WO2015188356A1 - 一种硬岩隧道掘进机 - Google Patents

一种硬岩隧道掘进机 Download PDF

Info

Publication number
WO2015188356A1
WO2015188356A1 PCT/CN2014/079765 CN2014079765W WO2015188356A1 WO 2015188356 A1 WO2015188356 A1 WO 2015188356A1 CN 2014079765 W CN2014079765 W CN 2014079765W WO 2015188356 A1 WO2015188356 A1 WO 2015188356A1
Authority
WO
WIPO (PCT)
Prior art keywords
main beam
propulsion
tunnel boring
hard rock
boring machine
Prior art date
Application number
PCT/CN2014/079765
Other languages
English (en)
French (fr)
Inventor
刘飞香
程永亮
苏翠侠
梁海斌
李大平
薛静
Original Assignee
中国铁建重工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁建重工集团有限公司 filed Critical 中国铁建重工集团有限公司
Priority to RU2017100001A priority Critical patent/RU2704407C2/ru
Priority to PCT/CN2014/079765 priority patent/WO2015188356A1/zh
Publication of WO2015188356A1 publication Critical patent/WO2015188356A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines

Definitions

  • the invention relates to the technical field of engineering machinery, in particular to a hard rock tunneling machine. Background technique
  • the full-section rock tunnel boring machine can simultaneously realize tunnel construction operations such as propulsion, rock breaking, exiting, support, etc. It has outstanding advantages of fast, high quality, safety, economy and environmental protection, in water conservancy, electric power, railway, coal, Tunnels in mines, transportation, subways and urban underground projects have become more and more widely used.
  • the hard rock tunneling machine In the design of the hidden track circuit, there are inevitably curved sections on the horizontal surface for various reasons, which requires the hard rock tunnel boring machine to perform the turning and boring according to a certain turning radius during the construction process.
  • the hard rock tunneling machine itself has a long structural length. Due to the limitation of its own structural length during the turning process, it is basically possible to realize turning and turning with a turning radius of 250m-300m, but it is necessary for special construction, such as coal mine tunnel construction conditions. Turning with a turning radius of less than 100m.
  • hard rock tunnel boring machines that achieve small turning radii will have a large market. Therefore, there is an urgent need for a hard rock tunneling machine capable of achieving a small turning radius. Summary of the invention
  • the present invention proposes a hard rock tunnel boring machine which can realize turning and boring with a small turning radius when the hard rock tunnel boring machine is constructed.
  • a hard rock tunnel boring machine comprising: a cutter head for cutting rock; a drive system for driving the cutter head to rotate; a main beam including the front main beam and the front The rear main beam hinged by the main beam, the cutter head is arranged in the drive system, the drive system is arranged on the front main beam; the propulsion support step change system is used for realizing the advancement of the roadheader, and the propulsion support step change system comprises a propulsion device, a propulsion device The front main beam and the rear main beam are respectively connected, and the propulsion device can adjust the angle between the front main beam and the rear main beam when turning.
  • the drive system drives the cutter head to rotate, thereby cutting off the cuttings and propelling the support changing system to realize the advancement of the main beam.
  • the front main is adjusted by the propulsion device.
  • the turning radius thereby achieving the turning of the front main beam, in particular the small turning radius of the cutter head.
  • the propulsion support changing system further comprises a support changing device and a rear supporting device, wherein the supporting step changing device and the rear supporting device are disposed on the rear main beam for alternately supporting the hole wall, and the propulsion device and the support stepping The device is connected and cooperates with the support step changing device and the rear support device to advance the roadheader.
  • the support step-changing device is supported on the wall of the cave, the rear support device is retracted, the cutterhead cuts the rock, and the propulsion device advances before the main beam moves forward.
  • the front main beam is moved forward and the main beam moves forward, when the movement is scheduled.
  • the rear support device is supported on the wall of the hole, and the support step changing device is stowed, and the propulsion device drives the support step changing device to follow the rear main beam, thereby realizing the advancement of the roadheader.
  • the front main beam and the rear main beam are respectively configured as a hollow casing, and a rear end portion of the front main beam and a front end portion of the rear main beam are stacked to form an inner chamber penetrating the main beam for use in A belt conveyor that transports cuttings passes through it.
  • the hollow casing is used for the belt conveyor to pass therethrough, thereby simplifying the overall structure of the hard rock tunnel boring machine.
  • the rear end of the rear main beam is provided with a cuttings outlet, and the belt conveyor transports the cuttings to the cuttings outlet. Therefore, the belt conveyor installed in the inner chamber of the main beam is discharged through the cuttings outlet, and the cuttings and the cuttings that can be cut by the cutter head can be led out, and the excavation work of the roadheader can be smoothly realized, thereby improving the production efficiency.
  • the rear end portion of the front main beam includes a thicker first reinforcement portion
  • the front end portion of the rear main beam includes a second thick reinforcement portion, the first reinforcement portion and the second reinforcement portion passing through the pin
  • the shaft realizes the overlapping of the rear end portion of the front main beam and the front end portion of the rear main beam.
  • the thicker first reinforcing portion and the thicker second reinforcing portion can improve the connection strength between the front main beam and the rear main beam, and the pin shaft is reliable in operation and convenient in disassembly and assembly.
  • the propulsion device includes at least one set of propulsion cylinders disposed on either side of the main beam, the rod end of the propulsion cylinder being coupled to the front main beam, and the non-twisted end of the propulsion cylinder being disposed to the rear main beam.
  • at least one set of propulsion cylinders on both sides of the main beam has the same working state to ensure the normal operation of the straight-line excavation work.
  • the tunneling is turned, the elongation of at least one set of propulsion cylinders on the side of the main beam is different.
  • the elongation of the propulsion cylinder on the other side of the main beam is used to adjust the angle between the front main beam and the rear main beam to achieve a set turning radius.
