WO2012128506A2 - 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료 - Google Patents

알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료 Download PDF

Info

Publication number
WO2012128506A2
WO2012128506A2 PCT/KR2012/001894 KR2012001894W WO2012128506A2 WO 2012128506 A2 WO2012128506 A2 WO 2012128506A2 KR 2012001894 W KR2012001894 W KR 2012001894W WO 2012128506 A2 WO2012128506 A2 WO 2012128506A2
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
titanium
powder
feed material
oxide
Prior art date
Application number
PCT/KR2012/001894
Other languages
English (en)
French (fr)
Other versions
WO2012128506A3 (ko
WO2012128506A9 (ko
Inventor
이정무
김수현
강석봉
조영희
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110024151A external-priority patent/KR101228024B1/ko
Priority claimed from KR1020110027821A external-priority patent/KR101282276B1/ko
Priority claimed from KR1020110092162A external-priority patent/KR101281789B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US14/004,824 priority Critical patent/US9670568B2/en
Publication of WO2012128506A2 publication Critical patent/WO2012128506A2/ko
Publication of WO2012128506A3 publication Critical patent/WO2012128506A3/ko
Publication of WO2012128506A9 publication Critical patent/WO2012128506A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides

Definitions

  • the present invention relates to a method for producing an aluminum matrix composite material and to an aluminum matrix composite material produced by the method by distributing a nonmetallic material such as a ceramic on an aluminum matrix as a reinforcing material (or reinforcing phase) to improve mechanical properties.
  • Aluminum base composite material is a non-metallic material such as ceramics in a base made of pure aluminum or aluminum alloy as a reinforcing material.It is lightweight, has high strength and rigidity, and has excellent wear resistance and high temperature characteristics. It is expected to be used in electric and electronic materials. The mechanical properties of metal base composites are greatly influenced by the type, size, shape, volume fraction, and interfacial properties of matrix / reinforcement materials.
  • Titanium carbide TiC
  • titanium boride TiB 2
  • alumina Al 2 O 3
  • the materials are expected to be able to significantly increase the strength, stiffness, high temperature strength, abrasion resistance, etc. of the materials when they are distributed in the reinforcing phase in the aluminum alloy due to their high hardness and elastic modulus and excellent high temperature properties. For this reason, various attempts have been made to manufacture the materials by a process using a spontaneous reaction.
  • the method of spontaneously generating the reinforcing materials such as titanium carbide, titanium boride, and alumina in the existing aluminum molten metal has been reported to heat the temperature of the aluminum molten metal to 1000 ° C. or more in order to generate a reaction. Keeping the temperature of the aluminum melt as low as possible is advantageous for the production of the material. This is because evaporation of additional elements in the aluminum melt is likely to occur when the temperature of the molten metal is high as well as in terms of the apparatus, and the hydrogen concentration which decreases the characteristics of the aluminum alloy increases.
  • the present invention is to solve the problems of the prior art as described above, and to provide a method for stably producing an aluminum composite material having excellent mechanical properties while maintaining the temperature of the aluminum molten metal at 950 °C or less.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • preparing a precursor mixed with aluminum powder, a feed material of titanium and a feed material of a non-metal element capable of combining with titanium to form a compound Adding the precursor to the molten aluminum; And casting the molten aluminum; wherein at least one of the aluminum powder, the titanium feed material, and the non-metal element feed material has been subjected to plastic working, an aluminum matrix composite material manufacturing method is provided.
  • the feed material of titanium may include titanium oxide powder, and the feed material of the nonmetallic element may include carbon powder.
  • the feed material of titanium may include titanium oxide powder, and the feed material of non-metallic elements may include boron compound powder.
  • the boron compound powder may include boron oxide powder or zirconium boride powder.
  • the feed material of titanium may include titanium powder, and the feed material of the nonmetallic element may include carbon powder.
  • the activating material may be a material causing an exothermic reaction with any one or more of the aluminum powder, the feed material of titanium, and the feed material of nonmetallic elements.
  • the activating material may be an exothermic reaction with aluminum.
  • the activating material may be any one of copper oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide, vanadium oxide, chromium oxide, and tungsten oxide. It may include one.
  • Such activating material may have a range of 0.1% to 40% by weight in the precursor.
  • the activating material may be a material that promotes decomposition of the titanium oxide.
