by introducing a known linker using compound (V) as a starting material.
  • the compound represented by the following general formula (VIa) can be produced by carrying out a method known as an esterification reaction using compound (V) and succinic anhydride. [Wherein, B P and T are as defined above. ]
  • Process 2 A step of producing a compound (IIa) by reacting with a solid phase carrier by allowing a condensing agent or the like to act on the compound (VI). [Wherein, B P , R 4 , T, linker, and solid phase carrier have the same meanings as described above. ] This step can be produced by a method known as a condensation reaction using compound (VI) and a solid support.
  • the compound represented by the following general formula (IIb) is obtained by, for example, the method described in International Publication No. 1991/009033. Can be manufactured. [Wherein, B P and T are as defined above. ]
  • n 2 to 99 and L is hydrogen
  • the compound represented by the following general formula (IIb2) is obtained by using the compound (IIb) as a starting material, as described in the present specification. It can be produced by repeatedly performing the process A and the process B relating to the production method of PMO a desired number of times. [Wherein, B P , n ′, R 2 , R 3 , T are as defined above]. ]
  • the compound represented by the following general formula (IIc) is a method known as an acylation reaction for the compound (IIb) It can manufacture by implementing. [Wherein B P and T are as defined above; R 5 represents acyl. ]
  • the compound represented by the following general formula (IIc2) is obtained by using the compound (IIc) as a starting material, as described in the present specification. It can be produced by repeatedly performing the process A and the process B relating to the production method of PMO a desired number of times. [Wherein, B P , n ′, R 2 , R 3 , R 5 , T are as defined above]. ]
  • Process B A step of producing a compound represented by the following general formula (VII) (hereinafter referred to as compound (VII)) by allowing a morpholino monomer compound to act on compound (III) in the presence of a base.
  • VII general formula
  • each of B P , L, n, R 2 , R 3 , and T has the same meaning as described above.
  • This step can be carried out by reacting compound (III) with a morpholino monomer compound in the presence of a base.
  • Examples of the morpholino monomer compound include a compound represented by the following general formula (VIII). [Wherein, B P , R 2 , R 3 and T are as defined above. ]
  • Examples of the “base” that can be used in this step include diisopropylamine, triethylamine, and N-ethylmorpholine. The amount of the base used is, for example, suitably in the range of 1 molar equivalent to 1000 molar equivalents, and preferably in the range of 10 molar equivalents to 100 molar equivalents, relative to 1 mole of compound (III).
  • the morpholino monomer compound and base that can be used in this step can also be used after diluting with a suitable solvent so as to have a concentration of 0.1% to 30%.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include N, N-dimethylimidazolidone, N-methylpiperidone, DMF, dichloromethane, acetonitrile, terahydrofuran, and mixtures thereof.
  • the reaction temperature is preferably in the range of 0 ° C. to 100 ° C., more preferably in the range of 10 ° C. to 50 ° C.
  • the reaction time varies depending on the type of base used and the reaction temperature, it is usually within the range of 1 minute to 48 hours, and preferably within the range of 30 minutes to 24 hours.
  • an acylating agent can be added as necessary.
  • the “acylating agent” include acetic anhydride, acetic chloride, and phenoxyacetic anhydride.
  • the acylating agent can be used by diluting with an appropriate solvent so as to have a concentration within the range of 0.1% to 30%, for example.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, acetonitrile, alcohols (ethanol, isopropanol, trifluoroethanol, etc.), water, and mixtures thereof.
  • a base such as pyridine, lutidine, collidine, triethylamine, diisopropylethylamine, N-ethylmorpholine can be used together with an acylating agent.
  • the amount of the acylating agent used is preferably in the range of 0.1 molar equivalent to 10,000 molar equivalents, and more preferably in the range of 1 molar equivalent to 1000 molar equivalents.
  • the amount of the base used is, for example, suitably in the range of 0.1 molar equivalent to 100 molar equivalents, and preferably in the range of 1 molar equivalent to 10 molar equivalents per mole of acylating agent.
  • the reaction temperature of this reaction is preferably within the range of 10 ° C to 50 ° C, more preferably within the range of 10 ° C to 50 ° C, more preferably within the range of 20 ° C to 40 ° C, and even more preferably. Is in the range of 25 ° C to 35 ° C.
  • the reaction time varies depending on, for example, the type of acylating agent used and the reaction temperature, but is usually within the range of 0.1 minute to 24 hours, preferably within the range of 1 minute to 5 hours.
  • Process C A step of producing a compound represented by the general formula (IX) by removing a protecting group in the compound (VII) produced in the step B using a deprotecting agent.
  • Base, B P , L, n, R 2 , R 3 and T are as defined above.
  • This step can be carried out by allowing a deprotecting agent to act on compound (VII).
  • Examples of the “deprotecting agent” include concentrated aqueous ammonia and methylamine.
  • the “deprotecting agent” that can be used in this step is, for example, diluted with water, methanol, ethanol, isopropyl alcohol, acetonitrile, tetrahydrofuran, DMF, N, N-dimethylimidazolidone, N-methylpiperidone, or a mixed solvent thereof. It can also be used. Of these, ethanol is preferred.
  • the amount of the deprotecting agent to be used is, for example, suitably in the range of 1 molar equivalent to 100,000 molar equivalents, preferably in the range of 10 molar equivalents to 1000 molar equivalents, relative to 1 mole of compound (VII). It is.
  • the reaction temperature is, for example, suitably in the range of 15 ° C. to 75 ° C., preferably in the range of 40 ° C. to 70 ° C., more preferably in the range of 50 ° C. to 60 ° C.
  • the deprotection reaction time varies depending on the type of compound (VII), the reaction temperature, etc., but is suitably in the range of 10 minutes to 30 hours, preferably in the range of 30 minutes to 24 hours, more preferably 5 Within the range of hours to 20 hours.
  • Process D A step of producing PMO (I) by allowing an acid to act on compound (IX) produced in Step C. [Wherein, Base, n, R 2 , R 3 , T are as defined above. ]
  • This step can be performed by adding an acid to compound (IX).
  • Examples of the “acid” that can be used in this step include trichloroacetic acid, dichloroacetic acid, acetic acid, phosphoric acid, and hydrochloric acid.
  • the amount of acid used is, for example, suitably so that the pH of the solution is in the range of 0.1 to 4.0, more preferably in the range of 1.0 to 3.0.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include acetonitrile, water, and mixed solvents thereof.
  • the reaction temperature is preferably in the range of 10 ° C to 50 ° C, more preferably in the range of 20 ° C to 40 ° C, and still more preferably in the range of 25 ° C to 35 ° C.
  • the deprotection reaction time varies depending on the type of compound (IX), reaction temperature, etc., but is suitably in the range of 0.1 minute to 5 hours, preferably in the range of 1 minute to 1 hour, more preferably 1 Within minutes to 30 minutes.
  • PMO (I) is a conventional separation and purification means from the reaction mixture obtained in this step, for example, extraction, concentration, neutralization, filtration, centrifugation, recrystallization, C 8 to C 18 reverse phase column chromatography, It can be obtained by using means such as cation exchange column chromatography, anion exchange column chromatography, gel filtration column chromatography, high performance liquid chromatography, dialysis, and ultrafiltration, alone or in combination, and the desired PMO (I ) Can be isolated and purified (see, for example, International Publication No. WO1991 / 09033).
  • a mixed solution of 20 mM triethylamine / acetic acid buffer and acetonitrile can be used as an elution solvent.
  • a mixed solution of 1M saline and 10 mM aqueous sodium hydroxide can be used.
  • the peptide nucleic acid oligomer is an oligomer of the present invention having a group represented by the following general formula as a structural unit.
  • Peptide nucleic acids can be produced, for example, according to the following literature. 1) P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science, 254, 1497 (1991) 2) M. Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg, Jacs., 114, 1895 (1992) 3) K. L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H. F. Hansen, T. Vulpius, K.
  • the 5 ′ end may be any group represented by the following chemical formulas (1) to (3).
  • the groups represented by the above (1), (2) and (3) are referred to as “group (1)”, “group (2)” and “group (3)”, respectively.
  • compositions allow skipping of exon 44 of the dystrophin gene. Therefore, by administering a pharmaceutical composition containing the oligomer of the present invention to a DMD patient having a mutation targeted for exon 44 skip in the dystrophin gene (mutation that becomes in-frame by exon 44 skipping), the symptoms of muscular dystrophy are alleviated. Is expected to be able to.
  • the oligomer of the present invention having a short chain length is advantageous in that the production process is simple and the production cost can be reduced. Therefore, as another embodiment, a pharmaceutical composition for treating muscular dystrophy (hereinafter referred to as “the composition of the present invention”) comprising the oligomer of the present invention, a pharmaceutically acceptable salt or hydrate thereof as an active ingredient. provide.
  • Examples of the pharmaceutically acceptable salt of the oligomer of the present invention contained in the composition of the present invention include alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth such as calcium salt and magnesium salt.
  • Metal salts Metal salts such as aluminum salts, iron salts, zinc salts, copper salts, nickel salts, cobalt salts; ammonium salts; t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl esters Salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N '-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl-phenethylamine Salt, piperazine salt, tetramethylammonium Organic
  • the dosage form of the composition of the present invention is not particularly limited as long as it is a pharmaceutically acceptable dosage form, and can be selected depending on the treatment method. From the viewpoint of ease of delivery to muscle tissue, intravenous administration is possible. Internal administration, intraarterial administration, intramuscular administration, subcutaneous administration, oral administration, intratissue administration, transdermal administration and the like are preferred.
  • the dosage form that the composition of the present invention can take is not particularly limited, and examples thereof include various injections, oral preparations, instillations, inhalants, ointments, lotions and the like.
  • the composition of the present invention preferably contains a carrier that facilitates delivery of the oligomer to muscle tissue.
  • a carrier is not particularly limited as long as it is pharmaceutically acceptable, and examples thereof include cationic carriers such as cationic liposomes and cationic polymers, and carriers utilizing a virus envelope.
  • cationic liposome for example, a liposome formed with 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol and phospholipid as essential components (hereinafter referred to as “liposome A”).
  • Oligofectamine (registered trademark) (manufactured by Invitrogen), Lipofectin (registered trademark) (manufactured by Invitrogen), Lipofectamine (registered trademark) (manufactured by Invitrogen), Lipofectamine 2000 (registered trademark) (manufactured by Invitrogen) ), DMRIE-C (registered trademark) (manufactured by Invitrogen), GeneSilencer (registered trademark) (manufactured by Gene Therapy Systems), TransMessenger (registered trademark) (manufactured by QIAGEN), TransIT TKO (registered trademark) (manufactured by Mirus) , Nucleofector II (Lonza).
  • liposome A is preferred.
  • the cationic polymer include JetSI (registered trademark) (manufactured by Qbiogene) and Jet-PEI (registered trademark) (polyethyleneimine, manufactured by Qbiogene).
  • the carrier using the virus envelope include GenomeOne (registered trademark) (HVJ-E liposome, manufactured by Ishihara Sangyo Co., Ltd.).
  • a pharmaceutical device described in Japanese Patent No. 2924179, and a cationic carrier described in Japanese Patent Publication No. 2006/129594 and Japanese Patent Publication No. 2008/096690 can be used.
  • the concentration of the oligomer of the present invention contained in the composition of the present invention varies depending on the kind of the carrier, etc., but is suitably in the range of 0.1 nM to 100 ⁇ M, preferably in the range of 1 nM to 10 ⁇ M, and 10 nM A range of ⁇ 1 ⁇ M is more preferable.
  • the weight ratio of the oligomer of the present invention to the carrier contained in the composition of the present invention (carrier / oligomer of the present invention) varies depending on the properties of the oligomer and the type of the carrier, but is within the range of 0.1-100. Is preferably in the range of 1 to 50, more preferably in the range of 10 to 20. *
  • a pharmaceutically acceptable additive can be optionally added to the composition of the present invention.
  • additives include emulsification aids (for example, fatty acids having 6 to 22 carbon atoms and pharmaceutically acceptable salts thereof, albumin, dextran), stabilizers (for example, cholesterol, phosphatidic acid), and isotonicity.
  • Agents for example, sodium chloride, glucose, maltose, lactose, sucrose, trehalose
  • pH adjusters for example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, triethanolamine.
  • the content of the additive in the composition of the present invention is suitably 90% by weight or less, preferably 70% by weight or less, and more preferably 50% by weight or less.
  • the composition of the present invention can be prepared by adding the oligomer of the present invention to a carrier dispersion and stirring appropriately.
  • the additive can be added in an appropriate step before or after the addition of the oligomer of the present invention.
  • the aqueous solvent that can be used when the oligomer of the present invention is added is not particularly limited as long as it is pharmaceutically acceptable. Examples thereof include electrolytes such as water for injection, distilled water for injection, and physiological saline, and glucose. Examples thereof include sugar liquids such as liquid and maltose liquid. Further, conditions such as pH and temperature in such a case can be appropriately selected by those skilled in the art.
  • the composition of the present invention can be, for example, a solution or a lyophilized preparation thereof.
  • the lyophilized preparation can be prepared by lyophilizing the composition of the present invention having a liquid form according to a conventional method. For example, after appropriate sterilization of the composition of the present invention in the form of a liquid agent, a predetermined amount is dispensed into a vial and pre-freezing for about 2 hours at about ⁇ 40 to ⁇ 20 ° C. And primary drying under reduced pressure at about 0-10 ° C., followed by secondary drying under reduced pressure at about 15-25 ° C. and lyophilization. In general, the inside of the vial is replaced with nitrogen gas and stoppered to obtain a lyophilized preparation of the composition of the present invention.
  • the freeze-dried preparation of the composition of the present invention can be used by re-dissolving generally by adding any appropriate solution (re-dissolving solution).
  • re-dissolving solution examples include water for injection, physiological saline, and other general infusion solutions.
  • the amount of the redissolved solution varies depending on the use and the like and is not particularly limited. However, an amount of 0.5 to 2 times the amount of the solution before lyophilization or 500 mL or less is appropriate.
  • the dose for administration of the composition of the present invention is determined in consideration of the type of oligomer of the present invention, dosage form, patient condition such as age and weight, administration route, nature and degree of disease.
  • the amount of the oligomer of the present invention for an adult is generally within the range of 0.1 mg to 10 g / human, preferably within the range of 1 mg to 1 kg / human. This value may vary depending on the type of target disease, dosage form, and target molecule. Therefore, in some cases, a lower dose may be sufficient, and conversely, a higher dose may be required.
  • it can be administered once to several times a day or at intervals of 1 day to several days.
  • composition of the present invention there can be mentioned a pharmaceutical composition
  • a pharmaceutical composition comprising a vector capable of expressing the oligonucleotide of the present invention and the above-mentioned carrier.
  • Such an expression vector may be capable of expressing a plurality of the oligonucleotides of the present invention.
  • a pharmaceutically acceptable additive can be added to the composition.
  • concentration of the expression vector contained in the composition varies depending on the type of carrier and the like, but is suitably in the range of 0.1 to nM to 100 to ⁇ M, preferably in the range of 1 to nM to 10 to ⁇ M, and 10 to nM to 1 to ⁇ M.
  • the range of is more preferable.
  • the weight ratio (carrier / expression vector) between the expression vector and the carrier contained in the composition varies depending on the nature of the expression vector, the type of the carrier, etc., but is suitably in the range of 0.1 to 100, and 1 to 50 Is preferable, and the range of 10 to 20 is more preferable.
  • the content of the carrier contained in the composition is the same as that of the composition of the present invention containing the oligomer of the present invention, and the preparation method thereof is the same as that of the composition of the present invention. It is.
  • Step 2 4- ⁇ [(2S, 6R) -6- (4-Benzamido-2-oxopyrimidin-1-yl) -4-tritylmorpholin-2-yl] methoxy ⁇ -4 supported on aminopolystyrene resin
  • oxobutanoic acid 4- ⁇ [(2S, 6R) -6- (4-benzamido-2-oxopyrimidin-1 (2H) -yl) -4-tritylmorpholin-2-yl] methoxy ⁇ -4-oxobutane 4.0 g of acid was dissolved in 200 mL of pyridine (dehydrated), and 0.73 g of 4-DMAP and 11.5 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride were added.
  • the resin was collected by filtration, washed with pyridine, methanol and dichloromethane in this order, and dried under reduced pressure to obtain 26.7 g of the desired product.
  • the loading amount of the target product was determined by measuring the UV absorbance at 409 nm of the molar amount of trityl per gram of resin using a known method.
  • the loading amount of the resin was 129.2 ⁇ mol / g.
  • 1-[(2R, 6S) -6- (hydroxymethyl) -4-tritylmorpholin-2-yl] -5-methylpyrimidine-2,4 (1H , 3H) -dione was used.
  • the loading amount of the target product was determined by measuring the UV absorbance at 409 nm of the molar amount of trityl per gram of resin using a known method.
  • the loading amount of the resin was 164.0 ⁇ mol / g.
  • N- ⁇ 9-[(2R, 6S) -6- (hydroxymethyl) -4-tritylmorpholin-2-yl] purin-6-yl ⁇ benzamide is used in this step. It was used.
  • the loading amount of the target product was determined by measuring the UV absorbance at 409 nm of the molar amount of trityl per gram of resin using a known method. The loading amount of the resin was 185.7 ⁇ mol / g.
  • N- ⁇ 6- (2-cyanoethoxy) -9-[(2R, 6S) -6- (hydroxymethyl) -4-tritylmorpholin-2-yl is used in this step.
  • Purin-2-yl ⁇ -2-phenoxyacetamide was used.
  • the loading amount of the target product was determined by measuring the UV absorbance at 409 nm of the molar amount of trityl per gram of resin using a known method. The resin loading was 164.8 ⁇ mol / g.
  • PMOs shown in PMO Nos. 1-118 in Table 1 were synthesized.
  • PMO Nos. 119 and 120 were purchased from Gene Tool.
  • the synthesized PMO was dissolved in water for injection (manufactured by Otsuka Pharmaceutical Factory).
  • Example 1 4- ⁇ [(2S, 6R) -6- (4-Benzamido-2-oxopyrimidin-1 (2H) -yl) -4-tritylmorpholine- supported on an aminopolystyrene resin corresponding to the 5 'terminal base 2-yl] methoxy ⁇ -4-oxobutanoic acid (Reference Example 1) or 4- ⁇ [(2S, 6R) -6- (5-methyl-2,4-dioxopyrimidine supported on aminopolystyrene resin] -1-yl) -4-tritylmorpholin-2-yl] methoxy ⁇ -4-oxobutanoic acid (Reference Example 2) or 4- ⁇ [(2S, 6R) -6- ( 6-benzamidopurin-9-yl) -4-tritylmorpholin-2-yl] methoxy ⁇ -4-oxobutanoic acid (Reference Example 3) or 4- ⁇ (2S, 6R) supported on amino
  • a dichloromethane solution containing 3% (w / v) trifluoroacetic acid was used as the deblocking solution.
  • a neutralization / washing solution 35% (v / v) of N, N-diisopropylethylamine is 10% (v / v) and tetrahydrofuran is 5% (v / v).
  • Those dissolved in a dichloromethane solution containing acetonitrile were used.
  • the coupling solution A a morpholino monomer compound dissolved in tetrahydrofuran so as to have a concentration of 0.10 M was used.
  • N, N-diisopropylethylamine dissolved in acetonitrile so as to be 20% (v / v) and tetrahydrofuran so as to be 10% (v / v) was used.
  • a capping solution 20% (v / v) acetic anhydride and 30% (v / v) 2,6-lutidine dissolved in acetonitrile were used.
  • the aminopolystyrene resin carrying PMO synthesized above was recovered from the reaction vessel and dried under reduced pressure at room temperature for 2 hours or more.
  • PMO supported on the dried aminopolystyrene resin was placed in a reaction vessel, 5 mL of 28% aqueous ammonia-ethanol (1/4) was added, and the mixture was stirred at 55 ° C. for 15 hours.
  • the aminopolystyrene resin was filtered off and washed with 1 mL of water-ethanol (1/4). The obtained filtrate was concentrated under reduced pressure.
  • the obtained residue was dissolved in 10 mL of a mixed solvent (4/1) of 20 mM acetic acid-triethylamine buffer (TEAA buffer) and acetonitrile and filtered through a membrane filter.
  • TEAA buffer 20 mM acetic acid-triethylamine buffer
  • the resulting filtrate was purified by reverse phase HPLC. The conditions used are as shown in Table 3 below.
  • Buffer RLT Qiagen
  • 2-mercaptoethanol Nacalai Tesque
  • One-Step RT-PCR was performed on 400 ng of the extracted total RNA using QIAGEN OneStep RT-PCR Kit (manufactured by Qiagen). A reaction solution was prepared according to the protocol attached to the kit. As the thermal cycler, PTC-100 (manufactured by MJ Research) or TaKaRa PCR Thermal Cycler Dice Touch (manufactured by Takara Bio Inc.) was used. The RT-PCR program used is as follows.
  • forward primer 5'-GCTCAGGTCGGATTGACATT-3 '(SEQ ID NO: 125)
  • Reverse primer 5'-GGGCAACTCTTCCACCAGTA-3 '(SEQ ID NO: 126)
  • Test Example 2 In vitro assay The experiment was performed in the same manner as in Test Example 1. However, the oligomer of the present invention of PMO No. 34, 100, 45, 73, 49, 47 is used alone or in each case for 3.5 ⁇ 10 5 RD cells (human rhabdomyosarcoma cell line). These two unit oligomers were each alone or mixed and introduced by Nucleofector II (Lonza) using Amaxa Cell Line Nucleofector Kit L at a concentration of 1, 3 or 10 ⁇ M. The program used was T-030. Combinations of the introduced sequences are as follows.
  • Cells are cultured in a T225 flask, and 2.5 mL of human-derived myoD (SEQ ID NO: 127) -expressing retrovirus (co-expressed with ZsGreen1) and polybrene (Sigma Aldrich) at a final concentration of 8 ⁇ g / mL are added to 30 mL of growth medium. did. After culturing at 32 ° C. for 2 days, the medium was replaced with a fresh growth medium, and further culturing at 37 ° C. for 3 days. MyoD-converted fibroblasts were recovered by selecting ZsGreen1-positive cells with BD FACSAria Cell Sorter (BD Bioscience).
  • BD FACSAria Cell Sorter BD Bioscience
  • the collected cells were suspended in a differentiation medium (DMEM / F-12 containing 2% horse serum (Life Technologies), 1% P / S and ITS Liquid Media Supplement (Sigma Aldrich)) and coated with collagen.
  • the well plate was seeded at 9.4 ⁇ 10 4 cells / well. Culture was performed every 2 to 3 days while changing the medium, and differentiation into myotube cells was induced.
  • RT-PCR was performed on 50 ng of the extracted total RNA using QIAGEN OneStep RT-PCR Kit. A reaction solution was prepared according to the attached protocol. ICycler (Bio-Rad Laboratories) was used as the thermal cycler. The RT-PCR program used is as follows.
  • forward primer 5'-GCTCAGGTCGGATTGACATT-3 '(SEQ ID NO: 125)
  • Reverse primer 5'-GGGGCAACTCTTCCACCAGTA-3 '(SEQ ID NO: 126)
  • the oligomer of the present invention in which short oligomers are linked causes exon 44 skipping in RD cells. Therefore, the oligomer of the present invention is very useful in the treatment of DMD.

