WO2015190123A1 - 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設 - Google Patents

太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設 Download PDF

Info

Publication number
WO2015190123A1
WO2015190123A1 PCT/JP2015/053048 JP2015053048W WO2015190123A1 WO 2015190123 A1 WO2015190123 A1 WO 2015190123A1 JP 2015053048 W JP2015053048 W JP 2015053048W WO 2015190123 A1 WO2015190123 A1 WO 2015190123A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
condensing
light
energy supply
visible light
Prior art date
Application number
PCT/JP2015/053048
Other languages
English (en)
French (fr)
Inventor
石原 達己
哲 山佳
重憲 小出
淳一 小関
Original Assignee
国立大学法人九州大学
特殊技研金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014122348A external-priority patent/JP5989036B2/ja
Priority claimed from JP2014122349A external-priority patent/JP6042375B2/ja
Priority claimed from JP2014167320A external-priority patent/JP6042385B2/ja
Application filed by 国立大学法人九州大学, 特殊技研金属株式会社 filed Critical 国立大学法人九州大学
Priority to KR1020167034774A priority Critical patent/KR20170007399A/ko
Priority to US15/315,555 priority patent/US20170207745A1/en
Priority to EP15805809.9A priority patent/EP3157166A4/en
Priority to CN201580031463.7A priority patent/CN106458165A/zh
Publication of WO2015190123A1 publication Critical patent/WO2015190123A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/02Supplying fuel to vehicles; General disposition of plant in filling stations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/17Arrangements of solar thermal modules combined with solar PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention is an independent energy supply facility capable of supplying hydrogen fuel for automobiles generated using solar energy and electric energy for electric vehicles generated by converting solar energy into electricity. It is about.
  • the present invention is a stand-alone energy that can supply hydrogen fuel for automobiles generated by efficiently converting sunlight into energy and electric power for electric vehicles generated by converting solar energy into the same facility.
  • the present invention relates to a stand, and the feature of the configuration in the present invention is that a condensing grid that forms a condensing panel by installing a condensing panel having a plurality of solar tracking devices on the roof or roof of an energy supply facility
  • an energy supply facility capable of effectively utilizing solar energy by forming so that sunlight enters the condensing grid for a long time is provided.
  • the present invention divides sunlight energy into visible light that easily converts electricity and infrared rays that are easily converted into heat in a grid of the light collecting panel, and condenses the visible light into electricity in a light collecting cell. It has a condensing panel device that can be converted and stored in a storage battery, and infrared rays can be efficiently taken out as heat, and the infrared rays are taken out as heat and then introduced into a condensing heat boiler to generate intermediate temperature steam It has a condensing thermal boiler device.
  • the energy supply facility of the present invention supplies the electric power as electric energy for the electric vehicle by electrically converting the visible light of the solar energy in the condensing cell and storing the electric power in the storage battery. It provides a stand-alone energy supply facility.
  • infrared rays of solar energy are condensed in a condensing cell and introduced into a condensing heat boiler via an optical fiber to generate intermediate temperature steam, and the intermediate temperature steam is supplied to an intermediate temperature steam electrolyzer to generate hydrogen.
  • the hydrogen is stored in a hydrogen tank at a high pressure, thereby providing a stand-alone energy supply facility that can supply hydrogen to a hydrogen fuel vehicle that uses it as power fuel.
  • Patent Document 1 JP 2013-104261 A (hereinafter referred to as Patent Document 1) as an example of a daylighting device provided with a solar light tracking device in order to use sunlight as daylighting.
  • the invention of Patent Document 1 is a sunlight lighting device called a toplight installed on the roof or roof of a building.
  • a sunlight reflecting device provided with a sunlight tracking system is provided in a dome constituting the toplight.
  • An efficient daylighting device that tracks the sun and directly faces sunlight is provided.
  • Patent Document 2 As an example of a solar cell system that converts solar energy into electrical energy, there is JP-A-11-97729 (hereinafter referred to as Patent Document 2).
  • the invention of Patent Document 2 provides means for exhibiting power generation characteristics similar to those in the south direction at any module installation location, and a plurality of light condensing units each having a condensing system and solar cells.
  • the solar cell module is configured with cells, and the optical axis of the condensing system constituting the condensing cell is configured such that there is at least one condensing cell having a direction different from the normal direction of the main surface of the module, It is possible to provide a solar cell module in which the concentrating cells can be moved so that the time for directly facing sunlight can be increased, and the power generation efficiency and the installation area efficiency can be increased.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-249031 (hereinafter referred to as Patent Document 3). )
  • the invention of Patent Document 3 supplies purified water to a solar water splitting panel having a shape like a solar water heater, supplies oxygen and hydrogen generated in the solar water splitting panel, and It consists of a hydrogen separator that separates hydrogen from the product gas containing water vapor, and the hydrogen separated by the hydrogen separator is combined with hydrogen from hydrogen generators by other bacterial fuel reformers and fuel cell devices
  • a hydrogen supply stand stored in a high-pressure hydrogen tank and supplied to a hydrogen fuel cell vehicle through a hydrogen gas filling machine is provided.
  • Patent Document 1 as a form of utilization of sunlight, a sunlight tracking device is provided and sunlight is directly used for illumination or the like. Although the sunlight hours of light are efficiently collected, even if the sunlight hours of sunlight are efficiently collected, it cannot be said that the solar energy itself is efficiently utilized.
  • Patent Document 2 relates to solar cell power generation that uses solar energy converted into electric energy.
  • solar energy is composed of light of different wavelengths, such as ultraviolet rays, visible light, infrared rays, etc., and solar cells convert only the visible light that is part of the solar energy and use it.
  • the majority of the light is in the ultraviolet region and infrared light other than that is not fully utilized in power generation or the like.
  • Patent Document 3 discloses a hydrogen supply stand that is supplied to a hydrogen fuel cell vehicle by a solar water splitting device that generates hydrogen from pure water using solar energy.
  • the invention of Patent Document 3 is an arrangement of a bacterial fuel reforming device, a solar decomposition device, and a fuel cell device that can supply hydrogen at a lower cost than in the future.
  • the capital investment cost versus the hydrogen generation cost has a disadvantage that it cannot provide efficient and inexpensive hydrogen.
  • the present invention has been made in view of the above-described points, and is divided into infrared rays that easily convert solar energy into heat and visible light that easily converts into electric light within the light collecting grid of the light collecting panel.
  • the infrared rays of solar energy are accumulated in the condenser heat boiler device by taking out as heat, and then introduced into the intermediate temperature steam electrolyzer to generate hydrogen, and the generated hydrogen is pressurized and stored in the hydrogen tank , which can be supplied to a hydrogen vehicle using the hydrogen as a motive fuel, and the visible light of solar energy can be converted into electricity in a condensing cell, and the electric power can be stored in a storage battery and supplied as electric power for an electric vehicle.
  • the present invention relates to a stand-alone energy supply facility equipped with a hydrogen fuel supplier for vehicles and a charger for electric vehicles using light.
  • the present invention installs a solar energy condensing panel equipped with a solar tracking device on the roof or roof portion of an independent energy supply facility, and converts the solar energy into infrared rays that are easily converted into heat.
  • Infrared light from the solar energy is stored in a condensing heat boiler device by taking out the visible light as light within the condensing grid of the condensing panel, and then introduced into the intermediate temperature steam electrolyzer.
  • the hydrogen generated is pressurized and stored in a hydrogen tank, and can be supplied to a hydrogen vehicle that uses the hydrogen as a power fuel.
  • a German-equipped hydrogen fuel supplier for automobiles and solar battery chargers that use sunlight, which can be converted into electricity and stored in a storage battery and supplied as electricity for electric vehicles. It is intended to provide the type of energy supply facilities.
  • the present invention provides an energy supply stand for next-generation hydrogen vehicles and electric vehicles by providing a stand-alone energy supply facility including a hydrogen fuel supplier for vehicles and a charger for electric vehicles using sunlight. There is no need to transport dangerous materials such as gasoline, LPG gas, and hydrogen gas from the manufacturing plant to each supply station by tank lorries like conventional energy supply stations.
  • An energy supply facility capable of supplying electric power for an electric vehicle is provided.
  • the present invention installs a solar energy condensing panel equipped with a solar tracking device on the roof or roof of an energy supply facility, and infrared light that easily converts heat of the solar energy and visible light that easily converts electricity.
  • the condensing grid of the condensing panel the light is condensed and collected, and the infrared rays of the solar energy are extracted as heat, accumulated in the condensing heat boiler device, and then introduced into the intermediate temperature steam electrolyzer to generate hydrogen.
  • the generated hydrogen is pressurized and stored in a hydrogen tank, and can be supplied to a hydrogen vehicle using hydrogen as power fuel through an automotive hydrogen fuel supplier, and the visible light of the solar energy is condensed.
  • For automobiles using sunlight which can be converted into electricity in a cell and stored in a storage battery and supplied as electric vehicle power via an electric vehicle charger
  • a self-contained energy supply facility with a hydrogen fuel supply unit and an electric charger for an automobile.
  • the present invention also provides a solar energy condensing panel provided with a solar tracking device on the roof or roof portion of an energy supply facility, and a plurality of condensing grids constituting the respective condensing panels.
  • Is stored in a capacitor with a lead wire via a system controller and the power stored in the capacitor can be supplied as electric vehicle power via a power supply control panel and an electric vehicle charger, and the visible Light reflection filter
  • the passing infrared rays are reflected and condensed by an infrared reflection mirror installed at a lower angle of the visible light reflection filter at an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens.
  • the light collected through the optical fiber inlets is irradiated onto the heat exchange conduction pipes of the condenser heat boilers to heat the water circulating in the heat exchange conduction pipes.
  • a plurality of the light collecting panels are installed on the roof or roof portion in the energy supply facility, and the light collecting panels are provided with an angle adjustment or rotation mechanism with respect to sunlight, and the angle adjustment.
  • Sunlight can be efficiently collected by rotating the mechanism and rotating mechanism with a solar light tracking device, and each condensing panel can be folded into two or more in the condensing panel support frame.
  • a stand-alone energy supply facility equipped with an automobile hydrogen fuel supplier and electric vehicle charger that uses sunlight that can be folded or folded and stored indoors during nighttime, sunset, or typhoon weather conditions. It is to provide.
  • the infrared light that has passed through the visible light reflection filter in the light collection grid of the light collection panel has an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens below the visible light reflection filter.
  • Infrared light is reflected and collected by the infrared reflecting mirrors installed and collected through the correcting condensing lens and collected at the optical fiber inlet, and the light collected at the respective optical fiber inlets is collected by the condenser heat boiler.
  • the water circulating in the heat exchange conduction pipe is heated to generate water vapor, the water vapor is heated to a medium temperature water vapor through a water vapor heating device, and the medium temperature water vapor is heated to one side of the electrolyte.
  • Electrolysis by applying a voltage between both the porous cathode and the porous anode while continuously supplying it into an electrolytic cell having a porous cathode on the opposite side and a porous anode on the opposite side And generating hydrogen and oxygen by the electrolysis, storing the generated hydrogen in a hydrogen tank, and hydrogen in the hydrogen tank is hydrogen fueled by a hydrogen fuel supplier via a secondary pressure booster
  • the present invention provides a stand-alone energy supply facility equipped with a hydrogen fuel supplier for automobiles and a charger for electric cars that use solar light that can be supplied to a vehicle.
  • hydrogen and oxygen generated by the intermediate temperature steam electrolysis device and stored in the hydrogen tank or oxygen tank are stored in the energy supply facility.
  • the present invention provides an energy source for a next-generation hydrogen fueled vehicle and an electric vehicle by providing a stand-alone energy supply facility provided with the hydrogen fuel supplier for an automobile and the charger for an electric vehicle using the solar energy.
  • Establishing supply stations unlike conventional energy supply stations, it is not necessary to transport dangerous materials such as gasoline, LPG gas, and hydrogen gas from the manufacturing plant to each supply station by tank lorries.
  • An energy supply facility capable of supplying power for hydrogen fuel and electric vehicles is provided.
  • the present invention is a stand-alone type capable of simultaneously supplying hydrogen fuel for hydrogen-fueled vehicles and clean energy for electric vehicles by making maximum use of solar energy efficiently by using a condensing panel capable of efficiently collecting sunlight. It is possible to provide energy supply facilities.
  • this invention divides
  • Infrared light is taken out as heat and converted into water vapor with a condensing heat boiler device to produce hydrogen and oxygen with a medium temperature steam electrolyzer that can efficiently generate hydrogen, of which hydrogen is a fuel for hydrogen fueled automobiles
  • oxygen as fuel for fuel cells and fuel for fuel cells, solar energy can be widely used.
  • FIG. 3 is an enlarged cross-sectional view for explaining the main part AA of FIG. 2. It is explanatory drawing of the condensing heat boiler shown in FIG. It is explanatory drawing of the intermediate temperature steam electrolysis apparatus shown in FIG.
  • the present invention installs a solar energy condensing panel unit equipped with a solar tracking device on the roof or roof part of an energy supply facility, and the solar energy is easily converted into infrared and easily visible.
  • the light is divided and collected in the light collecting grid of the light collecting panel unit, and infrared rays of the solar energy are extracted as heat, accumulated in the light collecting heat boiler device, and then introduced into the intermediate temperature steam electrolyzer.
  • the generated hydrogen is pressurized and stored in a hydrogen tank, and can be supplied to a hydrogen vehicle using hydrogen as power fuel via a hydrogen fuel supplier for vehicles, and the visible light of the solar energy is collected.
