WO2013157903A1 - 알루미늄 합금 및 이의 제조 방법 - Google Patents

알루미늄 합금 및 이의 제조 방법 Download PDF

Info

Publication number
WO2013157903A1
WO2013157903A1 PCT/KR2013/003414 KR2013003414W WO2013157903A1 WO 2013157903 A1 WO2013157903 A1 WO 2013157903A1 KR 2013003414 W KR2013003414 W KR 2013003414W WO 2013157903 A1 WO2013157903 A1 WO 2013157903A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
silicon
aluminum
molten metal
compound
Prior art date
Application number
PCT/KR2013/003414
Other languages
English (en)
French (fr)
Inventor
김세광
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120041427A external-priority patent/KR101434262B1/ko
Priority claimed from KR1020120041428A external-priority patent/KR101434263B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2013157903A1 publication Critical patent/WO2013157903A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium

Definitions

  • the present invention relates to an aluminum alloy and a method for producing the same.
  • Aluminum (Al) alloys are widely applied to various building materials, automobile materials, electrical and electronic materials due to their lightweight and excellent mechanical properties.
  • An aluminum alloy produced by casting usually adds a metal element as an alloy element to the molten aluminum.
  • metal elements added as alloy elements include copper (Cu), magnesium (Mg), silicon (Si), nickel (Ni), calcium (Ca), and the like.
  • the alloying elements added in this way may be dissolved in an aluminum matrix to cause solid solution strengthening or to react with aluminum to generate intermetallic compounds, thereby contributing to improvement of mechanical properties.
  • Calcium may be used as an aluminum improver in aluminum-silicon alloys or to prevent oxidation of the molten surface of aluminum-magnesium alloys.
  • addition of a small amount of calcium to the aluminum-silicon alloy can produce CaSi 2 intermetallic compound to reduce the influence of the solid-solution silicon to improve the electrical conductivity.
  • metal calcium is very difficult to handle in the industrial field because it has a strong chemical reaction force that reacts with water to generate hydrogen gas even at room temperature, and deteriorates the quality of the molten metal because it is highly oxidizable over magnesium in aluminum molten metal. Therefore, although the improvement of aluminum properties is expected due to the addition of calcium, good results have not yet been obtained.
  • silicon (Si) is one of the main alloying elements after magnesium (Mg).
  • Mg magnesium
  • an aluminum-silicon (Al-Si) based alloy may be used as a casting material or as a 4000 series whole body alloy according to a classification table set by the American Aluminum Association.
  • Al-Mg-Si aluminum-magnesium-silicon (Al-Mg-Si) based alloy is used as a casting material or as a 6000 series whole material alloy.
  • silicon can be used to produce alloys that are easy to flow and melt filled or alloys with less casting cracks. Even if a large amount of silicon is added to the aluminum molten metal, the molten metal can be maintained in a good state with little increase in viscosity and oxidation tendency of the molten metal, and crystallization can be facilitated by improving the process silicon and primary silicon. In these aluminum alloys silicon is typically added in the form of pure silicon.
  • the present invention is to provide a method for producing an aluminum alloy using a calcium-based additive that does not have such a problem in place of the metal calcium which is difficult to use as an alloying element of aluminum due to high oxidizing power and the aluminum alloy produced accordingly.
  • the present invention provides a method for producing an aluminum alloy using calcium-based additives and silicon-based additives, which are chemically more stable and economical, in place of conventional metal calcium and pure silicon as a source of calcium and silicon added to aluminum and produced by
  • An object of the present invention is to provide an aluminum alloy.
  • the method may further include exhausting at least a portion of the calcium-based additive from the molten metal after adding the calcium-based additive.
  • the temperature of the molten metal in the exhausting step may be maintained in the range of 650 °C to 950 °C.
  • the exhausting step may be performed so that substantially all of the calcium-based additives do not remain in the molten metal.
  • the calcium-based additive is decomposed into calcium, and at least a portion of the calcium may be distributed as a calcium-based compound in the aluminum matrix of the cast aluminum alloy.
  • the calcium-based additive or components other than calcium that are not exhausted in the exhausting step may further include the step of being included in the dross to be removed.
  • the exhausting may include stirring the upper portion of the molten metal, and the stirring may be performed at an upper layer within 20% of the total depth of the molten metal from the surface of the molten metal.
  • the calcium-based additive may be decomposed at the surface portion of the molten metal by the stirring.
  • the addition amount of the calcium-based additive may be limited to a range that is exhausted in the molten metal does not remain in the aluminum alloy.
  • the aluminum base material may include aluminum or an aluminum alloy.
  • the calcium-based additive may include any one or more of calcium oxide (CaO), calcium cyanide (CaCN 2 ) and calcium carbide (CaC 2 ).
  • the base material includes an aluminum-magnesium alloy, and the calcium-based additive is decomposed by the exhausting step to generate calcium, and at least a part of the calcium reacts with at least one of aluminum and magnesium in the molten metal to form aluminum- Any one or more selected from calcium compounds, magnesium-calcium compounds, and magnesium-aluminum-calcium compounds can be formed.
  • the aluminum-calcium compound may include Al 4 Ca or Al 2 Ca
  • the magnesium-calcium compound may include Mg 2 Ca
  • the aluminum-magnesium-calcium compound may include (Mg, Al) 2 Ca.
  • the step of melting the aluminum base metal to form a molten metal Adding calcium oxide into the molten metal; Exhausting substantially all of the calcium oxide in the molten metal while controlling the molten metal in a temperature range of 650 ° C. to 950 ° C .; and distribution of a calcium-based compound including at least a portion of calcium decomposed from the calcium oxide in an aluminum matrix And casting the molten metal so that the calcium oxide does not substantially remain.
  • the aluminum base And a calcium-based compound present as a second phase in the aluminum matrix, wherein the calcium-based compound is produced by reacting calcium supplied by decomposition from a calcium-based compound added in a molten metal during alloy casting.
  • the aluminum alloy may further include calcium dissolved in the aluminum base.
  • the calcium-based additive may include any one or more of calcium oxide (CaO), calcium cyanide (CaCN 2 ) and calcium carbide (CaC 2 ).
  • the aluminum base is a solid solution of magnesium
  • the calcium-based compound may be any one or more selected from aluminum-calcium compound, magnesium-calcium compound and magnesium-aluminum-calcium compound
  • the aluminum-calcium compound is Al 4 Ca or Al 2 Ca
  • the magnesium-calcium compound may include Mg 2 Ca
  • the aluminum-magnesium-calcium compound may include (Mg, Al) 2 Ca.
  • the aluminum base may further include a calcium-based additive not decomposed.
  • the step of melting the aluminum base metal to form a molten metal Adding calcium-based additives and silicon-based additives to the molten metal; Exhausting at least a portion of at least one of the calcium-based additive and the silicon-based additive in the molten metal; And casting the molten metal, a method of manufacturing an aluminum alloy is provided.
  • step of adding the calcium-based additives and silicon-based additives may further comprise the step of exhausting at least a portion of any one or more of the calcium-based additives and silicon-based additives in the molten metal.
  • the calcium-based additive may include any one or more of calcium oxide (CaO), calcium cyanide (CaCN 2 ) and calcium carbide (CaC 2 ), and the silicon-based additive may include silicon oxide (SiO 2 ).
  • the temperature of the molten metal in the exhausting step may be maintained in the range of 650 °C to 950 °C.
  • the calcium-based additives and silicon-based additives may be added sequentially or simultaneously with each other.
  • the exhausting may be performed such that substantially all of the calcium-based additive and the silicon-based additive do not remain in the molten metal.
  • At least some of the calcium-based and silicon-based additives are decomposed into calcium and silicon, respectively, and at least some of the calcium and silicon may be distributed in the aluminum matrix of the aluminum alloy in the form of a compound.
  • the non-exhausted calcium-based additives, silicon-based additives or components other than calcium may be further included in the dross is removed.
  • the exhausting may include stirring the upper portion of the molten metal, wherein the stirring may be performed at an upper layer within 20% of the total depth of the molten metal from the surface of the molten metal.
  • at least one of the calcium-based additives and silicon-based additives may be decomposed at the surface portion of the molten metal by the stirring.
  • the addition amount of the calcium-based additives and silicon-based additives may be limited to a range that is exhausted in the molten metal and does not remain in the aluminum alloy.
  • the base material includes an aluminum-magnesium alloy, and by the exhausting step, the calcium-based and silicon-based additives are decomposed to produce calcium and silicon, and at least a portion of the calcium or silicon is contained in aluminum and magnesium in the molten metal. React with any one or more to form at least one selected from aluminum-calcium compounds, magnesium-calcium compounds, magnesium-aluminum-calcium compounds, and magnesium-silicon compounds, or the calcium and silicon react with each other to form calcium-silicon compounds can do.
  • the aluminum-calcium compound is Al 4 Ca or Al 2 Ca
  • magnesium-calcium compound is Mg 2 Ca
  • aluminum-magnesium-calcium compound is (Mg, Al) 2 Ca
  • the magnesium-silicon compound is Mg 2 Si
  • the calcium-silicon compound may include any one or more of CaSi, CaSi 2 , Ca 2 Si.
  • the step of melting the aluminum base metal to form a molten metal Adding calcium oxide and silicon-based additives to the molten metal; Exhausting substantially all of the calcium oxide and silicon-based additives in the molten metal while controlling the molten metal at a temperature range of 650 ° C to 950 ° C; And casting at least one compound including at least a portion of at least one of calcium and silicon decomposed from the calcium oxide and silicon based additives in an aluminum matrix, and wherein the calcium oxide and silicon based additives do not substantially remain.
  • a manufacturing method of an aluminum alloy is included.
  • a manufacturing method of an aluminum alloy is provided.
  • the aluminum alloy may further include any one or more of calcium dissolved in the aluminum base and silicon dissolved.
  • the aluminum matrix is a solid solution of magnesium
  • the compound may be any one or more selected from aluminum-calcium compound, magnesium-calcium compound and magnesium-aluminum-calcium compound, magnesium-silicon compound and calcium-silicon compound.
  • the aluminum-calcium compound is Al 4 Ca or Al 2 Ca
  • magnesium-calcium compound is Mg 2 Ca
  • aluminum-magnesium-calcium compound is (Mg, Al) 2 Ca
  • the magnesium-silicon compound is Mg 2 Si
  • the calcium-silicon compound may include any one or more of CaSi, CaSi 2 , Ca 2 Si.
  • the aluminum base may further include any one or more of an undecomposed calcium-based additive and a silicon-based additive.
  • calcium and silicon-based additives which are more economical and chemically stable than silicon and pure silicon are used, and thus calcium and silicon are easily added.
  • Aluminum alloys with added silicon can be prepared.
  • FIG. 1 is a flowchart showing a method of manufacturing an aluminum alloy according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a method of manufacturing an aluminum alloy according to an embodiment of the present invention.
  • 4A to 4F are analysis results of an aluminum alloy manufactured according to one experimental example of the present invention.
  • aluminum may refer to pure aluminum. However, even if the pure aluminum is not specifically mentioned, it may further include impurities which are not intentionally added during the manufacturing process (hereinafter, inevitable impurities).
  • aluminum alloy may refer to an alloy containing one or more additive elements in aluminum as the main element.
  • the aluminum alloy may further include unavoidable impurities in addition to the main element and the additive elements even when not specifically mentioned.
  • FIG. 1 is a flowchart showing a method of manufacturing an aluminum alloy according to an embodiment of the present invention.
  • an aluminum base material (hereinafter referred to as a base material) may be dissolved to form a molten metal (S10).
  • the base material may include, for example, pure aluminum or an aluminum alloy.
  • An aluminum alloy may refer to an alloy in which at least one additional element is added to aluminum, which is a main element, and may generally refer to a case in which other additive elements are added in addition to calcium and silicon.
  • the scope of this embodiment does not exclude the case where at least one of calcium and silicon is added as an additive element to the aluminum alloy of the base metal.
  • the base aluminum alloy is a 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 series of wrought aluminum or 100, 200 in the American Aluminum Association classification. It can be any one selected from the series, 300 series, 400 series, 500 series, 700 series casting aluminum.
  • the base material may be dissolved in a suitable reactor, such as a crucible.
  • Heating of the crucible can be carried out by any suitable heating means.
  • a resistance heating method, an induction heating method, a laser heating method, a plasma heating method, a hot air heating method, or the like may be used alone or in combination to heat the crucible.
  • a calcium-based additive may be added to the molten metal (S11).
  • the calcium-based additive may include any one or more of calcium oxide (CaO), calcium cyanide (CaCN 2 ) and calcium carbide (CaC 2 ) as a compound containing calcium. This calcium-based additive is used as a source for supplying calcium in the molten metal.
  • Calcium-based additives may be added in the form of a powder having a large surface area for improving reactivity.
  • this embodiment is not limited thereto, and may be added in the form of pellets or in the form of agglomerated powders in order to prevent powder scattering.
  • the size of the calcium-based additive in powder form needs to be appropriately controlled. For example, when the powder size is less than 0.1 ⁇ m may be too fine to be scattered by hot air or to aggregate with each other to form agglomerates, so that it may not easily mix with the molten metal of the liquid phase. On the other hand, when the powder size exceeds 500 ⁇ m reaction time with the molten metal may be excessively long.
  • the powder size may vary depending on the temperature control method of the molten metal, and this embodiment is not limited to this example.
  • the content of the calcium-based additive may be appropriately selected depending on the use of the aluminum alloy to be manufactured.
  • the calcium-based additive may be added in the range of 0.0001% to 30% by weight, and more strictly in the range of 0.01% to 15% by weight.
  • the content of the calcium-based additive may limit the range added so that substantially all of the calcium-based additive may be exhausted.
  • the addition of the calcium-based additives may be added in multiple stages at a time or after the necessary amount is divided into appropriate amounts at regular intervals. If the added calcium-based additive is a fine powder, it is possible to promote the reaction of the calcium-based additive while lowering the possibility of aggregation of the powder by adding the multi-step at a time difference.
  • the base material and the calcium-based additive may be dissolved together to form a molten metal.
  • the base material and the calcium-based additive may be previously mounted in the crucible. In this case, however, it may be difficult to control the reaction of the calcium-based additive.
  • the calcium-based additive may be exhausted in the molten metal (S12).
  • a portion of the calcium-based additive may be decomposed in the molten metal to substantially exhaust the calcium-based additive.
  • the decomposition reaction of the calcium-based additives may be promoted by maintaining the molten metal for a predetermined time in the state where the calcium-based additive is added or by stirring the molten metal.
  • the exhausting step S12 may be referred to as a decomposition step in that the exhaustion of the calcium-based additive substantially involves the decomposition of the calcium-based additive.
  • the temperature of the molten metal may be controlled in a temperature range of 650 ° C to 950 ° C. At temperatures below 650 ° C., the amount of decomposition of calcium-based additives added as a source of calcium may be too small, and if it is above 950 ° C., economic losses due to unnecessary temperature rise may be a problem. At this time, as the temperature of the molten metal increases, decomposition of the calcium-based additive added may occur more actively.
  • the addition step (S11) and exhaustion step (S12) may be repeated repeatedly.
  • the exhaustion step may be further broken down.
  • the calcium-based additive in the exhaustion step (S12) may be decomposed into elements other than calcium and calcium.
  • the surface of the molten metal may be exposed to the atmosphere in order to activate the discharge of the elements other than the calcium, and the elements other than the calcium may escape to the outside through the surface of the molten metal.
  • elements other than the calcium may be included in a dross or sludge to be suspended after being suspended above the molten metal.
  • calcium oxide can be broken down into calcium and oxygen.
  • Calcium may remain in the melt or react with other elements and oxygen may be substantially removed from the melt.
  • oxygen may be released to the atmosphere in the gaseous state, mostly through the molten surface exposed to the atmosphere, or may be contained in dross or sludge and suspended above the melt.
  • calcium decomposed from the calcium-based additive may react with other elements to form a calcium-based compound.
  • it may be reacted with aluminum to form an aluminum-calcium compound, such as Al 4 Ca or Al 2 Ca.
  • the base material is an aluminum alloy
  • an alloying element other than aluminum and calcium may react to form a calcium-based compound.
  • the decomposed calcium may react with magnesium, which is an alloying element in the molten metal, to form a magnesium-calcium compound.
  • the magnesium-calcium compound may comprise an Mg 2 Ca phase.
  • calcium may react with aluminum and magnesium to form an aluminum-magnesium-calcium compound such as (Mg, Al) 2 Ca.
  • Stirring of the melt can be accomplished in a variety of ways.
  • agitation can be provided through a mechanical stirring device in the melt or through an electromagnetic field application device around the crucible.
  • the electromagnetic field applying device may perform stirring through convection of the molten metal by applying an electromagnetic field in the molten metal.