Abstract

 エクソンを、高効率にスキッピングさせる薬剤の提供。 本発明は、同一エクソン内の互いに連続又は重複しない配列を標的とする2つ以上のユニットオリゴマーが連結したアンチセンスオリゴマーを提供する。

Description

アンチセンス核酸
 本発明は、標的エクソン内の異なる2カ所以上の配列に相補的なヌクレオチド配列を含む、エクソンスキッピング用アンチセンスオリゴマーに関する。より具体的には、ヒトジストロフィン遺伝子の第44番目のエクソンのスキッピングを可能にするアンチセンスオリゴマー及び該オリゴマーを含む医薬組成物に関する。
 デュシェンヌ型筋ジストロフィー(DMD)は出生男子約3,500人に1人が発症する最も頻度の高い遺伝性進行性筋疾患である。乳幼児期には正常のヒトとほとんど変わらない運動機能を示すが、4~5歳頃から筋力低下がみられる。その後筋力低下は進行し12歳頃までに歩行不能になり、20歳代で心不全又は呼吸不全により死に至る重篤な疾患である。現在、DMDに対する有効な治療法はなく、新たな治療薬の開発が強く求められている。
 DMDはジストロフィン遺伝子の変異が原因であることが知られている。ジストロフィン遺伝子はX染色体に存在し、220万塩基のDNAから成る巨大な遺伝子である。DNAからmRNA前駆体に転写され、さらにスプライシングによりイントロンが除かれ79のエクソンが結合したmRNAは13,993塩基になる。このmRNAから3,685のアミノ酸に翻訳され、ジストロフィンタンパク質が生成される。ジストロフィンタンパク質は筋細胞の膜安定性の維持に関与しており、筋細胞を壊れにくくするために必要である。DMD患者のジストロフィン遺伝子は変異を有するため、筋細胞において機能を持つジストロフィンタンパク質が殆ど発現されない。そのため、DMD患者体内では、筋細胞の構造を維持できなくなり、多量のカルシウムイオンが筋細胞内に流れ込む。その結果、炎症に似た反応が生じ、線維化が進むために筋細胞が再生されにくくなる。
 ベッカー型筋ジストロフィー(BMD)もジストロフィン遺伝子の変異が原因であるが、その症状は筋力低下を呈するものの一般にDMDと比較して軽く、筋力低下の進行も遅く、多くの場合、成人期に発症する。DMDとBMDとの臨床症状の違いは、変異によりジストロフィンのmRNAがジストロフィンタンパク質へと翻訳される際のアミノ酸読み取り枠が破壊されるか、あるいは維持されるかによるものと考えられている(非特許文献1)。つまり、DMDでは、アミノ酸読み取り枠がずれる変異を有することにより、機能を持つジストロフィンタンパク質がほとんど発現しないが、BMDでは変異によりエクソンの一部は欠失しているが、アミノ酸読み取り枠は維持されているために不完全ながらも機能を有するジストロフィンタンパク質が産生される。
 DMDの治療法として、エクソンスキッピング法が期待されている。この方法は、スプライシングを改変することでジストロフィンのmRNAのアミノ酸読み取り枠を修復し、部分的に機能を回復したジストロフィンタンパク質の発現を誘導する方法である(非特許文献2)。エクソンスキッピングの対象となるアミノ酸配列部分は失われることになる。そのためこの治療で発現されるジストロフィンタンパク質は正常のものより短くなるが、アミノ酸読み取り枠が維持されるために筋細胞を安定化する機能が部分的に保持される。従って、エクソンスキッピングにより、DMDは、より軽症のBMDと同じような症状を呈するようになると期待されている。エクソンスキッピング法は、マウスやイヌによる動物実験を経て、ヒトDMD患者に対する臨床試験が行われている。
 エクソンスキッピングは、5’又は3’スプライス部位のいずれか若しくは両方、又はエクソンの内部を標的とするアンチセンス核酸の結合により誘導することができる。エクソンは両方のスプライス部位がスプライソソーム複合体によって認識された場合のみmRNAに包含される。従って、スプライス部位をアンチセンス核酸でターゲッティングすることにより、エクソンスキッピングを誘導することができる。また、エクソンがスプライシングの機構に認識されるためにはエクソンスプライシングエンハンサー(ESE)へのセリンとアルギニンに富むSRタンパク質の結合が必要であると考えられており、ESEをターゲッティングすることでもエクソンのスキッピングを誘導することができる。
 ジストロフィン遺伝子の変異はDMD患者によって異なるため、遺伝子変異の場所や種類に応じたアンチセンス核酸が必要になる。ジストロフィン遺伝子の単一エクソンに対して、一つの連続する配列を標的としてエクソンスキッピングを誘導するアンチセンス核酸について複数の報告がある(特許文献1~6、並びに非特許文献1及び2)。また、ジストロフィン遺伝子の同一エクソンを標的とする二種類のアンチセンス核酸を混合して作用させると(二重標的化)、各アンチセンス核酸を単独で用いた場合よりスキッピング活性が増強される場合があることが報告されている(特許文献7)。
 しかし、同一のエクソン内の2箇所以上を標的とする連結された一本鎖アンチセンス核酸(連結型)がスキッピング活性を示すことは未だ報告されていない(特許文献1)。
国際公開公報第2004/048570号 国際公開公報第2009/139630号 国際公開公報第2010/048586号 米国特許公開公報第2010/0168212号 国際公開公報第2011/057350号 国際公開公報第2006/000057号 国際公開公報第2007/135105号
Annemieke Aartsma-Rus et al., (2002) Neuromuscular Disorders 12: S71-S77 Wilton S. D., e t al., Molecular Therapy 2007: 15: p. 1288-96
 上記のような状況において、本発明は、ジストロフィン遺伝子の同一エクソン内の別の2箇所の塩基配列を標的としてエクソンスキッピングを誘導する新規な連結型アンチセンスオリゴマー及び同オリゴマーを含む筋ジストロフィー治療薬を提供することを主な目的とする。

 本発明者らは、上記文献に記載の技術内容及びジストロフィン遺伝子の構造などを詳細に研究した結果、ヒトジストロフィン遺伝子のエクソン44の異なる2か所を標的とするオリゴマーを連結して得られるアンチセンスオリゴマーが同エクソンのスキッピングを誘導できることを見出した。本発明者らは、この知見に基づき、本発明を完成させた。 

 即ち、本発明は、以下のとおりである。
[1]
 (a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
(b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 が連結した15~30塩基長のアンチセンスオリゴマーであって、
 前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、
 前記標的エクソンのスキッピングを誘導する、アンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[2]
 前記第1及び/又は第2のユニットオリゴマーが、前記標的エクソンに隣接するイントロンの部分ヌクレオチド配列に相補的な塩基配列を含む、前記[1]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[3]
 前記標的エクソンがヒトジストロフィン遺伝子のエクソンである、前記[1]又は[2]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[4]
 前記第1のヌクレオチド配列が配列番号1に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列である、前記[1]又は[2]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[5]
 前記第2のヌクレオチド配列が配列番号2に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列である、前記[1]~[3]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[6]
 以下の(c)~(e)よりなる群より選ばれる2つのユニットオリゴマーが連結したものである、前記[1]又は[2]に記載のアンチセンスオリゴマー:
(c)配列番号3に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー;
(d)配列番号4に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー;及び
(e)配列番号5に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[7]
 配列番号6~9よりなる群から選ばれるいずれか一つの塩基配列からなる、前記[1]又は[2]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[8]
 オリゴヌクレオチドである、前記[1]~[7]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[9]
 前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドの糖部分及び/又はリン酸結合部分が修飾されている、前記[8]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[10] 前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドの糖部分が、2’位の-OH基が、OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br及びIからなる群より選択されるいずれかの基で置換されたリボースである、前記[8]又は[9]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
(上記Rは、アルキル又はアリールを示し、上記R’は、アルキレンを示す。)

[11] 前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドのリン酸結合部分が、ホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合、ホスホロアミデート結合、及びボラノフォスフェート結合からなる群より選択されるいずれか1つのものである、前記[8]~[10]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。