  • the resultant force of the at least one set of propulsion cylinders disposed on each side of the main beam is lower than the axis of rotation of the cutter head. Due to the heavy weight of the cutterhead and the drive system, the cutterhead and drive system are subjected to the compressive force of the rock during the process of cutting the rock and the torsional moment of its own gravity to the lower rear, and at least one set of the main beam is measured.
  • the resultant force of the propulsion cylinder is lower than the rotation of the cutter head In the case of the axis, the resultant force will offset the downward torsional moment of the part of the cutter head and the drive system, which is beneficial to the safe operation of the tunneling work.
  • the support changing device includes a saddle having a slide rail disposed thereon and a shoe disposed on both sides of the saddle, the shoe being coupled to the saddle frame by a shoe cylinder, and the rear main beam being disposed on the shoe
  • the rails are moved to be able to move along the rails. Therefore, when the rear support device is stowed, the support supporting the step-change device is supported on the wall of the hole, and the front propeller is pushed forward before the main beam is moved, and the main beam and the rear support device are driven on the slide rail of the saddle frame. Moving forward, the rear main beam and the rear support device are moved forward, and then the rear support device is supported on the wall of the hole.
  • the piston sill of the shoe cylinder is used to drive the support back, and the saddle frame is followed by the rear rail.
  • the non-twisted end of the push cylinder is coupled to the shoe.
  • the propulsion cylinder is subjected to reverse thrust during the process of propelling the front main beam or the rear main beam.
  • the non-twisted end of the propulsion cylinder is connected to the support shoe, and the friction force between the support shoe and the hole wall is used to balance the thrust force of the propulsion cylinder.
  • front and rear are defined as the direction of the roadheader's direction of tunneling, and the direction toward the roadheader is “front”, and the opposite is “post”, and the other word “on” “And” is defined as “lower” in the direction of the horizontal plane of the roadheader relative to the horizontal plane of the roadheader, and "up” in the opposite direction.
  • the invention has the advantages that the traditional main beam is divided into a front main beam and a rear main beam by means of an articulated manner, and the front main beam is provided with a cutter disk driven by the driving system to cut the cuttings.
  • the rear main beam is provided with a propulsion device.
  • the propulsion device pushes the front main beam forward, and cooperates with the supporting step changing device and the rear supporting device to realize the overall forward movement of the roadheader.
  • the angle between the front main beam and the rear main beam is adjusted by the propulsion device, thereby achieving turning of different turning radii.
  • FIG. 1 is a perspective view of a hard rock tunnel boring machine in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a plan view of the hard rock tunnel boring machine of FIG. 1;
  • Figure 3 is a cross-sectional view taken along line A-A of the hard rock tunnel boring machine shown in Figure 2;
  • Figure 4 is a partial enlarged view of B in Figure 3.
  • the hard rock tunnel boring machine of the present invention includes a cutter head 10, a drive system 20, a main beam 30, and a propulsion support system.
  • the main beam 30 includes a front main beam 31 and a rear main beam 32.
  • the cutter head 10 can cut cuttings, and according to the cut rock formation and production capacity, a corresponding cutter such as a hob can be mounted on the cutter head 10.
  • the cutter head 10 is mounted to the front end portion of the drive system 20 by a cutter support device.
  • the drive system 20 generates a turning moment to drive the cutter head 10 to rotate, thereby recognizing that the cutter breaks rock.
  • the drive system 20 is disposed on the front main beam 31, whereby it can be seen that the front main beam 31 determines the direction of the axis of rotation of the cutter head 10 to a certain extent, i.e., the front main beam 31 determines the direction of the tunneling.
  • the front main beam 31 carries the counter-torque and torsional moment generated by the rock-breaking force, and it can be seen that the front main beam 3] must have a high resistance to torque, while the front main beam 31 and the rear main beam 32 are The hollow design is relatively more resistant to torsion.
  • the main beam 30 includes a front main beam 31 and a rear main beam 32, and the front main beam 31 and the rear main beam 32 are hinged by a pin 35. Thereby, angles of different angles are formed between the front main beam 31 and the rear main beam 32.
  • the propulsion support step-change system is used for propelling the forward movement of the main beam 30.
  • the propulsion support step-change system includes a propulsion device 40.
  • the propulsion device 40 connects the front main beam 31 and the rear main beam 32, respectively. When the tunneling is performed, the propulsion device 40 is used. The angle between the front main beam 31 and the rear main beam 32 is adjusted.
  • the propulsion device 40 as an adjustment unit can adjust the relative angles of the front main beam 31 and the rear main beam 32.
  • the advancing device 40 can be any device that can adjust the hinges that are hinged to each other to change the angle between them. For example, a hydraulic cylinder or an assembly of a motor and a worm turbine mechanism.
  • the propulsion support step-change system further comprises a support step changing device 50 and a rear support device 70, since the propulsion device 40 connects the front main beam 31 and the rear main beam 32, respectively, in particular, the propulsion device 40 and the rear main beam 32 are supported for replacement.
  • the step device 50 is connected. Under the excavation condition, the support changing device 50 is supported on the wall of the hole.
  • the cutter head 10 cuts the rock
  • the propulsion device 40 advances the front main beam 31 to move forward
  • the forward moving main beam 31 drives the main
  • the beam and the rear support device 70 move forward, after the predetermined distance is moved, the rear support device 70 is supported on the hole wall, the support step changing device 50 is stowed, and the propulsion device 40 drives the support step changing device 50 to follow the rear main beam 32, thereby realizing
  • the overall advancement of the roadheader is used to achieve the tunneling work of the hard rock tunnel boring machine.
  • the front main beam 3 and the rear main beam 32 are both hollow housings, and the hinges of the front main beam 31 and the rear main beam 32 may be: the rear end portion of the front main beam 31
  • the front end portion of the rear main beam 32 is overlapped and then hinged at the overlapping portion, whereby the interior of the main beam 31 and the rear main beam 32 forms an internal chamber 33 penetrating the main beam 30, and the belt conveyor 60 for transporting cuttings recognizes the main body.