  • the stirring may be started with the addition of the calcium-based additive or may be performed after a certain time after the addition of the calcium-based additive.
  • the agitation may begin from the forming of the melt.
  • the stirring time may vary depending on the conditions of the molten metal and the amount or form of the calcium-based additive.
  • the agitation may proceed until the calcium-based additive is substantially invisible at the melt surface.
  • stirring may be further performed with a holding time of a margin.
  • the decomposition of the calcium-based additive occurs in the molten surface in large part in contact with the atmosphere, it may be effective to stir the upper portion of the molten metal.
  • the agitation can proceed from the melt surface up to 20% of the total height of the melt, particularly if it is desired to further activate the surface reaction from the melt surface to up to 10% of the melt height. have.
  • the step of removing dross floating on the surface of the molten metal may be further performed.
  • the dross may include components other than calcium or an unreacted calcium additive that is not exhausted in the exhausting step.
  • the molten metal may be cast (S13) to manufacture an aluminum alloy.
  • the temperature of the mold may have a temperature range of room temperature (for example, 25 °C) to 400 °C.
  • the alloy may be separated from the mold after cooling the mold to room temperature, but even when the alloy is solidified even before the room temperature, the alloy may be separated from the mold.
  • the mold may use any one selected from a metal mold, a ceramic mold, a graphite mold, and an equivalent thereof.
  • casting methods include sand casting, die casting, gravity casting, continuous casting, low pressure casting, squeeze casting, lost wax casting, thixo casting, and the like.
  • Gravity casting may refer to a method of injecting a molten alloy into the mold using gravity
  • low pressure casting may refer to a method of injecting molten metal into the mold by applying pressure to the molten surface of the molten alloy using gas.
  • Thixocasting is a casting technique in a semi-melt state that combines the advantages of conventional casting and forging. The scope of this embodiment is not limited to the type of casting and the casting method described above.
  • the calcium-based additive is substantially not present in the cast aluminum alloy. Instead, at least a portion of the calcium decomposed from the calcium-based additive as described above may be reacted with other alloying elements to form a calcium-based compound and then distributed in the second phase in the aluminum matrix.
  • These calcium-based compounds have already been described in detail above, and thus will not be described in detail.
  • the calcium-based compound is a high intermetallic compound having a high melting point and high hardness in the known aluminum, and when such a calcium-based compound is distributed in the aluminum matrix, it may contribute to the improvement of the mechanical properties of the aluminum alloy.
  • some of the decomposed calcium may be dissolved in the aluminum matrix.
  • the added calcium-based additive may not be exhausted in the molten metal, and in this case, the calcium-based additive added in the aluminum base may be included.
  • a calcium-based compound that is chemically stable can be added economically and easily to aluminum in comparison with the case of using metal calcium having high reactivity with oxygen. .
  • an aluminum-magnesium alloy (Al-10Mg) containing 10% by weight of magnesium was used as the aluminum base material according to Experimental Example 1 of the present invention.
  • 4500g of the aluminum-magnesium alloy (Al-10Mg) was dissolved, and the temperature of the molten metal was maintained at 750 ° C.
  • 90 g of calcium oxide was added to the prepared melt as a calcium-based additive. After addition of calcium oxide, stirring was performed for about 1 hour, and after stirring was completed, an aluminum-magnesium alloy was prepared.
  • Experimental Example 2 was carried out under the same conditions except that the temperature of the molten metal was maintained at 900 ° C and 150 g of calcium oxide added compared with Experimental Example 1.
  • compositions of the aluminum-magnesium alloys of Experimental Examples 1 and 2 were analyzed by inductively coupled plasma (ICP) analysis. Table 1 below shows the results according to the experimental example.
  • FIGS. 2a to 2d are photographs showing the results of composition analysis of the aluminum alloy according to Experimental Example 2 of the present invention.
  • Figure 2a shows the microstructure of the alloy observed using back scattering electrons (back scattering electrons)
  • Figures 2b to 2d shows the distribution of aluminum, calcium, magnesium, oxygen as a result of EDS mapping (mapping). .
  • the calcium is detected but no oxygen is detected, so that almost all of the added calcium oxide decomposes in the molten metal and does not remain in the aluminum matrix.
  • at least some of the calcium may be present in the form of magnesium-calcium compound, aluminum-magnesium compound, magnesium-aluminum-calcium compound in the position where magnesium or aluminum is detected in the position where calcium is detected. .
  • FIG. 3 is a flow chart showing a method of manufacturing an aluminum alloy according to another embodiment of the present invention.
  • an aluminum-based base material may be dissolved to form a molten metal (S20).
  • a molten metal S20
  • the base material may be dissolved in a suitable reactor, such as a crucible.
  • Heating of the crucible can be carried out by any suitable heating means.
  • a resistance heating method, an induction heating method, a laser heating method, a plasma heating method, a hot air heating method, or the like may be used alone or in combination to heat the crucible.
  • the calcium-based additive may include any one or more of calcium oxide (CaO), calcium cyanide (CaCN 2 ) and calcium carbide (CaC 2 ) as a compound containing calcium.
  • the silicon-based additive may include silicon oxide (SiO 2 ). These calcium-based additives and silicon-based additives are used as sources for supplying calcium and silicon in the melt, respectively.
  • Calcium-based additives and silicon-based additives may be added in the form of a powder having a large surface area to improve reactivity.
  • this embodiment is not limited thereto, and may be added in the form of pellets or in the form of agglomerated powders in order to prevent powder scattering.
  • the size of the calcium-based and silicon-based additives in powder form needs to be appropriately controlled. For example, when the powder size is less than 0.1 ⁇ m may be too fine to be scattered by hot air or to aggregate with each other to form agglomerates, so that it may not easily mix with the molten metal of the liquid phase. On the other hand, when the powder size exceeds 500 ⁇ m reaction time with the molten metal may be excessively long.
  • the powder size may vary depending on the temperature control method of the molten metal, and this embodiment is not limited to this example.
  • the content of the calcium-based additives and silicon-based additives may be appropriately selected depending on the use of the aluminum alloy to be produced.
  • the content of the calcium-based and silicon-based additives may limit the range so that substantially all of them can be exhausted in the melt.
  • the calcium-based additives and the silicone-based additives may be added in the range of 0.0001% to 30% by weight, respectively, and more strictly in the range of 0.01% to 15% by weight.
  • the addition of the calcium-based additives and the silicone-based additives may be added in multiple stages at regular time intervals after the necessary amount is added or divided into appropriate amounts.
  • the reactions of the calcium-based additives and the silicon-based additives may be promoted by lowering the agglomeration potential of the powder by adding them in multiple stages with a time difference.
  • the order of addition of the calcium-based additives and the silicone-based additives may be added differently.
  • the calcium-based additive may be added first, and after a certain time, the silicone-based additive may be added or vice versa.
  • a calcium-based additive and a silicon-based additive may be added at the same time. In this case, it is also possible to add the calcium-based additives and silicon-based additives in the form of a mixture mixed in a predetermined ratio.
  • the base material, calcium-based additives and silicon-based additives may be dissolved together to form a molten metal.
  • the base material, the calcium-based additives and the silicone-based additives may be previously mounted in the crucible.
  • the calcium-based additive and the silicon-based additive may be exhausted in the molten metal (S22).
  • some of the calcium-based additives and silicon-based additives may be decomposed in the molten metal so that the calcium-based additives and the silicon-based additives may be substantially exhausted.
  • by activating this decomposition reaction it is possible to decompose and exhaust substantially all of the calcium-based additives and the silicone-based additives.
  • the decomposition of the calcium-based additives and the silicon-based additives may be accelerated by maintaining the molten metal for a predetermined time in the state where the calcium-based additive and the silicon-based additive are added or by stirring the molten metal.
  • the exhausting step S22 may be referred to as a decomposition step in that the exhaustion of the calcium-based additive and the silicon-based additive substantially involves the decomposition of the calcium-based additive and the silicon-based additive.
  • the temperature of the molten metal may be controlled in a temperature range of 650 ° C to 950 ° C. At temperatures below 650 ° C, the amount of decomposition of the calcium-based additives added to the calcium source and the silicon-based additives added to the silicon source may be too small. If the temperature exceeds 950 ° C, economic losses due to unnecessary temperature rise may be a problem. Can be. At this time, as the temperature of the molten metal increases, decomposition of the calcium-based additive and the silicone additive added may occur more actively.
  • the addition step S21 and the exhausting step S22 may be repeated repeatedly.
  • the burnout phase can be further broken down.
  • calcium-based additives can be broken down into elements other than calcium and calcium
  • silicon-based additives can be broken down into silicon and non-silicon elements.
  • the surface of the molten metal may be exposed to the atmosphere in order to activate the discharge of the elements other than the calcium and the elements other than silicon, and these elements may escape to the outside through the surface of the molten metal.
  • elements other than the calcium and oxygen may be removed after floating on the molten metal as dross or sludge.
  • calcium oxide which is one of the calcium-based additives
  • calcium oxide may be decomposed into calcium and oxygen in the molten metal.
  • Calcium may remain in the melt or react with other elements and oxygen may be substantially removed from the melt.
  • oxygen may be released to the atmosphere in the gaseous state, mostly through the molten surface exposed to the atmosphere, or may be contained in dross or sludge and suspended above the melt.
  • silicon oxide a silicon-based additive
  • Calcium decomposed from the calcium-based additive may react with other elements to form a calcium-based compound.
  • it may be reacted with aluminum to form an aluminum-calcium compound, such as Al 4 Ca or Al 2 Ca.
  • the base material is an aluminum alloy
  • an alloying element other than aluminum and calcium may react to form a calcium-based compound.
  • the decomposed calcium may react with magnesium, which is an alloying element in the molten metal, to form a magnesium-calcium compound.
  • the magnesium-calcium compound may comprise an Mg 2 Ca phase.
  • calcium may react with aluminum and magnesium to form an aluminum-magnesium-calcium compound such as (Mg, Al) 2 Ca.
  • Silicon decomposed from the silicon-based additive may remain in the molten metal or react with other alloying elements to form a silicon-based compound.
  • silicon degraded in many alloys may remain as primary or process silicon in the aluminum matrix.
  • the decomposed silicon may react with magnesium in the molten metal to form a magnesium-silicon compound as the silicon-based compound.
  • the magnesium-silicon compound may comprise an Mg 2 Si phase.
  • calcium decomposed from the calcium-based additive and silicon decomposed from the silicon-based additive may react with each other to form a calcium-silicon compound.
  • the calcium-silicon compound may be CaSi, CaSi 2 And Ca 2 It may include any one or more of Si.
  • Stirring of the melt can be accomplished in a variety of ways.
  • agitation can be provided through a mechanical stirring device in the melt or through an electromagnetic field application device around the crucible.
  • the electromagnetic field applying device may perform stirring through convection of the molten metal by applying an electromagnetic field in the molten metal.
  • the agitation may begin with the addition of the additive or may proceed after some time after the addition of the additive.
  • the agitation may begin from the forming of the melt.
  • the stirring time may vary depending on the conditions of the melt and the amount or form of the additive.
  • the agitation can proceed until the additive is substantially invisible at the melt surface.
  • the stirring may be further performed with a holding time of a margin.
  • the agitation can proceed from the melt surface up to 20% of the total height of the melt, particularly if it is desired to further activate the surface reaction from the melt surface to up to 10% of the melt height. have.
  • the step of removing dross floating on the surface of the molten metal may be further performed.
  • the dross may include components other than calcium, an unreacted calcium-based additive, an unreacted silicon-based additive that is not exhausted in the exhausting step.
  • the molten metal may be cast (S23) to manufacture an aluminum alloy.
  • the temperature of the mold may have a temperature range of room temperature (for example, 25 °C) to 400 °C.
  • the alloy may be separated from the mold after cooling the mold to room temperature, but even when the alloy is solidified even before the room temperature, the alloy may be separated from the mold.
  • the mold may use any one selected from a mold, a ceramic mold, a graphite mold, and an equivalent thereof.
  • casting methods include sand casting, die casting, gravity casting, continuous casting, low pressure casting, squeeze casting, lost wax casting, thixo casting, and the like.
  • Gravity casting may refer to a method of injecting a molten alloy into the mold using gravity
  • low pressure casting may refer to a method of injecting molten metal into the mold by applying pressure to the molten surface of the molten alloy using gas.
  • Thixocasting is a casting technique in a semi-melt state that combines the advantages of conventional casting and forging. The scope of this embodiment is not limited to the type of casting and the casting method described above.
  • the calcium-based additive and the silicon-based additive are substantially exhausted in the molten metal, the calcium-based additive and the silicon-based additive are substantially free from the cast aluminum alloy.
  • the calcium-based additive and the silicon-based additive are substantially free from the cast aluminum alloy.
  • at least a portion of the calcium decomposed from the calcium-based additives as described above may remain in the aluminum matrix or react with other alloying elements to distribute as a compound.
  • at least a portion of the silicon decomposed from the silicon-based additive may be dissolved in aluminum to remain as primary or process silicon, or may react with other elements and be distributed as a compound. These compounds may be distributed in the second phase in the aluminum matrix, which has already been described in detail above, and thus, a detailed description thereof will be omitted.
  • At least some of at least one of the decomposed calcium and silicon may be dissolved in the aluminum base.
  • at least one of the added calcium-based additives and silicon-based additives may not be completely consumed in the molten metal.
  • at least one of the calcium-based additives and the silicon-based additives added in the aluminum base may be included. .
  • the aluminum base material comprises an aluminum-magnesium alloy as described above
  • this compound may comprise a magnesium-silicon compound, such as Mg 2 Si.
  • Mg 2 Si magnesium-silicon compound
  • the silicon-based additive is decomposed and supplied into the molten metal without supplying Si separately, thereby forming a Mg 2 Si phase without reaction.
  • Mg 2 Si phase formation can be formed in 6000 series alloys without heat treatment, given that Mg 2 Si phase formation was formed by post-cast heat treatment. This Mg 2 Si phase may induce a second phase strengthening effect and contribute to the strength improvement.
  • calcium and silicon components may be added to the aluminum alloy by adding calcium-based additives and silicon-based additives to the aluminum-based base material instead of metal calcium and pure silicon. This method is very economical in that calcium-based and silicon-based additives are commercially easy and cheaper than calcium and silicon.
  • the above-described compounds such as calcium-based compounds, silicon-based compounds and calcium-silicon compounds, are high in hardness and high in intermetallic compounds with known melting points. It can contribute to the improvement of mechanical properties.
  • an aluminum-magnesium alloy (Al-10Mg) containing 10% by weight of magnesium was used. 4500g of the aluminum-magnesium alloy (Al-10Mg) was dissolved, and the temperature of the molten metal was maintained at 750 ° C. 180 g of a mixture of 90 g of calcium oxide and 90 g of a silicon-based additive was added to the prepared melt. After the addition of the mixture, stirring was performed for about 1 hour, and after the stirring was completed, casting was performed to prepare an aluminum-magnesium alloy.
  • Experimental Example 4 was carried out under the same conditions except that the temperature of the molten metal was maintained at 900 ° C and 150g of calcium oxide and silicon-based additives added, respectively, compared to Experimental Example 3, and the weight of the mixture was 300g.
  • compositions of the aluminum-magnesium alloys of Experimental Examples 3 and 4 were analyzed by ICP (Inductively coupled plasma) analysis. Table 2 below shows the results according to the experimental example.
  • FIGS 4a to 4f are photographs showing the analysis results of the aluminum alloy according to Experimental Example 4 of the present invention.
  • Figure 4a shows the microstructure of the alloy observed by using back scattering electrons (back scattering electrons)
  • Figures 4b to 4f is the result of EDS mapping (mapping), the distribution of aluminum, magnesium, silicon, calcium, oxygen Indicates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 알루미늄에 첨가되는 칼슘 및 실리콘의 공급원으로서 종래의 금속칼슘 및 순수 실리콘을 대신하여 화학적으로 더 안정적이며 경제적인 칼슘계 첨가제 및 실리콘계 첨가제를 이용하는 알루미늄 합금의 제조방법 및 이에 의해 제조된 알루미늄 합금의 제공을 목적으로 한다. 본 발명의 일 관점에 따르면, 알루미늄계 모재를 용해하여 용탕을 형성하는 단계; 상기 용탕에 칼슘계 첨가제를 첨가하거나, 또는 칼슘계 첨가제와 실리콘계 첨가제를 첨가하는 단계; 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상의 적어도 일부를 상기 용탕 내에서 소진시키는 단계; 및 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법이 제공된다.