  • Water for automobiles using sunlight which can be converted into electricity in an optical cell and stored in an accumulator and supplied as electric vehicle electric power via an electric vehicle charger
  • a self-contained energy supply facilities having a fuel supply unit and an electric charger for an automobile.
  • the present invention also provides a solar energy condensing panel unit provided with a solar tracking device on the roof or roof of an energy supply facility, and a plurality of concentrating panels constituting each condensing panel unit.
  • the optical grid is provided with a Fresnel lens that collects sunlight on the upper incident light side of each housing, and the sunlight collected through the Fresnel lens is installed on the intermediate portion of the housing.
  • only visible light is reflected by a visible light reflection filter installed with an inclined surface of 45 degrees with respect to the incident light, is incident on a condensing cell via an auxiliary prism lens, and is converted into electricity.
  • the electricity is stored in a capacitor through a lead wire via the system controller, and the power stored in the capacitor can be supplied as electric vehicle power via the power supply controller and the electric vehicle charger.
  • Infrared light that has passed through the light reflection filter is reflected and collected by an infrared reflection mirror that is installed at a lower angle of the visible light reflection filter with an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens.
  • Light collected at the optical fiber inlet through the condenser lens and condensed at each optical fiber inlet is irradiated to the heat exchange conduction pipe of the condenser heat boiler device and circulates in the heat exchange conduction pipe.
  • Water is heated to generate water vapor, the water vapor is converted into medium temperature water vapor via a water vapor heating device and introduced into a medium temperature water vapor electrolysis device to generate hydrogen and oxygen, and the generated hydrogen is stored in a hydrogen tank.
  • the hydrogen in the hydrogen tank is equipped with a hydrogen fuel supply device for automobiles using solar light and a charger for electric vehicles that can be supplied to a hydrogen fuel vehicle with a hydrogen fuel supply device via a secondary pressure intensifier.
  • the light collecting grids of the light collecting panels used in the independent energy supply facilities each form a hollow housing and collect sunlight on the upper incident light side of each housing.
  • a light-emitting Fresnel lens was installed, and the sunlight collected through the Fresnel lens was installed at an intermediate portion of the casing and installed with an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens.
  • a condensing cell is installed through a correction prism lens on the side wall of the housing that is incident on the visible light reflecting filter for reflecting only visible light and faces the visible light reflecting filter, and the condensing cell is a control board.
  • An optical fiber introduction port is installed on the side wall of the housing facing the line reflection mirror via a correcting condensing lens, and the optical fiber having the optical fiber introduction port is connected to a thermoelectric converter built in the condensing heat boiler device.
  • a plurality of hollow housings constituting the light collecting grid are arranged in the left and right and up and down directions to form a panel-shaped plate fitted and held in the light collecting panel frame. It is a stand-alone energy supply facility equipped with a hydrogen fuel supplier for automobiles and a charger for electric cars using sunlight, which can be achieved by using a light panel.
  • the condensing grids constituting the condensing panel used in the independent energy supply facility each form a hollow casing, and sunlight is incident on the upper incident light side of the casing.
  • a condensing Fresnel lens is installed, and the sunlight collected through the Fresnel lens is installed at an intermediate portion of the housing with an inclination angle of 45 degrees with respect to the Fresnel lens installation surface. After being reflected by a visible light reflecting filter capable of reflecting only light, it is incident on a condensing cell via a correction prism lens and converted into electricity, and the converted electricity is transferred to a storage battery via a control board via a lead wire.
  • the infrared rays that are stored and passed through the visible light reflection filter are reflected and collected by an infrared reflection mirror that is installed at a lower angle of 45 degrees with respect to the Fresnel lens installation surface below the visible light reflection filter.
  • the infrared light collected through the correcting condensing lens is condensed at the optical fiber inlet and accumulated as heat in the condensing heat boiler apparatus incorporating the thermoelectric converter through the optical fiber.
  • the solar condensing panel is used.
  • the some condensing grid which comprises the condensing panel used in the independent energy supply facility in this invention each forms a hollow-shaped housing
  • a Fresnel lens that collects sunlight is installed, and the sunlight collected through the Fresnel lens is installed at an intermediate angle of the housing with an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens.
  • the visible light reflection filter reflects only visible light, enters the condensing cell via the correction prism lens, and is converted into electricity, and the converted electricity is stored in a lead wire via the control board.
  • the infrared rays stored in the visible light reflection filter are infrared rays by an infrared reflection mirror installed at an inclination angle of 45 degrees with respect to the Fresnel lens installation surface below the visible light reflection filter.
  • the reflected light is collected and condensed at the optical fiber inlet through the correcting condenser lens, and the light collected at the respective optical fiber inlets passes through the irradiation ports 36a, 36b, 36c,.
  • the heat exchange conduction pipe is irradiated to heat water circulating in the heat exchange conduction pipe to generate high temperature steam, and the high temperature steam is stored in a boiler tank covered with a heat insulating material. It is preferable to use a boiler device that uses solar energy.
  • a plurality of light collecting panel units in the present invention are installed on the roof or roof portion in the energy supply facility, and the light collecting panel unit includes an angle adjustment and rotation mechanism for sunlight, and the angle adjustment.
  • the mechanism and rotating mechanism By rotating the mechanism and rotating mechanism with the sunlight tracking device, sunlight can be collected efficiently, and each condensing panel unit can be folded into two or more in the condensing panel support frame
  • a stand-alone energy supply facility equipped with a hydrogen fuel vehicle for automobiles and a charger for electric vehicles that can be stored indoors at night, at sunset, or when typhoons are bad. It is preferable to provide
  • the infrared rays that have passed through the visible light reflection filter within the light collection grid of the light collection panel unit according to the present invention have an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens below the visible light reflection filter.
  • Infrared light is reflected and collected by the installed infrared reflection mirror, and is collected at the optical fiber introduction port via the correcting condensing lens.
  • the light collected at each of the optical fiber introduction ports is collected by the condensing heat boiler device.
  • Electrolysis is carried out by applying a voltage between both the porous cathode and the porous anode while continuously supplying it into an electrolytic cell having a porous cathode and a porous anode on the opposite side.
  • a device for generating hydrogen and oxygen by the electrolysis storing the generated hydrogen in a hydrogen tank, and hydrogen in the hydrogen tank is supplied by a hydrogen fuel supply device via a secondary pressure intensifier. It is preferable to be able to supply a hydrogen fuel vehicle.
  • the present invention relates to an independent energy supply facility including an automobile hydrogen fuel supplier and an electric vehicle charger using sunlight, and has a capacity of electric power stored in a capacitor in the independent energy supply facility.
  • Up is provided with a configuration in which hydrogen and oxygen generated by the intermediate temperature steam electrolysis device and stored in a hydrogen tank or oxygen tank are supplied to the fuel cell device in the energy supply facility, and are stored in the capacitor. Is preferred.
  • the present invention provides a next-generation hydrogen fueled vehicle and an electric vehicle by providing a stand-alone energy supply facility equipped with the above-described hydrogen fuel supplier for vehicles and a charger for electric vehicles using solar energy.
  • a stand-alone energy supply facility equipped with the above-described hydrogen fuel supplier for vehicles and a charger for electric vehicles using solar energy.
  • An energy supply facility capable of supplying safe and inexpensive hydrogen fuel and electric power for electric vehicles is provided.
  • the present invention can provide a stand-alone energy supply facility that can simultaneously supply hydrogen fuel for hydrogen-fueled vehicles and clean energy for electric vehicles by making the most effective use of solar energy. .
  • the present invention divides sunlight energy into visible light that is easy to convert into electricity and infrared light that is easy to convert into heat in a light collecting grid, and condenses each of the visible light into a storage battery. Electricity is stored and infrared rays are extracted as heat and converted into water vapor by a condensing heat boiler device, so that hydrogen and oxygen are produced by an intermediate temperature steam electrolyzer that can generate hydrogen efficiently.
  • oxygen as fuel for fuel cells and fuel for fuel cells, solar energy can be widely used.
  • FIG. 1 is an explanatory view showing an embodiment of the present invention
  • FIG. 2 is a perspective view for explaining a solar light tracking device in FIG. 1
  • FIG. 3 is a cross-sectional view for explaining a main part AA in FIG. 4
  • FIG. 5 is an explanatory view of the intermediate temperature steam electrolysis apparatus shown in FIG.
  • 1A and 1B are condensing panel units whose panel surfaces are expanded toward sunlight, and 2a and 2b can arbitrarily rotate the entire condensing panel units 1A and 1B.
  • the solar light tracking device 3a, 3b is capable of adjusting the angle so that 1B always faces sunlight, and 3a, 3b is a light collecting panel support frame, and the light collecting panel units 1A, 1B are a roof or roof portion of an energy supply facility.
  • the number of the light collecting panel units 1A and 1B installed on the roof and the roof of the energy supply facility is the scale of the energy supply facility. Thus, it can be installed in a plurality of units.
  • FIG. 2 illustrates the solar light tracking device in FIG. 1, 1A indicates a condensing panel unit, and the condensing panel unit 1A includes two condensing panels 1a that can be folded in an arrow R direction.
  • the light collecting panels 1a and 1b are fitted and held in the light collecting panel frame 4 to constitute the light collecting panel unit 1A.
  • the light collecting panels 1a and 1b are constituted by an aggregate of light collecting grids 5a, 5b, 5c..., And the light collecting panels formed by the light collecting grids 5a, 5b, 5c.
  • the unit 1A and the light collecting panels 1a and 1b are mounted on a rotating plate 6 configured to be rotatable, and can adjust the angle with respect to sunlight and track the azimuth and altitude of the sun on the rotating plate 6 (
  • the solar light tracking devices 2a and 2b are described in FIG. 1), and the light collecting panels 1a and 1b constituting the light collecting panel unit 1A are installed on the rooftop or outside of the building and have poor weather conditions such as nighttime, sunset, and typhoon. Sometimes it is folded or folded so that it can be stored indoors.
  • the configuration of the condensing grids 5a, 5b, 5c... Fitted and held in the condensing panel frame 4 condenses the solar energy into visible light P1 that easily converts electricity and infrared light P2 that easily converts heat.
  • Each of the grids 5a, 5b, 5c,... Is condensed and condensed, and the visible light P1 is converted into electricity by the condensing cell 20 and connected to the capacitor 9 via the system controller 8 via the lead wire 7 to store the light.
  • the infrared rays P2 can be introduced into the condensing heat boiler apparatus 11 (shown in FIG. 1) by taking out the infrared rays P2 through the optical fiber 10 as heat.
  • condensing grids 5a, 5b, 5c... Form hollow casings 12a, 12b, 12c..., And side walls 13 and bottoms of the casings 12a, 12b, 12c.
  • An aluminum cover material 15 is attached to 14.
  • a Fresnel lens 17 that collects sunlight is installed on the upper incident light side 16 of the casings 12a, 12b, 12c..., And Fresnel is disposed in the middle of the casings 12a, 12b, 12c.
  • a visible light reflection filter 18 capable of reflecting only visible light installed with an inclination angle of 45 degrees with respect to the installation surface of the lens 17 is provided, and the casings 12a and 12b facing the visible light reflection filter 18 are provided. , 12c,..., 12c... Are arranged on the side wall 13 via a correcting prism lens 19, and the condenser cell 20 is connected to a battery 6 (FIG. 1) via a cell control board 20c. Connected).
  • the light collecting grids 5a, 5b of the light collecting panels 1a, 1b used in the independent energy supply facility of the present invention form hollow casings 12a, 12b, 12c,.
  • a Fresnel lens 17 that condenses sunlight is installed on the upper incident light side 16 of each of the casings 12a, 12b, 12c..., And the sunlight collected through the Fresnel lens 17 12a, 12b, 12c... Is incident on the visible light reflection filter 18 which can reflect only the visible light P1 provided at an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • Each of the lead wires 7 is connected to the storage battery 9 through the substrate 20c, and the lower part of the visible light reflection filter 18 is installed with an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • An optical fiber introduction port 29 is installed on the side wall 13 of the casing 12a, 12b, 12c... Facing the infrared reflection mirror 27 through a correcting condenser lens 28.
  • the optical fiber 10 having the optical fiber introduction port 29 is connected to a thermoelectric converter 30 built in the condensing heat boiler device 11, and a hollow housing 12a constituting the condensing grids 5a, 5b, 5c. , 12b, 12c,..., 12b, 12c,..., 12b, 12c,. To have.
  • Constituting the condensing panels 1a, 1b used in the independent energy supply facility of the present invention are hollow casings 12a, 12b, 12c,. Is formed, and a Fresnel lens 17 that condenses sunlight is installed on the upper incident light side 16 of the casings 12a, 12b, 12c... And the sunlight collected through the Fresnel lens 17 is The visible light reflection filter 18 that can reflect only the visible light P1 installed at an intermediate portion of the casings 12a, 12b, 12c... With an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • the light enters the condensing cell 20 through the correction prism lens 19 and is converted into electricity, and the converted electricity is stored in the storage battery 9 by the lead wire 7 through the cell control board 20c.
  • Visible light The infrared ray P2 that has passed through the emission filter 18 is reflected and collected by an infrared reflection mirror 27 installed at a lower angle of 45 degrees with respect to the installation surface of the Fresnel lens 17 below the visible light reflection filter 18 and then corrected.
  • the infrared rays P2 collected at the optical fiber introduction port 29 through the condensing lens 28 and condensed at the optical fiber introduction port 29 are transferred as heat to the condensing heat boiler device 11 incorporating the thermoelectric converter 30 through the optical fiber 10. It is a stand-alone energy supply facility equipped with an automobile hydrogen fuel supplier and an electric automobile charger using sunlight using a solar condensing panel configured to be accumulated.
