WO2015194241A1 - センサパネル、入力装置および表示装置 - Google Patents

センサパネル、入力装置および表示装置 Download PDF

Info

Publication number
WO2015194241A1
WO2015194241A1 PCT/JP2015/061582 JP2015061582W WO2015194241A1 WO 2015194241 A1 WO2015194241 A1 WO 2015194241A1 JP 2015061582 W JP2015061582 W JP 2015061582W WO 2015194241 A1 WO2015194241 A1 WO 2015194241A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact surface
magnetic
pen
display
layer
Prior art date
Application number
PCT/JP2015/061582
Other languages
English (en)
French (fr)
Inventor
泰三 西村
川口 裕人
水野 裕
章吾 新開
文彦 飯田
明 蛭子井
圭 塚本
智子 勝原
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/317,992 priority Critical patent/US10871846B2/en
Priority to CN201580031587.5A priority patent/CN106662957B/zh
Priority to KR1020167033656A priority patent/KR20170021238A/ko
Publication of WO2015194241A1 publication Critical patent/WO2015194241A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • This technology relates to a sensor panel, an input device, and a display device that can input information using magnetic force.
  • a configuration including a capacitive element and capable of detecting an operation position and a pressing force of an operation element with respect to an input operation surface is known (for example, see Patent Document 1 below).
  • the operation element include a pen and a finger.
  • the above-described input device has a problem that a plurality of points are detected and malfunctions when a finger or palm comes into contact with a pen.
  • the sensor panel detects a magnetic force at or near the contact surface by a change in capacitance, and outputs a signal corresponding to the change in capacitance together with information on a position where the change in capacitance occurs.
  • a possible sensor part is provided.
  • An input device includes a sensor unit, a drive unit that drives the sensor unit, generates coordinate data based on the output of the sensor unit, and a pen that generates a magnetic field from the tip. Yes.
  • the sensor unit can detect a magnetic force at or near the contact surface by a change in capacitance, and can output a signal corresponding to the change in capacitance together with information on a position where the change in capacitance has occurred.
  • a display device includes a sensor unit and a display unit that changes a display in accordance with a change in at least one of a magnetic field and an electric field.
  • the display device further drives the sensor unit, generates a coordinate data based on the output of the sensor unit, and displays the display by applying an electric field to the display unit.
  • a second driving unit to be changed and a pen for generating a magnetic field from the tip are provided.
  • the sensor unit can detect a magnetic force at or near the contact surface by a change in capacitance, and can output a signal corresponding to the change in capacitance together with information on a position where the change in capacitance has occurred.
  • the magnetic force at or near the contact surface is detected by a change in capacitance, and a signal corresponding to the change in capacitance is output together with information on the position where the change in capacitance has occurred.
  • a change in capacitance is detected by a change in capacitance
  • a signal corresponding to the change in capacitance is output together with information on the position where the change in capacitance has occurred.
  • coordinate data can be generated based on the output of the sensor panel, and an image can be displayed based on the generated coordinate data.
  • the magnetic force at or near the contact surface is detected by the capacitance change, and a signal according to the capacitance change relates to the position where the capacitance change has occurred.
  • coordinate data can be produced
  • the magnetic force at or near the contact surface is detected by the capacitance change, and a signal corresponding to the capacitance change is detected. Since the information can be output together with the information on the position where the error occurred, the malfunction due to the finger or the palm that hardly causes the change in the capacitance due to the magnetic force can be suppressed.
  • the effect of this technique is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 3 is a diagram illustrating an example of a voltage change amount in FIG. 2. It is a figure showing an example of an effect
  • FIG. 10 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 9.
  • FIG. 16 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 15.
  • FIG. 16 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 15.
  • FIG. 18 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 17. It is a figure showing the modification of a cross-sectional structure of the input device of FIG. It is a figure showing the modification of a cross-sectional structure of the input device of FIG. FIG.
  • FIG. 10 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 9.
  • FIG. 13 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 11.
  • FIG. 16 is a diagram illustrating a modification of the cross-sectional configuration of the input device in FIG. 15. It is a figure showing an example of the section composition of the input device concerning a 3rd embodiment of this art. It is a figure showing an example of an effect
  • FIG. 42 is a diagram illustrating an example of a cross-sectional configuration of the display panel in FIG. 41.
  • FIG. 42 is a diagram illustrating an example of a cross-sectional configuration of the display panel in FIG. 41.
  • FIG. 43 is a diagram illustrating an example of a perspective configuration of an electrode in FIG. 42.
  • FIG. 43 is a diagram illustrating an example of a perspective configuration of an electrode in FIG. 42.
  • FIG. 43 is a diagram illustrating an example of a cross-sectional configuration of the display pixel in FIG. 42. It is a figure showing an example of an effect
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 43 is a diagram illustrating an example of the operation of the display panel of FIG. 42 when the pen tip approaches or comes into contact with the contact surface.
  • FIG. 52 is a diagram illustrating an example of a cross-sectional configuration of the display panel in FIG. 50.
  • FIG. 52 is a diagram illustrating an example of a cross-sectional configuration of the display pixel in FIG. 51.
  • FIG. 51 is a diagram illustrating a modification of the cross-sectional configuration of the display device in FIG. 50.
  • FIG. 1 to FIG. 1 Example in which a magnetic conductive layer is provided on the back side of an electrode substrate
  • FIGS. 6 to 13 Modified example of the first embodiment: FIGS. 6 to 13
  • Modification A Example in which a spacer is provided between the conductive layer and the electrode substrate.
  • FIG. 6 to FIG. Modification B Example in which the spacer between the electrode substrate and the magnetic conductive layer is omitted.
  • FIG. 9 to FIG. Modification C Example in which a rigid body layer is provided.
  • FIG. 15 and FIG. 3 Example in which electrode substrate and magnetic conductive layer are laminated
  • FIGS. 17 to 19 Modification D: Example in which the electrode is made of a magnetic material
  • FIG. Modification E Example in which a rigid body layer is provided.
  • Modification common to the first and second embodiments Modification F: Example in which a magnet layer is provided on the back side of the magnetic conductive layer.
  • Third Embodiment Capacity Increasing Type Input Device
  • FIGS. 29 to 40 Example in which the pen is composed of an electromagnet pen.
  • FIG. 29 and FIG. Modification H Example in which an eraser function is provided on the pen.
  • FIG. 31 and FIG. Modification I Example in which the magnetic conductive layer is formed of a laminate of a conductive layer and a magnetic layer
  • FIG. Modification J Example in which a plurality of magnetic layers are provided instead of the magnetic conductive layer.
  • Modification K Example in which the magnetic conductive layer is magnetized
  • Modification L Example in which a plurality of openings are provided in the magnetic conductive layer.
  • FIG. 36 to FIG. 9. Fifth embodiment (display device) Example of providing a display panel that does not use output from the input panel.
  • Sixth embodiment (display device) Example of providing a display panel using output from the input panel.
  • FIG. 50 to FIG. 11. Modification of Sixth Embodiment Example in which pen input area and finger input area are provided.
  • FIG. 54 Modification of Sixth Embodiment Example in which pen input area and finger input area are provided.
  • FIG. 1 illustrates an example of a cross-sectional configuration of the input device 1 according to the first embodiment of the present technology.
  • the input device 1 is a device that inputs information using a pen 30 that generates a magnetic field from the tip.
  • the input device 1 includes a sensor panel 10 having a contact surface 10 ⁇ / b> A, a drive unit 20 that drives the sensor panel 10 and generates coordinate data based on an output of the sensor panel 10, and a pen 30.
  • the input device 1 corresponds to a specific example of “input device” of the present technology.
  • the contact surface 10 ⁇ / b> A corresponds to a specific example of “contact surface” of the present technology.
  • the sensor panel 10 corresponds to a specific example of “sensor panel” and “sensor unit” of the present technology.
  • the drive unit 20 corresponds to a specific example of a “drive unit” of the present technology.
  • the pen 30 corresponds to a specific example of “pen” in the present technology.
  • the pen 30 As described above, the pen 30 generates a magnetic field from the tip.
  • the pen 30 uses, for example, a magnetic field (line of magnetic force) generated from the tip of the pen 30 by bringing the tip of the pen 30 close to or in contact with the contact surface 10A, and the position information of the tip of the pen 30 is obtained from the sensor panel. Enter 10.
  • the position information of the tip of the pen 30 includes, for example, XY coordinate data when the contact surface 10A is an XY plane.
  • the position information of the tip of the pen 30 may further include, for example, Z coordinate data when the normal line of the contact surface 10A is the Z axis.
  • the pen 30 has, for example, a rod-shaped grip 31 and a magnet 32 fixed to the tip of the grip 31.
  • the grip portion 31 is a portion that is grasped by a hand when the user of the display device 1 uses the pen 30.
  • the magnet 32 has a bar shape extending in the same direction as the extending direction of the grip portion 31. One end in the longitudinal direction of the magnet 32 is an N pole, and the other end in the longitudinal direction of the magnet 32 is an S pole. Therefore, when the pen 30 is placed on the contact surface 10A, the magnet 32 causes a magnetic field (lines of magnetic force) generated from the magnet 32 to reach the magnetic conductive layer 14 described later.
  • the magnetic flux density at the tip of the pen is preferably about 50G to 2000G, and more preferably 200G to 1000G.
  • the pen 30 may have a member that prevents the magnetic field lines from spreading at the tip of the pen 30.
  • a member is provided, for example, so as to cover the outer periphery of the pen tip (the entire side surface of the end of the magnet 32 on the pen tip side).
  • the member that prevents the magnetic field lines from spreading include materials having a high relative magnetic permeability (for example, permalloy, soft iron, etc.).
  • said member may be provided so that the whole side surface of the magnet 32 may be covered. In this case, the above-mentioned member functions as a yoke, and the magnetic flux density at the pen tip can be increased.
  • the sensor panel 10 detects a magnetic field (line of magnetic force) emitted from the tip of the pen 30 by a change in capacitance. Specifically, the sensor panel 10 detects the magnetic force at or near the contact surface 10A by a change in capacitance. Further, the sensor panel 10 can output a signal corresponding to the change in capacitance together with information on the position where the change in capacitance has occurred.
  • the sensor panel 10 includes, for example, an electrode substrate 11, a conductive layer 12 and a protective layer 13 disposed on the upper surface side of the electrode substrate 11, and a magnetic conductive layer 14 disposed on the lower surface side of the electrode substrate 11. Yes.
  • the conductive layer 12 is disposed in the gap between the contact surface 10A and the electrode substrate 11, and the magnetic conductive layer 14 is disposed at a position farther from the contact surface 10A than the electrode substrate 11. That is, the electrode substrate 11 is sandwiched from above and below by two conductive layers (the conductive layer 12 and the magnetic conductive layer 14).
  • the conductive layer 12 corresponds to a specific example of “conductive layer” of the present technology.
  • the magnetic conductive layer 14 corresponds to a specific example of “magnetic layer” of the present technology.
  • the conductive layer 12 and the magnetic conductive layer 14 have a function as a shield layer that prevents a change in capacitance formed between the sensor panel 10 and the outside from affecting the inside of the sensor panel 10.
  • the conductive layer 12 and the magnetic conductive layer 14 have a fixed potential, for example, a ground potential.
  • the conductive layer 12 is made of, for example, a film made of a metal thin film such as aluminum, carbon, CNT, ITO, IZO, nanometal wire, silver thin wire, or the like on a film, or a nonmagnetic metal plate or ITO glass that can be bent. It is configured.
  • the magnetic conductive layer 14 has, for example, a sheet shape and is flexible.
  • the magnetic conductive layer 14 is formed in a surface facing the contact surface 10A, and is locally displaced in the thickness direction according to the magnitude of the magnetic force.
  • the magnetic conductive layer 14 is made of a conductive magnetic metal, and is made of, for example, SUS (for example, martensite or ferrite), iron, nickel, an iron alloy, a nickel alloy, or the like.
  • the protective layer 13 protects the conductive layer 12 from the pen 30 or the like, and is made of, for example, a resin film.
  • the spacer 15 is formed by, for example, UV-curing or heat-curing a screen-printed resin layer.
  • the sensor panel 10 further includes, for example, a gap 15A between the electrode substrate 11 and the magnetic conductive layer 14, and a plurality of spacers 15 that maintain the gap 15A.
  • the air gap 15A is a space that secures a movable range of the magnetic conductive layer 14 when the magnetic conductive layer 14 floats in the thickness direction.
  • the spacer 15 not only maintains the air gap 15A but also partially suppresses the magnetic conductive layer 14 and suppresses the magnetic conductive layer 14 from being lifted regardless of the magnetic field.
  • the sensor panel 10 further includes a housing 16 that houses the electrode substrate 11 and the like, for example.
  • the gap 15A corresponds to a specific example of “a gap” in the present technology.
  • the spacer 15 corresponds to a specific example of “a spacer” in the present technology.
  • FIG. 2 shows an example of the action of the input device 1 when the tip of the pen 30 approaches or comes into contact with the contact surface 10A.
  • the magnetic conductive layer 14 locally floats to the contact surface 10 ⁇ / b> A side by a magnetic field H (line of magnetic force) emitted from the tip of the pen 30.
  • H line of magnetic force
  • the electrode substrate 11 is configured by, for example, laminating an insulating layer 11A, a lower electrode 11B, an insulating layer 11C, an upper electrode 11D, and an insulating layer 11E in this order.
  • the lower electrode 11B is composed of a plurality of electrodes (first electrodes) extending in a plane facing the contact surface 10A.
  • the upper electrode 11D is composed of a plurality of electrodes (second electrodes) that extend in a direction that faces the contact surface 10A and intersects each first electrode.
  • the insulating layer 11A supports the lower electrode 11B and prevents the lower electrode 11B and the magnetic conductive layer 14 from short-circuiting each other.
  • the insulating layer 11C supports the upper electrode 11D and prevents the upper electrode 11D and the lower electrode 11B from short-circuiting each other.
  • the insulating layer 11E prevents the upper electrode 11D and the conductive layer 12 from short-circuiting each other, and covers the upper electrode 11D.
  • the insulating layer 11A is made of, for example, a flexible film material.
  • the insulating layer 11A is made of an electrically insulating resin film such as PET, PEN, PC, PMMA, or polyimide.
  • the insulating layer 11C includes the resin film or a screen-printed resin layer.
  • the insulating layer 11E is composed of, for example, the resin film or a screen printed resin layer.
  • the lower electrode 11B and the upper electrode 11D are made of, for example, wiring of silver, copper, aluminum, molybdenum, or an alloy containing them, produced by screen printing or photolithography.
  • the drive unit 20 drives the sensor panel 10 and generates coordinate data based on the output of the sensor panel 10.
  • the drive unit 20 includes, for example, a detection circuit 21, a calculation unit 22, a storage unit 23, and an output unit 24.
  • the detection circuit 21 reads, for example, a change in the capacitance of the sensor panel 10 by a change in the amount of current flowing through the electrode substrate 11.
  • the detection circuit 21 includes, for example, a switch element that switches between the plurality of lower electrodes 11B and the plurality of upper electrodes 11D included in the electrode substrate 11, a signal source that supplies an AC signal to the electrode substrate 11, a current / voltage conversion circuit, and the like. have.
  • the switch element is, for example, a multiplexer. A plurality of terminals provided on one end of the multiplexer are connected to one end of each lower electrode 11B and each upper electrode 11D, and one terminal provided on the other end of the multiplexer is connected to the signal source and It is connected to the current / voltage conversion circuit.
  • the detection circuit 21 sequentially selects the plurality of lower electrodes 11B one by one and sequentially selects the plurality of upper electrodes 11D one by one. Thereby, for example, the detection circuit 21 sequentially applies an AC signal to the plurality of lower electrodes 11B one by one and sequentially applies to the plurality of upper electrodes 11D one by one.
  • the detection circuit 21 converts the change in the amount of current into a change in voltage and outputs the change to the calculation unit 22. That is, the detection circuit 21 outputs a voltage change according to the magnitude of the change amount of the capacitance to the calculation unit 22 together with the coordinate information.
  • FIG. 3 shows an example of the amount of change in capacitance when the tip of the pen 30 contacts the contact surface 10A.
  • the capacitance of the sensor panel 10 changes locally, the amount of change in voltage output from the current / voltage conversion circuit increases by the amount of change in capacitance.
  • FIG. 3 shows an example of the distribution of the capacitance variation when the capacitance variation ⁇ C is taken on the vertical axis and the coordinate in the X-axis direction of the contact surface 10A is taken on the horizontal axis.
  • the capacitance change amount ⁇ C1 at the coordinates of the tip of the pen 30 is larger than the thresholds TH1 and TH0.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 is in contact with the contact surface 10A, and further determines the contact position of the pen 30 on the contact surface 10A. For example, as illustrated in FIG. 3, the calculation unit 22 determines that the tip of the pen 30 is in contact with the contact surface 10 ⁇ / b> A when ⁇ C ⁇ b> 1> TH ⁇ b> 1. For example, when TH1> ⁇ C1> TH2, the calculation unit 22 determines that the tip of the pen 30 is close to the contact surface 10A.
  • the calculation unit 22 determines that the pen 30 is in contact with a location where the capacitance change amount ⁇ C is the largest. For example, when the maximum value of the capacitance change amount ⁇ C is equal to or less than TH1 and greater than TH2, the calculation unit 22 determines that the pen 30 is close to a location where the capacitance change amount ⁇ C is the largest. To do.
  • the calculating unit 22 determines the magnitude of the pressing of the pen 30 on the contact surface 10A by evaluating the change in the voltage output from the detection circuit 21. For example, as illustrated in FIG. 3, the calculation unit 22 determines that the pen 30 is strongly pressed against the contact surface 10 ⁇ / b> A when ⁇ C ⁇ b> 1> TH ⁇ b> 0. For example, when TH0> ⁇ C1> TH1, the calculation unit 22 determines that the pen 30 is in light contact with the contact surface 10A.
  • the calculation unit 22 stores the coordinate data generated based on the output of the sensor panel 10 in the storage unit 23, for example.
  • the calculation unit 22 stores the coordinate data derived periodically in the storage unit 23 together with the coordinate data already stored in the storage unit 23.
  • the arithmetic unit 22 may store the coordinate data generated based on the output of the sensor panel 10 in the storage unit 23 and output the coordinate data to the output unit 24.
  • the calculation unit 22 may collectively output a plurality of coordinate data stored in the storage unit 23 to the output unit 24 as drawing data.
  • the output unit 24 outputs the coordinate data or drawing data from the calculation unit 22 to the outside.
  • the operation of the input device 1 will be described.
  • the user brings the tip of the pen 30 close to or in contact with the contact surface 10A (see FIG. 2).
  • the magnetic conductive layer 14 is locally lifted to the contact surface 10 ⁇ / b> A side by the magnetic force generated from the tip of the pen 30.
  • the distance between the electrode substrate 11 and the magnetic conductive layer 14 is shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 10 is locally reduced.
  • the amount by which the magnetic conductive layer 14 is lifted by the magnetic force generated from the tip of the pen 30 is greatest immediately below the tip of the pen 30 and decreases as the distance from the point immediately below the tip of the pen 30 increases.
  • a local change in the capacitance of the sensor panel 10 is detected by the detection circuit 21.
  • a voltage change corresponding to the amount of change in capacitance is output from the detection circuit 21 to the calculation unit 22 together with the coordinate information.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 is in contact with the contact surface 10A. Further, the coordinates of the tip of the pen 30 on the contact surface 10A are determined. Determined. In this way, the position information of the tip of the pen 30 is input to the input device 1.
  • the user brings the tip of the pen 30 close to or in contact with the contact surface 10A, and at the same time, a part of the palm is brought into contact with the contact surface 10A.
  • the magnetic conductive layer 14 is locally lifted to the contact surface 10A side by the magnetic force generated from the tip of the pen 30, while the magnetic conductive layer 14 may be contacted by the palm that does not generate the magnetic force. It does not float at all on the 10A side, or only slightly.
  • the distance between the electrode substrate 11 and the magnetic conductive layer 14 is shortened, and the capacitance of the sensor panel 10 is locally reduced.
  • the distance between the electrode substrate 11 and the magnetic conductive layer 14 does not change at all or changes only slightly.
  • the capacitance of the sensor panel 10 locally changes below the tip portion of the pen 30, but the capacitance of the sensor panel 10 does not change at all or just below the palm. It changes only slightly (see FIG. 4). Therefore, in this case, contact of the tip portion of the pen 30 on the contact surface 10A is detected, but palm contact on the contact surface 10A is not detected at all, or palm contact on the contact surface 10A is ignored.
  • the position information of the tip of the pen 30 is input to the input device 1 by detecting the magnetic force in the contact surface 10 ⁇ / b> A or in the vicinity thereof by a change in capacitance. Therefore, it is possible to suppress malfunction caused by a finger or palm that hardly causes a change in capacitance due to magnetic force.
  • the change in capacitance due to the magnetic force is used. Therefore, the position information of the tip of the pen 30 even if the contact surface 10A is not depressed. Can be input to the input device 1. Therefore, even when the tip of the pen 30 is placed at a position away from the contact surface 10A or the tip of the pen 30 is lightly touched to the contact surface 10A, the position information of the tip of the pen 30 is input to the input device 1. Can be entered.
  • the change in capacitance due to the magnetic force is used, so that the tip of the pen 30 is located away from the contact surface 10A. It can be distinguished that the tip of the pen 30 touches the contact surface 10A. Therefore, for example, when the tip of the pen 30 is away from the contact surface 10A and when the tip of the pen 30 is lightly touching the contact surface 10A, different operations can be executed by an external device. It becomes.
  • FIG. 6 illustrates a modification of the cross-sectional configuration of the input device 1 according to the above embodiment.
  • the sensor panel 10 has a gap 17A between the electrode substrate 11 and the conductive layer 12, and has a plurality of spacers 17 that maintain the gap 17A.
  • the protective layer 13 and the conductive layer 12 constituting the contact surface 10A have flexibility, and the protective layer 13 and the conductive layer 12 are deformed according to the deformation of the contact surface 10A.
  • the gap 17A corresponds to a specific example of “a gap” in the present technology.
  • the spacer 17 corresponds to a specific example of “a spacer” in the present technology.
  • the contact surface 10A is locally depressed, and the protective layer 13 and the conductive layer 12 are also formed on the contact surface 10A. It bends downward locally following the depression.
  • the air gap 17A is a space that secures a movable range of the protective film 13 and the conductive layer 12 when the protective film 13 and the conductive layer 12 are bent downward.
  • the spacer 17 not only maintains the gap 17A, but also regulates the spread of the deflection of the protective film 13 and the conductive layer 12 so that the downward deflection of the protective film 13 and the conductive layer 12 becomes local.
  • FIG. 7 illustrates an example of the operation of the input device 1 according to this modification when the tip of the pen 30 and the tip of the finger 100 are in contact with the contact surface 10A.
  • FIG. 8 shows an example of the amount of change in capacitance when the tip of the pen 30 and the tip of the finger 100 are in contact with the contact surface 10A.
  • the tip of the pen 30 is in contact with a portion of the contact surface 10A where the capacitance change amount ⁇ C is ⁇ C1, and a depression is formed.
  • the tip of the finger 100 is in contact with a place where ⁇ C is ⁇ C2, and a depression is formed.
  • the location where the capacitance change amount ⁇ C is ⁇ C2 is the location where the influence of the capacitance change due to the tip of the pen 30 contacting the contact surface 10A is not affected. .
  • the arithmetic unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether the pen 30 and the finger 100 are in contact with the contact surface 10A, and further, the pen 30 and the finger 100 on the contact surface 10A.
  • the contact position is determined. For example, when ⁇ C1> TH1, the calculation unit 22 determines that the tip of the pen 30 is in contact with a portion of the contact surface 10A where the capacitance change amount ⁇ C is ⁇ C1. For example, when TH1> ⁇ C1> TH2, the calculation unit 22 determines that the tip of the pen 30 is close to a portion of the contact surface 10A where the capacitance change amount ⁇ C is ⁇ C1. To do.
  • the calculation unit 22 determines that the pen 30 is in contact with a location where the capacitance change amount ⁇ C is the largest. For example, when the maximum value of the capacitance change amount ⁇ C is equal to or less than TH1 and greater than TH2, the calculation unit 22 determines that the pen 30 is close to a location where the capacitance change amount ⁇ C is the largest. To do.
  • the capacitance change of the contact surface 10A is obtained. It is determined that the tip of the finger 100 is in contact with a location where the amount ⁇ C is ⁇ C2. For example, when the finger 100 is located at a location where the influence of the capacitance change by the pen 30 is not affected and TH3> ⁇ C2> TH4, the capacitance change of the contact surface 10A is calculated. It is determined that the tip of the finger 100 is close to a location where the amount ⁇ C is ⁇ C2.
  • the calculation unit 22 has a capacitance. It is determined that the tip of the finger 100 is in contact with a location where the peak of the change amount ⁇ C is present. For example, when the finger 100 is in a location where the influence of the capacitance change by the pen 30 does not affect and the maximum value of the capacitance change amount ⁇ C is equal to or less than TH3 and greater than TH4, for example, In addition, it is determined that the tip of the finger 100 is close to a location where the capacitance change amount ⁇ C has a peak.
  • the calculating unit 22 determines the magnitude of the pressing of the pen 30 on the contact surface 10A by evaluating the change in the voltage output from the detection circuit 21. For example, as illustrated in FIG. 8, the calculation unit 22 determines that the pen 30 is strongly pressed against the contact surface 10 ⁇ / b> A when ⁇ C ⁇ b> 1> TH ⁇ b> 0. For example, when TH0> ⁇ C1> TH1, the calculation unit 22 determines that the pen 30 is in light contact with the contact surface 10A.
  • the calculation unit 22 stores the coordinate data generated based on the output of the sensor panel 10 in the storage unit 23, for example.
  • the calculation unit 22 stores the coordinate data of the pen 30 that is periodically derived in the storage unit 23 together with the coordinate data of the pen 30 that is already stored in the storage unit 23.
  • the calculation unit 22 may store the coordinate data of the pen 30 generated based on the output of the sensor panel 10 in the storage unit 23 and output the coordinate data to the output unit 24.
  • the calculation unit 22 may collectively output a plurality of coordinate data of the pen 30 stored in the storage unit 23 to the output unit 24 as drawing data.
  • the calculation unit 22 may output the coordinate data of the finger 100 generated based on the output of the sensor panel 10 to the output unit 24.
  • the output unit 24 outputs the coordinate data or drawing data from the calculation unit 22 to the outside.
  • the user brings the tip of the pen 30 close to or in contact with the contact surface 10A.
  • the magnetic conductive layer 14 is locally lifted to the contact surface 10 ⁇ / b> A side by the magnetic force generated from the tip of the pen 30.
  • the distance between the electrode substrate 11 and the magnetic conductive layer 14 is shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 10 is locally reduced.
  • the amount by which the magnetic conductive layer 14 is lifted by the magnetic force generated from the tip of the pen 30 is the largest immediately below the tip of the pen 30 and decreases as the distance from the point immediately below the tip of the pen 30 increases.
  • the conductive layer 12 and the protective layer 13 are recessed. As a result, the distance between the electrode substrate 11 and the conductive layer 12 is shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 10 is further reduced.
  • the conductive layer 12 and the protective layer 13 are depressed. As a result, below the tip portion of the finger 100, the distance between the electrode substrate 11 and the conductive layer 12 is shortened, and the capacitance of the sensor panel 10 is locally reduced. At this time, a strong magnetic field H (line of magnetic force) generated from the tip of the pen 30 is not generated from the tip of the finger 100. Therefore, the magnetic conductive layer 14 does not float to the contact surface 10A side below the tip portion of the finger 100. Accordingly, the amount of change in capacitance by the pen 30 is larger than the amount of change in capacitance by the finger 100 by the amount of change in the distance between the electrode substrate 11 and the magnetic conductive layer 14.