  • the activating material may be a material that promotes decomposition of the titanium oxide to a material causing an exothermic reaction with any one or more of the aluminum powder, a feed material of titanium, and a feed material of a nonmetallic element.
  • the material that promotes decomposition of the titanium oxide may include an alkali metal, an alkaline earth metal or an oxide of the metals, and may include, for example, barium, calcium, strontium, potassium, and an oxide of any one of them.
  • a material that promotes decomposition of the titanium oxide may have a range of 5 wt% or less (greater than 0) in the precursor.
  • the method may further include applying plastic working to any one or more of the aluminum powder, the titanium feed material, and the non-metal element feed material.
  • the precursor may include a pellet prepared by molding by mechanical press or crushed pellet.
  • the temperature of the aluminum molten metal may have a range of less than or equal to 950 °C above the melting point of aluminum.
  • the aluminum molten metal may include pure aluminum molten metal or an aluminum alloy molten metal including one or more alloying elements.
  • the alloying elements may include magnesium (Mg), silicon (Si), copper (Cu), manganese (Mn), It may include chromium (Cr), zinc (Zn), nickel (Ni), iron (Fe), tin (Sn) or lithium (Li).
  • the step of melting the aluminum matrix composite material prepared by the above-described manufacturing method to form a molten metal Adding an alloying element to the molten metal; And casting the molten metal.
  • the aluminum base And alumina and titanium compound particles distributed on the aluminum matrix, wherein the alumina and titanium compound particles are aluminum powder, a feed material of titanium, and a feed material of a nonmetal element capable of combining with titanium to form the titanium compound.
  • an aluminum matrix composite wherein the activating material is formed from a mixed precursor.
  • the aluminum base And alumina and titanium compound particles distributed on the aluminum matrix, wherein the alumina and titanium compound particles are aluminum powder, a feed material of titanium, and a non-metal element feed material capable of combining with titanium to form the titanium compound.
  • alumina and titanium compound particles are aluminum powder, a feed material of titanium, and a non-metal element feed material capable of combining with titanium to form the titanium compound.
  • an aluminum matrix composite material formed from a mixed precursor, wherein at least one of the aluminum powder, the titanium feed material and the non-metal element feed material is subjected to plastic working.
  • the titanium compound particles may be titanium carbide particles
  • the titanium feed material may include titanium oxide powder
  • the nonmetal element feed material may include carbon powder
  • the titanium compound particles may include titanium boride, the titanium feed material may include titanium oxide powder, and the nonmetal element feed material may include boron compound powder.
  • the titanium compound particles may be titanium carbide particles
  • the titanium feed material may include titanium powder
  • the nonmetal element feed material may include carbon powder
  • the method for producing an aluminum matrix composite material is capable of reaction synthesis at a lower melt temperature than the conventional production method, and the reaction may be accelerated to shorten the manufacturing process time.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a graph showing a result of calculating the adiabatic temperature due to heat generated by the reactions of Schemes 1 and 2.
  • FIG. 1 is a graph showing a result of calculating the adiabatic temperature due to heat generated by the reactions of Schemes 1 and 2.
  • Figure 2 is a graph showing the result of calculating the adiabatic temperature due to heat generated by the reactions of Schemes 4 and 5.
  • FIG. 3 is a graph showing the result of calculating the adiabatic temperature due to heat generated by the reaction of Scheme 6.
  • FIG. 4 is a graph showing a result of calculating a change in adiabatic temperature after adding 7 to 8% by weight of copper oxide to the reaction of Scheme 6.
  • FIG. 4 is a graph showing a result of calculating a change in adiabatic temperature after adding 7 to 8% by weight of copper oxide to the reaction of Scheme 6.
  • Figure 6 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Experimental Example 1 of the present invention.
  • Figure 7 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Comparative Example 1 of the present invention.
  • Figure 9 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Experimental Example 8 of the present invention.
  • Figure 10 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Comparative Example 2 of the present invention.
  • Figure 13 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Experimental Example 17 of the present invention.
  • Figure 14 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Experimental Example 17 of the present invention.
  • Figure 15 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Comparative Example 17 of the present invention.
  • Figure 16 shows the X-ray diffraction analysis of the aluminum matrix composite prepared according to Comparative Example 17 of the present invention.