[12] モルホリノオリゴマーである、前記[1]~[7]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。

[13] ホスホロジアミデートモルホリノオリゴマーである、前記[12]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。

[14] 5’末端が、下記化学式(1)~(3)のいずれかの基である、前記[12]又は[13]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。

Figure JPOXMLDOC01-appb-C000002
[15] 前記[1]~[14]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物を有効成分とする、筋ジストロフィー治療用医薬組成物。

[16] さらに医薬的に許容可能な担体を含む、前記[15]に記載の医薬組成物。

[17]
 前記[1]~[12]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物、あるいは前記[1]もしくは[16]に記載の前記医薬組成物を筋ジストロフィー患者に投与する工程を含む、筋ジストロフィーの治療方法。
[18] 前記筋ジストロフィー患者が、ジストロフィン遺伝子にエクソン44スキップの対象となる変異を有する患者である、前記[17]に記載の治療方法。

[19]
 前記患者がヒトである、前記[17]又は[18]に記載の治療方法。
[20]
 筋ジストロフィー治療用医薬組成物の製造における前記[1]~[14]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物の使用。
[21]
 筋ジストロフィー治療に使用するための前記[1]~[14]のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[22]
 前記治療において、筋ジストロフィー患者が、ジストロフィン遺伝子にエクソン44スキップの対象となる変異を有する患者である、前記[21]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[23]
 前記患者がヒトである、前記[21]又は[22]に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
[24]
 (a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
(b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 を連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程を含み、
 ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、
 前記[1]に記載のアンチセンスオリゴマーの製造方法。
[25]
 前記工程で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
 基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する工程、
 をさらに含む、前記[24]に記載の方法。
[26]
 (a)(i)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
   (ii)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 を選択する工程(ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない)、
 (b)前記第1及び第2のユニットオリゴマーを連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程、
 (c)前記工程(b)で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
 (d)基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する工程、
 を含む、アンチセンスオリゴマーのスクリーニング方法。
 本発明のアンチセンスオリゴマーにより、ヒトジストロフィン遺伝子のエクソン44のスキッピングを高効率に誘導することが可能である。また、本発明の医薬組成物を投与することにより、デュシェンヌ型筋ジストロフィーの症状を、効果的に軽減することができる。
ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率(オリゴマー濃度別)を示す図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を、異なる部位を標的とする2本のユニットオリゴマーを連結したものと、混合したものとで比較した図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を、異なる部位を標的とする2本のユニットオリゴマーを連結したものと、混合したものとで比較した図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を、異なる部位を標的とする2本のユニットオリゴマーを連結したものと、混合したものとで比較した図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を、異なる部位を標的とする2本のユニットオリゴマーそれぞれ単独と、連結したものと、混合したものとで比較した図である。 ヒト横紋筋肉腫細胞(RD細胞)におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を、異なる部位を標的とする2本のユニットオリゴマーそれぞれ単独と、連結したものと、混合したものとで比較した図である。 エクソン45欠損DMD患者由来細胞におけるヒトジストロフィン遺伝子のエクソン44のスキッピング効率を示す図である。
 以下、本発明を詳細に説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明をこの実施の形態のみに限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、様々な形態で実施をすることができる。
 なお、本明細書において引用した全ての文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込むものとする。また、本明細書は、2014年6 月17日に出願された本願優先権主張の基礎となる日本国特許出願(特願2014-124157号)の明細書及び図面に記載の内容を包含する。

1.アンチセンスオリゴマー
 本発明は、(a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
(b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 が連結した15~30塩基長のアンチセンスオリゴマーであって、
 前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、前記標的エクソンのスキッピングを誘導する、アンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物を提供する。
 以下、「アンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物」を単に「アンチセンスオリゴマー」と総称する場合がある。 
 上記アンチセンスオリゴマーは、

(a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
(b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 を連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程を含み、
 ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、製造方法によって製造することができる。
 上記製造方法は、前記工程で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
 基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する第2の工程、
 をさらに含んでいてもよい。 
 前記製造方法の第2の工程において、スキッピング効率は、標的エクソンを含む遺伝子のmRNAを被検細胞から回収し、該mRNAのうち、標的エクソンがスキップしたバンドのポリヌクレオチド量「A」と、標的エクソンがスキップしなかったバンドのポリヌクレオチド量「B」を測定し、これら「A」及び「B」の測定値に基づき、以下の式に従って計算することができる。
 
  スキッピング効率(%)= A /( A + B )x 100
 
 またはスキッピング効率の計算については、国際公開公報第2012/029986号を参照することもできる。

 第2の工程において、基準値となるスキッピング効率は、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上である。
 このように複数のユニットオリゴマーを連結することにより、ユニットオリゴマーのそれぞれのスキッピング活性が低い(あるいは同活性がない)場合であっても、スキッピング活性の向上したアンチセンスオリゴマーが得られることになる。 

 同様に、
 (a)(i)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
   (ii)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
 を選択する工程(ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない)、
 (b)前記第1及び第2のユニットオリゴマーを連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程、
 (c)前記工程(b)で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
 (d)基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する工程、
 を含む、アンチセンスオリゴマーのスクリーニング方法が提供される。 
 上記アンチセンスオリゴマーにおいて前記第1及び第2のユニットオリゴマーは、いずれが5’側又は3’側に位置して連結していてもよいが、ある実施態様では第1のユニットオリゴマーが5’側に位置し、第2のユニットオリゴマーが3’側に位置して連結する。
 また、前記アンチセンスオリゴマーは、前記標的エクソン内の連続する7~15塩基の第3のヌクレオチド配列に相補的な塩基配列を含む第3のユニットオリゴマーを含んでいてもよい。
 ここで、「連結」とは、2つのユニットオリゴマーが直結しているか、あるいは媒介物を介して結合していることを意味する。2つのユニットオリゴマーが直結している場合、5’末端側に位置するユニットオリゴマーの3’末端と、3’末端側に位置するユニットオリゴマーの5’末端とがリン酸結合又は以下の基を形成することを意味する。媒介物の例としては、1~5残基の核酸(鎖)の他、通常核酸やモルホリノ核酸誘導体を連結するために使用される公知のものを用いることができるが、例えば、3-アミノプロピル、スクシニル、2,2’-ジエタノールスルホニル、ロングチェーンアルキルアミノ(LCAA)を挙げることができる。

Figure JPOXMLDOC01-appb-C000003
(式中、Xは、-OH、-CH2R1、-O-CH2R1、-S-CH2R1、-NR2R3又はFを表し;
 R1は、H、アルキルを表し;
 R2及びR3は、同一又は異なって、H、アルキル、シクロアルキル、又は、アリールを表し;
 Y1は、0、S、CH2又はNR1を表し;
 Y2は、0、S又はNR1を表し;
 Zは、0又はSを表す。) 

 前記第1及び/又は第2のユニットオリゴマーは、前記標的エクソンに隣接するイントロンの部分ヌクレオチド配列に相補的な塩基配列を含むものであってもよい。例えば、第1のユニットオリゴマーが5’側に位置し、第2のユニットオリゴマーが3’側に位置して連結する実施態様においては、第1のユニットオリゴマーの5’側に、標的エクソンの5’側に隣接するイントロンの3’末端周辺部ヌクレオチド配列に相補的な塩基配列が含まれ、及び/又は第2のユニットオリゴマーの3’側に、標的エクソンの3’側に隣接するイントロンの5’末端周辺部ヌクレオチド配列に相補的な塩基配列が含まれていてもよい。
 前記第1及び/又は第2のユニットオリゴマーがは、前記標的エクソンのエクソンスプライシングエンハンサー(ESE:Exonic Splicing Enhancer)の部分ヌクレオチド配列に相補的な塩基配列を含むものであってもよい。 

 前記標的エクソンは特に限定されないが、ある実施態様ではヒトの遺伝子のエクソンであり、さらにはヒトジストロフィン遺伝子のエクソンである。
 さらに具体的には、ヒトジストロフィン遺伝子の第44番目のエクソンである。
 従って、本発明はある実施態様においてヒトジストロフィン遺伝子の第44番目のエクソンをスキッピングしうるアンチセンスオリゴマー(以下、「本発明のオリゴマー」という)を提供する。以下において、本発明のアンチセンスオリゴマーの構造について詳細に説明する。 

[ヒトジストロフィン遺伝子の第44番目のエクソン]
 本発明において、「遺伝子」には、ゲノム遺伝子以外に、cDNA、mRNA前駆体及びmRNAも含まれる。好ましくは、遺伝子は、mRNA前駆体、即ち、pre-mRNAである。
 ヒトゲノムにおいて、ヒトジストロフィン遺伝子は遺伝子座Xp21.2に存在する。ヒトジストロフィン遺伝子は、3.0 Mbpのサイズを有しており、既知のヒト遺伝子としては最大の遺伝子である。但し、ヒトジストロフィン遺伝子のコード領域はわずか14kbに過ぎず、該コード領域は79個のエクソンとしてジストロフィン遺伝子内に分散している(Roberts, RG., et al., Genomics, 16: 536-538 (1993))。ヒトジストロフィン遺伝子の転写物であるpre-mRNAは、スプライシングを受けて14kbの成熟mRNAを生成する。ヒトの野生型ジストロフィン遺伝子の塩基配列は公知である(GenBank Accession No. NM_004006)。
 ヒトの野生型ジストロフィン遺伝子のエクソン44の塩基配列を配列番号10に示す。 

 ある実施態様において、本発明のオリゴマーは、ヒトジストロフィン遺伝子のエクソン44のスキッピングにより、DMD型ジストロフィン遺伝子でコードされるタンパク質を、BMD型ジストロフィンタンパク質に改変することを目的として作製されたものである。従って、本発明のオリゴマーのエクソンスキッピングの対象となるジストロフィン遺伝子のエクソン44には、野生型だけではなく、変異型も含まれる。
 変異型のヒトジストロフィン遺伝子のエクソン44は、具体的には、以下の(I)又は(II)に記載のポリヌクレオチドである。
(I)配列番号10の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド;
(II)配列番号10の塩基配列に対して、90%以上の同一性を有する塩基配列からなるポリヌクレオチド
 本明細書中、「ポリヌクレオチド」とは、DNA又はRNAを意味する。
 本明細書中、「ストリンジェントな条件下でハイブリダイズするポリヌクレオチド」とは、例えば、配列番号10の塩基配列と相補的な塩基配列からなるポリヌクレオチドの全部又は一部をプローブとして、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法又はサザンハイブリダイゼーション法などを用いることにより得られるポリヌクレオチドをいう。ハイブリダイゼーションの方法としては、例えば、"Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 3, Cold Spring Harbor, Laboratory Press 2001"及び"Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997"などに記載されている方法を利用することができる。
 本明細書中、「相補的な塩基配列」とは、対象となる塩基配列とワトソン・クリック対を形成する塩基配列に限定されるものではなく、揺らぎ塩基対(Wobble base pair)を形成する塩基配列も含む。ここで、ワトソン・クリック対とは、アデニン-チミン、アデニン-ウラシル及びグアニン-シトシン間に水素結合が形成される塩基対を意味し、揺らぎ塩基対とは、グアニン-ウラシル、イノシン-ウラシル、イノシン-アデニン及びイノシン-シトシン間に水素結合が形成される塩基対を意味する。また、「相補的な塩基配列」とは、対象となる塩基配列と100%の相補性を有していなくてもよく、例えば、対象となる塩基配列に対して、1~3個、1~2個又は1個の非相補的塩基が含まれていてもよい。
 本明細書中、「ストリンジェントな条件」とは、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃又は5×SSC、1% SDS、50 mM Tris-HCl(pH7.5)、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃又は0.2×SSC、0.1% SDS、65℃の条件である。これらの条件において、温度を上げるほど高い同一性を有するポリヌクレオチドが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度等の複数の要素が考えられ、当業者であればこれらの要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
 なお、ハイブリダイゼーションに市販のキットを用いる場合は、例えばAlkphos Direct Labelling and Detection System(GE Healthcare)を用いることができる。この場合は、キットに添付のプロトコールにしたがい、標識したプローブとのインキュベーションを一晩行った後、メンブレンを55℃の条件下で0.1%(w/v)SDSを含む1次洗浄バッファーで洗浄後、ハイブリダイズしたポリヌクレオチドを検出することができる。あるいは、配列番号10の塩基配列と相補的な塩基配列の全部又は一部に基づいてプローブを作製する際に、市販の試薬(例えば、PCRラベリングミックス(ロシュ・ダイアグノス社)等)を用いて該プローブをジゴキシゲニン(DIG)ラベルした場合には、DIG核酸検出キット(ロシュ・ダイアグノス社)を用いてハイブリダイゼーションを検出することができる。
 上記のハイブリダイズ可能なポリヌクレオチド以外のポリヌクレオチドとしては、相同性検索ソフトウェアであるBLASTにより、デフォルトのパラメーターを用いて計算したときに、配列番号10のポリヌクレオチドからなる配列と90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、又は99.9%以上の同一性を有するポリヌクレオチドをあげることができる。
 なお、塩基配列の同一性は、カーリン及びアルチュールによるアルゴリズムBLAST (Basic Local Alignment Search Tool)(Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90: 5873, 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF, et al: J Mol Biol 215: 403, 1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore = 100、wordlength = 12とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。 

 本発明のオリゴマーは、具体的には以下の(a)及び(b)よりなる群より選ばれる2つのユニットオリゴマーが連結した、15~30塩基長のアンチセンスオリゴマーである。
(a)配列番号1に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー;及び
(b)配列番号2に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー
 例えば、前記第1のヌクレオチド配列が配列番号1に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列であってもよく、及び/又は前記第2のヌクレオチド配列が配列番号2に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列であってもよい。
好ましくは、本発明のオリゴマーは、以下の(c)~(e)よりなる群より選ばれる2つのユニットオリゴマーが連結した、15~30塩基長のアンチセンスオリゴマーである。
(c)配列番号3に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な配列からなるユニットオリゴマー;
(d)配列番号4に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な配列からなるユニットオリゴマー;及び
(e)配列番号5に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な配列からなるユニットオリゴマー 
 ここで、配列番号1及び2に示すヌクレオチド配列は、ヒトの野生型ジストロフィン遺伝子のエクソン44のヌクレオチド配列(配列番号10)のうち、5’末端から数えてそれぞれ-1~44番目の塩基からなる配列及び58~115番目の塩基からなる配列である。 配列番号3に示すヌクレオチド配列は、ヒトの野生型ジストロフィン遺伝子のエクソン44のヌクレオチド配列(配列番号10)のうち、5’末端から数えて18~34番目の塩基からなる配列である。同様に、配列番号4及び5に示すヌクレオチド配列は、それぞれ61~77番目の塩基からなる配列及び88~104番目の塩基からなる配列である。
 上記(a)~(e)の各ユニットオリゴマー(以下、単に「ユニット」と称する場合もある)のサイズは、7~15塩基長であり、好ましくは8~15塩基長、9~15塩基長、10~15塩基長、10~14塩基長、10~13塩基長、11~13塩基長である。(a)~(e)の各ユニットのサイズは同じであってもよく、異なっていてもよい。
 (a)及び(b)よりなる群より2つのユニットオリゴマーを選ぶ際、2つのユニットオリゴマーは同じユニットオリゴマーの組合せであってもよく、あるいは異なったユニットオリゴマーの組合せであってもよい。すなわち、2つのユニットオリゴマーは(a)及び(a)の組合せ又は(b)及び(b)の組合せであってもよく、あるいは (a)及び(b) の組合せであってもよい。
また、(c)~(e)よりなる群より2つのユニットオリゴマーを選ぶ際、2つのユニットオリゴマーは同じユニットオリゴマーの組合せであってもよく、あるいは異なったユニットオリゴマーの組合せであってもよいが、好ましくは異なる種類のユニットが1つずつ選ばれる。例えば、1つのユニットとして(c)を選んだ場合、他方のユニットは(d)又は(e)となることが好ましい。同様に一方にユニット(d)を選んだ場合、他方のユニットは(c)又は(e)となることが好ましく、また、一方にユニット(e)を選んだ場合、他方のユニットは(c)又は(d)となることが好ましい。