  • This internal chamber 33 of the beam 30 passes through, thereby smoothly discharging the cuttings to the rear side of the hard rock tunnel boring machine, ensuring the normal operation of the hard rock tunnel boring machine.
  • the rear end portion of the front main beam 31 includes a first reinforcing portion 311 having a relatively thick thickness
  • the front end portion of the rear main beam 32 includes a second reinforcing portion 321 having a relatively thick thickness.
  • the first reinforcing portion 311 and the second reinforcing portion 321 respectively form a mounting hole that fits with the pin shaft, and then the first reinforcing portion 311 and the second reinforcing portion 321 are stacked, and are held by the spreader to the pin 35.
  • the pin hole 352 is inserted into the mounting hole to finally mount the pin plate 353 to restrict the pin shaft 35 from moving in its own axial direction.
  • the outer periphery of the pin 35 is provided with a wear sleeve 351, respectively, to reduce wear between the pin shaft 35 and the first reinforcing portion 311 and the second reinforcing portion 321 to extend their service life.
  • the propulsion device 40 includes at least one set of propulsion cylinders disposed on either side of the main beam 30, the stern end of the propulsion cylinder being coupled to the front main beam 31, and the rodless end of the propulsion cylinder being disposed at the rear main beam
  • the propulsion cylinder may be a hydraulic cylinder with higher control precision, whereby the piston rod of the at least one set of propulsion cylinders on the side of the main beam 30 has a different elongation from the piston rod of at least one of the propulsion cylinders on the other side of the main beam 30.
  • the elongation of the angle between the front main beam 31 and the rear main beam 32 can be achieved.
  • the propulsion device 40 includes two sets of propulsion cylinders respectively disposed on both sides of the main beam 30, and for the sake of clarity, the number is given, in each of the two sets of propulsion cylinders.
  • a group is adjacent to the upper end of the main beam 30, such as the first propulsion cylinder 41 and the second propulsion cylinder 42, and the other of the two sets of propulsion cylinders on each side is adjacent to the lower end of the main beam 30, such as the third propulsion cylinder 43 and the Four push cylinders 44.
  • the angle between the front main beam 3 and the rear main beam 32 is adjusted by adjusting the elongation of the piston rods of the above four sets of propulsion cylinders.
  • the position of the above four propulsion cylinders is merely used as the steel, and does not constitute a limitation of the present invention.
  • the resultant force of at least one set of propulsion cylinders (the first propulsion cylinder 41 and the third-third propulsion cylinder 43 or the second propulsion cylinder 42 and the fourth propulsion cylinder 44) disposed on each side of the main beam 30 is lower than the knife The axis of rotation of the disk 10. Since the line of the resultant force of at least one set of propulsion cylinders on each side of the main beam 30 is lower than the cutter head 10, the propulsion device 40 gives the cutter head 10 and the drive system 20 a forward and upward torsional moment through the front main beam, thereby balancing The downward torque of the cutter head 10 and the drive system 20 is reversed.
  • the support shifting device 50 includes a saddle having a slide rail disposed thereon.
  • the frame 51 and the support shoes 52 disposed on both sides of the saddle frame 51 are connected to the saddle frame 51 by the shoe cylinders 53, and the rear main beam 32 is disposed on the slide rails to be movable along the slide rails.
  • the propulsion device 40 pushes the front main beam 31 forward, and the front main beam 31 is brought into the rear main beam 32 and the rear support device.
  • the saddle 70 is advanced on the slide rail of the saddle 51, whereby the rear main beam 32 and the rear support device 70 are moved forward, and after moving a predetermined distance, the rear support device 70 is supported on the hole wall, and the piston rod of the shoe cylinder 53 drives the support shoe. 52, the saddle 51 also moves forward through the slide rail.
  • the saddle frame 51 acts as a bracket, and the shoe cylinder 53 can be a hydraulic cylinder, and the extension of the piston rod can realize that the shoe 52 supports the wall or retracts.
  • the non-twisted end of the push cylinder is coupled to the shoe.
  • the frictional force that the support shoe receives when supporting the wall of the cave can counteract the reverse thrust experienced by the propulsion cylinder during the advancement of the main beam 31.
  • the cutter head 10 keeps rotating under the working condition.
  • the piston rod of the propulsion cylinder of the propulsion device 40 is elongated, and the front main beam 31 and the front main beam are pushed forward. 31 drives the drive system 20 and the cutter head 10 to move forward, so that the forward movement and the rotation of the cutter head 10 occur simultaneously during the straight tunneling, while the cutter head 10 cuts the rock mass, and the fallen cuttings are conveyed to the cuttings outlet through the belt conveyor 60.
  • the propulsion device 40 advances the front main beam 31 (the rear support device is folded up,
  • the front main beam 31 simultaneously drives the rear main beam 32 and the rear support device 70 to advance, thereby realizing the advancement of the cutter head, the drive system, and the main beam.
  • the rear support device 70 When the elongation of the propulsion cylinder reaches the maximum stroke, the rear support device 70 is unfolded and supported on the wall of the cave, and the shoe cylinder 53 is retracted to retract the propeller 52, and the propulsion cylinder is retracted to drive the propeller 52 and the saddle 51 at The rear main beam 3' 2 moves forward (at this time, the cutter head 10, the drive system 20, the front main beam 31, the rear main beam 32, and the rear support device 70 are not moved, the cutter head 10 is still rotating), when the propulsion cylinder Retracted to the initial position, the shoe cylinder 53 supports the support shoe 52 to support the wall of the hole, the rear support device 70 is stowed, the piston rod of the propulsion cylinder is extended, and the next advancement process is started.
  • the front main beam 31 and the rear main beam 32 are hinged, the front main beam 31 and the rear main beam 32 can be at an arbitrary angle, and at least one group of propulsion is adjusted by adjusting the main beam 30 side.
  • the extension of the piston bore of the cylinder is different from the elongation of the piston rod of at least one set of propulsion cylinders on the other side of the main beam 30 to achieve any angle between the front main beam 31 and the rear main beam 32, thereby achieving The different turning radii of the cutter head 10, especially the turning of small turning radii.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种硬岩隧道掘进机包括:刀盘(10),用于切割岩石;驱动系统(20),其用于驱动刀盘(10)转动;主梁(30),其包括前主梁(31)和与前主梁铰接的后主梁(32),刀盘(10)设置于驱动系统(20),驱动系统(20)设置于前主梁(31);推进支撑换步系统,其用于实现主梁(30)的前移,推进支撑换步系统包括推进装置(40),推进装置(40)分别连接前主梁(31)和后主梁(32),当转弯掘进时推进装置(40)能够调节前主梁(31)和后主梁(32)之间的夹角。采用这种硬岩隧道掘进机进行掘进作业时能够实现小转弯半径的转弯掘进。