  • both molten pure aluminum or molten aluminum alloy containing at least one alloying element is referred to as aluminum molten metal.
  • a precursor is first provided for forming a reinforcement to be distributed in an aluminum matrix.
  • the precursor refers to a mixture of reactants capable of reacting with each other in the molten aluminum to generate a reinforcing material.
  • the precursor may be a mixture of aluminum powder, a feed material of titanium, and a feed material of a non-metal element capable of forming a compound by combining with titanium and an activating material.
  • the titanium feed material is a material for supplying titanium to form a titanium compound such as titanium carbide and titanium boride formed on the base of the aluminum composite base.
  • the non-metal element supply material is a material for supplying a non-metal element that reacts with titanium supplied from the titanium feed material to form the titanium compound.
  • the activating material is a material for activating the reaction in the precursor, which will be described in more detail later.
  • the titanium feed material may include titanium oxide powder, and the nonmetal element feed material may include carbon powder.
  • alumina and titanium carbide may be formed at the base of the aluminum composite as a reinforcing material.
  • Titanium carbide and alumina are produced between aluminum, titanium oxide and carbon through a reaction as in Scheme 1 below.
  • the reaction is exothermic, and once the reaction starts, the reaction occurs spontaneously.
  • the reaction wave continues as the combustion wave propagates spontaneously by the heat of reaction generated by the self reaction. Therefore, when a precursor consisting of aluminum, titanium oxide and carbon is added to the molten aluminum of high temperature, the reaction of Scheme 1 spontaneously occurs to produce alumina and titanium carbide.
  • the temperature of the molten metal should be maintained above 1000 ° C.
  • the temperature of the molten aluminum is advantageous to keep the temperature of the molten aluminum as low as possible in terms of production of the material. That is, in order to maintain the temperature of the molten metal at a high temperature of 1000 ° C. or more, an additional device for supplying high energy is required. In addition, the alloying element added in the molten metal is likely to evaporate while the molten metal is maintained, and the hydrogen concentration in the molten metal may decrease the aluminum alloy.
  • the precursor in order to reduce the temperature of the aluminum molten metal, may include an activating material for promoting a reaction between the powders.
  • the activating material may be, for example, causing an exothermic reaction with any one or more of the powders forming the precursor.
  • Such an activating material may generate heat of reaction through reaction with any one or more of the powders to supply heat for reaction in addition to the heat of reaction generated by Scheme 1.
  • the activating material may be a material that reacts with aluminum to cause an exothermic reaction, and the material may include any one of copper oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide, vanadium oxide, chromium oxide, and tungsten oxide. have.
  • Figure 1 shows the results of calculating the adiabatic temperature due to heat generated by the reactions of Schemes 1 and 2, respectively.
  • 1A is a heat insulation temperature value of Scheme 1
  • B is a heat insulation temperature value of Scheme 2.
  • the heat insulation temperature according to Scheme 1 is about 2368K, while the heat insulation temperature according to Scheme 2 reaches 3044K. Therefore, the reaction of Scheme 1 may be promoted by the amount of heat generated by Scheme 2, and correspondingly, the minimum temperature of the aluminum molten metal for allowing Scheme 1 to spontaneously react can be reduced.
  • the thermal insulation temperature was 3183K when reacted with aluminum, and 3133K in the case of iron oxide, and the same effect as the copper oxide may be obtained.
  • the activation material it may be a material that promotes the decomposition of the titanium oxide forming the precursor. That is, in the reaction of Scheme 1, titanium oxide is decomposed, and the produced titanium (Ti) is dissolved in aluminum forming the precursor, and then reacted with carbon to produce titanium carbide. Therefore, when promoting the decomposition of titanium oxide, the reaction of Scheme 1 can be promoted.
  • Such activating material may be an element belonging to an alkali metal or alkaline earth metal of the periodic table or an oxide of such an element.
  • an activation material may include barium (Ba), calcium (Ca), strontium (Sr), potassium (K) and oxides thereof.
  • any one or more of the powders constituting the precursor added to the molten aluminum may be subjected to plastic working.
  • each of the powders can be energetically activated.
  • precursors injected into the molten aluminum may be manufactured by mixing the powders subjected to the plastic working process and then molding the powders into pellets.
  • Methods of promoting the reaction of the powders constituting the precursors exemplified as above may be applied in combination of two or more selectively with each other.
