WO2015186959A1 - 복합소재 및 이의 제조 방법 - Google Patents

복합소재 및 이의 제조 방법 Download PDF

Info

Publication number
WO2015186959A1
WO2015186959A1 PCT/KR2015/005549 KR2015005549W WO2015186959A1 WO 2015186959 A1 WO2015186959 A1 WO 2015186959A1 KR 2015005549 W KR2015005549 W KR 2015005549W WO 2015186959 A1 WO2015186959 A1 WO 2015186959A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
polymer
reactive polymer
composite material
aluminum
Prior art date
Application number
PCT/KR2015/005549
Other languages
English (en)
French (fr)
Inventor
고정호
신관우
Original Assignee
지앤씨테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지앤씨테크(주) filed Critical 지앤씨테크(주)
Publication of WO2015186959A1 publication Critical patent/WO2015186959A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a composite material and a method for manufacturing the same, and more particularly, to a composite material having a structure in which a metal and a polymer are covalently bonded or ion-bonded, and a method for manufacturing the same.
  • the heat sink is mainly a metal having high thermal conductivity, for example, made of a sheet or a plate using a metal such as aluminum (Al) or copper (Cu), and placed in a portion where heat is emitted from an electronic device. It transfers and releases the heat emitted from the parts to the outside.
  • a heat sink made of a single metal has a relatively small surface area where heat is emitted, it is easy to manufacture and arrange a heat sink, but electrons having a relatively large size with respect to an electronic device used for a street light or a tunnel
  • the heat generation is made of Al metal because the heat generation is large, the size of the heat sink is increased and the weight of the final heat sink is increased, and the ease of manufacture is reduced because the mold required for die casting must be provided according to the desired size. This results in a problem that the cost of manufacturing increases.
  • a method of manufacturing a heat sink for reducing weight while maintaining thermal conductivity, dispersing metal powder in a base made of a polymer such as plastic, or carbon nanotube (CNT) was dispersed to inject a mixture of increased heat transfer to prepare a heat transfer plastic was used as a heat sink.
  • heat-transfer plastics must increase the input of heat transfer materials (metal particles, carbon nanotubes, etc.) dispersed in the matrix to increase heat transfer.
  • the bonding strength of the overheating material reduces the strength, causing easy breakage.
  • the weight can be reduced relative to the conventional heat sink, but the reduction effect is insignificant in terms of cost.
  • the present invention provides a composite material having a structure in which molecules of a metal and a polymer are covalently or ionically bonded to each other, and a method of manufacturing the same.
  • the present invention provides a composite material and a method for manufacturing the same that can reduce the specific gravity while maintaining the thermal conductivity of the heat sink.
  • the present invention provides a composite material and a manufacturing method thereof that can produce a heat sink that can be applied to various fields.
  • the metal and the reactive polymer are mixed with each other, and the interface between the mixed metal and the reactive polymer has a structure in which the metal and the reactive polymer molecule are covalently or ionically bonded to each other. .
  • the metal may be surface modified by a metal pretreatment such that energy levels between metal atoms are reduced.
  • the metal agent may include a first metal material and a second metal material having different average diameters of the atomized particles, and the average diameter r 1 of the first metal material may be larger than the average diameter r 2 of the second metal material.
  • the average diameter r 1 of the first metal may be 50 to 50.
  • the metal is selected from one or two or more of aluminum or an aluminum-based alloy containing aluminum, aluminum carbide, manganese, magnesium, aluminum-based alloys, copper or copper alloys, magnesium or magnesium alloys, iron or iron alloys. use, or alumina (Al 2 O 3), iron oxide (iron oxide), a mineral powder containing the metal element (Na, Al, Si 2 O 6), aluminum silicate (mica, mica seats), aluminum hydroxide (Al ( OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium carbonate (CaCO 3 ), barium sulfate, magnesium oxide (MgO), Mg 3 (Si 4 O 10 ) (OH) 2
  • alumina Al 2 O 3
  • iron oxide (iron oxide) iron oxide
  • a mineral powder containing the metal element Na, Al, Si 2 O 6
  • aluminum silicate mica, mica seats
  • CaCO 3
  • the reactive polymer has a carbon chain in a main chain structure, and a polymer pretreatment for graft copolymerization of a base polymer into which a polar group can be introduced into the main chain or side chain and a modified polymer having a substituent is promoted, and the interfacial bonding with the metal is promoted. It may be surface modified by the agent.
  • the reactive polymer may further comprise a thermally conductive additive for the polymer.
  • the reactive polymer may be added in an amount of 3 to 30 wt% based on the total weight of the composite material.
  • the modified polymer may be included in an amount of 0.1 to 20 wt% based on the total amount of the base polymer.
  • the structure in which the metal molecules and the molecules of the reactive polymer are covalently or ionic bonded to each other is increased by a mixed pretreatment agent for increasing the reactivity at the interface between the metal and the reactive polymer and preventing phase separation to induce uniform mixing. Can be promoted.
  • It may further include a thermally conductive additive for mixing in the pores between the metal.
  • the thermally conductive additive for mixing may be added at 55 wt% or less based on the total amount of the reactive polymer.
  • the thermally conductive additives include gold, silver, copper and copper alloys, aluminum and aluminum alloy series, magnesium and magnesium alloys, alloys based on iron and iron oxides or iron, magnesium hydroxide or aluminum hydroxide including alumina, alumina (Al 2 O 3 ), Melia (BeO 2 ), boron nitride, magnesium whisker, silicon carbide, silicon nitride, aluminum nitride, metal salts including MgO, graphene, graphite, carbon fine powder or CNT based, metal
  • One or two or more of the mineral powders containing the components may be selected and used.
  • the surface of the thermally conductive additive may be coated with one or more selected from petroleum solvent, fatty acid oil, white oil, mineral oil, silicone oil, olefin wax, DTBT, glycol.
  • a method of manufacturing a heat dissipating metal-organic composite material includes preparing a metal, preparing a reactive polymer, and mixing the metal and the reactive polymer to generate a covalent or ionic bond at an interface. Reactive polymer incorporation step.
  • mixing is performed by adding a mixing pretreatment agent to increase the reactivity of an interface at which the metal molecules and the molecules of the reactive polymer are covalently or ionically bonded to each other and to prevent phase separation to induce uniform mixing.
  • Mixed pretreatment to may further include.
  • the preparing of the metal may include selecting and atomizing a single or two or more kinds of metals, and modifying a surface to reduce energy levels of metal atoms of the selected metal.
  • the preparing of the reactive polymer may include graft copolymerizing a modified polymer having a substituent and a base polymer having a high molecular weight, atomizing the copolymerized polymer, and using the atomized polymer to promote interfacial bonding with the metal. And surface modification with a polymer pretreatment agent.
  • the preparing of the reactive polymer may further include incorporating a thermally conductive additive for the polymer.
  • the metal-reactive polymer incorporation step may further include incorporating a thermally conductive additive for mixing.
  • the composite material of the present invention and a manufacturing method thereof, it is possible to provide a composite material of a metal-polymer having increased binding force through intermolecular covalent or ionic bonds of different materials.
  • a reactive polymer having a polar group and a substituent is mixed with the finely powdered metal to induce an acid salt substitution reaction in the interfacial bonding process to form a substituted covalently bonded morphology.
  • the metal is surface-modified by the metal pretreatment agent so that the energy level between the metal atoms is reduced, and the reactive polymer is surface-modified to promote the interfacial bonding with the metal, whereby the metal and the reactive polymer are easily covalently or ionicly bonded to each other. can do.
  • the heat dissipation body can be manufactured at a reduced manufacturing cost compared to when the heat dissipation body is made of only metal, and can be manufactured by selecting a content ratio or type of the metal and the reactive polymer, and can be applied to various heat dissipation requirements.
  • 1 is a model showing the configuration before the reaction of the composite material according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a metal crystal according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method for manufacturing a composite material according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the structure of the composite matrix according to the binding force between the composition of the composite material.
  • FIG. 5 is a view for explaining a metal pretreatment process of the present invention.
  • FIG. 6 is a schematic diagram illustrating a covalent substitution bonding process of a metal interface and a reactive polymer according to an exemplary embodiment of the present invention.
  • FIG 7 and 8 are photographs showing the state of the heat sink specimen prepared using the composite material according to an embodiment of the present invention.
  • 1 is a model showing the configuration before the reaction of the composite material according to an embodiment of the present invention.
  • 2 is a view for explaining a metal crystal according to an embodiment of the present invention.
  • 3 is a flowchart illustrating a method for manufacturing a composite material according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the structure of the composite matrix according to the binding force between the composition of the composite material. 4 (a) shows the structure of the composite material matrix showing the ideal morphology, and FIG. 4 (b) is a schematic diagram showing the structure of the composite material matrix having the bonding force nonuniformity morphology.
  • FIG. 5 is a view for explaining a metal pretreatment process of the present invention.
  • 6 is a schematic diagram illustrating a covalent substitution bonding process of a metal interface and a reactive polymer according to an exemplary embodiment of the present invention.
  • 7 and 8 are photographs showing the state of the heat sink specimen prepared using the composite material according to an embodiment of the present invention.
  • the metal 100 and the reactive polymer 200 are mixed with each other, and the interface between the mixed metal 100 and the reactive polymer 200 is in contact with the metal 100.
  • the reactive polymer 200 molecules have a structure that is covalently or ionically bonded to each other, thereby providing a thermally conductive matrix having increased binding force between dissimilar materials. That is, the composite material 1 is a steel such as covalent and ionic bonds between different materials, such as reactive polymers 200, which reduce the reaction enthalpy of the metal 100 and the metal 100 and induce an acidic substitution reaction. It is composed of strong chemical interaction to realize the high stiffness, high strength and mechanical strength of metals, and at the same time to realize the electrical characteristics, chemical resistance, chemical resistance, weather resistance, and salt resistance, which are chemical properties that can be obtained from polymers Can be.
  • the metal 100 is a component for providing heat dissipation to the composite material 1 and is surface modified by a metal pretreatment agent so that energy levels between metal atoms are reduced.
  • the metal 100 may be composed of the first metal 110 and the second metal 130 having different average diameters of the atomized particles.
  • the first metal 110 is for constituting the main basic morphology of the composite material 1, and determines the particle size in consideration of the economics of the molded product manufactured from the composite material 1, but the determined particle size is determined by the matrix
  • the same or similar particle size with a small variation in the average particle size may be selected and used so that mutual uniform stress (uniform intermolecular attraction after bonding with the polymer) between the first metal grains 110 in the grain can be applied.
  • the average diameter r 1 of the first metal 110 may be a particle having an average diameter of 50 to 50.
  • the crystallinity of the morphology formed by the first metal 110 may become more dense, but as the average diameter r 1 decreases, the cost increases, resulting in a final increase. The cost consumed in manufacturing the composite material 1 may be increased, thereby reducing the compatibility.
  • the space between the first metals 110 that is, the gaps between the first metals
  • free electrons between the metals do not easily move.
  • the average diameter (r 1 ) of the first metal 110 may be selected within the above range, the particle size in consideration of the cost consumed in the manufacture of the composite material 1, the second metal 130 to be described later
  • the average diameter (r 1 ) can be determined by the presence or absence of). That is, the size of the first metal 110 may be selected and used depending on the field in which the composite material 1 is applied and the desired strength of the heat dissipation mechanism made of the composite material 1. Meanwhile, the first metal 110 may be used in a form selected from spherical, linear or bulk type, and when the first metal 110 is selected and used in a spherical form, the first metal 110 may have a metal 100 having an irregular surface. Interfacial bonding can be made easier than when used.
  • the second metal 130 is provided to be filled in the voids between the first metals 110, and is larger than the average diameter r 1 of the first metal 110 to be filled in the voids between the first metals 110. It can be selected and used to have a small average diameter r 2 .
  • the second metal 130 may be selected and used the same or different material as the metal selected as the first metal 110, and when the material of the spherical form like the first metal 110 is used, the surface area of the bonding interface The mechanical bond strength can be increased by increasing.
  • the second metal 130 may be selected to have the same or similar particle size having a small variation in the average particle size so that mutual uniform stress between grains (uniform intermolecular attraction after bonding with the polymer) can be applied.
  • the second metal 130 may be injected with one or more particles having a smaller diameter than the first metal 110 with different particle sizes to fill the voids formed between the first metal 110.
  • the second metal 130 may be injected with a metal having at least one kind of average diameter (r 2 ), the particle size relationship between the second metal 130 is injected with a plurality of average diameter values, all It has a smaller average diameter than the first metal 110, the relationship between the average diameter can be a large or small relationship.
  • the second metal the average diameter of (130) (r 2) is 50 to 20 average diameter (r 2), the particle is used or having, a first metal 110, a particle size selected from the r 1/10 to r of 1/3 of the particle size is selected for can be used.
  • the second metal 130 can be the size of the particles of r 1 / r 6 to 1/4 of an average diameter (r 1) is selected as the first metal 110 is selected.
  • the second metal 130 may be selected in consideration of the selection of the first metal 110 within the above range.
  • the second metal 130 is selected or used one or two or more of the metal or metal salt-based nanoparticles when the average diameter (r 1 ) of the selected first metal 110 is 1 or less is not used, or not. It may not.
  • the combination of the metal 100 will be described.
  • the particles of the average diameter r 1 of 200 are selected as the first metal 110
  • the voids formed between the selected first metals 110 eg, The second metal 130 may be selected to have an average diameter r 2 of 50 to a size similar to or the same as the size of the pore to fill the formed pore size 50.
  • the second metal 130 is introduced with a plurality of particle sizes
  • the other second metal 130 may have a particle size of 1 or less.
  • metal particles having a total of three particle sizes may be interfacially bonded.
  • the metal 100 may be selected with different metal materials and particle sizes depending on the field in which the composite material 1 is to be used. That is, the metal 100 is intended to provide thermal conductivity and durability in forming the heat dissipating composite material 1, and is 70% by weight of aluminum having an easy covalent bond with the reactive polymer 200 which will be described later among the conductive metals.
  • sulfide, magnesium oxide (MgO), talc (Mg 3 (Si 4 O 10 ) (OH) 2 and Talc) may be selected and used.
  • the selected metal 100 may be pretreated by a metal pretreatment agent and then introduced into the synthesis with the reactive polymer 200 described later.
  • the metal pretreatment agent has a low covalent molecular structure due to instability or low reactivity of the covalent molecular structure formed at the interface, or the molecules of the metal 100 and the molecules of the reactive polymer 200 form voids due to repulsive forces.
  • the metal 100 may be introduced to induce crystal expansion. That is, the metal pretreatment may be added to induce the orientation in which the metal 100 and the reactive polymer 200 may preferentially react.
  • the residual monomer remaining in the reactive polymer 200 without reacting with the metal 100 may cause non-uniformity in the form of macro or stresses due to additives around the macro, resulting in non-uniformity of the matrix.
  • Such a metal pretreatment may include a metal salt series having a metal salt-based radical group or an oxidizing group which may contain a component of a material such as an interface of the metal 100 or may assist in an acidic acid substitution reaction.
  • the surface of the metal 100 may be modified by mixing the metal 100 with a solid to surface modify the metal 100 or by mixing with the metal 100 in a solution state.
  • the reactive polymer 200 induces a reaction at the grain expansion crystal interface by lowering the reaction energy (reaction enthalpy) of the metals 100 by introducing a chemical reaction energy.
  • the carbon chain has a main chain structure. Polymer pretreatment so that the base polymer 200a into which a polar group can be introduced into a chain or side chain and the modified polymer 200b mixed with the base polymer 200a and having a substituent are graft copolymerized to promote interfacial bonding with the metal 100. It can be surface modified by the agent.
  • the reactive polymer 200 may be added in an amount of 3 to 30 wt% based on the total weight of the composite material 1, and when the reactive polymer 200 is added in an amount less than 3 wt%, a binding reaction per mole in the manufacturing process of the composite material is performed. Since the ratio does not exist, a large number of practically non-bonded interfaces are distributed, and when the amount exceeds 30 wt%, the overall thermal conductivity of the composite material 1 and the composition and mixing ratio of the strength, economy, and thermal conductivity are reduced. Problems in which the bonding force with the metal 100 may be reduced may cause the reactive polymer 200 to be introduced into the above range.
  • the reactive polymer 200 when added at a molar reaction rate or more, residual polymer remaining after the interfacial bonding reaction is generated.
  • the residual polymer acts as non-uniform stresses, stresses, etc., such as the mutual attraction between the molecules constituting the matrix in the matrix, and is locally vulnerable to strength and bonding force, so that internal cracks are generated, and thus the heat-radiator made of the composite material 1 It can act as a factor to reduce the durability of the.
  • the composite material (1) is preferably added in the above range to reduce the amount of residual polymer generated to reduce the voids.
  • One or more of HDPE (high density polyethylene), low density polyethylene (LDPE), LLDPE (liner-), EVA (ethylene vinylacetate series) can be used.
  • the modified polymer (200b) has a substituent such as propylene grycol, propylene grycol methyl ether, peroxide, carboxil acid, acetic anhydride, acetic acid, nitric acid, ammonium nitrate, maleic acid, maleic anhydeide, sulfuric acid, sulfur trioxide, phosphoric acid, hydrochloric acid
  • a substituent such as propylene grycol, propylene grycol methyl ether, peroxide, carboxil acid, acetic anhydride, acetic acid, nitric acid, ammonium nitrate, maleic acid, maleic anhydeide, sulfuric acid, sulfur trioxide, phosphoric acid, hydrochloric acid
  • One or more of the acids are selected and mixed with the polymer to extrude and modify.
  • the mixing ratio of the base polymer 200a and the modified polymer 200b for manufacturing the reactive polymer 200 may be changed depending on the reaction ratio per mole of the main