  • a local change in the capacitance of the sensor panel 10 is detected by the detection circuit 21.
  • a voltage change corresponding to the amount of change in capacitance is output from the detection circuit 21 to the calculation unit 22 together with the coordinate information.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 or the finger 100 is in contact with the contact surface 10A. Further, the pen 30 or the finger 100 on the contact surface 10A is determined. The coordinates of the tip of the are determined. In this way, the position information of the tip of the pen 30 is input to the input device 1.
  • the capacitance change due to the magnetic force is used. Therefore, the position information is input by the pen 30 and the position information is input by the finger 100. Can be easily distinguished. Therefore, for example, it is possible to cause the external device to perform different operations when the position information is input by the pen 30 and when the position information is input by the finger 100. Therefore, for example, when the user operates the pen 30 with the palm placed on the contact surface 10A, it is possible to prevent the palm from being erroneously detected. Furthermore, the case where the user operates with the finger and the case where the user operates with the pen can be distinguished, and the process intended by the user can be performed on the system side.
  • FIG. 9 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 10 illustrates an example of the operation of the input device 1 of FIG. 9 when the tip of the pen 30 contacts the contact surface 10A.
  • FIG. 11 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 12 illustrates an example of the operation of the input device 1 of FIG. 11 when the tip of the pen 30 contacts the contact surface 10A.
  • the input device 1 according to this modification has a configuration in which the spacer 15 is omitted from the input device 1 according to the first embodiment and the modification thereof.
  • the magnetic conductive layer 14 is lifted with the portion below the tip of the pen 30 as a vertex without being regulated by the spacer 15. For this reason, the response speed of the magnetic conductive layer 14 can be slightly faster than when the flying of the magnetic conductive layer 14 is restricted by the spacer 15.
  • the input device 1 according to this modification has the same configuration as the input device 1 of the above embodiment except that each spacer 15 is omitted. Therefore, in this modification, the same effect as the input device 1 of the said embodiment can be acquired.
  • FIG. 13 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 14 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • the input device 1 has a configuration in which the rigid layer 51 is provided between the electrode substrate 11 and the contact surface 10A in the input device 1 according to the first embodiment and the modification thereof.
  • the rigid layer 51 is disposed between the conductive layer 12 and the electrode substrate 11, and is disposed, for example, in contact with at least the conductive layer 12.
  • the rigid layer 51 is made of a material that is difficult to bend when pressed by the pen 30 or the finger 100, and is made of, for example, a resin substrate or a glass substrate. That is, the rigid layer 51 prevents local bending of the conductive layer 12 and the protective layer 13.
  • the position information of the tip of the pen 30 is input to the input device 1 by detecting the magnetic force at or near the contact surface 10A by the change in capacitance. The Therefore, in this modification, the same effect as the input device 1 of the said embodiment can be acquired.
  • FIG. 15 illustrates an example of a cross-sectional configuration of the input device 2 according to the second embodiment of the present technology.
  • FIG. 16 illustrates an example of the operation of the input device 2 when the tip of the pen 30 and the tip of the finger 100 are in contact with the contact surface 10A.
  • the input device 2 corresponds to the input device 1 according to the above embodiment in which a sensor panel 40 is provided instead of the sensor panel 10. Therefore, in the following, the sensor panel 40 will be mainly described in detail, and description of the configuration common to the configuration of the input device 1 of the above embodiment will be omitted as appropriate.
  • the input device 2 corresponds to a specific example of “input device” of the present technology.
  • the sensor panel 40 corresponds to a specific example of “sensor panel” of the present technology.
  • the sensor panel 40 corresponds to the sensor panel 10 used in the input device 1 according to the modified example A, in which the gap 15A and each spacer 15 are omitted, and the electrode substrate 11 and the magnetic conductive layer 14 are stacked on each other. That is, each upper electrode 11D, each lower electrode 11B, and the magnetic conductive layer 14 are laminated via the insulating layers 11A and 11C.
  • the insulating layers 11A and 11C correspond to a specific example of “insulating layer” of the present technology.
  • the electrode substrate 11 has flexibility and deforms according to the deformation of the magnetic conductive layer 14. Therefore, in the present embodiment, the magnetic conductive layer 14 floats together with the electrode substrate 11 when receiving a magnetic force from the pen 30, as shown in FIG.
  • the magnetic conductive layer 14 is fixed to the electrode substrate 11, for example, and is fixed to the electrode substrate 11 through an adhesive or the like, for example.
  • the magnetic conductive layer 14 is only in contact with the electrode substrate 11 and may not be fixed to the electrode substrate 11.
  • the gap 17A is a space that secures a movable range of the protective film 13 and the conductive layer 12 when the protective film 13 and the conductive layer 12 are bent downward, and at the same time, the electrode substrate 11 is lifted upward. It is also a space that secures a movable range of the electrode substrate 11 at the time. Therefore, in the present embodiment, the height of the gap 17A may be higher than the height of the gap 17A in the above embodiment. In the present embodiment, the spacer 17 not only maintains the gap 17A but also spreads the deflection of the protective film 13 and the conductive layer 12 so that the downward deflection of the protective film 13 and the conductive layer 12 becomes local. It is regulated. The spacer 17 further suppresses the magnetic conductive layer 14 partially through the electrode substrate 11 and suppresses the magnetic conductive layer 14 from being lifted regardless of the magnetic field.
  • the operation of the input device 2 of the present embodiment will be described.
  • the user brings the tip of the pen 30 close to or in contact with the contact surface 10A.
  • the magnetic conductive layer 14 floats locally on the contact surface 10 ⁇ / b> A side together with the electrode substrate 11 by the magnetic force generated from the tip of the pen 30.
  • the distance between the electrode substrate 11, the magnetic conductive layer 14, and the conductive layer 12 is shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 40 is locally reduced.
  • the amount by which the magnetic conductive layer 14 is lifted by the magnetic force generated from the tip of the pen 30 is the largest immediately below the tip of the pen 30 and decreases as the distance from the point immediately below the tip of the pen 30 increases.
  • the conductive layer 12 and the protective layer 13 are recessed. As a result, below the tip of the pen 30, the distance between the electrode substrate 11 and the conductive layer 12 is further shortened, and the capacitance of the sensor panel 40 is further reduced.
  • the conductive layer 12 and the protective layer 13 are depressed.
  • the distance between the electrode substrate 11 and the conductive layer 12 is shortened, and the capacitance of the sensor panel 40 is locally reduced.
  • a strong magnetic field H (line of magnetic force) generated from the tip of the pen 30 is not generated from the tip of the finger 100. Therefore, the magnetic conductive layer 14 and the electrode substrate 11 do not float on the contact surface 10A side below the tip portion of the finger 100. Therefore, the amount of change in capacitance by the pen 30 is larger than the amount of change in capacitance by the finger 100 by the amount that the magnetic conductive layer 14 and the electrode substrate 11 are lifted.
  • a local change in the capacitance of the sensor panel 40 is detected by the detection circuit 21.
  • a voltage change corresponding to the amount of change in capacitance is output from the detection circuit 21 to the calculation unit 22 together with the coordinate information.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 or the finger 100 is in contact with the contact surface 10A. Further, the pen 30 or the finger 100 on the contact surface 10A is determined. The coordinates of the tip of the are determined. In this way, the position information of the tip of the pen 30 is input to the input device 2.
  • FIG. 17 illustrates a modification of the cross-sectional configuration of the input device 2 according to the second embodiment.
  • the sensor panel 40 includes the conductive layer 18 instead of the magnetic conductive layer 14.
  • the conductive layer 18 is made of, for example, a metal thin film such as aluminum, carbon, CNT, ITO, IZO, nanometal wire, silver thin wire, or the like formed on a film, or a nonmagnetic metal plate or ITO glass that can be bent. It is configured.
  • the conductive layer 18 is fixed to the electrode substrate 11 and is fixed to the electrode substrate 11 through an adhesive or the like, for example.
  • each lower electrode 11B and each upper electrode 11D are made of a conductive magnetic metal (that is, a magnetic electrode), for example, SUS (for example, martensite type, ferrite type), It is composed of iron, nickel, an iron alloy, a nickel alloy, or the like. Therefore, in this modification, each lower electrode 11B and each upper electrode 11D are locally displaced in the thickness direction according to the magnitude of the magnetic force.
  • a magnetic electrode that is, SUS (for example, martensite type, ferrite type)
  • SUS for example, martensite type, ferrite type
  • the user brings the tip of the pen 30 close to or in contact with the contact surface 10A. Then, due to the magnetic force generated from the tip of the pen 30, a part of the lower electrode 11 ⁇ / b> B and a part of the upper electrode 11 ⁇ / b> D are lifted locally together with the electrode substrate 11 and the conductive layer 18 toward the contact surface 10 ⁇ / b> A. As a result, the distance between the electrode substrate 11 and the conductive layer 18 and the conductive layer 12 is shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 40 is locally reduced.
  • the amount by which the electrode substrate 11 and the conductive layer 18 are lifted by the magnetic force generated from the tip of the pen 30 is the largest immediately below the tip of the pen 30 and decreases as the distance from the point directly below the tip of the pen 30 increases. Further, when the user presses the tip of the pen 30 against the contact surface 10A, the conductive layer 12 and the protective layer 13 are recessed. As a result, the distance between the electrode substrate 11, the conductive layer 18, and the conductive layer 12 is further shortened below the tip portion of the pen 30, and the capacitance of the sensor panel 40 is further reduced.
  • the conductive layer 12 and the protective layer 13 are depressed.
  • the distance between the electrode substrate 11 and the conductive layer 12 is shortened, and the capacitance of the sensor panel 40 is locally reduced.
  • a strong magnetic field H (line of magnetic force) generated from the tip of the pen 30 is not generated from the tip of the finger 100. Therefore, below the tip portion of the finger 100, the electrode substrate 11 and the conductive layer 18 do not float on the contact surface 10A side. Therefore, the amount of change in capacitance by the pen 30 is larger than the amount of change in capacitance by the finger 100 by the amount that the electrode substrate 11 and the conductive layer 18 are lifted.
  • a local change in the capacitance of the sensor panel 40 is detected by the detection circuit 21.
  • a voltage change corresponding to the amount of change in capacitance is output from the detection circuit 21 to the calculation unit 22 together with the coordinate information.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 or the finger 100 is in contact with the contact surface 10A. Further, the pen 30 or the finger 100 on the contact surface 10A is determined. The coordinates of the tip of the are determined. In this way, the position information of the tip of the pen 30 is input to the input device 2.
  • each lower electrode 11B and each upper electrode 11D are made of a conductive magnetic metal (that is, a magnetic electrode).
  • the distance between the contact surface 10A and each lower electrode 11B and each upper electrode 11D is shorter than the distance between the contact surface 10A and the conductive layer 18.
  • the layer comprised with the magnetic metal is arrange
  • the magnet 32 of the pen 30 is downsized, or the pen 30 is relatively far from the detection surface 10A. The position information of the pen 30 can be input even when the user is at the place.
  • FIG. 18 shows a modification of the cross-sectional configuration of the input device 2 of FIG.
  • FIG. 19 shows a modification of the cross-sectional configuration of the input device 2 of FIG.
  • the input device 2 has a configuration in which the rigid layer 51 is provided between the electrode substrate 11 and the contact surface 10A in the input device 2 of the second embodiment and the modification thereof.
  • the rigid layer 51 is disposed between the conductive layer 12 and the electrode substrate 11, and is disposed, for example, in contact with at least the lower surface of the conductive layer 12.
  • the rigid layer 51 is made of a material that is difficult to bend when pressed by the pen 30 or the finger 100, and is made of, for example, a resin substrate or a glass substrate. That is, the rigid layer 51 prevents local bending of the conductive layer 12 and the protective layer 13.
  • the position information of the tip of the pen 30 is input to the input device 2 by detecting the magnetic force at the contact surface 10A or in the vicinity thereof by the change in capacitance. The Therefore, in this modification, the same effect as the input device 2 of the above embodiment can be obtained.
  • FIG. 20 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 21 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 22 shows a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 23 illustrates a modification of the cross-sectional configuration of the input device 1 of FIG.
  • FIG. 24 shows a modification of the cross-sectional configuration of the input device 2 of FIG.
  • the input devices 1 and 2 include a magnet layer at a position farther from the contact surface 10A than the magnetic conductive layer 14 in the input devices 1 and 2 of the first and second embodiments and the modifications thereof. 19 is further provided.
  • the magnet layer 19 is disposed on the back side of the magnetic conductive layer 14.
  • the magnet layer 19 quickly returns the magnetic conductive layer 14 to the original position when the magnetic force of the pen 30 exerted on the floating magnetic conductive layer 14 is weakened due to the pen 30 moving away from the contact surface 10A. Generate magnetic force.
  • the magnet layer 19 is composed of, for example, a sheet-like magnet.
  • the magnet layer 19 may have a configuration in which a plurality of magnets are two-dimensionally arranged.
  • FIG. 25 illustrates an example of a cross-sectional configuration of the input device 3 according to the third embodiment of the present technology.
  • the input device 3 is a device that inputs information using a pen 30 that generates a magnetic field from the tip, similarly to the input devices 1 and 2.
  • the input device 3 includes a sensor panel 50 having a contact surface 10 ⁇ / b> A, a drive unit 20 that drives the sensor panel 50 and generates coordinate data based on an output of the sensor panel 50, and a pen 30.
  • description of the configuration common to the configuration of the input devices 1 and 2 of the above embodiment will be omitted as appropriate.
  • the input device 3 corresponds to a specific example of “input device” of the present technology.
  • the sensor panel 50 corresponds to a specific example of “sensor panel” and “sensor unit” of the present technology.
  • the sensor panel 50 detects a magnetic field (line of magnetic force) emitted from the tip of the pen 30 by a change in capacitance. Specifically, the sensor panel 50 detects the magnetic force at or near the contact surface 10A by a change in capacitance. Further, the sensor panel 50 can output a signal corresponding to the change in capacitance together with information on the position where the change in capacitance has occurred.
  • the sensor panel 50 includes, for example, an electrode substrate 11, a magnetic conductive layer 14 disposed on the upper surface side of the electrode substrate 11, a rigid layer 51 and a protective layer 13, and a conductive layer 52 disposed on the lower surface side of the electrode substrate 11. have.
  • the magnetic conductive layer 14 is disposed in the gap between the contact surface 10 ⁇ / b> A and the electrode substrate 11, and is disposed at a position closer to the contact surface 10 ⁇ / b> A than the electrode substrate 11.
  • the conductive layer 52 is disposed at a position farther from the contact surface 10 ⁇ / b> A than the electrode substrate 11. That is, the electrode substrate 11 is sandwiched from above and below by two conductive layers (the magnetic conductive layer 14 and the conductive layer 52).
  • the magnetic conductive layer 14 corresponds to a specific example of “magnetic layer” of the present technology.
  • the rigid body layer 51 corresponds to a specific example of “rigid body layer” of the present technology.
  • the rigid layer 51 is disposed between the contact surface 10 ⁇ / b> A and the magnetic conductive layer 14.
  • the rigid layer 51 is disposed, for example, between the protective layer 13 and the magnetic conductive layer 14, and is disposed, for example, in contact with at least the lower surface of the protective layer 13.
  • the rigid layer 51 is made of a material that is difficult to bend when pressed by the pen 30 or the finger 100, and is made of, for example, a resin substrate or a glass substrate. That is, the rigid body layer 51 prevents local bending of the protective layer 13.
  • the magnetic conductive layer 14 and the conductive layer 52 have a function as a shield layer that prevents a change in capacitance formed between the sensor panel 10 and the outside from affecting the inside of the sensor panel 50.
  • the magnetic conductive layer 14 and the conductive layer 52 have a fixed potential, for example, a ground potential.
  • the conductive layer 52 is made of, for example, a metal thin film such as aluminum on a film, carbon, CNT, ITO, IZO, nano metal wire, silver thin wire, or the like, or a nonmagnetic metal plate or ITO glass that can be bent. It is configured.
  • the sensor panel 50 further includes, for example, a gap 53A between the electrode substrate 11 and the magnetic conductive layer 14, and a plurality of spacers 53 that maintain the gap 53A.
  • the sensor panel 50 further includes, for example, a gap 54A between the magnetic conductive layer 14 and the rigid layer 51, and a plurality of spacers 54 that maintain the gap 54A.
  • the plurality of spacers 54 are arranged one above the spacers 53.
  • the spacer 53 is formed by, for example, UV curing or thermosetting a resin layer screen-printed on the electrode substrate 11.
  • the spacer 54 is formed by, for example, UV curing or heat curing a resin layer screen-printed on the rigid layer 51.
  • the gap 53A is a space that makes it easy for the magnetic conductive layer 14 to float in the thickness direction.
  • the air gap 54A is a space that secures a movable range of the magnetic conductive layer 14 when the magnetic conductive layer 14 floats in the thickness direction.
  • the spacers 53 and 54 not only maintain the gaps 53A and 54A but also partially suppress the magnetic conductive layer 14 and suppress the magnetic conductive layer 14 from floating regardless of the magnetic field.
  • the sensor panel 50 further includes a housing 16 that houses the electrode substrate 11 and the like, for example.
  • FIG. 26 shows an example of the operation of the input device 3 when the tip of the pen 30 approaches or comes into contact with the contact surface 10A.
  • the magnetic conductive layer 14 is locally lifted to the contact surface 10 ⁇ / b> A side by a magnetic field H (line of magnetic force) emitted from the tip of the pen 30.
  • H line of magnetic force
  • the drive unit 20 drives the sensor panel 50 and generates coordinate data based on the output of the sensor panel 50.
  • the drive unit 20 includes, for example, a detection circuit 21, a calculation unit 22, a storage unit 23, and an output unit 24 as in the above embodiment.
  • a local change in the capacitance of the sensor panel 50 is detected by the detection circuit 21.
  • a voltage change corresponding to the amount of change in capacitance is output from the detection circuit 21 to the calculation unit 22 together with the coordinate information.
  • the calculation unit 22 evaluates the change in the voltage output from the detection circuit 21 to determine whether or not the pen 30 is in contact with the contact surface 10A. Further, the coordinates of the tip of the pen 30 on the contact surface 10A are determined. Determined. In this way, the position information of the tip of the pen 30 is input to the input device 3.
  • the effect of the input device 3 will be described.
  • the position information of the tip of the pen 30 is input to the input device 3 by detecting the magnetic force at the contact surface 10A or in the vicinity thereof by a change in capacitance. Is done. Therefore, in this embodiment, the same effect as that of the input device 1 of the above embodiment can be obtained.
  • the capacitance change due to the magnetic force is used, and the local curvature of the contact surface 10 ⁇ / b> A is suppressed by the rigid layer 51. ing.
  • the change of the electrostatic capacitance due to the local curvature of the contact surface 10A becomes small, it is possible to easily distinguish the position information input by the pen 30 and the position information input by the finger. Therefore, for example, when the user operates the pen 30 with the finger or palm placed on the contact surface 10A, it is possible to greatly prevent the finger or palm from being erroneously detected.
  • the magnetic conductive layer 14 is disposed at a position closer to the contact surface 10 ⁇ / b> A than the electrode substrate 11.
  • the distance between the contact surface 10 ⁇ / b> A and the magnetic conductive layer 14 is shorter than the distance between the contact surface 10 ⁇ / b> A and the conductive layer 52.
  • the layer comprised with the magnetic metal is arrange
  • the magnet 32 of the pen 30 is downsized, or the pen 30 is relatively far from the detection surface 10A. The position information of the pen 30 can be input even when the user is at the place.
  • FIG. 27 illustrates an example of a cross-sectional configuration of the input device 4 according to the fourth embodiment of the present technology.
  • FIG. 28 illustrates an example of the operation of the input device 4 when the tip of the pen 30 and the tip of the finger 100 are in contact with the contact surface 10A.
  • the input device 4 corresponds to the input device 3 according to the above embodiment in which a sensor panel 60 is provided instead of the sensor panel 50. Therefore, in the following, the sensor panel 60 will be mainly described in detail, and description of the configuration common to the configuration of the input device 3 of the above embodiment will be omitted as appropriate.
  • the input device 4 corresponds to a specific example of “input device” of the present technology.
  • the sensor panel 60 corresponds to a specific example of “sensor panel” of the present technology.
  • the sensor panel 60 corresponds to the sensor panel 50 used in the input device 3 of the above embodiment, in which the gaps 53A and the spacers 53 are omitted, and the electrode substrate 11 and the magnetic conductive layer 14 are stacked on each other. That is, each upper electrode 11D, each lower electrode 11B, and the magnetic conductive layer 14 are laminated via the insulating layers 11C and 11E.
  • the insulating layers 11C and 11E correspond to a specific example of “insulating layer” of the present technology.
  • the electrode substrate 11 has flexibility and deforms according to the deformation of the magnetic conductive layer 14. Therefore, in this embodiment, the magnetic conductive layer 14 floats together with the electrode substrate 11 when receiving a magnetic force from the pen 30 as shown in FIG.
  • the magnetic conductive layer 14 is fixed to the electrode substrate 11 and is fixed to the electrode substrate 11 through, for example, an adhesive.
  • the conductive layer 52 is only in contact with the electrode substrate 11 and is not fixed to the electrode substrate 11. Therefore, when the magnetic conductive layer 14 is displaced by receiving a magnetic force from the pen 30, a gap is locally generated between the conductive layer 52 and the magnetic conductive layer 14.
  • the gap 54A is a space that secures a movable range of the protective film 13 and the conductive layer 12 when the protective film 13 and the conductive layer 12 are bent downward, and at the same time, the electrode substrate 11 is lifted upward. It is also a space that secures a movable range of the electrode substrate 11 at the time. Therefore, in the present embodiment, the height of the gap 17A may be higher than the height of the gap 17A in the above embodiment. In the present embodiment, the spacer 17 not only maintains the gap 17A but also spreads the deflection of the protective film 13 and the conductive layer 12 so that the downward deflection of the protective film 13 and the conductive layer 12 becomes local. It is regulated. The spacer 17 further suppresses the magnetic conductive layer 14 partially through the electrode substrate 11 and suppresses the magnetic conductive layer 14 from being lifted regardless of the magnetic field.
  • the effect of the input device 4 will be described.
  • the position information of the tip of the pen 30 is input to the input device 4 by detecting the magnetic force at the contact surface 10A or in the vicinity thereof by a change in capacitance. Is done. Therefore, in this embodiment, the same effect as that of the input device 1 of the above embodiment can be obtained.
  • the pen 30 has the magnet 32 at the tip.
  • the pen 30 has a coil 33 at the tip, and a battery that supplies a direct current to the coil 33. 34 may be included.
  • a direct current is supplied to the coil 33
  • the coil 33 becomes an electromagnet, and the magnetic force generated by the electromagnet is detected by the sensor panels 10, 40, 50, 60.
  • the position information of the tip can be input to the input devices 1, 2, 3, and 4.
  • the pen 30 has a magnet 32 at the tip.
  • the pen 30 has a coil 33 at the tip, and the sensor panels 10, 40, 50, 60 You may have the coil 133 which electromagnetically induces the coil 33.
  • the coil 33 becomes an electromagnet by electromagnetic induction, and the magnetic force generated by the electromagnet is detected by the sensor panel 10, 40, 50, 60, whereby the position information of the tip of the pen 30 is input to the input device 1, 2, 3 and 4 can be entered.
  • the pen 30 has the magnet 32 only at the tip.
  • the pen 30 may have the magnet 32 not only at the front end but also at the rear end.
  • the direction of the magnetic pole of the magnet 32 provided at the rear end is the same as the direction of the magnetic pole of the magnet 32 provided at the front end. That is, the magnetic pole on the rear end side of the pen 30 in the magnet 32 provided at the rear end is opposite to the magnetic pole on the front end side of the pen 30 in the magnet 32 provided at the front end. Therefore, for example, after the magnetic conductive layer 14 is levitated using the tip of the pen 30, the floating portion of the magnetic conductive layer 14 is forcibly returned to the original position using the rear end of the pen 30. be able to.
  • the pen 30 has a magnet 32 fixed to the tip.
  • the magnet 32 may be rotatably supported at the tip of the pen 30. In such a case, for example, after the magnetic conductive layer 14 is levitated using the pen 30, the magnet 32 is rotated to reverse the direction of the magnetic pole of the magnet 32, and then the pen 30 again. By using, the floating part of the magnetic conductive layer 14 can be forcibly returned to the original position.
  • a member for example, a member made of a soft magnetic material that shields a magnetic field (lines of magnetic force) emitted from the magnet 32 may be provided around the magnet 32.
  • a cap made of a soft magnetic material may be attached to the tip of the pen 30, or the pen 30 may be knocked and the tip housing portion of the pen 30 may be made of a soft magnetic material.
  • the magnetic conductive layer 14 is a sheet-like member made of a conductive magnetic metal.
  • the magnetic conductive layer 14 is a laminate in which the magnetic layer 14B is provided on the surface of the conductive layer 14A. It may be.
  • the magnetic layer 14B is made of, for example, iron (III) oxide, chromium iron oxide, cobalt iron oxide, or ferrite iron oxide.
  • a magnetic layer 14B may be used instead of the magnetic conductive layer.
  • the magnetic layer 14B may be at a floating potential. Even when the magnetic layer 14B has a floating potential, the magnetic force at or near the contact surface 10A can be detected by a change in capacitance.
  • the magnetic conductive layer 14 may be made of a magnetized magnetic material or may be made of a soft magnetic material. In this case, it is possible to prevent the magnetic conductive layer 14 from being changed with time by, for example, gradually magnetizing the magnetic conductive layer 14.
  • the magnetic conductive layer 14 When the magnetic conductive layer 14 is made of a magnetized magnetic material, the magnetic conductive layer 14 has, for example, the magnetization pattern shown in FIG. 35A, FIG. 35B, or FIG. 35C.
  • FIG. 35A only one surface of the magnetic conductive layer 14 has a magnetization pattern in which N and S poles are alternately magnetized.
  • FIG. 35B both surfaces of the magnetic conductive layer 14 have a magnetization pattern in which N poles and S poles are alternately magnetized.
  • the magnetization pattern of one surface of the magnetic conductive layer 14 is a pattern obtained by inverting the N pole and the S pole in the magnetization pattern of the other surface of the magnetic conductive layer 14.
  • FIG. 35A only one surface of the magnetic conductive layer 14 has a magnetization pattern in which N and S poles are alternately magnetized.
  • FIG. 35B both surfaces of the magnetic conductive layer 14 have a magnetization pattern in which N poles and S poles are alternately magnetized.
  • one surface of the magnetic conductive layer 14 has a magnetization pattern in which the N pole is magnetized on the entire surface, and the other surface of the magnetic conductive layer 14 has a magnetization pattern in which the S pole is magnetized on the entire surface. It has become.
  • the magnetic conductive layer 14 preferably has the magnetization pattern shown in FIG. 35C. This is because it is not necessary to use the pen 30 in consideration of the magnetization pattern.
  • the entire magnetic conductive layer 14 or the magnetic layer 14B is a mesh in which a large number of fine openings are formed. It may be in the shape.
  • FIG. 36 illustrates a state in which a plurality of spacers 15, 16, 53, or 54 are arranged in a matrix.
  • the unit sensor region 14a is assigned to the region surrounded by the four spacers 15, 16, 53, or 54.