  • an activating material for exothermic reaction with aluminum and an activating material for promoting decomposition of titanium oxide may be added together.
  • any one or more of the above activating materials may be mixed with aluminum powder, titanium oxide powder, and carbon powder, and then subjected to plastic processing to prepare a precursor.
  • the composition ratio of the activating material added to improve the thermal insulation temperature through the reaction with aluminum is 0.1% to 40% by weight, preferably 0.5% to 40% by weight, more preferably 1% to 1% by weight in the precursor. 40% by weight, even more preferably 3% to 40% by weight may be added.
  • composition of the activating material is less than 0.1% by weight, in fact, it is difficult to expect the effect of increasing the adiabatic temperature with the addition of the activating material, and therefore at least 0.1% by weight, preferably at least 0.5% by weight, more preferably 1% by weight.
  • the activating material added to promote the decomposition of the titanium oxide may be added at 5 wt% or less (zero seconds) in the precursor. If such a material is added in excess of 5% by weight, it may remain in the aluminum molten metal and adversely affect the viscosity of the molten metal. On the other hand, these elements can also obtain the effect of improving (fine) the process silicon in the composite material based on the aluminum-silicon alloy to which silicon (Si) is added.
  • the titanium feed material may include titanium oxide powder
  • the nonmetallic feed material may include boron compound powder.
  • alumina and titanium boride may be formed as a reinforcing material on the base of the aluminum composite material.
  • a boron compound may be used instead of boron of Scheme 3, and the boron compound may be, for example, boron oxide (B 2 O 3 ) or zirconium boride (ZrB 12 ).
  • boron oxide is used as the boron compound
  • alumina and titanium boride may be formed by Scheme 4 below.
  • reaction wave continues as the combustion wave propagates spontaneously by the heat of reaction generated by the self reaction. Therefore, when a precursor consisting of aluminum, boron oxide and titanium oxide is added to the molten aluminum at high temperature, the reaction of Scheme 3 spontaneously occurs to produce alumina and titanium boride.
  • the precursor may further include an activating material for promoting a reaction between the powders.
  • the activating material may be an exothermic reaction with any one or more of the powders constituting the precursor.
  • the activating material may generate heat of reaction through reaction with any one or more of the above powders to supply heat for reaction in addition to the heat of reaction generated by Scheme 3.
  • the activating material may be a material that reacts with aluminum to cause an exothermic reaction, and the material may include any one of copper oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide, vanadium oxide, chromium oxide, and tungsten oxide. have.
  • 2 shows the results of calculating the adiabatic temperature due to heat generated by the reactions of Schemes 4 and 5, respectively.
  • 2A is a heat insulation temperature value of Scheme 4
  • B is a heat insulation temperature value of Scheme 5.
  • the heat insulation temperature according to Scheme 4 is about 2682K, whereas the heat insulation temperature according to Scheme 5 reaches 3044K. Therefore, the reaction of Scheme 4 may be promoted by the amount of heat generated by Scheme 5, and correspondingly, it is possible to reduce the minimum temperature of the aluminum molten metal so that Scheme 4 reacts spontaneously.
  • 2C is the result of calculating the adiabatic temperature of Scheme 4 when copper oxide is added. Referring to this, it can be seen that the adiabatic temperature increases to 2833K. This increase in adiabatic temperature means that the temperature of the molten metal for producing the reaction scheme 4 is reduced by that much.
  • the thermal insulation temperature was 3183K when reacted with aluminum, and 3133K in the case of iron oxide, and the same effect as the copper oxide may be obtained.
  • the activation material it may be a material that promotes the decomposition of the titanium oxide forming the precursor. That is, the reaction of Scheme 4 undergoes a process in which titanium oxide is decomposed, and titanium (Ti) generated therefrom is dissolved in aluminum forming the precursor and then reacted with boron decomposed in boron oxide to form titanium boride. . Therefore, when promoting the decomposition of titanium oxide, the reaction of Scheme 4 can be promoted.
  • Such activating material may be an element belonging to an alkali metal or alkaline earth metal of the periodic table or an oxide of such an element.
  • such activating materials may include barium (Ba), calcium (Ca), strontium (Sr) and potassium (K) and oxides thereof.