  • 0.1 to 20% by weight of the modified polymer 200b may be mixed based on the total amount of 200a).
  • the substitution reaction ratio increases according to the mixing ratio of the modified polymer 200b and the base polymer 200a.
  • the base polymer 200a is deteriorated or decomposed. Because of a problem, the modified polymer 200b may be mixed within the above range.
  • ABS acrylonitrile
  • HIPS High impact polystyrene
  • GPPS General polystylene
  • PMMA Polymethylmetha acrylic
  • SBS Stylene butadiene stylene copolymer
  • BR Butadiene rubber
  • MBR Modified-
  • SBR Stylene butadiene rubber
  • Modified polypropylene rubber EMPP (Ethylene propylene rubber), EPDM (Ethylene propylene rubber), SEBS (Stylene ethylene butadiene stylene), Polyamide, Polyimide, PTFE (Polytetrafluoroethylene), PPE (Polyphenylene ether), mPPO (Polyphenylene oxide), INGAGE, EEA (E
  • the reactive polymer 200 rough up to the second extrusion process may be powdered to increase the activity of the particle interface.
  • a method for powdering the reactive polymer 200 may be classified into a chemical method and a mechanical method, and mechanically using a low temperature nitrogen cooling method in order to prevent being affected by chemical reaction characteristics in the chemical powdering process.
  • the reactive polymer 200 is classified into two stages and is manufactured. This is because some of the above-mentioned polymers are easily deteriorated to prevent or prevent process accidents such as explosions and fires that may occur when introduced at the same time.
  • the reactive polymer 200 may be surface-modified with a polymer pretreatment agent for facilitating bonding with the metal 100 before mixing with the metal 100, and the polymer pretreatment agent may be The same or similar materials as the pretreatment agent (for example, metal salt series in which carboxyl group, alkyl group, amine group, etc. containing a combination of aluminum, zirconium, iron and the like are combined) may be used. More specifically, the polymer pretreatment may be a metal salt series sharing a radical group belonging to the base polymer of the reactive polymer 200, and when a solid polymer pretreatment agent is used, it is selected that the melting point is lower than the melting point of the reactive polymer 200 Can be used.
  • a polymer pretreatment agent for example, metal salt series in which carboxyl group, alkyl group, amine group, etc. containing a combination of aluminum, zirconium, iron and the like are combined
  • the polymer pretreatment may be a metal salt series sharing a radical group belonging to the base polymer of the reactive polymer
  • the interface that forms the covalent bond between the metal 100 and the reactive polymer 200 is an interface where radical substitution is performed to a reactive interface with extended crystallinity of the metal 100. That is, the bonding interface (S) is an excited state in terms of electron energy in a state in which radicals in a mixed state are activated, which forms a matrix through crystallization during cooling using the composite material (1).
  • a mixed pretreatment agent is introduced to increase the reactivity at the interface between the surface-modified metal 100 and the reactive polymer 200 and to prevent phase separation of the metal 100 and the reactive polymer 200 to induce uniform mixing. can do.
  • the mixed pretreatment may be a liquid metal salt series
  • the liquid metal salt may be a metal salt having a metal salt-based radical group or an oxidizing group which may be assisted in an acidic acid substitution reaction of the metal 100 and the reactive polymer 200. have.
  • the pretreatment agent used in mixing the metal 100 and the reactive polymer 200
  • An aluminum series is used as the metal 100
  • the reactive polymer 200 is an olefin series, or CH3.
  • the mixed pretreatment agent may use Al-O-CH 3 or Zr-O-CH 3 .
  • the covalent bond is covalently substituted when the processing temperature of the acid substitution substitution reaction of the reactive polymer 200 occurs. Therefore, when the pretreatment agent reaches the predetermined temperature and starts to knead the metal 100 and the reactive polymer 200 in a mixing facility, the pretreatment agent generates electrostatic induction so as to form a morphology with uniform directionality, thereby improving the repulsive force between different molecules. By reducing, the substitution reaction can be made smoothly.
  • an additional thermally conductive additive 500 is added to the pores formed by the metal 100 constituting the composite material 1 and the reactive polymer 200 to increase the thermal conductivity of the composite material 1.
  • the thermally conductive additive 500 is added to compensate for the thermal conductivity of the composite material 1, and the thermally conductive additive 500a, the metal 100, and the reactive polymer ( It may include a thermally conductive additive for mixing (500b) that is added during the incorporation of 200.
  • the thermally conductive additive 500 is added to compensate for thermal conductivity of the morphology of the reactive polymer 200, which generates an interfacial substitution bond (covalent sharing of free electrons) with the metal 100 through a chemical reaction. Even if the weight ratio of 200) is small, it is added to increase the thermal conductivity of the reactive polymer 200 filled in the void because the thermal conductivity of the morphology shows 0.2 to 0.5 / mh.
  • the thermally conductive additive 500a for the polymer is formed in the residual monomer and decomposition gas remaining after the reaction among the voids and the reactive polymer 200 remaining after the reaction is established after binding and binding during the reaction between the pores of the reactive polymer 200 itself and the metal 100. Due to this, the thermally conductive additive 500 may be added to fill the pores due to the secondary polymer carbonization, which occurs when the reaction is completed.
  • the secondary polymer carbonization prescribes antioxidants, internal and external activators, etc., but the reactive polymer 200 of the present application may interfere with the binding, and therefore, it is not preferable.
  • it may be added when the reactive polymer 200 is manufactured, so that the thermally conductive additive 500a is planted in the pores of the reactive polymer 200 itself.
  • the mixing thermal conductive additive 500b may be introduced to increase the thermal conductivity of the reactive polymer 200 filled in the pores and the interface between the respective components and the pores when the metal 100 and the reactive polymer 200 are mixed. As a result, it can be introduced between the pores formed by the metals 100, thereby increasing the thermal conductivity of the overall region of the matrix constituting the composite material (1).
  • the material of the thermally conductive additive 500 As the material of the thermally conductive additive 500, a material having a higher conductivity than the reactive polymer 200 may be selected. In addition, a material that does not decompose in response to the reactive polymer 200 may be selected. In addition, the particle size of the thermally conductive additive 500 may be selected to have a spherical shape and a size that can be filled between the pores of the polymer morphology. This is because, when a material having a spherical shape is selected, the intermolecular stress of the matrix of the composite material 1 may be uniform or equivalent. The amount of the thermally conductive additive 500 may be added up to 55wt% of the total weight of the reactive polymer 200. More preferably, when the second metal 130 is the final main material and the loading amount of the reactive polymer 200 is 7%, the thermally conductive additive 500 may be added up to 30% without disturbing the mechanical bonding strength. Can be.
  • Materials for the thermally conductive additive 500 include gold, silver, copper and copper alloys, aluminum and aluminum alloy series, magnesium and magnesium alloys, iron and iron oxides or alloys based on iron, magnesium hydroxide including metal components or hydroxides
  • Metal salt series including aluminum, alumina (Al 2 O 3 ), beryl (BeO 2 ), boron nitride, magnesium whisker, silicon carbide, silicon nitride, aluminum nitride, MgO, graphene, graphite, carbon fine powder may be used to select (High carbon black) or a CNT-based, Talc, CaCO 3, one of the mineral powder containing SiO 2 or metal or two or more.
  • the composite material 1 is composed of an interfacial bond between the metal 100 and the reactive polymer 200, thereby creating a new molecular structure due to the strong bond between the metal 100 and the reactive polymer 200.
  • a method of manufacturing a heat dissipating metal organic composite material may include preparing a metal 100, manufacturing a reactive polymer 200, and manufacturing a metal 100 and a reactive polymer ( Incorporating 200) to form a metal-reactive polymer incorporating covalent or ionic bonds at the interface.
  • the composite material 1 of the metal 100 is selected to exhibit a desired heat dissipation and to implement a desired mechanical property (S100).
  • the metal 100 is not different from the case of making a metal-based alloy through smelting, refining, etc., but the surface to combine the active acid radical reaction to be shared with the polymer to be bonded to the surface and the chemical acid group reaction to occur in a later step Metal salt modification, treatment of the metal interface to be bonded and the like may be selected. That is, the metal 100 is selected from a single type of metal powder or two or more types of metal powders, and selects a metal that is highly reactive with radicals, taking into account the physicochemical properties of the composite material 1 (e.g.
  • Stiffness, high hardness, high rigidity / thermal conductivity, high hardness / electrical conductivity or high rigidity / high hardness / thermal conductivity / electrical conductivity, etc. is selected to implement this (S110). It selects a single type of metal powder or two or more types of metal powder among the metals 100 described above, and the reaction characteristics of the selected metals 100 are similar or chemical to the chemical reaction (acid-base reaction, hydrolysis reaction). Metals which readily give up electrons upon attack by radicals activated at the time can be selected. The metal 100 thus selected is one of the important variables that make up the matrix with the morphology.
  • the process of adjusting the size and shape of the particles of the metal 100 is performed (S120). That is, to reduce the repulsive force (Fr) due to the homogeneity of the bond at the interface between atoms or molecules, to increase the crystallization atoms or intermolecular attraction (Fc), and to form a matrix.
  • a porosity between the first metal 110 and the second metal 130 may be reduced by applying a gap between the metal crystals. And particle size.
  • the surface modification is performed to refine the surface to reduce the energy levels of the metal atoms of the metals 100 and the process of atomization before directly entering into the synthesis with the reactive polymer 200.
  • a process pretreatment process
  • S130 A process (pretreatment process) is performed (S130). That is, since the covalent molecular structure formed at the metal 100 interface is not stable or has low reactivity, the bonding ratio per mole is low, or both molecules can form voids due to repulsive force, so that the entire matrix is formed in a weak structure.
  • a pretreatment process for modifying the surface of the metal 100 may be performed.
  • Figure 5 in order to increase the bonding force of the metal 100 through the pre-treatment process in advance to facilitate the activation of the reactive group radical reaction force, repulsive force, etc. does not occur, Figure 5 (b) As shown in FIG. 2, the grafting bond with the radical group of the side chain of the reactive polymer 200 to be bonded at the interface SA and SB may form a stable transition layer.
  • the metal salt-based solvent or powder type pretreatment used in the pretreatment agent is, for example, considering the compatibility between the metal 100 and the reactive polymer 200, for example, a carboxyl group or an alkyl group containing a combination of aluminum, zirconium, iron, and the like. , Amine groups and the like can be used in combination.
  • a reactive polymer 200 for inducing a chemical reaction for interfacial bonding with the metal 100 is prepared (S200). That is, as described above, the base polymer having a carbon chain as a main chain structure and the modified polymer 200b having a substituent are grafted to copolymerization (S210), and finely powdered and atomized (S220).
  • S210 the base polymer having a carbon chain as a main chain structure and the modified polymer 200b having a substituent
  • S220 finely powdered and atomized
  • a pretreatment process for modifying the surface of the reactive polymer 200 is performed to promote interfacial bonding with the metal 100 (S230).
  • Pretreatment of the reactive polymer 200 is performed when the base polymer 200a is modified with a modified polymer 200b having a terminal polar group, followed by a powdering process after adding a metal salt / reactive metal powder, or a reactive polymer. It is made of (200) and then powdered to pre-treat the surface immediately before synthesis with the metal 100.
  • the former has a cost increase that requires a complicated prescription and double grafting process for polymer modification, but the latter is simple but difficult to store for a long time due to the BLEED OUT phenomenon after pretreatment. There is a disadvantage.
  • a process of incorporating the thermally conductive additive 500a for the polymer is further performed. That is, as described above, when manufacturing the reactive polymer 200 to fill the voids formed by the reactive polymer 200 itself, the thermal conductive additive 500a for the polymer is introduced to fill the voids of the reactive polymer 200 and the thermoelectric material. You can increase the conductivity.
  • the metal 100 and the reactive polymer 200 are prepared and prepared, the metal 100 and the reactive polymer 200 are mixed (S300) to perform grafting polymerization (S400) to complete the manufacture of the composite material 1. (S500).
  • a mixture of heat conductive additives for mixing may be added.
  • FIG. 6 a diagram for describing a co-substituted bond between the reactive polymer 200 and the metal 100 interface is shown.
  • the pretreated reactive polymer 200 is to be used as an auxiliary means for increasing the reaction rate per mole during the chemical covalent bond reaction of the metal 100, that is, to increase the reactivity.
  • the surface of the metal 100 and the reactive polymer 200 may be modified by the surface modification by the pretreatment agent and the reaction of the metal 100 and the reactive polymer 200 during the pretreatment process. The reactive polymer 200 may be easily reacted.
  • the liquid metal salt used as the mixed pretreatment is added to the metal 100, mixed, and then mixed with the pulverized powder of the reactive polymer 200, mixed and rotated at a high speed to simultaneously process the metal 100 and the reactive polymer (200). Mixing process is performed.
  • the first metal 110 of the metal 100 constituting the composite material 1 used aluminum powder 20 and the second metal 130 selected aluminum powder 5.
  • the reactive polymer 200 was modified to the reactive polymer 200 by selecting one of the base polymer 200a and the modified polymer 200b described above, and the thermal conductive additive 500 during the second extrusion process of the reactive polymer 200.
  • the grafting polymerization was reformed by mixing. Thereafter, before mixing the metal and the reactive polymer 200, the surface is pre-modified with a liquid metal salt in a blender, followed by drying and mixing the metal and the reactive polymer 200 at 100 hours for 1 hour and then mixing the 10-ton hydraulic press in a preheated state. Heated to a thickness of 60 mm at.
  • the molded product was cooled by reaching 300 at the same time while heating for 5 minutes.
  • the specific gravity of the finished molded article is 2.05, the specific heat is lowered to 1.89 / g.
  • the injection die temperature was 300
  • the feeding zone was 180
  • the mixing zone was 250
  • the outvent was processed at 280.
  • the mixing ratio was the same mixture as press molding, the specific gravity was 5%. It was confirmed that the degree is lowered.
  • Table 1 shows the results of comparative thermal conductivity experiments of a heat sink made of a conventional aluminum metal heat sink and the composite material 1 having the above formulation. At this time, each heat sink represents the experimental results applied to the 40W LED.
  • the heat sink of the prior art and the embodiment is in equilibrium with the heat dissipation temperature is supplied from the heat source (40W LED) at a temperature of 30 to 35. Therefore, the heat dissipation performance can be checked according to the time of reaching 30 first.
  • the heat sink made of the composite material (1) of the embodiment can be confirmed that the heat dissipation reaches only 30 minutes to balance 30 minutes, while the conventional heat sink takes 16 minutes.
  • the heat dissipation plate made of the composite material 1 of the present application can be confirmed that exhibits increased thermal conductivity even if the specific gravity is lowered because the polymer is included with respect to the conventional heat dissipation plate. This is achieved by increasing the heat transfer characteristics of the reactive polymer 200 by strong bonding between the composite materials 1 by lowering the reaction enthalpy of the metal 100 to induce strong interfacial bonding.
  • the composite material 1 may vary in thermal conductivity depending on the size of the metal 100, the weight ratio of the reactive polymer 200, and the modification of the reactive polymer 200. This is because the mechanism for constituting the composite material 1 forms a covalent bond by metal-organic substitution at the interface, which is free of three types of heat transfer (convection, radiation, and movement of free electrons) as shown in Equation 1 below. This is because it is caused by heat transfer by electrons.
  • the heat transfer resistance in the conductor is in the form of this equation, and the thermal conductivity k can be summarized as follows.
  • ki is represented by the following [Formula 2].
  • each variable can be measured through a horizontal thermal conductivity meter.
  • T1, T2 temperature of sensor point
  • 1st metal 70 wt% of sphere type particles of aluminum 200, 2nd metal: spherical particle weight ratio of 23 wt% of aluminum 20, by adding a thermally conductive additive 30 Phrs.
  • Modified 7 wt%, 0.005 Phrs of zirconium oxide liquid salt, referred to as surface pretreatment agent for metals and reactive polymers upon mixing.
  • thermally conductive additives 7 3 (processing: hot press)
  • thermally conductive additives 7: 3 processing: hot press
  • Example 1 The results of varying the thermal conductivity according to the conductivity characteristics and the amount of the reactive polymer 200 in the interfacial bonds having different sizes between the material particles according to the conditions of (Example 4) Table 2 below You can check it through
  • the interface, the residual polymer, and the voids during the interfacial bonding reaction are heat transfer resistance surfaces. It can be seen that the characteristics of forming the. However, it can be seen that the thermal conductivity increases rapidly when the size of the metal has fine particles of nanoconductor or submicron or less.
  • Example 5 the increase in the initial heat transfer speed by using the booster, it can be seen that the overall conductivity up to T2 significantly increases with respect to the thermal conductivity of Example 3.
  • Table 4 below shows the comparison between the physical properties of the materials used in the conventional heat sink material and the physical properties of the composite material 1 of the present invention.
  • the composite material 1 of the present application has a low specific gravity compared to the materials of the heat sink used in the past and at the same time exhibits thermal conductivity equivalent or similar to the heat transfer rate of the heat sink used in the related art.
  • This can increase the thermal conductivity through a strong bond between the metal through the reactive polymer 200, the composite material of the present invention is formed by including the reactive polymer 200, the conventional heat dissipation material made of a metal conventional external environment It can solve the reduction of heat dissipation effect due to the change phenomenon exposed to. That is, since the reactive polymer 200 surrounds the surface of the metal 100 with an average layer of 10 nm, the heat dissipator made of the composite material 1 of the present application may increase chemical resistance, salt resistance, and weather resistance.
  • the composite material 1 of the present invention exhibits a form in which a conductive polymer surrounds a metal surface, thereby increasing chemical resistance, salt resistance, and weather resistance.
  • the main chain of the reactive polymer 200 is made of carbon, the hydrogen attached to the side chain of the carbon chain on the surface of the metal mold decomposes during the injection or hot press molding of the composite material, so that the polymer is stable as a whole. Since it can be seated, it is possible to form a fine coating film without a separate thermal conductive paint. Accordingly, as the polymer is stably settled as described above, even if the thickness of the polymer on the metal is 10 to 50 nm, excellent chemical resistance and salt resistance effect can be obtained.