  • the operation of the light collecting panels 1a and 1b is performed by the hollow housings 12a, 12b, 12c,...
  • the light collecting grids 5a, 5b, 5c. Is formed, and a Fresnel lens 17 that condenses sunlight is installed on the upper incident light side 16 of the casings 12a, 12b, 12c...
  • the sunlight collected through the Fresnel lens 17 is A visible light reflection filter 18 capable of reflecting only visible light P1 installed at an intermediate portion of the housings 12a, 12b, 12c... With an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • the light enters the condensing cell 20 through the correcting prism lens 19 and is converted into electricity, and the converted electricity is sent to the system control device 8 (see FIGS. 1 and 2 in the lead wires 7). Connected to the Beam controlled power is accumulated in the capacitor 6.
  • FIG. 1 shows a method of using the electric power stored in the electric storage device 6, and the electric power stored in the electric storage device 6 is introduced into an electric vehicle charger 23 through a power supply control device 22 having an inverter 21.
  • the introduced electric power is supplied to the electric vehicle 25 by an electromagnetic induction type fixed charger 24 embedded in a floor surface or the like in the energy supply facility.
  • the configuration in which the infrared rays P2 of solar energy are collected and taken out as heat is the installation surface of the Fresnel lens 17 on the bottom 14 of the visible light reflection filter 18 in the casings 12a, 12b, 12c.
  • an infrared reflection mirror 27 installed at an inclination angle of 45 degrees with respect to the side wall 13 of the casings 12a, 12b, 12c... Facing the infrared reflection mirror 27.
  • An optical fiber introduction port 29 is installed through the lens 28, and the optical fibers 10, 10a, 10b, 10c,... Having the optical fiber introduction port 29 are connected to the condensing heat boiler apparatus 11 as shown in FIG.
  • the condensing heat boiler apparatus 11 includes a thermoelectric converter 30, which receives water from an externally introduced water pipe 31, and in the thermoelectric converter 30 covered with a heat insulating holding material 33.
  • the heat exchange conduction pipe 34 can be supplied.
  • the thermoelectric converter 30 the infrared ray P2 condensed on the outer diameter portion 35 through the correcting condenser lens 28 is disposed by optical fibers 10a, 10b, 10c, 10d, etc., and the optical fiber 10a.
  • the infrared rays P2 arranged at 10b, 10c, 10d, etc.
  • thermoelectric converters 30 built in the condensing heat boiler 11 can be provided in parallel so that infrared rays P2 from more condensing panel units 1A, 1B, 1C,. can do.
  • the water 32 supplied from the external introduction water pipe 31 is supplied from an external infrastructure to a water supply tank 40 including a filter 38 and a circulation pump 39 shown in FIG. Further, the generated water vapor 37 is accumulated in the boiler tank 42 covered with the heat insulating material 41 via the heat exchange conduction pipe 34, and the water vapor 37 is introduced into the water vapor heating device 44 through the vapor supply port 43, By passing through a high-temperature heater composed of an electric-heated steam heater, a high-frequency steam heater or the like equipped in the steam heater 44, the temperature of the reheated steam can be adjusted to a medium temperature steam (about 500 degrees), This intermediate temperature steam 45 is introduced into an intermediate temperature steam electrolyzer 46 to generate hydrogen and oxygen.
  • a high-temperature heater composed of an electric-heated steam heater, a high-frequency steam heater or the like equipped in the steam heater 44
  • This intermediate temperature steam 45 is introduced into an intermediate temperature steam electrolyzer 46 to generate hydrogen and oxygen.
  • the driving power of the steam heater 44 uses the power from the condensing grids 5a, 5b, 5c,... Stored in the capacitor 9 as a heating power source, and controls the energy converter from the system controller 8. It is also possible to use it by introducing it from an external infrastructure from the standby primary power supply 47 via the device 26.
  • the condensing heat boiler apparatus 11 used in the independent energy supply facility of the first embodiment has a plurality of condensing grids 5a, 5b, 5c,. Are formed by hollow casings 12a, 12b, 12c... And a Fresnel lens 17 for concentrating sunlight is installed on the upper incident light side 16 of each casing 12a, 12b, 12c.
  • the sunlight collected through the Fresnel lens 17 is installed at an intermediate angle of the housings 12a, 12b, 12c... With an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • the visible light reflection filter 18 reflects only the visible light P1, enters the condensing cell through the correcting prism lens 19, and is converted into electricity, and the converted electricity is transmitted through the cell control board 20c.
  • the infrared rays P2 stored in the storage battery 9 and passed through the visible light reflection filter 18 are installed below the visible light reflection filter 18 with an inclination angle of 45 degrees with respect to the installation surface of the Fresnel lens 17.
  • the infrared ray P2 is reflected and collected by the reflection mirror 27, and is collected to the optical fiber introduction port 29 via the correcting condensing lens 28, and is collected at each of the optical fiber introduction ports 29 (shown in FIG. 3).
  • the light is irradiated to the heat exchange conduction pipe 34 through the irradiation ports 36a, 36b, 36c... Of the condensing heat boiler apparatus 11, and the water circulating in the heat exchange conduction pipe 34 is heated to generate the intermediate temperature steam 45.
  • the boiler device using solar energy is used so that the intermediate temperature steam 45 is stored in a boiler tank covered with a heat insulating material 41.
  • 48 is a housing formed of an insulator
  • 49 is a steam inlet for supplying intermediate temperature steam 45 into the housing
  • 50 is an outlet for the generated hydrogen 51
  • 52a and 52b are generated oxygen.
  • a cathode 54 made of a porous electrode is provided on one side of the electrolyte, and an anode 55 made of a porous electrode is provided on the opposite side.
  • a plurality of electrolytic cells 56 composed of ceramic pipes are constructed, and electrolysis is performed by applying a voltage between the cathode 54 and the anode 55 of both electrodes while continuously supplying the intermediate temperature steam 45 to the cathode 54 side.
  • the intermediate temperature steam 45 is decomposed and separated into hydrogen 51 and water 53 containing water.
  • the hydrogen 51 containing water is stored in the hydrogen tank 59 after being introduced only into the primary pressure booster 58 through the hydrogen gas separator 57 shown in FIG.
  • the hydrogen fuel supplier 61 supplies the hydrogen fuel automobile 62 in a stand form.
  • the oxygen 53 generated by the intermediate temperature steam electrolyzer 46 is stored in the oxygen tank 64 via the oxygen gas cooling device 63 shown in FIG. 1, and the oxygen is supplied as fuel for the fuel cell vehicle.
  • the fuel cell device 65 installed in the energy supply facility of the present invention is also used as a fuel, and the electric power generated by the fuel cell device 65 is stored in the battery 9 by the electric wiring 66, It is also used as a power source for the power supply control device 22 of the electric vehicle charger 23.
  • the solar energy condensing panel units 1A and 1B provided with the solar tracking devices 2a and 2b on the roof or roof portion in the energy supply facility shown in FIG. It is installed and condensed into infrared rays P2 that easily convert the solar energy into visible light P1 and visible light P1 that are easily converted into electricity in the light collecting grids 5a, 5b, 5c,.
  • the infrared rays P2 are extracted as heat, accumulated in the condensing heat boiler device 11, and then introduced into the intermediate temperature steam electrolyzer 46 to generate hydrogen.
  • the generated hydrogen is pressurized and supplied to a hydrogen tank 59.
  • Electric vehicle hydrogen fuel supplier and electric vehicle charging using solar light which can be converted into electricity, stored in the battery 9 and supplied as electric vehicle power via the electric vehicle charger 23 It is a stand-alone energy supply facility equipped with a vessel.
  • the first embodiment of the present invention provides a next-generation hydrogen-fueled vehicle by providing a stand-alone energy supply facility equipped with the above-described hydrogen fuel supplier for vehicles and a charger for electric vehicles using solar energy. It is necessary to transport dangerous materials such as gasoline, LPG gas, and hydrogen gas from the manufacturing plant to each supply station by tank lorry like conventional energy supply stations. It provides an energy supply facility that can supply safe and inexpensive hydrogen fuel and electric vehicle power.
  • the first embodiment can provide a stand-alone energy supply facility that can simultaneously supply hydrogen fuel for hydrogen-fueled vehicles and clean energy for electric vehicles by making the most effective use of solar energy. is there.
  • Example 1 sunlight energy is divided into visible light that is easily converted into electric power and infrared light that is easily converted into heat in a light collecting grid, and the visible light is converted into electric power in a light collecting cell and stored in a storage battery. Electricity is stored and infrared rays are extracted as heat and converted into water vapor using a condensing heat boiler device. Hydrogen and oxygen are produced in a medium temperature steam electrolyzer that can generate hydrogen efficiently. By using oxygen as fuel for fuel cells and fuel cells, solar energy can be widely used.
  • FIG. 1 to FIG. 5 illustrate Example 2
  • FIG. 1 is an explanatory diagram illustrating an embodiment of the present invention
  • FIG. 2 is a perspective view illustrating a solar light tracking device in FIG. 3 is an enlarged cross-sectional view for explaining the main part AA of FIG. 2
  • FIG. 4 is an explanatory view of the condensing heat boiler shown in FIG. 1
  • FIG. 5 is an explanatory view of the intermediate temperature steam electrolyzer shown in FIG. It is.
  • solar energy condensing panel units 1A, 1B,... Equipped with a solar tracking device are installed on the roof or roof of the energy supply facility, and the respective condensing panel units are installed.
  • a plurality of condensing grids 5a, 5b, 5c... Constituting 1A, 1B... Condenses sunlight on the upper incident light side 16 of each casing 12a, 12b, 12.
  • the lens 17 is installed, and the sunlight condensed through the Fresnel lens 17 has an inclined surface of 45 degrees with respect to the installation surface of the Fresnel lens 17 in the middle part of the casings 12a, 12b, 12c.
  • the visible light reflection filter 18 is provided to reflect only the visible light P1, and is incident on the condensing cell 20 through the auxiliary prism lens 19, and converted into electricity.
  • the converted electricity is a system control device.
  • Lee through 8 The electric power stored in the battery 9 through the line 7 can be supplied as electric power for the electric vehicle 25 via the power supply control device 22 and the electric vehicle charger 23, and the visible light reflection can be performed.
  • the infrared ray P2 that has passed through the filter 18 is reflected and collected by the infrared reflection mirror 27 that is installed at a lower angle of 45 degrees with respect to the installation surface of the Fresnel lens 17 below the visible light reflection filter 18.
  • the light is condensed on the optical fiber introduction port 29 via the correcting condensing lens 28, and the light condensed at each of the optical fiber introduction ports 29 is irradiated to the heat exchange conduction pipe 34 of the condensing heat boiler device 11, Water circulating in the heat exchange conduction pipe 34 is heated to generate water vapor, and the water vapor is converted into intermediate temperature water vapor via the water vapor heating device 44 and introduced into the intermediate temperature water vapor electrolysis device 46. Hydrogen and oxygen are generated, and the generated hydrogen is stored in the hydrogen tank 59. The hydrogen in the hydrogen tank 59 is transferred to the hydrogen fuel vehicle 62 by the hydrogen fuel supplier 61 via the secondary pressure intensifier 60. It is a stand-alone energy supply facility equipped with a hydrogen fuel supply for automobiles using solar power that can be supplied and a charger for electric cars.
  • a plurality of the light collecting panel units 1A, 1B,... Of the present invention are installed on the roof or roof portion in the energy supply facility, and the light collecting panel unit 1A, 1B... Has an angle adjustment and rotation mechanism with respect to sunlight, and efficiently collects sunlight by rotating the angle adjustment mechanism and rotation mechanism with the sunlight tracking devices 2a and 2b.
  • Each of the light collecting panel units 1A, 1B,... Can be folded into two or more in the light collecting panel support frame 4 and can be folded or folded at night, at sunset, or in bad weather conditions such as typhoons. It can be stored indoors.
  • Infrared rays P2 that have passed through the visible light reflection filter 18 in the light collection grids 5a, 5b, 5c... Of the light collection panel units 1A, 1B.
  • Infrared ray P2 is reflected and collected by an infrared reflecting mirror 27 installed at an inclination angle of 45 degrees with respect to the installation surface of the lens 17 and condensed on the optical fiber introduction port 29 via the correcting condensing lens 28.
  • the light condensed at the respective optical fiber introduction ports 29 is irradiated to the heat exchange conduction pipe 34 of the condensing heat boiler device 11, and the water circulating in the heat exchange conduction pipe 34 is heated to generate water vapor.
  • the steam is heated to intermediate temperature steam via a steam heating device 44, and the intermediate temperature steam is electrolyzed with a porous cathode 54 on one side of the electrolyte and a porous anode 55 on the other side.
  • a voltage was applied between the porous cathode 54 and the porous anode 55 to perform electrolysis, and hydrogen and oxygen were generated by the electrolysis.
  • Hydrogen is stored in a hydrogen tank 59, and hydrogen in the hydrogen tank 59 can be supplied to a hydrogen fueled vehicle 62 by a hydrogen fuel supplier 61 through a secondary pressure intensifier 60. It is a stand-alone energy supply facility equipped with a feeder and a charger for electric vehicles.
  • the intermediate temperature steam electrolyzer 46 generates and stores it in the hydrogen tank 59 or the oxygen tank 64 in order to increase the capacity of the electric power stored in the electric storage in the independent energy supply facility.
  • a stand-alone energy supply facility can be provided.
  • the present invention provides a stand-alone energy supply facility equipped with the above-described hydrogen fuel supplier for automobiles and a charger for electric cars using solar energy, thereby enabling the generation of next-generation hydrogen fuel automobiles and electric vehicles.
  • Establishing an energy supply stand for automobiles there is no need to transport dangerous materials such as gasoline, LPG gas, and hydrogen gas from a manufacturing plant to each supply stand by a tank lorry like a conventional energy supply stand.
  • An energy supply facility capable of supplying safe and inexpensive hydrogen fuel and electric power for electric vehicles is provided.
  • the present invention can provide a stand-alone energy supply facility that can simultaneously supply hydrogen fuel for hydrogen-fueled vehicles and clean energy for electric vehicles by making the most effective use of solar energy. .
  • the present invention divides sunlight energy into visible light that is easy to convert into electricity and infrared light that is easy to convert into heat within the light collecting grid, and condenses each of the visible light in a condensing cell and stores it in a storage battery.
  • Infrared light is taken out as heat and converted into water vapor with a condensing heat boiler device to produce hydrogen and oxygen with a medium temperature steam electrolyzer that can efficiently generate hydrogen, of which hydrogen is a fuel for hydrogen fueled automobiles
  • oxygen as fuel for fuel cells and fuel for fuel cells, solar energy can be widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