Description

알루미늄 합금 및 이의 제조 방법
본 발명은 알루미늄 합금 및 이의 제조 방법에 관한 것이다.
알루미늄(Al) 합금은 경량재료이면서도 기계적 특성이 우수함에 따라 각종 건축재료, 자동차재료, 전기전자재료 등에 폭 넓게 적용되고 있다. 주조를 이용하여 제조되는 알루미늄 합금은 통상 알루미늄 용탕에 금속원소를 합금원소로서 첨가하게 된다. 예를 들어 합금원소로 첨가되는 금속원소로는 구리(Cu), 마그네슘(Mg), 실리콘(Si), 니켈(Ni), 칼슘(Ca) 등이 있다. 이렇게 첨가된 합금원소들은 알루미늄 기지에 고용되어 고용강화를 일으키거나 알루미늄과 반응하여 금속간화합물을 생성시켜 기계적 특성향상에 기여할 수 있다.
칼슘은 알루미늄-실리콘 합금에서 실리콘의 개량처리제로서 이용되거나 알루미늄-마그네슘 합금의 용탕 표면의 산화를 방지하기 위하여 사용될 수 있다. 또한 알루미늄-실리콘 합금에 칼슘을 미량 첨가하면 CaSi2 금속간화합물을 생성시켜 고용된 실리콘의 영향을 감소시켜 전기전도도를 향상시킬 수 있다. 그러나 금속칼슘은 상온에서도 물과 반응하여 수소가스를 생성시킬 정도로 화학반응력이 강하므로 산업현장에서 다루기 매우 어려우며, 알루미늄 용탕 내에서 마그네슘 이상으로 산화성이 강하므로 용탕의 품질을 열화시킨다. 따라서 칼슘의 첨가로 인해 알루미늄 특성의 향상이 기대됨에도 아직까지 좋은 결과를 얻지 못하고 있다.
또한, 알루미늄(Al) 합금에서 실리콘(Si)은 마그네슘(Mg)에 이어서 주된 합금원소 중의 하나이다. 예를 들어, 알루미늄-실리콘(Al-Si)계 합금은 주조재로 이용되거나 또는 미국알루미늄협회가 정한 분류표상 4000계열 전신재 합금으로 이용될 수 있다. 나아가, 알루미늄-마그네슘-실리콘(Al-Mg-Si)계 합금은 주조재로 이용되거나 또는 6000계열 전신재 합금으로 이용된다.
주조재에 있어서 실리콘은 유동성과 용탕 충진이 용이한 합금이나 주조 균열이 적은 합금을 생산하는데 이용될 수 있다. 실리콘은 알루미늄 용탕에 다량 첨가되어도 용탕의 점성 증가나 산화 경향이 거의 없이 용탕을 양호한 상태로 유지 가능하게 하고, 공정 실리콘과 초정 실리콘의 개량 처리로 결정립 미세화를 용이하게 할 수 있다. 이러한 알루미늄 합금들에서 실리콘은 통상적으로 순수 실리콘 형태로 첨가된다.
본 발명은 높은 산화력으로 인해 알루미늄의 합금원소로 이용하기 어려운 금속칼슘 대신에 이러한 문제가 없는 칼슘계 첨가제를 이용하는 알루미늄 합금의 제조방법 및 이에 따라 제조된 알루미늄 합금을 제공하고자 한다.
또한, 본 발명은 알루미늄에 첨가되는 칼슘 및 실리콘의 공급원으로서 종래의 금속칼슘 및 순수 실리콘을 대신하여 화학적으로 더 안정적이며 경제적인 칼슘계 첨가제 및 실리콘계 첨가제를 이용하는 알루미늄 합금의 제조방법 및 이에 의해 제조된 알루미늄 합금의 제공을 목적으로 한다. 전술한 과제는 예시적으로 제시되었고, 본 발명의 범위가 이러한 과제에 의해서 제한되는 것은 아니다.
본 발명의 일 관점에 따른 알루미늄계 모재를 용해하여 용탕을 형성하는 단계; 상기 용탕에 칼슘계 첨가제를 첨가하는 단계; 및 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법이 제공된다.
이때 상기 칼슘계 첨가제를 첨가하는 단계 후에 상기 칼슘계 첨가제의 적어도 일부를 상기 용탕에서 소진시키는 단계를 더 포함할 수 있다.
상기 소진시키는 단계에서의 용탕의 온도는 650℃ 내지 950℃ 범위를 유지할 수 있다.
상기 소진시키는 단계는 상기 칼슘계 첨가제의 실질적인 전부가 상기 용탕 내에 잔류되지 않도록 수행하는 것일 수 있다.
상기 소진시키는 단계에서 상기 칼슘계 첨가제는 칼슘으로 분해되고, 상기 칼슘의 적어도 일부는 상기 주조된 알루미늄 합금의 알루미늄 기지 내에 칼슘계 화합물로서 분포될 수 있다.
한편, 상기 소진시키는 단계 후에, 상기 소진시키는 단계에서 소진되지 않은 칼슘계 첨가제 또는 칼슘 이외의 성분이 드로스에 포함되어 제거되는 단계를 더 포함할 수 있다.
상기 소진시키는 단계는 상기 용탕의 상부를 교반하는 단계를 포함할 수 있으며, 상기 교반은 상기 용탕의 표면으로부터 상기 용탕의 전체 깊이의 20% 이내의 상층부에서 수행할 수 있다. 이때 상기 교반하는 단계에 의해서 상기 용탕의 표면부에서 상기 칼슘계 첨가제가 분해될 수 있다.
상기 칼슘계 첨가제의 첨가량은 상기 용탕 내에서 모두 소진되어 상기 알루미늄 합금 내에 잔류하지 않는 범위로 한정될 수 있다.
상기 알루미늄계 모재는 알루미늄 또는 알루미늄 합금을 포함할 수 있다.
상기 칼슘계 첨가제는 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함할 수 있다.
상기 모재는 알루미늄-마그네슘 합금을 포함하고, 상기 소진시키는 단계에 의해서 상기 칼슘계 첨가제가 분해되어 칼슘이 생성되고, 상기 칼슘의 적어도 일부는 상기 용탕 내 알루미늄 및 마그네슘 중 어느 하나 이상과 반응하여 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물 중에서 선택되는 어느 하나 이상을 형성할 수 있다.
이때 상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca을 포함할 수 있다.
본 발명의 다른 관점에 의하면, 알루미늄계 모재를 용해하여 용탕을 형성하는 단계; 상기 용탕 내에 산화칼슘을 첨가하는 단계; 상기 용탕을 650℃ 내지 950℃ 온도범위로 제어하면서 상기 산화칼슘의 실질적인 전부를 상기 용탕 내에서 소진시키는 단계: 및알루미늄 기지 내에 상기 산화칼슘으로부터 분해된 칼슘의 적어도 일부가 포함된 칼슘계 화합물이 분포되고, 상기 산화칼슘은 실질적으로 잔류하지 않도록 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법이 제공된다.
본 발명의 또 다른 관점에 의하면, 알루미늄 기지; 및 상기 알루미늄 기지 내에 제2상으로 존재하는 칼슘계 화합물;을 포함하고, 상기 칼슘계 화합물은 합금 주조 시 용탕 내에 첨가된 칼슘계 화합물로부터 분해되어 공급된 칼슘이 반응하여 생성된 것인, 알루미늄 합금이 제공된다.
이때 상기 알루미늄 합금은 상기 알루미늄 기지 내에 고용된 칼슘을 더 포함할 수 있다.
상기 칼슘계 첨가제는 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함할 수 있다.
상기 알루미늄 기지는 마그네슘이 고용된 것이며, 상기 칼슘계 화합물은 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물 중에서 선택되는 어느 하나 이상일 수 있으며, 상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca을 포함할 수 있다.
상기 알루미늄 기지에는 분해되지 않은 칼슘계 첨가제가 더 포함되어 있을 수 있다.
본 발명의 또 다른 관점에 따르면, 알루미늄계 모재를 용해하여 용탕을 형성하는 단계; 상기 용탕에 칼슘계 첨가제 및 실리콘계 첨가제를 첨가하는 단계; 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상의 적어도 일부를 상기 용탕 내에서 소진시키는 단계; 및 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법이 제공된다.
상기 칼슘계 첨가제 및 실리콘계 첨가제를 첨가하는 단계 후에 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상의 적어도 일부를 상기 용탕에서 소진시키는 단계를 더 포함할 수 있다.
상기 칼슘계 첨가제는 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함하고, 상기 실리콘계 첨가제는 산화실리콘(SiO2)을 포함하할 수 있다.
상기 소진시키는 단계에서의 용탕의 온도는 650℃ 내지 950℃ 범위를 유지할 수 있다.
상기 칼슘계 첨가제 및 실리콘계 첨가제는 순차로 첨가되거나 혹은 서로 동시에 첨가될 수 있다.
상기 소진시키는 단계는 칼슘계 첨가제 및 실리콘계 첨가제의 실질적인 전부가 상기 용탕 내에 잔류되지 않도록 수행할 수 있다.
상기 소진시키는 단계에서 상기 칼슘계 첨가제 및 실리콘계 첨가제의 적어도 일부는 각각 칼슘 및 실리콘으로 분해되고, 상기 칼슘 및 실리콘이 적어도 일부는 화합물의 형태로 상기 알루미늄 합금의 알루미늄 기지 내에 분포될 수 있다.
상기 소진시키는 단계 후에, 상기 소진시키는 단계에서 소진되지 않은 칼슘계 첨가제, 실리콘계 첨가제 또는 칼슘 이외의 성분이 드로스에 포함되어 제거되는 단계를 더 포함할 수 있다.
상기 소진시키는 단계는 상기 용탕의 상부를 교반하는 단계를 포함할 수 있으며, 이때 상기 교반은 상기 용탕의 표면으로부터 상기 용탕의 전체 깊이의 20% 이내의 상층부에서 수행할 수 있다. 또한 상기 교반하는 단계에 의해서 상기 용탕의 표면부에서 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상이 분해될 수 있다.
상기 칼슘계 첨가제 및 실리콘계 첨가제의 첨가량은 상기 용탕 내에서 모두 소진되어 상기 알루미늄 합금 내에 잔류하지 않는 범위로 한정될 수 있다.
상기 모재는 알루미늄-마그네슘 합금을 포함하고, 상기 소진시키는 단계에 의해서 상기 칼슘계 첨가제 및 실리콘계 첨가제가 각각 분해되어 칼슘 및 실리콘이 생성되고, 상기 칼슘 또는 실리콘의 적어도 일부는 상기 용탕 내 알루미늄 및 마그네슘 중 어느 하나 이상과 반응하여 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물, 마그네슘-실리콘 화합물 중에서 선택되는 하나 이상을 형성하거나, 상기 칼슘 및 실리콘이 서로 반응하여 칼슘-실리콘 화합물을 형성할 수 있다.
이때 상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca, 상기 마그네슘-실리콘 화합물 은 Mg2Si, 상기 칼슘-실리콘 화합물은 CaSi, CaSi2, Ca2Si 중 어느 하나 이상을 포함할 수 있다.
본 발명의 또 다른 관점에 의하면, 알루미늄계 모재를 용해하여 용탕을 형성하는 단계; 상기 용탕 내에 산화칼슘 및 실리콘계 첨가제를 첨가하는 단계; 상기 용탕을 650℃ 내지 950℃ 온도범위로 제어하면서 상기 산화칼슘 및 실리콘계 첨가제의 실질적인 전부를 상기 용탕 내에서 소진시키는 단계; 및 알루미늄 기지 내에 상기 산화칼슘 및 실리콘계 첨가제로부터 각각 분해된 칼슘 및 실리콘 중 어느 하나 이상의 적어도 일부가 포함하는 화합물이 분포되고, 상기 산화칼슘 및 실리콘계 첨가제는 실질적으로 잔류하지 않도록 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법., 알루미늄 합금의 제조방법이 제공된다.