Abstract

본 발명은 방열성 금속 유기 복합소재 및 이의 제조 방법에 관한 것으로서, 금속제를 제조하는 단계와, 반응성 폴리머를 제조하는 단계 및 금속제와 반응성 폴리머를 혼입하여 혼입된 금속제와 반응성 폴리머가 상호 접하는 계면은 금속제와 반응성 폴리머 분자가 상호 공유결합 또는 이온결합된 구조를 갖도록 금속제-반응성 폴리머 혼입 단계를 포함함으로써 결합력이 증가된 금속-폴리머의 복합소재를 제공할 수 있다.

Description

복합소재 및 이의 제조 방법
본 발명은 복합소재 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 금속과 폴리머가 상호 공유결합 또는 이온결합된 구조를 갖는 복합소재 및 이의 제조 방법에 관한 것이다.
일반적으로 전자기기 작동 시에 각종 전자 부품은 소재 자체의 특성과 전기적 저항으로 인하여 발열을 수반하며, 전자 부품의 발열은 전자 부품의 성능을 저하시키고, 전자 기기의 오작동을 야기한다. 따라서, 전자기기의 발열 문제에 대한 해결책으로 전자기기 외부로 열을 방출하기 위하여 전자 제품에 방열체(Heat-Sink)를 도입하고 있다.
방열체는 주로 열전도도가 높은 금속으로, 예컨대, 알루미늄(Al)이나 구리(Cu)와 같은 금속을 사용하여 시트 또는 판의 형태로 제작하며, 이를 전자기기로부터 열이 방출되는 부분에 배치하여 전자 부품으로부터 방출되는 열을 외부로 전달하여 방출시키는 역할을 수행한다.
그러나, 상기와 같은 단일 금속으로 제작된 방열체는 열이 방출되는 표면적이 상대적으로 적어 방열체를 제작하여 배치하는 것은 용이하나, 가로등이나 터널등에 사용되는 전자 소자에 대해 상대적으로 큰 크기를 갖는 전자 기기의 경우 발열량이 크기 때문에 Al 금속으로 방열체의 제작이 이루어지는 경우 그 크기가 증가되어 최종적인 방열체의 무게가 증가되며, 원하는 크기에 따라 다이캐스팅에 필요한 금형이 구비되어야 하기 때문에 제작의 용이성이 감소되어 제작에 소요되는 비용이 증가하는 문제를 야기한다.
이에, 종래에는 열전도성은 유지한 상태에서 무게는 감소시키기 위한 방열체의 제작 방법으로, 플라스틱과 같은 폴리머로 구성된 기지(base) 내에 금속입자(metal powder)를 분산시키거나, 탄소나노튜브(CNT)를 분산시켜 열전달이 증가된 혼합물을 사출하여 열전달 플라스틱을 제작하여 방열체로서 사용하였다.
하지만, 이와 같은 열전달 플라스틱은 열전달을 증가시키기 위해 기지 내에 분산되는 열전달 재료(금속 입자, 탄소나노튜브 등)의 투입량을 증가시켜야 하는데, 열전달 재료의 투입량이 증가됨으로써 열전달성을 증가될 수 있으나, 플라스틱과 열전달 재료의 결합력으로 인해 강도가 감소되어 쉽게 부서지는 문제가 야기된다.
또한, 열전달 특성을 증가시키기 위해 열전달 재료의 투입량을 증가시킴으로써, 종래의 방열체에 대해 상대적으로 무게는 감소시킬 수 있으나, 비용측면에서는 감소효과가 미비하게 된다.
[선행기술문헌]
[특허문헌1]
KR2013-0116992 A1
본 발명은 금속제와 폴리머의 분자들이 상호 공유결합 또는 이온결합된 구조를 갖는 복합소재 및 이의 제조 방법을 제공한다.
본 발명은 방열체의 열전도성을 유지시키며 비중을 감소시킬 수 있는 복합소재 및 이의 제조 방법을 제공한다.
본 발명은 다양한 분야에 적용될 수 있는 방열체를 제작할 수 있는 복합소재 및 이의 제조 방법을 제공한다.
본 발명의 실시 형태에 따른 복합소재는 금속제와 반응성 폴리머가 상호 혼입되고, 상기 혼입된 금속제와 상기 반응성 폴리머가 상호 접하는 계면은 상기 금속제와 상기 반응성 폴리머 분자가 상호 공유결합 또는 이온결합된 구조를 갖는다.
상기 금속제는 금속 원자들간의 에너지 준위가 감소되도록 금속 전처리제에 의해 표면 개질된 것을 특징으로 할 수 있다.
상기 금속제는 미립화된 입자의 평균직경이 서로 상이한 제1 금속제 및 제2 금속제를 포함하고, 상기 제1 금속제의 평균직경(r1)은 상기 제2 금속제의 평균직경(r2) 보다 클 수 있다.
상기 제1 금속제의 평균직경(r1)은 50 내지 50 일 수 있다.
상기 금속제는 알루미늄 또는 알루미늄 중량비 70% 이상의 철, 탄화실리콘, 망간, 마그네슘을 포함하는 알루미늄 계열의 합금, 구리 또는 구리합금 계열, 마그네슘 또는 마그네슘 합금 계열, 철 또는 철의 합금 중 하나 또는 둘 이상을 선택하여 사용하거나, 알루미나(Al2O3), 산화철(Iron oxide), 금속성분을 함유한 광물분말(Na,Al,Si2O6), 알루미늄실리케이트(mica, 운모석), 수산화 알루미늄(Al(OH)3), 수산화 마그네슘(Mg(OH)2), 칼슘 카보네이트(CaCO3), 바륨설페이트, 산화마그네슘(MgO), Mg3(Si4O10)(OH)2를 포함하는 금속성분을 함유한 세라믹 혹은 금속염 중에서 하나 또는 둘 이상을 선택하여 사용할 수 있다.
상기 반응성 폴리머는 탄소사슬을 주사슬 구조로 하며, 상기 주사슬 또는 측쇄사슬에 극성기가 도입 가능한 기재 폴리머와, 치환기를 갖는 개질 폴리머가 그라프트 공중합되고, 상기 금속제와의 계면결합이 촉진되도록 폴리머 전처리제에 의해 표면 개질된 것일 수 있다.
상기 반응성 폴리머는 폴리머용 열전도성 첨가제를 추가로 포함할 수 있다.
상기 반응성 폴리머는 상기 복합소재의 전체 중량에 대하여 3 내지 30 wt% 투입될 수 있다.
상기 개질 폴리머는 상기 기재 폴리머의 전체 투입량에 대하여 0.1 내지 20 wt% 포함될 수 있다.
상기 금속제의 분자와 상기 반응성 폴리머의 분자가 상호 공유결합 또는 이온결합되는 구조는 상기 금속제 및 상기 반응성 폴리머의 계면에서의 반응성을 증가시키고, 상분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제에 의해 촉진될 수 있다.
상기 금속제들 사이의 공극에 혼합용 열전도성 첨가제를 더 포함할 수 있다.
상기 혼합용 열전도성 첨가제는 상기 반응성 폴리머의 총 투입량을 기준으로 55 wt% 이하로 투입될 수 있다.
상기 열전도성 첨가제는 금, 은, 동 및 동의 합금, 알루미늄 및 알루미늄 합금 계열, 마그네슘 및 마그네슘 합금, 철과 철 산화물 또는 철을 주재로한 합금, 금속성분을 포함한 수산화 마그네슘 또는 수산화 알루미늄, 알루미나(Al2O3), 메릴리아(BeO2), 질화붕소(Boron nitride), 마그네슘 휘스커, 탄화규소, 질화규소, 질화 알루미늄, MgO를 포함하는 금속염 계열, 그래핀, 그래파이트, 탄소미세 분말 또는 CNT 계열, 금속성분을 포함한 광물질 분말 중에서 하나 또는 둘 이상을 선택하여 사용될 수 있다.
상기 열전도성 첨가제의 표면은 석유계 솔벤트, 지방산 오일, 화이트 오일, 미네랄 오일, 실리콘 오일, 올레핀 계열 왁스, DTBT, 글리콜계 중에서 하나 또는 둘 이상이 선택되어 코팅될 수 있다.
본 발명의 실시 예에 따른 방열성 금속유기 복합소재 제조 방법은 금속제를 제조하는 단계와, 반응성 폴리머를 제조하는 단계 및 상기 금속제와 상기 반응성 폴리머를 혼입하여 계면에 공유결합 또는 이온결합을 발생시키는 금속제-반응성 폴리머 혼입 단계를 포함한다.
상기 금속제-반응성 폴리머 혼입 단계는 상기 금속제의 분자와 상기 반응성 폴리머의 분자가 상호 공유결합 또는 이온결합되는 계면의 반응성을 증가시키고, 상분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제를 투입하여 혼합하는 혼합 전처리과정;을 추가로 포함할 수 있다.
상기 금속제를 제조하는 단계는 단일 또는 2종 이상의 금속을 선택하고 미립화하는 과정 및 상기 선택된 금속의 금속원자들의 에너지 준위가 감소되도록 표면을 개질하는 표면 개질 과정을 포함할 수 있다.
상기 반응성 폴리머를 제조하는 단계는 분자량이 높은 기재 폴리머와 치환기를 갖는 개질 폴리머를 그라프트 공중합하는 과정, 상기 공중합된 폴리머를 미립화하는 과정 및 상기 금속제와의 계면 결합을 촉진하기 위해 상기 미립화된 폴리머를 폴리머 전처리제로 표면 개질하는 과정을 포함할 수 있다.
상기 반응성 폴리머를 제조하는 단계는 폴리머용 열전도성 첨가제를 혼입하는 과정을 추가로 포함할 수 있다.
상기 금속제-반응성 폴리머 혼입 단계는 혼합용 열전도성 첨가제를 혼입하는 과정을 추가로 포함할 수 있다.
본 발명의 복합소재 및 이의 제조 방법에 의하면, 서로 다른 재료들의 분자간 공유결합 또는 이온결합을 통해 결합력이 증가된 금속-폴리머의 복합소재를 제공할 수 있다.
즉, 미세 분말화된 금속제에 극성기 및 치환기를 갖는 반응성 폴리머를 혼합하여, 계면결합 과정에서 산염기 치환 반응을 유도하여 치환 공유결합된 모폴로지를 형성한다. 이때, 금속제는 금속 원자들간의 에너지 준위가 감소되도록 금속 전처리제에 의해 표면 개질되고, 반응성 폴리머는 금속제와의 계면결합이 촉진되도록 표면 개질됨으로써, 금속제와 반응성 폴리머가 용이하게 상호 공유결합 또는 이온결합 할 수 있다.
따라서, 종래에 금속과 폴리머의 단순혼합에 의해 제조된 복합소재보다 금속제와 폴리머간의 공유결합 또는 이온결합에 의한 강한 결합력을 나타낼 수 있어, 열전도성은 유지된 상태로 비중이 낮고 강도가 증가된 방열체를 제작할 수 있다.
이에, 금속으로만 방열체를 제작할 때에 비해 감소된 제작비용으로 방열체를 제작할 수 있으며, 금속제와 반응성 폴리머의 함량비율 또는 종류를 선택하여 제조할 수 있어 다양한 방열 요구 분야에 적용되어 사용될 수 있다.
도 1은 본 발명의 실시 예에 따른 복합소재의 반응 전 구성을 나타내는 모형도이다.
도 2는 본 발명의 실시 예에 따른 금속제의 결정체를 설명하기 위한 도면이다.
도 3은 본 발명의 실시 예에 따른 복합 소재 제조 방법을 설명하기 위한 순서도이다.
도 4는 복합소재의 구성 간 결합력에 따른 복합소재 매트릭스의 구조를 나타내는 모식도이다.
도 5는 본 발명의 금속제의 전처리 과정을 설명하기 위한 도면이다.
도 6은 본 발명의 실시 예에 따른 금속제 계면과 반응성 폴리머의 공유치환결합 과정을 나타내는 도식화이다.
도 7 및 도 8은 본 발명의 실시 예에 따른 복합소재를 이용하여 제작된 방열체 시편 상태를 나타내는 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 도 1 내지 도 8을 참조하여 본 발명의 실시 예에 따른 복합소재 및 이의 제조 방법에 대해 설명하기로 한다. 도 1은 본 발명의 실시 예에 따른 복합소재의 반응 전 구성을 나타내는 모형도이다. 도 2는 본 발명의 실시 예에 따른 금속제의 결정체를 설명하기 위한 도면이다. 도 3은 본 발명의 실시 예에 따른 복합 소재 제조 방법을 설명하기 위한 순서도이다. 도 4는 복합소재의 구성 간 결합력에 따른 복합소재 매트릭스의 구조를 나타내는 모식도이다. 여기서, 도 4의 (a)는 이상적인 모폴로지를 나타내는 복합 소재 매트릭스의 구조를 나타내며, 도 4의 (b)는 결합력 불균일 모폴로지를 갖는 복합소재 매트릭스의 구조를 나타내는 모식도이다. 도 5는 본 발명의 금속제의 전처리 과정을 설명하기 위한 도면이다. 도 6은 본 발명의 실시 예에 따른 금속제 계면과 반응성 폴리머의 공유치환결합 과정을 나타내는 도식화이다. 도 7 및 도 8은 본 발명의 실시 예에 따른 복합소재를 이용하여 제작된 방열체 시편 상태를 나타내는 사진이다.
본 발명의 실시 예에 따른 복합소재(1)는 금속제(100)와 반응성 폴리머(200)가 상호 혼입되고, 혼입된 금속제(100)와 반응성 폴리머(200)가 상호 접하는 계면은 금속제(100)와 반응성 폴리머(200) 분자가 상호 공유결합 또는 이온결합된 구조를 가짐으로써, 이종 재료 간의 결합력이 증가된 열전도성 매트릭스를 제공한다. 즉, 복합소재(1)는 금속제(100)와 금속제(100)의 반응 엔탈피를 감소시키며 산염기 치환 반응을 유도하는 반응성 폴리머(200)와 같은 서로 다른 재료 간에서 공유결합과 이온결합과 같은 강결합구조(strong chemical interaction)로 구성하여, 금속의 고강성, 고강도 및 기계적 강도성을 가짐과 동시에 폴리머로 얻을 수 있는 화학적 특성인 전기절연성, 내화학성, 내약품성, 내후성, 내염해성 등이 동시에 실현될 수 있다.
금속제(100)는 복합소재(1)에 방열성을 제공하기 위한 구성요소로 금속 원자들간의 에너지 준위가 감소되도록 금속 전처리제에 의해 표면 개질된 것이다. 금속제(100)는 미립화된 입자의 평균직경이 서로 상이한 제1 금속제(110) 및 제2 금속제(130)으로 구성될 수 있다.