  • FIG. 36 illustrates a state in which the entire magnetic conductive layer 14 or the entire magnetic layer 14 ⁇ / b> B has a mesh shape regardless of the position of the spacers 15, 16, 53 or 54 and the position of the unit sensor region 14 a. .
  • the magnetic conductive layer 14 or the magnetic layer 14B includes a central portion of the unit sensor region 14a, a spacer 15, It may be a sheet-like member having an opening 14b in a region excluding the position of 16, 53 or 54.
  • the magnetic conductive layer 14 or the magnetic layer 14B is opened at the positions of the spacers 15, 16, 53, or 54. It may be a sheet-like member having 14b.
  • the first to fourth embodiments and their modifications for example, as shown in FIG.
  • the magnetic conductive layer 14 or the magnetic layer 14B has a position other than the position of the spacers 15, 16, 53, or 54. It may be a sheet-like member having a mesh in the region.
  • the magnetic conductive layer 14 or the magnetic layer 14B is meshed in a region other than the central portion of the unit sensor region 14a. It may be a sheet-like member having
  • the magnetic conductive layer 14 or the magnetic layer 14B has a plurality of openings in the whole or a partial region. Therefore, when the magnetic conductive layer 14 or the magnetic layer 14B is reduced in weight as compared with the case where the entire magnetic conductive layer 14 or the entire magnetic layer 14B is a sheet-like member without an opening or the like, and when receiving a magnetic force It is easy to float up. Therefore, the response speed in information input can be further increased.
  • FIG. 41 illustrates an example of a cross-sectional configuration of the display device 5 according to the fifth embodiment of the present technology.
  • the display device 5 is the sensor panel 10, 40, 50 or 60 (hereinafter simply referred to as “sensor panel X”) of the first to fourth embodiments and their modifications.
  • the display panel 70 provided in contact with the upper surface of the sensor panel X and the drive unit 80 that drives the sensor panel X and the display panel 70 are provided.
  • the sensor panel X can detect the magnetic force in the contact surface 70A or in the vicinity thereof by a change in capacitance, and can output a signal corresponding to the change in capacitance together with information regarding the position where the change in capacitance has occurred.
  • the display device 5 corresponds to a specific example of “display device” of the present technology.
  • the sensor panel X corresponds to a specific example of a “sensor unit” of the present technology.
  • the drive unit 80 corresponds to a specific example of “first drive unit” and “second drive unit” of the present technology.
  • the content which overlaps the content already mentioned in the said paragraph shall be abbreviate
  • the display panel 70 changes the display according to changes in the magnetic field and electric field.
  • FIG. 42 illustrates an example of a cross-sectional configuration of the display panel 70.
  • the display panel 70 has flexibility.
  • the display panel 70 includes, for example, a lower substrate 71, a lower electrode 72, a display layer 73, an upper electrode 74, and an upper substrate 75.
  • the lower substrate 71 and the upper substrate 75 support the lower electrode 72, the display layer 73, and the upper electrode 74, and are spaced apart from each other.
  • the display layer 73 changes the display according to changes in the magnetic field and electric field, and is disposed in the gap between the lower substrate 71 and the upper substrate 75.
  • the upper electrode 74 and the lower electrode 72 apply an electric field to the display layer 73, and are arranged so as to face each other with the display layer 73 in between.
  • the lower electrode 72 is disposed closer to the lower substrate 71, and the upper electrode 74 is disposed closer to the upper substrate 75.
  • the lower substrate 71 and the upper electrode 75 are made of, for example, a plastic material.
  • the plastic material include polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), and polyethersulfone (PES).
  • the lower electrode 72 is, for example, a metal such as aluminum (Al), chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), tungsten (W), or silver (Ag). Consists of simple elements.
  • the lower electrode 72 may be made of, for example, an alloy (for example, stainless steel (SUS)) including at least one of the simple metal elements exemplified above.
  • the lower electrode 72 may be made of, for example, a light transmissive conductive material (transparent electrode material).
  • the transparent electrode material examples include indium oxide-tin oxide (ITO), indium oxide-zinc oxide (IZO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). ).
  • the lower electrode 72 has, for example, optical transparency, and may be composed of, for example, a nano metal wire, a carbon nanotube (CNT), or a metal thin wire.
  • the upper electrode 74 is made of the above-described material exemplified as the material of the lower electrode 72, for example.
  • At least the upper substrate 75 has light transmittance. Further, at least the upper electrode 74 of the lower electrode 72 and the upper electrode 74 has light transmittance. Of the lower electrode 72 and the lower substrate 71, at least the lower electrode 72 may have light absorption. In this case, high contrast can be obtained. Of the lower electrode 72 and the lower substrate 71, at least the lower electrode 72 may be made of a light reflective material. In this case, high luminance can be obtained.
  • the lower electrode 72 may include a plurality of partial electrodes 72A extending in the first direction (X direction in the drawing).
  • the upper electrode 74 includes a plurality of partial electrodes 74A extending in a second direction (Y direction in the drawing) intersecting (for example, orthogonal to) the first direction. May be.
  • the drive unit 20 changes the whole or a part of the display of the display layer 73 by, for example, driving the lower electrode 72 and the upper electrode 74 by simple matrix driving.
  • a portion of the display layer 73 where the partial electrode 72A and the partial electrode 74A face each other is a pixel at the time of simple matrix driving.
  • the pixels at the time of simple matrix driving may coincide with a display pixel 73A described later, or may correspond to each of the plurality of display pixels 73A.
  • the lower electrode 72 may include a plurality of partial electrodes 72B arranged two-dimensionally in the plane.
  • the upper electrode 74 may be a sheet-like electrode that extends over the entire region facing the contact surface 70 ⁇ / b> A that is the upper surface of the display panel 70.
  • the drive unit 20 changes the whole or a part of the display on the display layer 73 by, for example, active matrix driving the plurality of partial electrodes 72B. At this time, a portion of the display layer 73 facing the partial electrode 72B becomes a pixel at the time of active matrix driving.
  • One pixel at the time of active matrix driving may be assigned to one display pixel 73A, which will be described later, or may be assigned to a plurality of display pixels 73A.
  • a plurality of pixels at the time of active matrix driving may be assigned to one display pixel 73A.
  • the lower electrode 72 and the upper electrode 74 may be sheet-like electrodes that extend over the entire region facing the contact surface 70A.
  • the drive unit 20 changes the entire display of the display layer 73 at a time by applying a voltage to the lower electrode 72 and the upper electrode 74, for example.
  • FIG. 45 illustrates an example of a cross-sectional configuration of the display pixel 73 ⁇ / b> A that is the minimum unit of the display layer 73.
  • the display layer 73 includes a plurality of display pixels 73A that are two-dimensionally arranged in a region facing the contact surface 70A.
  • the display pixel 73A includes a dispersion medium 73c, and a plurality of first elements 73a and a plurality of second elements 73b provided in the dispersion medium 73c.
  • the display pixel 73A further includes a microcapsule 73d that encloses the dispersion medium 73c and the plurality of first elements 73a and the plurality of second elements 73b.
  • the first element 73a is a magnetic body.
  • the magnetic material is, for example, triiron tetroxide, ferric trioxide, or various ferrites.
  • the magnetic material may be, for example, a metal such as iron, manganese, nickel, cobalt, or chromium, or an alloy containing cobalt, nickel, manganese, or the like.
  • the first element 73a is particles of a color for dark display (specifically, black or a color close thereto).
  • the first element 73a is a particle having a magnetic property (that is, a magnetic particle).
  • the particle size of the magnetic particles is, for example, 0.1 ⁇ m to 20 ⁇ m.
  • the first element 73a may include a magnetic body (that is, magnetic particles).
  • the first element 73a may be, for example, a mixture of magnetic particles and resin.
  • the second element 73b is a nonmagnetic material.
  • the nonmagnetic material is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate.
  • the non-magnetic material may be, for example, an inorganic salt such as barium sulfate or calcium carbonate, or an organic compound such as polyvinyl naphthalene.
  • the second element 73b is a particle having a color for bright display (specifically, white or a hue close thereto).
  • the second element 73b is a particle having a non-magnetic property (that is, a non-magnetic particle).
  • the particle size of the nonmagnetic particles is, for example, 0.1 ⁇ m to 1 ⁇ m.
  • the second element 73b may include, for example, a nonmagnetic material (that is, nonmagnetic particles).
  • the second element 73b may be, for example, a nonmagnetic particle mixed with a resin.
  • At least one of the first element 73a and the second element 73b is charged. Specifically, at least one of the magnetic particles and the nonmagnetic particles is electrically modified. Below, an example of the manufacturing method of the electrically modified magnetic particle is demonstrated. Note that electrically modified nonmagnetic particles can also be produced by the same method as described below.
  • black magnetic particles triiron tetroxide
  • Solution B was stirred (1 hour), cooled (room temperature), poured into a bottle together with ethyl acetate, and centrifuged (3500 rpm for 30 minutes). Subsequently, after decantation, the washing operation of redispersing the contents of the bottle in ethyl acetate and then performing centrifugation (3500 rpm for 30 minutes) was repeated three times. Subsequently, after drying (12 hours) in a reduced pressure environment (room temperature), it was further dried (2 hours) in a reduced pressure environment (70 ° C.). As a result, black electrophoretic particles made of black magnetic particles were obtained.
  • the microcapsule 73d is made of, for example, a gum arabic / gelatin composite film, a urethane resin, or a urea resin.
  • the dispersion medium 73c is made of, for example, water, alcohols, esters, ketones, aliphatic linear hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, or carboxylates.
  • a surfactant may be added to the dispersion medium 73c.
  • the drive unit 80 includes the drive unit 20 of the above embodiment. Specifically, the drive unit 80 drives the sensor panel X and generates coordinate data based on the output of the sensor panel X. The drive unit 80 further drives the display panel 70. The drive unit 80 changes the display of the display panel 70 by applying an electric field to the display panel 70. Specifically, the drive unit 80 erases the display on the display panel 70 by applying an electric field to the display layer 73.
  • FIG. 46 illustrates an example of the operation of the display layer 73 when the magnetic field H is input.
  • the first element 73a is a magnetic material
  • the second element 73b is a non-magnetic material. Therefore, due to the magnetic field H input from the pen 30, a magnetic force directed from the lower electrode 72 to the upper electrode 74 acts on the first element 73a. As a result, the first element 73a is displaced to the upper electrode 74 side (or the upper substrate 75 side), and contacts or approaches the upper electrode 74.
  • the second element 73b is not particularly displaced by the magnetic field H input from the pen 30, but the second element 73b is moved to the lower electrode due to the denseness of the first element 73a in the vicinity of the upper electrode 74. It is pushed in the direction of 72 (or the lower substrate 71 side). That is, when the pen 30 contacts the contact surface 70A, the display layer 73 is darkly displayed (for example, black display) at the contact portion of the pen 30.
  • the electric field E is An example of the operation of the display layer 73 when input is shown.
  • 47A to 47E show an example of the action of the display layer 73 when the first element 73a is positively charged and the second element 73b is negatively charged.
  • 48A to 48E show an example of the action of the display layer 73 when the first element 73a is positively charged and the second element 73b is not charged.
  • 49A to 49E show an example of the action of the display layer 73 when the first element 73a is not charged and the second element 73b is negatively charged.
  • the drive unit 20 When the first element 73 a is positively charged and the second element 73 b is negatively charged, the drive unit 20 has a potential of the upper electrode 74 with respect to the upper electrode 74 and the lower electrode 72. A voltage having a higher potential than the lower electrode 72 is applied. For example, as shown in FIGS. 47A, 47C, and 47D, the drive unit 20 applies a positive voltage to the upper electrode 74 and applies a negative voltage to the lower electrode 72, a ground voltage (zero volts), or higher than the upper electrode 74. A relatively small positive voltage is applied. Further, for example, as illustrated in FIG. 47B, the drive unit 20 applies a ground voltage (zero volts) to the upper electrode 74 and applies a negative voltage to the lower electrode 72.
  • the drive unit 20 applies a negative voltage to the upper electrode 74 and applies a negative voltage having a larger value than the upper electrode 74 to the lower electrode 72.
  • an electric field E from the upper electrode 74 toward the lower electrode 72 is generated in the display layer 73.
  • a Coulomb force directed from the upper electrode 74 to the lower electrode 72 acts on the first element 73a, and the second element 73b.
  • a Coulomb force from the lower electrode 72 toward the upper electrode 74 works.
  • the first element 73a is displaced to the lower electrode 72 side (or the lower substrate 71 side), contacts or approaches the lower electrode 72, and the second element 73b moves to the upper electrode 74 side (or the upper substrate 75).
  • the display layer 73 performs bright display (for example, white display) in units of pixels during matrix driving.
  • the drive unit 20 has the potential of the upper electrode 74 with respect to the upper electrode 74 and the lower electrode 72.
  • a voltage having a higher potential than the lower electrode 72 is applied.
  • the drive unit 20 applies a positive voltage to the upper electrode 74 and applies a negative voltage, a ground voltage (zero volts) to the lower electrode 72, or higher than the upper electrode 74.
  • a relatively small positive voltage is applied.
  • the drive unit 20 applies a ground voltage (zero volts) to the upper electrode 74 and applies a negative voltage to the lower electrode 72.
  • the driving unit 20 applies a negative voltage to the upper electrode 74 and applies a negative voltage having a larger value than the upper electrode 74 to the lower electrode 72.
  • an electric field E from the upper electrode 74 toward the lower electrode 72 is generated in the display layer 73. Therefore, due to the electric field E input from the lower electrode 72 and the upper electrode 74, a Coulomb force directed from the upper electrode 74 to the lower electrode 72 acts on the first element 73a.
  • the second element 73b is not particularly displaced by the electric field E input from the upper electrode 74 and the lower electrode 72, but the first element 73a is not densely moved near the lower electrode 72.
  • the two elements 73b are pushed in the direction of the upper electrode 74.
  • the display layer 13 performs a bright display (for example, white display) in units of pixels during matrix driving.
  • the drive unit 20 has a potential of the upper electrode 74 with respect to the upper electrode 74 and the lower electrode 72. Is applied with a voltage higher than that of the lower electrode 72.
  • the driving unit 20 applies a positive voltage to the upper electrode 74 and applies a negative voltage to the lower electrode 72, a ground voltage (zero volts), or higher than the upper electrode 74. Apply a small positive voltage.
  • the drive unit 20 applies a ground voltage (zero volts) to the upper electrode 74 and applies a negative voltage to the lower electrode 72.
  • the driving unit 20 applies a negative voltage to the upper electrode 74 and applies a negative voltage having a larger value than the upper electrode 74 to the lower electrode 72.
  • an electric field E from the upper electrode 74 toward the lower electrode 72 is generated in the display layer 73. Therefore, due to the electric field E input from the lower electrode 72 and the upper electrode 74, a Coulomb force directed from the lower electrode 72 to the upper electrode 74 acts on the second element 73b.
  • the first element 73a is not particularly displaced by the electric field E input from the upper electrode 74 and the lower electrode 72. The element 73a is pushed out toward the lower electrode 72. That is, when the above-described voltage is applied to the upper electrode 74 and the lower electrode 72, the display layer 73 performs bright display (for example, white display) in units of pixels during matrix driving.
  • the display layer 73 changes (draws) the display in units of microcapsules 73d (units of display pixels 73A) when the first element 73a is displaced due to the magnetic field H input from the pen 30. )be able to. Further, the display layer 73 has a contact surface due to displacement of the charged element of the first element 73a and the second element 73b due to the electric field E input from the lower electrode 72 and the upper electrode 74. The display can be changed for the entire 70A or for each pixel when driving the matrix.
  • the effect of the display device 5 will be described.
  • the display on the display layer 73 changes due to the electric field E input from the upper electrode 74 and the lower electrode 72. Therefore, when the display on the display layer 73 is erased, the electric field E input from the upper electrode 74 and the lower electrode 72 can be used. For example, by inputting the electric field E to the entire display layer 73, the entire contact surface 70A can be erased at once. In addition, since the contact surface 70A is erased by using the electric field E, it is possible to make it less likely to cause erasure than in the case of erasing using the magnetic field.
  • the display on the display layer 73 changes due to the magnetic field H input from the pen 30. Therefore, when drawing on the contact surface 70A, the magnetic field H input from the pen 30 can be used. Here, when the magnetic field H is input from the pen 30, a high-speed response of drawing on the contact surface 70A can be realized. As described above, in the display device 5, when the magnetic field H is used for drawing and the electric field E is used for erasing, it is possible to realize a display device that has both high-speed drawing and collective erasing and hardly causes erasure. .
  • the upper electrode 74 and the lower electrode 72 when at least one of the upper electrode 74 and the lower electrode 72 is composed of a plurality of partial electrodes (12 ⁇ / b> A, 14 ⁇ / b> A), the upper electrode 74, the lower electrode 72, The portions facing each other become pixels during matrix driving. Therefore, in a predetermined pixel during matrix driving, when the potential difference between the upper electrode 74 and the lower electrode 72 is larger than the threshold potential difference, only a predetermined region in the contact surface 70A can be erased. . Further, in all the pixels at the time of matrix driving, when the potential difference between the upper electrode 74 and the lower electrode 72 is made larger than the threshold potential difference, the entire contact surface 70A can be erased.
  • At least one of the upper electrode 74 and the lower electrode 72 is constituted by a plurality of partial electrodes (12A, 14A), so that the contact surface 70A is partially erased or the entire contact surface 70A is removed. It can be erased at once. Therefore, in this case, it is possible to realize a display device that combines high-speed drawing, collective erasure, and partial erasure, and that hardly causes erasure.
  • the coordinate data of the pen 30 or the finger 100 or the drawing data of the pen 30 is generated on the sensor panel X side.
  • the presence of the display panel 70 does not get in the way.
  • the sensor panel X is electrically shielded, for example, by using a change in capacitance formed between the electrode substrate 11 and the magnetic conductive layer 14 and the conductive layer 12. This is because the position coordinates of the tip of the finger and the tip of the finger 100 are detected.
  • the generation of the drawing data and the display on the display panel 70 are synchronized with each other.
  • both the generation of the drawing data and the display on the display panel 70 are performed, for example, when the tip of the pen 30 or the tip of the finger 100 contacts the contact surface 70A, the sensor panel X No data is exchanged with the display panel 70. For this reason, it is not necessary to provide a separate circuit for the synchronization, and the circuit configuration of the display device 5 is simplified accordingly.
  • FIG. 50 illustrates an example of a cross-sectional configuration of the display device 6 according to the sixth embodiment of the present technology.
  • the display device 6 corresponds to the display device 6 of the above-described embodiment in which the display panel 90 is provided instead of the display panel 70 and the drive unit 110 is provided instead of the drive unit 80. Therefore, in the following, the display panel 90 and the drive unit 110 will be mainly described in detail, and contents overlapping with those already mentioned in the above paragraph will be omitted as appropriate.
  • FIG. 51 shows an example of a cross-sectional configuration of the display panel 90.
  • the display panel 90 corresponds to the display panel 70 according to the above embodiment in which a display layer 93 is provided instead of the display layer 73. That is, the display panel 90 has the display layer 93.
  • the display layer 93 changes the display according to the change in the electric field.
  • the display layer 93 corresponds to the display layer 73 of the above embodiment in which the display pixel 93A is provided instead of the display pixel 73A.
  • FIG. 52 illustrates an example of a cross-sectional configuration of the display pixel 93A.
  • the display pixel 93A corresponds to the display pixel 73A of the above embodiment in which the first element 93a is provided instead of the first element 73a and the second element 93b is provided instead of the second element 73b.
  • the first element 93a and the second element 93b are non-magnetic materials.
  • the first element 93a is a particle of a color for dark display (specifically, black or a color close thereto).
  • the particle diameter of the first element 93a is, for example, 0.1 ⁇ m to 1 ⁇ m.
  • the second element 93b is made of a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, for example.
  • the second element 93b may be composed of an inorganic salt such as barium sulfate or calcium carbonate, or may be composed of an organic compound such as polyvinyl naphthalene.
  • the second element 93b is a particle having a color for bright display (specifically, white or a hue close thereto).
  • the particle size of the second element 93b is, for example, 0.1 ⁇ m to 1 ⁇ m.
  • At least one of the first element 93a and the second element 93b is charged.
  • at least one surface of the first element 93a and the second element 93b has been modified and electrically modified.
  • FIG. 53 shows an example of functional blocks of the drive unit 110.
  • the drive unit 110 includes the drive unit 20 of the above-described embodiment. Specifically, the drive unit 110 drives the sensor panel X and generates coordinate data based on the output of the sensor panel X. The drive unit 110 further drives the display panel 90. The drive unit 110 changes the display of the display panel 90 by applying an electric field to the display panel 90. Specifically, the drive unit 110 adds a display based on the coordinate data or the drawing data generated by the calculation unit 22 to the display of the display panel 90 by applying an electric field to the display layer 93. .
  • the drive unit 110 includes a circuit (detection circuit 21, calculation unit 22, storage unit 23, and output unit 24) corresponding to the drive unit 20, and further includes an input unit 25 and a display drive unit 26. .
  • the input unit 25 receives input of data to be displayed on the display panel 90.
  • the calculation unit 22 stores the received data in the storage unit 23.
  • the display driving unit 26 applies an electric field to the display layer 93 to display, for example, UI (user interface) -related data stored in the storage unit 23 or data stored via the input unit 25. Display on panel 90.
  • the display panel 90 When the calculation unit 22 generates the drawing data of the pen 30 based on the output of the sensor panel X and the display panel 90 is displaying based on some data, the display panel 90 The drawing data of the pen 30 is added to the data displayed at.
  • the calculation unit 22 further instructs the display driving unit 26 to display based on the new data generated by the additional writing, and stores the new data generated by the additional writing in the storage unit 23.
  • the display driving unit 26 performs display based on new data generated by additional writing in accordance with an instruction from the calculation unit 22. As a result, the drawing data of the pen 30 is added to the display on the display panel 90 in real time.
  • the calculation unit 22 detects that the coordinates of the pen 30 change over time in the hollow away from the contact surface 10A when the coordinates of the pen 30 are generated based on the output of the sensor panel X.
  • the calculation unit 22 instructs the display driving unit 26 to switch the display to the next page.
  • the display driving unit 26 displays the next page in accordance with an instruction from the calculation unit 22. In this way, it is possible to turn the page by moving the pen 30 in the air.
  • the drawing data of the pen 30 can be added to the display of the display panel 90 in real time, and new data generated by the additional writing is stored in the storage unit 23.
  • the user can not only write on the display panel 90 but also save the added data in the storage unit 23.
  • FIG. 54 shows a modification of the cross-sectional configuration of the display device 6.
  • the contact surface 90A of the display panel 90 may be divided into a pen input area 90a for inputting information with the pen 30 and a finger input area 90b for inputting information with a finger.
  • the user operates the pen 30 with the finger or palm placed on the pen input area 90a, it is possible to prevent the finger or palm from being erroneously detected.
  • a general display may be provided instead of the display panel 90.
  • the general display include a liquid crystal display, an organic EL display, and an electronic paper display.
  • the drive part 110 drives the general display provided instead of the display panel 90, and is based on the coordinate data or drawing data produced
  • the display may be additionally written.
  • the present technology has been described with the embodiment and its modifications.
  • the present technology is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the effect described in this specification is an illustration to the last.
  • the effect of this technique is not limited to the effect described in this specification.
  • the present technology may have effects other than those described in the present specification.
  • one or a plurality of magnetic sensors that detect the contact surfaces 10A, 70A, and 80A and the magnetic field in the vicinity thereof may be provided.
  • this technique can take the following composition.
  • a sensor panel including a sensor unit that can detect a magnetic force at or near a contact surface by a change in capacitance and output a signal corresponding to the change in capacitance together with information on a position where the change in capacitance occurs.
  • the sensor unit is A plurality of first electrodes extending in a plane facing the contact surface; A plurality of second electrodes that extend in a direction that intersects each of the first electrodes in a plane that faces the contact surface;
  • the sensor panel according to (1) further including: a magnetic layer that is formed in a surface facing the contact surface and is locally displaced in the thickness direction according to the magnitude of the magnetic force.
  • the sensor panel according to (2) wherein the sensor unit includes a conductive layer, and detects a change in capacitance between the plurality of first electrodes, the plurality of second electrodes, and the conductive layer.
  • the sensor unit is A plurality of first magnetic electrodes extending in a plane facing the contact surface and locally displaced in the thickness direction according to the magnitude of the magnetic force; A plurality of second magnetic electrodes that extend in a direction that intersects each of the first electrodes and that is locally displaced in the thickness direction in accordance with the magnitude of the magnetic force, in a plane that faces the contact surface;
  • the sensor panel according to (1) is A plurality of first magnetic electrodes extending in a plane facing the contact surface and locally displaced in the thickness direction according to the magnitude of the magnetic force; A plurality of second magnetic electrodes that extend in a direction that intersects each of the first electrodes and that is locally displaced in the thickness direction in accordance with the magnitude of the magnetic force, in a plane that faces the contact surface;
  • the contact surface is flexible; The sensor panel according to (13), wherein the conductive layer is deformed according to deformation of the contact surface.
  • the sensor unit includes a magnet layer at a position farther from the contact surface than the magnetic layer.
  • the magnetic layer is disposed at a position closer to the contact surface than the first electrode and the second electrode.
  • a sensor unit capable of detecting a magnetic force at or near the contact surface by a change in capacitance, and outputting a signal corresponding to the change in capacitance together with information on a position where the change in capacitance has occurred;
  • a driving unit that drives the sensor unit and generates coordinate data based on an output of the sensor unit;
  • a sensor unit capable of detecting a magnetic force at or near the contact surface by a change in capacitance, and outputting a signal corresponding to the change in capacitance together with information on a position where the change in capacitance has occurred;
  • a display unit that changes the display in response to a change in at least one of the magnetic field and electric field;
  • a first drive unit that drives the sensor unit and generates coordinate data based on an output of the sensor unit;
  • a second driving unit that changes a display by applying an electric field to the display unit;
  • a display device comprising a pen that generates a magnetic field from the tip.
  • the display unit has a display layer that changes display according to changes in a magnetic field and an electric field
  • the display device according to (23), wherein the second drive unit erases display on the display unit by applying an electric field to the display layer.
  • the display unit has a display layer that changes display according to a change in electric field
  • the second drive unit additionally writes a display based on the coordinate data generated by the first drive unit to the display of the display unit by applying an electric field to the display layer. Display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