본 발명의 또 다른 관점에 의하면, 알루미늄 기지; 및 상기 알루미늄 기지 내에 제2상으로 존재하는 칼슘 및 실리콘 중 어느 하나 이상을 포함하는 화합물; 을 포함하고, 상기 화합물은 합금 주조 시 용탕 내에 첨가된 칼슘계 첨가제 및 실리콘계 첨가제로부터 분해되어 공급된 칼슘 및 실리콘이 서로 결합하거나 혹은 다른 원소와 결합하여 형성된 것인, 알루미늄 합금이 제공된다.
상기 알루미늄 합금은 상기 알루미늄 기지 내에 고용된 칼슘 및 고용된 실리콘 중 어느 하나 이상을 더 포함할 수 있다.
상기 알루미늄 기지는 마그네슘이 고용된 것이며, 상기 화합물은 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물, 마그네슘-실리콘 화합물 및 칼슘-실리콘 화합물 중에서 선택되는 어느 하나 이상일 수 있다.
이때 상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca, 상기 마그네슘-실리콘 화합물 은 Mg2Si, 상기 칼슘-실리콘 화합물은 CaSi, CaSi2, Ca2Si 중 어느 하나 이상을 포함할 수 있다.
상기 알루미늄 기지에는 분해되지 않은 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상을 더 포함되어 있을 수 있다.
상기한 바와 같이 이루어진 본 발명의 실시예에 따르면, 알루미늄에 첨가하는 칼슘의 공급원으로서 순수한 금속칼슘을 대신하여 보다 화학적으로 안정한 칼슘계 첨가제를 이용함으로서 종래에 비해 보다 용이하게 칼슘 및 실리콘이 첨가된 알루미늄 합금을 제조할 수 있다.
또한, 발명의 다른 실시예에 따르면, 알루미늄에 첨가되는 칼슘 및 실리콘의 공급원으로서 금속칼슘 및 순수 실리콘을 대신하여 보다 경제적이면서도 화학적으로 안정한 칼슘계 첨가제 및 실리콘계 첨가제를 이용함으로서 종래에 비해 용이하게 칼슘 및 실리콘이 첨가된 알루미늄 합금을 제조할 수 있다.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법을 보여주는 순서도이다.
도 2a 내지 도 2e는 본 발명의 일 실험예에 따라 제조된 알루미늄 합금의 분석 결과들이다.
도 3은 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법을 보여주는 순서도이다.
도 4a 내지 도 4f는 본 발명의 일 실험예에 따라 제조된 알루미늄 합금의 분석 결과들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
본 발명의 실시예들에서, 알루미늄은 순수 알루미늄을 지칭할 수 있다. 다만 이러한 순수 알루미늄은 특별하게 언급되지 않는 경우에도, 제조과정 중에 의도적으로 첨가되지 않지만 불가피하게 함유되는 불순물(이하, 불가피 불순물)을 더 포함할 수 있다.
본 발명의 실시예들에서, 알루미늄 합금은 주원소인 알루미늄에 하나 또는 그 이상의 첨가원소들을 함유하는 합금을 지칭할 수 있다. 다만, 이러한 알루미늄 합금은 특별하게 언급되지 않는 경우에도 주원소와 첨가원소들 외에 불가피 불순물을 더 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법을 보여주는 순서도이다.
도 1을 참조하면, 알루미늄계 모재(이하 모재라 할 수 있다)를 용해하여 용탕(molten metal)을 형성할 수 있다(S10). 모재는 예컨대 순수 알루미늄 또는 알루미늄 합금을 포함할 수 있다. 알루미늄 합금은 주원소인 알루미늄에 적어도 하나의 첨가원소가 부가된 합금을 지칭하고, 통상적으로 칼슘 및 실리콘 외에 다른 첨가원소가 부가된 경우를 지칭할 수 있다. 하지만, 이 실시예의 범위는 모재의 알루미늄 합금에 칼슘 및 실리콘 중 어느 하나 이상이 첨가원소로 부가된 경우도 배제하지 않는다.
예를 들어, 모재의 알루미늄 합금은 미국알루미늄협회의 분류표상 1000 계열, 2000 계열, 3000 계열, 4000 계열, 5000 계열, 6000 계열, 7000 계열 및 8000 계열의 전신재용(Wrought) 알루미늄 또는 100 계열, 200계열, 300 계열, 400 계열, 500 계열, 700 계열의 주조용 (Casting) 알루미늄 중에서 선택된 어느 하나일 수 있다.
용탕 형성 단계(S10)에서, 모재는 적절한 반응로, 예컨대 도가니에서 용해될 수 있다. 도가니의 가열은 여하의 적절한 가열 수단에 의해서 수행될 수 있다. 예를 들어, 저항 가열 방식, 유도 가열 방식, 레이저 가열 방식, 플라즈마 가열 방식, 열풍 가열 방식 등이 단독 또는 복합적으로 도가니의 가열에 이용될 수 있다.
이어서, 용탕 내에 칼슘계 첨가제를 첨가할 수 있다(S11). 이때 칼슘계 첨가제는 칼슘을 포함하는 화합물로서 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함할 수 있다. 이러한 칼슘계 첨가제는 용탕 내에 칼슘을 공급하는 공급원으로 사용된다.
칼슘계 첨가제는 반응성 향상을 위해 표면적이 넓은 분말형태로 첨가될 수 있다. 그러나 이 실시예가 이에 한정되는 것은 아니며, 분말상의 비산을 방지하기 위해 분말을 응집시킨 팰렛(pellet) 형태 또는 덩어리 형태로 첨가될 수도 있다.
분말 형태의 칼슘계 첨가제의 크기는 적절하게 제어될 필요가 있다. 예를 들어, 분말 크기가 0.1㎛ 미만일 경우 너무 미세하여 열풍에 의하여 비산되거나 또는 서로 응집되어 응집체를 형성함에 따라 액상의 용융금속과 쉽게 섞이지 않게 될 수 있다. 한편, 분말 크기가 500㎛를 초과할 경우에는 용탕과 반응하는 시간이 과도하게 길어질 수 있다. 하지만, 용탕의 온도 제어 방식에 따라서 분말 크기는 달라질 수 있고, 이 실시예가 이러한 예에 제한되는 것은 아니다.
칼슘계 첨가제의 함량은 제조하고자 하는 알루미늄 합금의 용도에 따라서 적절하게 선택될 수 있다. 예컨대, 칼슘계 첨가제는 0.0001 중량% 내지 30 중량% 범위에서 첨가될 수 있으며, 보다 엄격하게는 0.01 중량% 내지 15 중량% 범위에서 첨가될 수 있다.
혹은 칼슘계 첨가제의 함량은 용탕 내에서 실질적으로 그 전부가 소진될 수 있도록 첨가되는 범위를 제한할 수 있다.
칼슘계 첨가제의 첨가는 필요량을 일시에 투입하거나 혹은 적정량으로 나눈 후 일정한 시간차를 두고 다단계로 첨가될 수 있다. 첨가되는 칼슘계 첨가제가 미세한 분말일 경우에는 시간차를 두고 다단계로 투입함으로써 분말의 응집 가능성을 낮추면서 칼슘계 첨가제의 반응을 촉진시킬 수 있다.
한편, 다른 실시예 예에서, 모재와 칼슘계 첨가제가 함께 용해되어 용탕을 형성할 수도 있다. 이 경우, 모재와 칼슘계 첨가제는 미리 도가니 내에 장착될 수 있다. 다만, 이 경우에는 칼슘계 첨가제의 반응을 제어하기 어려울 수 있다.
이어서, 칼슘계 첨가제의 적어도 일부를 용탕 내에서 소진시킬 수 있다(S12). 예를 들어, 칼슘계 첨가제의 일부를 용탕 내에서 분해함으로써 실질적으로 상기 칼슘계 첨가제가 소진되도록 할 수 있다. 나아가, 이러한 분해 반응을 활성화함으로써, 칼슘계 첨가제의 실질적인 전부를 분해하여 소진시킬 수 있다. 예를 들어, 칼슘계 첨가제가 첨가된 상태에서 용탕을 소정시간 유지하거나 또는 용탕을 교반하여 이러한 칼슘계 첨가제의 분해반응을 촉진시킬 수 있다. 칼슘계 첨가제의 소진이 실질적으로 칼슘계 첨가제의 분해를 수반한다는 점에서 소진 단계(S12)는 분해 단계로 불릴 수도 있다.
소진 단계에서 용탕의 온도는 650℃ 내지 950℃ 온도 범위에서 제어될 수 있다. 650℃ 미만의 온도에서는 칼슘의 공급원으로 첨가되는 칼슘계 첨가제의 분해량이 지나치게 적을 수 있으며, 950℃ 초과인 경우에는 불필요한 온도상승에 따른 경제적 손실 등이 문제가 될 수 있다. 이때 용탕의 온도가 증가될수록 첨가되는 칼슘계 첨가제의 분해가 더 활발하게 일어날 수 있다.
칼슘계 첨가제의 첨가가 다단계로 이루어지는 경우에는 첨가 단계(S11)와 소진 단계(S12)가 반복적으로 이어질 수도 있다. 소진 단계는 더 세부적으로 나뉠 수 있는데, 소진단계(S12)에서 일어나는 반응에 대해 더 자세히 알아보면, 본 소진 단계(S12)에서 칼슘계 첨가제는 칼슘 및 칼슘 이외의 원소로 분해될 수 있다. 상기 칼슘 이외의 원소의 배출을 활성화하기 위해서 용탕의 표면은 대기 중에 노출될 수 있으며, 상기 칼슘 이외의 원소는 용탕의 표면을 통해 외부로 빠져나갈 수 있다. 다른 예로, 상기 칼슘 이외의 원소는 드로스(dross) 또는 슬러지(sludge) 내에 포함되어 용탕 상부에 부유한 후 제거될 수도 있다.
예를 들어 산화칼슘(CaO)의 경우에는 칼슘과 산소로 분해될 수 있다. 칼슘은 용탕 내에 잔류되거나 또는 다른 원소와 반응될 수 있고, 산소는 용탕으로부터 실질적으로 제거될 수 있다. 예를 들어, 산소는 대부분 대기 주에 노출된 용탕 표면을 통해서 기체 상태로 대기 중으로 배출되거나 혹은 드로스(dross) 또는 슬러지(sludge) 내에 포함되어 용탕 상부에 부유한 후 제거될 수도 있다.
한편 칼슘계 첨가제로부터 분해된 칼슘은 다른 원소와 반응하여 칼슘계 화합물을 형성할 수 있다. 예를 들어 알루미늄과 반응하여 알루미늄-칼슘 화합물, 예를 들어 Al4Ca 또는 Al2Ca를 형성할 수 있다.
위 모재가 알루미늄 합금일 경우에는 알루미늄 외의 합금원소와 칼슘이 반응하여 칼슘계 화합물을 형성할 수 있다. 예를 들어 모재가 알루미늄-마그네슘 합금인 경우, 분해된 칼슘은 용탕 내 합금원소인 마그네슘과 반응하여 마그네슘-칼슘 화합물을 형성할 수 있다. 예컨대, 마그네슘-칼슘 화합물은 Mg2Ca 상을 포함할 수 있다. 이밖에, 칼슘이 알루미늄 및 마그네슘과 반응하여 (Mg,Al)2Ca 등의 알루미늄-마그네슘-칼슘 화합물을 형성할 수도 있다.
용탕의 교반은 다양한 방법으로 이루어질 수 있다. 예를 들어, 교반은 용탕 내의 기계적인 교반 장치를 통해서 제공되거나 또는 도가니 주위의 전자기장 인가 장치를 통해서 제공될 수 있다. 전자기장 인가 장치는 용탕 내에 전자기 필드를 인가함으로써 용탕의 대류를 통해서 교반을 수행할 수 있다.
예를 들어, 교반은 칼슘계 첨가제가 첨가되면서부터 시작되거나 칼슘계 첨가제 첨가 후 일정 시간 후에 진행될 수도 있다. 다른 예로, 교반은 용탕 형성 단계에서부터 시작될 수도 있다. 교반 시간은 용탕의 조건과 칼슘계 첨가제의 양 또는 형태에 따라서 달라질 수 있다. 예를 들어, 교반은 용탕 표면에서 칼슘계 첨가제가 실질적으로 보이지 않을 때까지 진행될 수 있다. 다만, 비록 용탕 표면에서 칼슘계 첨가제가 보이지 않더라도 용탕 속에 잔류할 가능성이 있기 때문에, 여유의 유지 시간을 두고 교반이 더 진행될 수 있다.
한편, 칼슘계 첨가제의 분해는 상당 부분 대기와 접하는 용탕 표면에서 일어나기 때문에, 용탕의 상부를 교반시켜 주는 것이 효과적일 수 있다. 예를 들어, 교반은 용탕 표면으로부터 용탕 전체 높이의 20%까지의 상층부에서 진행될 수 있고, 특히 표면 반응을 더욱 활성시키고자 하는 경우에는 용탕 표면으로부터 용탕 전체 높이의 10%까지의 표면부에서 진행될 수 있다.