제1 금속제(110)는 복합소재(1)의 주요 기초 모폴로지(morphology)를 구성하기 위한 것으로서, 복합소재(1)로 제작되는 성형품의 경제성을 고려하여 입자 크기를 결정하되, 결정된 입자 크기는 매트릭스 내의 제1 금속제(110) 그레인(grain) 간의 상호 균일한 스트레스(폴리머와 결합한 뒤의 균일한 분자상호간 인력)가 적용될 수 있도록, 평균입자 크기의 편차가 작은 동일하거나 유사한 입자 크기가 선택되어 사용될 수 있다. 보다 구체적으로, 제1 금속제(110)의 평균직경(r1)은 50 내지 50 의 평균직경을 갖는 입자가 사용될 수 있다. 이때, 평균직경(r1)의 값이 작아질수록 제1 금속제(110)에 의해 형성되는 모폴로지의 결정성이 보다 치밀해질 수 있으나, 평균직경(r1)이 작을수록 비용이 증가하게 되어 최종적인 복합소재(1) 제조에 소모되는 비용이 증가되어 상용성이 감소될 수 있다. 한편, 평균직경(r1) 이 커질수록 제1 금속제(110)들 사이의 공간(즉, 제1 금속제들간의 공극)이 증가됨으로써 금속제들간의 자유전자가 용이하게 이동하는 것이 용이하지 않다. 따라서, 제1 금속제(110)의 평균직경(r1)은 상기 범위 내에서, 복합소재(1)의 제조에 소모되는 비용을 고려하여 입자 크기가 선택될 수 있으며, 후술하는 제2 금속제(130)의 투입 유무에 따라 평균직경(r1)이 결정될 수 있다. 즉, 제1 금속제(110)의 크기는 복합소재(1)가 적용되는 분야 및 복합소재(1)로 제작되는 방열기구의 원하는 강도에 따라 선택되어 사용될 수 있다. 한편, 제1 금속제(110)는 구형, 선형 또는 벌크 타입 중 선택된 형태로 사용될 수 있으며, 제1 금속제(110)가 구형의 형태로 선택되어 사용되는 경우 불규칙한 표면을 갖는 형태의 금속제(100)를 사용할 경우보다 계면 결합이 용이하게 이루어질 수 있다.
제2 금속제(130)는 제1 금속제(110)들 간의 공극에 충진되기 위해 구비되며, 제1 금속제(110)들 간의 공극에 충진되기 위해 제1 금속제(110)의 평균직경(r1)보다 작은 평균직경(r2)을 가지도록 선택되어 사용될 수 있다. 이때, 제2 금속제(130)는 제1 금속제(110)로 선택된 금속과 동일하거나 상이한 재료가 선택되어 사용될 수 있고, 제1 금속제(110)와 마찬가지로 구형 형태의 재료가 사용될 경우 결합 계면의 표면적이 증가되어 기계적 결합강도가 증가될 수 있다. 또한, 제2 금속제(130)는 그레인(grain) 간의 상호 균일한 스트레스(폴리머와 결합한 뒤의 균일한 분자상호간 인력)가 적용될 수 있도록, 평균입자 크기의 편차가 작은 동일하거나 유사한 입자 크기가 선택되어 사용될 수 있다. 보다 구체적으로, 제2 금속제(130)는 제1 금속제(110) 간에 형성된 공극을 채우기 위해 제1 금속제(110)보다 작은 직경의 입자가 하나 또는 둘 이상이 서로 다른 크기의 입자 크기를 가지고 투입될 수 있다. 그리고, 제2 금속제(130)는 적어도 한 종류 이상의 평균직경(r2)을 갖는 금속이 투입될 수 있으며, 복수의 평균직경 값을 갖고 투입되는 제2 금속제(130) 간의 입자 크기 관계는, 모두 제1 금속제(110)들보다는 작은 평균 직경을 갖고, 상호 평균직경의 관계는 크거나 작은 관계가 될 수 있다. 예컨대, 제2 금속제(130)의 평균직경(r2)은 50 내지 20 의 평균직경(r2)을 갖는 입자가 사용되거나, 제1 금속제(110)에서 선택된 입자 크기의 r1/10 내지 r1/3의 크기의 입자가 선택되어 사용될 수 있다. 보다 구체적으로 제2 금속제(130)는 제1 금속제(110)로 선택된 평균직경(r1)의 r1/6 내지 r1/4의 크기의 입자가 선택되어 사용될 수 있다. 이때, 제2 금속제(130)의 평균직경(r2)이 상기 범위를 초과하는 입자 크기를 갖는 경우에는, 제1 금속제(110)들 입자 사이의 공극을 메우는 것이 용이하지 않으며, 상기 범위 미만의 입자 크기를 갖는 경우에는 매트릭스 내의 불균일을 야기할 수 있다. 따라서, 제2 금속제(130)는 상기 범위 내에서 제1 금속제(110)의 선택에 따라 고려되어 선택될 수 있다.
한편, 제2 금속제(130)는 선택된 제1 금속제(110)의 평균직경(r1)이 1 이하인 경우에 금속 또는 금속염계열의 나노 입자 중 1종 또는 2종 이상이 선택되어 사용되거나, 투입되지 않을 수도 있다.
일례로, 이와 같은 금속제(100)의 조합에 대해 설명하면, 제1 금속제(110)가 200의 평균직경(r1)의 입자가 선택된 경우, 선택된 제1 금속제(110) 간의 형성된 공극(예컨대, 형성 공극 크기 50)을 채우기 위해 공극의 크기와 유사하거나 동일한 크기로 제2 금속제(130)가 50 의 평균직경(r2)을 갖도록 선택될 수 있다. 그리고 제2 금속제(130)가 복수의 입자 크기를 갖고 투입되는 경우에, 다른 하나의 제2 금속제(130)는 1 이하의 입자 크기가 선택될 수 있다. 이에, 총 3가지의 입자 크기를 갖는 금속 입자들이 계면결합하도록 할 수 있다.
이와 같은 금속제(100)는 복합소재(1)를 사용하고자 하는 분야에 따라 상이한 금속재료 및 입자 크기를 갖고 선택될 수 있다. 즉, 금속제(100)는 방열성 복합소재(1)를 구성함에 있어 열전도성 및 내구성을 제공하기 위한 것으로서, 전도성 금속 중 후술하는 반응성 폴리머(200)와의 공유결합성이 용이한 알루미늄, 알루미늄 중량비 70% 이상의 철, 탄화실리콘, 망간, 마그네슘을 포함하는 알루미늄 계열의 합금, 구리 또는 구리계열의 합금, 마그네슘 또는 마그네슘계열의 합금, 철 또는 철의 합금 중에서 1종 또는 2종 이상을 선택하여 사용하거나, 금속 성분을 함유한 세라믹 혹은 금속염 중에서 반응성 폴리머(200)와의 공유치환 결합을 통하여 계면 결합이 가능한 알루미나(Al2O3), 산화철(Iron oxide), 금속성분을 함유한 광물분말(Na, Al, Si2O6), 알루미늄 실리케이트(mica, 운모석), 수산화 알루미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2), 규회석(CaSiO3, Wollastonite), 칼슘카보네이트(CaCo3), 바륨설파이드, 산화마그네슘(MgO), 활석(Mg3(Si4O10)(OH)2, Talc) 중에서 1종 또는 2종 이상을 선택하여 사용할 수 있다.
전술한 바와 같이 선택된 금속제(100)는 금속 전처리제에 의해 전처리 된 후, 후술하는 반응성 폴리머(200)와의 합성에 투입될 수 있다.
금속 전처리제는 계면에서 형성되는 공유 분자구조가 안정적이지 못하거나 반응성이 낮아 몰당 결합율이 낮거나, 금속제(100)의 분자 및 반응성 폴리머(200)의 분자가 척력에 의해서 공극등이 형성되어 전체적으로 형성되는 매트릭스가 취약한 구조로 형성되는 것을 억제하거나 방지하기 위해 표면을 개질하기 위해 투입되는 것으로서, 금속제(100)에서는 결정의 확장을 유도하기 위해 투입될 수 있다. 즉, 금속 전처리제는 금속제(100)와 반응성 폴리머(200)가 우선적으로 반응할 수 있는 방향성을 유도하기 위해 투입될 수 있다. 이때, 금속제(100)이 금속 전처리제에 의해 표면 개질 되지 않고 투입되어 반응성 폴리머(200)와의 반응성이 감소되면, 계면결합하지 못한 금속제(100)가 바스러지거나 단순히 반응성 폴리머(200) 내에 함침되어 믹싱된 상태가 됨으로써, 일반적인 열전달 플라스틱의 기능만 수행하게 되며, 본 발명의 금속제(100)와 반응성 폴리머(200) 간의 공유결합 계면을 갖는 기능을 실현하는 것이 용이하지 않다. 또한, 금속제(100)의 전처리 없이 반응성 폴리머(200)의 과 투입으로 금속제(100)와 반응성 폴리머(200)를 혼합시키면, 반응성 폴리머(200) 중 금속제(100)와 반응하지 않고 남는 잔류 모노머(250)로 인해 매크로 형태의 불균일을 초래하거나, 매크로 주위로 첨가제가 쏠려 스트레스가 발생하여 매트릭스의 불균일을 초래하게 된다.
이와 같은 금속 전처리제는 금속제(100)의 계면과 같은 재료의 성분을 함유하고 있거나 산염기 치환 반응에 보조될 수 있는 금속염 계열의 라디칼기 또는 산화기를 보유한 금속염계열이 사용될 수 있으며, 금속 전처리제는 고체로 금속제(100)와 혼합되어 금속제(100)를 표면 개질 시키거나, 용액상태로 금속제(100)와 섞여 금속제(100)의 표면을 개질시킬 수 있다.
반응성 폴리머(200)는 화학적인 반응 에너지를 도입하여 금속제(100)들의 반응에너지(반응 엔탈피)를 낮추어 그레인 형태의 결정 확장 계면에서의 반응을 유도하는 것으로서, 탄소사슬을 주사슬 구조로 하며, 주사슬 또는 측쇄사슬에 극성기가 도입 가능한 기재 폴리머(200a)와, 기재 폴리머(200a)와 혼합되며 치환기를 갖는 개질 폴리머(200b)가 그라프트 공중합되고, 금속제(100)와의 계면결합이 촉진되도록 폴리머 전처리제에 의해 표면 개질될 수 있다. 반응성 폴리머(200)는 복합소재(1)의 전체 중량을 기준으로 3 내지 30 wt% 투입될 수 있는데, 반응성 폴리머(200)가 3 wt% 미만으로 투입될 경우 복합 소재의 제조 과정에서 몰당 결합 반응 비율이 존재하지 않게 되므로 실질적인 비결합 계면이 다수 분포하게 되며, 30 wt% 를 초과하여 투입되는 경우 강도, 경제성 및 열전도가 감소되는 구비와 혼합 구성비를 나타냄으로써 복합소재(1)의 전체적인 열전도도 및 금속제(100)와의 결합력이 감소되는 문제가 발생할 수 있어 반응성 폴리머(200)는 상기 범위로 투입될 수 있다. 즉, 반응성 폴리머(200)가 몰당 반응 비율 이상으로 투입되었을 경우, 계면결합 반응 후 남은 잔류 폴리머가 발생한다. 이때, 잔류 폴리머는 매트릭스 내에서 매트릭스를 구성하는 분자상호간 인력 등의 비균일 스트레스, 응력 등으로 작용하여, 강도 및 결합력 등에 국부적으로 취약하여 내부 균열을 발생하여 복합소재(1)로 제작된 방열체의 내구성을 감소시키는 요인으로 작용할 수 있다. 더욱이 폴리머 자체의 공극으로 인해 잔류 폴리머가 증가할 수록 복합소재(1)의 열전달 전도성 등에 공극의 구조적 저항성을 나타내는 문제가 발생할 수 있다. 따라서, 복합소재(1)는 상기 범위 내로 투입되어 잔류폴리머의 발생량을 감소시켜 공극을 감소시키는 것이 좋다.
기재 폴리머(200a)는 탄소사슬(carbon chain, =C=, -CH2-) 등을 주축으로하는 유기 고분자 사슬을 주 사슬구조로 사용하는 폴리머 중에서 폴리머의 주사슬 혹은 측쇄사슬에 극성기가 도입될 수 있는 HDPE(high density polyethylene), LDPE(low density polyethylene), LLDPE(liner-), EVA(ethylene vinylacetate 계열) 중 하나 또는 둘 이상을 선택하여 사용될 수 있다.
개질 폴리머(200b)는 치환기를 갖는 Propylene grycol, Propylene grycol methyl ether, Peroxide, Carboxil acid, Acetic anhydride, Acetic acid, Nitric acid, Ammonium nitrate, Maleic acid, Maleic anhydeide, sulfuric acid, sulfur trioxide, phosphoric acid, Hydrochloric acid 중에서 하나 또는 둘 이상을 선택하여 폴리머와 믹싱하여 압출하여 개질한다. 반응성 폴리머(200)를 제조하기 위한 기재 폴리머(200a)와 개질 폴리머(200b)의 혼합비율은 선택된 기재 폴리머(200a)의 주사슬과 측쇄사슬의 몰당 반응 비율에 따라 변경될 수 있으나, 기재 폴리머(200a)의 총 투입량을 기준으로 0.1 내지 20 중량%의 개질 폴리머(200b)가 혼합되어 제조될 수 있다. 이때, 개질 폴리머(200b)와 기재 폴리머(200a)의 혼합 비율에 따라서 치환 반응 비율이 증가하나, 개질 폴리머(200b)의 투입량이 20 wt%을 초과하는 경우 기재 폴리머(200a)가 열화되거나 분해되는 문제가 발생하기 때문에 개질 폴리머(200b)는 상기 범위 내로 혼합될 수 있다.
여기서, 기재 폴리머(200a)와 개질 폴리머(200b)의 혼합에 의해 생성된 극성기와 치환기를 포함하는 반응성 폴리머(200)를 금속제(100)의 주재료가 선택되었을 때의 상용성을 고려하여 ABS (acrylonitrile butadiene styrene copolymer), HIPS (High impact polystyrene), GPPS (General polystylene), PMMA(Polymethylmetha acrylic), SBS (Stylene butadiene stylene copolymer), BR (Butadiene rubber), MBR(Modified-), SBR (Stylene butadiene rubber), EMPP (Modified polypropylene rubber), EPDM (Ethylene propylene rubber), SEBS(Stylene ethylene butadiene stylene), Polyamide, Polyimide, PTFE (Polytetrafluoroethylene), PPE (Polyphenylene ether), mPPO (Polyphenylene oxide), INGAGE, EEA (Ethylene ethyl acrylate), TPU, Alpha-olefine copolymer 중에서 하나 또는 둘 이상을 선택하여 2차로 저온 그라프팅중합을 한다. 이처럼 두번의 압출 컴파운딩 공정을 수행함으로써 한번에 컴파운딩할 경우 겔(gel)이 발생하고 고분자 열화 현상에 의해 실질적인 반응 활성화기의 효율이 감소하는 문제를 해결할 수 있다. 이때, 반응성 폴리머(200)의 개질 시에는 1차 산화 방지제로 1010, stearate 계분산제, Ca/Zn 등을 0.005 ~ 0.15 PHRS (PHARS : 100에 대한 투입량) 투입하며, 2차 산화방지제로 MgO 등의 금속 산화염 계열이 투입될 수 있다.