  • any one or more of the powders constituting the precursor added to the molten aluminum may be subjected to plastic working.
  • precursors injected into the molten aluminum may be manufactured by mixing the powders subjected to the plastic working process and then molding the powders into pellets.
  • Methods of promoting the reaction of the powders constituting the precursors exemplified as above may be applied in combination of two or more selectively with each other.
  • an activating material for exothermic reaction with aluminum and an activating material for promoting decomposition of titanium oxide may be added together.
  • any one or more of the above activating materials may be mixed together with aluminum powder, boron oxide powder, and titanium oxide powder, and then mechanically endowed with plastic processing to prepare a precursor.
  • the composition ratio of the activating material added to improve the thermal insulation temperature through the reaction with aluminum is 0.1% to 40% by weight, preferably 0.5% to 40% by weight, more preferably 1% to 1% by weight in the precursor. 40% by weight, even more preferably 3% to 40% by weight may be added.
  • composition of the activating material is less than 0.1% by weight, in fact, it is difficult to expect the effect of increasing the adiabatic temperature with the addition of the activating material, and therefore at least 0.1% by weight, preferably at least 0.5% by weight, more preferably 1% by weight.
  • the activating material added to promote the decomposition of the titanium oxide may be added up to 5% by weight in the precursor. If this material is added in excess of 5% by weight, it may remain in the aluminum molten metal and may adversely affect the viscosity of the molten metal. On the other hand, these elements can also obtain the effect of improving (fine) the process silicon in a composite material based on an aluminum-silicon alloy to which silicon (Si) is added.
  • boron oxide B 2 O 3
  • zirconium boride ZrB 12
  • the titanium feed material may include titanium powder, and the nonmetallic feed material may include carbon powder.
  • titanium carbide may be formed as a reinforcing material on the base of the aluminum composite material.
  • titanium carbide is produced through the same reaction as in Scheme 6.
  • an intermediate medium should be generated, and in order to generate such intermediate medium, at least a certain amount of aluminum should be added to the mixed powder.
  • the adiabatic temperature is drastically reduced, which means that the heat of reaction becomes smaller and the reaction becomes slower.
  • the precursor is made of titanium powder, carbon so as not to interfere with the reaction in which titanium carbide is produced. It may further include an activating material for causing an exothermic reaction with at least one of the powder and aluminum powder to promote the reaction.
  • the adiabatic temperature lowered by the aluminum mixed in addition to the reaction of Scheme 6 is compensated by the exothermic reaction of the metal oxide, and the reaction of the Scheme 6 can be spontaneously spontaneously even at a lower temperature of the molten aluminum, thereby promoting the reaction.
  • the remaining amount of the intermetallic compound can be suppressed and the synthesis reaction of titanium carbide can be facilitated.
  • FIG. 4 is a diagram showing the result of calculating the change in the adiabatic temperature after adding 7 to 8% by weight of copper oxide to the reaction of Scheme 6.
  • FIG. 4 is a diagram showing the result of calculating the change in the adiabatic temperature after adding 7 to 8% by weight of copper oxide to the reaction of Scheme 6.
  • the copper oxide may cause an exothermic reaction with the precursor powder including the aluminum powder as an example of the activating material.
  • the activating material may generate heat of reaction through reaction with precursor materials including aluminum to supply heat for reaction in addition to the heat of reaction generated by Scheme 6.
  • the activating material may be a material that reacts with aluminum to cause an exothermic reaction, and may include any one of copper oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide, vanadium oxide, chromium oxide, and tungsten oxide.
  • the composition ratio of the activating material added to improve the thermal insulation temperature through the reaction with aluminum is 0.1% to 40% by weight, preferably 0.5% to 40% by weight, more preferably 1% to 1% by weight in the precursor. 40% by weight, even more preferably 3% to 40% by weight may be added.
  • composition of the activating material is less than 0.1% by weight, in fact, it is difficult to expect the effect of increasing the adiabatic temperature with the addition of the activating material, and therefore at least 0.1% by weight, preferably at least 0.5% by weight, more preferably 1% by weight.
  • any one or more of the powders constituting the precursor added to the molten aluminum may be subjected to plastic working.
  • titanium powder, carbon powder and aluminum powder are put into a device that can be subjected to plastic working, such as a ball mill, and then mechanically plasticized on the above powders for a predetermined time, thereby Each of these can be energized.