太陽光エネルギーを利用して生成させた自動車用水素燃料と、同じく太陽エネルギーを電気変換して発生させた電気自動車用の電気エネルギーを同一施設内で供給することのできるエネルギー供給施設に関するものであり、エネルギー供給施設内の屋上等に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルを設置し、太陽エネルギーを熱変換しやすい赤外線と電気変換しやすい可視光に集光パネル内で分けて夫々集光し、赤外線は熱として取り出すことにより中温水蒸気電解装置に導入して水素を生成させ自動車用水素燃料供給器を介して水素を動力燃料として使用する水素自動車に供給し、また、太陽光エネルギーの可視光は集光パネルの集光セルにて電気に変換して電気自動車用の電力として供給できる独立型のエネルギー供給施設を提供する。

Description

太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設
本発明は、太陽光エネルギーを利用して生成させた自動車用水素燃料と、同じく太陽光エネルギーを電気変換して発生させた電気自動車用の電気エネルギーを供給することのできる独立型のエネルギー供給施設に関するものである。
本発明は、太陽光を効率良くエネルギー変換して生成した自動車用水素燃料と、太陽光エネルギーを電気変換して発生させた電気自動車用の電力を同一施設で供給することのできる独立型のエネルギースタンドに関するものであり、本発明における構成の特徴は、エネルギー供給施設の屋上や屋根部等に複数の太陽光追尾装置を備える集光パネルを設置して、該集光パネルを形成する集光グリッドにより太陽光が集光グリッドに長時間にわたって入射するように形成して太陽エネルギーを有効利用することのできるエネルギー供給施設を提供するものである。
また、本発明は、太陽光エネルギーを電気変換しやすい可視光と、熱変換しやすい赤外線に集光パネルのグリッド内で分けて夫々集光させ、前記可視光は、集光セルにて電気に変換して蓄電池に蓄電し、赤外線は熱として効率良く取り出すことのできる集光パネル装置を有し、更に、前記赤外線は、熱として取り出したのち集光熱ボイラーに導入して中温水蒸気を発生させることの可能な集光熱ボイラー装置を有している。
而して、本発明のエネルギー供給施設は、前記太陽光エネルギーの可視光を集光セルにて電気変換して蓄電池に電力を蓄電することにより、該電力を電気自動車用の電気エネルギーとして供給することのできる独立型のエネルギー供給施設を提供するものである。また、太陽光エネルギーの赤外線は、集光セルにて集光して光ファイバーを介して集光熱ボイラーに導入して中温水蒸気を発生させ、該中温水蒸気を中温水蒸気電解装置に供給して水素を発生させ、この水素を高圧にして水素タンクに貯蔵することにより水素を動力燃料として使用する水素燃料自動車に供給することのできる独立型のエネルギー供給施設を提供するものである。
太陽光エネルギーを効率良く利用するために太陽光の追尾装置を備えた採光システムや太陽光エネルギーを電気エネルギーに変換する太陽電池システム等の開発等が数多くなされている。
例えば太陽光を採光として利用するために太陽光の追尾装置を備えた採光装置の一例として、特開2013-104261号公報(以下、特許文献1と称する)がある。特許文献1の発明は、建物の屋上や屋根に設置されるトップライトと呼ばれる太陽光の採光装置において、トップライトを構成するドーム内に太陽光の追尾システムを備えた反射ミラーを設けて太陽光を追尾し太陽光に正対する効率的な採光装置を提供するものである。
また、太陽光エネルギーを電気エネルギーに変換する太陽電池システムの一例として、特開平11-97729号公報(以下、特許文献2と称する)がある。特許文献2の発明は、どのような向きのモジュール設置場所においても南向きと同様な発電特性を発揮する手段を提供するというものであり、集光系と太陽電池セルを有する複数個の集光セルで太陽電池モジュールを構成し、集光セルを構成する集光系の光軸がモジュールの主表面の法線方向と異なる向きをもつ集光セルが少なくとも1つ存在するように構成したり、集光セル同士を可動可能に構成して、太陽光に正対する時間を長くすることが可能で、発電効率や設置面積効率を高めることができる太陽電池モジュールを提供するものである。
更に、太陽光エネルギー等を用いて水素を生成し、該水素を動力燃料として使用する水素自動車に供給する水素供給スタンドの従来例として、特開2002-249031号公報(以下、特許文献3と称する)がある。特許文献3の発明は、太陽熱温水器のような形状を有している太陽光水分解パネルに上水を純水化して供給し、該太陽光水分解パネルにて生成された酸素と水素並びに水蒸気とを含む生成ガスから水素を分離する水素分離器から構成されており、該水素分離器により分離した水素は、他の細菌型燃料改質装置や燃料電池装置による水素生成装置からの水素と共に高圧水素タンクに貯蔵され水素ガス充填機を介して水素燃料電池自動車に供給される水素供給スタンドを提供するものである。  
而して、上記特許文献1は、太陽光の利用の形態として、太陽光の追尾装置を設けて太陽光を直接照明等に利用するものであり、太陽光を集光したり屈折させて太陽光の日照時間を効率良く採光するものであるが、太陽光の日照時間を効率良く採光しても、決して太陽光エネルギー自体を効率良く活用しているとはいえないものである。
また、特許文献2は、太陽光エネルギーを電気エネルギーに変換して利用する太陽電池発電等に関するものである。太陽光エネルギーの利用の形態として、太陽光エネルギーを電気エネルギーに変換して利用する太陽電池発電等に関するものが圧倒的に多い。然しながら、太陽光エネルギーは、紫外線、可視光、赤外線等、波長の異なった光で構成されており、太陽電池は、太陽光エネルギーの内、その一部である可視光のみを変換して利用するものが大部分であり、それ以外の紫外線領域の光や赤外線の光については発電等では、十分に利用されていないのが実情である。然も、波長の短い紫外線領域の光は、エネルギーが高く、太陽発電セルの劣化を早めると云う問題があり、また、可視光よりも波長の長い赤外線領域の光は、太陽発電セルの温度を上昇させるとともに、太陽発電セルの出力低下を招いてしまう欠点がある。
更に、特許文献3は、太陽光エネルギーを利用して純水から水素を生成する太陽光水分解装置等により水素燃料電池自動車に供給される水素供給スタンドを夫々開示している。然しながら、特許文献3の発明は、水素生成手法の選択を将来より安価に水素を供給できるとする細菌型燃料改質装置や太陽光分解装置、そして燃料電池装置を並べたものであり設備がプラントのように大がかりなものになると云う欠点を有しており、また、風力発電等の大がかりな設備による電力や送電ロスをしてしまう外部からの供給電力を使用しての水素の生成を行う等、設備投資費用対水素生成コストは、効率の良い安価な水素を提供できるものではないと云う欠点を有している。
斯くして、本発明は上述の点に鑑みてなされたものであり、太陽光エネルギーを熱変換しやすい赤外線と、電気変換しやすい可視光に集光パネルの集光グリット内で分けて夫々集光させ、太陽光エネルギーの赤外線は、熱として取り出すことにより集光熱ボイラー装置に蓄積した後、中温水蒸気電解装置に導入して水素を生成し、生成された水素は加圧して水素タンクに貯蔵され、該水素を動力燃料として使用する水素自動車に供給でき、また、太陽光エネルギーの可視光は集光セルにて電気に変換して蓄電池に電力を蓄電して電気自動車用の電力として供給できる太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設に関するものである。
特開2013-104261号公報 特開平11-97729号公報 特開2002-249031号公報
本発明は、独立型のエネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルを設置し、該太陽光エネルギーを熱変換しやすい赤外線と電気変換しやすい可視光に集光パネルの集光グリット内で分けて夫々集光させることにより、前記太陽光エネルギーの赤外線は、熱として取り出すことにより集光熱ボイラー装置に蓄積した後、中温水蒸気電解装置に導入して水素を生成し、生成された水素は加圧して水素タンクに貯蔵され、該水素を動力燃料として使用する水素自動車に供給でき、また、太陽光エネルギーの可視光は集光パネルの集光セルにて電気に変換し蓄電池に電力を蓄電して電気自動車用の電力として供給できる太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
本発明は、太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供することにより、次世代の水素自動車や電気自動車用のエネルギー供給スタンドを確立するものであり、従来型のエネルギー供給スタンドの如くガソリンやLPGガス、そして水素ガス等の危険物を製造工場からタンクローリーにより夫々の供給スタンドまで運搬する必要がなく、安全で安価な水素燃料と電気自動車用の電力を供給可能なエネルギー供給施設を提供するものである。
本発明は、エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルを設置し、該太陽光エネルギーを熱変換しやすい赤外線と電気変換しやすい可視光に集光パネルの集光グリット内で分けて夫々集光し、該太陽光エネルギーのうち赤外線は熱として取り出すことにより集光熱ボイラー装置に蓄積したのち中温水蒸気電解装置に導入して水素を生成し、該生成された水素は加圧して水素タンクに貯蔵され自動車用水素燃料供給器を介して水素を動力燃料として使用する水素自動車に供給でき、更に、前記太陽光エネルギーの可視光は、集光セルにて電気に変換して蓄電池に電力を蓄電して電気自動車用充電器を介して電気自動車用の電力として供給できることを特徴とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
また、本発明は、エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルを設置し、該夫々の集光パネルを構成する複数個の集光グリッドは夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜面を有して設置された可視光反射フィルターにて可視光のみを反射させて補助用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気はシステム制御装置を介してリード線にて蓄電器に蓄電され、該蓄電器に蓄電された電力は給電制御盤と電気自動車充電器を介して電気自動車用の電力として供給可能であり、また、前記可視光反射フィルターを通過した赤外線は、可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラーの熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ、該水蒸気を水蒸気加熱装置を介して中温水蒸気に変換して中温水蒸気電解装置に導入して水素と酸素を生成し、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能とした太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
更に、本発明において、前記集光パネルは、エネルギー供給施設内の屋上や屋根部分に複数台設置され、該集光パネルは太陽光に対して角度調整や回転機構を具備して、該角度調整機構や回転機構を太陽光追尾装置にて回動操作することにより太陽光を効率良く集光でき、また、夫々の集光パネルは集光パネル支持枠内において二つ以上に折り畳み可能に構成され夜間や日没時及び台風等気象条件の悪い時には折り畳みまたは折り畳んで屋内に収納可能にした太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
そして、本発明において、前記集光パネルの集光グリッド内で可視光反射フィルターを通過した赤外線は、可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラーの熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ、その水蒸気を水蒸気加熱装置を介して中温水蒸気に加熱し、該中温水蒸気を電解質の一方側に多孔質カソードを設け反対側に多孔質アノードを設けた電解セル内に連続的に供給しながら前記多孔質カソードと多孔質アノードの両電極間に電圧を印加して電気分解を行い、該電気分解にて水素と酸素を生成し、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
また、本発明において、前記独立型のエネルギー供給施設内の蓄電器に蓄電される電力容量のアップには前記中温水蒸気電解装置により生成され水素タンクや酸素タンクに貯蔵した水素や酸素をエネルギー供給施設内に燃料電池に供給することにより発電して、前記蓄電器に蓄電することを特徴とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
本発明は、上記太陽光エネルギーを利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供することにより、次世代の水素燃料自動車や電気自動車用のエネルギー供給スタンドを確立するものであり、従来型のエネルギー供給スタンドの如くガソリンやLPGガス、そして水素ガス等の危険物を製造工場からタンクローリーにより夫々の供給スタンドまで運搬する必要がなく、安全で安価な水素燃料と電気自動車用の電力を供給可能なエネルギー供給施設を提供するものである。
また、本発明は、太陽光エネルギーを効率良く採光可能な集光パネルを用いて最大限有効利用することにより水素燃料自動車用の水素燃料、及び電気自動車用のクリーンエネルギーを同時に供給できる独立型のエネルギー供給施設を提供することが可能である。
そして、本発明は、太陽光エネルギーを電気変換しやすい可視光と熱変換しやすい赤外線に集光グリット内で分けて夫々集光させ、可視光は集光セルにて電気変換して蓄電池に蓄電し、赤外線は熱として取り出して集光熱ボイラー装置にて水蒸気に変換することにより、効率良く水素を発生できる中温水蒸気電解装置にて水素と酸素を生成して、このうち水素は水素燃料自動車用燃料と燃料電池の燃料に、酸素は燃料電池の燃料に使用することにより、太陽光エネルギーを幅広く活用することが可能である。
本発明の実施形態を示す説明図である。 図1における太陽光の追尾装置を説明する斜視図である。 図2のA-A要部を説明する断面拡大図である。 図1に示す集光熱ボイラーの説明図である。 図1に示す中温水蒸気電解装置の説明図である。
本発明は、エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルユニットを設置し、該太陽光エネルギーを熱変換しやすい赤外線と電気変換しやすい可視光に集光パネルユニットの集光グリット内で分けて夫々集光し、該太陽光エネルギーのうち赤外線は熱として取り出すことにより集光熱ボイラー装置に蓄積したのち中温水蒸気電解装置に導入して水素を生成し、該生成された水素は加圧して水素タンクに貯蔵され自動車用水素燃料供給器を介して水素を動力燃料として使用する水素自動車に供給でき、また、前記太陽光エネルギーの可視光は集光セルにて電気に変換して蓄電器に電力を蓄電して電気自動車用充電器を介して電気自動車用の電力として供給できる太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものである。