 (a)及び(b)のユニットを選択した場合、選択された2つのユニットのいずれが5’末端側に配置されてもよいが、(a)と(b)を選択した場合であればユニット(a)が3’末端側に連結されることが好ましい。
 (c)~(e)より2つのユニットを選択した場合、選択された2つのユニットのいずれが5‘末端側に配置されてもよいが、(c)と(d)を選択した場合であればユニット(c)が3’末端側に連結され、(d)と(e)を選択した場合であればユニット(d)が3’末端側に連結され、(c)と(e)を選択した場合であればユニット(c)が3’末端側に連結されることが好ましい。 
 ここで、「連結」とは、(a)及び(b) より選択された2つのユニット、又は(c)~(e)より選択された2つのユニットが直結していることを意味する。すなわち、2つのユニットが連結している場合、5‘末端側に位置するユニットの3’末端と、3‘末端側に位置するユニットの5’末端とがリン酸結合又は以下の基を形成することを意味する。

Figure JPOXMLDOC01-appb-C000004
(式中、Xは、-OH、-CH2R1、-O-CH2R1、-S-CH2R1、-NR2R3又はFを表し;
 R1は、H、アルキルを表し;
 R2及びR3は、同一又は異なって、H、アルキル、シクロアルキル、又は、アリールを表し;
 Y1は、0、S、CH2又はNR1を表し;
 Y2は、0、S又はNR1を表し;
 Zは、0又はSを表す。)

 「ヒトジストロフィン遺伝子の第44番目のエクソンのスキッピングを可能にする」とは、ヒトジストロフィン遺伝子の転写物(例えば、pre-mRNA)のエクソン44に相当する部位に本発明のオリゴマーが結合することにより、該転写物がスプライシングを受けた際に、例えばエクソン45に欠失を有するDMD患者の場合、エクソン43の3’末端に相当する塩基配列にエクソン46の5’末端に相当する塩基配列が連結し、コドンのフレームシフトが起こっていない成熟mRNAが形成されることを意味する。 

 ここで、前記「結合」は、本発明のオリゴマーとヒトジストロフィン遺伝子の転写物とを混合した場合に、生理的条件下で両者がハイブリダイズして二本鎖を形成することを意味する。上記「生理的条件下」とは、生体内と類似のpH、塩組成、温度に調節された条件を意味する。例えば、25~40℃、好ましくは37℃、pH 5~8、好ましくは、pH 7.4であって、塩化ナトリウム濃度が150 mMの条件が挙げられる。 

 ヒトジストロフィン遺伝子のエクソン44のスキッピングが生じたか否かは、ジストロフィン発現細胞(例えば、ヒト横紋筋肉腫細胞)に本発明のオリゴマーを導入し、前記ジストロフィン発現細胞のtotal RNAから、ヒトジストロフィン遺伝子のmRNAのエクソン44の周辺領域をRT-PCR増幅し、該PCR増幅産物に対してnested PCR又はシークエンス解析を行うことにより確認することができる。 スキッピング効率は、ヒトジストロフィン遺伝子のmRNAを被検細胞から回収し、該mRNAのうち、エクソン44がスキップしたバンドのポリヌクレオチド量「A」と、エクソン44がスキップしなかったバンドのポリヌクレオチド量「B」を測定し、これら「A」及び「B」の測定値に基づき、以下の式に従って計算することができる。
 
  スキッピング効率(%)= A /( A + B )x 100

 
 またはスキッピング効率の計算については、国際公開公報第2012/029986号を参照することもできる。 

 好ましくは、本発明のアンチセンスオリゴマーは、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上の効率で標的エクソン(例えば、エクソン44を)スキッピングする。 

 本発明のアンチセンスオリゴマーとしては、例えば、15~30塩基の長さを有する、オリゴヌクレオチド、モルホリノオリゴマー、又はペプチド核酸(Peptide Nucleic Acid:PNA)オリゴマーを挙げることができる。好ましくは、本発明のアンチセンスオリゴマーは、16~30塩基、17~30塩基、18~30塩基、19~30塩基、20~30塩基、20~29塩基、20~28塩基、20~27塩基、20~26塩基、21~26塩基又は22~26塩基の長さにあり、モルホリノオリゴマーであることが好ましい。 

 前記オリゴヌクレオチド(以下、「本発明のオリゴヌクレオチド」という)は、ヌクレオチドを構成単位とする本発明のオリゴマーであり、かかるヌクレオチドは、リボヌクレオチド、デオキシリボヌクレオチド又は修飾ヌクレオチドのいずれであってもよい。 

 修飾ヌクレオチドとは、リボヌクレオチド又はデオキシリボヌクレオチドを構成する核酸塩基、糖部分、及びリン酸結合部分の全部又は一部が修飾されているものをいう。 

 核酸塩基としては、例えば、アデニン、グアニン、ヒポキサンチン、シトシン、チミン、ウラシル又はそれらの修飾塩基を挙げることができる。かかる修飾塩基としては、例えば、シュードウラシル、3-メチルウラシル,ジヒドロウラシル、5-アルキルシトシン(例えば、5-メチルシトシン)、5-アルキルウラシル(例えば、5-エチルウラシル)、5-ハロウラシル(5-ブロモウラシル)、6-アザピリミジン、6-アルキルピリミジン(6-メチルウラシル)、2-チオウラシル、4-チオウラシル、4-アセチルシトシン、5-(カルボキシヒドロキシメチル) ウラシル、5'-カルボキシメチルアミノメチル-2-チオウラシル、5-カルボキシメチルアミノメチルウラシル、1-メチルアデニン、1-メチルヒポキサンチン、2,2-ジメチルグアニン、3-メチルシトシン、2-メチルアデニン、2-メチルグアニン、N6-メチルアデニン、7-メチルグアニン、5-メトキシアミノメチル-2-チオウラシル、5-メチルアミノメチルウラシル、5-メチルカルボニルメチルウラシル、5-メチルオキシウラシル、5-メチル-2-チオウラシル、2-メチルチオ-N6-イソペンテニルアデニン、ウラシル-5-オキシ酢酸、2-チオシトシン、プリン、2,6-ジアミノプリン、2-アミノプリン、イソグアニン、インドール、イミダゾール、キサンチン等が挙げられるが、これらに限定されるものではない。 

 糖部分の修飾としては、例えば、リボースの2’位の修飾及び糖のその他の部分の修飾を挙げることができる。リボースの2’位の修飾としては、例えば、リボースの2’位の-OH基をOR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br、Iに置換する修飾を挙げることができる。ここで、Rはアルキル又はアリールを表す。R’はアルキレンを表す。
 糖のその他の部分の修飾としては、例えば、リボース又はデオキシリボースの4’位のOをSに置換したもの、糖の 2' 位と 4' 位を架橋したもの、例えば、LNA(Locked Nucleic Acid)又はENA(2'-O,4'-C-Ethylene-bridged Nucleic Acids)などが挙げられるが、これらに限定されるものではない。 

 リン酸結合部分の修飾としては、例えば、ホスホジエステル結合をホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合、ホスホロアミデート結合、ボラノフォスフェート結合(Enya et al: Bioorganic & Medicinal Chemistry ,2008, 18, 9154-9160 )に置換する修飾を挙げることができる(例えば、特許再公表公報第2006/129594号及び第2006/038608号を参照)。
 アルキルとしては、直鎖状又は分枝鎖状の炭素数1~6のアルキルが好ましい。具体的には、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、n-ヘキシル、イソヘキシルが挙げられる。当該アルキルは置換されていてもよく、かかる置換基としては、例えば、ハロゲン、アルコキシ、シアノ、ニトロを挙げることができ、これらが1~3個置換されていてもよい。
 シクロアルキルとしては、炭素数5~12のシクロアルキルが好ましい。具体的には、例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロデシル、シクロドデシルが挙げられる。
 ハロゲンとしては、フッ素、塩素、臭素、ヨウ素を挙げることができる。
 アルコキシとしては、直鎖状又は分枝鎖状の炭素数1~6のアルコキシ、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、n-ヘキシルオキシ、イソヘキシルオキシ等を挙げることができる。とりわけ、炭素数1~3のアルコキシが好ましい。
 アリールとしては、炭素数6~10のアリールが好ましい。具体的には、例えば、フェニル、α-ナフチル、β-ナフチルを挙げることができる。とりわけフェニルが好ましい。当該アリールは置換されていてもよく、かかる置換基としては、例えば、アルキル、ハロゲン、アルコキシ、シアノ、ニトロを挙げることができ、これらが1~3個置換されていてもよい。
 アルキレンとしては、直鎖状又は分枝鎖状の炭素数1~6のアルキレンが好ましい。具体的には、例えば、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、2-(エチル)トリメチレン、1-(メチル)テトラメチレンを挙げることができる。 アシルとしては、直鎖状若しくは分枝鎖状のアルカノイル、又はアロイルを挙げることができる。アルカノイルとしては、例えば、ホルミル、アセチル、2-メチルアセチル、2,2-ジメチルアセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、2,2-ジメチルプロピオニル、ヘキサノイル等が挙げられる。アロイルとしては、例えば、ベンゾイル、トルオイル、ナフトイルを挙げることができる。かかるアロイルは置換可能な位置において置換されていてもよく、アルキルで置換されていてもよい。
 本発明のオリゴヌクレオチドは、好ましくは、リボースの2’位の-OH基がメトキシで置換され、リン酸結合部分がホスホロチオエート結合である、下記一般式で表される基を構成単位とする本発明のオリゴマーである。
Figure JPOXMLDOC01-appb-C000005
 
(式中、Baseは、核酸塩基を表す。)
 本発明のオリゴヌクレオチドは、各種自動合成装置(例えば、AKTA oligopilot plus 10 / 100(GE Healthcare))を用いて容易に合成することが可能であり、あるいは、第三者機関(例えば、Promega社又はTakara社)等に委託して作製することもできる。
 前記モルホリノオリゴマーは、下記一般式で表される基を構成単位とする本発明のオリゴマーである。
Figure JPOXMLDOC01-appb-C000006
 
(式中、Baseは、前記と同義であり;
 Wは、以下のいずれかの式で表わされる基を表す。
Figure JPOXMLDOC01-appb-C000007
 
 (式中、Xは、-CH2R1、-O-CH2R1、-S-CH2R1、-NR2R3又はFを表し;
 R1は、H、アルキルを表し;
 R2及びR3は、同一又は異なって、H、アルキル、シクロアルキル、又は、アリールを表し;
 Y1は、0、S、CH2又はNR1を表し;
 Y2は、0、S又はNR1を表し;
 Zは、0又はSを表す。))
 
 モルホリノオリゴマーは、好ましくは、以下の式で表わされる基を構成単位とするオリゴマー(ホスホロジアミデートモルホリノオリゴマー(以下、「PMO」という))である。
Figure JPOXMLDOC01-appb-C000008
 
(式中、Base、R2、R3は、前記と同義である。)
 モルホリノオリゴマーは、例えば、国際公開公報第1991/009033号、又は国際公開公報第2009/064471号に従って製造することができる。特に、PMOは、国際公開公報第2009/064471号に記載の方法に従って製造するか、又は国際公開公報第2013/100190号に記載の方法に従って製造することができる。 
[PMOの製法]
 PMOの1つの態様として、例えば、次の一般式(I)で表される化合物(以下、PMO(I)という。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
                  
[式中、各Base、R2、R3は、前記と同義であり;
 nは、1~99の範囲内にある任意の整数であり、好ましくは、18~28の範囲内にある任意の整数である。]
 PMO(I)は、公知の方法に従い製造することができるが、例えば、下記工程の操作を実施することにより製造することができる。
 下記工程に使用されている化合物及び試薬は、PMOの製造に一般的に使用されているものであれば特に限定されない。
 また、下記のすべての工程は、液相法又は固相法(マニュアル又は市販の固相自動合成機を用いる)で実施することができる。固相法でPMOを製造する場合、操作手順の簡便化及び合成の正確性の点から自動合成機を用いる方法が望ましい。
(1)工程A:
 次の一般式(II)で表される化合物(以下、化合物(II)という。)に酸を作用させることによって、次の一般式(III)で表される化合物(以下、化合物(III)という。)を製造する工程。
Figure JPOXMLDOC01-appb-C000010
  
[式中、n、R2、R3は、前記と同義であり;
 各BPは,独立して、保護されていてもよい核酸塩基を表し;
 Tは、トリチル基、モノメトキシトリチル基、又はジメトキシトリチル基を表し;
 Lは、水素、アシル、又は次の一般式(IV)で表される基(以下、基(IV)という。)を表す。]
Figure JPOXMLDOC01-appb-C000011
                  