 センサパネルは、接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部を備えている。

Description

センサパネル、入力装置および表示装置
 本技術は、磁力を使って情報入力を行うことの可能なセンサパネル、入力装置および表示装置に関する。
 電子機器用のセンサ装置として、例えば容量素子を備え、入力操作面に対する操作子の操作位置と押圧力とを検出することが可能な構成が知られている(例えば下記特許文献1参照)。操作子としては、例えばペンや指が挙げられる。
特開2011-170659号公報
 ところで、上述の入力装置においては、ペン入力時に指や手のひらが接触した場合に、複数点検出してしまい、誤動作するという問題がある。
 従って、指や手のひらの接触による誤作動を抑制することの可能なセンサパネル、入力装置および表示装置を提供することが望ましい。
 本技術の一実施の形態のセンサパネルは、接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部を備えている。
 本技術の一実施の形態の入力装置は、センサ部と、センサ部を駆動すると共に、センサ部の出力に基づいて座標データを生成する駆動部と、先端から磁界を発生させるペンとを備えている。センサ部は、接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能となっている。
 本技術の一実施の形態の表示装置は、センサ部と、磁界および電界のうち少なくとも電界の変化に応じて表示を変える表示部とを備えている。本技術の一実施の形態の表示装置は、さらに、センサ部を駆動すると共に、センサ部の出力に基づいて座標データを生成する第1駆動部と、表示部に電界を印加することにより表示を変化させる第2駆動部と、先端から磁界を発生させるペンとを備えている。センサ部は、接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能となっている。
 本技術の一実施の形態のセンサパネルでは、接触面もしくはその近傍の磁力が静電容量変化で検出され、静電容量変化に応じた信号が、静電容量変化の生じた位置に関する情報と共に出力され得る。これにより、例えば、センサパネルの出力に基づいて座標データを生成し、生成した座標データに基づいて映像を表示させることができる。
 本技術の一実施の形態の入力装置および表示装置では、接触面もしくはその近傍の磁力が静電容量変化で検出され、静電容量変化に応じた信号が、静電容量変化の生じた位置に関する情報と共に出力される。これにより、センサ部の出力に基づいて座標データを生成し、生成した座標データに基づいて映像を表示させることができる。
 本技術の一実施の形態のセンサパネル、入力装置および表示装置によれば、接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能にしたので、磁力による静電容量変化をほとんど生じさせない指や手のひらによる誤動作を抑制することができる。なお、本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本技術の第1の実施の形態に係る入力装置の断面構成の一例を表す図である。 ペン先が接触面に接触したときの図1の入力装置の作用の一例を表す図である。 図2における電圧変化量の一例を表す図である。 ペン先が接触面に接触したときの図1の入力装置の作用の一例を表す図である。 図4における電圧変化量の一例を表す図である。 図1の入力装置の断面構成の一変形例を表す図である。 ペン先および指先が接触面に接触したときの図6の入力装置の作用の一例を表す図である。 ペン先および指先が接触面に接触したときの電圧変化量の一例を表す図である。 図1の入力装置の一変形例の断面構成の一例を表す図である。 ペン先が接触面に接触したときの図9の入力装置の作用の一例を表す図である。 図6の入力装置の断面構成の一変形例を表す図である。 ペン先が接触面に接触したときの図11の入力装置の作用の一例を表す図である。 図1の入力装置の断面構成の一変形例を表す図である。 図9の入力装置の断面構成の一変形例を表す図である。 本技術の第2の実施の形態に係る入力装置の断面構成の一例を表す図である。 ペン先および指先が接触面に接触したときの図15の入力装置の作用の一例を表す図である。 図15の入力装置の断面構成の一変形例を表す図である。 図15の入力装置の断面構成の一変形例を表す図である。 図17の入力装置の断面構成の一変形例を表す図である。 図1の入力装置の断面構成の一変形例を表す図である。 図6の入力装置の断面構成の一変形例を表す図である。 図9の入力装置の断面構成の一変形例を表す図である。 図11の入力装置の断面構成の一変形例を表す図である。 図15の入力装置の断面構成の一変形例を表す図である。 本技術の第3の実施の形態に係る入力装置の断面構成の一例を表す図である。 ペン先が接触面に接触したときの図25の入力装置の作用の一例を表す図である。 本技術の第4の実施の形態に係る入力装置の断面構成の一例を表す図である。 ペン先が接触面に接触したときの図27の入力装置の作用の一例を表す図である。 ペンの概略構成の一変形例を表す図である。 ペンの概略構成の一変形例を表す図である。 ペンの概略構成の一変形例を表す図である。 ペンの概略構成の一変形例を表す図である。 磁性導電層の断面構成の一変形例を表す図である。 磁性導電層の代替である磁性層の断面構成の一例を表す図である。 磁性導電層の断面構成の一変形例を表す図である。 磁性導電層の断面構成の一変形例を表す図である。 磁性導電層の断面構成の一変形例を表す図である。 磁性導電層の平面構成の一変形例を表す図である。 磁性導電層の平面構成の一変形例を表す図である。 磁性導電層の平面構成の一変形例を表す図である。 磁性導電層の平面構成の一変形例を表す図である。 磁性導電層の平面構成の一変形例を表す図である。 本技術の第5の実施の形態に係る表示装置の断面構成の一例を表す図である。 図41の表示パネルの断面構成の一例を表す図である。 図42の電極の斜視構成の一例を表す図である。 図42の電極の斜視構成の一例を表す図である。 図42の表示画素の断面構成の一例を表す図である。 ペン先が接触面に接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 ペン先が接触面に近接もしくは接触したときの図42の表示パネルの作用の一例を表す図である。 本技術の第6の実施の形態に係る表示装置の断面構成の一例を表す図である。 図50の表示パネルの断面構成の一例を表す図である。 図51の表示画素の断面構成の一例を表す図である。 図50の駆動部の機能ブロックの一例を表す図である。 図50の表示装置の断面構成の一変形例を表す図である。
 以下、発明を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.第1の実施の形態(容量低減型の入力装置)…図1~図5
   電極基板の裏面側に磁性導電層を設けた例
2.第1の実施の形態の変形例 …図6~図13
   変形例A:導電層と電極基板との間にもスペーサを設けた例 …図6~図8
   変形例B:電極基板と磁性導電層との間のスペーサを省略した例 …図9~図1
   変形例C:剛体層を設けた例…図13、図14
3.第2の実施の形態(容量低減型の入力装置)…図15、図16
   電極基板と磁性導電層を積層した例
4.第2の実施の形態の変形例 …図17~図19
   変形例D:電極を磁性材料で構成した例 …図17
   変形例E:剛体層を設けた例…図18、図19
5.第1および第2の実施の形態に共通する変形例
   変形例F:磁性導電層の裏面側に磁石層を設けた例 …図20~図24
6.第3の実施の形態(容量増加型の入力装置)…図25、図26
   電極基板の上面側に磁性導電層を設けた例
7.第4の実施の形態(容量増加型の入力装置)…図27、図28
   電極基板と磁性導電層を積層した例
8.第1~第4の実施の形態に共通する変形例 …図29~図40
   変形例G:ペンを電磁石ペンで構成した例 …図29、図30
   変形例H:ペンに消しゴム機能を設けた例 …図31、図32
   変形例I:磁性導電層を、導電層と磁性層の積層体で構成した例 …図33
   変形例J:磁性導電層の代わりに、複数の磁性層を設けた例 …図34
   変形例K:磁性導電層を磁化した例 …図35
   変形例L:磁性導電層に複数の開口を設けた例 …図36~図40
9.第5の実施の形態(表示装置)
   入力パネルからの出力を用いない表示パネルを設けた例 …図41~図49
10.第6の実施の形態(表示装置)
   入力パネルからの出力を用いる表示パネルを設けた例 …図50~図53
11.第6の実施の形態の変形例
   ペン入力領域と指入力領域を設けた例 …図54
<1.第1の実施の形態>
[構成]
 図1は、本技術の第1の実施の形態に係る入力装置1の断面構成の一例を表す。入力装置1は、先端から磁界を発生させるペン30を利用して情報入力を行う装置である。入力装置1は、接触面10Aを有するセンサパネル10と、センサパネル10を駆動すると共にセンサパネル10の出力に基づいて座標データを生成する駆動部20と、ペン30とを備えている。入力装置1は、本技術の「入力装置」の一具体例に相当する。接触面10Aは、本技術の「接触面」の一具体例に相当する。センサパネル10は、本技術の「センサパネル」、「センサ部」の一具体例に相当する。駆動部20は、本技術の「駆動部」の一具体例に相当する。ペン30は、本技術の「ペン」の一具体例に相当する。
(ペン30)
 ペン30は、上述したように、先端から磁界を発生させる。ペン30は、例えば、ペン30の先端を接触面10Aに近接させたり接触させたりすることにより、ペン30の先端から発せられる磁界(磁力線)を用いて、ペン30の先端の位置情報をセンサパネル10に入力する。ペン30の先端の位置情報には、例えば、接触面10AをXY平面としたときのXY座標データが含まれている。なお、ペン30の先端の位置情報には、さらに、例えば、接触面10Aの法線をZ軸としたときのZ座標データが含まれていてもよい。
 ペン30は、例えば、棒状の把持部31と、把持部31の先端に固定された磁石32とを有している。把持部31は、表示装置1のユーザがペン30を使う際に手でつかむ部分である。磁石32は、把持部31の延在方向と同一の方向に延在する棒形状となっている。磁石32の長手方向の一端がN極となっており、磁石32の長手方向の他端がS極となっている。従って、磁石32は、ペン30を接触面10Aに立てたとき、磁石32から発せられる磁界(磁力線)を後述の磁性導電層14に到達させる。ペン先端の磁束密度は、50G~2000G程度となっていることが好ましく、200G~1000Gとなっていることがより好ましい。ペン30は、ペン30の先端に、磁力線の広がりを防ぐ部材を有していてもよい。そのような部材は、例えば、ペン先端の外周(磁石32のうちペン先端側の端部の側面全体)を覆うように設けられている。磁力線の広がりを防ぐ部材としては、例えば、比透磁率の高い材料(例えば、パーマロイ、軟鉄など)が挙げられる。また、上記の部材は、磁石32の側面全体を覆うように設けられていてもよい。このようにした場合には、上記の部材がヨークとして働き、ペン先端の磁束密度を高くすることができる。
(センサパネル10)
 センサパネル10は、ペン30の先端から発せられる磁界(磁力線)を静電容量変化で検出する。具体的には、センサパネル10は、接触面10Aもしくはその近傍の磁力を静電容量変化で検出する。センサパネル10は、さらに、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能となっている。センサパネル10は、例えば、電極基板11と、電極基板11の上面側に配置された導電層12および保護層13と、電極基板11の下面側に配置された磁性導電層14とを有している。導電層12が、接触面10Aと電極基板11との間隙に配置され、磁性導電層14が、電極基板11よりも接触面10Aから離れた位置に配置されている。つまり、電極基板11が、導電性を有する2つの層(導電層12および磁性導電層14)によって上下方向から挟み込まれている。導電層12が、本技術の「導電層」の一具体例に相当する。磁性導電層14が、本技術の「磁性層」の一具体例に相当する。
 導電層12および磁性導電層14は、センサパネル10と外部との間で形成される静電容量の変化がセンサパネル10の内部に影響しないようするシールド層としての機能を有している。導電層12および磁性導電層14は、固定電位となっており、例えば、グラウンド電位となっている。導電層12は、例えば、フィルム上にアルミなどの金属薄膜、カーボン、CNT、ITO、IZO、ナノメタルワイヤ、銀細線などを製膜したもの、または湾曲し得る非磁性の金属プレートやITOガラスなどによって構成されている。磁性導電層14は、例えば、シート状となっており、可撓性を有している。磁性導電層14は、接触面10Aと対向する面内に形成され、磁力の大きさに応じて厚さ方向に局所的に変位する。磁性導電層14は、導電性の磁性金属で構成されており、例えば、SUS(例えば、マルテンサイト系、フェライト系)、鉄、ニッケル、鉄の合金、ニッケルの合金などによって構成されている。保護層13は、ペン30などから導電層12を保護するものであり、例えば、樹脂フィルムによって構成されている。スペーサ15は、例えば、スクリーン印刷した樹脂層をUV硬化あるいは熱硬化することにより形成されたものである。
 センサパネル10は、さらに、例えば、電極基板11と磁性導電層14との間に空隙15Aを有しており、この空隙15Aを維持する複数のスペーサ15を有している。空隙15Aは、磁性導電層14が厚さ方向に浮き上がったときの磁性導電層14の可動域を確保する空間である。スペーサ15は、空隙15Aを維持するだけでなく、磁性導電層14を部分的に抑えつけ、磁性導電層14が磁場によらず浮き上がるのを抑制している。センサパネル10は、さらに、例えば、電極基板11等を収容する筐体16を有している。空隙15Aは、本技術の「空隙」の一具体例に相当する。スペーサ15は、本技術の「スペーサ」の一具体例に相当する。
 図2は、ペン30の先端が接触面10Aに近接もしくは接触したときの入力装置1の作用の一例を表す。磁性導電層14は、例えば、図2に示したように、ペン30の先端から発せられる磁界H(磁力線)によって接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11と磁性導電層14との距離が短くなり、センサパネル10の静電容量が局所的に減少する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きく、ペン30の先端部分の直下から離れるにつれて小さくなる。
 電極基板11は、例えば、絶縁層11A、下側電極11B、絶縁層11C、上側電極11Dおよび絶縁層11Eをこの順に積層して構成されている。下側電極11Bは、接触面10Aと対向する面内を延在する複数の電極(第1電極)で構成されている。上側電極11Dは、接触面10Aと対向する面内であって、かつ各第1電極と交差する方向に延在する複数の電極(第2電極)で構成されている。
 絶縁層11Aは、下側電極11Bを支持すると共に、下側電極11Bと磁性導電層14とが互いに短絡するのを防ぐ。絶縁層11Cは、上側電極11Dを支持すると共に、上側電極11Dと下側電極11Bとが互いに短絡するのを防ぐ。絶縁層11Eは、上側電極11Dと導電層12とが互いに短絡するのを防いでおり、上側電極11Dを被覆している。絶縁層11Aは、例えば、フレキシブル性を有するフィルム材で構成され、具体的にはPET、PEN、PC、PMMA、ポリイミド等の電気絶縁性の樹脂フィルムで構成される。絶縁層11Cは、例えば、上記樹脂フィルムや、スクリーン印刷した樹脂層で構成される。絶縁層11Eは、例えば、上記樹脂フィルムや、スクリーン印刷した樹脂層で構成される。下側電極11Bおよび上側電極11Dは、例えば、スクリーン印刷やフォトリソグラフィにより作成された銀や銅、アルミ、モリブデンまたはそれらを含む合金の配線などで構成される。
(駆動部20)
 駆動部20は、上述したように、センサパネル10を駆動すると共にセンサパネル10の出力に基づいて座標データを生成する。駆動部20は、例えば、検出回路21と、演算部22と、記憶部23と、出力部24とを有している。
 検出回路21は、例えば、センサパネル10の静電容量の変化を、電極基板11に流れる電流量の変化で読み取る。検出回路21は、例えば、電極基板11に含まれる複数の下側電極11Bおよび複数の上側電極11Dを切り替えるスイッチ素子と、電極基板11に交流信号を供給する信号源と、電流・電圧変換回路とを有している。スイッチ素子は、例えば、マルチプレクサである。マルチプレクサの一端側に設けられた複数の端子が、各下側電極11Bおよび各上側電極11Dの一端に1つずつ接続されており、マルチプレクサの他端側に設けられた1つの端子が信号源および電流・電圧変換回路に接続されている。
 検出回路21は、例えば、複数の下側電極11Bを順次1つずつ選択するとともに、複数の上側電極11Dを順次1つずつ選択する。これにより、検出回路21は、例えば、交流信号を複数の下側電極11Bに順次1つずつ印加するとともに、複数の上側電極11Dに順次1つずつ印加する。このとき、例えば、接触面10Aにペン30が近接したり接触したりすると、センサパネル10の静電容量が局所的に変化し(具体的には減少し)、その変化が電極基板11に流れる電流量を変化させる。検出回路21は、例えば、その電流量の変化を電圧の変化に変換し、演算部22に出力する。つまり、検出回路21は、静電容量の変化量の大きさに応じた電圧変化を、座標情報と共に演算部22に出力する。
 図3は、ペン30の先端が接触面10Aに接触したときの静電容量変化量の一例を表す。センサパネル10の静電容量が局所的に変化すると、静電容量が変化した分だけ、電流・電圧変換回路から出力される電圧の変化量が大きくなる。図3は、静電容量変化量ΔCを縦軸にとり、接触面10AのX軸方向の座標を横軸にとったときの、静電容量変化量の分布の一例を表す。例えば、図3に示したように、ペン30の先端部分の座標における静電容量変化量ΔC1が、閾値TH1,TH0よりも大きくなっている。
 演算部22は、検出回路21から出力された電圧の変化を評価することにより、接触面10Aにおけるペン30の接触の有無を判定し、さらに、接触面10Aにおけるペン30の接触位置を判定する。演算部22は、例えば、図3に示したように、ΔC1>TH1となっている場合、ペン30の先端が接触面10Aに接触していると判定する。演算部22は、例えば、TH1>ΔC1>TH2となっている場合、ペン30の先端が接触面10Aに近接していると判定する。演算部22は、例えば、静電容量変化量ΔCの最大値がTH1を超えている場合に、静電容量変化量ΔCが最も大きい箇所にペン30が接触していると判定する。演算部22は、例えば、静電容量変化量ΔCの最大値がTH1以下であり、かつTH2よりも大きい場合に、静電容量変化量ΔCが最も大きい箇所にペン30が近接していると判定する。
 演算部22は、検出回路21から出力された電圧の変化を評価することにより、接触面10Aにおけるペン30の押圧の大きさを判定する。演算部22は、例えば、図3に示したように、ΔC1>TH0となっている場合、ペン30が接触面10Aに強く押されていると判定する。演算部22は、例えば、TH0>ΔC1>TH1となっている場合、ペン30が接触面10Aに軽く接していると判定する。
 演算部22は、例えば、センサパネル10の出力に基づいて生成した座標データを記憶部23に格納する。演算部22は、例えば、定期的に導出した座標データを、すでに記憶部23に格納されている座標データと共に、記憶部23に格納する。演算部22が、例えば、センサパネル10の出力に基づいて生成した座標データを記憶部23に格納すると共に、出力部24に出力してもよい。演算部22が、例えば、記憶部23に格納された複数の座標データを、描画データとしてまとめて出力部24に出力してもよい。出力部24は、演算部22からの座標データまたは描画データを外部に出力する。
[動作] 
 次に、入力装置1の動作について説明する。ユーザがペン30の先端を接触面10Aに近接させるか、または接触させる(図2参照)。すると、ペン30の先端から生じる磁力によって、磁性導電層14が接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11と磁性導電層14との距離が短くなり、センサパネル10の静電容量が局所的に減少する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きくなり、ペン30の先端部分の直下から離れるにつれて小さくなる。
 このとき、センサパネル10の静電容量の局所的な変化が、検出回路21によって検出される。その結果、例えば、静電容量の変化量の大きさに応じた電圧変化が、座標情報と共に検出回路21から演算部22に出力される。演算部22において、検出回路21から出力された電圧の変化が評価されることにより、接触面10Aにおけるペン30の接触の有無が判定され、さらに、接触面10Aにおけるペン30の先端部分の座標が判定される。このようにして、ペン30の先端の位置情報が、入力装置1に入力される。
 また、例えば、図3に示したように、ユーザがペン30の先端を接触面10Aに近接させるか、または接触させると同時に、手のひらの一部を接触面10Aに接触させる。このようにした場合には、ペン30の先端から生じる磁力によって、磁性導電層14が接触面10A側に局所的に浮き上がる一方で、磁力を発生させない手のひらによっては、磁性導電層14は、接触面10A側に全く浮き上がらないか、またはほんのわずかにしか浮き上がらない。その結果、ペン30の先端部分の下方においては、電極基板11と磁性導電層14との距離が短くなり、センサパネル10の静電容量が局所的に減少する。一方、手のひらの下方においては、電極基板11と磁性導電層14との距離は全く変わらないか、またはほんのわずかにしか変わらない。
 このとき、ペン30の先端部分の下方においては、センサパネル10の静電容量が局所的な変化するが、手のひらの下方においては、センサパネル10の静電容量は、全く変わらないか、またはほんのわずかにしか変わらない(図4参照)。従って、この場合には、接触面10Aにおけるペン30の先端部分の接触が検出される一方で、接触面10Aにおける手のひらの接触は全く検出されないか、または、接触面10Aにおける手のひらの接触が無視される。
[効果] 
 次に、入力装置1の効果について説明する。本実施の形態では、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置1に入力される。従って、磁力による静電容量変化をほとんど生じさせない指や手のひらによる誤動作を抑制することができる。
 また、本実施の形態では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されているので、接触面10Aが窪まなくても、ペン30の先端の位置情報を入力装置1に入力することができる。従って、ペン30の先端を接触面10Aから離れた位置に置いたり、ペン30の先端を接触面10Aに軽く触れさせたりした場合であっても、ペン30の先端の位置情報を入力装置1に入力することができる。
 また、本実施の形態では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されているので、ペン30の先端が接触面10Aから離れた位置にあることや、ペン30の先端が接触面10Aに触れていることを区別することができる。従って、例えば、ペン30の先端が接触面10Aから離れた位置にある場合と、ペン30の先端が接触面10Aに軽く触れている場合とで、互いに異なる動作を外部機器で実行させることも可能となる。
<2.第1の実施の形態の変形例>
[変形例A]
 図6は、上記実施の形態の入力装置1の断面構成の一変形例を表す。本変形例では、センサパネル10が、電極基板11と導電層12との間に空隙17Aを有し、空隙17Aを維持する複数のスペーサ17を有している。本変形例では、さらに、接触面10Aを構成する保護層13と、導電層12とが可撓性を有し、保護層13および導電層12が、接触面10Aの変形に応じて変形する。空隙17Aは、本技術の「空隙」の一具体例に相当する。スペーサ17は、本技術の「スペーサ」の一具体例に相当する。
 本変形例では、ペン30や指100などが接触面10Aに接触し、接触面10Aが押圧されると、接触面10Aが局所的に窪み、保護層13および導電層12も、接触面10Aの窪みに倣って下方に局所的に撓む。空隙17Aは、保護膜13および導電層12が下方に撓んだときの保護膜13および導電層12の可動域を確保する空間である。スペーサ17は、空隙17Aを維持するだけでなく、保護膜13および導電層12の下方への撓みが局所的となるよう、保護膜13および導電層12の撓みの広がりを規制している。
 図7は、ペン30の先端および指100の先端が接触面10Aに接触したときの、本変形例に係る入力装置1の作用の一例を表す。図8は、ペン30の先端および指100の先端が接触面10Aに接触したときの静電容量変化量の一例を表す。図8では、接触面10Aのうち、静電容量変化量ΔCがΔC1となっている箇所に、ペン30の先端が接触し、窪みができており、接触面10Aのうち、静電容量変化量ΔCがΔC2となっている箇所に、指100の先端が接触し、窪みができている。図8において、静電容量変化量ΔCがΔC2となっている箇所は、ペン30の先端が接触面10Aに接触していることによる静電容量の変化の影響が及ばない箇所にあるものとする。
 演算部22は、検出回路21から出力された電圧の変化を評価することにより、接触面10Aにおけるペン30および指100の接触の有無を判定し、さらに、接触面10Aにおけるペン30および指100の接触位置を判定する。演算部22は、例えば、ΔC1>TH1となっている場合、接触面10Aのうち、静電容量変化量ΔCがΔC1となっている箇所に、ペン30の先端が接触していると判定する。演算部22は、例えば、TH1>ΔC1>TH2となっている場合、接触面10Aのうち、静電容量変化量ΔCがΔC1となっている箇所に、ペン30の先端が近接していると判定する。演算部22は、例えば、静電容量変化量ΔCの最大値がTH1を超えている場合に、静電容量変化量ΔCが最も大きい箇所にペン30が接触していると判定する。演算部22は、例えば、静電容量変化量ΔCの最大値がTH1以下であり、かつTH2よりも大きい場合に、静電容量変化量ΔCが最も大きい箇所にペン30が近接していると判定する。
 演算部22は、例えば、指100がペン30による静電容量の変化の影響が及ばない箇所にあり、かつ、TH2>ΔC2>TH3となっている場合、接触面10Aのうち、静電容量変化量ΔCがΔC2となっている箇所に、指100の先端が接触していると判定する。演算部22は、例えば、指100がペン30による静電容量の変化の影響が及ばない箇所にあり、かつ、TH3>ΔC2>TH4となっている場合、接触面10Aのうち、静電容量変化量ΔCがΔC2となっている箇所に、指100の先端が近接していると判定する。演算部22は、例えば、指100がペン30による静電容量の変化の影響が及ばない箇所にあり、かつ、静電容量変化量ΔCの最大値がTH3を超えている場合に、静電容量変化量ΔCのピークがある箇所に指100の先端が接触していると判定する。演算部22は、例えば、指100がペン30による静電容量の変化の影響が及ばない箇所にあり、かつ、静電容量変化量ΔCの最大値がTH3以下であり、かつTH4よりも大きい場合に、静電容量変化量ΔCのピークがある箇所に指100の先端が近接していると判定する。
 演算部22は、検出回路21から出力された電圧の変化を評価することにより、接触面10Aにおけるペン30の押圧の大きさを判定する。演算部22は、例えば、図8に示したように、ΔC1>TH0となっている場合、ペン30が接触面10Aに強く押されていると判定する。演算部22は、例えば、TH0>ΔC1>TH1となっている場合、ペン30が接触面10Aに軽く接していると判定する。
 演算部22は、例えば、センサパネル10の出力に基づいて生成した座標データを記憶部23に格納する。演算部22は、例えば、定期的に導出したペン30の座標データを、すでに記憶部23に格納されているペン30の座標データと共に、記憶部23に格納する。演算部22が、例えば、センサパネル10の出力に基づいて生成したペン30の座標データを記憶部23に格納すると共に、出力部24に出力してもよい。演算部22が、例えば、記憶部23に格納されたペン30の複数の座標データを、描画データとしてまとめて出力部24に出力してもよい。演算部22が、例えば、センサパネル10の出力に基づいて生成した指100の座標データを出力部24に出力してもよい。出力部24は、演算部22からの座標データまたは描画データを外部に出力する。
 次に、本変形例に係る入力装置1の動作について説明する。ユーザがペン30の先端を接触面10Aに近接させるか、または接触させる。すると、ペン30の先端から生じる磁力によって、磁性導電層14が接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11と磁性導電層14との距離が短くなり、センサパネル10の静電容量が局所的に減少する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きくなっており、ペン30の先端部分の直下から離れるにつれて小さくなっている。さらに、ユーザがペン30の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、ペン30の先端部分の下方において、電極基板11と導電層12との距離が短くなり、センサパネル10の静電容量がさらに減少する。
 また、ユーザが指100の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、指100の先端部分の下方において、電極基板11と導電層12との距離が短くなり、センサパネル10の静電容量が局所的に減少する。このとき、指100の先端からは、ペン30の先端から発せられるような強い磁界H(磁力線)は発生していない。そのため、指100の先端部分の下方において、磁性導電層14は接触面10A側に浮き上がらない。従って、ペン30による静電容量の変化量は、指100による静電容量の変化量よりも、電極基板11と磁性導電層14との距離が変化した分だけ大きくなっている。
 ユーザがペン30の先端および指100の先端を接触面10Aに押圧している際に、センサパネル10の静電容量の局所的な変化が、検出回路21によって検出される。その結果、例えば、静電容量の変化量の大きさに応じた電圧変化が、座標情報と共に検出回路21から演算部22に出力される。演算部22において、検出回路21から出力された電圧の変化が評価されることにより、接触面10Aにおけるペン30や指100の接触の有無が判定され、さらに、接触面10Aにおけるペン30や指100の先端部分の座標が判定される。このようにして、ペン30の先端の位置情報が、入力装置1に入力される。
 次に、本変形例に係る入力装置1の効果について説明する。本変形例では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置1に入力される。従って、本変形例では、上記実施の形態の入力装置1と同様の効果を得ることができる。
 また、本変形例では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されているので、ペン30による位置情報の入力と、指100による位置情報の入力とを容易に区別することができる。従って、例えば、ペン30によって位置情報が入力された場合と、指100によって位置情報が入力された場合とで、互いに異なる動作を、外部機器で実行させることも可能となる。従って、例えば、ユーザが、接触面10Aに手のひらを載せた状態でペン30を操作した場合に、手のひらが誤検出されるのを防止することができる。さらに、ユーザが指で操作した場合とペンで操作した場合を区別でき、ユーザの意図した処理をシステム側にて行うことができる。
[変形例B]
 図9は、図1の入力装置1の断面構成の一変形例を表す。図10は、ペン30の先端が接触面10Aに接触したときの図9の入力装置1の作用の一例を表す。図11は、図6の入力装置1の断面構成の一変形例を表す。図12は、ペン30の先端が接触面10Aに接触したときの図11の入力装置1の作用の一例を表す。
 本変形例に係る入力装置1は、上記第1の実施の形態の入力装置1およびその変形例において、スペーサ15が省略された構成となっている。本変形例では、ペン30の先端が接触面10Aに接触したときに、磁性導電層14が、スペーサ15によって規制されることなく、ペン30の先端の下方の部分を頂点として浮き上がる。そのため、磁性導電層14の浮上がスペーサ15によって規制されている場合と比べて、磁性導電層14の応答速度が若干、速くなり得る。