첨가된 칼슘계 첨가제를 소진시키는 단계 후에 용탕의 표면에 부유하는 드로스(dross)를 제거하는 단계를 더 진행할 수 있다. 이때 상기 드로스에는 상기 소진시키는 단계에서 소진되지 않은 미반응 칼슘계 첨가제 또는 칼슘 이외의 성분이 포함될 수 있다.
이어서, 용탕을 주조하여(S13), 알루미늄 합금을 제조할 수 있다. 주조 단계(S13)에서, 주형의 온도는 상온(예를 들면, 25℃) 내지 400℃ 의 온도범위를 가질 수 있다. 또한, 주형을 상온까지 냉각시킨 후 합금을 주형으로부터 분리시킬 수 있으나, 상온 이전이라도 합금의 응고가 완료되는 경우에는 주형으로부터 합금을 분리시킬 수 있다.
예를 들어, 주형은 금형, 세라믹형, 그라파이트형 및 그 등가물 중에서 선택된 어느 하나를 이용할 수 있다. 또한, 주조 방식은 사형주조, 다이캐스팅(die casting), 중력주조, 연속주조, 저압주조, 스퀴즈캐스팅, 로스트왁스주조(lost wax casting), 틱소캐스팅(thixo casting) 등을 들 수 있다.
중력주조는 용융상태의 합금을 중력을 이용하여 주형에 주입하는 방법을 지칭하고, 저압주조는 용융된 합금의 용탕면에 가스를 이용하여 압력을 가하여 주형 내에 용탕을 주입하는 방식을 지칭할 수 있다. 틱소캐스팅은 반용융 상태에서의 주조 기술로서, 통상적인 주조와 단조의 장점을 융합한 방식이다. 이 실시예의 범위는 전술한 주형의 종류 및 주조 방식에 한정되지는 않는다.
칼슘계 첨가제가 실질적으로 용탕에서 소진된 경우, 주조된 알루미늄 합금 내에는 칼슘계 첨가제가 실질적으로 존재하지 않는다. 그 대신, 상술한 바와 같이 칼슘계 첨가제로부터 분해된 칼슘의 적어도 일부는 다른 합금원소와 반응하여 칼슘계 화합물을 이룬 후 알루미늄 기지 내에 제2상으로 분포할 수 있다. 이러한 칼슘계 화합물들은 이미 위에서 상세히 기술하였는바, 여기서는 구체적인 언급을 생략하기로 한다. 칼슘계 화합물은 융점이 기지인 알루미늄에 높고 경도가 높은 금속간 화합물이라는 점에서 이러한 칼슘계 화합물이 알루미늄 기지에 분포할 경우, 알루미늄 합금의 기계적 특성의 향상에 기여할 수 있다.
한편 경우에 따라 상기 분해된 칼슘 중 일부는 알루미늄 기지 내에 고용되어 있을 수 있다. 혹은 경우에 따라 첨가된 칼슘계 첨가제가 용탕에서 전부 소진되지 않을 수 있으며, 이러한 경우에는 알루미늄 기지 내에 첨가되었던 칼슘계 첨가제가 포함되어 있을 수 있다.
이와 같이 본 발명에서는 알루미늄에 칼슘을 첨가하기 위한 공급원으로 화학적으로 안정한 칼슘계 화합물을 사용함에 따라 산소와의 반응성이 높은 금속칼슘을 사용하는 경우에 비해 경제적이고 용이하게 알루미늄 내에 칼슘을 첨가할 수 있다.
이하, 본 발명의 이해를 돕기 위해서 실험예를 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다.
실험예 1
본 발명의 실험예 1에 따른 알루미늄계 모재는 마그네슘이 10중량% 첨가된 알루미늄-마그네슘 합금(Al-10Mg)을 사용하였다. 상기 알루미늄-마그네슘 합금(Al-10Mg) 4500g을 용해하였으며, 이때 용탕의 온도는 750℃로 유지하였다. 상기 준비된 용탕에 칼슘계 첨가제로서 산화칼슘을 90g 첨가하였다. 산화칼슘 첨가 후에는 약 1시간 정도 교반을 수행하였으며, 교반이 완료된 후 주조하여 알루미늄-마그네슘 합금을 제조하였다.
실험예 2
실험예 2는 실험예 1과 비교시, 용탕의 온도가 900℃로 유지된다는 점과 첨가된 산화칼슘이 150g이라는 점을 제외하고는 동일한 조건에서 수행되었다.
실험예 1 및 2의 알루미늄-마그네슘 합금의 조성은 ICP(Inductively coupled plasma) 분석법으로 분석하였다. 아래의 표 1은 실험예에 따른 결과를 나타낸다.
표 1
실험예 1 실험예 2
용탕온도 750℃ 900℃
칼슘조성 0.02%(200ppm) 1.4%
반응수율 약 1% 약 35%
ICP 분석 결과, 실험예 1의 경우 육안 상 반응은 없었으나, 성분 분석결과 약 0.02%(200ppm)의 칼슘이 검출되었다. 실험예 2의 경우 육안 상 반응이 관찰되었고, 성분 분석결과 약 1.4%의 칼슘이 검출되었다. 이로부터 용탕의 온도가 750℃일 경우에 산화칼슘은 칼슘 및 산소로 분해되며, 용탕의 온도가 900℃로 증가됨에 따라 칼슘의 분해 수율이 더 높다는 것을 알 수 있다.
도 2a 내지 도 2d는 본 발명의 실험예 2를 따르는 알루미늄 합금의 조성 분석 결과를 보여주는 사진들이다. 도 2a는 후방 산란 전자(back scattering electron)를 이용하여 관찰한 합금의 미세조직을 나타낸 것이며, 도 2b 내지 도 2d는 EDS 매핑(mapping)한 결과로서, 알루미늄, 칼슘, 마그네슘, 산소의 분포를 나타낸다.
도 2c 및 2e로부터 칼슘은 검출되었음에도 산소는 검출되지 않았음으로부터 첨가된 산화칼슘이 용탕 내에서 실질적으로 거의 모두 분해되어 알루미늄 기지 내에 잔존하지 않는 것을 알 수 있다. 한편 칼슘이 검출된 위치 중에 마그네슘 또는 알루미늄이 검출된 위치와 일치하는 곳이 있다는 점에서 적어도 일부의 칼슘은 마그네슘-칼슘 화합물, 알루미늄-마그네슘 화합물, 마그네슘-알루미늄-칼슘 화합물 형태로 존재하는 것으로 판단된다.
도 3은 본 발명의 또 다른 실시예에 따른 알루미늄 합금의 제조방법을 보여주는 순서도이다.
도 3을 참조하면, 알루미늄계 모재를 용해하여 용탕(molten metal)을 형성할 수 있다(S20). 알루미늄계 모재에 대한 설명은 도 1에 대한 설명을 참조할 수 있다.
용탕 형성 단계(S20)에서, 모재는 적절한 반응로, 예컨대 도가니에서 용해될 수 있다.
도가니의 가열은 여하의 적절한 가열 수단에 의해서 수행될 수 있다. 예를 들어, 저항 가열 방식, 유도 가열 방식, 레이저 가열 방식, 플라즈마 가열 방식, 열풍 가열 방식 등이 단독 또는 복합적으로 도가니의 가열에 이용될 수 있다.
이어서, 용탕 내에 칼슘계 첨가제 및 실리콘계 첨가제를 첨가할 수 있다(S21). 이때 칼슘계 첨가제는 칼슘을 포함하는 화합물로서 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함할 수 있다. 또한 실리콘계 첨가제는 산화실리콘(SiO2)을 포함할 수 있다. 이러한 칼슘계 첨가제 및 실리콘계 첨가제는 각각 용탕 내에 칼슘 및 실리콘을 공급하는 공급원으로 사용된다.
칼슘계 첨가제 및 실리콘계 첨가제는 반응성 향상을 위해 표면적이 넓은 분말형태로 첨가될 수 있다. 그러나 이 실시예가 이에 한정되는 것은 아니며, 분말상의 비산을 방지하기 위해 분말을 응집시킨 팰렛(pellet) 형태 또는 덩어리 형태로 첨가될 수도 있다.
분말 형태의 칼슘계 첨가제 및 실리콘계 첨가제의 크기는 적절하게 제어될 필요가 있다. 예를 들어, 분말 크기가 0.1㎛ 미만일 경우 너무 미세하여 열풍에 의하여 비산되거나 또는 서로 응집되어 응집체를 형성함에 따라 액상의 용융금속과 쉽게 섞이지 않게 될 수 있다. 한편, 분말 크기가 500㎛를 초과할 경우에는 용탕과 반응하는 시간이 과도하게 길어질 수 있다. 하지만, 용탕의 온도 제어 방식에 따라서 분말 크기는 달라질 수 있고, 이 실시예가 이러한 예에 제한되는 것은 아니다.
칼슘계 첨가제 및 실리콘계 첨가제의 함량은 제조하고자 하는 알루미늄 합금의 용도에 따라서 적절하게 선택될 수 있다. 예를 들어, 칼슘계 첨가제 및 실리콘계 첨가제의의 함량은 용탕 내에서 실질적으로 그 전부가 소진될 수 있도록 그 범위를 제한할 수 있다. 예컨대, 칼슘계 첨가제 및 실리콘계 첨가제는 각각 0.0001 중량% 내지 30 중량% 범위에서 첨가될 수 있으며, 보다 엄격하게는 0.01 중량% 내지 15 중량% 범위에서 첨가될 수 있다.
칼슘계 첨가제 및 실리콘계 첨가제의 첨가는 필요량을 일시에 투입하거나 혹은 적정량으로 나눈 후 일정한 시간차를 두고 다단계로 첨가될 수 있다. 첨가되는 칼슘계 첨가제 및 실리콘계 첨가제가 미세한 분말일 경우에는 시간차를 두고 다단계로 투입함으로써 분말의 응집 가능성을 낮추면서 칼슘계 첨가제 및 실리콘계 첨가제의 반응을 촉진시킬 수 있다.
또한 칼슘계 첨가제와 실리콘계 첨가제의 첨가 순서를 서로 다르게 하여 첨가할 수 있다. 예를 드러, 칼슘계 첨가제를 먼저 첨가하고 일정시간 경과 후 실리콘계 첨가제를 첨가하거나 혹은 그 반대의 순서로 첨가할 수 있다. 다른 예로서 칼슘계 첨가제와 실리콘계 첨가제를 동시에 첨가할 수 있다. 이때 칼슘계 첨가제와 실리콘계 첨가제를 소정의 비율로 혼합한 혼합물 형태로 첨가하는 것도 가능하다.
한편, 다른 실시예 예에서, 모재와 칼슘계 첨가제 및 실리콘계 첨가제가 함께 용해되어 용탕을 형성할 수도 있다. 이 경우, 모재와 칼슘계 첨가제 및 실리콘계 첨가제는 미리 도가니 내에 장착될 수 있다. 다만, 이 경우에는 칼슘계 첨가제 및 실리콘계 첨가제의 반응을 제어하기 어려울 수 있다.
이어서, 칼슘계 첨가제 및 실리콘계 첨가제의 적어도 일부를 용탕 내에서 소진시킬 수 있다(S22). 예를 들어, 칼슘계 첨가제 및 실리콘계 첨가제의 일부를 용탕 내에서 분해함으로써 실질적으로 상기 칼슘계 첨가제 및 실리콘계 첨가제가 소진되도록 할 수 있다. 나아가, 이러한 분해 반응을 활성화함으로써, 칼슘계 첨가제 및 실리콘계 첨가제의 실질적인 전부를 분해하여 소진시킬 수 있다. 예를 들어, 칼슘계 첨가제 및 실리콘계 첨가제가 첨가된 상태에서 용탕을 소정시간 유지하거나 또는 용탕을 교반하여 이러한 칼슘계 첨가제 및 실리콘계 첨가제의 분해반응을 촉진시킬 수 있다. 칼슘계 첨가제 및 실리콘계 첨가제의 소진이 실질적으로 칼슘계 첨가제 및 실리콘계 첨가제의 분해를 수반한다는 점에서 소진 단계(S22)는 분해 단계로 불릴 수도 있다.
소진 단계에서 용탕의 온도는 650℃ 내지 950℃ 온도 범위에서 제어될 수 있다. 650℃ 미만의 온도에서는 칼슘의 공급원으로 첨가되는 칼슘계 첨가제와 실리콘의 공급원으로 첨가되는 실리콘계 첨가제의 분해량이 지나치게 적을 수 있으며, 950℃ 초과인 경우에는 불필요한 온도상승에 따른 경제적 손실 등이 문제가 될 수 있다. 이때 용탕의 온도가 증가될수록 첨가되는 칼슘계 첨가제 및 실리콘 첨가제의의 분해가 더 활발하게 일어날 수 있다.
첨가물의 첨가가 다단계로 이루어지는 경우에는 첨가 단계(S21)와 소진 단계(S22)가 반복적으로 이어질 수도 있다. 소진단계는 더 세부적으로 나뉠 수 있는데, 소진단계에서 일어나는 반응에 대해 더 자세히 알아보면, 칼슘계 첨가제는 칼슘 및 칼슘 이외의 원소로 분해될 수 있으며, 실리콘계 첨가제는 실리콘과 실리콘 이외의 원소로 분해될 수 있다. 상기 칼슘 이외의 원소 및 실리콘 이외의 원소의 배출을 활성화하기 위해서 용탕의 표면은 대기 중에 노출될 수 있으며, 이러한 원소들은 용탕의 표면을 통해 외부로 빠져나갈 수 있다. 다른 예로, 상기 칼슘 이외의 원소 및 산소는 드로스(dross) 또는 슬러지(sludge)로서 용탕 상부에 부유한 후 제거될 수도 있다.