 BPに係る「核酸塩基」としては、Baseと同じ「核酸塩基」を挙げることができる。但し、BPに係る核酸塩基のアミノ基又は水酸基は保護されていてもよい。
 かかるアミノ基の保護基としては、核酸の保護基として使用されるものであれば特に制限されず、具体的には、例えば、ベンゾイル、4-メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4-tert-ブチルフェノキシアセチル、4-イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。水酸基の保護基としては、例えば、2-シアノエチル、4-ニトロフェネチル、フェニルスルホニルエチル、メチルスルホニルエチル、トリメチルシリルエチル、置換可能な任意の位置で1~5個の電子吸引性基で置換されていてもよいフェニル、ジフェニルカルバモイル、ジメチルカルバモイル、ジエチルカルバモイル、メチルフェニルカルバモイル、1-ピロリジニルカルバモイル、モルホリノカルバモイル、4-(tert-ブチルカルボキシ)ベンジル、4-[(ジメチルアミノ)カルボキシ]ベンジル、4-(フェニルカルボキシ)ベンジルを挙げることができる(例えば、国際公開公報第2009/064471号公報参照)。
 「固相担体」としては、核酸の固相反応に使用しうる担体であれば特に制限されないが、例えば、(i)モルホリノ核酸誘導体の合成に使用しうる試薬(例えば、ジクロロメタン、アセトニトリル、テトラゾール、N-メチルイミダゾール、ピリジン、無水酢酸、ルチジン、トリフルオロ酢酸)にほとんど溶解せず、(ii)モルホリノ核酸誘導体の合成に使用しうる試薬に対して化学的に安定であり、(iii)化学修飾ができ、(iv)望ましいモルホリノ核酸誘導体の装填ができ、(v)処理中にかかる高圧に耐える十分な強度をもち、(vi)一定の粒径範囲と分布であるものが望ましい。具体的には、膨潤性ポリスチレン(例えば、アミノメチルポリスチレン樹脂 1%ジベンジルベンゼン架橋(200~400メッシュ)(2.4~3.0mmol/g)(東京化成社製)、Aminomethylated Polystyrene Resin・HCl[ジベンジルベンゼン1%,100~200メッシュ](ペプチド研究所社製))、非膨潤性ポリスチレン(例えば、Primer Support(GE Healthcare社製))、PEG鎖結合型ポリスチレン(例えば、NH2-PEG resin(渡辺化学社製)、TentaGel resin)、定孔ガラス(controlled pore glass;CPG)(例えば、CPG社製)、オキサリル化-定孔ガラス(例えば、Alulら,Nucleic Acids Research,Vol.19,1527(1991)を参照)、TentaGel支持体-アミノポリエチレングリコール誘導体化支持体(例えば、Wrightら,Tetrahedron Letters,Vol.34,3373(1993)を参照)、Poros-ポリスチレン/ジビニルベンゼンのコポリマーを挙げることができる。
 「リンカー」としては、通常核酸やモルホリノ核酸誘導体を連結するために使用される公知のものを用いることができるが、例えば、3-アミノプロピル、スクシニル、2,2’-ジエタノールスルホニル、ロングチェーンアルキルアミノ(LCAA)を挙げることができる。
 本工程は、化合物(II)に酸を作用させることにより実施することができる。
 本工程に使用しうる「酸」としては、例えば、トリフルオロ酢酸、ジクロロ酢酸又はトリクロロ酢酸を挙げることができる。酸の使用量としては、例えば、化合物(II)1モルに対して0.1モル当量~1000モル当量の範囲内が適当であり、好ましくは1モル当量~100モル当量の範囲内である。
 また、前記酸と一緒に、有機アミンを使用することができる。有機アミンとしては、特に限定されるものではないが、例えば、トリエチルアミンを挙げることができる。有機アミンの使用量は、例えば、酸1モルに対して、0.01モル当量~10モル当量の範囲内が適当であり、好ましくは、0.1モル当量~2モル当量の範囲内である。
 本工程において酸と有機アミンとの塩又は混合物を使用する場合には、例えば、トリフルオロ酢酸とトリエチルアミンの塩又は混合物を挙げることができ、より具体的には、トリフルオロ酢酸2当量に対してトリエチルアミン1当量を混合したものを挙げることができる。
 本工程に使用しうる酸は、0.1%~30%の範囲内の濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリル、アルコール類(エタノール、イソプロパノール、トリフルオロエタノールなど)、水又はこれらの混合物を挙げることができる。
 上記反応における反応温度は、例えば、10℃~50℃の範囲内が好ましく、より好ましくは、20℃~40℃の範囲内であり、さらに好ましくは、25℃~35℃の範囲内である。
 反応時間は、使用する酸の種類、反応温度によって異なるが、通常0.1分~24時間の範囲内が適当である。好ましくは、1分~5時間の範囲内である。
 また、本工程が終了した後、必要に応じて、系中に存在する酸を中和するために塩基を添加することができる。「塩基」としては、特に限定されないが、例えば、ジイソプロピルアミンが挙げられる。塩基は、0.1%(v/v)~30%(v/v)の範囲内の濃度になるように適当な溶媒で希釈して使用することもできる。
 本工程に用いる溶媒としては、反応に関与しなければ特に限定されないが、ジクロロメタン、アセトニトリル、アルコール類(エタノール、イソプロパノール、トリフルオロエタノールなど)、水又はこれらの混合物を挙げることができる。反応温度は、例えば、10℃~50℃の範囲内が好ましく、より好ましくは、20℃~40℃の範囲内であり、さらに好ましくは、25℃~35℃の範囲内である。
 反応時間は、使用する塩基の種類、反応温度によって異なるが、通常0.1分~24時間の範囲内が適当であり、好ましくは、1分~5時間の範囲内である。
 なお、化合物(II)において、n=1であって、Lが基(IV)である、次の一般式(IIa)で表される化合物(以下、化合物(IIa)という。)は、以下の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000012
                  
[式中、BP、T、リンカー、固相担体は、前記と同義である。]
 工程1:
 次の一般式(V)で表される化合物にアシル化剤を作用させることによって、次の一般式(VI)で表される化合物(以下、化合物(VI)という。)を製造する工程。
Figure JPOXMLDOC01-appb-C000013
                  
[式中、BP、T、リンカーは、前記と同義であり;
 R4は、水酸基、ハロゲン、又は、アミノを表す。]
 本工程は、化合物(V)を出発原料として、公知のリンカーの導入反応により実施することができる。
 特に、次の一般式(VIa)で表される化合物は、化合物(V)と無水コハク酸とを用いてエステル化反応として知られた方法を実施することにより製造することができる。
Figure JPOXMLDOC01-appb-C000014
                   
[式中、BP、Tは、前記と同義である。]
  
工程2:
 化合物(VI)に縮合剤等を作用させることによって、固相担体と反応させ、化合物(IIa)を製造する工程。
Figure JPOXMLDOC01-appb-C000015
                  
[式中、BP、R4、T、リンカー、固相担体は、前記と同義である。]
 本工程は、化合物(VI)と固相担体とを用いて縮合反応として知られた方法により製造することができる。
 化合物(II)において、n=2~99であって、Lが基(IV)である、次の一般式(IIa2)で表される化合物は、化合物(IIa)を出発原料とし、本明細書に記載のPMOの製法にかかる工程A及び工程Bを所望の回数繰り返し実施することにより製造することができる。
Figure JPOXMLDOC01-appb-C000016
                  
[式中、BP、R2、R3、T、リンカー、固相担体は、前記と同義であり;
 n’は、1~98を表す。]
 
 また、化合物(II)において、n=1であって、Lが水素である、次の一般式(IIb)で表される化合物は、例えば、国際公開公報第1991/009033号に記載の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000017
                  
[式中、BP、Tは、前記と同義である。]
 化合物(II)において、n=2~99であって、Lが水素である、次の一般式(IIb2)で表される化合物は、化合物(IIb)を出発原料とし、本明細書に記載のPMOの製法にかかる工程A及び工程Bを所望の回数繰り返し実施することにより製造することができる。
Figure JPOXMLDOC01-appb-C000018
                  
[式中、BP、n’、R2、R3、Tは、前記と同義である。]
 また、化合物(II)において、n=1であって、Lがアシルである、次の一般式(IIc)で表される化合物は、化合物(IIb)に対してアシル化反応として知られた方法を実施することにより製造することができる。
Figure JPOXMLDOC01-appb-C000019
                  
[式中、BP、Tは、前記と同義であり;
 R5は、アシルを表す。]
 化合物(II)において、n=2~99であって、Lがアシルである、次の一般式(IIc2)で表される化合物は、化合物(IIc)を出発原料とし、本明細書に記載のPMOの製法にかかる工程A及び工程Bを所望の回数繰り返し実施することにより製造することができる。
Figure JPOXMLDOC01-appb-C000020
                  
[式中、BP、n’、R2、R3、R5、Tは、前記と同義である。]
(2)工程B:
 化合物(III)に塩基存在下にモルホリノモノマー化合物を作用させることによって、次の一般式(VII)で表される化合物(以下、化合物(VII)という。)を製造する工程。
Figure JPOXMLDOC01-appb-C000021
                  
[式中、各BP、L、n、R2、R3、Tは、前記と同義である。]
 本工程は、化合物(III)に塩基存在下にモルホリノモノマー化合物を作用させることにより実施することができる。
 モルホリノモノマー化合物としては、例えば、次の一般式(VIII)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
                  
[式中、BP、R2、R3、Tは前記と同義である。]
 本工程に使用しうる「塩基」としては、例えば、ジイソプロピルアミン、トリエチルアミン、又は、N-エチルモルホリンを挙げることができる。塩基の使用量としては、例えば、化合物(III)1モルに対して、1モル当量~1000モル当量の範囲内が適当であり、好ましくは10モル当量~100モル当量の範囲内である。
 本工程に使用しうるモルホリノモノマー化合物および塩基は、0.1%~30%の濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、例えば、N,N-ジメチルイミダゾリドン、N-メチルピペリドン、DMF、ジクロロメタン、アセトニトリル、テロラヒドロフラン、又はこれらの混合物を挙げることができる。
 反応温度は、例えば、0℃~100℃の範囲内が好ましく、より好ましくは、10℃~50℃の範囲内である。
 反応時間は、使用する塩基の種類、反応温度によって異なるが、通常1分~48時間の範囲内が適当であり、好ましくは、30分~24時間の範囲内である。
 さらに本工程の終了後、必要に応じて、アシル化剤を添加することができる。「アシル化剤」としては、例えば、無水酢酸、酢酸クロライド、フェノキシ酢酸無水物を挙げることができる。アシル化剤は、例えば、0.1%~30%の範囲内の濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリル、アルコール類(エタノール、イソプロパノール、トリフルオロエタノールなど)、水又はこれらの混合物を挙げることができる。
 また、必要であれば、アシル化剤と一緒に、例えば、ピリジン、ルチジン、コリジン、トリエチルアミン、ジイソプロピルエチルアミン、N-エチルモルホリン等の塩基を使用することができる。アシル化剤の使用量としては、0.1モル当量~10000モル当量の範囲内が好ましく、1モル当量~1000モル当量の範囲内がより好ましい。塩基の使用量としては、例えば、アシル化剤1モルに対して、0.1モル当量~100モル当量の範囲内が適当であり、好ましくは1モル当量~10モル当量の範囲内である。
 本反応の反応温度は、10℃~50℃の範囲内が好ましく、より好ましくは、10℃~50℃の範囲内が好ましく、より好ましくは、20℃~40℃の範囲内であり、さらに好ましくは、25℃~35℃の範囲内である。反応時間は、例えば、使用するアシル化剤の種類、反応温度によって異なるが、通常0.1分~24時間の範囲内が適当であり、好ましくは、1分から5時間の範囲内である。
(3)工程C:
 工程Bにおいて製造される化合物(VII)において、脱保護剤を用いて保護基を脱離し、一般式(IX)で表される化合物を製造する工程。
Figure JPOXMLDOC01-appb-C000023
                  
[式中、Base、BP、L、n、R2、R3、Tは、前記と同義である。]
 本工程は、化合物(VII)に脱保護剤を作用させることにより実施することができる。
 「脱保護剤」としては、例えば、濃アンモニア水、メチルアミンを挙げることができる。本工程に使用しうる「脱保護剤」は、例えば、水、メタノール、エタノール、イソプロピルアルコール、アセトニトリル、テトラヒドロフラン、DMF、N,N-ジメチルイミダゾリドン、N-メチルピペリドン又はこれらの混合溶媒で希釈して使用することもできる。なかでも、エタノールが好ましい。脱保護剤の使用量としては、例えば、化合物(VII)1モルに対して、例えば、1モル当量~100000モル当量の範囲内が適当であり、好ましくは10モル当量~1000モル当量の範囲内である。
 反応温度は、例えば、15℃~75℃の範囲内が適当であり、好ましくは40℃~70℃の範囲内であり、より好ましくは50℃~60℃の範囲内である。脱保護反応時間は、化合物(VII)の種類、反応温度等によって異なるが、10分~30時間の範囲内が適当であり、好ましくは30分~24時間の範囲内であり、より好ましくは5時間~20時間の範囲内である。
(4)工程D:
 工程Cにおいて製造される化合物(IX)に酸を作用させることによって、PMO(I)を製造する工程。
Figure JPOXMLDOC01-appb-C000024
                  
[式中、Base、n、R2、R3、Tは、前記と同義である。]
 本工程は、化合物(IX)に酸を加えることによって実施することができる。
 本工程において使用しうる「酸」としては、例えば、トリクロロ酢酸、ジクロロ酢酸、酢酸、リン酸及び塩酸等を挙げることができる。酸の使用量としては、例えば、溶液のpHが0.1~4.0の範囲内になるように使用するのが適当であり、より好ましくは1.0~3.0の範囲内になるように使用する。溶媒としては、反応に関与しなければ特に限定されないが、例えば、アセトニトリル、水、又はこれらの混合溶媒を挙げることができる。
 反応温度は、10℃~50℃の範囲内が好ましく、より好ましくは、20℃~40℃の範囲内であり、さらに好ましくは、25℃~35℃の範囲内である。脱保護反応時間は、化合物(IX)の種類、反応温度等によって異なるが、0.1分~5時間の範囲内が適当であり、好ましくは1分~1時間の範囲内であり、より好ましくは1分~30分の範囲内である。
 PMO(I)は、本工程で得られた反応混合物から通常の分離精製手段、例えば、抽出、濃縮、中和、濾過、遠心分離、再結晶、C8からC18の逆相カラムクロマトグラフィー、陽イオン交換カラムクロマトグラフィー、陰イオン交換カラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィー、高速液体クロマトグラフィー、透析、限界ろ過などの手段を単独若しくは組み合わせて用いることにより得ることができ、所望のPMO(I)を単離精製することができる(例えば、国際公開公報WO1991/09033を参照)。
 逆相クロマトグラフィーを用いてPMO(I)を精製する場合には、溶出溶媒として、例えば20mMのトリエチルアミン/酢酸緩衝液とアセトニトリルの混合溶液を使用することができる。
 また、イオン交換クロマトグラフィーを用いてPMO(I)を精製する場合には、例えば、1Mの食塩水と10mMの水酸化ナトリウム水溶液の混合溶液を使用することができる。
 前記ペプチド核酸オリゴマーは、下記一般式で表される基を構成単位とする本発明のオリゴマーである。
Figure JPOXMLDOC01-appb-C000025
 
(式中、Baseは、前記と同義である。)
 ペプチド核酸は、例えば、以下の文献に従って製造することができる。
1)P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt,Science, 254, 1497 (1991)
2)M. Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg,Jacs., 114, 1895 (1992)
3)K. L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H. F. Hansen, T. Vulpius, K. H. Petersen, R. H. Berg, P. E. Nielsen, O. Buchardt,J. Org. Chem., 59, 5767 (1994)
4)L. Christensen, R. Fitzpatrick, B. Gildea, K. H. Petersen, H. F. Hansen, T. Koch, M. Egholm,O. Buchardt, P. E. Nielsen, J. Coull, R. H. Berg, J. Pept. Sci., 1, 175 (1995)
5)T. Koch, H. F. Hansen, P. Andersen, T. Larsen, H. G. Batz, K. Otteson, H. Orum, J. Pept. Res., 49, 80 (1997)
また、本発明のオリゴマーは、5’末端が、下記化学式(1)~(3)のいずれかの基であってもよい。好ましくは(3)-OHである。
Figure JPOXMLDOC01-appb-C000026
 