한편, 2차 압출 공정까지 거친 반응성 폴리머(200)는 입자 계면의 활성을 증가시키기 위해 분말화 되어 구비될 수 있다. 이때, 반응성 폴리머(200)를 분말화 하기 위한 방법은 화학적 방법 및 기계적 방법으로 구분될 수 있으며, 화학적 분말화 공정에 있어서의 화학적 반응 특성에 영향을 받는 것을 방지하기 위해 저온 질소 냉각 방법을 사용한 기계적(물리적) 분쇄 방법을 사용하여 분말화 될 수 있다. 이와 같은 분말화 공정을 통해 반응성 폴리머(200)의 평균직경은 50 내지 100일 수 있다.
이와 같은 반응성 폴리머(200)는 두 단계로 분류되어 제조되는 공정이 수행된다. 이는 위에서 언급된 폴리머 중 일부는 쉽게 열화되는 특성을 가짐으로써 한꺼번에 투입할 경우 발생할 수 있는 폭발, 화재 등의 공정사고를 억제하거나 방지하기 위함이다.
한편, 상기 금속제(100)와 마찬가지로 반응성 폴리머(200)는 금속제(100)와의 혼합 이전에 금속제(100)와의 결합을 용이하게 하기 위한 폴리머 전처리제로 표면개질될 수 있으며, 폴리머 전처리제는 전술한 금속 전처리제와 동일하거나 유사한 재료(예컨대, 알루미늄, 지르코늄, 철 등이 결합 함유된 카르복실기, 알킬기, 아민기 등이 조합된 금속염계열)이 사용될 수 있다. 보다 구체적으로, 폴리머 전처리제는 반응성 폴리머(200)의 기재 폴리머에 속한 라디칼기를 공유한 금속염 계열이 사용될 수 있으며, 고상의 폴리머 전처리제가 사용될 경우, 용융점이 반응성 폴리머(200)의 용융점보다 낮은 것을 선택하여 사용할 수 있다.
도 2를 참조하면, 금속제(100)와 반응성 폴리머(200)의 공유결합을 이룬 계면은 금속제(100)의 결정성이 확장된 반응성 계면으로 라디칼 치환이 이루어지는 계면이다. 즉, 결합계면(S)은 혼합상태에서의 라디칼이 활성화되어 있는 상태로 전자 에너지의 관점에서의 여기 상태이며, 이는 복합소재(1)를 이용한 냉각시에 결정화 과정을 거치면서 매트릭스를 구성한다. 여기서, 표면 개질된 금속제(100)와 반응성 폴리머(200)의 계면에서의 반응성을 증가시키고 금속제(100) 및 반응성 폴리머(200)의 상 분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제를 투입할 수 있다. 이때, 혼합 전처리제는 액상 금속염 계열이 사용될 수 있으며, 액상 금속염은 금속제(100) 및 반응성 폴리머(200)의 산염기 치환 반응에 보조될 수 있는 금속염 계열의 라디칼기 또는 산화기를 갖는 금속염을 사용할 수 있다.
금속제(100)와 반응성 폴리머(200)의 혼합시에 사용되는 전처리제에 의한 메커니즘의 일례를 설명하면, 금속제(100)로 알루미늄 계열이 사용되고, 반응성 폴리머(200)가 올레핀 계열이거나, CH3와 같은 라디칼 기를 함유한 경우, 혼합 전처리제는 Al-O-CH3 또는 Zr-O-CH3를 사용할 수 있다. 여기서, 공유결합은 반응성 폴리머(200)의 산염기 치환 반응의 가공온도에 도달하게 될 때 공유치환 결합이 일어난다. 따라서, 전처리제는 금속제(100)와 반응성 폴리머(200)가 혼합 설비 내에서 일정 온도에 도달하여 혼련되기 시작하면 균일한 방향성을 가지고 모폴로지를 형성할 수 있도록 정전기적 유도를 하여 이종 분자간의 반발력을 감소시켜, 치환반응이 순조롭게 이루어지도록 할 수 있다.
한편, 복합소재(1)를 구성하는 금속제(100) 및 반응성 폴리머(200)에 의해 형성되는 공극에 투입되어 복합소재(1)의 열전도도를 증가시키기 위한 열전도성 첨가제(500)가 추가로 투입될 수 있다.
열전도성 첨가제(500)는 복합소재(1)의 열전도를 보상하기 위해 투입되는 것으로서, 반응성 폴리머(200)의 제조시에 투입되는 폴리머용 열전도성 첨가제(500a)와 금속제(100) 및 반응성 폴리머(200)의 혼입시에 투입되는 혼합용 열전도성 첨가제(500b)를 포함할 수 있다. 열전도성 첨가제(500)는 화학적 반응을 통해 금속제(100)와의 계면 치환 결합(자유전자의 공유)를 일으키는 반응성 폴리머(200)의 모폴로지가 형성된 부분의 열전도를 보상하기 위해 투입되는 것으로서, 반응성 폴리머(200)의 중량비가 소량일지라도 모폴로지의 열전도가 0.2 내지 0.5/mh을 나타내기 때문에 공극에 메워진 반응성 폴리머(200)의 열전도도를 증가시키기 위해 투입된다.
폴리머용 열전도성 첨가제(500a)는 반응성 폴리머(200) 자체가 갖는 공극과 금속제(100) 간의 반응 중에 자리를 잡고 결합한 후 남는 공극 및 반응성 폴리머(200) 중 반응 후 잔류하는 잔류 모노머와 분해 가스에 인해 반응이 종료될 때쯤 발생하는2차 폴리머성탄화로 인한 공극을 메우기 위해서 열전도성 첨가제(500)를 투입할 수 있다. 여기서, 일반적인 폴리머 공정에서는 2차 폴리머성 탄화는 산화방지제, 내외부 활성제 등을 처방하나, 본원의 반응성 폴리머(200)는 결합을 방해할 수 있어 투입하지 않는 것이 좋다. 상기에서 제시된 공극을 메우기 위해서, 반응성 폴리머(200)를 제조할 때 첨가하여, 반응성 폴리머(200) 자체의 공극안에 열전도성 첨가제(500a)가 심어지도록 할 수 있다.
혼합용 열전도성 첨가제(500b)는 금속제(100)와 반응성 폴리머(200)의 혼합시에, 각 구성들과 공극 사이의 계면 및 공극에 메워지는 반응성 폴리머(200)의 열전도를 증가시키기 위해 투입될 수 있으며, 이는 결과적으로 금속제(100)들이 형성하는 공극 사이에 투입되어, 복합소재(1)가 구성하는 매트릭스의 전반적인 영역의 열전도도를 증가시킬 수 있다.
이와 같은 열전도성 첨가제(500)의 재료는 반응성 폴리머(200)보다 높은 전도도를 갖는 재료가 선택될 수 있다. 또한, 반응성 폴리머(200)와 반응하여 분해되지 않은 재료가 선택될 수 있다. 그리고, 열전도성 첨가제(500)의 입자 크기는 폴리머 모폴로지의 공극 사이에 채워질 수 있는 크기를 갖고 구형의 형상을 가지는 재료가 선택될 수 있다. 이는, 구형을 갖는 재료가 선택되는 경우, 복합소재(1) 매트릭스의 분자 상호간 응력(stress)이 균일하거나 동등해질 수 있기 때문이다. 그리고 열전도성 첨가제(500)의 투입량은 투입되어지는 전체 반응성 폴리머(200) 대비 중량비 55wt% 까지 투입될 수 있다. 보다 바람직하게는 제2 금속제(130)가 최종 주재료이고, 반응성 폴리머(200)의 투입량이 7%일 경우, 열전도성 첨가제(500)는 30%까지 기계적 결합강도를 방해하지 않는 한도 내에서 투입될 수 있다.
열전도성 첨가제(500)의 재료로는 금, 은, 동 및 동의 합금, 알루미늄 및 알루미늄 합금 계열, 마그네슘 및 마그네슘 합금, 철과 철 산화물 또는 철을 주재로 한 합금, 금속성분을 포함한 수산화 마그네슘 혹은 수산화 알루미늄, 알루미나(Al2O3), 베릴리아(BeO2), 질화붕소(Boron nitride), 마그네슘 휘스커, 탄화규소, 질화규소, 질화알루미늄, MgO을 포함하는 금속염 계열, 그래핀, 그래파이트(graphite), 탄소미세분말(High carbon black) 또는 CNT계열, Talc, CaCO3, SiO2 또는 금속성분을 포함한 광물질 분말 중 하나 또는 둘 이상을 선택하여 사용될 수 있다. 이때, 복합소재(1)를 사용한 생산공정의 종류, 즉, 압출, 사출, 프레스, 다이캐스팅 등의 공정에 따라서, 석유계 솔벤트(Benzene naphtha solvent), 지방산 오일(올리브 오일 또는 팜 오일), 화이트 오일, 미네랄 오일, 실리콘 오일, 페록시드 오일, 올레핀 계열 왁스, DTBT(Di-tetra butyl-peroxide), 알루미네이트 커플링제(Zirco-aluminate coupling agent), 글리콜계(Ethylene Glycol, Propylene Glycol, Dipropylene Glycol, Diethylene Glycol) 중에서 하나 또는 둘 이상을 선택하여 고속 믹싱기 또는 분말 혼합기를 이용하여 표면을 코팅 도포한 후에 투입한다.
전술한 바와 같이 구성되는 복합소재(1)는 금속제(100)와 반응성 폴리머(200) 사이의 계면결합으로 구성됨으로써, 금속제(100)와 반응성 폴리머(200) 사이의 강한 결합으로 인해 새로운 분자구조를 가짐으로써, 종래의 금속제(100) 및 폴리머의 결합소재보다 증가된 강도 및 결합력에 의해 다양한 크기로 제작되어도 부서지거나 문제가 발생하는 것을 방지할 수 있으며, 금속으로만 구성되는 방열체에 비해 복합소재(1)로 제작되는 방열체의 무게가 감소될 수 있어 감소된 하중으로 제작되어 사용되어하는 분야에 적용되어 사용될 수 있다.
이하에서는 전술한 복합소재(1)를 제조하는 방법에 대해 설명하기로 한다. 도 3을 참조하면, 본 발명의 실시 예에 따른 방열성 금속유기 복합소재의 제조 방법은 금속제(100)를 제조하는 단계와, 반응성 폴리머(200)를 제조하는 단계 및 금속제(100)와 반응성 폴리머(200)를 혼입하여 계면에 공유결합 또는 이온결합을 발생시키는 금속제-반응성 폴리머 혼입 단계를 포함한다.
먼저, 금속제(100)를 복합소재(1)가 원하는 방열성을 나타내고 원하는 기계적 특성을 구현할 수 있는 재료를 선택한다(S100). 이때, 금속제(100)는 제련 정련등을 통하여 금속 계열의 합금을 만들고자 할 때와 별다른 차이점은 없으나, 이후의 단계에서 발생할 화학적 산염기 반응과 표면에 결합시킬 고분자와 공유할 활성화 라디칼을 결합시킬 표면의 금속염 개질, 결합할 금속계면의 처리 등이 고려되어 선택될 수 있다. 즉, 금속제(100)는 단일종의 금속 분말 혹은 2종 이상의 금속분말 중에 라디칼기와 반응성이 좋은 금속을 선택하여 복합소재(1)의 물리화학적 특성을 고려하여(예컨대, 만들고자 하는 방열체의 특성이 고강성, 고경도, 고강성/열전도성, 고경도/전기전도성 또는 고강성/고경도/열전도성/전기전도성 등) 이를 구현할 수 있도록 선택한다(S110). 이는 앞서 서술한 금속제(100) 중 단일 종의 금속 분말 혹은 2종 이상의 금속분말을 선택하며, 화학적 반응(산염기 반응, 가수분해 반응)에 대해서 선택된 금속제(100)의 반응 성격이 유사하거나 화학 반응 시에 활성화된 라디칼에 공격 받을 시에 쉽게 전자를 내주는 금속이 선택될 수 있다. 이렇게 선택되는 금속제(100)는 모폴로지를 가진 매트릭스를 구성하는 중요한 변수 중 하나이다.
또한, 금속제(100)의 입자의 크기와 형태를 조절하는 과정을 수행한다(S120). 즉, 원자 또는 분자간의 계면에서의 결합의 균질성으로 인한 척력(Fr)을 감소시키고, 결정화 원자 또는 분자간 인력(Fc)을 증가시키며 매트릭스를 구성하기 위해서다. 여기서, 제1 금속제(110)와 제2 금속제(130)의 입자 크기를 결정하기 위해서는 금속 결정간의 공극을 적용하여 제1 금속제(110)와 제2 금속제(130) 간의 공극률이 감소될 수 있는 재료 및 입자크기를 결정할 수 있다.
금속제(100)의 종류, 입자 크기 및 형태가 선택된 후에는 반응성 폴리머(200)와의 합성에 바로 투입하기 전에 미립화 하는 과정과 금속제(100) 들의 금속원자들의 에너지 준위가 감소되도록 표면을 개질하는 표면 개질 과정(전처리 과정)을 수행한다(S130). 즉, 금속제(100) 계면에서 형성되는 공유분자구조가 안정적이지 못하거나 반응성이 낮아 몰당 결합율이 낮거나, 쌍방 분자가 척력에 의해서 공극이 형성되어 전체 매트릭스가 취약한 구조로 형성될 수 있기 때문에 표면적을 증가시켜 반응성을 높이고 결합력이 증가된 공유결합을 유지하기 위해, 금속제(100)의 표면을 개질하기 위한 전처리 과정을 수행할 수 있다. 도 5를 참조하면, 전처리 과정을 통해 금속제(100)의 결합력을 증가시키기 위하여 사전에 활성화 반응기가 용이하게 작용할 수 있도록 하는 측면으로 라디칼기의 반발력, 척력 등이 일어나지 않고, 도 5의 (b)와 같이 계면(SA, SB)에서 결합하고자 하는 반응성 폴리머(200)의 측쇄사슬의 라디칼기와 안정적인 그라프팅 결합을 하여 안정적인 전이층을 형성할 수 있도록 한다. 이에, 전처리제에 사용되어지는 금속염 계열의 용제 혹은 분말형의 전처리제는 금속제(100)와 반응성 폴리머(200) 간의 상용력을 고려하여 예컨대, 알루미늄, 지르코늄, 철 등이 결합 함유된 카르복실기, 알킬기, 아민기 등이 조합되어 사용될 수 있다.
