WO2015192788A1 - Procédé et dispositif d'hydrocraquage d'huile résiduaire à lit en suspension - Google Patents

Procédé et dispositif d'hydrocraquage d'huile résiduaire à lit en suspension Download PDF

Info

Publication number
WO2015192788A1
WO2015192788A1 PCT/CN2015/081792 CN2015081792W WO2015192788A1 WO 2015192788 A1 WO2015192788 A1 WO 2015192788A1 CN 2015081792 W CN2015081792 W CN 2015081792W WO 2015192788 A1 WO2015192788 A1 WO 2015192788A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry bed
residue
catalyst
slurry
bed reactor
Prior art date
Application number
PCT/CN2015/081792
Other languages
English (en)
Chinese (zh)
Inventor
李苏安
邓清宇
谢刚
Original Assignee
北京中科诚毅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科诚毅科技发展有限公司 filed Critical 北京中科诚毅科技发展有限公司
Priority to US15/319,808 priority Critical patent/US20170145320A1/en
Publication of WO2015192788A1 publication Critical patent/WO2015192788A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives

Definitions

  • the invention relates to a residue treatment method and device, and belongs to the field of deep processing of crude oil.
  • the existing residue processing mainly uses suspension bed hydrocracking (VCC) technology, including liquid phase hydrotreating (LPH) and gas liquid hydrotreating (GPH).
  • VCC suspension bed hydrocracking
  • LPH liquid phase hydrotreating
  • GPH gas liquid hydrotreating
  • the residue is mixed with the additive and hydrogen and then enters the suspended bed reactor to undergo thermal cracking reaction and is hydrosaturated under high pressure in a hydrogen state.
  • the carbon residue, colloid and asphaltene in the feed undergo thermal cracking and hydrogenation under the action of specific additives.
  • the product of thermal cracking of the suspended bed is separated into a hot high pressure separator, and the cleaned gas product is removed from the fixed bed reactor for further hydrocracking and hydrorefining to produce high quality naphtha, light diesel oil and wax oil.
  • the solid matter separated is mainly coke and can be used for boiler fuel.
  • VCC technology has been able to greatly improve the light oil yield of residue processing according to the existing development in foreign countries, which can reach nearly 90%.
  • the catalyst is dependent on imports, resulting in excessive cost.
  • the problem is that the working pressure of the general suspended bed is above 20 MPa. Therefore, it is urgent to develop a new residue treatment method.
  • the present invention provides a slurry slurry bed hydrocracking method and device.
  • a slurry slurry bed hydrocracking method comprises the following steps:
  • the residue raw materials, additives, catalysts and hydrogen are mixed and heated to be heated into a slurry bed reactor for thermal cracking and hydrogenation.
  • the coke, asphaltenes and heavy metals in the reaction process are adsorbed on the additives and catalysts, and then all
  • the product enters the hot high pressure separator, the solid is separated from the bottom, and the gas is separated from the top and then further hydrocracked or refined into a fixed bed reactor, wherein the catalyst is a mixture of molybdate and iron, and the additive is a vulcanizing agent.
  • the reaction pressure in the slurry bed reactor is 17-20 MPa.
  • the additive is one or more of a vulcanizing agent such as carbon disulfide, dimethyl sulfide, dimethyl disulfide, n-butyl mercaptan, and sodium sulfide.
  • a vulcanizing agent such as carbon disulfide, dimethyl sulfide, dimethyl disulfide, n-butyl mercaptan, and sodium sulfide.
  • the catalyst is preferably prepared by mixing spray granulation of iron powder and ammonium molybdate solution.
  • the particles of the catalyst are preferably less than 10 ⁇ m, further preferably less than 5 ⁇ m.
  • the mass percentage concentration of the ammonium molybdate solution is preferably from 10% to 50%.
  • the ratio of the amount of iron in the catalyst to the amount of the active component molybdenum is preferably from 1:150 to 1:200.
  • the addition ratio of the catalyst, the additive and the residue raw material is 0.8-1.2: 2-4:100.