  • Methods of promoting the reaction of the powders constituting the precursors exemplified as above may be applied in combination with each other.
  • aluminum powder, titanium powder, and carbon powder are mixed to mechanically apply plastic working, and then an activation material for exothermic reaction with aluminum is added to prepare a precursor, or an activation material for exothermic reaction with aluminum is made of aluminum powder, titanium After mixing together with the powder and carbon powder, the plastic working process may be applied to prepare the precursor.
  • the precursors prepared by adding the activating material or applying plastic processing may be formed into pellets.
  • the pellets may be directly added to the molten aluminum or may be crushed into a predetermined size.
  • An aluminum matrix composite material can be manufactured by injecting such a precursor into an aluminum molten metal and maintaining it for a predetermined time and then casting the precursor. At this time, it is possible to maintain the temperature of the molten metal at a temperature of 950 ° C or lower.
  • the molten aluminum may be prepared by dissolving pure aluminum or adding one or more alloying elements to pure aluminum.
  • Alloy elements that can be added are magnesium (Mg), silicon (Si), copper (Cu), manganese (Mn), chromium (Cr), zinc (Zn), nickel (Ni), iron (Fe), tin (Sn) ) And lithium (Li).
  • the aluminum matrix composite material (first aluminum matrix composite material) prepared by the embodiments of the present invention is redissolved again to form a molten metal, and the aluminum matrix composite material is then cast by adding the aforementioned alloying elements.
  • the first aluminum base composite may include titanium carbide and alumina as a reinforcing phase in a pure aluminum base, and after re-melting, selecting an appropriate alloying element and adding the alloy in consideration of the purpose of the use or alloy design.
  • a second aluminum matrix composite material can be produced that meets the characteristics.
  • Table 1 shows the composition of the precursor used in the preparation of the aluminum matrix composite material in which alumina and titanium carbide were dispersed as a reinforcing material and the temperature of the molten metal maintained during the reaction.
  • Experimental Examples 1, 2, 5 and 6 were prepared by adding copper oxide powder to aluminum powder, titanium oxide powder and carbon powder.
  • Experimental Example 3 further added calcium oxide to the above powders, and Experimental Example 4 further added strontium oxide.
  • Experimental Examples 1 to 4 were formed by cutting pure aluminum ingot and completely dissolving it in a melting furnace.
  • Experimental Examples 5 and 6 formed molten metal using A356 alloy and A6061 alloy, which are commercial aluminum alloys, respectively.
  • a comparative example for comparing with the above experimental examples was prepared by adding a precursor consisting of aluminum powder, titanium oxide powder, and carbon powder to pure aluminum molten metal.
  • Experimental Example 1 to Experimental Example 6 was confirmed that all of the titanium carbide and alumina were produced at a temperature of the molten metal below 900 °C. 5 is a result of observing the microstructure of Experimental Example 1, it could be seen that the fine titanium carbide and alumina particles (black particles) were produced on the substrate, which can be confirmed through the X-ray diffraction analysis of FIG. .
  • Comparative Example 1 even after the precursor was added to the molten metal maintained at 930 ° C., the reaction did not occur even after maintaining for 10 minutes or more. Even after X-ray diffraction analysis, the diffraction peaks of titanium carbide or alumina could not be found (FIG. 7). From this, in the case of Comparative Example 1 it was confirmed that the aluminum composite reinforced with titanium carbide and alumina at the melting temperature of 950 °C or less could not be produced.
  • Table 2 shows the composition of the precursor used in the preparation of the aluminum matrix composite material in which alumina and titanium boride were dispersed as a reinforcing material and the temperature of the molten metal maintained during the reaction.
  • Experimental Examples 7 to 12 were prepared by adding aluminum powder, copper oxide powder, titanium oxide powder and boron oxide powder.
  • Experimental Example 11 added calcium oxide (CaO) to the above powders, and Experimental Example 12 further added strontium oxide (SrO 2 ).
  • the molten aluminum ingot was formed by completely dissolving the molten aluminum ingot in the melting furnace except for Experimental Examples 9 and 10, and Experimental Examples 9 and 10 used commercially available aluminum alloys A356 and A6061, respectively. To form a molten metal.