예를 들어 칼슘계 첨가제 중 하나인 산화칼슘의 경우에는 용탕 내에서 칼슘과 산소로 분해될 수 있다. 칼슘은 용탕 내에 잔류되거나 또는 다른 원소와 반응될 수 있고, 산소는 용탕으로부터 실질적으로 제거될 수 있다. 예를 들어, 산소는 대부분 대기 주에 노출된 용탕 표면을 통해서 기체 상태로 대기 중으로 배출되거나 혹은 드로스(dross) 또는 슬러지(sludge) 내에 포함되어 용탕 상부에 부유한 후 제거될 수도 있다. 이는 실리콘계 첨가제인 산화실리콘이 산소와 실리콘으로 분해되는 경우에도 마찬가지로 적용될 수 있다.
칼슘계 첨가제로부터 분해된 칼슘은 다른 원소와 반응하여 칼슘계 화합물을 형성할 수 있다. 예를 들어 알루미늄과 반응하여 알루미늄-칼슘 화합물, 예를 들어 Al4Ca 또는 Al2Ca를 형성할 수 있다.
위 모재가 알루미늄 합금일 경우에는 알루미늄 외의 합금원소와 칼슘이 반응하여 칼슘계 화합물을 형성할 수 있다. 예를 들어 모재가 알루미늄-마그네슘 합금인 경우, 분해된 칼슘은 용탕 내 합금원소인 마그네슘과 반응하여 마그네슘-칼슘 화합물을 형성할 수 있다. 예컨대, 마그네슘-칼슘 화합물은 Mg2Ca 상을 포함할 수 있다. 이밖에, 칼슘이 알루미늄 및 마그네슘과 반응하여 (Mg,Al)2Ca 등의 알루미늄-마그네슘-칼슘 화합물을 형성할 수도 있다.
실리콘계 첨가제로부터 분해된 실리콘은 용탕 내에서 잔존하거나 또는 다른 합금 원소와 반응하여 실리콘계 화합물을 형성할 수도 있다. 예를 들어, 상당수의 합금 내에서 분해된 실리콘은 알루미늄 기지 내에 초정 또는 공정 실리콘으로 잔존할 수 있다. 혹은 알루미늄 모재가 알루미늄-마그네슘 합금인 경우, 분해된 실리콘은 용탕 내 마그네슘과 반응하여 실리콘계 화합물로서 마그네슘-실리콘 화합물을 형성할 수 있다. 예컨대, 마그네슘-실리콘 화합물은 Mg2Si 상을 포함할 수 있다.
다른 예로서 칼슘계 첨가제로부터 분해된 칼슘과 실리콘계 첨가제로부터 분해된 실리콘이 서로 반응하여 칼슘-실리콘 화합물을 형성할 수 있다. 예컨대, 칼슘-실리콘 화합물은 CaSi, CaSi2 Ca2Si 중 어느 하나 이상을 포함할 수 있다.
용탕의 교반은 다양한 방법으로 이루어질 수 있다. 예를 들어, 교반은 용탕 내의 기계적인 교반 장치를 통해서 제공되거나 또는 도가니 주위의 전자기장 인가 장치를 통해서 제공될 수 있다. 전자기장 인가 장치는 용탕 내에 전자기 필드를 인가함으로써 용탕의 대류를 통해서 교반을 수행할 수 있다.
예를 들어, 교반은 첨가물이 첨가되면서부터 시작되거나 첨가물 첨가 후 일정 시간 후 진행될 수도 있다. 다른 예로, 교반은 용탕 형성 단계에서부터 시작될 수도 있다. 교반 시간은 용탕의 조건과 첨가물의 양 또는 형태에 따라서 달라질 수 있다. 예를 들어, 교반은 용탕 표면에서 첨가물이 실질적으로 보이지 않을 때까지 진행될 수 있다. 다만, 비록 용탕 표면에서 첨가물이 보이지 않더라도 용탕 속에 잔류할 가능성이 있기 때문에, 여유의 유지 시간을 두고 교반이 더 진행될 수 있다.
한편, 칼슘계 첨가제 및 실리콘계 첨가제의 분해는 대기와 접하는 용탕 표면에서 일어나기 때문에, 용탕의 상부를 교반시켜 주는 것이 효과적일 수 있다. 예를 들어, 교반은 용탕 표면으로부터 용탕 전체 높이의 20%까지의 상층부에서 진행될 수 있고, 특히 표면 반응을 더욱 활성시키고자 하는 경우에는 용탕 표면으로부터 용탕 전체 높이의 10%까지의 표면부에서 진행될 수 있다.
첨가된 칼슘계 첨가제 및 실리콘계 첨가제를 소진시키는 단계 후에 용탕의 표면에 부유하는 드로스(dross)를 제거하는 단계를 더 진행할 수 있다. 이때 상기 드로스에는 상기 소진시키는 단계에서 소진되지 않은 미반응 칼슘계 첨가제, 미반응 실리콘계 첨가제 또는 칼슘 이외의 성분이 포함될 수 있다.
이어서, 용탕을 주조하여(S23), 알루미늄 합금을 제조할 수 있다. 주조 단계(S23)에서, 주형의 온도는 상온(예를 들면, 25℃) 내지 400℃ 의 온도범위를 가질 수 있다. 또한, 주형을 상온까지 냉각시킨 후 합금을 주형으로부터 분리시킬 수 있으나, 상온 이전이라도 합금의 응고가 완료되는 경우에는 주형으로부터 합금을 분리시킬 수 있다.
예를 들어, 주형은 금형, 세라믹형, 그라파이트형 및 그 등가물 중에서 선택된 어느 하나를 이용할 수 있다. 또한, 주조 방식은 사형주조, 다이캐스팅(die casting), 중력주조, 연속주조, 저압주조, 스퀴즈캐스팅, 로스트왁스주조(lost wax casting), 틱소캐스팅(thixo casting) 등을 들 수 있다.
중력주조는 용융상태의 합금을 중력을 이용하여 주형에 주입하는 방법을 지칭하고, 저압주조는 용융된 합금의 용탕면에 가스를 이용하여 압력을 가하여 주형 내에 용탕을 주입하는 방식을 지칭할 수 있다. 틱소캐스팅은 반용융 상태에서의 주조 기술로서, 통상적인 주조와 단조의 장점을 융합한 방식이다. 이 실시예의 범위는 전술한 주형의 종류 및 주조 방식에 한정되지는 않는다.
칼슘계 첨가제 및 실리콘계 첨가제가 실질적으로 용탕 내에서 모두 소진되는 경우에는, 주조된 알루미늄 합금 내에는 칼슘계 첨가제 및 실리콘계 첨가제가 실질적으로 존재하지 않게 된다. 그 대신, 알루미늄 기지 내에는 상술한 바와 같이 칼슘계 첨가제로부터 분해된 칼슘의 적어도 일부가 알루미늄 기지에 잔존하거나 혹은 다른 합금원소와 반응하여 화합물로서 분포할 수 있다. 또한 실리콘계 첨가제로부터 분해된 실리콘의 적어도 일부는 알루미늄에 고용되어 초정 또는 공정 실리콘으로 잔존하거나, 다른 원소와 반응하여 화합물로서 분포할 수 있다. 이러한 화합물들은 알루미늄 기지 내에 제2상으로 분포할 수 있으며, 이들에 대해서는 이미 위에서 상세히 기술하였는바, 여기서는 구체적인 언급을 생략하기로 한다.
한편 경우에 따라 상기 분해된 칼슘 및 실리콘 중 어느 하나 이상의 적어도 일부는 알루미늄 기지 내에 고용되어 있을 수 있다. 혹은 경우에 따라 첨가된 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상은 용탕에서 전부 소진되지 않을 수 있으며, 이러한 경우에는 알루미늄 기지 내에 첨가되었던 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상이 포함되어 있을 수 있다.
전술한 바와 같이 알루미늄 모재가 알루미늄-마그네슘 합금을 포함하는 경우, 이러한 화합물은 마그네슘-실리콘 화합물, 예컨대 Mg2Si를 포함할 수 있다. 이에 따르면, 알루미늄-마그네슘-실리콘(6000계) 합금 주조 시, Si을 별도로 공급하지 않고 용탕 내에 실리콘계 첨가제를 분해하여 공급함으로써, 열처리 없이도 반응에 의하여 Mg2Si 상을 형성할 수 있다. 통상적으로, 6000계 합금에서, Mg2Si 상 형성은 주조 후 열처리에 의해서 형성되었다는 점을 감안하면, 열처리 없이도 6000계열 합금에서 Mg2Si 상을 형성할 수 있다는 것은 놀라운 일이다. 이러한 Mg2Si 상은 제 2 상 강화효과를 유발하여 강도 향상에 기여할 수 있다.
또한 금속칼슘 및 순수 실리콘 대신에 칼슘계 첨가제 및 실리콘계 첨가제를 알루미늄계 모재에 첨가함으로써 알루미늄 합금 내에 칼슘 및 실리콘 성분을 추가할 수 있다. 칼슘 및 실리콘보다 칼슘계 첨가제 및 실리콘계 첨가제가 상업적으로 쉽고 값싸게 구할 수 있다는 점에서, 이러한 방법은 매우 경제적이다.
또한 알루미늄에 칼슘을 첨가하기 위한 공급원으로 화학적으로 안정한 칼슘계 화합물을 사용함에 따라 산소와의 반응성이 높은 금속칼슘을 사용하는 경우에 비해 경제적이고 용이하게 알루미늄 내에 칼슘을 첨가할 수 있다.
또한 상술한 화합물, 예를 칼슘계 화합물, 실리콘계 화합물, 칼슘-실리콘 화합물들은 융점이 기지인 알루미늄에 높고 경도가 높은 금속간 화합물이라는 점에서 이러한 칼슘계 화합물이 알루미늄 기지에 분포할 경우, 알루미늄 합금의 기계적 특성의 향상에 기여할 수 있다.
전술한 본 발명의 이해를 돕기 위해서 실험예를 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다.
실험예 3
알루미늄계 모재는 마그네슘이 10중량% 첨가된 알루미늄-마그네슘 합금(Al-10Mg)을 사용하였다. 상기 알루미늄-마그네슘 합금(Al-10Mg) 4500g을 용해하였으며, 이때 용탕의 온도는 750℃로 유지하였다. 상기 준비된 용탕에 칼슘계 첨가제로서 산화칼슘 90g과 실리콘계 첨가제 90g을 혼합한 혼합물 180g을 첨가하였다. 상기 혼합물 첨가 후에는 약 1시간 정도 교반을 수행하였으며, 교반이 완료된 후 주조하여 알루미늄-마그네슘 합금을 제조하였다.
실험예 4
실험예 4는 실험예 3과 비교시, 용탕의 온도가 900℃로 유지된다는 점과 첨가된 산화칼슘 및 실리콘계 첨가제가 각각 150g으로서 혼합물의 중량이 300g이라는 점을 제외하고는 동일한 조건에서 수행되었다.
실험예 3 및 4의 알루미늄-마그네슘 합금의 조성은 ICP(Inductively coupled plasma) 분석법으로 분석하였다. 아래의 표 2는 실험예에 따른 결과를 나타낸다.
표 2
실험예 3 실험예 4
용탕온도 750℃ 900℃
칼슘성분 0.022%(220ppm) 0.21%
칼슘반응수율 약 1% 약 5%
실리콘성분 0.07%(700ppm) 0.25%
실리콘반응수율 약 3.5% 약 7%
실험예 3의 경우 육안 상 반응은 없었으나, 성분 분석결과 약 0.022%(220ppm)의 칼슘(Ca)과 0.07%(700ppm)의 실리콘(Si)이 검출되었다. 실험예 4의 경우 육안 상 반응이 관찰되었고, 성분 분석결과 약 0.21%의 칼슘과 0.25%의 실리콘이 검출되었다. 이로부터 용탕의 온도가 750℃일 경우에 산화칼슘은 칼슘 및 산소로 분해되고 실리콘계 첨가제는 실리콘과 산소로 분해되며, 용탕의 온도가 900℃로 증가됨에 따라 칼슘 및 실리콘의 분해 수율이 더 높다는 것을 알 수 있다.
도 4a 내지 도 4f는 본 발명의 실험예 4를 따르는 알루미늄 합금의 분석 결과를 보여주는 사진들이다. 도 4a는 후방 산란 전자(back scattering electron)를 이용하여 관찰한 합금의 미세조직을 나타낸 것이며, 도 4b 내지 도 4f는 EDS 매핑(mapping)한 결과로서, 알루미늄, 마그네슘, 실리콘, 칼슘, 산소의 분포를 나타낸다.
도 4d 내지 도 4f로부터 실리콘 및 칼슘은 검출되었음에도 산소는 검출되지 않았음을 확인할 수 있으며, 이로부터 첨가된 산화칼슘 및 실리콘계 첨가제가 용탕 내에서 실질적으로 거의 모두 분해되어 알루미늄 기지 내에 잔존하지 않는 것을 알 수 있다. 한편 칼슘이 검출된 위치와 실리콘이 검출된 위치가 일치하는 곳이 있다는 점에서 적어도 일부의 칼슘 및 실리콘은 서로 반응하여 칼슘-실리콘 화합물을 형성한 것으로 판단된다.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.