  • a residue slurry bed hydrocracking device wherein a residue conveying pipeline is first connected with a catalyst and an additive adding device, and then connected with a hydrogen conveying pipeline, and then connected to a heating furnace, and then connected to a slurry bed reactor; a slurry bed reaction Further connected to the hot high pressure separator, the hot high pressure separator is connected to the fixed bed reactor, and the lower part is connected to the decompression flash tower; the fixed bed reactor is further connected to the cold high pressure separator, and the cold high pressure separator is connected above
  • the gas purifying device is linked to the fractionation column, wherein the catalyst in the dosing device is a mixture of molybdate and iron, and the reaction pressure in the slurry bed reactor is 17-20 MPa.
  • the dosing device is preferably located on a branch pipe of the residue conveying pipe, and a part of the residual oil is mixed with the catalyst and the additive in the dosing device on the branch pipe and then merged with the main residue conveying pipe.
  • the gas purifying device recovers hydrogen gas by a circulating gas compressor connected to a heating furnace.
  • the slurry bed hydrocracking technology of the invention adopts the process of a "slurry bed + fixed bed” reactor, and the raw materials, additives, catalysts and hydrogen are heated and pressurized to enter the three-phase slurry bed reactor, where the occurrence is Thermal cracking reaction and catalytic reaction under high hydrogen partial pressure.
  • the coke, catalyst and additives during the reaction are then separated at the bottom of the hot high pressure separator. Further hydrocracking and hydrofinishing are then carried out in a conventional fixed bed reactor to produce naphtha, light diesel oil and wax oil.
  • the newly developed ferromolybdenum catalyst acts to increase the reactivity and inhibit the reaction coke, and is also the agglomerate core and carrier of the coke, so that the coke formed in the reaction is concentrated on the surface of the catalyst without adhering to the wall and On the pipe wall; the most fundamental effect is that it can reduce the pressure of the system, from 20MPa to 17-20Mpa, which can greatly reduce the cost of equipment.
  • the catalyst has other advantages: the thermal cracking free radical mechanism is adopted, the source is cheap, and the source can be discarded; the reaction enters the reactor with the raw material, does not need to be onlinely updated in the reactor, and does not require a complicated catalyst loading and unloading system. The land is small and the investment is low.
  • the invention has been verified that the conversion rate can reach 90-95%, and the light oil yield can reach 80-83%, far exceeding the current level of about 55%.
  • FIG. 1 is a schematic diagram of a device and a flow according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of an apparatus and a flow according to Embodiment 2 of the present invention.
  • This example is a pilot test with a continuous test period of 15 days for a single oil product, and the apparatus and flow thereof are shown in FIG.
  • the residue (see Table 1 for the parameters of the raw materials) is transported by the residual oil pipe 1, and the hydrogen gas is sent through the new hydrogen compressor 3.
  • the mixture of the residual oil and the catalyst and the additive is mixed in the dosing device 2 and then heated under the transfer of hydrogen.
  • the furnace 5 is heated and pressurized to enter the slurry bed reactor 6.
  • the additive of the present embodiment is carbon disulfide;
  • the catalyst is prepared by mixing iron powder with ammonium molybdate solution and then spray granulating to ensure the roundness of the catalyst, wherein the ratio of iron to the amount of active active component molybdenum It is 1:150.
  • the catalyst is a fine solid particle having a size below 5 ⁇ m and is insoluble in oil and water. The ratio of each substance is shown in the following basic process parameters, and the system is a heterogeneous three-phase reaction.
  • the residue undergoes thermal cracking reaction and catalytic reaction under high hydrogen partial pressure in the slurry bed reactor 6 under the catalysis of the catalyst.