また、本発明は、エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルユニットを設置し、該夫々の集光パネルユニットを構成する複数個の集光グリッドは夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜面を有して設置された可視光反射フィルターにて可視光のみを反射させて補助用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気はシステム制御装置を介してリード線にて蓄電器に蓄電され、該蓄電器に蓄電された電力は給電制御装置と電気自動車充電器を介して電気自動車用の電力として供給可能であり、また、前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラー装置の熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ、該水蒸気を水蒸気加熱装置を介して中温水蒸気に変換し中温水蒸気電解装置に導入して水素と酸素を生成し、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能とした太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設の構成を提供するものである。
更に、本発明において、独立型のエネルギー供給施設において使用される集光パネルの集光グリッドは、夫々中空形状の筐体を形成し、該夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部に設けられフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光のみ反射用の可視光反射フィルターに入射され、該可視光反射フィルターに対向する前記筐体の側壁には補正用プリズムレンズを介して集光セルを設置し、該集光セルは制御基板を介して夫々リード線にて蓄電池に接続されており、また前記可視光反射フィルターの下部には前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーを設け、該赤外線反射ミラーに対向する前記筐体の側壁には補正用集光レンズを介して光ファイバー導入口を設置し、該光ファイバー導入口を有する光ファイバーは集光熱ボイラー装置に内蔵された熱電変換器に接続されており、前記集光グリッドを構成する中空形状の筐体は左右及び上下方向に複数個配列して集光パネル枠内に嵌着保持されたパネル形状板を構成した効率の良い太陽光の集光パネルを用いることにより達成することが可能になった太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設である。
更にまた、本発明において、独立型のエネルギー供給施設において使用される集光パネルを構成する集光グリッドは、夫々中空形状の筐体を形成し、該筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光のみ反射可能な可視光反射フィルターにて反射した後補正用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気は制御基板を介してリード線にて蓄電池に蓄電され、また前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて反射集光したのち補正用集光レンズを介して光ファイバー導入口に集光され、該光ファイバー導入口に集光された赤外線は光ファイバーを介して熱電変換器を内蔵した集光熱ボイラー装置に熱として蓄積されるよう構成している太陽光の集光パネルを用いているものである。
そして、本発明における独立型のエネルギー供給施設において使用される集光パネルを構成する複数個の集光グリッドは、夫々中空形状の筐体を形成し、該夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光反射フィルターにて可視光のみを反射させて補正用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気は制御基板を介してリード線にて蓄電池に蓄電され、また前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラーの照射口36a、36b、36c・・・を介して熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して高温水蒸気を発生させ、該高温水蒸気を断熱材にて覆われたボイラータンクに蓄熱されるよう構成している太陽光エネルギーを利用したボイラー装置を用いていることが好ましい。
また、本発明における集光パネルユニットは、エネルギー供給施設内の屋上や屋根部分に複数台設置され、該集光パネルユニットは太陽光に対して角度調整や回転機構を具備して、該角度調整機構や回転機構を太陽光追尾装置にて回動操作することにより太陽光を効率良く集光でき、また、夫々の集光パネルユニットは集光パネル支持枠内において二つ以上に折り畳み可能に構成され夜間や日没時及び台風等気象条件の悪い時には折り畳みまたは折り畳んで屋内に収納可能にした太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供するものであることが好ましい。
更に、本発明における集光パネルユニットの集光グリッド内で可視光反射フィルターを通過した赤外線は、可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラー装置の熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ水蒸気を水蒸気加熱装置を介して中温水蒸気に加熱し、該中温水蒸気を電解質の一方側に多孔質カソードを設け反対側に多孔質アノードを設けた電解セル内に連続的に供給しながら前記多孔質カソードと多孔質アノードの両電極間に電圧を印加して電気分解を行い、該電気分解にて水素と酸素を生成する装置を備え、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能であることが好ましい。
そして、本発明は、太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設において、独立型のエネルギー供給施設内の蓄電器に蓄電される電力容量のアップは前記中温水蒸気電解装置により生成され水素タンクや酸素タンクに貯蔵した水素や酸素をエネルギー供給施設内に燃料電池装置に供給することにより発電して、前記蓄電器に蓄電する構成を備えていることが好ましい。
而して、本発明は、上記太陽光エネルギーを利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供することにより、次世代の水素燃料自動車や電気自動車用のエネルギー供給スタンドを確立するものであり、従来型のエネルギー供給スタンドの如くガソリンやLPGガス、そして水素ガス等の危険物を製造工場からタンクローリーにより夫々の供給スタンドまで運搬する必要がなく、安全で安価な水素燃料と電気自動車用の電力を供給可能なエネルギー供給施設を提供するものである。
また、本発明は、太陽光エネルギーを最大限有効利用することにより水素燃料自動車用の水素燃料、及び電気自動車用のクリーンエネルギーを同時に供給できる独立型のエネルギー供給施設を提供することが可能である。
更に、本発明は、太陽光エネルギーを電気変換しやすい可視光と熱変換しやすい赤外線に集光グリット内で分けて夫々集光させ、可視光は、集光セルにて電気変換して蓄電池に蓄電し、赤外線は、熱として取り出して集光熱ボイラー装置にて水蒸気に変換することにより、効率良く水素を発生できる中温水蒸気電解装置にて水素と酸素を生成して、このうち水素は水素燃料自動車用燃料と燃料電池の燃料に、酸素は燃料電池の燃料に使用することにより、太陽光エネルギーを幅広く活用することが可能である。
図1は、本発明の実施形態を示す説明図であり、図2は、図1における太陽光の追尾装置を説明する斜視図、図3は、図2のA-A要部を説明する断面拡大図、図4は、図1に示す集光熱ボイラーの説明図、図5は、図1に示す中温水蒸気電解装置の説明図である。
図1において1A、1Bは、太陽光に向かってパネル面を拡げた集光パネルユニット、2a、2bは、集光パネルユニット1A、1Bの全体を任意に回転でき、また集光パネルユニット1A、1Bを常に太陽光に対向するように角度調整可能な太陽光追尾装置、3a、3bは、集光パネル支持架台であり、前記集光パネルユニット1A、1Bは、エネルギー供給施設の屋上や屋根部分(図示せず)に集光パネル支持架台3a、3bを介して設置されており、エネルギー供給施設の屋上や屋根部分に設置される集光パネルユニット1A、1Bの台数は、エネルギー供給施設の規模により、複数台に増やして設置することができる。
図2は、図1における太陽光の追尾装置を説明するもので、1Aは、集光パネルユニットを示し、該集光パネルユニット1Aは、矢印R方向に折り畳み可能な2枚の集光パネル1a、1bからなり、該集光パネル1a、1bは夫々集光パネル枠4内に嵌着保持されて集光パネルユニット1Aを構成している。また、前記集光パネル1a、1bは集光グリット5a、5b、5c・・・の集合体にて構成されており、該集光グリット5a、5b、5c・・・により構成された集光パネルユニット1A,集光パネル1a、1bは、回転可能に構成された回転板6上に載置され、該回転板6上で太陽光に対する角度調整や太陽の方位や高度を追尾可能である他(太陽光追尾装置2a、2bは図1に記載)、集光パネルユニット1Aを構成する集光パネル1a、1bは、建物の屋上や屋外に設置され夜間や日没時及び台風等気象条件の悪い時には折りたたみ又は折り畳んで屋内等に収納可能に構成している。
また、前記集光パネル枠4内に嵌着保持された集光グリッド5a、5b、5c・・・の構成は、太陽エネルギーを電気変換しやすい可視光P1と熱変換しやすい赤外線P2に集光グリッド5a、5b、5c・・内で分けて夫々集光させ、可視光P1は集光セル20にて電気に変換されリード線7にてシステム制御装置8を介して蓄電器9に接続されて蓄電され、前記赤外線P2は熱として光ファイバー10を介して取り出すことにより、集光熱ボイラー装置11(図1に示す)に導入可能である。
次に、集光パネルユニット1A、集光パネル1a、1bの構成について図3において説明する。図3において、集光グリッド5a、5b、5c・・・は中空形状の筐体12a、12b、12c・・・を形成し、該筐体12a、12b、12c・・・の側壁13、及び底部14にはアルミカバー材15が貼着されている。そして、筐体12a、12b、12c・・・の上部入射光側16には太陽光を集光するフレネルレンズ17を設置し、前記筐体12a、12b、12c・・・の中間部にはフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された可視光のみを反射可能な可視光反射フィルター18を設け、該可視光反射フィルター18に対向する前記筐体12a、12b、12c・・・の側壁13には補正用プリズムレンズ19を介して集光セル20を設置し、該集光セル20はセル制御基板20cを介して夫々リード線7にて蓄電器6(図1に示す)に接続されている。
 斯くして、本発明の独立型のエネルギー供給施設において使用される集光パネル1a、1bの集光グリッド5a、5bは、夫々中空形状の筐体12a、12b、12c・・・を形成し、該夫々の筐体12a、12b、12c・・・の上部入射光側16に太陽光を集光するフレネルレンズ17を設置し、該フレネルレンズ17を介して集光された太陽光は前記筐体12a、12b、12c・・・の中間部に設けられフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された可視光P1のみが反射可能な可視光反射フィルター18に入射され、該可視光反射フィルター18に対向する前記筐体12a、12b、12c・・・の側壁13には補正用プリズムレンズ19を介して夫々集光セル20を設置し、該集光セル20はセル制御基板20cを介して夫々リード線7にて蓄電池9に接続されており、また前記可視光反射フィルター18の下部には前記フレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27を設け、該赤外線反射ミラー27に対向する前記筐体12a、12b、12c・・・の側壁13には補正用集光レンズ28を介して光ファイバー導入口29を設置し、該光ファイバー導入口29を有する光ファイバー10は集光熱ボイラー装置11に内蔵された熱電変換器30に接続されており、前記集光グリッド5a、5b、5c・・・を構成する中空形状の筐体12a、12b、12c・・・は左右及び上下方向に複数個配列して集光パネル枠内4に嵌着保持されたパネル形状板を構成している太陽光の集光パネルを用いている。
また、本発明の独立型のエネルギー供給施設において使用される集光パネル1a、1bを構成する集光グリッド5a、5b、5c・・・は、夫々中空形状の筐体12a、12b、12c・・・を形成し、該筐体12a、12b、12c・・・の上部入射光側16に太陽光を集光するフレネルレンズ17を設置し、該フレネルレンズ17を介して集光された太陽光は前記筐体12a、12b、12c・・・の中間部にフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された可視光P1のみが反射可能な可視光反射フィルター18にて反射したのち補正用プリズムレンズ19を介して集光セル20に入射して電気に変換され、該変換された電気はセル制御基板20cを介してリード線7にて蓄電池9に蓄電され、また前記可視光反射フィルター18を通過した赤外線P2は可視光反射フィルター18の下部にフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27にて反射集光したのち補正用集光レンズ28を介して光ファイバー導入口29に集光され、該光ファイバー導入口29に集光された赤外線P2は光ファイバー10を介して熱電変換器30を内蔵した集光熱ボイラー装置11に熱として蓄積されるよう構成している太陽光の集光パネルを用いている太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設である。
従って、上記集光パネル1a、1bの動作は、前記集光パネル1a、1bを構成する集光グリッド5a、5b、5c・・・にて、夫々中空形状の筐体12a、12b、12c・・・を形成し、該筐体12a、12b、12c・・・の上部入射光側16に太陽光を集光するフレネルレンズ17を設置し、該フレネルレンズ17を介して集光された太陽光は前記筐体12a、12b、12c・・・の中間部に前記フレネルレンズ17の設置面に対して45度の傾斜角を有して設置された可視光P1のみを反射可能な可視光反射フィルター18にて反射した後、補正用プリズムレンズ19を介して集光セル20に入射して電気に変換され、該変換された電気は夫々リード線7にてシステム制御装置8(図1及び図2に示す)に接続されており、システム制御された電力を蓄電器6に蓄電される。
図1は、前記蓄電器6に蓄電された電力の利用方法を示すものであり、蓄電器6に蓄電された電力は、インバーター21を有する給電制御装置22を介して、電気自動車充電器23に導入され、該導入された電力は、エネルギー供給施設内の床面等に埋設された電磁誘導方式の固定式充電器24により電気自動車25に供給される。