Claims (26)

  1. 알루미늄계 모재를 용해하여 용탕을 형성하는 단계;
    상기 용탕에 칼슘계 첨가제를 첨가하는 단계; 및
    상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법.
  2. 제1항에 있어서,
    상기 용탕을 형성하는 단계 후, 상기 용탕에 실리콘계 첨가제를 첨가하는 단계를 더 포함하는, 알루미늄 합금의 제조방법.
  3. 제2항에 있어서,
    상기 칼슘계 첨가제 및 실리콘계 첨가제를 첨가한 후에 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상의 적어도 일부를 상기 용탕에서 소진시키는 단계를 더 포함하는, 알루미늄 합금의 제조방법.
  4. 제2항에 있어서,
    상기 칼슘계 첨가제는 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함하고, 상기 실리콘계 첨가제는 산화실리콘(SiO2)을 포함하는, 알루미늄 합금의 제조방법.
  5. 제3항에 있어서,
    상기 소진시키는 단계에서의 용탕의 온도는 650℃ 내지 950℃ 범위를 유지하는, 알루미늄 합금의 제조방법.
  6. 제2항에 있어서,
    상기 칼슘계 첨가제 및 실리콘계 첨가제는 순차로 첨가되거나 혹은 서로 동시에 첨가되는, 알루미늄 합금의 제조방법.
  7. 제2에 있어서,
    상기 소진시키는 단계는 칼슘계 첨가제 및 실리콘계 첨가제의 실질적인 전부가 상기 용탕 내에 잔류되지 않도록 수행하는, 알루미늄 합금의 제조방법.
  8. 제2항에 있어서,
    상기 소진시키는 단계에서 상기 칼슘계 첨가제 및 실리콘계 첨가제의 적어도 일부는 각각 칼슘 및 실리콘으로 분해되고,
    상기 칼슘 및 실리콘의 적어도 일부는 화합물의 형태로 상기 알루미늄 합금의 알루미늄 기지 내에 분포되는, 알루미늄 합금의 제조방법.
  9. 제2항에 있어서,
    상기 소진시키는 단계 후에, 상기 소진시키는 단계에서 소진되지 않은 칼슘계 첨가제, 실리콘계 첨가제 또는 칼슘 이외의 성분이 드로스에 포함되어 제거되는 단계를 더 포함하는, 알루미늄 합금의 제조방법.
  10. 제2항에 있어서,
    상기 소진시키는 단계는 상기 용탕의 상부를 교반하는 단계를 포함하는, 알루미늄 합금의 제조방법.
  11. 제10항에 있어서,
    상기 교반은 상기 용탕의 표면으로부터 상기 용탕의 전체 깊이의 20% 이내의 상층부에서 수행하는, 알루미늄 합금의 제조방법.
  12. 제10항에 있어서,
    상기 교반하는 단계에 의해서 상기 용탕의 표면부에서 상기 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상이 분해되는, 알루미늄 합금의 제조방법.
  13. 제2항에 있어서,
    상기 칼슘계 첨가제 및 실리콘계 첨가제의 첨가량은 상기 용탕 내에서 모두 소진되어 상기 알루미늄 합금 내에 잔류하지 않는 범위로 한정되는, 알루미늄 합금의 제조방법.
  14. 제1항에 있어서,
    상기 알루미늄계 모재는 알루미늄 또는 알루미늄 합금을 포함하는, 알루미늄 합금의 제조방법.
  15. 제1항에 있어서,
    상기 칼슘계 첨가제는 산화칼슘(CaO), 시안화칼슘(CaCN2) 및 탄화칼슘(CaC2) 중 어느 하나 이상을 포함하는, 알루미늄 합금의 제조방법.
  16. 제2항에 있어서,
    상기 모재는 알루미늄-마그네슘 합금을 포함하고,
    상기 소진시키는 단계에 의해서 상기 칼슘계 첨가제의 적어도 일부가 분해되어 칼슘이 생성되고,
    상기 칼슘의 적어도 일부는 상기 용탕 내 알루미늄 및 마그네슘 중 어느 하나 이상과 반응하여 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물 중에서 선택되는 어느 하나 이상을 형성하는, 알루미늄 합금의 제조방법.
  17. 제16항에 있어서,
    상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca을 포함하는, 알루미늄 합금의 제조방법.
  18. 제2항에 있어서,
    상기 모재는 알루미늄-마그네슘 합금을 포함하고,
    상기 소진시키는 단계에 의해서 상기 칼슘계 첨가제 및 실리콘계 첨가제가 각각 분해되어 칼슘 및 실리콘이 생성되고,
    상기 칼슘 또는 실리콘의 적어도 일부는 상기 용탕 내 알루미늄 및 마그네슘 중 어느 하나 이상과 반응하여 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물, 마그네슘-실리콘 화합물 중에서 선택되는 하나 이상을 형성하거나, 상기 칼슘 및 실리콘이 서로 반응하여 칼슘-실리콘 화합물을 형성하는, 알루미늄 합금의 제조방법.
  19. 제18항에 있어서,
    상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca, 상기 마그네슘-실리콘 화합물 은 Mg2Si, 상기 칼슘-실리콘 화합물은 CaSi, CaSi2, Ca2Si 중 어느 하나 이상을 포함하는, 알루미늄 합금의 제조방법.
  20. 알루미늄계 모재를 용해하여 용탕을 형성하는 단계;
    상기 용탕의 온도를 상기 용탕 내에 산화칼슘을 첨가하는 단계;
    상기 용탕을 650℃ 내지 950℃ 온도범위로 제어하면서 상기 산화칼슘의 실질적인 전부를 상기 용탕 내에서 소진시키는 단계: 및
    알루미늄 기지 내에 상기 산화칼슘으로부터 분해된 칼슘의 적어도 일부가 포함된 칼슘계 화합물이 분포되고, 상기 산화칼슘은 실질적으로 잔류하지 않도록 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법.
  21. 알루미늄계 모재를 용해하여 용탕을 형성하는 단계;
    상기 용탕에 산화칼슘 및 실리콘계 첨가제를 첨가하는 단계;
    상기 용탕을 650℃ 내지 950℃ 온도범위로 제어하면서 상기 산화칼슘 및 실리콘계 첨가제의 실질적인 전부를 상기 용탕에서 소진시키는 단계; 및
    알루미늄 기지 내에 상기 산화칼슘 및 실리콘계 첨가제로부터 각각 분해된 칼슘 및 실리콘 중 어느 하나 이상의 적어도 일부를 포함하는 화합물이 분포되고, 상기 산화칼슘 및 실리콘계 첨가제는 실질적으로 잔류하지 않도록 상기 용탕을 주조하는 단계를 포함하는, 알루미늄 합금의 제조방법.
  22. 알루미늄 기지; 및
    상기 알루미늄 기지 내에 제2상으로 존재하는 칼슘 및 실리콘 중 어느 하나 이상을 포함하는 화합물;을 포함하고,
    상기 화합물은 합금 주조 시 용탕 내에 첨가된 칼슘계 첨가제 및 실리콘계 첨가제로부터 분해되어 공급된 칼슘 및 실리콘이 서로 결합하거나 혹은 다른 원소와 결합하여 형성된 것인, 알루미늄 합금.
  23. 제22항에 있어서, 상기 알루미늄 기지 내에 고용된 칼슘 및 고용된 실리콘 중 어느 하나 이상을 더 포함하는, 알루미늄 합금.
  24. 제22항에 있어서,
    상기 알루미늄 기지는 마그네슘이 고용된 것이며,
    상기 화합물은 알루미늄-칼슘 화합물, 마그네슘-칼슘 화합물 및 마그네슘-알루미늄-칼슘 화합물, 마그네슘-실리콘 화합물 및 칼슘-실리콘 화합물 중에서 선택되는 어느 하나 이상인, 알루미늄 합금.
  25. 제24항에 있어서,
    상기 알루미늄-칼슘 화합물은 Al4Ca 또는 Al2Ca, 마그네슘-칼슘 화합물은 Mg2Ca, 알루미늄-마그네슘-칼슘 화합물은 (Mg,Al)2Ca, 상기 마그네슘-실리콘 화합물 은 Mg2Si, 상기 칼슘-실리콘 화합물은 CaSi, CaSi2, Ca2Si 중 어느 하나 이상을 포함하는, 알루미늄 합금.
  26. 제22항에 있어서,
    상기 알루미늄 기지에는 분해되지 않은 칼슘계 첨가제 및 실리콘계 첨가제 중 어느 하나 이상이 더 포함되어 있는, 알루미늄 합금.
PCT/KR2013/003414 2012-04-20 2013-04-22 알루미늄 합금 및 이의 제조 방법 WO2013157903A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0041427 2012-04-20
KR1020120041427A KR101434262B1 (ko) 2012-04-20 2012-04-20 알루미늄 합금 및 이의 제조 방법
KR1020120041428A KR101434263B1 (ko) 2012-04-20 2012-04-20 알루미늄 합금 및 이의 제조 방법
KR10-2012-0041428 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157903A1 true WO2013157903A1 (ko) 2013-10-24