  • coke, asphaltenes and heavy metals are adsorbed on the carbon disulfide to ensure the slurry bed reaction.
  • the reaction rate can be made faster, overcoming the counter-reverse reaction caused by residual oil in the reactor.
  • the problem of insufficient time should be taken, and the reaction pressure is lowered (see the basic process parameters described below) and the reaction coke is suppressed.
  • the reaction product then enters a hot high pressure separator 7, and the relatively clean gaseous product is separated from the top of the hot high pressure separator 7, and the catalyst and additives carry solids such as asphaltenes, carbon residue, precipitates, metals, etc., from below into the depressurized flash column 8.
  • the gaseous product enters the conventional fixed bed reactor 9 for further hydrofining or cracking, since most of the asphaltenes, carbon residue, precipitates, metals, etc. in the feedstock have been removed in the slurry bed reaction stage and in the hot high pressure separator 7
  • the bottom separation does not have a significant effect on the fixed bed catalyst bed, ensuring long-term operation of the fixed bed reactor 9.
  • the further processed gas product enters the cold high pressure separator 10, and the separated product is fractionated into products such as naphtha, diesel oil, wax oil, etc. in the fractionation column 13, and the gas is desulfurized by the gas purifying device 11, and the dry gas is discharged.
  • Catalyst/feed residue 1.2/100 (wt);
  • Vulcanizing agent/feed residue 2.5/100 (wt);
  • the operation flow of this embodiment is substantially the same as that of Embodiment 1, as shown in FIG. 2, wherein the dosing device 2 is located on the branch pipe of the residue conveying pipe 1, and a part of the dosing device 2 with the catalyst and the additive on the branch pipe. After premixing, it merges with the main residue conveying pipe to prevent the solid catalyst from directly mixing with the residue to cause unevenness. Further, the gas purifying device 11 is connected to the heating furnace through the circulating gas compressor 12 to recover the remaining hydrogen gas.
  • the stock oil of this example was the same as that of Example 1, and the ratio of the amount of iron in the catalyst to the active active component molybdenum was 1:200. It is also produced by spray granulation and has a size of less than 5 ⁇ m.
  • Vulcanizing agent / feed residue 3.5/100 (wt);
  • the present invention achieves high light oil yield in a low pressure environment by improving catalysts and processes, can significantly save costs, improve efficiency, and can alleviate the original tension and energy saving for the country. Make a huge contribution to reducing consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un dispositif et un procédé d'hydrocraquage d'huile résiduaire à lit en suspension. Une technique de réacteur à « lit en suspension + lit fixe » est adoptée et des matières premières, des additifs, des catalyseurs et de l'hydrogène gazeux sont mélangés, chauffés, mis sous pression et ensuite introduits dans un réacteur à lit en suspension pour une réaction de craquage thermique et une réaction de catalyse. Dans le processus réactionnel, du coke, des catalyseurs et des additifs sont par la suite séparés au fond d'un séparateur thermique haute pression. Un produit huile légère est produit par un hydrocraquage et un raffinage à l'hydrogène supplémentaires dans un réacteur à lit fixe ordinaire. Un catalyseur au ferro-molybdène est utilisé pour améliorer l'activité de réaction, inhiber la formation de coke, réduire la pression du système à 17 à 20 MPa et abaisser considérablement le coût du matériel. Au moyen du procédé, le taux de conversion de l'huile résiduaire peut être de 90 % à 95 % et le rendement de production d'huile légère peut être de 80 % à 83 %.
PCT/CN2015/081792 2014-06-19 2015-06-18 Procédé et dispositif d'hydrocraquage d'huile résiduaire à lit en suspension WO2015192788A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/319,808 US20170145320A1 (en) 2014-06-19 2015-06-18 Residue slurry bed hydrocracking method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410276723.4 2014-06-19
CN201410276723.4A CN104017601B (zh) 2014-06-19 2014-06-19 一种渣油浆态床加氢裂化方法及装置