Description

一种硬岩隱道掘进机 技术领域
本发明涉及工程机械技术领域, 特别涉及一种硬岩璲道掘进机。 背景技术
全断面岩石隧道掘进机 (TBM) 能同时实现推进、 破岩、 出碴、 支护等隧 道施工作业, 具有快速、 优质、 安全、 经济、 环保等突出优点, 在水利、 电力、 铁道、 煤炭、 矿山、 交通、 地铁及城市地下工程等隧道工程中得到了越来越广泛 的应 )¾。
在隱道线路设计中, 由于各种原因不可避免地在水平面上存在曲线段, 这 就要求硬岩隧道掘进机在施工过程中能够按照某一转弯半径进行转弯掘进。 但 是, 硬岩璲道掘进机本身结构长度较长, 转弯过程中受其自身结构长度的限制, 基本能够实现转弯半径 250m- 300m的转弯掘进, 但是对于特殊施工,例如煤矿隧 道施工条件下需要进行转弯半径在 100m以下的转弯掘进。 而且随着未来地下施 工工程的多样化,实现小转弯半径的硬岩隧道掘进机将会具有较大的市场。因此, 急需一种能够实现小转弯半径的硬岩璲道掘进机。 发明内容
针对上述的问题, 本发明提出了一种硬岩隧道掘进机, 采用这种硬岩隧道 掘进机施工时能够实现小转弯半径的转弯掘进。
根据本发明的第一方面, 提出了一种硬岩隧道掘进机, 包括: 刀盘, 用于 切割岩石; 驱动系统, 其用于驱动刀盘转动; 主梁, 其包括前主梁和与前主梁铰 接的后主梁, 刀盘设置于驱动系统, 驱动系统设置于前主梁; 推进支撑换步系统, 其用于实现掘进机的前移, 推进支撑换步系统包括推进装置, 推进装置分别连接 前主梁和后主梁, 当转弯掘进时推进装置能够调节前主梁和后主梁之间的夹角。
采用上述硬岩隧道掘进机施工时驱动系统驱动刀盘转动, 以此削掉岩屑, 推进支撑换步系统实现主梁的前移, 当需要转弯掘进时, 通过推进装置调节前主 梁和后主梁之间的夹角, 由于前主梁和后主梁铰接, 所以推进装置使得前主梁和 后主梁之间的夹角可以为任意角度, 通过转弯角度的设定实现不同的转弯半径, 由此实现前主梁, 特别是刀盘的小转弯半径的转弯掘进。
在一个实施例中, 推进支撑换歩系统还包括支撑换歩装置和后支撑装置, 支撑换步装置和后支撑装置设置于后主梁, 用于交替支撑于洞壁, 推进装置与支 撑换步装置连接, 并且与支撑换步装置和后支撑装置配合实现掘进机的前移。 直 线掘进时, 支撑换步装置支撑于洞壁, 后支撑装置收起, 刀盘切削岩石, 推进装 置推进前主梁前移, 此时前移的前主梁带动后主梁向前移动, 当移动预定距离后 后支撑装置支撑于洞壁, 支撑换步装置收起, 推进装置带动支撑换步装置跟进后 主梁, 由此实现掘进机的前移。
在一个实施例中, 前主梁和后主梁分别构造为中空的壳体, 前主梁的后端 部和后主梁的前端部叠置以形成贯通主梁的内部腔室, 以用于输送岩屑的皮带机 从中穿过。 中空壳体的采 ^用于皮带机从中穿过, 由此使得该硬岩隧道掘进机整 体结构简化。
在一个实施例中, 后主梁的后端部设置有岩屑出口, 皮带机将岩屑输送至 岩屑出口。 由此通过设置于主梁的内部腔室的皮带机经岩屑出口排出, 丛而能够 将刀盘切割下来的岩屑及日 T导出,顺利地实现掘进机的掘进工作,提高生产效率。
在一个实施例中, 前主梁的后端部包括厚度较厚的第一加强部, 后主梁的 前端部包括厚度较厚的第二加强部, 第一加强部和第二加强部通过销轴实现前主 梁的后端部和后主梁的前端部的叠置。 厚度较厚的第一加强部和厚度较厚的第二 加强部可以提高前主梁和后主梁的连接强度, 另外销轴工作可靠, 拆装方便。
在一个实施例中, 推进装置包括分别设置于主梁两侧的至少一组推进缸, 推进缸的有杆端连接至前主梁, 推进缸的无杼端设置于后主梁。 直线掘进 , 主 梁两侧的至少一组推进缸的工作状态基本相同, 以确保直线掘进工作的正常进 行, 当转弯掘进时, 通过调节主梁一侧的至少一组推进缸的伸长量不同于主梁另 一侧的推进缸的伸长量来实现前主梁相对于后主梁之间的夹角的调节, 从而实现 设定的转弯半径。 在一个优选实施例中, 设置于所述主梁每侧的至少一组推进缸 的合力所在直线低于所述刀盘的旋转轴线。 由于刀盘和驱动系统的重量较重, 刀 盘和驱动系统在切削岩石的过程中会受到岩石的挤压力以及自身重力对其向下 后方的扭转力矩, 而主梁每测的至少一组推进缸的合力所在直线低于刀盘的旋转 轴线的情况下, 该合力会抵消部分刀盘和驱动系统所受到的向下的扭转力矩, 利 于掘进工作的安全进行。
在一个实施例中, 支撑换步装置包括其上设置有滑轨的鞍架和设置于鞍架 两侧的撑靴, 撑靴通过撑靴缸连接至所述鞍架, 后主梁设置于滑轨上以能够沿滑 轨移动。 由此当后支撑装置收起, 支撑换步装置的撑靴支撑于洞壁上日 推进装 置推动前主梁前移的同时前主梁带动后主梁和后支撑装置在鞍架的滑轨上前移, 由此后主梁和后支撑装置前移, 然后后支撑装置支撑于洞壁上, 撑靴缸的活塞衧 带动撑靴收回, 鞍架通过滑轨跟进后主梁。
在一个实施例中, 推进缸的无杼端连接于撑靴。 推进缸在推进前主梁或者 后主梁的过程中会受到反推力, 推进缸的无衧端连接至撑靴, 通过撑靴与洞壁之 间的摩擦力来平衡推进缸所受到的反推力, 以提高该硬岩隧道掘进机的工作性 台
在本申请中, 用语 "前" 、 "后"规定为相对于掘进机掘进方向而言的, 朝向掘进机掘进的方向为 "前" , 与之相反的方 为 "后" , 另外用语 "上"和 "下"规定为相对于掘进机所在水平面而言的, 由地面指向掘进机所在水平面的 方向为 "下" , 于之相反的方向为 "上" 。
与现有技术相比, 本发明的优点在于, 将传统的主梁通过铰接的方式分为 前主梁和后主梁, 前主梁上设置有驱动系统带动的刀盘以此切割岩屑, 后主梁上 设置有推进装置, 当直线掘进时, 推进装置推动前主梁前移, 并且与支撑换步装 置和后支撑装置配合实现掘进机的整体前移。 另外, 当转弯掘进时, 通过推进装 置调节前主梁和后主梁之间的夹角, 以此实现不同转弯半径的转弯掘进。
在下文中将基于实施钢并参考 图来对本发明进行更详细的描述。 其中- 图 1是根据本发明的一个优选实施例的硬岩隧道掘进机的立体图; 图 2是图 1所示硬岩隧道掘进机的俯视图;
图 3是沿图 2所示硬岩隧道掘进机的 A-A线的剖面图;
图 4是图 3中的 B处的局部放大图。
在图中, 相同的构件由相同的附图标记标示。 附图并未按照实际的比例绘 制。 具体实施方式
下面将结合附图对本发明做进一步说明。
如图所示, 本发明提出的硬岩隧道掘进机包括刀盘 10、 驱动系统 20、 主梁 30以及推进支撑系统, 主梁 30包括前主梁 31和后主梁 32。 下面将详细地描述 本发明的硬岩隧道掘进机及其各个部件。
如图 1和图 2所示,刀盘 10可以切割岩屑,根据切割的岩层以及生产能力, 刀盘 10上可以安装相应的刀具, 例如滚刀。 刀盘 10通过刀盘支撑装置安装至驱 动系统 20的前端部。
驱动系统 20产生回转力矩以带动刀盘 10转动, 认而实现滚刀破岩。 如图 所示, 驱动系统 20设置在前主梁 31上, 由此可以看出前主梁 31在一定程度上 决定着刀盘 10的旋转轴线的方向, 即前主梁 31决定着掘进方向。 在掘进作业的 过程中, 前主梁 31承载着破岩掘进力产生的反力矩和扭转力矩, 可见前主梁 3】 必须具有较高抗扭矩能力, 而前主梁 31和后主梁 32的中空设计相对来说具有更 强的抗扭转能力。
如图 1和图 2所示, 主梁 30包括前主梁 31和后主梁 32, 前主梁 31和后主 梁 32通过销轴 35铰接。 由此前主梁 31和后主梁 32之间形成不同角度的夹角。
推进支撑换步系统用于推进主梁 30的前移, 该推进支撑换步系统包括推进 装置 40, 推进装置 40分别连接前主梁 31和后主梁 32, 当转弯掘进时, 推进装 置 40用来调节前主梁 31和后主梁 32之间的夹角。 本领域技术人员可以看出, 推进装置 40作为调节单元能够调节前主梁 31和后主梁 32的相对角度。 推进装 置 40可以是任意能够调节相互铰接的衧件, 使它们之间的夹角发生变化的装置。 例如液压缸或者电机与蜗杆涡轮机构的总成。
优选地, 推进支撑换步系统还包括支撑换步装置 50和后支撑装置 70, 由于 推进装置 40分别连接前主梁 31和后主梁 32,特别是推进装置 40与后主梁 32的 支撑换步装置 50连接。 掘进工况下, 支撑换步装置 50支撑于洞壁, 后支撑装置 70收起时, 刀盘 10切削岩石, 推进装置 40推进前主梁 31前移, 前移的前主梁 31带动后主梁和后支撑装置 70向前移动,移动预定距离后后支撑装置 70支撑于 洞壁, 支撑换步装置 50收起, 推进装置 40带动支撑换步装置 50跟进后主梁 32, 由此实现掘进机整体的前移, 以此实现硬岩隧道掘进机的掘进工作。 作为优选的实施例, 如图 3所示, 前主梁 3 和后主梁 32均为中空的壳体, 前主梁 31和后主梁 32的铰接可以采用: 前主梁 31的后端部和后主梁 32的前端 部叠置, 然后在叠置部位铰接, 以此主梁 31和后主梁 32的内部形成贯通主梁 30 的内部腔室 33, 输送岩屑的皮带机 60认主梁 30的这个内部腔室 33内穿过, 由 此顺利将岩屑导出至硬岩隧道掘进机的后侧, 确保硬岩隧道掘进机正常工作的进 行。
进一步地,如图 4所示,前主梁 31的后端部包括厚度较厚的第一加强部 311, 后主梁 32 的前端部包括厚度较厚的第二加强部 321。 具体安装 , 第一加强部 311和第二加强部 321分别形成与销轴配合的安装孔, 然后将第一加强部 311和 第二加强部 321叠置, 通过吊具卡持到销轴 35的吊销孔 352中以将销轴 35安装 至安装孔中, 最后安装好销轴卡板 353, 以限制销轴 35沿其自身轴向方向移动。 另外如图所示, 销轴 35的外周分别设置有耐磨套 351, 以降低对销轴 35以及第 一加强部 311和第二加强部 321之间的磨损, 延长它们的使用寿命。
作为一个优选的实施钢, 推进装置 40包括分别设置在主梁 30两侧的至少 一组推进缸, 推进缸的有衧端连接到前主梁 31, 推进缸的无杆端设置在后主梁
32。 推进缸可以是控制精度较高的液压缸, 由此将主梁 30 —侧的至少一组推进 缸的活塞杆的伸长量不同于主梁 30另一侧的至少一组推进缸的活塞杆的伸长量, 就可以实现前主梁 31和后主梁 32之间的任意角度的夹角。
进一步地, 如图 1和图 2所示, 推进装置 40包括分别设置于主梁 30两侧 的两组推进缸, 为了清楚地说明, 特给出编号, 每一侧的两组推进缸中的一组靠 近主梁 30的上端, 如第一推进缸 41和第二推进缸 42, 每一侧的两组推进缸中的 另一组靠近主梁 30的下端, 如第三推进缸 43和第四推进缸 44。 由此通过调节上 述四组推进缸的活塞杆的伸长量来调节前主梁 3 和后主梁 32之间的夹角。 上述 四个推进缸的位置在此仅作为示钢, 并不构成对本发明的限制。
优选地, 设置于主梁 30每侧的至少一组推进缸 (第一推进缸 41和第_三推 进缸 43, 或者第二推进缸 42和第四推进缸 44) 的合力所在直线低于刀盘 10的 旋转轴线。 由于主梁 30每侧的至少一组推进缸的合力所在的直线低于刀盘 10, 那么推进装置 40通过前主梁给予刀盘 10和驱动系统 20以向前上方的扭转力矩, 以此平衡刀盘 10和驱动系统 20所受到的向下后方的扭转力矩。
在一个实施^中, 如图 2所示, 支撑换步装置 50包括其上设置有滑轨的鞍 架 51和设置于鞍架 51两侧的撑靴 52, 撑靴 52通过撑靴缸 53连接至鞍架 51, 后主梁 32设置于滑轨上以能够沿滑轨移动。 由此当后支撑装置 70收起, 支撑换 步装置 50的撑靴 52支撑于洞壁上 , 推进装置 40推动前主梁 31前移, 前主梁 31带进后主梁 32和后支撑装置 70在鞍架 51的滑轨上前移, 由此后主梁 32和后 支撑装置 70前移, 移动预定距离后, 后支撑装置 70支撑于洞壁上, 撑靴缸 53 的活塞杆带动撑靴 52收 , 鞍架 51通过滑轨也实现了向前移动。 鞍架 51起支 架作用, 撑靴缸 53可以是液压缸, 其活塞杆的伸长量可以实现撑靴 52撑紧洞壁 或者收回。
在一个实施例中, 推进缸的无杼端连接于撑靴。 以此撑靴支撑于洞壁时所 受到的摩擦力可以抵消推进缸在推进前主梁 31的过程中所受到的反推力。
下面描述本发明的硬岩隧道掘进机的工作过程。
采用该硬岩隧道掘进机掘进施工时, 刀盘 10在工作状态下始终保持转动, 当直线掘进时, 推进装置 40的推进缸的活塞杆伸长, 向前推动前主梁 31 , 前主 梁 31带动驱动系统 20和刀盘 10向前移动, 因此直线掘进时刀盘 10的前移和转 动同时发生, 同时刀盘 10切削岩体, 掉落的岩屑经过皮带机 60输送至岩屑出口
34, 并通过其他排碴设备运送至隧道外, 另外由于后主梁 32能够在鞍架 51的滑 轨上滑动, 所以推进装置 40向前推进前主梁 31 (此时后支撑装置收起, 撑靴 52 支撑于洞壁上) 时, 前主梁 31 同时带动后主梁 32和后支撑装置 70前移, 以此 实现刀盘、驱动系统以及主梁等部件的前移。当推进缸的伸长量达到最大行程时, 后支撑装置 70展开支撑在洞壁上, 撑靴缸 53回缩以将撑靴 52收回, 推进缸回 缩以带动撑靴 52和鞍架 51在后主梁3 ' 2上向前移动(此时刀盘 10、驱动系统 20、 前主梁 31、 后主梁 32、 后支撑装置 70都不动, 刀盘 10仍在转动) , 当推进缸 回缩至初始位置 , 撑靴缸 53撑开撑靴 52支撑于洞壁, 后支撑装置 70收起, 推进缸的活塞杆伸长, 开始下一个推进过程。 当需要转弯掘进时, 由于前主梁 31 和后主梁 32铰接, 所以前主梁 31和后主梁 32之间可以呈任意角度的夹角, 通 过调节主梁 30—侧的至少一组推进缸的活塞衧的伸长量不同于主梁 30另一侧的 至少一组推进缸的活塞杆的伸长量来实现前主梁 31 和后主梁 32 之间的任意夹 角, 以此实现刀盘 10的不同转弯半径, 特别是小转弯半径的转弯掘进。
虽然已经参考优选实施例对本发明进行了描述, 但在不脱离本发明的范围 的情况下, 可以对其进行各种改进并且可以 ^等效物替换其中的部件。 本发明并 不局限于文中公幵的特定实施例, 而是包括落入权利要求的范围内的所有技术方

Claims

权 利 要 求 书
1 . 一种硬岩隧道掘进机, 其特征在于, 包括- 刀盘, 用于切割岩石;
驱动系统, 其用于驱动所述刀盘转动;
主梁, 其包括前主梁和与所述前主梁铰接的后主梁, 所述刀盘设置于所述 驱动系统, 所述驱动系统设置于所述前主梁;
推进支撑换步系统, 其用于实现所述掘进机的前移, 所述推进支撑换步系 统包括推进装置, 所述推进装置分别连接所述前主梁和所述后主梁, 当转弯掘进 时所述推进装置能够调节所述前主梁和所述后主梁之间的夹角。
2. 根据权利要求 1所述的硬岩隧道掘进机, 其特征在于, 所述推进支撑换 步系统还包括支撑换步装置和后支撑装置, 所述支撑换步装置和所述后支撑装置 设置于所述后主梁, ^于交替支撑于洞壁, 所述推进装置与所述支撑换步装置连 接, 并 ϋ与所述支撑换步装置和所述后支撑装置配合实现所述掘进机的前移。
3. 根据权利要求 1或 2所述的硬岩隧道掘进机, 其特征在于, 所述前主梁 和所述后主梁分别构造为中空的壳体, 所述前主梁的后端部和所述后主梁的前端 部叠置以形成贯通所述主梁的内部腔室, 以用于输送岩屑的皮带机从中穿过。
4. 根据权利要求 3所述的硬岩隧道掘进机, 其特征在于, 所述后主梁的后 端部设置有岩屑出口, 所述皮带机将所述岩屑输送至所述岩屑出口。
5. 根据权利要求 3所述的硬岩隧道掘进机, 其特征在于, 所述前主梁的后 端部包括厚度较厚的第一加强部, 所述后主梁的前端部包括厚度较厚的第二加强 部, 所述第一加强部和所述第二加强部通过销轴实现所述前主梁的后端部和所述 前主梁的前端部的叠置。
6. 根据权利要求 2所述的硬岩隧道掘进机, 其特征在于, 所述推进装置包 括分别设置于所述主梁两侧的至少一组推进缸, 所述推进缸的有杆端连接至所述 前主梁, 所述推进缸的无衧端设置于所述后主梁。
7. 根据权利要求 6所述的硬岩隧道掘进机, 其特征在于, 设置于所述主梁 每侧的至少一组推进缸的合力所在直线低于所述刀盘的旋转轴线。
8. 根据权利要求 6所述的硬岩隧道掘进机, 其特征在于, 所述支撑换步装 置包括其上设置有滑轨的鞍架和设置于所述鞍架两侧的撑靴, 所述撑靴通过撑靴 缸连接至所述鞍架, 所述后主梁设置于所述滑铳上以能够沿所述滑轨移动。
9. 根据权利要求 8所述的硬岩隧道掘进机, 其特征在于, 所述推进缸的无 衧端连接于所述撑靴。
PCT/CN2014/079765 2014-06-12 2014-06-12 一种硬岩隧道掘进机 WO2015188356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017100001A RU2704407C2 (ru) 2014-06-12 2014-06-12 Тоннелепроходческая машина для работы с твердыми породами
PCT/CN2014/079765 WO2015188356A1 (zh) 2014-06-12 2014-06-12 一种硬岩隧道掘进机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079765 WO2015188356A1 (zh) 2014-06-12 2014-06-12 一种硬岩隧道掘进机

Publications (1)

Publication Number Publication Date
WO2015188356A1 true WO2015188356A1 (zh) 2015-12-17

Family

ID=54832733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079765 WO2015188356A1 (zh) 2014-06-12 2014-06-12 一种硬岩隧道掘进机

Country Status (2)

Country Link
RU (1) RU2704407C2 (zh)
WO (1) WO2015188356A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295075A (zh) * 2016-08-30 2017-01-04 中国人民解放军军事交通学院 一种硬岩隧道掘进机常截面盘形滚刀重量磨损量预估方法
CN107480400A (zh) * 2017-08-31 2017-12-15 上海交通大学 一种基于多调谐质量阻尼器的硬岩掘进机减振设计方法
CN107916939A (zh) * 2017-10-27 2018-04-17 陈南南 一种全断面硬岩隧道掘进机刀盘及掘进方法
CN109915162A (zh) * 2019-03-09 2019-06-21 上海创力集团股份有限公司 一种硬岩截割装置
CN112682054A (zh) * 2020-12-03 2021-04-20 重庆文理学院 一种用于tbm施工监测的挖掘设备及其勘测方法
CN113175326A (zh) * 2021-04-09 2021-07-27 重庆文理学院 自动测量式tbm施工的掘进测量机及使用方法
CN114320310A (zh) * 2021-11-30 2022-04-12 中南大学 用于新开救援隧道的快速掘进系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291377A (ja) * 1999-04-02 2000-10-17 Komatsu Ltd トンネル掘進機
WO2010078033A2 (en) * 2008-12-17 2010-07-08 The Robbins Company All-conditions tunnel boring machine
CN102337899A (zh) * 2011-08-30 2012-02-01 中国铁建重工集团有限公司 一种开敞式全断面硬岩掘进机调向装置
CN202194662U (zh) * 2011-08-30 2012-04-18 中国铁建重工集团有限公司 一种开敞式全断面硬岩掘进机调向装置
CN103437775A (zh) * 2013-09-13 2013-12-11 中铁隧道装备制造有限公司 一种开敞式全断面岩石掘进机
CN203499693U (zh) * 2013-09-23 2014-03-26 中铁隧道装备制造有限公司 一种双铰接双模式防爆型斜井全断面岩石掘进机
CN103742135A (zh) * 2014-01-15 2014-04-23 上海安运输送设备有限公司 矿用全断面矩形快速掘进机
CN103993889A (zh) * 2014-06-12 2014-08-20 中国铁建重工集团有限公司 一种硬岩隧道掘进机
CN203891891U (zh) * 2014-06-12 2014-10-22 中国铁建重工集团有限公司 一种硬岩隧道掘进机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU899929A1 (ru) * 1980-01-09 1982-01-23 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Горнорудного Машиностроения Проходческа машина
US4494799A (en) * 1983-02-17 1985-01-22 Harrison Western Corporation Tunnel boring machine
RU2043503C1 (ru) * 1992-04-29 1995-09-10 Ясиноватский машиностроительный завод Тоннелепроходческий комплекс
JP2657788B2 (ja) * 1995-05-12 1997-09-24 川崎重工業株式会社 トンネル掘削機
JP3638432B2 (ja) * 1998-04-30 2005-04-13 日立造船株式会社 トンネル掘削機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291377A (ja) * 1999-04-02 2000-10-17 Komatsu Ltd トンネル掘進機
WO2010078033A2 (en) * 2008-12-17 2010-07-08 The Robbins Company All-conditions tunnel boring machine
CN102337899A (zh) * 2011-08-30 2012-02-01 中国铁建重工集团有限公司 一种开敞式全断面硬岩掘进机调向装置
CN202194662U (zh) * 2011-08-30 2012-04-18 中国铁建重工集团有限公司 一种开敞式全断面硬岩掘进机调向装置
CN103437775A (zh) * 2013-09-13 2013-12-11 中铁隧道装备制造有限公司 一种开敞式全断面岩石掘进机
CN203499693U (zh) * 2013-09-23 2014-03-26 中铁隧道装备制造有限公司 一种双铰接双模式防爆型斜井全断面岩石掘进机
CN103742135A (zh) * 2014-01-15 2014-04-23 上海安运输送设备有限公司 矿用全断面矩形快速掘进机
CN103993889A (zh) * 2014-06-12 2014-08-20 中国铁建重工集团有限公司 一种硬岩隧道掘进机
CN203891891U (zh) * 2014-06-12 2014-10-22 中国铁建重工集团有限公司 一种硬岩隧道掘进机

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295075B (zh) * 2016-08-30 2019-06-21 中国人民解放军军事交通学院 一种硬岩隧道掘进机常截面盘形滚刀重量磨损量预估方法
CN106295075A (zh) * 2016-08-30 2017-01-04 中国人民解放军军事交通学院 一种硬岩隧道掘进机常截面盘形滚刀重量磨损量预估方法
CN107480400A (zh) * 2017-08-31 2017-12-15 上海交通大学 一种基于多调谐质量阻尼器的硬岩掘进机减振设计方法
CN107480400B (zh) * 2017-08-31 2021-03-09 上海交通大学 一种基于多调谐质量阻尼器的硬岩掘进机减振设计方法
CN107916939B (zh) * 2017-10-27 2023-12-22 陈南南 一种全断面硬岩隧道掘进机刀盘及掘进方法
CN107916939A (zh) * 2017-10-27 2018-04-17 陈南南 一种全断面硬岩隧道掘进机刀盘及掘进方法
CN109915162A (zh) * 2019-03-09 2019-06-21 上海创力集团股份有限公司 一种硬岩截割装置
CN109915162B (zh) * 2019-03-09 2024-06-04 上海创力集团股份有限公司 一种硬岩截割装置
CN112682054A (zh) * 2020-12-03 2021-04-20 重庆文理学院 一种用于tbm施工监测的挖掘设备及其勘测方法
CN112682054B (zh) * 2020-12-03 2022-08-23 重庆文理学院 一种用于tbm施工监测的挖掘设备及其勘测方法
CN113175326B (zh) * 2021-04-09 2022-08-19 重庆文理学院 自动测量式tbm施工的掘进测量机及使用方法
CN113175326A (zh) * 2021-04-09 2021-07-27 重庆文理学院 自动测量式tbm施工的掘进测量机及使用方法
CN114320310A (zh) * 2021-11-30 2022-04-12 中南大学 用于新开救援隧道的快速掘进系统

Also Published As

Publication number Publication date
RU2704407C2 (ru) 2019-10-28
RU2017100001A3 (zh) 2018-07-12
RU2017100001A (ru) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2015188356A1 (zh) 一种硬岩隧道掘进机
RU2673569C1 (ru) Буровзрывная проходческая машина
CN103993889B (zh) 一种硬岩隧道掘进机
CN108756913B (zh) 一种小型矿用硬岩盾构掘进机
CN202510121U (zh) 一种硬岩掘进机
CN102606154B (zh) 双圆刀盘煤巷掘进机
CN203891891U (zh) 一种硬岩隧道掘进机
CN110242300B (zh) 劈裂机构和掘进设备
CN105822225A (zh) 一种一臂二钻凿岩臂架结构
AU2020277229B2 (en) Eccentric hob type tunneling machine capable of breaking rock according to predetermined path without affecting supporting work
CN102654053A (zh) 高效成块采掘机
CN111485900A (zh) 岩石掘进机
CN202745869U (zh) 高效成块采掘机
CN112412450A (zh) 一种钻装锚一体机
CN104453710A (zh) 一种煤层大孔径钻孔施工的钻孔装备
CN105114074B (zh) 一种钻掘机
CN204476409U (zh) 掘进机组合式截割破岩涨裂装置
CN111997643A (zh) 一种多锤式隧道掘进机、控制方法及应用
CN103256048B (zh) 综采钻煤机组开采方法
CN106761736B (zh) 一种煤矿用综合采煤装置
CN116950673A (zh) 一种导洞扩孔隧道掘进机及其施工方法
US3141703A (en) Continuous mining machine of the ripper type
CN209067130U (zh) 一种顶锤式液压钻机的推进结构
CN204960930U (zh) 一种钻掘机
CN204716250U (zh) 掘进机凿岩钻孔装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017100001

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14894214

Country of ref document: EP

Kind code of ref document: A1