 本変形例に係る入力装置1は、各スペーサ15が省略されていることを除いて上記実施の形態の入力装置1と同様の構成となっている。従って、本変形例では、上記実施の形態の入力装置1と同様の効果を得ることができる。
[変形例C]
 図13は、図1の入力装置1の断面構成の一変形例を表す。図14は、図9の入力装置1の断面構成の一変形例を表す。
 本変形例に係る入力装置1は、上記第1の実施の形態の入力装置1およびその変形例において、電極基板11と接触面10Aとの間に剛体層51を備えた構成となっている。剛体層51は、例えば、導電層12と電極基板11との間に配置されており、例えば、少なくとも導電層12に接して配置されている。剛体層51は、ペン30や指100による押圧によって屈曲し難い材料で構成されており、例えば、樹脂基板やガラス基板などによって構成されている。つまり、剛体層51が導電層12および保護層13の局所的な湾曲を妨げている。
 本変形例では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置1に入力される。従って、本変形例では、上記実施の形態の入力装置1と同様の効果を得ることができる。
 本変形例では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されており、さらに、接触面10Aの局所的な湾曲が剛体層51によって抑制されている。これにより、接触面10Aの局所的な湾曲による静電容量の変化が小さくなるので、ペン30による位置情報の入力と、指100による位置情報の入力とを、容易に区別することができる。従って、例えば、ユーザが、接触面10Aに指や手のひらを載せた状態でペン30を操作した場合に、指や手のひらが誤検出されるのを十分に防止することができる。
<3.第2の実施の形態>
[構成]
 図15は、本技術の第2の実施の形態に係る入力装置2の断面構成の一例を表す。図16は、ペン30の先端および指100の先端が接触面10Aに接触したときの入力装置2の作用の一例を表す。入力装置2は、上記実施の形態の入力装置1において、センサパネル10の代わりにセンサパネル40を設けたものに相当する。そこで、以下では、センサパネル40について主に詳述し、上記実施の形態の入力装置1の構成と共通する構成についての記述を適宜、省略するものとする。入力装置2は、本技術の「入力装置」の一具体例に相当する。センサパネル40は、本技術の「センサパネル」の一具体例に相当する。
 センサパネル40は、変形例Aに係る入力装置1で用いられたセンサパネル10において、空隙15Aおよび各スペーサ15を省略し、電極基板11と磁性導電層14とを互いに積層したものに相当する。つまり、各上側電極11D、各下側電極11Bおよび磁性導電層14は、絶縁層11A,11Cを介して積層されている。絶縁層11A,11Cは、本技術の「絶縁層」の一具体例に相当する。
 本実施の形態では、電極基板11は可撓性を有しており、磁性導電層14の変形に応じて変形する。従って、本実施の形態では、磁性導電層14は、例えば、図16に示したように、ペン30から磁力を受けたときに電極基板11と共に浮き上がる。磁性導電層14は、例えば、電極基板11に固定されており、例えば接着剤などを介して電極基板11に固定されている。なお、磁性導電層14は、電極基板11に接しているだけで、電極基板11に固定されていなくてもよい。
 センサパネル40において、空隙17Aは、保護膜13および導電層12が下方に撓んだときの保護膜13および導電層12の可動域を確保する空間であると同時に、電極基板11が上方に浮き上がったときの電極基板11の可動域を確保する空間でもある。従って、本実施の形態では、空隙17Aの高さが、上記実施の形態のときの空隙17Aの高さと比べて、高くなっていてもよい。本実施の形態では、スペーサ17は、空隙17Aを維持するだけでなく、保護膜13および導電層12の下方への撓みが局所的となるよう、保護膜13および導電層12の撓みの広がりを規制している。スペーサ17は、さらに、電極基板11を介して、磁性導電層14を部分的に抑えつけ、磁性導電層14が磁場によらず浮き上がるのを抑制している。
[動作]
 次に、本実施の形態の入力装置2の動作について説明する。ユーザがペン30の先端を接触面10Aに近接させるか、または接触させる。すると、ペン30の先端から生じる磁力によって、磁性導電層14が電極基板11と共に、接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11および磁性導電層14と、導電層12との距離が短くなり、センサパネル40の静電容量が局所的に減少する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きくなっており、ペン30の先端部分の直下から離れるにつれて小さくなっている。さらに、ユーザがペン30の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、ペン30の先端部分の下方において、電極基板11と導電層12との距離がさらに短くなり、センサパネル40の静電容量がさらに減少する。
 また、ユーザが指100の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、指100の先端部分の下方において、電極基板11と導電層12との距離が短くなり、センサパネル40の静電容量が局所的に減少する。このとき、指100の先端からは、ペン30の先端から発せられるような強い磁界H(磁力線)は発生していない。そのため、指100の先端部分の下方において、磁性導電層14および電極基板11は接触面10A側に浮き上がらない。従って、ペン30による静電容量の変化量は、指100による静電容量の変化量よりも、磁性導電層14および電極基板11が浮き上がった分だけ大きくなっている。
 ユーザがペン30の先端および指100の先端を接触面10Aに押圧している際に、センサパネル40の静電容量の局所的な変化が、検出回路21によって検出される。その結果、例えば、静電容量の変化量の大きさに応じた電圧変化が、座標情報と共に検出回路21から演算部22に出力される。演算部22において、検出回路21から出力された電圧の変化が評価されることにより、接触面10Aにおけるペン30や指100の接触の有無が判定され、さらに、接触面10Aにおけるペン30や指100の先端部分の座標が判定される。このようにして、ペン30の先端の位置情報が、入力装置2に入力される。
[効果]
 次に、本実施の形態の入力装置2の効果について説明する。本実施の形態では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置2に入力される。従って、本実施の形態では、上記実施の形態の入力装置1と同様の効果を得ることができる。
<4.第2の実施の形態の変形例>
[変形例D]
 図17は、上記第2の実施の形態の入力装置2の断面構成の一変形例を表す。本変形例では、センサパネル40が、磁性導電層14の代わりに導電層18を備えている。導電層18は、例えば、フィルム上にアルミなどの金属薄膜、カーボン、CNT、ITO、IZO、ナノメタルワイヤ、銀細線などを製膜したもの、または湾曲し得る非磁性の金属プレートやITOガラスなどによって構成されている。導電層18は、電極基板11に固定されており、例えば接着剤などを介して電極基板11に固定されている。さらに、センサパネル40において、各下側電極11Bおよび各上側電極11Dが、導電性の磁性金属(つまり、磁性電極)で構成されており、例えば、SUS(例えば、マルテンサイト系、フェライト系)、鉄、ニッケル、鉄の合金、ニッケルの合金などによって構成されている。従って、本変形例では、各下側電極11Bおよび各上側電極11Dは、磁力の大きさに応じて厚さ方向に局所的に変位する。
 次に、本変形例に係る入力装置2の動作について説明する。ユーザがペン30の先端を接触面10Aに近接させるか、または接触させる。すると、ペン30の先端から生じる磁力によって、一部の下側電極11Bおよび一部の上側電極11Dが電極基板11および導電層18と共に、接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11および導電層18と、導電層12との距離が短くなり、センサパネル40の静電容量が局所的に減少する。ペン30の先端から生じる磁力によって電極基板11および導電層18が浮き上がる量は、ペン30の先端部分の直下において最も大きくなっており、ペン30の先端部分の直下から離れるにつれて小さくなっている。さらに、ユーザがペン30の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、ペン30の先端部分の下方において、電極基板11および導電層18と、導電層12との距離がさらに短くなり、センサパネル40の静電容量がさらに減少する。
 また、ユーザが指100の先端を接触面10Aに押圧すると、導電層12および保護層13が窪む。その結果、指100の先端部分の下方において、電極基板11と導電層12との距離が短くなり、センサパネル40の静電容量が局所的に減少する。このとき、指100の先端からは、ペン30の先端から発せられるような強い磁界H(磁力線)は発生していない。そのため、指100の先端部分の下方において、電極基板11および導電層18は接触面10A側に浮き上がらない。従って、ペン30による静電容量の変化量は、指100による静電容量の変化量よりも、電極基板11および導電層18が浮き上がった分だけ大きくなっている。
 ユーザがペン30の先端および指100の先端を接触面10Aに押圧している際に、センサパネル40の静電容量の局所的な変化が、検出回路21によって検出される。その結果、例えば、静電容量の変化量の大きさに応じた電圧変化が、座標情報と共に検出回路21から演算部22に出力される。演算部22において、検出回路21から出力された電圧の変化が評価されることにより、接触面10Aにおけるペン30や指100の接触の有無が判定され、さらに、接触面10Aにおけるペン30や指100の先端部分の座標が判定される。このようにして、ペン30の先端の位置情報が、入力装置2に入力される。
[効果]
 次に、本変形例に係る入力装置2の効果について説明する。本変形例では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置2に入力される。従って、本変形例では、上記実施の形態の入力装置2と同様の効果を得ることができる。
 また、本変形例では、各下側電極11Bおよび各上側電極11Dが、導電性の磁性金属(つまり、磁性電極)で構成されている。ここで、接触面10Aと、各下側電極11Bおよび各上側電極11Dとの距離は、接触面10Aと導電層18との距離よりも短くなっている。このように、本変形例では、磁性金属で構成された層が、接触面10Aにより近い場所に配置されている。従って、磁性金属で構成された層に対して、ペン30の磁力を及ぼすことが容易となるので、例えば、ペン30の磁石32を小型化したり、ペン30が検出面10Aから比較的離れている場所にあるときでもペン30の位置情報の入力を可能にしたりすることができる。
[変形例E] 
 図18は、図15の入力装置2の断面構成の一変形例を表す。図19は、図17の入力装置2の断面構成の一変形例を表す。
 本変形例に係る入力装置2は、上記第2の実施の形態の入力装置2およびその変形例において、電極基板11と接触面10Aとの間に剛体層51を備えた構成となっている。剛体層51は、例えば、導電層12と電極基板11との間に配置されており、例えば、少なくとも導電層12の下面に接して配置されている。剛体層51は、ペン30や指100による押圧によって屈曲し難い材料で構成されており、例えば、樹脂基板やガラス基板などによって構成されている。つまり、剛体層51が導電層12および保護層13の局所的な湾曲を妨げている。
 本変形例では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置2に入力される。従って、本変形例では、上記実施の形態の入力装置2と同様の効果を得ることができる。
 また、本変形例では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されており、さらに、接触面10Aの局所的な湾曲が剛体層51によって抑制されている。これにより、接触面10Aの局所的な湾曲による静電容量の変化が小さくなるので、ペン30による位置情報の入力と、指100による位置情報の入力とを、容易に区別することができる。従って、例えば、ユーザが、接触面10Aに指や手のひらを載せた状態でペン30を操作した場合に、指や手のひらが誤検出されるのを十分に防止することができる。
<5.第1および第2の実施の形態に共通する変形例>
 次に、第1および第2の実施の形態に共通する変形例について説明する。
[変形例F] 
 図20は、図1の入力装置1の断面構成の一変形例を表す。図21は、図6の入力装置1の断面構成の一変形例を表す。図22は、図9の入力装置1の断面構成の一変形例を表す。図23は、図11の入力装置1の断面構成の一変形例を表す。図24は、図15の入力装置2の断面構成の一変形例を表す。
 本変形例に係る入力装置1,2は、上記第1および第2の実施の形態の入力装置1,2およびその変形例において、磁性導電層14よりも接触面10Aから離れた位置に磁石層19をさらに備えた構成となっている。磁石層19は、磁性導電層14の裏面側に配置されている。磁石層19は、浮き上がった磁性導電層14に対して及んでいたペン30の磁力が、ペン30が接触面10Aから遠く離れるなどにより弱まった場合に磁性導電層14を速やかに元の位置に戻す磁力を発する。磁石層19は、例えば、シート状の磁石で構成されている。磁石層19は、複数の磁石が2次元配置された構成となっていてもよい。
 本変形例では、磁性導電層14の裏面側に磁石層19が設けられているので、磁性導電層14が元の位置に戻る際の応答速度を速くすることができる。
<6.第3の実施の形態>
[構成]
 図25は、本技術の第3の実施の形態の入力装置3の断面構成の一例を表す。本実施の形態では、入力装置3は、入力装置1,2と同様に、先端から磁界を発生させるペン30を利用して情報入力を行う装置である。入力装置3は、接触面10Aを有するセンサパネル50と、センサパネル50を駆動すると共にセンサパネル50の出力に基づいて座標データを生成する駆動部20と、ペン30とを備えている。以下では、上記実施の形態の入力装置1,2の構成と共通する構成についての記述を適宜、省略するものとする。入力装置3は、本技術の「入力装置」の一具体例に相当する。センサパネル50は、本技術の「センサパネル」、「センサ部」の一具体例に相当する。
(センサパネル50)
 センサパネル50は、ペン30の先端から発せられる磁界(磁力線)を静電容量変化で検出する。具体的には、センサパネル50は、接触面10Aもしくはその近傍の磁力を静電容量変化で検出する。センサパネル50は、さらに、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能となっている。センサパネル50は、例えば、電極基板11と、電極基板11の上面側に配置された磁性導電層14、剛体層51および保護層13と、電極基板11の下面側に配置された導電層52とを有している。磁性導電層14が、接触面10Aと電極基板11との間隙に配置され、電極基板11よりも接触面10Aに近い位置に配置されている。導電層52が、電極基板11よりも接触面10Aから離れた位置に配置されている。つまり、電極基板11が、導電性を有する2つの層(磁性導電層14および導電層52)によって上下方向から挟み込まれている。磁性導電層14が、本技術の「磁性層」の一具体例に相当する。剛体層51が、本技術の「剛体層」の一具体例に相当する。
 剛体層51は、接触面10Aと磁性導電層14との間に配置されている。剛体層51は、例えば、保護層13と磁性導電層14との間に配置されており、例えば、少なくとも保護層13の下面に接して配置されている。剛体層51は、ペン30や指100による押圧によって屈曲し難い材料で構成されており、例えば、樹脂基板やガラス基板などによって構成されている。つまり、剛体層51が保護層13の局所的な湾曲を妨げている。
 磁性導電層14および導電層52は、センサパネル10と外部との間で形成される静電容量の変化がセンサパネル50の内部に影響しないようするシールド層としての機能を有している。磁性導電層14および導電層52は、固定電位となっており、例えば、グラウンド電位となっている。導電層52は、例えば、フィルム上にアルミなどの金属薄膜、カーボン、CNT、ITO、IZO、ナノメタルワイヤ、銀細線などを製膜したもの、または湾曲し得る非磁性の金属プレートやITOガラスなどによって構成されている。
 センサパネル50は、さらに、例えば、電極基板11と磁性導電層14との間に空隙53Aを有しており、この空隙53Aを維持する複数のスペーサ53を有している。センサパネル50は、さらに、例えば、磁性導電層14と剛体層51との間に空隙54Aを有しており、この空隙54Aを維持する複数のスペーサ54を有している。複数のスペーサ54は、各スペーサ53の真上に1つずつ配置されている。スペーサ53は、例えば、電極基板11上にスクリーン印刷した樹脂層をUV硬化あるいは熱硬化することにより形成されたものである。スペーサ54は、例えば、剛体層51上にスクリーン印刷した樹脂層をUV硬化あるいは熱硬化することにより形成されたものである。
 空隙53Aは、磁性導電層14が厚さ方向に浮き上がりやすくする空間である。空隙54Aは、磁性導電層14が厚さ方向に浮き上がったときの磁性導電層14の可動域を確保する空間である。スペーサ53,54は、空隙53A,54Aを維持するだけでなく、磁性導電層14を部分的に抑えつけ、磁性導電層14が磁場によらず浮き上がるのを抑制している。センサパネル50は、さらに、例えば、電極基板11等を収容する筐体16を有している。
 図26は、ペン30の先端が接触面10Aに近接もしくは接触したときの入力装置3の作用の一例を表す。磁性導電層14は、例えば、図26に示したように、ペン30の先端から発せられる磁界H(磁力線)によって接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11と磁性導電層14との距離が長くなり、センサパネル50の静電容量が局所的に増加する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きく、ペン30の先端部分の直下から離れるにつれて小さくなる。
(駆動部20)
 駆動部20は、上述したように、センサパネル50を駆動すると共にセンサパネル50の出力に基づいて座標データを生成する。駆動部20は、上記実施の形態と同様に、例えば、検出回路21と、演算部22と、記憶部23と、出力部24とを有している。
[動作] 
 次に、入力装置3の動作について説明する。ユーザがペン30の先端を接触面10Aに近接させるか、または接触させる。すると、ペン30の先端から生じる磁力によって、磁性導電層14が接触面10A側に局所的に浮き上がる。その結果、ペン30の先端部分の下方において、電極基板11と磁性導電層14との距離が長くなり、センサパネル50の静電容量が局所的に増加する。ペン30の先端から生じる磁力によって磁性導電層14が浮き上がる量は、ペン30の先端部分の直下において最も大きくなり、ペン30の先端部分の直下から離れるにつれて小さくなる。
 このとき、センサパネル50の静電容量の局所的な変化が、検出回路21によって検出される。その結果、例えば、静電容量の変化量の大きさに応じた電圧変化が、座標情報と共に検出回路21から演算部22に出力される。演算部22において、検出回路21から出力された電圧の変化が評価されることにより、接触面10Aにおけるペン30の接触の有無が判定され、さらに、接触面10Aにおけるペン30の先端部分の座標が判定される。このようにして、ペン30の先端の位置情報が、入力装置3に入力される。
[効果] 
 次に、入力装置3の効果について説明する。本実施の形態では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置3に入力される。従って、本実施の形態では、上記実施の形態の入力装置1と同様の効果を得ることができる。
 また、本実施の形態では、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されており、さらに、接触面10Aの局所的な湾曲が剛体層51によって抑制されている。これにより、接触面10Aの局所的な湾曲による静電容量の変化が小さくなるので、ペン30による位置情報の入力と、指による位置情報の入力とを、容易に区別することができる。従って、例えば、ユーザが、接触面10Aに指や手のひらを載せた状態でペン30を操作した場合に、指や手のひらが誤検出されるのを大きく防止することができる。
 また、本実施の形態では、磁性導電層14が電極基板11よりも接触面10Aに近い位置に配置されている。ここで、接触面10Aと、磁性導電層14との距離は、接触面10Aと導電層52との距離よりも短くなっている。このように、本実施の形態では、磁性金属で構成された層が、接触面10Aにより近い場所に配置されている。従って、磁性金属で構成された層に対して、ペン30の磁力を及ぼすことが容易となるので、例えば、ペン30の磁石32を小型化したり、ペン30が検出面10Aから比較的離れている場所にあるときでもペン30の位置情報の入力を可能にしたりすることができる。
<7.第4の実施の形態>
[構成]
 図27は、本技術の第4の実施の形態の入力装置4の断面構成の一例を表す。図28は、ペン30の先端および指100の先端が接触面10Aに接触したときの入力装置4の作用の一例を表す。入力装置4は、上記実施の形態の入力装置3において、センサパネル50の代わりにセンサパネル60を設けたものに相当する。そこで、以下では、センサパネル60について主に詳述し、上記実施の形態の入力装置3の構成と共通する構成についての記述を適宜、省略するものとする。入力装置4は、本技術の「入力装置」の一具体例に相当する。センサパネル60は、本技術の「センサパネル」の一具体例に相当する。
 センサパネル60は、上記実施の形態の入力装置3で用いられたセンサパネル50において、空隙53Aおよび各スペーサ53を省略し、電極基板11と磁性導電層14とを互いに積層したものに相当する。つまり、各上側電極11D、各下側電極11Bおよび磁性導電層14は、絶縁層11C,11Eを介して積層されている。絶縁層11C,11Eは、本技術の「絶縁層」の一具体例に相当する。本実施の形態では、電極基板11は可撓性を有しており、磁性導電層14の変形に応じて変形する。従って、本実施の形態では、磁性導電層14は、例えば、図28に示したように、ペン30から磁力を受けたときに電極基板11と共に浮き上がる。磁性導電層14は、電極基板11に固定されており、例えば接着剤などを介して電極基板11に固定されている。なお、導電層52は、電極基板11に接しているだけで、電極基板11に固定されていない。そのため、磁性導電層14がペン30から磁力を受けて変位したときに、導電層52と磁性導電層14との間に空隙が局所的に発生する。
 センサパネル60において、空隙54Aは、保護膜13および導電層12が下方に撓んだときの保護膜13および導電層12の可動域を確保する空間であると同時に、電極基板11が上方に浮き上がったときの電極基板11の可動域を確保する空間でもある。従って、本実施の形態では、空隙17Aの高さが、上記実施の形態のときの空隙17Aの高さと比べて、高くなっていてもよい。本実施の形態では、スペーサ17は、空隙17Aを維持するだけでなく、保護膜13および導電層12の下方への撓みが局所的となるよう、保護膜13および導電層12の撓みの広がりを規制している。スペーサ17は、さらに、電極基板11を介して、磁性導電層14を部分的に抑えつけ、磁性導電層14が磁場によらず浮き上がるのを抑制している。
[効果] 
 次に、入力装置4の効果について説明する。本実施の形態では、上記実施の形態の入力装置1と同様、接触面10Aもしくはその近傍の磁力が静電容量変化で検出されることにより、ペン30の先端の位置情報が入力装置4に入力される。従って、本実施の形態では、上記実施の形態の入力装置1と同様の効果を得ることができる。
 また、本実施の形態では、上記実施の形態の入力装置3と同様、ペン30の先端の位置情報を入力する際に、磁力による静電容量変化が利用されており、さらに、接触面10Aの局所的な湾曲が剛体層51によって抑制されている。従って、本実施の形態では、上記実施の形態の入力装置3と同様の効果を得ることができる。
<8.第1~第4の実施の形態に共通する変形例>
 次に、第1~第4の実施の形態に共通する変形例について説明する。
[変形例G]
 第1~第4の実施の形態およびそれらの変形例では、ペン30は、先端に磁石32を有していた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図29に示したように、ペン30が、先端にコイル33を有し、このコイル33に直流電流を供給する電池34を有していてもよい。このようにした場合には、コイル33に直流電流が供給されることにより、コイル33が電磁石となり、電磁石により生じる磁力がセンサパネル10,40,50,60で検出されることにより、ペン30の先端の位置情報を入力装置1,2,3,4に入力することができる。
 第1~第4の実施の形態およびそれらの変形例では、ペン30は、先端に磁石32を有していた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図30に示したように、ペン30が、先端にコイル33を有し、センサパネル10,40,50,60がコイル33を電磁誘導するコイル133を有していてもよい。このようにした場合には、コイル33が電磁誘導により電磁石となり、電磁石により生じる磁力がセンサパネル10,40,50,60で検出されることにより、ペン30の先端の位置情報を入力装置1,2,3,4に入力することができる。
[変形例H]
 第1~第4の実施の形態およびそれらの変形例では、ペン30は、先端だけに磁石32を有していた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図31に示したように、ペン30が、先端だけでなく、後端にも磁石32を有していてもよい。このとき、後端に設けられた磁石32の磁極の向きが、先端に設けられた磁石32の磁極の向きと同じになっている。つまり、後端に設けられた磁石32におけるペン30の後端側の磁極が、先端に設けられた磁石32におけるペン30の先端側の磁極と反対となっている。従って、例えば、ペン30の先端を使って磁性導電層14を浮上させた後に、磁性導電層14のうち浮上している箇所を、ペン30の後端を使って強制的に元の位置に戻すことができる。
 第1~第4の実施の形態およびそれらの変形例では、ペン30は、先端に固定された磁石32を有していた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図32に示したように、磁石32が、回転可能にペン30の先端に支持されていてもよい。このようにした場合には、例えば、ペン30を使って磁性導電層14を浮上させた後に、磁石32を回転させて、磁石32の磁極の向きを上下反転させた上で、再度、ペン30を使うことにより、磁性導電層14のうち浮上している箇所を強制的に元の位置に戻すことができる。
 なお、第1~第4の実施の形態およびそれらの変形例において、磁石32から発せられる磁界(磁力線)をシールドする部材(例えば軟磁性体からなる部材)を磁石32の周囲に設けてもよい。例えば、軟磁性体からなるキャップをペン30の先端に取り付けたり、ペン30をノック式とし、ペン30の先端筐体部分を軟磁性体で構成したりしてもよい。
[変形例I]
 第1~第4の実施の形態およびそれらの変形例では、磁性導電層14が、導電性の磁性金属で構成されたシート状部材となっている場合が例示されていた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図33に示したように、磁性導電層14が、導電層14Aの表面に磁性層14Bを設けた積層体となっていてもよい。磁性層14Bは、例えば、酸化鉄(III)、クロム酸化鉄、コバルト酸化鉄、または、フェライト酸化鉄などにより構成されている。
[変形例J]
 第1~第4の実施の形態およびそれらの変形例において、例えば、図34に示したように、磁性導電層14の代わりに、磁性層14Bが用いられていてもよい。このとき、磁性層14Bがフローティング電位となっていてもよい。磁性層14Bがフローティング電位となった場合であっても、接触面10Aもしくはその近傍の磁力を静電容量変化で検出することが可能である。
[変形例K]
 第1~第4の実施の形態およびそれらの変形例において、磁性導電層14が、磁化された磁性体で構成されているか、または軟磁性体で構成されていてもよい。このようにした場合には、磁性導電層14が徐々に磁化されるなどして、磁性導電層14の特性が径時的に変化するのを防止することができる。
 磁性導電層14が、磁化された磁性体で構成されている場合、磁性導電層14は、例えば、図35A、図35Bまたは図35Cに示した磁化パターンとなっている。図35Aでは、磁性導電層14の一方の面だけが、N極とS極を交互に着磁した磁化パターンとなっている。図35Bでは、磁性導電層14の両面が、N極とS極を交互に着磁した磁化パターンとなっている。なお、図35Bでは、磁性導電層14の一方の面の磁化パターンは、磁性導電層14の他方の面の磁化パターンにおいてN極およびS極を反転させたパターンとなっている。図35Cでは、磁性導電層14の一方の面が、全面にN極を着磁した磁化パターンとなっており、磁性導電層14の他方の面が、全面にS極を着磁した磁化パターンとなっている。なお、図31または図32に示したペン30を用いる際には、磁性導電層14が図35Cの磁化パターンとなっていることが好ましい。磁化パターンを意識してペン30を使用しなくて済むからである。
[変形例L]
 第1~第4の実施の形態およびそれらの変形例において、磁性導電層14または磁性層14Bが、磁性金属で構成されたシート状部材となっている場合が例示されていた。しかし、第1~第4の実施の形態およびそれらの変形例において、例えば、図36に示したように、磁性導電層14全体または磁性層14B全体が、多数の細かな開口の形成されたメッシュ状となっていてもよい。なお、図36には、複数のスペーサ15,16,53または54が行列状に配置されている様子が例示されている。また、図36では、4つのスペーサ15,16,53または54で囲まれた領域に対して、単位センサ領域14aという名称が付与されている。図36には、スペーサ15,16,53または54の位置や、単位センサ領域14aの位置によらず、磁性導電層14全体または磁性層14B全体がメッシュ状となっている様子が例示されている。
 また、第1~第4の実施の形態およびそれらの変形例において、例えば、図37に示したように、磁性導電層14または磁性層14Bが、単位センサ領域14aの中央部分と、スペーサ15,16,53または54の位置とを除いた領域に開口14bを有するシート状部材となっていてもよい。また、第1~第4の実施の形態およびそれらの変形例において、例えば、図38に示したように、磁性導電層14または磁性層14Bが、スペーサ15,16,53または54の位置に開口14bを有するシート状部材となっていてもよい。また、第1~第4の実施の形態およびそれらの変形例において、例えば、図39に示したように、磁性導電層14または磁性層14Bが、スペーサ15,16,53または54の位置以外の領域にメッシュを有するシート状部材となっていてもよい。また、第1~第4の実施の形態およびそれらの変形例において、例えば、図40に示したように、磁性導電層14または磁性層14Bが、単位センサ領域14aの中央部分以外の領域にメッシュを有するシート状部材となっていてもよい。
 本変形例では、磁性導電層14または磁性層14Bが、全体または一部の領域に複数の開口を有している。そのため、磁性導電層14全体または磁性層14B全体が、開口等の無いシート状部材となっている場合と比べて、磁性導電層14または磁性層14Bが軽量化されており、磁力を受けたときに浮き上がり易くなっている。そのため、情報入力における応答速度をより一層、速くすることができる。
<9.第5の実施の形態>
 [構成]