 以下、上記(1)、(2)及び(3)で示される基を、それぞれ「基(1)」、「基(2)」及び「基(3)」と呼ぶ。
2.医薬組成物
 本発明のオリゴマーは、ジストロフィン遺伝子のエクソン44のスキッピングを可能にする。従って、本発明のオリゴマーを含む医薬組成物をジストロフィン遺伝子にエクソン44スキップの対象となる変異(エクソン44スキッピングでin-frame化する変異)を有するDMD患者に投与することにより、筋ジストロフィーの症状を緩和することができると予測される。また、短い鎖長からなる本発明のオリゴマーは製造工程が簡便であり、さらに製造コストが抑えられるというメリットがある。
 そこで、別の実施態様として、本発明のオリゴマー、その医薬的に許容可能な塩又は水和物を有効成分とする、筋ジストロフィー治療用医薬組成物(以下、「本発明の組成物」という)を提供する。
 本発明の組成物に含まれる本発明のオリゴマーの医薬的に許容可能な塩の例としては、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩;アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩;t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N, N' -ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機アミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、リン酸塩などの無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩;ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩;酢酸塩、りんご酸塩、フマール酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩などの有機酸塩;グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などが挙げられる。これらの塩は、公知の方法で製造することができる。あるいは、本発明の組成物に含まれる本発明のオリゴマーは、その水和物の形態にあってもよい。
 本発明の組成物の投与形態は、医薬的に許容可能な投与形態であれば特に制限されず、治療方法に応じて選択することができるが、筋組織への送達容易性の観点から、静脈内投与、動脈内投与、筋肉内投与、皮下投与、経口投与、組織内投与、経皮投与等が好ましい。また、本発明の組成物が取り得る剤型としては、特に制限されないが、例えば、各種の注射剤、経口剤、点滴剤、吸入剤、軟膏剤、ローション剤等を挙げることができる。
 本発明のオリゴマーを筋ジストロフィー患者に投与する場合、本発明の組成物は、該オリゴマーの筋組織への送達を促進する担体を含むことが好ましい。このような担体は、医薬的に許容可能なものであれば特に制限されず、その例として、カチオン性リポソーム、カチオン性ポリマー等のカチオン性担体、又はウイルスエンベロープを利用した担体を挙げることができる。カチオン性リポソームとしては、例えば、2-O-(2-ジエチルアミノエチル)カルバモイル-1,3-O-ジオレオイルグリセロールとリン脂質とを必須構成成分として形成されるリポソーム(以下、「リポソームA」という)、オリゴフェクトアミン(登録商標)(Invitrogen社製)、リポフェクチン(登録商標)(Invitrogen社製)、リポフェクトアミン(登録商標)(Invitrogen社製)、Lipofectamine 2000(登録商標)(Invitrogen社製)、DMRIE-C(登録商標)(Invitrogen社製)、GeneSilencer(登録商標)(Gene Therapy Systems社製)、TransMessenger(登録商標)(QIAGEN社製)、TransIT TKO(登録商標)(Mirus社製)、Nucleofector II(Lonza)を挙げることができる。それらの中で、リポソームAが好ましい。カチオン性ポリマーとしては、例えば、JetSI(登録商標)(Qbiogene社製)、Jet-PEI(登録商標)(ポリエチレンイミン、Qbiogene社製)を挙げることができる。ウイルスエンベロープを利用した担体としては、例えば、GenomeOne(登録商標)(HVJ-Eリポソーム、石原産業社製)を挙げることができる。あるいは、特許2924179号に記載の医薬デバイス、特許再公表公報第2006/129594号及び特許再公表公報第2008/096690号に記載のカチオン性担体を用いることもできる。
本発明の組成物に含まれる本発明のオリゴマーの濃度は、担体の種類等によって異なるが、0.1 nM~100 μMの範囲内が適当であり、1 nM~10 μMの範囲内が好ましく、10 nM~1 μMの範囲内がより好ましい。また、本発明の組成物に含まれる本発明のオリゴマーと担体との重量比(担体/本発明のオリゴマー)は、該オリゴマーの性質及び該担体の種類等によって異なるが、0.1~100の範囲内が適当であり、1~50の範囲内が好ましく、10~20の範囲内がより好ましい。 

 本発明の組成物には、本発明のオリゴマーと上述した担体以外に、任意に医薬的に許容可能な添加剤を配合することができる。かかる添加剤として、例えば、乳化補助剤(例えば、炭素数6~22の脂肪酸やその医薬的に許容可能な塩、アルブミン、デキストラン)、安定化剤(例えば、コレステロール、ホスファチジン酸)、等張化剤(例えば、塩化ナトリウム、グルコース、マルトース、ラクトース、スクロース、トレハロース)、pH調整剤(例えば、塩酸、硫酸、リン酸、酢酸、水酸化ナトリウム、水酸化カリウム、トリエタノールアミン)を挙げることができる。これらを一種又は二種以上使用することができる。本発明の組成物中の当該添加剤の含有量は、90重量%以下が適当であり、70重量%以下が好ましく、50重量%以下がより好ましい。
 本発明の組成物は、担体の分散液に本発明のオリゴマーを加え、適当に攪拌することにより調製することができる。また、添加剤は、本発明のオリゴマーの添加前でも添加後でも適当な工程で添加することができる。本発明のオリゴマーを添加させる際に用い得る水性溶媒としては、医薬的に許容可能なものであれば特に制限されず、例えば、注射用水、注射用蒸留水、生理食塩水等の電解質液、ブドウ糖液、マルトース液等の糖液を挙げることができる。また、かかる場合のpH及び温度等の条件は、当業者が適宜選択することができる。
 本発明の組成物は、例えば、液剤やその凍結乾燥製剤とすることができる。当該凍結乾燥製剤は、常法により、液剤の形態を有している本発明の組成物を凍結乾燥処理することにより調製することができる。例えば、液剤の形態を有している本発明の組成物を適当な滅菌を行った後、所定量をバイアル瓶に分注し、約-40~-20℃の条件で予備凍結を2時間程度行い、約0~10℃で減圧下に一次乾燥を行い、次いで、約15~25℃で減圧下に二次乾燥して凍結乾燥することができる。そして、一般的にはバイアル内部を窒素ガスで置換し、打栓して本発明の組成物の凍結乾燥製剤を得ることができる。
 本発明の組成物の凍結乾燥製剤は、一般には任意の適当な溶液(再溶解液)の添加によって再溶解し使用することができる。このような再溶解液としては、注射用水、生理食塩水、その他一般輸液を挙げることができる。この再溶解液の液量は、用途等によって異なり特に制限されないが、凍結乾燥前の液量の0.5~2倍量、又は500 mL以下が適当である。
 本発明の組成物を投与する際の用量としては、含有される本発明のオリゴマーの種類、剤形、年齢や体重等の患者の状態、投与経路、疾患の性質と程度を考慮した上で調製することが望ましいが、成人に対して本発明のオリゴマーの量として、1日当たり0.1mg~10g/ヒトの範囲内が、好ましくは1 mg~1 g/ヒトの範囲内が一般的である。この数値は標的とする疾患の種類、投与形態、標的分子によっても異なる場合がある。従って、場合によってはこれ以下でも十分であるし、また逆にこれ以上の用量を必要とするときもある。また1日1回から数回の投与又は1日から数日間の間隔で投与することができる。
 本発明の組成物の別の態様として、本発明のオリゴヌクレオチドを発現し得るベクターと上述した担体とを含む医薬組成物を挙げることができる。かかる発現ベクターは、複数の本発明のオリゴヌクレオチドを発現し得るものであってもよい。当該組成物には、本発明のオリゴマーを含有する本発明の組成物と同様に、医薬的に許容可能な添加剤を添加することができる。当該組成物中に含まれる発現ベクターの濃度は、担体の種類等によって異なるが、0.1 nM~100 μMの範囲内が適当であり、1 nM~10 μMの範囲内が好ましく、10 nM~1 μMの範囲内がより好ましい。当該組成物中に含まれる発現ベクターと担体との重量比(担体/発現ベクター)は、発現ベクターの性質、担体の種類等によって異なるが、0.1~100の範囲内が適当であり、1~50の範囲内が好ましく、10~20の範囲内がより好ましい。また、当該組成物中に含まれる担体の含有量は、本発明のオリゴマーを含有する本発明の組成物の場合と同様であり、その調製方法等に関しても、本発明の組成物の場合と同様である。
以下に、実施例及び試験例を掲げて、本発明をさらに詳しく説明するが、本発明は実施例に示される範囲に限定されるものではない。
[参考例1]
アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(4-ベンズアミド-2-オキソピリミジン-1-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸
工程1:4-{[(2S,6R)-6-(4-ベンズアミド-2-オキソピリミジン-1(2H)-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸の製造
 アルゴン雰囲気下、N-{1-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]-2-オキソ-1,2-ジヒドロピリミジン-4-イル}ベンズアミド3.44gと4-ジメチルアミノピリジン(4-DMAP)1.1gをジクロロメタン50mLに懸濁し、無水コハク酸0.90gを加え、室温で3時間撹拌した。反応液にメタノール10mLを加え、減圧濃縮した。残渣に酢酸エチルと0.5Mのリン酸二水素カリウム水溶液を用いて抽出操作を行った。得られた有機層を0.5Mのリン酸二水素カリウム水溶液、水、飽和食塩水の順で洗浄した。得られた有機層を硫酸ナトリウムで乾燥し、減圧濃縮し、4.0gの目的物を得た。
工程2:アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(4-ベンズアミド-2-オキソピリミジン-1-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸の製造
 4-{[(2S,6R)-6-(4-ベンズアミド-2-オキソピリミジン-1(2H)-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸4.0gをピリジン(脱水)200mLに溶解し、4-DMAP0.73g、1-エチル-3‐(3-ジメチルアミノプロピル)カルボジイミド塩酸塩11.5gを加えた。次いで、アミノポリスチレン樹脂 Primer support 200 amino(GE Healthcare Japan社製、17-5214-97)25.0g、トリエチルアミン8.5mLを加え、室温で4日間振とうした。反応後、樹脂をろ取した。得られた樹脂をピリジン、メタノール、ジクロロメタンの順で洗浄し、減圧乾燥した。得られた樹脂にテトラヒドロフラン(脱水)200mL、無水酢酸15mL、2,6-ルチジン15mLを加え、室温で2時間振とうした。樹脂をろ取し、ピリジン、メタノール、ジクロロメタンの順で洗浄し、減圧乾燥し、26.7gの目的物を得た。
 当該目的物のローディング量は、公知の方法を用いて、樹脂1g当たりのトリチルのモル量を409nmにおけるUV吸光度を測定することにより決定した。樹脂のローディング量は、129.2μmol/gであった。
UV測定条件
       機器:U-2910(日立製作所)
       溶媒:メタンスルホン酸
       波長:409 nm
       ε値:45000
[参考例2]
アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(5-メチル-2,4-ジオキソピリミジン-1-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸
参考例1と同様の方法に従って、標記化合物を製造した。但し、参考例1の工程1で用いたN-{1-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]-2-オキソ-1,2-ジヒドロピリミジン-4-イル}ベンズアミドの代わりに、本工程では、1-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]-5-メチルピリミジン-2,4(1H,3H)-ジオンを使用した。
当該目的物のローディング量は、公知の方法を用いて、樹脂1g当たりのトリチルのモル量を409nmにおけるUV吸光度を測定することにより決定した。樹脂のローディング量は、164.0μmol/gであった。
[参考例3]
アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(6-ベンズアミドプリン-9-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸
参考例1と同様の方法に従って、標記化合物を製造した。但し、参考例1の工程1で用いたN-{1-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]-2-オキソ-1,2-ジヒドロピリミジン-4-イル}ベンズアミドの代わりに、本工程では、N-{9-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルフォリン-2-イル]プリン-6-イル}ベンズアミドを使用した。
当該目的物のローディング量は、公知の方法を用いて、樹脂1g当たりのトリチルのモル量を409nmにおけるUV吸光度を測定することにより決定した。樹脂のローディング量は、185.7μmol/gであった。
[参考例4]
アミノポリスチレン樹脂に担持された4-{{(2S,6R)-6-{6-(2-シアノエトキシ)-2-[(2-フェノキシアセチル)アミノ]プリン-9-イル}-4-トリチルモルホリン-2-イル}メトキシ}-4-オキソブタン酸
参考例1と同様の方法に従って、標記化合物を製造した。但し、参考例1の工程1で用いたN-{1-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]-2-オキソ-1,2-ジヒドロピリミジン-4-イル}ベンズアミドの代わりに、本工程では、N-{6-(2-シアノエトキシ)-9-[(2R,6S)-6-(ヒドロキシメチル)-4-トリチルモルホリン-2-イル]プリン-2-イル}-2-フェノキシアセトアミドを使用した。
当該目的物のローディング量は、公知の方法を用いて、樹脂1g当たりのトリチルのモル量を409nmにおけるUV吸光度を測定することにより決定した。樹脂のローディング量は、164.8μmol/gであった。
以下の実施例1の記載に従い、表1 のPMO No. 1~118に示すPMOを合成した。PMO No. 119及び120はジーンツール社より購入した。合成したPMOを注射用水(大塚製薬工場社製)で溶解した。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 
[実施例1]
 5’末端塩基に対応する、アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(4-ベンズアミド-2-オキソピリミジン-1(2H)-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸(参考例1)、もしくは、アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(5-メチル-2,4-ジオキソピリミジン-1-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸(参考例2)、もしくは、アミノポリスチレン樹脂に担持された4-{[(2S,6R)-6-(6-ベンズアミドプリン-9-イル)-4-トリチルモルホリン-2-イル]メトキシ}-4-オキソブタン酸(参考例3)、もしくは、アミノポリスチレン樹脂に担持された4-{{(2S,6R)-6-{6-(2-シアノエトキシ)-2-[(2-フェノキシアセチル)アミノ]プリン-9-イル}-4-トリチルモルホリン-2-イル}メトキシ}-4-オキソブタン酸(参考例4)0.2gをフィルター付きカラムに充填し、核酸合成機(AKTA Oligopilot 10 plus)を使用して、下記合成サイクルを開始した。表1に記載の各化合物の塩基配列になるよう、各カップリングサイクルにおいて所望のモルホリノモノマー化合物を添加した(下記表2を参照)。
Figure JPOXMLDOC01-appb-T000031
 
なお、デブロック溶液としては、3%(w/v)トリフルオロ酢酸を含有するジクロロメタン溶液を用いた。中和・洗浄溶液としては、N,N-ジイソプロピルエチルアミンを10%(v/v)になるように、かつテトラヒドロフランを5%(v/v)になるように、35%(v/v)のアセトニトリル含有するジクロロメタン溶液で溶解したものを用いた。カップリング溶液Aとしては、モルホリノモノマー化合物を0.10Mになるように、テトラヒドロフランで溶解したものを用いた。カップリング溶液Bとしては、N,N-ジイソプロピルエチルアミンを20%(v/v)になるように、かつテトラヒドロフランを10%(v/v)になるように、アセトニトリルで溶解したものを用いた。キャッピング溶液としては、アセトニトリルに対して20%(v/v)の無水酢酸と30%(v/v)の2,6-ルチジンを溶解したものを使用した。
上記で合成したPMOが担持されたアミノポリスチレン樹脂を反応容器から回収し、2時間以上室温で減圧乾燥した。乾燥したアミノポリスチレン樹脂に担持されたPMOを反応容器に入れ、28%アンモニア水-エタノール(1/4)5mLを加え、55℃で15時間撹拌した。アミノポリスチレン樹脂をろ別し、水-エタノール(1/4)1mLで洗浄した。得られたろ液を減圧濃縮した。得られた残渣を20mMの酢酸-トリエチルアミン緩衝液(TEAA緩衝液)とアセトニトリルの混合溶媒(4/1)10mLに溶解し、メンブレンフィルターでろ過した。得られたろ液を逆相HPLCにて精製した。使用した条件は、以下の表3に示す通りである。
Figure JPOXMLDOC01-appb-T000032
 
各フラクションを分析して、目的物を回収し、減圧濃縮した。濃縮残渣に2Mのリン酸水溶液0.5mLを加え、15分間攪拌した。さらに、2Mの水酸化ナトリウム水溶液2mLを加えてアルカリ性とし、メンブレンフィルター(0.45μm)でろ過した。
 得られた目的物を含有する水溶液を陰イオン交換樹脂カラムで精製した。使用した条件は下記表4に示す通りである。
Figure JPOXMLDOC01-appb-T000033
 
各フラクションを分析(HPLC)し、目的物を水溶液として得た。得られた水溶液に0.1Mのリン酸緩衝液(pH 6.0)を添加し中和した。次いで、下記表5に示す条件で逆相HPLCにて脱塩した。
Figure JPOXMLDOC01-appb-T000034
 