また、図3により太陽光エネルギーの赤外線P2を集光して熱として取り出す構成は、前記筐体12a、12b、12c・・・内の可視光反射フィルター18の底部14にフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27を設け、該赤外線反射ミラー27に対向する前記筐体12a、12b、12c・・・の側壁13には補正用集光レンズ28を介して光ファイバー導入口29を設置し、該光ファイバー導入口29を有する光ファイバー10、10a、10b、10c・・・は、図1に示す如く集光熱ボイラー装置11に接続されており、前記集光グリッド5a、5b、5c・・・を構成する中空形状の筐体12a、12b、12c・・・は左右及び上下方向に複数個配列して集光パネル枠4内に嵌着保持されてパネル形状板を構成している。
斯くして、図4において集光熱ボイラー装置11の構造を説明する。図4において、集光熱ボイラー装置11は、熱電変換器30を備え、該熱電変換器30は外部導入水管31から給水を受け、この水32を断熱保持材33で覆われた熱電変換器30内の熱交換伝導パイプ34内に供給することができる。そして、前記熱電変換器30には外径部35に前記補正用集光レンズ28を介して集光された赤外線P2が光ファイバー10a、10b、10c、10d等にて配置されており、該光ファイバー10a、10b、10c、10d等にて配置された赤外線P2は夫々集光された状態にて熱変換されており、夫々集光された状態の赤外線P2は前記光ファイバー10a、10b、10c、10d等の照射口36a、36b、36c・・・より熱電変換器30内に内蔵された熱交換伝導パイプ34に照射され、該熱交換伝導パイプ34の内部を循環する水32を加熱して水蒸気37を発生させる。
尚、集光熱ボイラー11内に内蔵される熱電変換器30は複数台並列して設けることでより多くの集光パネルユニット1A、1B、1C・・・からの赤外線P2を効率良く熱変換可能にすることができる。
また、上記外部導入水管31より給水される水32は、図1において図示されているフィルター38、循環ポンプ39からなる給水タンク40への外部インフラより供給されている。
また、発生した水蒸気37は夫々熱交換伝導パイプ34を介して断熱材41にて覆われたボイラータンク42に蓄積され、該水蒸気37は、蒸気供給口43により水蒸気加熱装置44内に導入され、水蒸気加熱装置44内に装備された電熱蒸気加熱器や高周波蒸気加熱器等からなる高温加熱器内を通過させることにより、再加熱され水蒸気の温度を中温水蒸気(約500度)に調整可能で、この中温水蒸気45を中温水蒸気電解装置46に導入して水素と酸素を生成する。
尚、上記水蒸気加熱器44の駆動電力は前記蓄電器9に蓄電した集光グリッド5a、5b、5c・・・からの電力を加熱用電源として利用する他、前記システム制御装置8よりエネルギー変換器制御装置26を介して予備一次電源47より外部インフラより導入することにより利用することも可能である。
而して、実施例1の独立型のエネルギー供給施設において使用される集光熱ボイラー装置11の構成は、集光パネル1a、1bを構成する複数個の集光グリッド5a、5b、5c・・・を夫々中空形状の筐体12a、12b、12c・・・により形成し、該夫々の筐体12a、12b、12c・・・の上部入射光側16に太陽光を集光するフレネルレンズ17を設置し、該フレネルレンズ17を介して集光された太陽光は前記筐体12a、12b、12c・・・の中間部にフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された可視光反射フィルター18にて可視光P1のみを反射させて補正用プリズムレンズ19を介して集光セルに入射して電気に変換され、該変換された電気はセル制御基板20cを介してリード線7にて蓄電池9に蓄電され、また前記可視光反射フィルター18を通過した赤外線P2は可視光反射フィルター18の下部に前記フレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27にて赤外線P2を反射集光して補正用集光レンズ28を介して光ファイバー導入口29に集光され、該夫々の光ファイバー導入口29(図3に示す)にて集光された光は集光熱ボイラー装置11の照射口36a、36b、36c・・・を介して熱交換伝導パイプ34に照射され、該熱交換伝導パイプ34内を循環する水を加熱して中温水蒸気45を発生させ、該中温水蒸気45を断熱材41にて覆われたボイラータンクに蓄熱されるよう構成している太陽光エネルギーを利用したボイラー装置を用いたものである。
次に図5において中温水蒸気電解装置46の構造を説明する。図5において、48は絶縁体から形成されたハウジング、49はハウジング内に中温水蒸気45を供給するための蒸気導入口、50は生成された水素51の取出し口、52a、52bは生成された酸素53の取出し口であり、前記絶縁体から形成されたハウジング48内部には、電解質の一方側に多孔質の電極からなるカソード54を設け、反対側に多孔質の電極からなるアノード55を設けたセラミックパイプからなる複数本の電解セル56を構成し、前記中温水蒸気45をカソード54側に連続的に供給しながら、両電極のカソード54とアノード55間に電圧を印加して電気分解をおこなうことにより、中温水蒸気45を分解して水を含む水素51と酸素53に分離させている。
よって、水を含む水素51は、図1に示す水素ガス分離装置57を介して、水素51のみを一次増圧装置58に導入後、水素タンク59に貯蔵し、二次増圧装置60を介して水素燃料供給器61によりスタンド形式にて、水素燃料自動車62に供給するものである。
また、前記中温水蒸気電解装置46にて生成された酸素53は、図1に示す酸素ガス冷却装置63を介して酸素タンク64に貯蔵され、該酸素は燃料電池車の燃料として、供給される他、本発明のエネルギー供給施設内に設置された燃料電池装置65の燃料としても使用され、該燃料電池装置65にて発電された電力は、電気配線66にて蓄電器9に蓄電される他、前記電気自動車充電器23の給電制御装置22用の電源としても利用される。
斯くして、本発明の実施例1は、図1に示したエネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置2a、2bを備えた太陽光エネルギーの集光パネルユニット1A、1Bを設置し、該太陽光エネルギーを熱変換しやすい赤外線P2と電気変換しやすい可視光P1に集光パネルユニット1A、1Bの集光グリット5a、5b、5c・・・内で分けて夫々集光し、該太陽光エネルギーのうち赤外線P2は熱として取り出すことにより集光熱ボイラー装置11に蓄積したのち中温水蒸気電解装置46に導入して水素を生成し、該生成された水素は加圧して水素タンク59に貯蔵され自動車用水素燃料供給器61を介して水素を動力燃料として使用する水素自動車62に供給でき、また、前記太陽光エネルギーの可視光P1は集光セル20にて電気に変換して蓄電器9に電力を蓄電して電気自動車用充電器23を介して電気自動車用の電力として供給できることを特徴とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設である。
そして、本発明の実施例1は、上記太陽光エネルギーを利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供することにより、次世代の水素燃料自動車や電気自動車用のエネルギー供給スタンドを確立するものであり、従来型のエネルギー供給スタンドの如くガソリンやLPGガス、そして水素ガス等の危険物を製造工場からタンクローリーにより夫々の供給スタンドまで運搬する必要がなく、安全で安価な水素燃料と電気自動車用の電力を供給可能なエネルギー供給施設を提供するものである。
また、実施例1は、太陽光エネルギーを最大限有効利用することにより水素燃料自動車用の水素燃料、及び電気自動車用のクリーンエネルギーを同時に供給できる独立型のエネルギー供給施設を提供することが可能である。
更に、実施例1は、太陽光エネルギーを電気変換しやすい可視光と熱変換しやすい赤外線に集光グリット内で分けて夫々集光させ、可視光は集光セルにて電気変換して蓄電池に蓄電し、赤外線は熱として取り出して集光熱ボイラー装置にて水蒸気に変換することにより、効率良く水素を発生できる中温水蒸気電解装置にて水素と酸素を生成して、このうち水素は水素燃料自動車用燃料と燃料電池の燃料に、酸素は燃料電池の燃料に使用することにより、太陽光エネルギーを幅広く活用することが可能である。
図1乃至図5は、実施例2を説明するものであり、図1は、本発明の実施形態を示す説明図であり、図2は、図1における太陽光の追尾装置を説明する斜視図、図3は、図2のA-A要部を説明する断面拡大図、図4は、図1に示す集光熱ボイラーの説明図、図5は、図1に示す中温水蒸気電解装置の説明図である。
実施例2の構成は、エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルユニット1A、1B・・・を設置し、該夫々の集光パネルユニット1A、1B・・・を構成する複数個の集光グリッド5a、5b、5c・・・は夫々の筐体12a、12b、12・・・の上部入射光側16に太陽光を集光するフレネルレンズ17を設置し、該フレネルレンズ17を介して集光された太陽光は前記筐体12a、12b、12c・・・の中間部にフレネルレンズ17の設置面に対して45度の傾斜面を有して設置された可視光反射フィルター18にて可視光P1のみを反射させ補助用プリズムレンズ19を介して集光セル20に入射して電気に変換され、該変換された電気はシステム制御装置8を介してリード線7にて蓄電器9に蓄電され、該蓄電器9に蓄電された電力は給電制御装置22と電気自動車充電器23を介して電気自動車用25の電力として供給可能であり、また、前記可視光反射フィルター18を通過した赤外線P2は可視光反射フィルター18の下部に前記フレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27にて赤外線P2を反射集光して補正用集光レンズ28を介して光ファイバー導入口29に集光し、該夫々の光ファイバー導入口29にて集光された光は集光熱ボイラー装置11の熱交換伝導パイプ34に照射され、該熱交換伝導パイプ34内を循環する水を加熱して水蒸気を発生させ、該水蒸気を水蒸気加熱装置44を介して中温水蒸気に変換して中温水蒸気電解装置46に導入して水素と酸素を生成し、該生成された水素を水素タンク59内に貯蔵し、該水素タンク59の水素は二次増圧装置60を介して水素燃料供給器61にて水素燃料自動車62に供給可能である太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設である。
更に、実施例2における他の実施例として、本発明の前記集光パネルユニット1A、1B・・・は、エネルギー供給施設内の屋上や屋根部分に複数台設置され、該集光パネルユニット1A、1B・・・は太陽光に対して角度調整や回転機構を具備して、該角度調整機構や回転機構を太陽光追尾装置2a、2bにて回動操作することにより太陽光を効率良く集光でき、また、夫々の集光パネルユニット1A,1B・・・は集光パネル支持枠4内において二つ以上に折り畳み可能に構成され夜間や日没時及び台風等気象条件の悪い時には折り畳みまたは折り畳んで屋内に収納可能に構成している。
そして、本発明における集光パネルユニット1A、1B・・・の集光グリッド5a、5b、5c・・・内で可視光反射フィルター18を通過した赤外線P2は、可視光反射フィルター18の下部にフレネルレンズ17の設置面に対して45度の傾斜角を有して設置された赤外線反射ミラー27にて赤外線P2を反射集光して補正用集光レンズ28を介して光ファイバー導入口29に集光され、該夫々の光ファイバー導入口29にて集光された光は集光熱ボイラー装置11の熱交換伝導パイプ34に照射され、該熱交換伝導パイプ34内を循環する水を加熱して水蒸気を発生させ水蒸気を水蒸気加熱装置44を介して中温水蒸気に加熱し、該中温水蒸気を電解質の一方側に多孔質カソード54を設け反対側に多孔質アノード55を設けた電解セル56内に連続的に供給しながら前記多孔質カソード54と多孔質アノード55の両電極間に電圧を印加して電気分解を行い、該電気分解にて水素と酸素を生成し、該生成された水素を水素タンク59内に貯蔵し、該水素タンク59の水素は二次増圧装置60を介して水素燃料供給器61にて水素燃料自動車62に供給可能できる太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設である。
また、本発明における実施例においては、独立型のエネルギー供給施設内の蓄電器に蓄電される電力容量のアップをはかるために、前記中温水蒸気電解装置46により生成され水素タンク59や酸素タンク64に貯蔵した水素や酸素をエネルギー供給施設内に設けた燃料電池装置65に供給することにより発電して、前記蓄電器9に蓄電する構成の太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設をも提供することができる。
斯くして、本発明は、上記太陽光エネルギーを利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設を提供することにより、次世代の水素燃料自動車や電気自動車用のエネルギー供給スタンドを確立するものであり、従来型のエネルギー供給スタンドの如くガソリンやLPGガス、そして水素ガス等の危険物を製造工場からタンクローリーにより夫々の供給スタンドまで運搬する必要がなく、安全で安価な水素燃料と電気自動車用の電力を供給可能なエネルギー供給施設を提供するものである。
また、本発明は、太陽光エネルギーを最大限有効利用することにより水素燃料自動車用の水素燃料、及び電気自動車用のクリーンエネルギーを同時に供給できる独立型のエネルギー供給施設を提供することが可能である。
更に、本発明は、太陽光エネルギーを電気変換しやすい可視光と熱変換しやすい赤外線に集光グリット内で分けて夫々集光させ、可視光は集光セルにて電気変換して蓄電池に蓄電し、赤外線は熱として取り出して集光熱ボイラー装置にて水蒸気に変換することにより、効率良く水素を発生できる中温水蒸気電解装置にて水素と酸素を生成して、このうち水素は水素燃料自動車用燃料と燃料電池の燃料に、酸素は燃料電池の燃料に使用することにより、太陽光エネルギーを幅広く活用することが可能である。
 1A、1B 集光パネルユニット
1a、1b 集光パネル  
2a、2b 太陽光追尾装置
3a、3b 集光パネル支持架台
 4 集光パネル枠
 5a、5b、5c・・・集光グリッド
6 回転板
 7 リード線
 8 システム制御装置
 9 蓄電器
10、10a、10b、10c・・・ 光ファイバー
11 集光熱ボイラー装置
12a、12b、12c・・・ 筐体
13 側壁
14 底部
15 アルミカバー材
16 上部入射光側
17 フレネルレンズ
18 可視光反射フィルター
19 補正用プリズムレンズ
20 集光セル
20c セル制御基板
21 インバーター
22 給電制御装置
23 電気自動車充電器
24 固定式充電器
25 電気自動車
26 エネルギー変換器制御装置
27 赤外線反射ミラー
28 補正用集光レンズ
29 光ファイバー導入口
30 熱電変換器
31 外部導入管
32 水
33 断熱保持材
34 熱交換伝導パイプ
35 外径部
36a、36b、36c・・・ 照射口
37 水蒸気
38 フィルター
39 循環ポンプ
40 給水タンク
41 断熱材
42 ボイラータンク
43 蒸気供給口
44 水蒸気加熱装置
45 中温水蒸気
46 中温水蒸気電解装置
47 予備一次電源
48 ハウジング
49 中温蒸気導入口
50 水素取出し口
51 水素
52a、52b 酸素取出し口
53 酸素
54 カソード
55 アノード
56 電解セル
57 水素ガス分離装置
58 一次増圧装置
59 水素タンク
60 二次増圧装置
61 水素燃料供給器
62 水素燃料自動車
63 酸素ガス冷却装置
64 酸素タンク
65 燃料電池装置
66 電気配線
R 折り畳み方向
P1 可視光
P2 赤外線