 図41は、本技術の第5の実施の形態の表示装置5の断面構成の一例を表す。本実施の形態では、表示装置5は、第1~第4の実施の形態およびそれらの変形例のセンサパネル10,40,50または60(以下、単に「センサパネルX」と称する。)と、センサパネルXの上面に接して設けられた表示パネル70と、センサパネルXおよび表示パネル70を駆動する駆動部80とを備えている。センサパネルXは、接触面70Aもしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能となっている。表示装置5は、本技術の「表示装置」の一具体例に相当する。センサパネルXは、本技術の「センサ部」の一具体例に相当する。駆動部80は、本技術の「第1駆動部」、「第2駆動部」の一具体例に相当する。なお、以下では、上記段落において既に言及した内容と重複する内容については適宜、省略するものとする。
(表示パネル70)
 表示パネル70は、磁界および電界の変化に応じて表示を変えるものである。図42は、表示パネル70の断面構成の一例を表す。表示パネル70は、可撓性を有している。表示パネル70は、例えば、下側基板71、下側電極72、表示層73、上側電極74および上側基板75を有している。下側基板71および上側基板75は、下側電極72、表示層73および上側電極74を支持するものであり、離間して互いに対向配置されている。表示層73は、磁界および電界の変化に応じて表示を変えるものであり、下側基板71および上側基板75の間隙に配置されている。上側電極74および下側電極72は、表示層73に電界を印加するものであり、表示層73を間にして互いに対向するように配置されている。下側電極72は、下側基板71寄りに配置されており、上側電極74は、上側基板75寄りに配置されている。
 下側基板71および上側電極75は、例えば、プラスチック材料で構成されている。プラスチック材料としては、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、またはポリエーテルスルホン(PES)が挙げられる。
 下側電極72は、例えば、アルミニウム(Al)、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、タングステン(W)あるいは銀(Ag)などの金属元素の単体からなる。下側電極72は、例えば、上で例示した金属元素の単体のうち少なくとも1つを含む合金(例えばステンレス鋼(SUS))からなっていてもよい。下側電極72は、例えば、光透過性の導電材料(透明電極材料)により構成されていてもよい。透明電極材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化インジウム-酸化亜鉛(IZO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、またはアルミニウムドープ酸化亜鉛(AZO)が挙げられる。下側電極72は、例えば、光透過性を有しており、例えば、ナノメタルワイヤ、カーボンナノチューブ(CNT)、またはメタル細線により構成されていてもよい。上側電極74は、例えば、下側電極72の材料として例示された上記の材料からなっている。
 下側基板71および上側基板75のうち、少なくとも上側基板75が、光透過性を有している。さらに、下側電極72および上側電極74のうち、少なくとも上側電極74が、光透過性を有している。下側電極72および下側基板71のうち、少なくとも下側電極72が光吸収性を有していてもよい。この場合には、高いコントラストが得られる。また、下側電極72および下側基板71のうち、少なくとも下側電極72が、光反射性の材料で構成されていてもよい。この場合には、高い輝度が得られる。
 図43および図44は、下側電極72および上側電極74の斜視構成の一例を表す。下側電極72が、例えば、図43に示したように、第1方向(図中ではX方向)に延在する複数の部分電極72Aを含んで構成されていてもよい。さらに、上側電極74が、例えば、図43に示したように、第1方向と交差(例えば直交)する第2方向(図中ではY方向)に延在する複数の部分電極74Aを含んで構成されていてもよい。この場合、駆動部20は、例えば、下側電極72および上側電極74を単純マトリクス駆動することにより、表示層73の表示の全体または一部を変化させる。このとき、表示層73のうち、部分電極72Aと部分電極74Aとが互いに対向する部分が、単純マトリクス駆動時の画素となる。単純マトリクス駆動時の画素は、後述の表示画素73Aと一致していてもよいし、複数の表示画素73Aごとに対応していてもよい。
 下側電極72が、例えば、図44に示したように、面内に2次元配置された複数の部分電極72Bを含んで構成されていてもよい。さらに、上側電極74が、例えば、図44に示したように、表示パネル70の上面である接触面70Aと対向する領域全体に広がるシート状電極となっていてもよい。この場合、駆動部20は、例えば、複数の部分電極72Bをアクティブマトリクス駆動することにより、表示層73の表示の全体または一部を変化させる。このとき、表示層73のうち、部分電極72Bと対向する部分が、アクティブマトリクス駆動時の画素となる。アクティブマトリクス駆動時の1つの画素が、後述の1つの表示画素73Aに割り当てられていてもよいし、複数の表示画素73Aに割り当てられていてもよい。また、アクティブマトリクス駆動時の複数の画素が、1つの表示画素73Aに割り当てられていてもよい。
 なお、下側電極72および上側電極74が、接触面70Aと対向する領域全体に広がるシート状電極となっていてもよい。この場合、駆動部20は、例えば、下側電極72および上側電極74に対して電圧を印加することにより、表示層73の表示の全体を一度に変化させる。
 図45は、表示層73の最小単位である表示画素73Aの断面構成の一例を表すものである。表示層73は、接触面70Aと対向する領域に2次元配置された複数の表示画素73Aを有している。表示画素73Aは、分散媒73cと、分散媒73c中に設けられた複数の第1要素73aおよび複数の第2要素73bとを有している。表示画素73Aは、さらに、分散媒73cと、複数の第1要素73aおよび複数の第2要素73bとを封入するマイクロカプセル73dを有している。
 第1要素73aは、磁性体である。磁性体は、例えば、四酸化三鉄、三酸化二鉄、または、各種フェライトである。磁性体は、例えば、鉄、マンガン、ニッケル、コバルト、クロム等の金属であってもよいし、コバルト、ニッケル、マンガン等を含む合金であってもよい。第1要素73aは、上で例示した材料で構成されている場合、暗表示向けの色(具体的には、黒色またはそれに近い色合い)の粒子となっている。第1要素73aは、磁性体の性質を持つ粒子(すなわち磁性粒子)である。磁性粒子の粒径は、例えば、0.1μm~20μmとなっている。第1要素73aは、例えば、磁性体(すなわち磁性粒子)を含むものであってもよい。第1要素73aは、例えば、磁性粒子を樹脂に混ぜ合わせたものであってもよい。
 第2要素73bは、非磁性体である。非磁性体は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物である。非磁性体は、例えば、硫酸バリウムまたは炭酸カルシウムなどの無機塩であってもよいし、ポリビニルナフタレンなどの有機化合物であってもよい。第2要素73bは、上で例示した材料で構成されている場合、明表示向けの色(具体的には、白色またはそれに近い色合い)の粒子となっている。第2要素73bは、非磁性体の性質を持つ粒子(すなわち非磁性粒子)である。非磁性粒子の粒径は、例えば、0.1μm~1μmとなっている。第2要素73bは、例えば、非磁性体(すなわち非磁性粒子)を含むものであってもよい。第2要素73bは、例えば、非磁性粒子を樹脂に混ぜ合わせたものであってもよい。
 第1要素73aおよび第2要素73bの少なくとも一方が帯電している。具体的には、上記磁性粒子および上記非磁性粒子の少なくとも一方が電気的に修飾されている。以下に、電気的に修飾された磁性粒子の製造方法の一例について説明する。なお、電気的に修飾された非磁性粒子についても、下記と同様の方法で製造可能である。
 水酸化ナトリウム42.624gとケイ酸ナトリウム0.369gとを水43gに溶解させて溶液Aを得た。次に、溶液Aを攪拌しながら黒色磁性粒子(四酸化三鉄)5gを溶液Aに加えて攪拌(15分間)を行った後、超音波攪拌(30℃~35℃で15分間)を行った。次に、溶液Aを加熱(90℃)した後、0.22mol/cm3の硫酸15cm3(=ml)と、ケイ酸ナトリウム6.5mgおよび水酸化ナトリウム1.3mgが溶解された水溶液7.5cm3とを溶液Aに2時間かけて滴下した。次に、溶液Aを冷却(室温)した後、溶液Aに1mol/cm3の硫酸1.8cm3を加えた。次に、溶液Aに対して遠心分離(3700rpmで30分間)を行った後、デカンテーションを行った。次に、溶液Aをエタノールに再分散してから、遠心分離(3500rpmで30分間)とデカンテーションと交互に2回ずつ行った。次に、溶液Aにエタノール5cm3と水0.5cm3との混合液を加えて超音波攪拌(1時間)して、シラン被覆黒色磁性粒子の分散溶液を得た。
 次に、水3cm3と、エタノール30cm3と、N-[3-(トリメトキシシリル)プロピル]-N’-(4-ビニルベンジル)エチレンジアミン塩酸塩(40%メタノール溶液)4gとを混合して攪拌(7分間)した後、その混合溶液に上記の分散溶液を全量投入した。次に、混合溶液を攪拌(10分間)した後、遠心分離(3500rpmで30分間)を行った。次に、デカンテーションを行った後、混合溶液をエタノールに再分散してから遠心分離(3500rpmで30分間)を行う洗浄作業を2回繰り返した。次に、デカンテーションを行ったのち、減圧環境(室温)中で乾燥(6時間)した後、さらに減圧環境(70℃)中で乾燥(2時間)して固形物を得た。
 次に、上記固形物にトルエン50cm3を加えて溶液Bとしたのち、溶液Bをロールミルで攪拌(12時間)した。次に、溶液Bを3つ口フラスコに移し、アクリル酸2-エチルヘキシル1.7gを投入した後、窒素気流下で攪拌(20分間)を行った。次に、溶液Bを攪拌(50℃で20分間)し、AIBN0.01gがトルエン3cm3に溶解された溶液Cを溶液Bに加えた後、加熱(65℃)した。次に、溶液Bを攪拌(1時間)した後、冷却(室温)してから酢酸エチルと一緒にボトルに流し込み、遠心分離(3500rpmで30分間)を行った。続いて、デカンテーションを行った後、ボトルの中身を酢酸エチルに再分散させてから遠心分離(3500rpmで30分間)を行う洗浄作業を3回繰り返した。続いて、減圧環境(室温)中で乾燥(12時間)した後、さらに減圧環境(70℃)中で乾燥(2時間)した。これにより、黒色磁性粒子からなる黒色の電気泳動粒子が得られた。
 マイクロカプセル73dは、例えば、アラビアガム・ゼラチンの複合膜、ウレタン樹脂、またはウレア樹脂等からなる。分散媒73cは、例えば水、アルコール類、エステル類、ケトン類、脂肪族直鎖炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素、またはカルボン酸塩等からなる。分散媒73cには、界面活性剤が添加されていてもよい。
(駆動部80)
 駆動部80は、上記実施の形態の駆動部20を含んでおり、具体的には、センサパネルXを駆動すると共に、センサパネルXの出力に基づいて座標データを生成する。駆動部80は、さらに、表示パネル70を駆動する。駆動部80は、表示パネル70に対して電界を印加することにより、表示パネル70の表示を変化させる。具体的には、駆動部80は、表示層73に対して電界を印加することにより、表示パネル70の表示を消去する。
[作用]
 図46は、磁界Hが入力されたときの表示層73の作用の一例を表すものである。上述したように、第1要素73aが磁性体であり、第2要素73bが非磁性体である。そのため、ペン30から入力された磁界Hに起因して、第1要素73aに対して、下側電極72から上側電極74に向かう磁力が働く。その結果、第1要素73aが上側電極74側(または上側基板75側)に変位し、上側電極74に接触ないしは近接する。その一方で、ペン30から入力された磁界Hによって第2要素73bは特段、変位しないが、第1要素73aの、上側電極74近傍への密集に起因して、第2要素73bが下側電極72(または下側基板71側)方向に押し出される。つまり、表示層73は、ペン30が接触面70Aに接触すると、ペン30の接触部分において、暗表示(例えば黒表示)となる。
 図47A、図47B、図47C、図47D、図47E、図48A、図48B、図48C、図48D、図48E、図49A、図49B、図49C、図49D、図49E、は、電界Eが入力されたときの表示層73の作用の一例を表すものである。図47A~図47Eは、第1要素73aが正帯電となっており、第2要素73bが負帯電となっているときの表示層73の作用の一例を表すものである。図48A~図48Eは、第1要素73aが正帯電となっており、第2要素73bが帯電していないときの表示層73の作用の一例を表すものである。図49A~図49Eは、第1要素73aが帯電しておらず、第2要素73bが負帯電となっているときの表示層73の作用の一例を表すものである。
 第1要素73aが正帯電となっており、第2要素73bが負帯電となっている場合には、駆動部20は、上側電極74および下側電極72に対して、上側電極74の電位が下側電極72よりも高い電位となる電圧を印加する。駆動部20は、例えば、図47A、図47C、図47Dに示したように、上側電極74に正電圧を印加すると共に下側電極72に負電圧、グラウンド電圧(ゼロボルト)もしくは上側電極74よりも相対的に小さい値の正電圧を印加する。また、駆動部20は、例えば、図47Bに示したように、上側電極74にグラウンド電圧(ゼロボルト)を印加すると共に下側電極72に負電圧を印加する。また、駆動部20は、例えば、図47Eに示したように、上側電極74に負電圧を印加すると共に下側電極72に上側電極74よりも大きい値の負電圧を印加する。これにより、表示層73内には、上側電極74から下側電極72に向かう電界Eが発生する。従って、下側電極72および上側電極74から入力された電界Eに起因して、第1要素73aに対して、上側電極74から下側電極72に向かうクーロン力が働き、第2要素73bに対して、下側電極72から上側電極74に向かうクーロン力が働く。その結果、第1要素73aが下側電極72側(または下側基板71側)に変位し、下側電極72に接触ないしは近接すると共に、第2要素73bが上側電極74側(または上側基板75側)に変位し、上側電極74に接触ないしは近接する。つまり、表示層73は、上側電極74および下側電極72に対して上述の電圧が印加されると、マトリクス駆動時の画素単位で明表示(例えば白表示)となる。
 また、第1要素73aが正帯電となっており、第2要素73bが帯電していない場合にも、駆動部20は、上側電極74および下側電極72に対して、上側電極74の電位が下側電極72よりも高い電位となる電圧を印加する。駆動部20は、例えば、図48A、図48C、図48Dに示したように、上側電極74に正電圧を印加すると共に下側電極72に負電圧、グラウンド電圧(ゼロボルト)もしくは上側電極74よりも相対的に小さい値の正電圧を印加する。また、駆動部20は、例えば、図48Bに示したように、上側電極74にグラウンド電圧(ゼロボルト)を印加すると共に下側電極72に負電圧を印加する。また、駆動部20は、例えば、図48Eに示したように、上側電極74に負電圧を印加すると共に下側電極72に上側電極74よりも大きい値の負電圧を印加する。これにより、表示層73内には、上側電極74から下側電極72に向かう電界Eが発生する。従って、下側電極72および上側電極74から入力された電界Eに起因して、第1要素73aに対して、上側電極74から下側電極72に向かうクーロン力が働く。その一方で、上側電極74および下側電極72から入力された電界Eによって第2要素73bは特段、変位しないが、第1要素73aの、下側電極72近傍への密集に起因して、第2要素73bが上側電極74方向に押し出される。つまり、表示層13は、上側電極74および下側電極72に対して上述の電圧が印加されると、マトリクス駆動時の画素単位で明表示(例えば白表示)となる。
 また、第1要素73aが帯電しておらず、第2要素73bが負帯電となっている場合にも、駆動部20は、上側電極74および下側電極72に対して、上側電極74の電位が下側電極72よりも高い電位となる電圧を印加する。駆動部20は、例えば、図49A、図49C、図49Dに示したように、上側電極74に正電圧を印加すると共に下側電極72に負電圧、グラウンド電圧(ゼロボルト)もしくは上側電極74よりも小さい値の正電圧を印加する。また、駆動部20は、例えば、図49Bに示したように、上側電極74にグラウンド電圧(ゼロボルト)を印加すると共に下側電極72に負電圧を印加する。また、駆動部20は、例えば、図49Eに示したように、上側電極74に負電圧を印加すると共に下側電極72に上側電極74よりも大きい値の負電圧を印加する。これにより、表示層73内には、上側電極74から下側電極72に向かう電界Eが発生する。従って、下側電極72および上側電極74から入力された電界Eに起因して、第2要素73bに対して、下側電極72から上側電極74に向かうクーロン力が働く。その一方で、上側電極74および下側電極72から入力された電界Eによって第1要素73aは特段、変位しないが、第2要素73bの、上側電極74近傍への密集に起因して、第1要素73aが下側電極72方向に押し出される。つまり、表示層73は、上側電極74および下側電極72に対して上述の電圧が印加されると、マトリクス駆動時の画素単位で明表示(例えば白表示)となる。
 以上をまとめると、表示層73は、ペン30から入力される磁界Hに起因して第1要素73aが変位することにより、マイクロカプセル73d単位(表示画素73A単位)で表示を変化させる(描画する)ことができる。さらに、表示層73は、下側電極72および上側電極74から入力される電界Eに起因して第1要素73aおよび第2要素73bのうち、帯電している要素が変位することにより、接触面70A全体またはマトリクス駆動時の画素単位で表示を変化させることができる。
[効果] 
 次に、表示装置5の効果について説明する。表示装置5では、上側電極74および下側電極72から入力される電界Eに起因して、表示層73の表示が変化する。そのため、表示層73の表示を消去する際には、上側電極74および下側電極72から入力される電界Eを利用することができる。例えば、電界Eを表示層73全体に入力することにより、接触面70A全面を一度に消去することができる。しかも、接触面70Aの消去を、電界Eを利用して行うので、磁界を利用した消去の場合よりも、消去残しを生じ難くすることができる。
 また、表示装置5では、ペン30から入力される磁界Hに起因して、表示層73の表示が変化する。そのため、接触面70Aへ描画する際には、ペン30から入力される磁界Hを利用することができる。ここで、ペン30から磁界Hを入力した場合、接触面70Aへの描画の高速応答を実現することができる。このように、表示装置5において、描画時には磁界Hを利用し、消去時には電界Eを利用した場合には、高速描画と一括消去を兼ね備え、しかも消去残しの生じ難い表示装置を実現することができる。
 また、表示装置5において、上側電極74および下側電極72の少なくとも一方が複数の部分電極(12A,14A)で構成されている場合、表示層73のうち、上側電極74と下側電極72とが互いに対向する部分が、マトリクス駆動時の画素となる。そのため、マトリクス駆動時の所定の画素において、上側電極74および下側電極72の電位差を、上記閾値の電位差よりも大きくした場合には、接触面70A内の所定の領域だけを消去することができる。また、マトリクス駆動時の全ての画素において、上側電極74および下側電極72の電位差を、上記閾値の電位差よりも大きくした場合には、接触面70A全体を消去することができる。つまり、表示装置5において、上側電極74および下側電極72の少なくとも一方を複数の部分電極(12A,14A)で構成することにより、接触面70Aを部分的に消去したり、接触面70A全体を一度に消去したりすることができる。従って、この場合には、高速描画、一括消去および部分消去を兼ね備え、しかも消去残しの生じ難い表示装置を実現することができる。
 また、表示装置5では、センサパネルX側で、ペン30もしくは指100の座標データ、またはペン30の描画データが生成される。このとき、ペン30もしくは指100の座標データ、またはペン30の描画データの生成に際して、表示パネル70の存在が邪魔にならない。これは、センサパネルXが電気的にシールドされた状態で、例えば、電極基板11と、磁性導電層14および導電層12との間に形成される静電容量の変化を利用して、ペン30の先端や指100の先端の位置座標を検出しているからである。
 また、表示装置5では、上記描画データの生成と、表示パネル70への表示とは、互いに同期している。しかし、上記描画データの生成と、表示パネル70への表示とは、ともに、例えば、ペン30の先端や指100の先端の、接触面70Aへの接触をきっかけにして行われるので、センサパネルXと、表示パネル70との間でのデータの受け渡しが無い。そのため、上記同期のための回路を別途、設ける必要がないので、表示装置5の回路構成は、その分だけ簡素化されている。
<10.第6の実施の形態>
 [構成]
 図50は、本技術の第6の実施の形態に係る表示装置6の断面構成の一例を表すものである。表示装置6は、上記実施の形態の表示装置6において、表示パネル70の代わりに表示パネル90を設け、さらに、駆動部80の代わりに駆動部110を設けたものに相当する。そこで、以下では、表示パネル90および駆動部110について主に詳述し、上記段落において既に言及した内容と重複する内容については適宜、省略するものとする。
 図51は、表示パネル90の断面構成の一例を表す。表示パネル90は、上記実施の形態の表示パネル70において、表示層73の代わりに表示層93を設けたものに相当する。つまり、表示パネル90は、表示層93を有している。表示層93は、電界の変化に応じて表示を変える。表示層93は、上記実施の形態の表示層73において、表示画素73Aの代わりに表示画素93Aを設けたものに相当する。図52は、表示画素93Aの断面構成の一例を表す。表示画素93Aは、上記実施の形態の表示画素73Aにおいて、第1要素73aの代わりに第1要素93aを設け、第2要素73bの代わりに第2要素93bを設けたものに相当する。
 第1要素93aおよび第2要素93bは、非磁性体である。第1要素93aは、暗表示向けの色(具体的には、黒色またはそれに近い色合い)の粒子となっている。第1要素93aの粒径は、例えば、0.1μm~1μmとなっている。第2要素93bは、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物で構成されている。第2要素93bは、例えば、硫酸バリウムまたは炭酸カルシウムなどの無機塩で構成されていてもよいし、ポリビニルナフタレンなどの有機化合物で構成されていてもよい。第2要素93bは、上で例示した材料で構成されている場合、明表示向けの色(具体的には、白色またはそれに近い色合い)の粒子となっている。第2要素93bの粒径は、例えば、0.1μm~1μmとなっている。
 第1要素93aおよび第2要素93bの少なくとも一方が帯電している。例えば、第1要素93aおよび第2要素93bの少なくとも一方の表面が、改質されており、電気的に修飾されている。
 図53は、駆動部110の機能ブロックの一例を表す。駆動部110は、上記実施の形態の駆動部20を含んでおり、具体的には、センサパネルXを駆動すると共に、センサパネルXの出力に基づいて座標データを生成する。駆動部110は、さらに、表示パネル90を駆動する。駆動部110は、表示パネル90に対して電界を印加することにより、表示パネル90の表示を変化させる。具体的には、駆動部110は、表示層93に対して電界を印加することにより、表示パネル90の表示に対して、演算部22で生成された座標データもしくは描画データに基づく表示を追記する。
 駆動部110は、駆動部20に対応する回路(検出回路21、演算部22、記憶部23および出力部24)を有しており、さらに、入力部25よび表示駆動部26を有している。入力部25は、表示パネル90に表示するデータの入力を受け付ける。演算部22は、入力部25でデータを受け付けた場合には、受け付けたデータを記憶部23に格納する。表示駆動部26は、表示層93に対して電界を印加することにより、例えば、記憶部23に格納されたUI(ユーザインターフェース)関係のデータや、入力部25を介して格納されたデータを表示パネル90に表示する。
 演算部22は、センサパネルXの出力に基づいて、ペン30の描画データを生成した場合であって、かつ、表示パネル90において、何らかのデータに基づいた表示が行われているときには、表示パネル90で表示がなされているデータに対して、ペン30の描画データを追記する。演算部22は、さらに、追記により生成された新たなデータに基づく表示を表示駆動部26に指示するとともに、追記により生成された新たなデータを記憶部23に格納する。表示駆動部26は、演算部22からの指示に従って、追記により生成された新たなデータに基づく表示を行う。その結果、ペン30の描画データが、表示パネル90の表示にリアルタイムに追記される。
 演算部22は、センサパネルXの出力に基づいてペン30の座標を生成した場合に、ペン30の座標が接触面10Aから離れた中空を経時的に変化していることを検出したとする。この場合に、演算部22は、例えば、複数ページに分割されたデータにおける一部のページが表示パネル90に表示されているときには、表示駆動部26に対して、次ページに表示を切り換える指示を行う。表示駆動部26は、演算部22からの指示に従って、次ページの表示を行う。このように、ペン30を空中で動かすことで、ページめくりを行うことも可能である。
[効果] 
 次に、表示装置6の効果について説明する。表示装置6では、ペン30の描画データを、表示パネル90の表示にリアルタイムに追記することができ、さらに、追記により生成された新たなデータが記憶部23に格納される。これにより、ユーザは、表示パネル90に追記をすることができるだけでなく、追記したデータを記憶部23に保存することもできる。
<11.第6の実施の形態の変形例>
 図54は、表示装置6の断面構成の一変形例を表す。例えば、図54に示したように、表示パネル90の接触面90Aが、ペン30で情報を入力するペン入力領域90aと、指で情報を入力する指入力領域90bとに分割されていてもよい。このようにした場合には、例えば、ユーザが、ペン入力領域90aに指や手のひらを載せた状態でペン30を操作した場合に、指や手のひらが誤検出されるのを防止することができる。
 また、上記第6の実施の形態およびその変形例において、表示パネル90の代わりに、一般的なディスプレイを設けてもよい。一般的なディスプレイとは、例えば、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーディスプレイなどが挙げられる。そして、駆動部110が、表示パネル90の代わりに設けられた一般的なディスプレイを駆動することにより、一般的なディスプレイの表示に対して、演算部22で生成された座標データもしくは描画データに基づく表示を追記するようになっていてもよい。
 以上、実施の形態およびその変形例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本技術の効果は、本明細書中に記載された効果に限定されるものではない。本技術が、本明細書中に記載された効果以外の効果を持っていてもよい。
 例えば、上記各実施の形態およびそれらの変形例において、接触面10A,70A、80Aおよびその近傍の磁界を検出する1または複数の磁気センサが設けられていてもよい。
 また、例えば、本技術は以下のような構成を取ることができる。
(1)
 接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部を備えた
 センサパネル。
(2)
 前記センサ部は、
 前記接触面と対向する面内を延在する複数の第1電極と、
 前記接触面と対向する面内であって、かつ各前記第1電極と交差する方向に延在する複数の第2電極と、
 前記接触面と対向する面内に形成され、磁力の大きさに応じて厚さ方向に局所的に変位する磁性層と
 を有する
 (1)に記載のセンサパネル。
(3)
 前記センサ部は、導電層を含み、前記複数の第1電極および前記複数の第2電極と、前記導電層との間の静電容量変化を検出する
 (2)に記載のセンサパネル。
(4)
 前記センサ部は、
 前記接触面と対向する面内を延在し、磁力の大きさに応じて厚さ方向に局所的に変位する複数の第1磁性電極と、
 前記接触面と対向する面内であって、かつ各前記第1電極と交差する方向に延在し、磁力の大きさに応じて厚さ方向に局所的に変位する複数の第2磁性電極と
 を有する
 (1)に記載のセンサパネル。
(5)
 前記センサ部は、導電層を含み、前記磁性層および前記導電層を積層して一体化されたものである
 (2)に記載のセンサパネル。
(6)
 前記磁性層は、導電層を有している
 (2)に記載のセンサパネル。
(7)
 前記磁性層は、全体または一部の領域に複数の開口を有する
 (2)ないし(6)のいずれか1つに記載のセンサパネル。
(8)
 前記磁性層は、磁化された磁性体で構成されているか、または軟磁性体で構成されている
 (2)ないし(7)のいずれか1つに記載のセンサパネル。
(9)
 前記センサ部は、前記磁性層と、各前記第1電極および各前記第2電極との間に空隙を有する
 (2)、(7)および(8)のいずれか1つに記載のセンサパネル。
(10)
 前記センサ部は、前記空隙を維持するスペーサを有する
 (9)に記載のセンサパネル。
(11)
 前記磁性層、各前記第1電極および各前記第2電極は、絶縁層を介して積層されている
 (2)、(7)および(8)のいずれか1つに記載のセンサパネル。
(12)
 前記磁性層は、各前記第1電極および各前記第2電極よりも前記接触面から離れた位置に配置されている
 (2)、(7)、(8)、(9)、(10)および(11)のいずれか1つに記載のセンサパネル。
(13)
 前記センサ部は、前記接触面と各前記第1電極および各前記第2電極との間隙に、導電層を有する
 (12)に記載のセンサパネル。
(14)
 前記接触面は、可撓性を有し、
 前記導電層は、前記接触面の変形に応じて変形する
 (13)に記載のセンサパネル。
(15)
 前記磁性層は、導電性を有する
 (13)または(14)に記載のセンサパネル。
(16)
 前記センサ部は、前記導電層と各前記第1電極および各前記第2電極との間隙を維持するスペーサを有する
 (13)ないし(15)のいずれか1つに記載のセンサパネル。
(17)
 前記センサ部は、前記接触面と各前記第1電極および各前記第2電極との間隙に、剛体層を有する
 (12)または(13)に記載のセンサパネル。
(18)
 前記センサ部は、前記磁性層よりも前記接触面から離れた位置に磁石層を有する
 (12)ないし(16)のいずれか1つに記載のセンサパネル。
(19)
 前記磁性層は、各前記第1電極および各前記第2電極よりも前記接触面に近い位置に配置されている
 (2)、(7)、(8)、(9)、(10)および(11)のいずれか1つに記載のセンサパネル。
(20)
 前記磁性層は、導電性を有する
 (19)に記載のセンサパネル。
(21)
 前記センサ部は、前記接触面と前記磁性層との間隙に、剛体層を有する
 (19)または(20)に記載のセンサパネル。
(22)
 接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部と、
 前記センサ部を駆動すると共に、前記センサ部の出力に基づいて座標データを生成する駆動部と、
 先端から磁界を発生させるペンと
 を備えた
 入力装置。
(23)
 接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部と、
 磁界および電界のうち少なくとも電界の変化に応じて表示を変える表示部と、
 前記センサ部を駆動すると共に、前記センサ部の出力に基づいて座標データを生成する第1駆動部と、
 前記表示部に電界を印加することにより表示を変化させる第2駆動部と、
 先端から磁界を発生させるペンと
 を備えた
 表示装置。
(24)
 前記表示部は、磁界および電界の変化に応じて表示を変える表示層を有し、
 前記第2駆動部は、前記表示層に電界を印加することにより前記表示部の表示を消去する
 (23)に記載の表示装置。
(25)
 前記表示部は、電界の変化に応じて表示を変える表示層を有し、
 前記第2駆動部は、前記表示層に電界を印加することにより、前記表示部の表示に対して、前記第1駆動部で生成された前記座標データに基づく表示を追記する
 (23)に記載の表示装置。
 本出願は、日本国特許庁において2014年6月20日に出願された日本特許出願番号2014-127424号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (25)