Family

ID=49383772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003414 WO2013157903A1 (ko) 2012-04-20 2013-04-22 알루미늄 합금 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2013157903A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099487A (zh) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 硅钙合金的制备方法
CN113373319A (zh) * 2021-04-22 2021-09-10 福建麦特新铝业科技有限公司 一种铝及铝熔体绿色除碱金属的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145865A (ja) * 1992-11-10 1994-05-27 Nippon Light Metal Co Ltd Ca系助剤を併用する初晶Siの微細化
JPH06299263A (ja) * 1993-04-12 1994-10-25 Kobe Steel Ltd AlまたはAl合金溶湯からの除滓法
US20050011591A1 (en) * 2002-06-13 2005-01-20 Murty Gollapudi S. Metal matrix composites with intermettalic reinforcements
JP2011104655A (ja) * 2009-11-20 2011-06-02 Korea Inst Of Industrial Technology アルミニウム合金及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145865A (ja) * 1992-11-10 1994-05-27 Nippon Light Metal Co Ltd Ca系助剤を併用する初晶Siの微細化
JPH06299263A (ja) * 1993-04-12 1994-10-25 Kobe Steel Ltd AlまたはAl合金溶湯からの除滓法
US20050011591A1 (en) * 2002-06-13 2005-01-20 Murty Gollapudi S. Metal matrix composites with intermettalic reinforcements
JP2011104655A (ja) * 2009-11-20 2011-06-02 Korea Inst Of Industrial Technology アルミニウム合金及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099487A (zh) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 硅钙合金的制备方法
CN104099487B (zh) * 2014-07-29 2016-04-27 攀钢集团攀枝花钢铁研究院有限公司 硅钙合金的制备方法
CN113373319A (zh) * 2021-04-22 2021-09-10 福建麦特新铝业科技有限公司 一种铝及铝熔体绿色除碱金属的方法

Similar Documents

Publication Publication Date Title
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
WO2011122784A2 (en) Magnesium alloy for room temperature and manufacturing method thereof
WO2012161460A2 (ko) 알루미늄 합금 및 그 제조방법
WO2011062447A2 (ko) 알루미늄 합금 및 이의 제조 방법
WO2012161463A2 (ko) 합금제조방법 및 이에 의해 제조된 합금
WO2012161484A2 (ko) 실리콘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법
WO2017111334A1 (ko) 질화알루미늄 및 질화알루미늄기 복합상 물질의 합성 방법
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2011062448A2 (ko) 알루미늄 합금 및 이의 제조 방법
KR101199912B1 (ko) 알루미늄 합금의 제조 방법
WO2012161461A2 (ko) 알루미늄 합금 및 그 제조방법
WO2012053813A2 (ko) 내산화성, 내부식성 또는 내피로성이 개선된 알루미늄 합금 및 상기 알루미늄 합금을 이용하여 제조한 다이캐스팅재 및 압출재
WO2013157903A1 (ko) 알루미늄 합금 및 이의 제조 방법
WO2012128506A2 (ko) 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
WO2012161459A2 (ko) 알루미늄 합금 및 그 제조방법
KR101434262B1 (ko) 알루미늄 합금 및 이의 제조 방법
CN112143951A (zh) 一种高塑性阻燃压铸镁合金及制备方法
WO2014077653A1 (ko) 아연합금 및 이의 제조방법
WO2012161485A2 (ko) 실리콘화합물과 칼슘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법
WO2012161397A1 (ko) 알루미늄 용접용 용가재 및 그 제조방법
WO2013015641A2 (ko) 철-망간 전율고용체를 포함하는 알루미늄 합금 및 그 제조방법
WO2015186959A1 (ko) 복합소재 및 이의 제조 방법
KR101434263B1 (ko) 알루미늄 합금 및 이의 제조 방법
WO2016089064A1 (ko) 칼슘 와이어를 사용한 구리합금 스크랩으로부터 납 제거 방법
CN112281007B (zh) 一种在铝镁系铝合金熔炼中提高铍回收率的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777976

Country of ref document: EP

Kind code of ref document: A1