이후, 금속제(100)와 계면결합을 위한 화학반응을 유도하는 반응성 폴리머(200)를 제조한다(S200). 즉, 앞서 서술한 바와 같이 탄소 사슬을 주 사슬 구조로 하는 기재 폴리머와, 치환기를 갖는 개질 폴리머(200b)를 그라프팅 공중합 시키고(S210) 이를 미세 분말화하여 미립화 하는 과정을 수행한다(S220). 그리고 금속제(100)의 전처리 과정과 마찬가지로 금속재(100)와의 계면 결합을 촉진하기 위해 반응성 폴리머(200)의 표면을 개질하기 위한 전처리 과정을 수행한다(S230). 반응성 폴리머(200)의 전처리 과정은 선택된 금속제(100)의 계면을 화학적 반응을 통하여 활성화된 금속기를 RO, ROO, ROOH 등으로 라디칼을 포착하는 과정이 수행된다. 반응성 폴리머(200)의 전처리 과정은 기재 폴리머(200a)를 말단 극성기를 보유한 개질 폴리머(200b)로 개질할 때, 금속염/반응성이 높은 금속분말을 첨가한 후 분말화 공정을 거치거나, 또는 반응성 폴리머(200)로 제조된 뒤 분말화되어 금속제(100)와 합성 직전에 표면에 전처리하는 방법이 있다. 전자는 폴리머 개질 시에 복잡한 처방과 이중의 그라프팅의 공정을 거쳐야 하는 비용 상승 측면이 있으나, 후자는 간단하나 전처리 후의 BLEED OUT 현상으로 오래 보관하기 힘들며, 액상의 뭉침현상으로 반응공정 전에 장시간 혼합해야 하는 단점이 있다.
한편, 반응성 폴리머(200)를 제조하는 단계는 폴리머용 열전도성 첨가제(500a)를 혼입하는 과정이 추가로 수행된다. 즉, 앞서 설명한 바와 같이, 반응성 폴리머(200) 자체가 형성하는 공극을 채우기 위해 반응성 폴리머(200)를 제조할 때 폴리머용 열전도성 첨가제(500a)를 투입하여 반응성 폴리머(200)의 공극을 메우며 열전도성을 증가시킬 수 있다.
금속제(100)와 반응성 폴리머(200)를 제조하여 마련한 뒤, 금속제(100)와 반응성 폴리머(200)를 혼합(S300)하여 그라프팅 중합을 실시하여(S400) 복합소재(1)의 제조를 완료한다(S500). 이때, 앞서 서술한 바와 같이 복합소재(1)의 열전도성을 증가시키기 위해 추가로 혼합물에 혼합용 열전도성 첨가제가 투입될 수 있다. 도 6을 참조하면 반응성 폴리머(200)와 금속제(100) 계면의 공유치환 결합을 설명하기 위한 도면이 제시되어 있다. 이처럼, 전처리된 반응성 폴리머(200)는 금속제(100)의 화학적 공유결합 반응시에 몰당 반응 비율을 높이기 위한, 즉, 반응성을 증가시키기 위한 보조 수단으로 사용되게 된다. 이는 앞서 설명한 바와 같이 금속제(100)와 반응성 폴리머(200)의 전처리제에 의한 표면개질과, 금속제(100)와 반응성 폴리머(200)의 혼합시의 전처리 과정에 의한 반응에 의해 금속제(100)와 반응성 폴리머(200)가 용이하게 반응할 수 있도록 할 수 있다.
이처럼, 혼합 전처리제로 사용하는 액상 금속염을 금속제(100)에 투입하여 혼합한 뒤, 반응성 폴리머(200)를 분쇄한 분말을 넣고 혼합하여 고속회전시킴으로써 전처리 과정과 동시에 금속제(100)와 반응성 폴리머(200)의 혼합과정이 수행된다.
이하에서는 본 발명의 복합소재(1)를 적용하여 제작한 성형품의 열전도도 및 기타 기계적 물성 측정을 나타낸다.
복합소재(1)를 구성하는 금속제(100)의 제1 금속제(110)는 알루미늄 분말 20을 선택하여 사용하고 제2 금속제(130)는 알루미늄 분말 5를 선택하여 사용하였다. 반응성 폴리머(200)는 전술한 기재 폴리머(200a) 및 개질 폴리머(200b) 중 하나를 선택하여 반응성 폴리머(200)로 개질하였으며, 반응성 폴리머(200)의 2차 압출 공정 중에 열전도성 첨가제(500)를 혼합 투입하여 그라프팅 중합 개질하였다. 이후, 금속제와 반응성 폴리머(200)를 혼합하기 전에 믹서기에 액상 금속염으로 표면을 전처리하여 개질한 뒤, 금속제와 반응성 폴리머(200)를 100에서 1시간 건조 및 혼합 후 예열된 상태에서 10톤 유압프레스에서 두께 60mm로 압축 가열하였다. 이후, 250로 예열된 프레스 금형에서 5분 동안 가열하면서 300 도달과 동시에 냉각하여 성형품을 완성하였다. 이때, 완성된 성형품의 비중은 2.05, 비열은 1.89/g 로 낮아진 것을 확인할 수 있다. 한편, 사출로 성형할 경우에는 사출 다이의 온도가 300이며, 피딩 존은 180, 혼합영역은 250 및 아웃밴트는 280에서 가공하였으며, 혼합비가 프레스 성형할 경우와 동일한 혼합물일 경우, 비중이 5% 정도 낮아짐을 확인할 수 있었다.
<열전도성 비교 실험>
이하의 [표1]은 종래의 알루미늄 금속 방열판과 상기의 배합을 갖는 복합소재(1)로 제작된 방열판의 열전도성 비교 실험 결과를 나타낸다. 이때, 각각의 방열판은 40W의 LED에 적용된 실험 결과를 나타낸다.
표 1
Figure PCTKR2015005549-appb-T000001
상기 표1을 보면, 종래 및 실시예의 방열판은 30 내지 35의 온도에서 열원(40W LED)으로부터 공급되는 온도가 방열과 평형을 이룬다. 따라서, 30에 먼저 도달하는 시간에 따라 방열성능을 확인할 수 있다. 여기서, 실시예의 복합소재(1)로 제작된 방열판은 방열이 평형을 이루는 30에 8분만에 도달하는 반면, 종래의 방열판은 16분이 소요되는 것을 확인할 수 있다. 이를 통해 본원의 복합소재(1)로 제작된 방열판은 종래의 방열판에 대해 폴리머가 포함되어 비중이 낮아지더라도 증가된 열전도성을 나타내는 것을 확인할 수 있다. 이는, 반응성 폴리머(200)가 금속제(100)의 반응 엔탈피를 낮춰 강한 계면결합을 유도함으로써 복합소재(1) 간의 강한 결합에 의해 열전달 특성이 증가됨으로써 실현된 것이다.
<복합소재 열전도도 측정 실험>
이하에서는 복합소재(1)의 열전도성의 측정 및 이를 이용한 복합소재(1) 시료들의 열전도도 수치 결과에 대해 설명하기로 한다.
전술한 바와 같이 복합소재(1)는 금속제(100)의 크기에 따라서, 반응성 폴리머(200)의 중량비 투입량에 따라서, 반응성 폴리머(200)의 개질 여부에 따라서 열전도성이 변화될 수 있다. 이는 복합소재(1)를 구성하기 위한 메카니즘이 계면에서의 금속유기 치환에 의한 공유결합을 형성하여 열전달의 3가지 형태(대류, 복사, 자유전자의 이동) 중 하기의 [식 1]과 같이 자유전자에 의한 열전달에 의해 발생하기 때문이다.
[식 1]
Fourier 식 (자유전자에 의한 열전달 구조 상관식)
Figure PCTKR2015005549-appb-I000001
그러므로, 하기의 식과 같이 각 계면에서의 일반적인 열전달의 차이는 전기저항과 같이 전도에 저항하는 것으로 유추할 수 있다.
Figure PCTKR2015005549-appb-I000002
또한, 전기이론으로부터 직렬로 연결된 전기회로에서 다음의 관계식을 얻을 수 있다.
Figure PCTKR2015005549-appb-I000003
여기서, 열의 흐름과 전기흐름은 유사하며 서로 대응되는 양은 다음과 같다.
Figure PCTKR2015005549-appb-I000004
또는
Figure PCTKR2015005549-appb-I000005
따라서, 전도체에서의 열전달 저항은 이러한 수식의 형태가 되며, 열전도도 k는 하기와 같이 정리될 수 있다. 이때, 실험의 방법이 평판의 형태로 진행되므로 ki는 하기의 [식 2]와 같다. 이때, 각각의 변수는 수평 열전도율 측정기를 통해 측정할 수 있다.
[식 2]
Figure PCTKR2015005549-appb-I000006
L : 두 온도 센서 사이의 거리
: 시편의 밀도
T1, T2 : 센서지점의 온도
C : 비열
t : 열전달 시간차
하기에서는 전술한 평판 열전도도 측정 방법을 통한 본 발명의 복합소재(1)(실시예1 내지 실시예5)에 대한 비교 물성의 측정 결과를 나타낸다.
(실시예1)
제1 금속제 : 알루미늄 200의 구형(球形; sphere type)입자 70 wt%, 제2 금속제 : 알루미늄 20의 구형입자 중량비 23 wt%, 반응성 폴리머로 2차 개질 시에 열전도성 첨가제 30 Phrs.를 첨가하여 개질한 것 : 7wt%, 혼합시에 금속제와 반응성 폴리머의 표면 전처리제로서 언급된 산화지르코알루미늄 액상 염 0.005Phrs. 를 열전도성 첨가제와 7 : 3으로 혼합한 것 (가공 : 핫 프레스)
(실시예2)
제1 금속제 : 알루미늄 200의 구형입자 65 wt%, 제2 금속제 : 알루미늄 20의 구형입자 중량비 23 wt%, 반응성 폴리머로 2차 개질 시에 열전도성 첨가제 30 Phrs.를 첨가하여 개질한 것 : 12wt%, 혼합시에 금속제와 반응성 폴리머의 표면 전처리제로서 언급된 산화지르코알루미늄 액상 염 0.005Phrs. 를 열전도성 첨가제와 7 : 3으로 혼합한 것 (가공 : 핫 프레스)
(실시예3)
제1 금속제 : 알루미늄 25의 구형입자 중량비 90wt%, 제2 금속제 : 전술한 재료 중 1종을 선택하되 5의 구형입자 중량비 5 wt%, 반응성 폴리머로 2차 개질 시에 열전도성 첨가제 30 Phrs.를 첨가하여 개질한 것 : 5wt%, 혼합시에 금속제와 반응성 폴리머의 표면 전처리제로서 언급된 산화지르코알루미늄 액상 염 0.005Phrs. 를 열전도성 첨가제와 7 : 3으로 혼합한 것 (가공 : 핫 프레스)
(실시예4)
제1 금속제 : 알루미늄 25의 구형입자 중량비 80wt%, 제2 금속제 : 전술한 재료 중 1종을 선택하되 5의 구형입자 중량비 5 wt%, 반응성 폴리머로 2차 개질 시에 열전도성 첨가제 30 Phrs.를 첨가하여 개질한 것 : 15wt%, 혼합시에 금속제와 반응성 폴리머의 표면 전처리제로서 언급된 산화지르코알루미늄 액상 염 0.005Phrs. 를 열전도성 첨가제와 7 : 3으로 혼합한 것 (가공 : 핫 프레스)
(실시예1) ~ (실시예4)의 조건에 따른 재료 입자간 크기를 상이하게 한 계면 결합에서의 전도도 특성과 반응성 폴리머(200)의 투입량에 따라서 각 열전도도가 달라지는 결과를 하기의 표 2를 통해 확인할 수 있다.
표 2
Figure PCTKR2015005549-appb-T000002
이처럼, 재료의 입자간 크기를 달리한 계면 결합에서의 전도도특성과 반응성 폴리머(200) 투입량에 따른 열전도도 값이 달라지는 결과를 통해, 계면결합 반응 중에 완성된 계면과 잔류 폴리머 및 공극이 열전달 저항면을 형성하는 특성을 나타내는 것을 확인할 수 있다. 그러나, 금속제의 크기가 나노전도체 혹은 서브미크론 이하의 미세한 입자를 가질 경우 열전도도는 급속히 증가하는 것을 확인할 수 있다.
(실시예5)
전술한 조건으로 제작된 실시예3의 시재에 부스터(환봉)를 추가한 시재를 나타내며, 전술한 실시예1 내지 실시예4와 마찬가지로 열전달 특성을 측정하였다.
표 3
Figure PCTKR2015005549-appb-T000003
실시예 5는 부스터를 사용함으로써 열전달 초기 속도의 증가로, T2까지의 총괄 전도량이 실시예 3의 열 전도량에 대해 큰 폭으로 증가하는 것을 확인할 수 있다.
이하의 [표 4]는 종래의 방열판 재료로 사용되고 있는 재료의 물성치와 본 발명의 복합소재(1)의 물성치를 비교한 것을 나타낸다.
표 4
Figure PCTKR2015005549-appb-T000004
결과적으로, 본원의 복합소재(1)는 기존에 사용되는 방열체의 재료들에 비해 낮은 비중을 가짐과 동시에 기존에 사용되는 방열체의 열전달율과 동등하거나 유사한 열전도성을 나타내는 것을 확인할 수 있다. 이는 반응성 폴리머(200)를 통한 금속제 간의 강한 결합을 통해 열전도성이 증가될 수 있으며, 본 발명의 복합재료가 반응성 폴리머(200)를 포함하여 형성됨으로써 종래에 금속으로 이루어진 기존의 방열재료가 외부 환경에 노출되어 변화하는 현상으로 인한 방열효과의 감소를 해결할 수 있다. 즉, 반응성 폴리머(200)가 금속제(100)의 표면을 평균 10nm의 층으로 감싸고 있기 때문에 본원의 복합소재(1)로 제작된 방열체는 내화학성, 내염해성, 내후성이 증가될 수 있다.
전술한 바와 같이 본 발명의 복합소재(1)는 금속제의 표면을 전도성 폴리머가 감싸는 형태를 나타내고 있어, 내화학성, 내염해성, 내후성이 증가된다. 또한, 반응성 폴리머(200)의 주사슬이 탄소로 이루어져 있어, 복합소재(1)를 사출 혹은 핫프레스 성형시에 금속 금형의 표면 위에서 탄소사슬의 측쇄에 붙어 있는 수소가 분해하여 전체적으로 폴리머가 안정적으로 안착할 수 있어 별도의 열전도성 도료 없이 미세한 코팅막을 형성할 수 있다. 따라서, 상기와 같이 폴리머가 안정적으로 안착함으로써 금속제 상의 폴리머의 두께가 10 내지 50nm라도 우수한 내화학성 및 내염해성 효과를 얻을 수 있다. 이와 같은 복합소재(1)를 통해 제작된 도 7 및 도 8에 도시된 방열체는 비중이 낮으면서도 방열성능이 증가된 방열체를 얻을 수 있으며, 시편의 에지면을 관찰한 것과 같이 금속제와 폴리머의 혼합에도 균열이 발생하지 않은 조밀한 표면을 나타내는 것을 확인할 수 있다.
본 발명을 첨부 도면과 전술된 바람직한 실시 예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술 되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술 되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.