Publications (1)

Publication Number Publication Date
WO2015192788A1 true WO2015192788A1 (fr) 2015-12-23

Family

ID=51434613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081792 WO2015192788A1 (fr) 2014-06-19 2015-06-18 Procédé et dispositif d'hydrocraquage d'huile résiduaire à lit en suspension

Country Status (3)

Country Link
US (1) US20170145320A1 (fr)
CN (1) CN104017601B (fr)
WO (1) WO2015192788A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475119A (zh) * 2016-08-30 2017-03-08 北京宝塔三聚能源科技有限公司 加氢裂化催化剂的制备方法及利用其的浆态床加氢工艺
CN112391201A (zh) * 2020-10-22 2021-02-23 中国科学院大连化学物理研究所 乙烯裂解焦油与环烷基稠油或其渣油混炼的方法
CN114517109A (zh) * 2022-03-07 2022-05-20 张家港保税区慧鑫化工科技有限公司 一种重油处理系统及方法及针状焦及汽柴油
CN116948683A (zh) * 2023-09-15 2023-10-27 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017601B (zh) * 2014-06-19 2016-11-09 北京中科诚毅科技发展有限公司 一种渣油浆态床加氢裂化方法及装置
CN104629798A (zh) 2015-02-06 2015-05-20 北京中科诚毅科技发展有限公司 一种油煤混合加氢炼制技术及设备
CN104907078B (zh) * 2015-05-06 2018-10-16 北京中科诚毅科技发展有限公司 一种加氢催化剂及其制备方法和用途
CN104877707B (zh) * 2015-05-07 2017-12-15 北京中科诚毅科技发展有限公司 一种多重优化的加氢系列方法及其设计方法和用途
CN106520186B (zh) * 2015-09-09 2018-08-17 中国石化工程建设有限公司 一种重油临氢热裂化方法
US20180179456A1 (en) * 2016-12-27 2018-06-28 Uop Llc Process and apparatus for hydrocracking a residue stream in two stages with aromatic saturation
CA3131283A1 (fr) * 2019-03-04 2020-09-10 China Petroleum & Chemical Corporation Procede et systeme de production d'olefine legere a partir d'une huile pauvre
WO2020263854A1 (fr) * 2019-06-24 2020-12-30 Kellogg Brown & Root Llc Désolidification intégrée pour résidus contenant des matières solides
CN113004938A (zh) * 2019-12-19 2021-06-22 中国石化工程建设有限公司 一种浆态床加氢裂化装置的油浆安全泄放系统及安全泄放方法
CN113897210B (zh) * 2021-10-26 2023-12-26 山东汇邦新材料有限公司 一种悬浮床外部分离系统及其使用方法
CN114832865B (zh) * 2022-06-15 2023-08-22 中国石油大学(华东) 一种应用于加氢裂化的钼基微乳液催化剂的制备方法
CN115261061B (zh) * 2022-08-08 2023-09-15 徐文忠 非固定床加氢增效除渣工艺
CN115739070A (zh) * 2022-11-02 2023-03-07 润和科华催化剂(上海)有限公司 一种用于浆态床渣油加氢的催化剂及其应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2004882A1 (fr) * 1989-12-07 1991-06-07 Roger K. Lott Methode pour reduire la formation de coke lors de l'hydroconversion d'hydrocarbures lourds
CN1459490A (zh) * 2002-05-23 2003-12-03 中国石油天然气股份有限公司 重油悬浮床加氢裂化新工艺
CN1952064A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种使用分散型催化剂的悬浮床加氢裂化方法
CN104017601A (zh) * 2014-06-19 2014-09-03 北京中科诚毅科技发展有限公司 一种渣油浆态床加氢裂化方法及装置
CN104629798A (zh) * 2015-02-06 2015-05-20 北京中科诚毅科技发展有限公司 一种油煤混合加氢炼制技术及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127320B (en) * 1981-06-09 1985-10-23 Chiyoda Chem Eng Construct Co Process for hydrogenolysis of hydrocarbons
US5866501A (en) * 1996-02-23 1999-02-02 Pradhan; Vivek R. Dispersed anion-modified iron oxide catalysts for hydroconversion processes
CN1114680C (zh) * 1999-09-29 2003-07-16 中国石油化工集团公司 一种处理劣质重、渣油的工艺方法
CN1144863C (zh) * 2000-07-24 2004-04-07 中国石油化工股份有限公司 一种重质烃进料加氢处理方法
CN103540348B (zh) * 2012-07-12 2015-09-23 中国石油天然气股份有限公司 一种高效的劣质重油、渣油加氢处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2004882A1 (fr) * 1989-12-07 1991-06-07 Roger K. Lott Methode pour reduire la formation de coke lors de l'hydroconversion d'hydrocarbures lourds
CN1459490A (zh) * 2002-05-23 2003-12-03 中国石油天然气股份有限公司 重油悬浮床加氢裂化新工艺
CN1952064A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种使用分散型催化剂的悬浮床加氢裂化方法
CN104017601A (zh) * 2014-06-19 2014-09-03 北京中科诚毅科技发展有限公司 一种渣油浆态床加氢裂化方法及装置
CN104629798A (zh) * 2015-02-06 2015-05-20 北京中科诚毅科技发展有限公司 一种油煤混合加氢炼制技术及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YUANDONG ET AL.: "Development of Slurry Bed Technologies for Upgrading Heavy Oils", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 29, no. 9, 25 September 2010 (2010-09-25), pages 1589 - 1596, XP055245693, ISSN: 1000-6613 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475119A (zh) * 2016-08-30 2017-03-08 北京宝塔三聚能源科技有限公司 加氢裂化催化剂的制备方法及利用其的浆态床加氢工艺
CN106475119B (zh) * 2016-08-30 2019-04-05 北京宝聚能源科技有限公司 加氢裂化催化剂的制备方法及利用其的浆态床加氢工艺
CN112391201A (zh) * 2020-10-22 2021-02-23 中国科学院大连化学物理研究所 乙烯裂解焦油与环烷基稠油或其渣油混炼的方法
CN112391201B (zh) * 2020-10-22 2022-01-07 中国科学院大连化学物理研究所 乙烯裂解焦油与环烷基稠油或其渣油混炼的方法
CN114517109A (zh) * 2022-03-07 2022-05-20 张家港保税区慧鑫化工科技有限公司 一种重油处理系统及方法及针状焦及汽柴油
CN116948683A (zh) * 2023-09-15 2023-10-27 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法
CN116948683B (zh) * 2023-09-15 2023-12-12 克拉玛依市先能科创重油开发有限公司 以环烷基渣油与乙烯裂解焦油为原料的浆态床反应在线切换方法