  1.  接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部を備えた
     センサパネル。
  2.  前記センサ部は、
     前記接触面と対向する面内を延在する複数の第1電極と、
     前記接触面と対向する面内であって、かつ各前記第1電極と交差する方向に延在する複数の第2電極と、
     前記接触面と対向する面内に形成され、磁力の大きさに応じて厚さ方向に局所的に変位する磁性層と
     を有する
     請求項1に記載のセンサパネル。
  3.  前記センサ部は、導電層を含み、前記複数の第1電極および前記複数の第2電極と、前記導電層との間の静電容量変化を検出する
     請求項2に記載のセンサパネル。
  4.  前記センサ部は、
     前記接触面と対向する面内を延在し、磁力の大きさに応じて厚さ方向に局所的に変位する複数の第1磁性電極と、
     前記接触面と対向する面内であって、かつ各前記第1電極と交差する方向に延在し、磁力の大きさに応じて厚さ方向に局所的に変位する複数の第2磁性電極と
     を有する
     請求項1に記載のセンサパネル。
  5.  前記センサ部は、導電層を含み、前記磁性層および前記導電層を積層して一体化されたものである
     請求項2に記載のセンサパネル。
  6.  前記磁性層は、導電層を有している
     請求項2に記載のセンサパネル。
  7.  前記磁性層は、全体または一部の領域に複数の開口を有する
     請求項2に記載のセンサパネル。
  8.  前記磁性層は、磁化された磁性体で構成されているか、または軟磁性体で構成されている
     請求項2に記載のセンサパネル。
  9.  前記センサ部は、前記磁性層と、各前記第1電極および各前記第2電極との間に空隙を有する
     請求項2に記載のセンサパネル。
  10.  前記センサ部は、前記空隙を維持するスペーサを有する
     請求項9に記載のセンサパネル。
  11.  前記磁性層、各前記第1電極および各前記第2電極は、絶縁層を介して積層されている
     請求項2に記載のセンサパネル。
  12.  前記磁性層は、各前記第1電極および各前記第2電極よりも前記接触面から離れた位置に配置されている
     請求項2に記載のセンサパネル。
  13.  前記センサ部は、前記接触面と各前記第1電極および各前記第2電極との間隙に、導電層を有する
     請求項12に記載のセンサパネル。
  14.  前記接触面は、可撓性を有し、
     前記導電層は、前記接触面の変形に応じて変形する
     請求項13に記載のセンサパネル。
  15.  前記磁性層は、導電性を有する
     請求項13に記載のセンサパネル。
  16.  前記センサ部は、前記導電層と各前記第1電極および各前記第2電極との間隙を維持するスペーサを有する
     請求項13に記載のセンサパネル。
  17.  前記センサ部は、前記接触面と各前記第1電極および各前記第2電極との間隙に、剛体層を有する
     請求項12に記載のセンサパネル。
  18.  前記センサ部は、前記磁性層よりも前記接触面から離れた位置に磁石層を有する
     請求項12に記載のセンサパネル。
  19.  前記磁性層は、各前記第1電極および各前記第2電極よりも前記接触面に近い位置に配置されている
     請求項2に記載のセンサパネル。
  20.  前記磁性層は、導電性を有する
     請求項19に記載のセンサパネル。
  21.  前記センサ部は、前記接触面と前記磁性層との間隙に、剛体層を有する
     請求項19に記載のセンサパネル。
  22.  接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部と、
     前記センサ部を駆動すると共に、前記センサ部の出力に基づいて座標データを生成する駆動部と、
     先端から磁界を発生させるペンと
     を備えた
     入力装置。
  23.  接触面もしくはその近傍の磁力を静電容量変化で検出し、静電容量変化に応じた信号を、静電容量変化の生じた位置に関する情報と共に出力可能なセンサ部と、
     磁界および電界のうち少なくとも電界の変化に応じて表示を変える表示部と、
     前記センサ部を駆動すると共に、前記センサ部の出力に基づいて座標データを生成する第1駆動部と、
     前記表示部に電界を印加することにより表示を変化させる第2駆動部と、
     先端から磁界を発生させるペンと
     を備えた
     表示装置。
  24.  前記表示部は、磁界および電界の変化に応じて表示を変える表示層を有し、
     前記第2駆動部は、前記表示層に電界を印加することにより前記表示部の表示を消去する
     請求項23に記載の表示装置。
  25.  前記表示部は、電界の変化に応じて表示を変える表示層を有し、
     前記第2駆動部は、前記表示層に電界を印加することにより、前記表示部の表示に対して、前記第1駆動部で生成された前記座標データに基づく表示を追記する
     請求項23に記載の表示装置。
PCT/JP2015/061582 2014-06-20 2015-04-15 センサパネル、入力装置および表示装置 WO2015194241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/317,992 US10871846B2 (en) 2014-06-20 2015-04-15 Sensor panel, input unit, and display unit
CN201580031587.5A CN106662957B (zh) 2014-06-20 2015-04-15 传感器面板、输入设备和显示设备
KR1020167033656A KR20170021238A (ko) 2014-06-20 2015-04-15 센서 패널, 입력 장치 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-127424 2014-06-20
JP2014127424A JP2016006619A (ja) 2014-06-20 2014-06-20 センサパネル、入力装置および表示装置