Claims (19)

  1. 금속제와, 반응성 폴리머가 상호 혼입되고, 상기 혼입된 금속제와 상기 반응성 폴리머가 상호 접하는 계면은 상기 금속제와 상기 반응성 폴리머 분자 간의 공유결합 또는 이온결합된 구조를 가지며,
    상기 반응성 폴리머는 탄소사슬을 주사슬 구조로 하며, 상기 주사슬 또는 측쇄사슬에 극성기가 도입 가능한 기재 폴리머와, 치환기를 갖는 개질 폴리머가 그라프트 공중합되고, 상기 금속제와의 계면결합이 촉진되도록 폴리머 전처리제에 의해 표면개질된 것을 특징으로 하며,
    상기 공유결합 또는 이온결합은 상기 금속제와 상기 반응성 폴리머가 직접적으로 결합하는 것을 특징으로 하는 복합소재.
  2. 청구항 1 에 있어서,
    상기 금속제는 금속 원자들간의 에너지 준위가 감소되도록 금속 전처리제에 의해 표면 개질된 것을 특징으로 하는 복합소재.
  3. 청구항 2 에 있어서,
    상기 금속제는 미립화된 입자의 평균직경이 서로 상이한 제1 금속제 및 제2 금속제를 포함하고, 상기 제1 금속제의 평균직경(r1)은 상기 제2 금속제의 평균직경(r2) 보다 큰 복합 소재.
  4. 청구항 3 에 있어서,
    상기 제1 금속제의 평균직경(r1)은 50 내지 50 인 복합소재.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    상기 금속제는 알루미늄 또는 알루미늄 중량비 70% 이상의 철, 탄화실리콘, 망간, 마그네슘을 포함하는 알루미늄 계열의 합금, 구리 또는 구리합금 계열, 마그네슘 또는 마그네슘 합금 계열, 철 또는 철의 합금 중 하나 또는 둘 이상을 선택하여 사용하거나,
    알루미나(Al2O3), 산화철(Iron oxide), 금속성분을 함유한 광물분말(Na,Al,Si2O6), 알루미늄실리케이트(mica, 운모석), 수산화 알루미늄(Al(OH)3), 수산화 마그네슘(Mg(OH)2), 칼슘 카보네이트(CaCO3), 바륨설페이트, 산화마그네슘(MgO), Mg3(Si4O10)(OH)2를 포함하는 금속성분을 함유한 세라믹 혹은 금속염 중에서 하나 또는 둘 이상을 선택하여 사용하는 복합소재.
  6. 청구항 1 에 있어서,
    상기 반응성 폴리머는 폴리머용 열전도성 첨가제를 추가로 포함하는 것을 특징으로 하는 복합소재.
  7. 청구항 1 에 있어서,
    상기 반응성 폴리머는 상기 복합소재의 전체 중량에 대하여 3 내지 30 wt% 투입되는 복합소재.
  8. 청구항 7 에 있어서,
    상기 개질 폴리머는 상기 기재 폴리머의 전체 투입량에 대하여 0.1 내지 20 wt% 포함되는 복합소재.
  9. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 금속제의 분자와 상기 반응성 폴리머의 분자가 상호 공유결합 또는 이온결합되는 구조는 상기 금속제 및 상기 반응성 폴리머의 계면에서의 반응성을 증가시키고, 상분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제에 의해 촉진되는 것을 특징으로 하는 복합소재.
  10. 청구항 1 에 있어서,
    상기 금속제의 분자와 상기 반응성 폴리머의 분자가 상호 공유결합 또는 이온결합되는 구조는 상기 금속제 및 상기 반응성 폴리머의 계면에서의 반응성을 증가시키고, 상분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제에 의해 촉진되는 것을 특징으로 하는 복합소재.
  11. 청구항 6 에 있어서,
    상기 금속제들 사이의 공극에 혼합용 열전도성 첨가제를 더 포함하는 것을 특징으로 하는 복합소재.
  12. 청구항 11 에 있어서,
    상기 혼합용 열전도성 첨가제의 투입량은 상기 반응성 폴리머의 총 투입량을 기준으로 55 wt% 이하인 복합소재.
  13. 청구항 12 에 있어서,
    상기 열전도성 첨가제는 금, 은, 동 및 동의 합금, 알루미늄 및 알루미늄 합금 계열, 마그네슘 및 마그네슘 합금, 철과 철 산화물 또는 철을 주재로한 합금, 금속성분을 포함한 수산화 마그네슘 또는 수산화 알루미늄, 알루미나(Al2O3), 메릴리아(BeO2), 질화붕소(Boron nitride), 마그네슘 휘스커, 탄화규소, 질화규소, 질화 알루미늄, MgO를 포함하는 금속염 계열, 그래핀, 그래파이트, 탄소미세 분말 또는 CNT 계열, 금속성분을 포함한 광물질 분말 중에서 하나 또는 둘 이상을 선택하여 사용하는 복합소재.
  14. 청구항 13 에 있어서,
    상기 열전도성 첨가제의 표면은 석유계 솔벤트, 지방산 오일, 화이트 오일, 미네랄 오일, 실리콘 오일, 올레핀 계열 왁스, DTBT, 글리콜계 중에서 하나 또는 둘 이상이 선택되어 코팅되는 복합소재.
  15. 방열성 금속유기 복합소재의 제조방법에 있어서,
    금속제를 제조하는 단계와;,
    반응성 폴리머를 제조하는 단계; 및
    상기 금속제와 상기 반응성 폴리머를 혼입하여, 상기 금속제와 상기 반응성 폴리머가 상호 접하는 계면에서 상기 금속제와 상기 반응성 폴리머가 직접 공유결합 또는 이온결합이 이루어지는 금속제-반응성 폴리머 혼입 단계;를 포함하며,
    상기 반응성 폴리머를 제조하는 단계는, 탄소사슬을 주사슬 구조로 하며, 상기 주사슬 또는 측쇄사슬에 극성기가 도입 가능한 기재 폴리머와 치환기를 갖는 개질 폴리머를 그라프트 공중합하는 과정; 상기 공중합된 폴리머를 미립화하는 과정; 및 상기 금속제와의 계면 결합을 촉진하기 위해 상기 미립화된 폴리머를 폴리머 전처리제로 표면 개질하는 과정;을 포함하는 복합소재 제조 방법.
  16. 청구항 15 에 있어서,
    상기 금속제-반응성 폴리머 혼입 단계는,
    상기 금속제의 분자와 상기 반응성 폴리머의 분자가 상호 공유결합 또는 이온결합되는 계면의 반응성을 증가시키고, 상분리를 방지하여 균일 혼합을 유도하기 위한 혼합 전처리제를 투입하여 혼합하는 혼합 전처리과정;을 추가로 포함하는 것을 특징으로 하는 복합소재 제조 방법.
  17. 청구항 15 또는 청구항 16에 있어서,
    상기 금속제를 제조하는 단계는,
    단일 또는 2종 이상의 금속을 선택하고 미립화하는 과정; 및
    상기 선택된 금속의 금속원자들의 에너지 준위가 감소되도록 표면을 개질하는 표면 개질 과정;을 포함하는 것을 특징으로 하는 복합소재 제조 방법.
  18. 청구항 15 또는 청구항 16 에 있어서,
    상기 반응성 폴리머를 제조하는 단계는 폴리머용 열전도성 첨가제를 혼입하는 과정을 추가로 포함하는 것을 특징으로 하는 복합소재 제조 방법.
  19. 청구항 18 에 있어서,
    상기 금속제-반응성 폴리머 혼입 단계는 혼합용 열전도성 첨가제를 혼입하는 과정을 추가로 포함하는 것을 특징으로 하는 복합소재 제조 방법.
PCT/KR2015/005549 2014-06-03 2015-06-03 복합소재 및 이의 제조 방법 WO2015186959A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140067770A KR101532026B1 (ko) 2014-06-03 2014-06-03 복합소재 및 이의 제조 방법
KR10-2014-0067770 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186959A1 true WO2015186959A1 (ko) 2015-12-10