Claims (8)

  1. エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルユニットを設置し、該太陽光エネルギーを熱変換しやすい赤外線と電気変換しやすい可視光に集光パネルユニットの集光グリット内で分けて夫々集光し、該太陽光エネルギーのうち赤外線は熱として取り出すことにより集光熱ボイラー装置に蓄積したのち中温水蒸気電解装置に導入して水素を生成し、該生成された水素は加圧して水素タンクに貯蔵され自動車用水素燃料供給器を介して水素を動力燃料として使用する水素自動車に供給でき、また、前記太陽光エネルギーの可視光は集光セルにて電気に変換して蓄電器に電力を蓄電して電気自動車用充電器を介して電気自動車用の電力として供給できることを特徴とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  2. エネルギー供給施設内の屋上や屋根部分に太陽光の追尾装置を備えた太陽光エネルギーの集光パネルユニットを設置し、該夫々の集光パネルユニットを構成する複数個の集光グリッドは夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜面を有して設置された可視光反射フィルターにて可視光のみを反射させて補助用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気はシステム制御装置を介してリード線にて蓄電器に蓄電され、該蓄電器に蓄電された電力は給電制御装置と電気自動車充電器を介して電気自動車用の電力として供給可能であり、また、前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラー装置の熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ、該水蒸気を水蒸気加熱装置を介して中温水蒸気に変換し中温水蒸気電解装置に導入して水素と酸素を生成し、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能であることを特徴とする太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  3. 前記独立型のエネルギー供給施設において使用される集光パネルの集光グリッドは夫々中空形状の筐体を形成し、該夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部に設けられフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光のみが反射用の可視光反射フィルターに入射され、該可視光反射フィルターに対向する前記筐体の側壁には補正用プリズムレンズを介して集光セルを設置し、該集光セルは制御基板を介して夫々リード線にて蓄電池に接続されており、また前記可視光反射フィルターの下部には前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーを設け、該赤外線反射ミラーに対向する前記筐体の側壁には補正用集光レンズを介して光ファイバー導入口を設置し、該光ファイバー導入口を有する光ファイバーは集光熱ボイラー装置に内蔵された熱電変換器に接続されており、前記集光グリッドを構成する中空形状の筐体は左右及び上下方向に複数個配列して集光パネル枠内に嵌着保持されてパネル形状板を構成している太陽光の集光パネルを用いたことを特徴とする請求項1または請求項2のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  4. 前記独立型のエネルギー供給施設において使用される集光パネルを構成する集光グリッドは夫々中空形状の筐体を形成し、該筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光のみが反射可能な可視光反射フィルターにて反射した後補正用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気は制御基板を介してリード線にて蓄電池に蓄電され、また前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて反射集光したのち補正用集光レンズを介して光ファイバー導入口に集光され、該光ファイバー導入口に集光された赤外線は光ファイバーを介して熱電変換器を内蔵した集光熱ボイラー装置に熱として蓄積されるよう構成している太陽光の集光パネルを用いたことを特徴とする請求項1または請求項2のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  5. 前記独立型のエネルギー供給施設において使用される集光パネルを構成する複数個の集光グリッドは夫々中空形状の筐体を形成し、該夫々の筐体の上部入射光側に太陽光を集光するフレネルレンズを設置し、該フレネルレンズを介して集光された太陽光は前記筐体の中間部にフレネルレンズの設置面に対して45度の傾斜角を有して設置された可視光反射フィルターにて可視光のみを反射させて補正用プリズムレンズを介して集光セルに入射して電気に変換され、該変換された電気は制御基板を介してリード線にて蓄電池に蓄電され、また前記可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラーの照射口を介して熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して高温水蒸気を発生させ、該高温水蒸気を断熱材にて覆われたボイラータンクに蓄熱されるよう構成している太陽光エネルギーを利用したボイラー装置を用いたことを特徴とする請求項1または請求項2のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  6. 前記集光パネルユニットはエネルギー供給施設内の屋上や屋根部分に複数台設置され、該集光パネルユニットは太陽光に対して角度調整や回転機構を具備して、該角度調整機構や回転機構を太陽光追尾装置にて回動操作することにより太陽光を効率良く集光でき、また、夫々の集光パネルユニットは集光パネル支持枠内において二つ以上に折り畳み可能に構成され夜間や日没時及び台風等気象条件の悪い時には折り畳みまたは折り畳んで屋内に収納可能にしたことを特徴とする請求項1乃至請求項5のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  7. 前記集光パネルユニットの集光グリッド内で可視光反射フィルターを通過した赤外線は可視光反射フィルターの下部に前記フレネルレンズの設置面に対して45度の傾斜角を有して設置された赤外線反射ミラーにて赤外線を反射集光して補正用集光レンズを介して光ファイバー導入口に集光され、該夫々の光ファイバー導入口にて集光された光は集光熱ボイラー装置の熱交換伝導パイプに照射され、該熱交換伝導パイプ内を循環する水を加熱して水蒸気を発生させ水蒸気を水蒸気加熱装置を介して中温水蒸気に加熱し、該中温水蒸気を電解質の一方側に多孔質カソードを設け反対側に多孔質アノードを設けた電解セル内に連続的に供給しながら前記多孔質カソードと多孔質アノードの両電極間に電圧を印加して電気分解を行い、該電気分解にて水素と酸素を生成し、該生成された水素を水素タンク内に貯蔵し、該水素タンクの水素は二次増圧装置を介して水素燃料供給器にて水素燃料自動車に供給可能であることを特徴とする請求項1乃至請求項5のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
  8. 前記独立型のエネルギー供給施設内の蓄電器に蓄電される電力容量のアップには前記中温水蒸気電解装置により生成され水素タンクや酸素タンクに貯蔵した水素や酸素をエネルギー供給施設内に燃料電池装置に供給することにより発電して、前記蓄電器に蓄電することを特徴とする請求項1乃至請求項5のいずれかに記載された太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設。
PCT/JP2015/053048 2014-06-13 2015-02-04 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設 WO2015190123A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167034774A KR20170007399A (ko) 2014-06-13 2015-02-04 태양광을 이용한 자동차용 수소 연료 공급기와 전기 자동차용 충전기를 갖춘 독립형 에너지 공급 시설
US15/315,555 US20170207745A1 (en) 2014-06-13 2015-02-04 Stand-alone energy supply facility equipped with vehicle hydrogen fuel supply unit and electric vehicle charger harnessing sunlight
EP15805809.9A EP3157166A4 (en) 2014-06-13 2015-02-04 Stand-alone energy supply facility equipped with vehicle hydrogen fuel supply unit and electric vehicle charger harnessing sunlight
CN201580031463.7A CN106458165A (zh) 2014-06-13 2015-02-04 装有车辆氢燃料供应单元的独立型能量供应设施和利用阳光的电动车辆充电器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-122349 2014-06-13
JP2014-122348 2014-06-13
JP2014122348A JP5989036B2 (ja) 2014-06-13 2014-06-13 太陽光の集光パネル
JP2014122349A JP6042375B2 (ja) 2014-06-13 2014-06-13 太陽光エネルギーを利用した集光熱ボイラー装置
JP2014167320A JP6042385B2 (ja) 2014-08-20 2014-08-20 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設
JP2014-167320 2014-08-20