Publications (1)

Publication Number Publication Date
WO2015194241A1 true WO2015194241A1 (ja) 2015-12-23

Family

ID=54935238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061582 WO2015194241A1 (ja) 2014-06-20 2015-04-15 センサパネル、入力装置および表示装置

Country Status (5)

Country Link
US (1) US10871846B2 (ja)
JP (1) JP2016006619A (ja)
KR (1) KR20170021238A (ja)
CN (1) CN106662957B (ja)
WO (1) WO2015194241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123885A1 (ja) * 2020-12-10 2022-06-16 株式会社ワコム 電子ペン、手書き入力装置及び電子ペン用芯体

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386480B1 (ko) * 2015-10-05 2022-04-15 삼성전자주식회사 전자 기기의 입력 식별 방법 및 장치
KR102496918B1 (ko) * 2015-11-27 2023-02-08 삼성디스플레이 주식회사 표시 장치
US10610950B2 (en) * 2016-04-20 2020-04-07 The Hong Kong Polytechnic University Magnetic-aided electrospark deposition
CN109791457B (zh) * 2016-09-28 2023-04-28 索尼公司 传感装置和电子设备
KR102360850B1 (ko) * 2017-06-30 2022-02-10 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
CN108267884B (zh) * 2018-02-02 2022-04-12 北京京东方显示技术有限公司 透射反射切换结构、显示装置及其工作方法
TWI662457B (zh) * 2018-06-20 2019-06-11 鴻海精密工業股份有限公司 觸控顯示裝置
CN109885202B (zh) * 2019-02-22 2020-12-01 合肥鑫晟光电科技有限公司 一种触控基板及其驱动方法和显示装置
CN110058731B (zh) * 2019-03-25 2021-01-01 深圳市华星光电半导体显示技术有限公司 触控显示面板及触控显示装置
CN112197689B (zh) * 2020-09-29 2022-06-17 厦门天马微电子有限公司 一种传感器、显示面板及显示装置
KR20220148986A (ko) * 2021-04-29 2022-11-08 삼성디스플레이 주식회사 전자 장치 및 이를 포함하는 인터페이스 장치
KR102666560B1 (ko) * 2022-05-30 2024-05-20 (주)나우시스템즈 압력 검출 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185552A (ja) * 2002-12-06 2004-07-02 Alps Electric Co Ltd 手書入力装置
JP2010003048A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2012118671A (ja) * 2010-11-30 2012-06-21 Nissha Printing Co Ltd 入力装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396373B1 (ko) * 2009-05-28 2014-05-19 켄트 디스플레이스 인코포레이티드 쓰기용 태블릿 정보 기록 장치
US20130009907A1 (en) * 2009-07-31 2013-01-10 Rosenberg Ilya D Magnetic Stylus
JP5413235B2 (ja) 2010-02-19 2014-02-12 ソニー株式会社 センサ装置及び情報処理装置
AU2011302438B2 (en) * 2010-09-17 2016-07-07 Apple Inc. Sensor fusion
JP5740268B2 (ja) * 2011-09-27 2015-06-24 株式会社東芝 表示装置
KR101441396B1 (ko) * 2012-08-13 2014-09-17 엘지디스플레이 주식회사 입력 시스템 및 이를 이용한 터치 검출 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185552A (ja) * 2002-12-06 2004-07-02 Alps Electric Co Ltd 手書入力装置
JP2010003048A (ja) * 2008-06-19 2010-01-07 Hitachi Displays Ltd タッチパネル付き表示装置
JP2012118671A (ja) * 2010-11-30 2012-06-21 Nissha Printing Co Ltd 入力装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123885A1 (ja) * 2020-12-10 2022-06-16 株式会社ワコム 電子ペン、手書き入力装置及び電子ペン用芯体

Also Published As

Publication number Publication date
US10871846B2 (en) 2020-12-22
JP2016006619A (ja) 2016-01-14
US20170115792A1 (en) 2017-04-27
CN106662957B (zh) 2021-06-04
KR20170021238A (ko) 2017-02-27
CN106662957A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2015194241A1 (ja) センサパネル、入力装置および表示装置
JP2015041080A (ja) 表示装置
US20110181532A1 (en) Electronic paper device
CN102402356A (zh) 具有触摸检测功能的显示装置以及电子单元
TW201220170A (en) Display device
CN203689461U (zh) 触控笔及触控装置
CN103207701A (zh) 显示器上传感器堆叠
JP2006518511A (ja) 再利用可能なペーパーに筆記するためのデジタイザーペン
CN103207714A (zh) 双衬底传感器堆叠
KR101467654B1 (ko) 필기형 전자 종이 디스플레이 및 그 제조 방법
US20110181576A1 (en) Electronic paper device
US20110181533A1 (en) Electronic paper device
US20190138142A1 (en) Touch Device
JP2007206846A (ja) 情報入力装置
US20110181531A1 (en) Electronic paper device
TWI421610B (zh) 可觸壓輸入之顯示裝置及其方法
TWI451181B (zh) 具觸控功能之電子紙顯示裝置
CN105912151A (zh) 触摸感测设备及其驱动方法
JP2009186809A (ja) ペン入力電気泳動表示装置
JP2007316248A (ja) 表示装置
CN114174961B (zh) 用于寻址磁性驱动显示介质的触控笔
JP2003256190A (ja) 情報処理装置
JP5509633B2 (ja) 電気泳動装置、電子機器
JP2017026695A (ja) 表示装置
CN113296643B (zh) 一种电子书写设备、系统以及书写字迹擦除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167033656

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15317992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809278

Country of ref document: EP

Kind code of ref document: A1