Family

ID=51131168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005549 WO2015186959A1 (ko) 2014-06-03 2015-06-03 복합소재 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR101532026B1 (ko)
WO (1) WO2015186959A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752788B1 (ko) 2015-11-10 2017-07-03 한국과학기술연구원 그래핀으로 코팅된 금속나노입자와 나노카본을 포함하는 고강도 fdm 방식 3d 프린터용 고분자 필라멘트 및 이의 제조방법
KR101657693B1 (ko) 2015-12-11 2016-09-22 임홍재 탄소나노소재가 복합된 메탈 pcb용 방열재의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077592A (ko) * 2001-01-26 2003-10-01 네오포토닉스 코포레이션 중합체-무기 입자 복합재
US20080242782A1 (en) * 2006-07-17 2008-10-02 Degussa Gmbh Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same
KR20080106230A (ko) * 2008-09-08 2008-12-04 와일드 리버 컨설팅 그룹 엘엘씨 증강된 점탄성 및 열적 특성을 갖는 금속 중합체 복합물
JP2010285569A (ja) * 2009-06-15 2010-12-24 Panasonic Corp 熱伝導性樹脂材料およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077592A (ko) * 2001-01-26 2003-10-01 네오포토닉스 코포레이션 중합체-무기 입자 복합재
US20080242782A1 (en) * 2006-07-17 2008-10-02 Degussa Gmbh Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same
KR20080106230A (ko) * 2008-09-08 2008-12-04 와일드 리버 컨설팅 그룹 엘엘씨 증강된 점탄성 및 열적 특성을 갖는 금속 중합체 복합물
JP2010285569A (ja) * 2009-06-15 2010-12-24 Panasonic Corp 熱伝導性樹脂材料およびその製造方法

Also Published As

Publication number Publication date
KR20140080473A (ko) 2014-06-30
KR101532026B1 (ko) 2015-06-29

Similar Documents

Publication Publication Date Title
Mao et al. Spherical core-shell Al@ Al2O3 filled epoxy resin composites as high-performance thermal interface materials
Li et al. Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study
CN108473308B (zh) 六方晶氮化硼粉末、其制造方法、树脂组合物及树脂片
JP6357247B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
Wang et al. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers
TWI718560B (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材料
WO2017111334A1 (ko) 질화알루미늄 및 질화알루미늄기 복합상 물질의 합성 방법
JP2018104260A (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
TW200829676A (en) Heat conductive adhesive
CN110099865B (zh) 六方晶氮化硼粉末、其制造方法、树脂组合物和树脂片
Zhao et al. Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials
JP5353379B2 (ja) 異方性形状の窒化アルミニウムフィラーを含有する熱硬化性樹脂組成物
WO2015186959A1 (ko) 복합소재 및 이의 제조 방법
US10676587B2 (en) Heat conductive sheet
TWI690484B (zh) 玻璃被覆氮化鋁粒子之製造方法及含有其玻璃被覆氮化鋁粒子之放熱性樹脂組成物之製造方法
WO2015093825A1 (ko) 고방열 세라믹 복합체, 이의 제조방법, 및 이의 용도
KR100422570B1 (ko) 방열시트용 수지 조성물 및 이를 이용한 방열시트의제조방법
TWI679252B (zh) 玻璃被覆氮化鋁粒子、其製造方法及包含其之放熱性樹脂組成物
JPWO2015174023A1 (ja) 絶縁熱伝導性樹脂組成物
CN114806178B (zh) 用于高温应用的杂化硅树脂组合物
WO2015133037A1 (ja) 窒化アルミニウム粉末、樹脂組成物、及び、熱伝導性成形体
KR101642052B1 (ko) 열전도성 조성물, 열전도성 점착 시트 및 이의 제조방법
WO2013157903A1 (ko) 알루미늄 합금 및 이의 제조 방법
TWI833828B (zh) 氮化硼奈米材料及樹脂組成物
JP2008144046A (ja) 耐熱性樹脂複合組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15802704

Country of ref document: EP

Kind code of ref document: A1