目的物を回収し、減圧濃縮した。得られた残渣を水に溶かし、凍結乾燥して、白色綿状固体として目的化合物を得た。ESI-TOF-MSの計算値、測定値を下記表6に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 
 [試験例1]
In vitroアッセイ
RD細胞(ヒト横紋筋肉腫細胞株)3.5×105個に対して、表1のアンチセンスオリゴマー0.1~30μMをAmaxa Cell Line Nucleofector Kit Lを用いてNucleofector II(Lonza)により導入した。プログラムはT-030を用いた。
 導入後、細胞を、10%ウシ胎児血清(FCS)(インビトロジェン社製)を含むEagle's minimal essential medium(EMEM)培地(シグマ社製、以下同じ) 2mL中、37℃、5%CO2条件下で三晩培養した。
細胞をPBS(ニッスイ社製、以下同じ)で1回洗浄した後、1%の2-メルカプトエタノール(ナカライテスク社製)を含むBuffer RLT(キアゲン社製)を350 μL細胞に添加し、数分間室温に放置して細胞を溶解させ、QIAshredder ホモジナイザー(キアゲン社製)に回収した。15,000 rpmで2分間遠心し、ホモジネートを作製した。RNeasy Mini Kit (キアゲン社製)に添付のプロトコールに従ってtotal RNAを抽出した。抽出したtotal RNAの濃度はNanoDrop ND-1000(エル・エム・エス社製)を用いて測定した。
 抽出したtotal RNA  400 ngに対し、QIAGEN OneStep RT-PCR Kit(キアゲン社製)を用いてOne-Step RT-PCRを行った。キットに添付のプロトコールに従って、反応液を調製した。サーマルサイクラーはPTC-100(MJ Research社製)又はTaKaRa PCR Thermal Cycler Dice Touch(タカラバイオ社製)を用いた。用いたRT-PCRのプログラムは、以下の通りである。
 
  50℃、30分間:逆転写反応
  95℃、15分間:ポリメラーゼ活性化、逆転写酵素不活性化、cDNA熱変性
  [94℃、30秒間;60℃、30秒間;72 ℃、1分間]x 35サイクル:PCR増幅
  72℃、10分間:最終伸長反応
 
 RT-PCRに使用したフォワードプライマーとリバースプライマーの塩基配列は以下の通りである。
 
  フォワードプライマー:5’-GCTCAGGTCGGATTGACATT-3’ (配列番号125)
  リバースプライマー:5’-GGGCAACTCTTCCACCAGTA -3’ (配列番号126)
 
 上記PCRの反応産物1 μLをBioanalyzer(アジレント社製)を用いて解析した。
 エクソン44 がスキップしたバンドのポリヌクレオチド量「A」と、エクソン44がスキップしなかったバンドのポリヌクレオチド量「B」を測定した。これら「A」及び「B」の測定値(単位:nmol/L)に基づき、以下の式に従って、スキッピング効率を求めた。
 
  スキッピング効率(%)= A /( A + B )x 100
 
実験結果結果を図1から26に示す。本実験により、ヒトの野生型ジストロフィン遺伝子のエクソン44のヌクレオチド配列(配列番号10)のうち、5‘末端から数えて-1~44番目(配列番号1)、および58~115番目(配列番号2)から選択される短いユニットオリゴマーを連結して得られる本発明のオリゴマーはエクソン44を有効にスキッピングさせることが判明した。

 
 [試験例2]
In vitroアッセイ
試験例1と同様の方法で実験を行った。但し、RD細胞(ヒト横紋筋肉腫細胞株)3.5×105個に対して、PMO No.34、100、45、73、49、47の本発明オリゴマーを単独で、あるいはそれぞれを構成している2本のユニットオリゴマーをそれぞれ単独又は混合させて、各1、3、又は10 μMの濃度でAmaxa Cell Line Nucleofector Kit Lを用いてNucleofector II(Lonza)により導入した。プログラムはT-030を用いた。導入した配列の組み合わせは以下の通りである。
Figure JPOXMLDOC01-appb-T000039
 
実験結果
 結果を図27から31に示す。本実験により、エクソン44内を標的とするPMO No.110~115、PMO No.117及びPMO No.118はそれぞれ単独ではエクソン44をスキッピングさせないことが判明した。また、エクソン44内の異なる部位を標的とする2本のアンチセンス核酸の混合物(PMO No.114とPMO No.115、PMO No.109と PMO No.114、PMO No.110と PMO No.111、PMO No.112と PMO No.113、PMO No.117とPMO No.118、及びPMO No.119と PMO No.120)と比較して、それぞれを連結したPMO No.34、 PMO No.100、 PMO No.45、 PMO No.73、 PMO No.49、 PMO No.47の本発明のオリゴマーは高い効率でエクソン44をスキッピングさせることが判明した。
 
[試験例3]ヒト線維芽細胞を用いたIn vitroアッセイ
GM05112細胞(エクソン45欠損DMD患者由来線維芽細胞、Coriell Institute for Medical Research)を使用し、本発明のオリゴマーのエクソン44スキッピング活性を検討した。増殖培地は10%FCS(ハイクローンラボラトリーズ)及び1%Penicillin/Streptomycin(P/S)(シグマ アルドリッチ社)を含むDulbecco's Modified Eagle Medium:Nutrient Mixture F-12(DMEM/F-12)(ライフテクノロジーズ社)を使用し、5% CO2存在下、37℃で培養した。
 
細胞はT225フラスコで培養し、増殖培地30 mLに対して2.5 mLのヒト由来myoD(配列番号127)発現レトロウイルス(ZsGreen1共発現)及び終濃度8 μg/mLでポリブレン(シグマ アルドリッチ社)を添加した。32℃で2日間培養後、新鮮な増殖培地で培地交換を行い、さらに37℃で3日間培養した。BD FACSAria Cell Sorter(BD Bioscience社)にてZsGreen1陽性細胞を選択することでMyoD転換線維芽細胞を回収した。回収した細胞は、分化培地(2%ウマ血清(ライフテクノロジーズ社)、1%P/S及びITS Liquid Media Supplement(シグマ アルドリッチ社)含有DMEM/F-12)に懸濁し、コラーゲンコートされた24-wellプレートに9.4×104 cells/wellで播種した。2~3日ごとに培地交換を行いながら培養し、筋管細胞へ分化誘導した。
 
 24-wellプレートに播種してから7日目に、終濃度10 μMとなるようにPMO No.34、45、49及び73を添加した分化培地に交換した。2日間インキュベート後に、PMOを含まない分化培地に交換し、さらに5日間インキュベートした。細胞を回収し、RNeasy Mini Kit(キアゲン社)を用いてtotal RNAを抽出した。抽出したtotal RNA  50 ngに対し、QIAGEN OneStep RT-PCR Kitを用いてRT-PCRを行った。添付のプロトコールに従って、反応液を調製した。サーマルサイクラーはiCycler(Bio-Rad Laboratories)を用いた。用いたRT-PCRのプログラムは、以下の通りである。
 
   50℃、30分間:逆転写反応
   95℃、15分間:ポリメラーゼ活性化、逆転写酵素不活性化、cDNA熱変性
   [94℃、1分間;60℃、1分間;72℃、1分間]x 35サイクル:PCR増幅
   72℃、7分間:最終伸長反応
 
 RT-PCRに使用したフォワードプライマーとリバースプライマーの塩基配列は以下の通りである。
 
  フォワードプライマー:5’- GCTCAGGTCGGATTGACATT-3’ (配列番号125)
  リバースプライマー:5’- GGGCAACTCTTCCACCAGTA-3’ (配列番号126)
 
 Experion DNA 1K Analysis Kits(Bio-Rad Laboratories)を用いて、PCR産物1 μLをExperion Electrophoresis Station(Bio-Rad Laboratories)を用いて解析した。 Experion Software version 3.2(Bio-Rad Laboratories)上でDNA 1K assayを選択し、測定した。Experion Softwareで317 bp付近のバンド(A)及び465 bp付近のバンド(B)を定量(単位:nmol/L)した。Excel 2007 SP3(Microsoft)を用いて、以下の式によりスキッピング効率(%)を求めた。
 
  スキッピング効率(%)= A /( A + B )x 100
 
実験結果

 結果を図32に示す。本実験により、PMO No. 34、45、49及び73の本発明のオリゴマーは、エクソン45欠損DMD患者由来細胞において、高い効率でエクソン44をスキッピングさせることが判明した。
 
 試験例に示す実験結果から、短いオリゴマーを連結した本発明のオリゴマーは、RD細胞においてエクソン44スキッピングを引き起こすことが示された。従って、本発明のオリゴマーは、DMDの治療において非常に有用である。

Claims (26)

  1.  (a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
    (b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
     が連結した15~30塩基長のアンチセンスオリゴマーであって、
     前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、
     前記標的エクソンのスキッピングを誘導する、アンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  2.  前記第1及び/又は第2のユニットオリゴマーが、前記標的エクソンに隣接するイントロンの部分ヌクレオチド配列に相補的な塩基配列を含む、請求項1に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  3.  前記標的エクソンがヒトジストロフィン遺伝子のエクソンである、請求項1又は2に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  4.  前記第1のヌクレオチド配列が配列番号1に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列である、請求項1又は2に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  5.  前記第2のヌクレオチド配列が配列番号2に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列である、請求項1~3のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  6.  以下の(c)~(e)よりなる群より選ばれる2つのユニットオリゴマーが連結したものである、請求項1又は2に記載のアンチセンスオリゴマー:
    (c)配列番号3に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー;
    (d)配列番号4に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー;及び
    (e)配列番号5に示すヌクレオチド配列から選択される連続する7~15塩基のヌクレオチド配列に相補的な塩基配列からなるユニットオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  7.  配列番号6~9よりなる群から選ばれるいずれか一つの塩基配列からなる、請求項1又は2に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  8.  オリゴヌクレオチドである、請求項1~7のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  9.  前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドの糖部分及び/又はリン酸結合部分が修飾されている、請求項8に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  10. 前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドの糖部分が、2’位の-OH基が、OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br及びIからなる群より選択されるいずれかの基で置換されたリボースである、請求項8又は9に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
    (上記Rは、アルキル又はアリールを示し、上記R’は、アルキレンを示す。)
  11. 前記オリゴヌクレオチドを構成する少なくとも1つのヌクレオチドのリン酸結合部分が、ホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合、ホスホロアミデート結合、及びボラノフォスフェート結合からなる群より選択されるいずれか1つのものである、請求項8~10のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  12. モルホリノオリゴマーである、請求項1~7のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  13. ホスホロジアミデートモルホリノオリゴマーである、請求項12に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  14. 5’末端が、下記化学式(1)~(3)のいずれかの基である、請求項12又は13に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。

    Figure JPOXMLDOC01-appb-C000001
  15. 請求項1~14のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物を有効成分とする、筋ジストロフィー治療用医薬組成物。
  16. さらに医薬的に許容可能な担体を含む、請求項15に記載の医薬組成物。
  17.  請求項1~12のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物、あるいは請求項1もしくは16に記載の前記医薬組成物を筋ジストロフィー患者に投与する工程を含む、筋ジストロフィーの治療方法。
  18. 前記筋ジストロフィー患者が、ジストロフィン遺伝子にエクソン44スキップの対象となる変異を有する患者である、請求項17に記載の治療方法。
  19.  前記患者がヒトである、請求項17又は18に記載の治療方法。
  20.  筋ジストロフィー治療用医薬組成物の製造における請求項1~14のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物の使用。
  21.  筋ジストロフィー治療に使用するための請求項1~14のいずれか一項に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  22.  前記治療において、筋ジストロフィー患者が、ジストロフィン遺伝子にエクソン44スキップの対象となる変異を有する患者である、請求項21に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  23.  前記患者がヒトである、請求項21又は22に記載のアンチセンスオリゴマー、またはその医薬的に許容可能な塩もしくは水和物。
  24.  (a)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
    (b)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
     を連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程を含み、
     ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない、
     請求項1に記載のアンチセンスオリゴマーの製造方法。
  25.  前記工程で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
     基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する工程、
     をさらに含む、請求項24に記載の方法。
  26.  (a)(i)標的エクソン内の連続する7~15塩基の第1のヌクレオチド配列に相補的な塩基配列を含む第1のユニットオリゴマー;及び
       (ii)前記標的エクソン内の連続する7~15塩基の第2のヌクレオチド配列に相補的な塩基配列を含む第2のユニットオリゴマー、
     を選択する工程(ここで前記第1のヌクレオチド配列及び第2のヌクレオチド配列は連続又は互いに重複するものではない)、
     (b)前記第1及び第2のユニットオリゴマーを連結することにより15~30塩基長のアンチセンスオリゴマーを作製する工程、
     (c)前記工程(b)で得られたアンチセンスオリゴマーのスキッピング効率を測定する工程、及び
     (d)基準値を超えるスキッピング効率を有するアンチセンスオリゴマーを選択する工程、
     を含む、アンチセンスオリゴマーのスクリーニング方法。 
PCT/JP2015/067238 2014-06-17 2015-06-16 アンチセンス核酸 WO2015194520A1 (ja)

Priority Applications (32)

Application Number Priority Date Filing Date Title
BR112016029369-0A BR112016029369B1 (pt) 2014-06-17 2015-06-16 oligômero antissentido, composição farmacêutica uso de um oligômero antissentido ou um sal ou hidrato farmaceuticamente aceitável do mesmo, e, métodos para fabricação e para triagem de um oligômero antissentido
SG11201610130VA SG11201610130VA (en) 2014-06-17 2015-06-16 Antisense nucleic acids
RU2017101172A RU2695430C2 (ru) 2014-06-17 2015-06-16 Антисмысловые нуклеиновые кислоты
CN201580037016.2A CN106661577B (zh) 2014-06-17 2015-06-16 反义核酸
LTEP15810097.4T LT3159409T (lt) 2014-06-17 2015-06-16 Antiprasminė nukleorūgštis, skirta panaudoti diušeno raumenų distrofijos gydymui
NZ728103A NZ728103B2 (en) 2014-06-17 2015-06-16 Antisense nucleic acids
EP19208809.4A EP3660154A1 (en) 2014-06-17 2015-06-16 Antisense nucleic acid
RS20200002A RS59764B1 (sr) 2014-06-17 2015-06-16 Antismisaona nukleinska kiselina za upotrebu u lečenju dišenove mišićne distrofije
KR1020167036291A KR102335810B1 (ko) 2014-06-17 2015-06-16 안티센스 핵산
DK15810097.4T DK3159409T3 (da) 2014-06-17 2015-06-16 Antisense-nukleinsyre til anvendelse i behandlingen af duchenne muskeldystrofi
EP15810097.4A EP3159409B1 (en) 2014-06-17 2015-06-16 Antisense nucleic acid for use in the treatment of duchenne's muscular dystrophy
UAA201700424A UA121117C2 (uk) 2014-06-17 2015-06-16 Антисенсова нуклеїнова кислота
JP2016529346A JP6208349B2 (ja) 2014-06-17 2015-06-16 アンチセンス核酸
MX2016016526A MX2016016526A (es) 2014-06-17 2015-06-16 Acidos nucleicos antisentido.
AU2015277924A AU2015277924B2 (en) 2014-06-17 2015-06-16 Antisense nucleic acids
US15/314,535 US9840706B2 (en) 2014-06-17 2015-06-16 Antisense nucleic acids
ES15810097T ES2765463T3 (es) 2014-06-17 2015-06-16 Acido nucleico antisentido para usar en el tratamiento de la distrofia muscular de Duchenne
PL15810097T PL3159409T3 (pl) 2014-06-17 2015-06-16 Antysensowne kwasy nukleinowe do zastosowania do leczenia dystrofii mięśniowej duchenne'a
BR122020020864-3A BR122020020864B1 (pt) 2014-06-17 2015-06-16 Oligômero antissentido, composição farmacêutica e uso de um oligômero antissentido ou um sal ou hidrato farmaceuticamente aceitável do mesmo
CA2951221A CA2951221A1 (en) 2014-06-17 2015-06-16 Antisense nucleic acids
SI201531057T SI3159409T1 (sl) 2014-06-17 2015-06-16 Protismiselna nukleinska kislina za uporabo pri zdravljenju Duchennove mišične distrofije
MYPI2016704648A MY194170A (en) 2014-06-17 2015-06-16 Antisense nucleic acids
PH12016502501A PH12016502501A1 (en) 2014-06-17 2016-12-14 Antisense nucleic acids
IL249574A IL249574B (en) 2014-06-17 2016-12-14 Reverse strand nucleic acids
ZA2017/00142A ZA201700142B (en) 2014-06-17 2017-01-06 Antisense nucleic acids
CONC2017/0000357A CO2017000357A2 (es) 2014-06-17 2017-01-16 Ácidos nucleicos antisentido
US15/677,071 US11193125B2 (en) 2014-06-17 2017-08-15 Antisense nucleic acids
CY20201100011T CY1122462T1 (el) 2014-06-17 2020-01-08 Αντινοηματικο νουκλεϊκο οξυ προς χρηση στη θεραπευτικη αγωγη μυϊκης δυστροφιας του duchenne
HRP20200042TT HRP20200042T1 (hr) 2014-06-17 2020-01-10 Suprotne nukleinske kiseline za uporabu u liječenju duchennove mišićne distrofije
AU2021203383A AU2021203383B2 (en) 2014-06-17 2021-05-25 Antisense nucleic acid
US17/517,006 US20220049257A1 (en) 2014-06-17 2021-11-02 Antisense nucleic acids
AU2024201290A AU2024201290A1 (en) 2014-06-17 2024-02-27 Antisense nucleic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124157 2014-06-17
JP2014-124157 2014-06-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/314,535 A-371-Of-International US9840706B2 (en) 2014-06-17 2015-06-16 Antisense nucleic acids
US15/677,071 Continuation US11193125B2 (en) 2014-06-17 2017-08-15 Antisense nucleic acids

Publications (1)

Publication Number Publication Date
WO2015194520A1 true WO2015194520A1 (ja) 2015-12-23

Family

ID=54935505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067238 WO2015194520A1 (ja) 2014-06-17 2015-06-16 アンチセンス核酸

Country Status (29)

Country Link
US (3) US9840706B2 (ja)
EP (2) EP3159409B1 (ja)
JP (5) JP6208349B2 (ja)
KR (1) KR102335810B1 (ja)
CN (2) CN111575282A (ja)
AU (3) AU2015277924B2 (ja)
BR (2) BR122020020864B1 (ja)
CA (1) CA2951221A1 (ja)
CO (1) CO2017000357A2 (ja)
CY (1) CY1122462T1 (ja)
DK (1) DK3159409T3 (ja)
ES (1) ES2765463T3 (ja)
HR (1) HRP20200042T1 (ja)
HU (1) HUE047502T2 (ja)
IL (1) IL249574B (ja)
LT (1) LT3159409T (ja)
MX (2) MX2016016526A (ja)
MY (1) MY194170A (ja)
PH (1) PH12016502501A1 (ja)
PL (1) PL3159409T3 (ja)
PT (1) PT3159409T (ja)
RS (1) RS59764B1 (ja)
RU (2) RU2019121781A (ja)
SG (2) SG10201912858VA (ja)
SI (1) SI3159409T1 (ja)
TW (2) TWI666317B (ja)
UA (1) UA121117C2 (ja)
WO (1) WO2015194520A1 (ja)
ZA (1) ZA201700142B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047741A1 (ja) * 2015-09-16 2017-03-23 日本新薬株式会社 筋萎縮症治療用アンチセンス核酸
WO2018005805A1 (en) 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
WO2018118599A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118627A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118662A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2019059973A1 (en) 2017-09-22 2019-03-28 Sarepta Therapeutics, Inc. OLIGOMERIC CONJUGATES FOR THE EXON JUMP FOR MUSCLE DYSTROPHY
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2023027125A1 (ja) 2021-08-24 2023-03-02 ペプチドリーム株式会社 ヒトトランスフェリンレセプター結合抗体-ペプチドコンジュゲート
WO2023026994A1 (ja) 2021-08-21 2023-03-02 武田薬品工業株式会社 ヒトトランスフェリンレセプター結合ペプチド-薬物コンジュゲート
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3159409T (pt) * 2014-06-17 2020-01-21 Nippon Shinyaku Co Ltd Ácido nucleico anti-sentido para utilização no tratamento da distrofia muscular de duchenne
RU2724554C2 (ru) 2015-09-15 2020-06-23 Ниппон Синяку Ко., Лтд. Антисмысловая нуклеиновая кислота
KR20180056766A (ko) 2015-10-09 2018-05-29 웨이브 라이프 사이언시스 리미티드 뉴클레오티드 조성물 및 이의 방법
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
JP2020505330A (ja) 2017-01-06 2020-02-20 アビディティー バイオサイエンシーズ エルエルシー エクソンスキッピングを誘導する核酸ポリペプチド組成物および方法
GB201711809D0 (en) 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
SG11202002517RA (en) * 2017-09-22 2020-04-29 Avidity Biosciences Inc Nucleic acid-polypeptide compositions and methods of inducing exon skipping
CA3083526A1 (en) 2017-12-06 2019-06-13 Andrew John Geall Compositions and methods of treating muscle atrophy and myotonic dystrophy
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
KR20210081322A (ko) 2018-08-02 2021-07-01 다인 세라퓨틱스, 인크. 근육 표적화 복합체 및 디스트로핀병증을 치료하기 위한 그의 용도
KR20210081324A (ko) 2018-08-02 2021-07-01 다인 세라퓨틱스, 인크. 근육 표적화 복합체 및 안면견갑상완 근육 이영양증을 치료하기 위한 그의 용도
EP3874044A1 (en) * 2018-11-02 2021-09-08 BioMarin Technologies B.V. Bispecific antisense oligonucleotides for dystrophin exon skipping
EP4121063A1 (en) 2020-03-19 2023-01-25 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
WO2022232478A1 (en) 2021-04-30 2022-11-03 Sarepta Therapeutics, Inc. Treatment methods for muscular dystrophy
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
WO2023043953A1 (en) 2021-09-16 2023-03-23 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
EP4230196A1 (en) 2022-02-21 2023-08-23 Som Innovation Biotech, S.A. Compounds for use in the treatment of dystrophinopathies
WO2023168427A1 (en) 2022-03-03 2023-09-07 Yale University Compositions and methods for delivering therapeutic polynucleotides for exon skipping
WO2023178230A1 (en) 2022-03-17 2023-09-21 Sarepta Therapeutics, Inc. Phosphorodiamidate morpholino oligomer conjugates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083446A2 (en) * 2003-03-21 2004-09-30 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
JP2008220311A (ja) * 2007-03-14 2008-09-25 Hitoshi Oto Hla−bローカスにおける新規アリル
WO2010123369A1 (en) * 2009-04-24 2010-10-28 Prosensa Technologies B.V. Oligonucleotide comprising an inosine for treating dmd
WO2011057350A1 (en) * 2009-11-12 2011-05-19 The University Of Western Australia Antisense molecules and methods for treating pathologies
WO2012029986A1 (ja) * 2010-09-01 2012-03-08 日本新薬株式会社 アンチセンス核酸
WO2012109296A1 (en) * 2011-02-08 2012-08-16 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center Antisense oligonucleotides
WO2013100190A1 (ja) * 2011-12-28 2013-07-04 日本新薬株式会社 アンチセンス核酸
WO2013112053A1 (en) * 2012-01-27 2013-08-01 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
WO2014007620A2 (en) * 2012-07-03 2014-01-09 Prosensa Technologies B.V. Oligonucleotide for the treatment of muscular dystrophy patients

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962463B1 (en) 1989-12-20 2002-07-10 Antivirals Inc. Uncharged morpholino-based polymers having phosphorus-containing chiral intersubunit linkages
JP2924179B2 (ja) 1993-02-19 1999-07-26 日本新薬株式会社 グリセロール誘導体,デバイス及び医薬組成物
FR2705361B1 (fr) * 1993-05-18 1995-08-04 Centre Nat Rech Scient Vecteurs viraux et utilisation en thérapie génique.
CA3001404C (en) 2002-11-25 2020-07-28 Masafumi Matsuo Ena nucleic acid pharmaceuticals capable of modifying splicing of mrna precursors
DE602005026386D1 (de) * 2004-06-28 2011-03-31 Univ Western Australia Antisense-oligonukleotide zur induktion von exon-skipping sowie verfahren zur verwendung davon
EP1857548A1 (en) 2006-05-19 2007-11-21 Academisch Ziekenhuis Leiden Means and method for inducing exon-skipping
DK2203173T3 (en) * 2007-10-26 2016-02-29 Academisch Ziekenhuis Leiden Materials and methods for prevention of muscle diseases
JP5512533B2 (ja) 2007-11-15 2014-06-04 サレプタ セラピューティクス, インコーポレイテッド モルホリノオリゴマーの合成方法
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
US8084601B2 (en) 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
JP5864257B2 (ja) * 2008-10-24 2016-02-17 サレプタ セラピューティクス, インコーポレイテッド Dmdのための複数のエキソンスキッピング組成物
JP2014124157A (ja) 2012-12-27 2014-07-07 Nihon Cornstarch Corp コーヒー飲料
PT3159409T (pt) * 2014-06-17 2020-01-21 Nippon Shinyaku Co Ltd Ácido nucleico anti-sentido para utilização no tratamento da distrofia muscular de duchenne

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083446A2 (en) * 2003-03-21 2004-09-30 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
JP2008220311A (ja) * 2007-03-14 2008-09-25 Hitoshi Oto Hla−bローカスにおける新規アリル
WO2010123369A1 (en) * 2009-04-24 2010-10-28 Prosensa Technologies B.V. Oligonucleotide comprising an inosine for treating dmd
WO2011057350A1 (en) * 2009-11-12 2011-05-19 The University Of Western Australia Antisense molecules and methods for treating pathologies
WO2012029986A1 (ja) * 2010-09-01 2012-03-08 日本新薬株式会社 アンチセンス核酸
WO2012109296A1 (en) * 2011-02-08 2012-08-16 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center Antisense oligonucleotides
WO2013100190A1 (ja) * 2011-12-28 2013-07-04 日本新薬株式会社 アンチセンス核酸
WO2013112053A1 (en) * 2012-01-27 2013-08-01 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
WO2014007620A2 (en) * 2012-07-03 2014-01-09 Prosensa Technologies B.V. Oligonucleotide for the treatment of muscular dystrophy patients

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIN'ICHI TAKEDA: "Exon Skipping Approach to Duchenne Muscular Dystorphy", SOCIETAS NEUROLOGICA JAPONICA GAKUJUTSU TAIKAI PROGRAM SHOROKUSHU, vol. 55, May 2014 (2014-05-01), pages 269, XP055244924 *
TETSUYA NAGATA ET AL.: "Kin Dystorphy no Idenshi Chiryo", CURR. INSIGHTS NEUROL. SCI., vol. 19 / 20, 2013, pages 20 - 21, XP008185866 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017047741A1 (ja) * 2015-09-16 2018-07-05 日本新薬株式会社 筋萎縮症治療用アンチセンス核酸
WO2017047741A1 (ja) * 2015-09-16 2017-03-23 日本新薬株式会社 筋萎縮症治療用アンチセンス核酸
US10563199B2 (en) 2015-09-16 2020-02-18 Nippon Shinyaku Co., Ltd. Antisense nucleic acid for treating amyotrophy
WO2018005805A1 (en) 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
US10888578B2 (en) 2016-12-19 2021-01-12 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4122497A1 (en) 2016-12-19 2023-01-25 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11642364B2 (en) 2016-12-19 2023-05-09 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118627A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118662A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4115908A1 (en) 2016-12-19 2023-01-11 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018118599A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11000600B2 (en) 2016-12-19 2021-05-11 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11395855B2 (en) 2016-12-19 2022-07-26 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11382981B2 (en) 2016-12-19 2022-07-12 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2019059973A1 (en) 2017-09-22 2019-03-28 Sarepta Therapeutics, Inc. OLIGOMERIC CONJUGATES FOR THE EXON JUMP FOR MUSCLE DYSTROPHY
US11338041B2 (en) 2018-05-29 2022-05-24 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US11491238B2 (en) 2018-05-29 2022-11-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2023026994A1 (ja) 2021-08-21 2023-03-02 武田薬品工業株式会社 ヒトトランスフェリンレセプター結合ペプチド-薬物コンジュゲート
WO2023027125A1 (ja) 2021-08-24 2023-03-02 ペプチドリーム株式会社 ヒトトランスフェリンレセプター結合抗体-ペプチドコンジュゲート
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases

Also Published As

Publication number Publication date
JP6208349B2 (ja) 2017-10-04
RU2019121781A (ru) 2019-07-22
JP2020182459A (ja) 2020-11-12
RU2017101172A (ru) 2018-07-17
IL249574B (en) 2021-02-28
AU2015277924A1 (en) 2017-02-02
RS59764B1 (sr) 2020-02-28
IL249574A0 (en) 2017-02-28
ES2765463T3 (es) 2020-06-09
RU2695430C2 (ru) 2019-07-23
AU2021203383B2 (en) 2023-11-30
MX2020004417A (es) 2020-08-06
EP3660154A1 (en) 2020-06-03
TWI721461B (zh) 2021-03-11
SI3159409T1 (sl) 2020-02-28
CN106661577A (zh) 2017-05-10
HRP20200042T1 (hr) 2020-03-20
TW201625274A (zh) 2016-07-16
MY194170A (en) 2022-11-16
MX2016016526A (es) 2017-04-04
UA121117C2 (uk) 2020-04-10
BR112016029369A2 (ja) 2018-01-09
AU2015277924B2 (en) 2021-02-25
US20180044675A1 (en) 2018-02-15
US9840706B2 (en) 2017-12-12
JP6701139B2 (ja) 2020-05-27
EP3159409A1 (en) 2017-04-26
US20220049257A1 (en) 2022-02-17
JP7041879B2 (ja) 2022-03-25
LT3159409T (lt) 2020-01-27
BR122020020864B1 (pt) 2022-06-21
CN106661577B (zh) 2020-05-12
JP2024023899A (ja) 2024-02-21
RU2017101172A3 (ja) 2018-12-24
AU2021203383A1 (en) 2021-06-24
TWI666317B (zh) 2019-07-21
SG10201912858VA (en) 2020-02-27
CA2951221A1 (en) 2015-12-23
PH12016502501A1 (en) 2017-03-22
BR112016029369B1 (pt) 2020-12-08
DK3159409T3 (da) 2020-01-27
EP3159409B1 (en) 2019-12-04
AU2024201290A1 (en) 2024-03-21
JP2018027087A (ja) 2018-02-22
PT3159409T (pt) 2020-01-21
JP2022082539A (ja) 2022-06-02
ZA201700142B (en) 2020-05-27
NZ728103A (en) 2021-11-26
KR102335810B1 (ko) 2021-12-03
US20170204410A1 (en) 2017-07-20
US11193125B2 (en) 2021-12-07
SG11201610130VA (en) 2017-01-27
TW201936922A (zh) 2019-09-16
HUE047502T2 (hu) 2020-04-28
EP3159409A4 (en) 2018-01-10
JPWO2015194520A1 (ja) 2017-04-20
PL3159409T3 (pl) 2020-05-18
CN111575282A (zh) 2020-08-25
CY1122462T1 (el) 2021-01-27
KR20170017939A (ko) 2017-02-15
CO2017000357A2 (es) 2017-06-09

Similar Documents

Publication Publication Date Title
JP7041879B2 (ja) アンチセンス核酸
JP6647430B2 (ja) アンチセンス核酸
JP6606488B2 (ja) アンチセンス核酸
JP6977998B2 (ja) アンチセンス核酸
NZ728103B2 (en) Antisense nucleic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810097

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016529346

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15314535

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2951221

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016526

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 122020020864

Country of ref document: BR

Ref document number: 249574

Country of ref document: IL

Ref document number: 12016502501

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015810097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810097

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167036291

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016029369

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: NC2017/0000357

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2017101172

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015277924

Country of ref document: AU

Date of ref document: 20150616

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016029369

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112016029369

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016029369

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161214