Also Published As

Publication number Publication date
CN104017601A (zh) 2014-09-03
US20170145320A1 (en) 2017-05-25
CN104017601B (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015192788A1 (fr) Procédé et dispositif d'hydrocraquage d'huile résiduaire à lit en suspension
WO2016124148A1 (fr) Technique et dispositif de raffinage par hydrogénation hybride de charbon et de pétrole
AU2018222933B2 (en) Combined hydrogenation process method for producing high-quality fuel by medium-low-temperature coal tar
CN104907078B (zh) 一种加氢催化剂及其制备方法和用途
CN103540353A (zh) 一种处理煤焦油与渣油的加氢组合工艺方法
CN105505550B (zh) 一种废润滑油再生处理的方法
CN103695036A (zh) 中低温煤焦油加工处理方法
CN102260527B (zh) 高硫、高酸劣质重油临氢催化热裂解-加氢处理新工艺
WO2022100764A1 (fr) Prétraitement à l'hydrogène et procédé de purification d'huile lubrifiante usagée
CN108659882B (zh) 一种重油加氢方法及其加氢系统
CN105623736A (zh) 一种高温煤焦油全馏分催化热裂解方法
JP2020026522A (ja) 芳香族化合物の水素化による石油系ニードルコークス原料の製造方法
WO2016197537A1 (fr) Procédé de lavage à contre-courant, procédé de conception s'y rapportant, et utilisation correspondante
CN102796560B (zh) 煤焦油全馏分加氢的方法
CN205152158U (zh) 一种煤焦油悬浮床加氢裂化装置
CN108456550B (zh) 一种外循环式反应装置和煤油共炼方法
WO2023236390A1 (fr) Procédé et système de production de combustible d'aviation de biomasse alkylée à partir d'huiles et de graisses usées
CN103275758B (zh) 一种重油全馏份加氢处理方法及系统
CN206204233U (zh) 一种高固含量煤焦油的沸腾床加氢系统
CN105728000A (zh) 一种亲油型纳米二硫化钼制备方法及其应用
CN103789022B (zh) 一种加氢工艺方法
CN108219840A (zh) 一种利用悬浮床加氢工艺将重油转化为轻质油的方法
CN104059690B (zh) 一种页岩油提质液体石蜡和汽柴油的方法
CN103059945B (zh) 一种催化汽油加氢脱硫方法
TWI716471B (zh) 一種劣質原料油的處理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15808917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15319808

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15808917

Country of ref document: EP

Kind code of ref document: A1