Publications (1)

Publication Number Publication Date
WO2015190123A1 true WO2015190123A1 (ja) 2015-12-17

Family

ID=54833234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053048 WO2015190123A1 (ja) 2014-06-13 2015-02-04 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設

Country Status (5)

Country Link
US (1) US20170207745A1 (ja)
EP (1) EP3157166A4 (ja)
KR (1) KR20170007399A (ja)
CN (1) CN106458165A (ja)
WO (1) WO2015190123A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107327700A (zh) * 2017-05-23 2017-11-07 石家庄新华能源环保科技股份有限公司 一种充电和更换金属氢化物的氢能源站
WO2018133900A1 (de) * 2017-01-23 2018-07-26 Bpe International Dr. Hornig Gmbh Autonome energieanlage
CN110803063A (zh) * 2019-12-12 2020-02-18 苍南国博新能源科技有限公司 一种新能源汽车充电桩外设装置
EP3950413A1 (en) * 2017-03-24 2022-02-09 The Noco Company Electric vehicle (ev) recharging/fuelling station
US11600996B2 (en) 2017-03-24 2023-03-07 The Noco Company Electric vehicle (EV) fast recharge station and system
KR20240136503A (ko) 2023-03-06 2024-09-19 황상진 천연 액화 가스에 의한 수소 차량 및 전기 차량을 위한 충전 시스템

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654335B2 (en) * 2016-06-14 2020-05-19 Denso International America, Inc. Thermal energy storage systems
US20180257499A1 (en) * 2016-09-23 2018-09-13 Faraday&Future Inc. Dual charging station
CN107786162A (zh) * 2017-11-23 2018-03-09 惠州市多普勒通信有限公司 一种折叠式太阳能电池板
DE102019204664A1 (de) * 2019-04-02 2020-10-08 ENERCOLL GmbH Anlage zur autarken Bereitstellung von Energieträgern für Kraftfahrzeuge
KR102273948B1 (ko) * 2019-04-08 2021-07-06 강동엽 자립형 전기 및 수소가스 충전소
EP3805427A1 (de) * 2019-10-11 2021-04-14 Siemens Aktiengesellschaft Vorrichtung und verfahren zum betanken eines fortbewegungsmittels
EP3851316A1 (de) * 2020-01-17 2021-07-21 H2 Energy AG System zum auftanken von fahrzeugen mit wasserstoff-elektrischem antrieb und zum aufladen von fahrzeugen mit batterie-elektrischem antrieb
DE102020122127A1 (de) 2020-08-25 2022-03-03 Framatome Gmbh Ladesystem für Fahrzeuge
DE102020212018A1 (de) 2020-09-24 2022-03-24 Argo Gmbh Ladestation, insbesondere mobile Ladestation
DE102020135043A1 (de) 2020-12-29 2022-06-30 Yvonne Paula Maria Becker Stromversorgungsvorrichtung und -verfahren
KR102328185B1 (ko) 2021-03-05 2021-11-17 주식회사 리쏠 독립 구동형 전기차량 태양광 충전 시스템
CN114350388A (zh) * 2022-01-14 2022-04-15 河海大学 一种污泥生物炭的太阳能制备装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534186A (ja) * 2001-06-15 2004-11-11 ジーテック コーポレーション 無/低排出及び併産エネルギー供給ステーション
JP2006176834A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd エネルギー変換システム
JP2009519178A (ja) * 2005-12-12 2009-05-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー 多様な車両技術の要求に応えるサービスステーション
JP2009522790A (ja) * 2005-12-29 2009-06-11 サンパワー・コーポレイション,システムズ 一体型折り畳み光起電アセンブリ
JP2009209441A (ja) * 2008-03-06 2009-09-17 Kyushu Univ 電気化学セル
US20100199974A1 (en) * 2009-02-12 2010-08-12 Babcock Power Services Inc. Solar receiver panels
JP2011249506A (ja) * 2010-05-26 2011-12-08 Kobe Steel Ltd 太陽光分離発電装置
EP2407340A1 (en) * 2010-07-12 2012-01-18 Nation-E AG No emissions service station for electric vehicles
WO2013006249A1 (en) * 2011-07-07 2013-01-10 Cajiga Jose Mobile fuel distribution station
WO2013168855A1 (ko) * 2012-05-10 2013-11-14 한국기계연구원 고온 환경을 위한 태양에너지 발전시스템
JP2014025679A (ja) * 2012-07-30 2014-02-06 Babcock-Hitachi Co Ltd 太陽熱ボイラ用集熱装置及びこれを備えたタワー式太陽熱ボイラ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613953A (ja) * 1984-06-15 1986-01-09 Kubota Ltd 太陽熱集熱装置
JPH1068552A (ja) * 1996-08-28 1998-03-10 Fuji Denki Techno Eng Kk エネルギー変換方法及びエネルギー変換装置、太陽光複合利用システム
JPH1197729A (ja) 1997-09-19 1999-04-09 Hitachi Ltd 太陽電池モジュール
JP2002249031A (ja) 2001-02-22 2002-09-03 Denaro:Kk 水素供給スタンド
US20080135403A1 (en) * 2006-12-11 2008-06-12 Jang Bor Z Home hydrogen fueling station
US7923624B2 (en) * 2008-06-19 2011-04-12 Solar Age Technologies Solar concentrator system
CN102177591A (zh) * 2008-09-04 2011-09-07 摩根阳光公司 用于聚光太阳能板的交错开的光收集器
US8721868B2 (en) * 2009-03-16 2014-05-13 GM Global Technology Operations LLC Integrated solar-powered high-pressure hydrogen production and battery charging system
US20120007542A1 (en) * 2010-07-11 2012-01-12 Daniel Jammer No emissions service station for electric vehicles
US20120255540A1 (en) * 2011-04-07 2012-10-11 Hutchin Richard A Sun tracking solar concentrator
JP5564029B2 (ja) 2011-11-16 2014-07-30 特殊技研金属株式会社 太陽光の採光システムを備えたトップライト

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534186A (ja) * 2001-06-15 2004-11-11 ジーテック コーポレーション 無/低排出及び併産エネルギー供給ステーション
JP2006176834A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd エネルギー変換システム
JP2009519178A (ja) * 2005-12-12 2009-05-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー 多様な車両技術の要求に応えるサービスステーション
JP2009522790A (ja) * 2005-12-29 2009-06-11 サンパワー・コーポレイション,システムズ 一体型折り畳み光起電アセンブリ
JP2009209441A (ja) * 2008-03-06 2009-09-17 Kyushu Univ 電気化学セル
US20100199974A1 (en) * 2009-02-12 2010-08-12 Babcock Power Services Inc. Solar receiver panels
JP2011249506A (ja) * 2010-05-26 2011-12-08 Kobe Steel Ltd 太陽光分離発電装置
EP2407340A1 (en) * 2010-07-12 2012-01-18 Nation-E AG No emissions service station for electric vehicles
WO2013006249A1 (en) * 2011-07-07 2013-01-10 Cajiga Jose Mobile fuel distribution station
WO2013168855A1 (ko) * 2012-05-10 2013-11-14 한국기계연구원 고온 환경을 위한 태양에너지 발전시스템
JP2014025679A (ja) * 2012-07-30 2014-02-06 Babcock-Hitachi Co Ltd 太陽熱ボイラ用集熱装置及びこれを備えたタワー式太陽熱ボイラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3157166A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133900A1 (de) * 2017-01-23 2018-07-26 Bpe International Dr. Hornig Gmbh Autonome energieanlage
EP3950413A1 (en) * 2017-03-24 2022-02-09 The Noco Company Electric vehicle (ev) recharging/fuelling station
US11600996B2 (en) 2017-03-24 2023-03-07 The Noco Company Electric vehicle (EV) fast recharge station and system
CN107327700A (zh) * 2017-05-23 2017-11-07 石家庄新华能源环保科技股份有限公司 一种充电和更换金属氢化物的氢能源站
CN107327700B (zh) * 2017-05-23 2019-04-26 石家庄新华能源环保科技股份有限公司 一种充电和更换金属氢化物的氢能源站
CN110803063A (zh) * 2019-12-12 2020-02-18 苍南国博新能源科技有限公司 一种新能源汽车充电桩外设装置
CN110803063B (zh) * 2019-12-12 2020-09-29 安徽鸿杰威尔停车设备有限公司 一种新能源汽车充电桩外设装置
KR20240136503A (ko) 2023-03-06 2024-09-19 황상진 천연 액화 가스에 의한 수소 차량 및 전기 차량을 위한 충전 시스템

Also Published As

Publication number Publication date
EP3157166A1 (en) 2017-04-19
CN106458165A (zh) 2017-02-22
US20170207745A1 (en) 2017-07-20
KR20170007399A (ko) 2017-01-18
EP3157166A4 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2015190123A1 (ja) 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設
JP6042385B2 (ja) 太陽光を利用した自動車用水素燃料供給器と電気自動車用充電器を備えた独立型のエネルギー供給施設
US7281381B2 (en) Mechanical-thermal solar power system
US20080078435A1 (en) Mechanical/Thermo-Voltaic Solar Power System
KR970706475A (ko) 태양광을 장파장과 단파장으로 분리함에 의해서 발전 및 가열을 하기 위한 혼성 태양광 집광기(hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength)
JPH08503738A (ja) 太陽放射線による水素の高効率製造
KR102273948B1 (ko) 자립형 전기 및 수소가스 충전소
US4172740A (en) Solar energy system
CN113411036B (zh) 一种基于太阳能分频利用的综合供能系统
JP2018523459A (ja) 密閉式太陽エネルギー利用装置及びシステム
KR20160136528A (ko) 태양열 및 태양광 복합 태양 에너지 온수기
CN105257488A (zh) 太阳能风能发电装置
KR20200096012A (ko) 태양열 및 태양광 복합장치
US20150207450A1 (en) Energy conversion and transfer arrangement for thermophotovoltaic devices and thermophotovoltaic devices comprising such
WO2011101676A1 (en) Hydrogen generation system
CN1996738A (zh) 一种高性能太阳能装置
JP2006319291A (ja) 太陽光集中高温炉ガス製造装置
US5981865A (en) Apparatus for utilizing solar energy
KR101290126B1 (ko) 복합 재생에너지 발전 시스템을 구비한 태양광 정밀 집광 센싱 기술을 갖는 미러 부착 조명 시스템
US20220247343A1 (en) Thermoelectric active storage embedded hybrid solar thermal and photovoltaic wall module
CN201474197U (zh) 波形瓦聚光太阳能水电一体化建筑模块
CN101237196A (zh) 太阳能聚光激光发电装置
WO2010057257A1 (en) An apparatus and method for producing hydrogen gas
JP6042375B2 (ja) 太陽光エネルギーを利用した集光熱ボイラー装置
CN2884537Y (zh) 一种高性能太阳能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805809

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015805809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015805809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15315555

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167034774

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE