WO2015188451A1 - 光模块接口 - Google Patents

光模块接口 Download PDF

Info

Publication number
WO2015188451A1
WO2015188451A1 PCT/CN2014/084854 CN2014084854W WO2015188451A1 WO 2015188451 A1 WO2015188451 A1 WO 2015188451A1 CN 2014084854 W CN2014084854 W CN 2014084854W WO 2015188451 A1 WO2015188451 A1 WO 2015188451A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
data
ground
power
pins
Prior art date
Application number
PCT/CN2014/084854
Other languages
English (en)
French (fr)
Inventor
翟基海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015188451A1 publication Critical patent/WO2015188451A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical module interface.
  • BACKGROUND With the large-scale application of a passive optical network (PON), the ability to rapidly deploy and provide services has become an industry consensus. It can reduce the complexity of accessing the network and reduce the cost of network construction and the cost of post-maintenance. PON is becoming the mainstream technology for full service access in the future. However, to meet this technical requirement, the transmission function of clock, time, and power-down alarm signals must be available.
  • the existing PON MAC chip already has this function, and as the integration degree of the chip increases, the size of the PON MAC chip is gradually reduced, and an optical module with a PON MAC chip appears, for example, a small form factor pluggable module (Small Form Factor) Pluggable Module, SFP), Enhanced Small Form Factor Pluggable Module (SFP+), Small Form Factor Module (SFF), 10G Small Form Factor Module (10 Gigabit Small Form Factor) Pluggable, XFP).
  • small form factor pluggable module Small Form Factor
  • SFP Enhanced Small Form Factor Pluggable Module
  • SFF Small Form Factor Module
  • 10G Small Form Factor Module 10 Gigabit Small Form Factor Pluggable
  • XFP 10G Small Form Factor Module
  • At least one phase-locked loop chip for reducing jitter should be added to the module.
  • the time synchronization function can only be used. Passing IEEE1588 technology to the outside of the module requires adding chips that support IEEE1588 functions both inside and outside the module. These will undoubtedly greatly increase the cost, and this function can not be integrated into the optical module which is already limited in volume, that is, it cannot be realized in the volume structure.
  • the main purpose of the utility model is to solve the technical problem that the optical module interface cannot support the transmission of signals such as time and clock synchronization.
  • the present invention provides an optical module interface, the optical module interface is provided with an internal processing module, the internal processing module can provide a time and clock synchronization signal, and the optical module interface has a real-time time signal serial data output tube a foot, a second pulse signal output pin, an optical path clock synchronization signal output pin, and a power failure alarm signal input pin, wherein the real time time signal serial data output pin is used for real time time signal serial data output signal serial Data output; the second pulse signal output pin is used for outputting a second pulse signal output signal; The optical path clock synchronization signal output pin is used for the optical path clock synchronization signal output; and the power failure alarm signal input pin is used for the power module power failure indication signal input.
  • the first pin of the optical module interface is a transmitter terminal; the second pin is an optical clock synchronization signal output pin; the third pin is a transmit shutdown pin; and the fourth pin is a serial Interface data line pin; the fifth pin is the serial interface clock pin; the sixth pin is the real-time time signal serial data output pin; the seventh pin is the power-down alarm signal input pin; the eighth pin The receiving signal loses the pin; the ninth pin is the second pulse signal output pin; the tenth and eleventh pins are the receiving end ground pin; the twelfth pin is the receiving end inverted data pin; The thirteenth pin is the receiving end data pin; the fourteenth pin receiving end grounding pin; the fifteenth pin is the receiving end power pin; the sixteenth pin is the transmitting end power pin; the seventeenth tube The pin is the transmitting terminal pin; the 18th pin is the transmitting data pin; the 19th pin is the transmitting end inverted data pin; the 20th pin is the transmitting end ground pin; the ninth pin is the transmitting end ground pin; It is flush
  • the first pin of the optical module interface is a transmitting end pin; the second pin is an optical path clock synchronization signal output pin; the third pin is a transmitting and closing pin; the fourth pin is a string Line interface data line pin; fifth pin is serial interface clock pin; sixth pin is second pulse signal output pin; seventh pin is power failure alarm signal input pin; eighth pin is receiving The signal loss pin; the ninth pin is a real-time time signal serial data output pin; the tenth and eleventh pins are the receiving end ground pin; the twelfth pin is the receiving end inverted data pin; The thirteenth pin is the receiving end data pin; the fourteenth pin receiving end ground pin; the fifteenth pin is the receiving end power pin; the sixteenth pin is the transmitting end power pin; The pin is the transmitter pin; the 18th pin is the transmitter data pin; the 19th pin is the transmitter end data pin; the 20th pin is the transmitter pin; the ninth tube The foot is flush with the eighth pin.
  • the first pin of the optical module interface is a transmitter terminal;
  • the second pin is a real-time time signal serial data output pin;
  • the third pin is a transmit-off pin;
  • the fourth pin is Serial interface data line pin;
  • the fifth pin is the serial interface clock pin;
  • the sixth pin is the second pulse signal output pin;
  • the seventh pin is the power down alarm signal input pin;
  • the eighth pin is The receiving signal loss pin;
  • the ninth pin is the optical path clock synchronization signal output pin;
  • the tenth and eleventh pins are the receiving end ground pin;
  • the twelfth pin is the receiving end inverted data pin;
  • the thirteenth pin is the receiving end data pin;
  • the fifteenth pin is the receiving end power pin;
  • the sixteenth pin is the transmitting end power pin;
  • the seventeenth tube The pin is the transmitting terminal pin;
  • the 18th pin is the transmitting data pin;
  • the 19th pin is the transmitting end inverted data
  • the first pin of the optical module interface is a ground pin; the second pin is a floating or 5.2 volt power pin; the third pin is a power failure alarm signal input pin; the fourth pin is The interrupt pin is the fifth pin; the fifth pin is the 5 volt power pin; the seventh pin is the ground pin; the eighth and ninth pins are 3.
  • the tenth pin is a two-wire interface clock pin; the eleventh pin is a two-wire interface data line pin; the twelfth pin is a second pulse signal output pin; the thirteenth pin is Real-time time signal serial data output pin; the fourteenth pin is the receiving signal loss pin; the fifteenth and sixteenth pins are grounding pins; the seventeenth pin receiving end is inverted data pin; The eighteenth pin is the receiving terminal data pin; the nineteenth pin is the grounding pin; the twentyth pin is the 1.8 volt power pin; the twenty-first pin is powered off or the reset pin; the twentieth The second pin is a 1.8 volt power supply pin; the twenty-third pin is a ground pin; the twenty-fourth pin is an optical path clock synchronization signal output pin; the twenty-fifth pin is a floating unconnected or grounded pin; The twenty-sixth and twenty-seventh pins are grounding pins; the twenty-eighth pins are the transmitting end inverted data pins; the twenty-
  • the first pin of the optical module interface is a ground pin; the second pin is a floating or 5.2 volt power pin; the third pin is a power failure alarm signal input pin; the fourth pin is The interrupt pin is the fifth pin; the fifth pin is the 5 volt power pin; the seventh pin is the ground pin; the eighth and ninth pins are the 3.
  • the tenth pin is a two-wire interface clock pin; the eleventh pin is a two-wire interface data line pin; the twelfth pin is a second pulse signal output pin; the thirteenth pin is a real-time time signal Serial data output pin; the fourteenth pin is the receiving signal loss pin; the fifteenth and sixteenth pin are the ground pin; the seventeenth pin receiving end is the inverted data pin;
  • the pin is the receiving data pin; the 19th pin is the ground pin; the 20th pin is the 1.8 volt power pin; the 21st pin is powered off or reset the pin; the 22nd pin It is a 1.8 volt power supply pin; the 23rd pin is a ground pin; the 24th pin is an optical path clock synchronous differential signal positive terminal;
  • the fifteen-pin is the optical path clock synchronous differential signal negative terminal;
  • the twenty-sixth and twenty-seventh pins are ground pins;
  • the twenty-eighth pins are the transmitter inverted data pins;
  • the nine-pin is a
  • the internal processing module is a PON MAC chip.
  • the optical module interface of the utility model defines a real-time time signal serial data output pin, a second pulse signal output pin, an optical path clock synchronization signal output pin, and a power-down alarm signal input pin on the optical module, so that the light is made
  • the module interface pins enable time, clock synchronization, and power-down warning signals.
  • FIG. 4 is a schematic diagram of a pin signal and a serial number of a third embodiment of the optical module interface of the present invention
  • FIG. FIG. 5 is a schematic diagram of a pin signal and a serial number of a fourth embodiment of the optical module interface of the present invention
  • FIG. 6 is a schematic diagram of a pin signal and a serial number of the fifth embodiment of the optical module interface of the present invention.
  • the optical module interface is provided with an internal processing module, which can provide time and clock synchronization signals, and the optical module interface has real-time time signal serial data (Time Of Date, ToD) output pin, pulse pulse signal (Pulse Per Second, 1PPS) output pin, optical path clock synchronization signal (Sync_Clk) output pin and power down alarm signal (Dying-Gasp) input pin, where
  • the real-time time signal serial data output pin is used for the real-time time signal serial data output signal serial data output;
  • the second pulse signal output pin is used for the second pulse signal output signal output;
  • the optical path clock synchronization signal output pin It is used for the optical path clock synchronization signal output;
  • the power failure alarm signal input pin is used for the power module power failure indication signal input.
  • the time signal consists of real time and second pulses.
  • Real-time time signal Serial data is a series of serial data, indicating the information of the year, month, day, minute, minute, and second in the current time. The rising edge of the second pulse signal indicates the start of this second.
  • the optical path clock synchronization signal is used to transmit the clock in the line, and the frequency can be 8KHz, 19.44MHz, 25MHz or 125MHz.
  • the power-down alarm signal from outside the module is a level signal, through which the status information of the power input is missing.
  • the internal processing module of the optical module passes its clock data recovery technology (Clock and Data Recovery,
  • the CDR recovers the optical path clock synchronization signal in the optical path, and outputs it to the synchronization module outside the module.
  • the time synchronization information recovered by the software and hardware algorithm is output to the outside of the module through the second pulse signal output pin and the real time signal serial data output pin signal.
  • the optical module terminal (OLT) time and clock synchronization signal are transmitted to the optical network unit (ONU) through the optical module interface.
  • the alarm information that is missing from the power input of the power module of the optical node can be input to the module through the power-down alarm signal input pin, and the alarm is sent to the optical line terminal through the processing of the internal module.
  • the internal processing module is a PON MAC chip, which can provide a clock, time, and power transmission alarm signal transmission function, and has a small volume and high integration, which facilitates miniaturization of the optical module interface.
  • FIG. 2 is a schematic diagram of pin signals and serial numbers of the first embodiment of the optical module interface of the present invention.
  • the first pin of the optical module interface food is a transmit end ground (VEET) pin; the second pin is an optical path clock synchronization signal output pin; and the third pin is a transmit off (Tx_DIS) Pin; the fourth pin is the serial interface data line (SDA) pin; the fifth pin is the serial interface clock (SCL) pin; the sixth pin is the real-time time signal serial data output pin;
  • the seven-pin is the power-down alarm signal input pin;
  • the eighth pin is the receive signal loss (LOS) pin;
  • the ninth pin is the second pulse signal output pin;
  • the tenth and eleventh pins are the receive end Ground (VEER) pin;
  • the twelfth pin is the receive reverse data (RD-) pin;
  • the thirteenth pin is the receive data (RD+) pin;
  • the fourteenth pin is the receive end (VEER)
  • the pin; the fifteenth pin is the receiving end power supply (VCCR) pin;
  • the sixteenth pin is the transmitting end power supply (VCCT) pin;
  • the second pin, the sixth pin and the ninth pin can be controlled by i 2 c, and are not output by default.
  • the ninth pin is flush with the eighth pin.
  • the gold finger of the ninth pin may be indented so that the ninth pin is flush with the eighth pin.
  • the optical module interface of the embodiment defines the second pin as an optical path clock synchronization signal output pin to output an optical path clock synchronization signal; and defines the sixth pin as a real-time time.
  • Signal serial data output pin to output real-time time signal serial data define the seventh pin as the power-down alarm signal input pin to input the power-down alarm signal; define the ninth pin as the second pulse signal output a pin to output a second pulse signal, wherein the real-time time signal serial data and the second pulse signal together form a time signal, thereby enabling the optical module interface to realize time, clock synchronization signal, and power-down warning signal transmission without increasing Any electronic component is inexpensive to implement.
  • FIG. 3 is a schematic diagram of pin signals and serial numbers of the second embodiment of the optical module interface of the present invention.
  • the first pin of the optical module interface is a transmitting end ground pin;
  • the second pin is an optical path clock synchronization signal output pin;
  • the third pin is a transmitting and closing pin;
  • the fourth tube is a transmitting and closing pin;
  • the pin is the serial interface data line pin;
  • the fifth pin is the serial interface clock pin;
  • the sixth pin is the second pulse signal output pin;
  • the seventh pin is the power down alarm signal input pin;
  • the pin is the receiving signal loss pin;
  • the ninth pin is the real time time signal serial data Output pin;
  • the tenth and eleventh pins are the receiving terminal pins;
  • the twelfth pin is the receiving end inverted data pin;
  • the thirteenth pin is the receiving end data pin;
  • the fourteenth tube The pin receiving terminal ground pin;
  • the fifteenth pin is the receiving end power pin;
  • the second pin, the sixth pin, and the ninth pin can be controlled by the 1 output, and are not output by default.
  • the ninth pin is flush with the eighth pin.
  • the gold finger of the ninth pin may be indented so that the ninth pin is flush with the eighth pin.
  • the optical module interface of the embodiment defines the second pin as an optical path clock synchronization signal output pin to output an optical path clock synchronization signal; the sixth pin is defined as a second pulse.
  • the signal output pin outputs a second pulse signal;
  • the seventh pin is defined as a power-down alarm signal input pin to input a power-down alarm signal;
  • the ninth pin is defined as a real-time time signal serial data output pin,
  • the real-time time signal serial data is output, wherein the real-time time signal serial data and the second pulse signal together form a time signal, so that the optical module interface can realize the transmission of the time, the clock synchronization signal, and the power-down warning signal, without increasing Any electronic component is inexpensive to implement.
  • FIG. 4 is a schematic diagram of pin signals and serial numbers of a third embodiment of the optical module interface of the present invention.
  • the first pin of the optical module interface is a transmitter terminal pin; the second pin is a real-time time signal serial data output pin; and the third pin is a transmit-off pin;
  • the fourth pin is a serial interface data line pin; the fifth pin is a serial interface clock pin; the sixth pin is a second pulse signal output pin; the seventh pin is a power down alarm signal input pin;
  • the eighth pin is the receiving signal loss pin;
  • the ninth pin is the optical path clock synchronization signal output pin;
  • the tenth and eleventh pins are the receiving end ground pin;
  • the twelfth pin is the receiving end inverted data Pin;
  • the thirteenth pin is the receiving end data pin; the fourteenth pin receiving end ground pin; the fifteenth pin is the receiving end power pin;
  • the sixteenth pin is the transmitting end power pin;
  • the seventeenth pin is the transmitting end grounding pin; the eighte
  • the second pin, the sixth pin, and the ninth pin can be controlled by the 13 ⁇ 4 output, and are not output by default.
  • the ninth pin is flush with the eighth pin.
  • the gold finger of the ninth pin may be indented so that the ninth pin is flush with the eighth pin.
  • the optical module interface of the embodiment defines the second pin as a real-time time signal serial data output pin to output real-time time signal serial data; Defined as seconds The pulse signal output pin outputs a second pulse signal; the seventh pin is defined as a power failure alarm signal input pin to input a power failure alarm signal; the ninth pin is defined as an optical path clock synchronization signal output pin, The optical path clock synchronization signal is output, wherein the real-time time signal serial data and the second pulse signal together form a time signal, thereby enabling the optical module interface to realize the transmission of the time, the clock synchronization signal, and the power-down warning signal without adding any electronic components. , the realization of low cost.
  • FIG. 5 is a schematic diagram of pin signals and serial numbers of a fourth embodiment of the optical module interface of the present invention.
  • the first pin of the optical module interface is a ground (GND) pin
  • the second pin is a floating or 5.2 volt power supply (VEE5) pin
  • the third pin is a power failure alarm.
  • the fourth pin is the interrupt pin; the fifth pin is the transmitter disable (TX_DIS) pin; the sixth pin is the 5 volt power supply (VCC5) pin; the seventh pin is Ground (GD) pin; the eighth and ninth pins are 3.3 volt power (VCC3) pins; the tenth pin is a two-wire interface clock (SCL) pin; the eleventh pin is two wires Interface data line (SDA) pin; the twelfth pin is the second pulse signal output pin; the thirteenth pin is the real time signal serial data output pin; the fourteenth pin is the received signal loss (RX_LOS) Pins; fifteenth and sixteenth pins are grounded (GD) pins; seventeenth pin receiving end inverted data (RD-) pins; eighteenth pins are receiving data (RD+) Pin; the 19th pin is the ground (GD) pin; the 20th pin is the 1.8V power supply (VCC2) pin; the 21st pin is powered off or reset (P_Down/RST)
  • the twenty-second pin is
  • the twelfth pin, the thirteenth pin, and the twenty-fourth pin can be controlled by the 1 output, and are not output by default.
  • the optical module interface of the embodiment defines the third pin as a power failure alarm signal input pin to input a power failure alarm signal; and defines the twelfth pin as a second pulse signal output tube.
  • FIG. 6 is a schematic diagram of pin signals and serial numbers of the fifth embodiment of the optical module interface of the present invention.
  • the first pin of the optical module interface is a ground pin; the second pin is a floating or 5.
  • the third pin is a power failure alarm signal input pin;
  • the four pins are interrupt pins; the fifth pin is the transmitter disable pin; the sixth pin is the 5 volt power pin; the seventh pin is the ground pin; the eighth and ninth pins are 3.
  • the tenth pin is a two-wire interface clock pin; the eleventh pin is a two-wire interface data line pin; the twelfth pin is a second pulse signal output pin; the thirteenth pin
  • the serial data output pin is the real-time time signal; the fourteenth pin is the receiving signal loss pin; the fifteenth and sixteenth pins are the grounding pin; the seventeenth pin receiving end is the inverted data pin
  • the 18th pin is the receiving terminal data pin; the 19th pin is the grounding pin; the 20th pin is the 1.8V power pin; the 21st pin is the broken or reset pin;
  • the second pin is a 1.8 volt power supply pin;
  • the twenty-third pin is a ground pin;
  • the twenty-fourth pin is an optical path clock synchronous differential signal positive terminal Pin;
  • the twenty-fifth pin is the optical path clock synchronous differential signal negative terminal;
  • the twenty-sixth and twenty-seventh pins are grounding pins;
  • the twenty-eighth pin is the transmit
  • the twelfth pin, the thirteenth pin, the twenty-fourth pin, and the twenty-fifth pin can be controlled by i 2 c, and are not output by default.
  • the optical module interface of the embodiment defines the third pin as a power failure alarm signal input pin to input a power failure alarm signal; and defines the twelfth pin as a second pulse signal output tube.
  • Foot to output the second pulse signal define the thirteenth pin as the real-time time signal serial data output pin to output the real-time time signal serial data; define the twenty-fourth pin as the optical path clock differential signal
  • the positive terminal pin defines the twenty-fifth pin as the optical path clock synchronous differential signal negative terminal, and the twenty-fourth and the second four-five pins jointly output the optical path clock synchronization signal, wherein the real-time time signal serial
  • the data and the second pulse signal together form a time signal, so that the optical module interface can realize the transmission of the time, the clock synchronization signal, and the power failure warning signal without adding any electronic components, and the implementation cost is low.
  • the optical module interface of the present invention defines a real-time time signal serial data output pin, a second pulse signal output pin, an optical path clock synchronization signal output pin, and a power failure alarm signal input on the optical module.
  • the pin enables the optical module interface pin to implement time, clock synchronization, and power-down warning signals.
  • the optical module interface defines a real-time time signal serial data output pin, a second pulse signal output pin, and an optical path clock synchronization signal output on the optical module.
  • the pin and the power-down alarm signal input pin enable the optical module interface pin to realize the transmission of time, clock synchronization signal, and power-down warning signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本实用新型提供了一种光模块接口,通过在光模块上定义出实时时间信号串行数据输出管脚、秒脉冲信号输出管脚、光路时钟同步信号输出管脚及掉电告警信号输入管脚,使得光模块接口管脚能实现时间、时钟同步信号、以及掉电警告信号的传递。

Description

光模块接口 技术领域 本实用新型涉及通信技术领域, 尤其涉及一种光模块接口。 背景技术 随着无源光网络 (Passive Optical Network, PON) 的大规模应用, 所具备快速部 署及提供业务的能力已经成为业界共识。 它能够降低接入网络的复杂度, 降低建网成 本和后期维护代价。 PON正在成为今后全业务接入主流技术。 然而要能满足此技术要求, 对时钟、 时间、 掉电告警信号的传输功能是必须具备 的。 现有的 PON MAC芯片已经具备此功能, 且随着芯片集成度的提高, PON MAC 芯片的体积逐渐缩小, 出现了自带 PON MAC 芯片的光模块, 如, 小型可拔插模块 ( Small Form Factor Pluggable Module, SFP)、增强型小型可拔插模块(Enhanced Small Form Factor Pluggable Module, SFP+)、小封装焊接式模块( Small Form Factor Module, SFF)、 10G小型可拔插模块 (10 Gigabit Small Form Factor Pluggable, XFP)。 但是此 类光模块接口一般都是标准的, 无法支持时间和时钟同步等信号的传递。 如采用标准的光模块接口定义, 则时钟同步功能只能通过同步以太网技术传递到 模块外部, 这样至少需要在模块中增加一个用于降低抖动的锁相环芯片; 而时间同步 功能也只能通过 IEEE1588技术传递到模块外, 需要在模块内外都增加支持 IEEE1588 功能的芯片。 这些无疑会大大提高成本, 并且导致此功能无法集成到体积本来就很有 限的光模块中, 也就是在体积结构上无法实现。 实用新型容 本实用新型的主要目的在于解决光模块接口无法支持时间和时钟同步等信号的传 递的技术问题。 为实现上述目的, 本实用新型提供一种光模块接口, 该光模块接口设有内部处理 模块, 该内部处理模块能够提供时间与时钟同步信号, 该光模块接口具有实时时间信 号串行数据输出管脚、 秒脉冲信号输出管脚、 光路时钟同步信号输出管脚及掉电告警 信号输入管脚, 其中, 所述实时时间信号串行数据输出管脚用于实时时间信号串行数 据输出信号串行数据输出; 所述秒脉冲信号输出管脚用于秒脉冲信号输出信号输出; 所述光路时钟同步信号输出管脚用于光路时钟同步信号输出; 所述掉电告警信号输入 管脚用于电源模块掉电指示信号输入。 优选地, 该光模块接口的第一管脚为发射端地管脚; 第二管脚为光路时钟同步信 号输出管脚; 第三管脚为发射关断管脚; 第四管脚为串行接口数据线管脚; 第五管脚 为串行接口时钟管脚; 第六管脚为实时时间信号串行数据输出管脚; 第七管脚为掉电 告警信号输入管脚; 第八管脚为接收信号丢失管脚;第九管脚为秒脉冲信号输出管脚; 第十与第十一管脚均为接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十三管 脚为接收端数据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源管脚; 第 十六管脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数据 管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九管脚与 第八管脚平齐。 优选地, 该光模块接口的述第一管脚为发射端地管脚; 第二管脚为光路时钟同步 信号输出管脚; 第三管脚为发射关断管脚; 第四管脚为串行接口数据线管脚; 第五管 脚为串行接口时钟管脚; 第六管脚为秒脉冲信号输出管脚; 第七管脚为掉电告警信号 输入管脚; 第八管脚为接收信号丢失管脚; 第九管脚为实时时间信号串行数据输出管 脚; 第十与第十一管脚均为接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十 三管脚为接收端数据管脚; 第十四管脚接收端地管脚;第十五管脚为接收端电源管脚; 第十六管脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数 据管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九管脚 与第八管脚平齐。 优选地, 该光模块接口的第一管脚为发射端地管脚; 第二管脚为实时时间信号串 行数据输出管脚; 第三管脚为发射关断管脚; 第四管脚为串行接口数据线管脚; 第五 管脚为串行接口时钟管脚; 第六管脚为秒脉冲信号输出管脚; 第七管脚为掉电告警信 号输入管脚; 第八管脚为接收信号丢失管脚;第九管脚为光路时钟同步信号输出管脚; 第十与第十一管脚均为接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十三管 脚为接收端数据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源管脚; 第 十六管脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数据 管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九管脚与 第八管脚平齐。 优选地, 该光模块接口的第一管脚为接地管脚; 第二管脚为悬空或 5. 2伏电源管 脚; 第三管脚为掉电告警信号输入管脚; 第四管脚为中断管脚; 第五管脚为发射器禁 用管脚; 第六管脚为 5伏电源管脚; 第七管脚为接地管脚; 第八与第九管脚均为 3. 3 伏电源管脚; 第十管脚为两线接口时钟管脚; 第十一管脚为两线接口数据线管脚; 第 十二管脚为秒脉冲信号输出管脚; 第十三管脚为实时时间信号串行数据输出管脚; 第 十四管脚为接收信号丢失管脚; 第十五与第十六管脚均为接地管脚; 第十七管脚接收 端反相数据管脚; 第十八管脚为接收端数据管脚; 第十九管脚为接地管脚; 第二十管 脚为 1.8伏电源管脚;第二十一管脚断电或复位管脚;第二十二管脚为 1.8伏电源管脚; 第二十三管脚为接地管脚; 第二十四管脚为光路时钟同步信号输出管脚; 第二十五管 脚为悬空不连接或接地管脚; 第二十六与第二十七管脚均为接地管脚; 第二十八管脚 为发射端反相数据管脚; 第二十九管脚为发射端数据管脚; 第三十管脚为接地管脚。 优选地, 该光模块接口的第一管脚为接地管脚; 第二管脚为悬空或 5. 2伏电源管 脚; 第三管脚为掉电告警信号输入管脚; 第四管脚为中断管脚; 第五管脚为发射器禁 用管脚; 第六管脚为 5伏电源管脚; 第七管脚为接地管脚; 第八与第九管脚均为 3. 3 伏电源管脚; 第十管脚为两线接口时钟管脚; 第十一管脚为两线接口数据线管脚; 第 十二管脚为秒脉冲信号输出管脚; 第十三管脚为实时时间信号串行数据输出管脚; 第 十四管脚为接收信号丢失管脚; 第十五与第十六管脚均为接地管脚; 第十七管脚接收 端反相数据管脚; 第十八管脚为接收端数据管脚; 第十九管脚为接地管脚; 第二十管 脚为 1.8伏电源管脚;第二十一管脚断电或复位管脚;第二十二管脚为 1.8伏电源管脚; 第二十三管脚为接地管脚; 第二十四管脚为光路时钟同步差分信号正端管脚; 第二十 五管脚为光路时钟同步差分信号负端管脚; 第二十六与第二十七管脚均为接地管脚; 第二十八管脚为发射端反相数据管脚; 第二十九管脚为发射端数据管脚; 第三十管脚 为接地管脚,所述第二十四管脚与第二十五管脚共同形成光路时钟同步信号输出管脚。 优选地, 所述内部处理模块为 PON MAC芯片。 本实用新型的光模块接口, 通过在光模块上定义出实时时间信号串行数据输出管 脚、 秒脉冲信号输出管脚、 光路时钟同步信号输出管脚及掉电告警信号输入管脚, 使 得光模块接口管脚能实现时间、 时钟同步信号、 以及掉电警告信号的传递。 附图说明 图 1为本实用新型光模块接口的信号示意图; 图 2为本实用新型光模块接口的第一实施例的管脚信号及序号示意图; 图 3为本实用新型光模块接口的第二实施例的管脚信号及序号示意图; 图 4为本实用新型光模块接口的第三实施例的管脚信号及序号示意图; 图 5为本实用新型光模块接口的第四实施例的管脚信号及序号示意图; 图 6为本实用新型光模块接口的第五实施例的管脚信号及序号示意图。 本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。 具体实施方式 应当理解, 此处所描述的具体实施例仅仅用以解释本实用新型, 并不用于限定本 实用新型。 本实用新型提供一种光模块接口, 参照图 1, 该光模块接口设有内部处理模块, 该内部处理模块能够提供时间与时钟同步信号, 该光模块接口具有实时时间信号串行 数据 (Time Of Date, ToD)输出管脚、 秒脉冲信号 (Pulse Per Second, 1PPS)输出管 脚、 光路时钟同步信号 (Sync_Clk) 输出管脚及掉电告警信号 (Dying—Gasp) 输入管 脚, 其中, 所述实时时间信号串行数据输出管脚用于实时时间信号串行数据输出信号 串行数据输出; 所述秒脉冲信号输出管脚用于秒脉冲信号输出信号输出; 所述光路时 钟同步信号输出管脚用于光路时钟同步信号输出; 所述掉电告警信号输入管脚用于电 源模块掉电指示信号输入。 时间信号由实时时间和秒脉冲组成。 实时时间信号串行数据是一系列串行数据, 表示了当前时间中的年月日时分秒等信息, 秒脉冲信号的上升沿标示了本秒的开始。 光路时钟同步信号用于传递线路中的时钟, 其频率可以是 8KHz、 19.44MHz、 25MHz 或是 125MHz等。 来自模块外的掉电告警信号是一个电平信号, 通过此信号上报电源 输入缺失的状态信息。 光模块的内部处理模块通过其时钟数据恢复技术 (Clock and Data Recovery,
CDR), 恢复出光路中的光路时钟同步信号, 输出给模块外部的同步模块使用。另外采 用软硬件算法恢复出的时间同步信息, 通过秒脉冲信号输出管脚和实时时间信号串行 数据输出管脚信号输出到模块外部。 比如在无源光网络系统中通过本光模块接口可以 实现, 来自光线路终端 (Optical Line Terminal, OLT) 的时间和时钟同步信号向光节 点 (Optical Network Unit, ONU) 进行传递的这个过程。 而光节点的电源模块产生的 电源输入缺失的告警信息, 可以通过掉电告警信号输入管脚输入到模块内, 通过内部 模块的处理, 形成告警报文上传到光线路终端。 在本实施例中, 所述内部处理模块为 PON MAC芯片, 其能够提供时钟、 时间、 掉电告警信号的传输功能, 且体积小, 集成度高, 利于实现光模块接口的小型化。 进一步的, 参照图 2, 图 2为本实用新型光模块接口的第一实施例的管脚信号及 序号示意图。 在本实施例中, 所述光模块接口食物第一管脚为发射端地(VEET)管脚; 第二管 脚为光路时钟同步信号输出管脚; 第三管脚为发射关断 (Tx_DIS) 管脚; 第四管脚为 串行接口数据线 (SDA) 管脚; 第五管脚为串行接口时钟 (SCL) 管脚; 第六管脚为 实时时间信号串行数据输出管脚; 第七管脚为掉电告警信号输入管脚; 第八管脚为接 收信号丢失 (LOS) 管脚; 第九管脚为秒脉冲信号输出管脚; 第十与第十一管脚均为 接收端地 (VEER) 管脚; 第十二管脚为接收端反相数据 (RD-) 管脚; 第十三管脚为 接收端数据 (RD+)管脚; 第十四管脚接收端地(VEER)管脚; 第十五管脚为接收端 电源 (VCCR) 管脚; 第十六管脚为发射端电源 (VCCT) 管脚; 第十七管脚为发射端 地(VEET)管脚; 第十八管脚为发射端数据 (TD+)管脚; 第十九管脚为发射端反相 数据 (TD-) 管脚; 第二十管脚为发射端地 (VEET) 管脚。 所述第二管脚、 第六管脚及第九管脚可通过 i2c控制输出, 默认不输出。 所述第 九管脚与第八管脚平齐, 具体地, 可将第九管脚的金手指内缩, 以使得第九管脚与第 八管脚平齐。 本实施例的光模块接口与 SFP、 SFF、 SFP+光模块接口相比, 将第二管脚定义为光 路时钟同步信号输出管脚, 以输出光路时钟同步信号; 将第六管脚定义为实时时间信 号串行数据输出管脚, 以输出实时时间信号串行数据; 将第七管脚定义为掉电告警信 号输入管脚, 以输入掉电告警信号; 将第九管脚定义为秒脉冲信号输出管脚, 以输出 秒脉冲信号, 其中, 实时时间信号串行数据与秒脉冲信号共同组成时间信号, 进而使 得光模块接口能够实现时间、 时钟同步信号、 以及掉电警告信号的传递, 不需要增加 任何电子元件, 实现成本低。
进一步的, 参照图 3, 图 3为本实用新型光模块接口的第二实施例的管脚信号及 序号示意图。 在本实施例中, 所述光模块接口的第一管脚为发射端地管脚; 第二管脚为光路时 钟同步信号输出管脚; 第三管脚为发射关断管脚; 第四管脚为串行接口数据线管脚; 第五管脚为串行接口时钟管脚; 第六管脚为秒脉冲信号输出管脚; 第七管脚为掉电告 警信号输入管脚; 第八管脚为接收信号丢失管脚; 第九管脚为实时时间信号串行数据 输出管脚; 第十与第十一管脚均为接收端地管脚;第十二管脚为接收端反相数据管脚; 第十三管脚为接收端数据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源 管脚; 第十六管脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发 射端数据管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚。 在本实施例中, 所述第二管脚、 第六管脚及第九管脚可通过 1 控制输出, 默认 不输出。 所述第九管脚与第八管脚平齐, 具体地, 可将第九管脚的金手指内缩, 以使 得第九管脚与第八管脚平齐。 本实施例的光模块接口与 SFP、 SFF、 SFP+光模块接口相比, 将第二管脚定义为光 路时钟同步信号输出管脚, 以输出光路时钟同步信号; 将第六管脚定义为秒脉冲信号 输出管脚, 以输出秒脉冲信号; 将第七管脚定义为掉电告警信号输入管脚, 以输入掉 电告警信号; 将第九管脚定义为实时时间信号串行数据输出管脚, 以输出实时时间信 号串行数据, 其中, 实时时间信号串行数据与秒脉冲信号共同组成时间信号, 进而使 得光模块接口能够实现时间、 时钟同步信号、 以及掉电警告信号的传递, 不需要增加 任何电子元件, 实现成本低。
进一步的, 参照图 4, 图 4为本实用新型光模块接口的第三实施例的管脚信号及 序号示意图。 在本实施例中, 所述光模块接口的第一管脚为发射端地管脚; 第二管脚为实时时 间信号串行数据输出管脚; 第三管脚为发射关断管脚; 第四管脚为串行接口数据线管 脚; 第五管脚为串行接口时钟管脚; 第六管脚为秒脉冲信号输出管脚; 第七管脚为掉 电告警信号输入管脚; 第八管脚为接收信号丢失管脚; 第九管脚为光路时钟同步信号 输出管脚; 第十与第十一管脚均为接收端地管脚;第十二管脚为接收端反相数据管脚; 第十三管脚为接收端数据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源 管脚; 第十六管脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发 射端数据管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚。 在本实施例中, 所述第二管脚、 第六管脚及第九管脚可通过 1¾控制输出, 默认 不输出。 所述第九管脚与第八管脚平齐, 具体地, 可将第九管脚的金手指内缩, 以使 得第九管脚与第八管脚平齐。 本实施例的光模块接口与 SFP、 SFF、 SFP+光模块接口相比, 将第二管脚定义为实 时时间信号串行数据输出管脚, 以输出实时时间信号串行数据; 将第六管脚定义为秒 脉冲信号输出管脚, 以输出秒脉冲信号; 将第七管脚定义为掉电告警信号输入管脚, 以输入掉电告警信号; 将第九管脚定义为光路时钟同步信号输出管脚, 以输出光路时 钟同步信号, 其中, 实时时间信号串行数据与秒脉冲信号共同组成时间信号, 进而使 得光模块接口能够实现时间、 时钟同步信号、 以及掉电警告信号的传递, 不需要增加 任何电子元件, 实现成本低。
进一步的, 参照图 5, 图 5为本实用新型光模块接口的第四实施例的管脚信号及 序号示意图。 在本实施例中, 所述光模块接口的第一管脚为接地 (GND) 管脚; 第二管脚为悬 空或 5. 2伏电源(VEE5 )管脚; 第三管脚为掉电告警信号输入管脚; 第四管脚为中断 (Interrupt)管脚;第五管脚为发射器禁用(TX_DIS)管脚;第六管脚为 5伏电源(VCC5 ) 管脚; 第七管脚为接地 (G D) 管脚; 第八与第九管脚均为 3. 3伏电源 (VCC3 ) 管 脚; 第十管脚为两线接口时钟 (SCL) 管脚; 第十一管脚为两线接口数据线 (SDA) 管脚; 第十二管脚为秒脉冲信号输出管脚; 第十三管脚为实时时间信号串行数据输出 管脚; 第十四管脚为接收信号丢失 (RX_LOS) 管脚; 第十五与第十六管脚均为接地 (G D) 管脚; 第十七管脚接收端反相数据 (RD-) 管脚; 第十八管脚为接收端数据 (RD+) 管脚; 第十九管脚为接地 (G D) 管脚; 第二十管脚为 1.8伏电源 (VCC2) 管脚; 第二十一管脚断电或复位 (P_Down/RST) 管脚; 第二十二管脚为 1.8 伏电源 (VCC2) 管脚; 第二十三管脚为接地 (GND) 管脚; 第二十四管脚为光路时钟同步 信号输出管脚; 第二十五管脚为悬空不连接或接地 (NC/G D) 管脚; 第二十六与第 二十七管脚均为接地 (G D) 管脚; 第二十八管脚为发射端反相数据 (TD-) 管脚; 第二十九管脚为发射端数据 (TD+) 管脚; 第三十管脚为接地 (G D) 管脚。 在本实施例中, 所述第十二管脚、 第十三管脚、 及第二十四管脚可通过 1 控制 输出, 默认不输出。 本实施例的光模块接口与 XFP光模块接口相比,将第三管脚定义为掉电告警信号 输入管脚, 以输入掉电告警信号; 将第十二管脚定义为秒脉冲信号输出管脚, 以输出 秒脉冲信号; 将第十三管脚定义为实时时间信号串行数据输出管脚, 以输出实时时间 信号串行数据; 将第二十四管脚定义为光路时钟同歩信号输出管脚, 以输出光路时钟 同步信号, 其中, 实时时间信号串行数据与秒脉冲信号共同组成时间信号, 进而使得 光模块接口能够实现时间、 时钟同步信号、 以及掉电警告信号的传递, 不需要增加任 何电子元件, 实现成本低。 进一步的, 参照图 6, 图 6为本实用新型光模块接口的第五实施例的管脚信号及 序号示意图。 在本实施例中, 所述光模块接口的第一管脚为接地管脚; 第二管脚为悬空或 5. 2 伏电源管脚; 第三管脚为掉电告警信号输入管脚; 第四管脚为中断管脚; 第五管脚为 发射器禁用管脚; 第六管脚为 5伏电源管脚; 第七管脚为接地管脚; 第八与第九管脚 均为 3. 3伏电源管脚; 第十管脚为两线接口时钟管脚; 第十一管脚为两线接口数据线 管脚; 第十二管脚为秒脉冲信号输出管脚; 第十三管脚为实时时间信号串行数据输出 管脚; 第十四管脚为接收信号丢失管脚; 第十五与第十六管脚均为接地管脚; 第十七 管脚接收端反相数据管脚; 第十八管脚为接收端数据管脚; 第十九管脚为接地管脚; 第二十管脚为 1.8伏电源管脚; 第二十一管脚断或复位管脚; 第二十二管脚为 1.8伏电 源管脚; 第二十三管脚为接地管脚;第二十四管脚为光路时钟同步差分信号正端管脚; 第二十五管脚为光路时钟同步差分信号负端管脚; 第二十六与第二十七管脚均为接地 管脚; 第二十八管脚为发射端反相数据管脚; 第二十九管脚为发射端数据管脚; 第三 十管脚为接地管脚, 所述第二十四管脚与第二十五管脚共同形成光路时钟同步信号输 出管脚。 在本实施例中, 所述第十二管脚、 第十三管脚、 第二十四管脚及第二十五管脚可 通过 i2c控制输出, 默认不输出。 本实施例的光模块接口与 XFP光模块接口相比,将第三管脚定义为掉电告警信号 输入管脚, 以输入掉电告警信号; 将第十二管脚定义为秒脉冲信号输出管脚, 以输出 秒脉冲信号; 将第十三管脚定义为实时时间信号串行数据输出管脚, 以输出实时时间 信号串行数据; 将第二十四管脚定义为光路时钟同歩差分信号正端管脚, 将第二十五 管脚定义为光路时钟同步差分信号负端管脚, 该第二十四与第二四五管脚共同输出光 路时钟同步信号, 其中, 实时时间信号串行数据与秒脉冲信号共同组成时间信号, 进 而使得光模块接口能够实现时间、 时钟同步信号、 以及掉电警告信号的传递, 不需要 增加任何电子元件, 实现成本低。
综上所述,本实用新型的光模块接口,通过在光模块上定义出实时时间信号串 行数据输出管脚、 秒脉冲信号输出管脚、 光路时钟同步信号输出管脚及掉电告警信号 输入管脚, 使得光模块接口管脚能实现时间、 时钟同步信号、 以及掉电警告信号的传 递。 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡是 利用本实用新型说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围内。 工业实用性 如上所述, 通过上述实施例及优选实施方式提供的光模块接口, 通过在光模块上 定义出实时时间信号串行数据输出管脚、 秒脉冲信号输出管脚、 光路时钟同步信号输 出管脚及掉电告警信号输入管脚, 使得光模块接口管脚能实现时间、 时钟同步信号、 以及掉电警告信号的传递。

Claims

权 利 要 求 书 、 一种光模块接口, 该光模块接口设有内部处理模块, 该内部处理模块能够提供 时间与时钟同步信号, 该光模块接口具有实时时间信号串行数据输出管脚、 秒 脉冲信号输出管脚、 光路时钟同步信号输出管脚及掉电告警信号输入管脚, 其 中,
所述实时时间信号串行数据输出管脚用于实时时间信号串行数据输出信号 串行数据输出;
所述秒脉冲信号输出管脚用于秒脉冲信号输出信号输出; 所述光路时钟同步信号输出管脚用于光路时钟同步信号输出; 所述掉电告警信号输入管脚用于电源模块掉电指示信号输入。 、 如权利要求 1所述的光模块接口, 其中, 该光模块接口的第一管脚为发射端地 管脚; 第二管脚为光路时钟同步信号输出管脚; 第三管脚为发射关断管脚; 第 四管脚为串行接口数据线管脚; 第五管脚为串行接口时钟管脚; 第六管脚为实 时时间信号串行数据输出管脚; 第七管脚为掉电告警信号输入管脚; 第八管脚 为接收信号丢失管脚; 第九管脚为秒脉冲信号输出管脚; 第十与第十一管脚均 为接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十三管脚为接收端数 据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源管脚; 第十六管 脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数据 管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九 管脚与第八管脚平齐。 、 如权利要求 1所述的光模块接口, 其中, 该光模块接口的第一管脚为发射端地 管脚; 第二管脚为光路时钟同步信号输出管脚; 第三管脚为发射关断管脚; 第 四管脚为串行接口数据线管脚; 第五管脚为串行接口时钟管脚; 第六管脚为秒 脉冲信号输出管脚; 第七管脚为掉电告警信号输入管脚; 第八管脚为接收信号 丢失管脚; 第九管脚为实时时间信号串行数据输出管脚; 第十与第十一管脚均 为接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十三管脚为接收端数 据管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源管脚; 第十六管 脚为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数据 管脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九 管脚与第八管脚平齐。 、 如权利要求 1所述的光模块接口, 其中, 该光模块接口的第一管脚为发射端地 管脚;第二管脚为实时时间信号串行数据输出管脚;第三管脚为发射关断管脚; 第四管脚为串行接口数据线管脚; 第五管脚为串行接口时钟管脚; 第六管脚为 秒脉冲信号输出管脚; 第七管脚为掉电告警信号输入管脚; 第八管脚为接收信 号丢失管脚; 第九管脚为光路时钟同步信号输出管脚; 第十与第十一管脚均为 接收端地管脚; 第十二管脚为接收端反相数据管脚; 第十三管脚为接收端数据 管脚; 第十四管脚接收端地管脚; 第十五管脚为接收端电源管脚; 第十六管脚 为发射端电源管脚; 第十七管脚为发射端地管脚; 第十八管脚为发射端数据管 脚; 第十九管脚为发射端反相数据管脚; 第二十管脚为发射端地管脚; 第九管 脚与第八管脚平齐。 、 如权利要求 1所述的光模块接口,其中,该光模块接口的第一管脚为接地管脚; 第二管脚为悬空或 5. 2伏电源管脚; 第三管脚为掉电告警信号输入管脚; 第四 管脚为中断管脚; 第五管脚为发射器禁用管脚; 第六管脚为 5伏电源管脚; 第 七管脚为接地管脚; 第八与第九管脚均为 3. 3伏电源管脚; 第十管脚为两线接 口时钟管脚; 第十一管脚为两线接口数据线管脚; 第十二管脚为秒脉冲信号输 出管脚; 第十三管脚为实时时间信号串行数据输出管脚; 第十四管脚为接收信 号丢失管脚; 第十五与第十六管脚均为接地管脚; 第十七管脚接收端反相数据 管脚; 第十八管脚为接收端数据管脚; 第十九管脚为接地管脚; 第二十管脚为 1.8伏电源管脚; 第二十一管脚断电或复位管脚; 第二十二管脚为 1.8伏电源管 脚; 第二十三管脚为接地管脚; 第二十四管脚为光路时钟同步信号输出管脚; 第二十五管脚为悬空不连接或接地管脚; 第二十六与第二十七管脚均为接地管 脚; 第二十八管脚为发射端反相数据管脚; 第二十九管脚为发射端数据管脚; 第三十管脚为接地管脚。 、 如权利要求 1所述的光模块接口,其中,该光模块接口的第一管脚为接地管脚; 第二管脚为悬空或 5. 2伏电源管脚; 第三管脚为掉电告警信号输入管脚; 第四 管脚为中断管脚; 第五管脚为发射器禁用管脚; 第六管脚为 5伏电源管脚; 第 七管脚为接地管脚; 第八与第九管脚均为 3. 3伏电源管脚; 第十管脚为两线接 口时钟管脚; 第十一管脚为两线接口数据线管脚; 第十二管脚为秒脉冲信号输 出管脚; 第十三管脚为实时时间信号串行数据输出管脚; 第十四管脚为接收信 号丢失管脚; 第十五与第十六管脚均为接地管脚; 第十七管脚接收端反相数据 管脚; 第十八管脚为接收端数据管脚; 第十九管脚为接地管脚; 第二十管脚为 1.8伏电源管脚;第二十一管脚断或复位管脚;第二十二管脚为 1.8伏电源管脚; 第二十三管脚为接地管脚; 第二十四管脚为光路时钟同步差分信号正端管脚; 第二十五管脚为光路时钟同步差分信号负端管脚; 第二十六与第二十七管脚均 为接地管脚; 第二十八管脚为发射端反相数据管脚; 第二十九管脚为发射端数 据管脚; 第三十管脚为接地管脚, 所述第二十四管脚与第二十五管脚共同形成 光路时钟同步信号输出管脚。 如权利要求 1至 6任一项所述的光模块接口,其中,所述内部处理模块为 PON MAC 心片。
PCT/CN2014/084854 2014-06-10 2014-08-20 光模块接口 WO2015188451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420307920.3 2014-06-10
CN201420307920.3U CN203933641U (zh) 2014-06-10 2014-06-10 光模块接口

Publications (1)

Publication Number Publication Date
WO2015188451A1 true WO2015188451A1 (zh) 2015-12-17

Family

ID=51829391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084854 WO2015188451A1 (zh) 2014-06-10 2014-08-20 光模块接口

Country Status (2)

Country Link
CN (1) CN203933641U (zh)
WO (1) WO2015188451A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017004822A1 (zh) * 2015-07-09 2017-01-12 深圳市视捷光电科技有限公司 一种高清视频信号光传输系统、模块引脚定义方法和传输方法
CN114124228B (zh) * 2020-08-27 2023-03-14 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863013A (zh) * 2005-12-28 2006-11-15 华为技术有限公司 无源光网络中的网络终端装置及其数据处理方法
US8145059B2 (en) * 2008-02-28 2012-03-27 Gtran Corporation Circuit topologies for high speed, low cost optical transceiver components
CN202679375U (zh) * 2012-07-19 2013-01-16 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863013A (zh) * 2005-12-28 2006-11-15 华为技术有限公司 无源光网络中的网络终端装置及其数据处理方法
US8145059B2 (en) * 2008-02-28 2012-03-27 Gtran Corporation Circuit topologies for high speed, low cost optical transceiver components
CN202679375U (zh) * 2012-07-19 2013-01-16 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN203933641U (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
EP1388975B1 (en) System and method for data transition control in a multirate communication system
CN101534185B (zh) 时间同步装置、方法和系统
US9960873B2 (en) Time synchronous pluggable transceiver
EP2458739B1 (en) Tranceiver unit
KR101647002B1 (ko) 결정론적 클록 크로싱
WO2015188451A1 (zh) 光模块接口
WO2015131521A1 (zh) 以太网sfp电模块及实现同步以太网的方法
US20030223469A1 (en) Interfacing to a data framer
EP1388939B1 (en) System and method for performing on-chip synchronization of system signals utilizing off-chip harmonic signal
CN201336661Y (zh) 一种光模块接口转换装置
EP3289471B1 (en) Communication between integrated circuits
CN106209292B (zh) 一种利用过采样方法实现stm-1的sdh光接口的方法与装置
CN107968693B (zh) 一种时间频率同步设备扩展输出系统
CN105162658A (zh) 用于网络类核心芯片技术开发的通用验证平台及方法
US7081780B2 (en) Reset circuitry for an integrated circuit
Mattihalli Design and realization of serial front panel data port (sfpdp) protocol
CN105138070B (zh) 用于fpga验证平台的时钟电路
US10425268B2 (en) UART with line activity detector
US11455002B1 (en) Timing signal synchronisation
KR20060095413A (ko) 동기식 시스템에서의 프레임 싱크 생성 장치 및 방법
WO2022041917A1 (zh) 一种光模块
US20140351468A1 (en) Backplane Timing Distribution
CN102739390A (zh) 一种时钟恢复电路
KR0126860B1 (ko) 대용량 비동기 송수신기 정합(g-taxi) 수신 장치
KR100922736B1 (ko) 10GbE/STM-64 신호와0DU2/0TU2신호와의 정합 장치 및 그 정합 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894331

Country of ref document: EP

Kind code of ref document: A1