  • Comparative Example 2 aluminum powder, titanium oxide powder, and boron oxide powder were added as precursors, and copper oxide powder was not added. This was added to a molten metal maintained at a temperature of 930 ° C., but the reaction did not occur even after maintaining for 10 minutes. Even after X-ray diffraction analysis, the diffraction peak of titanium boride or alumina was not found (FIG. 10).
  • the precursors of Experimental Examples 13 and 14 were prepared by adding aluminum powder, copper oxide powder, titanium oxide powder and zirconium boride powder. Referring to Table 2, it could be confirmed that both alumina and titanium boride were produced at a temperature of the melt below 910 ° C. 11 is a result of observing the microstructure of Experimental Example 13, it can be seen that the fine titanium boride particles (gray particles) and alumina particles (black particles) generated on the base, which is the X-ray diffraction analysis of FIG. The results confirmed this.
  • Table 3 shows the composition of the precursor used in the preparation of the aluminum matrix composite material in which alumina and titanium carbide were dispersed as a reinforcing material and the temperature of the molten metal maintained during the reaction.
  • the precursors of Experimental Examples 15 to 20 were prepared by mixing the titanium powder, carbon powder, aluminum powder and copper oxide powder as an activating material in different amounts. Precursors were thoroughly mixed and then pressed into a press to prepare pellets.
  • the molten aluminum was cut to pure aluminum ingot and completely dissolved in a melting furnace, and then maintained at a constant temperature.
  • the molten aluminum was varied from about 810 ° C to 920 ° C.
  • the prepared pellets were added to the molten aluminum molten metal. When the pellets reacted completely, the pellets were stirred into the molten graphite, stirred with a graphite rod, and then cast into a mold mold to prepare a composite material.
  • Comparative Examples 4 to 6 when the copper oxide powder was not added, an incomplete reaction occurred. In the case of Comparative Example 4, although only 12% by weight of aluminum was added to the molten aluminum at 815 ° C, a complete reaction did not occur.
  • FIG. 15 shows the formation of Al 3 Ti, a coarse intermetallic compound (white arrow), in addition to titanium carbide as a result of observing the microstructure of Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 알루미늄 용탕의 온도를 950℃ 이하로 유지하면서 기계적 특성이 우수한 알루미늄 복합재료를 안정적으로 제조하는 방법의 제공을 목적으로 한다. 본 발명의 일 관점에 따르면, 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합된 전구체를 준비하는 단계; 상기 전구체를 알루미늄 용탕에 첨가하는 단계; 및 상기 알루미늄 용탕을 주조하는 단계;를 포함하는, 알루미늄 기지 복합재료 제조방법이 제공된다.

Description

알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
본 발명은 세라믹과 같은 비금속 재료를 알루미늄 기지 상에 강화재(또는 강화상)로 분포시켜 기계적 특성을 향상시키는 알루미늄 기지 복합재료의 제조방법 및 그 방법에 의해 제조된 알루미늄 기지 복합재료에 대한 것이다.
알루미늄 기지 복합재료는 순수 알루미늄 또는 알루미늄 합금으로 이루어진 기지 내에 세라믹 등과 같은 비금속 재료를 강화재로 분포시킨 것으로서, 경량이면서도 강도 및 강성이 높고 내마모성과 고온특성이 우수하기 때문에 수송기기용 구조재료, 기계산업소재, 전기전자재료 등으로의 사용이 기대되고 있다. 금속기지 복합재료의 기계적 특성은 첨가되는 강화재의 종류, 크기, 형상, 부피분율, 기지/강화재의 계면 특성 등에 큰 영향을 받는다. 액상의 기지금속에 세라믹 강화재를 외부에서 주입하여 복합재료를 제조할 경우, 세라믹 강화재와 기지금속간의 낮은 젖음성으로 인하여 세라믹 강화재를 용탕 내에 주입하기가 용이하지 않을 뿐만 아니라, 기지금속과 강화재의 계면에서 원치 않는 계면 반응의 발생이나 기지금속과 강화재의 낮은 계면 결합력으로 인하여 소재의 기계적 특성이 저하되기도 한다. 이러한 문제점들을 극복하기 위하여 최근에는 용탕 내부에서 강화상을 자발적으로 생성시키는 공정에 대한 연구가 활발히 진행 중이다. 용탕에서 자발 반응으로 생성되는 강화상은 열역학적으로 안정하고, 강화상의 계면이 깨끗하기 때문에 기지/강화상의 계면 결합력이 우수하다. 이러한 이유로 자발 반응을 이용하여 제조되는 금속기지 복합재료의 기계적 특성은 외부에서 강화재를 주입하는 공정으로 제조된 복합재료에 비하여 우수한 기계적 특성을 갖는다.
강화재로는 탄화 티타늄(TiC), 붕화 티타늄(TiB2), 알루미나(Al2O3) 등이 이용될 수 있다. 상기 재료들은 경도 및 탄성계수가 크고 고온 특성이 우수하여 알루미늄 합금에 강화상으로 분포하는 경우, 재료의 강도, 강성, 고온 강도, 내마모성 등을 현저히 증가시킬 수 있을 것으로 기대된다. 이런 이유로 지금까지 상기 재료들을 자발 반응을 이용한 공정으로 제조하는 다양한 시도가 이루어져 왔다.
그러나 기존의 알루미늄 용탕에서 상술한 탄화 티타늄, 붕화 티타늄, 알루미나와 같은 강화재를 자발적으로 생성시키는 방법은 반응을 일으키기 위하여 알루미늄 용탕의 온도를 1000℃ 이상으로 가열해야 되는 것으로 보고되고 있다. 알루미늄 용탕의 온도는 가능하면 낮게 유지하는 것이 소재의 제조에 유리하다. 이는 장치적인 측면뿐만 아니라 용탕의 온도가 높으면 알루미늄 용탕 내 첨가 원소의 증발이 발생하기 쉽고, 알루미늄 합금의 특성을 저하시키는 수소 농도가 증가하기 때문이다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하여, 알루미늄 용탕의 온도를 950℃ 이하로 유지하면서 기계적 특성이 우수한 알루미늄 복합재료를 안정적으로 제조하는 방법의 제공을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합된 전구체를 준비하는 단계; 상기 전구체를 알루미늄 용탕에 첨가하는 단계; 및 상기 알루미늄 용탕을 주조하는 단계;를 포함하는, 알루미늄 기지 복합재료 제조방법이 제공된다.
본 발명의 다른 관점에 의하면, 알루미늄 분말, 티타늄의 공급물질 및 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질이 혼합된 전구체를 준비하는 단계; 상기 전구체를 알루미늄 용탕에 첨가하는 단계; 및 상기 알루미늄 용탕을 주조하는 단계;를 포함하며, 상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상은 소성가공을 인가받은 것인, 알루미늄 기지 복합재료 제조방법이 제공된다.
상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다.
상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 붕소 화합물 분말을 포함할 수 있다. 상기 붕소 화합물 분말은 산화 붕소 분말 또는 지르코늄 붕화물 분말을 포함할 수 있다.
상기 티타늄의 공급물질은 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다.
상기 활성화 물질은 상기 알루미늄 분말, 티타늄의 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상과 발열반응을 일으키는 물질일 수 있다.
예를 들어 상기 활성화 물질은 알루미늄과 발열반응을 일으키는 물질일 수 있으며, 예를 들어 상기 활성화 물질은 산화 구리, 산화 코발트, 산화 망간, 산화 니켈, 산화 철, 산화 바나듐, 산화 크롬 및 산화 텅스텐 중 어느 하나를 포함할 수 있다.
이러한 상기 활성화 물질은 상기 전구체 내에서 0.1중량% 내지 40중량%의 범위를 가질 수 있다.
다른 예로서, 상기 활성화 물질은 상기 산화 티타늄의 분해를 촉진 시키는 물질일 수 있다.
또 다른 예로서, 상기 활성화 물질은 상기 알루미늄 분말, 티타늄의 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상과 발열반응을 일으키는 물질에 상기 산화 티타늄의 분해를 촉진 시키는 물질이 더해 진 것일 수 있다.
상기 산화 티타늄의 분해를 촉진 시키는 물질은 알칼리금속, 알칼리토금속 또는 상기 금속들의 산화물을 포함할 수 있으며, 예를 들어 바륨, 칼슘, 스트론튬, 칼륨 및 이들 중 어느 하나의 산화물을 포함할 수 있다.
상기 산화 티타늄의 분해를 촉진 시키는 물질은 상기 전구체 내에서 5중량% 이하(0초과)의 범위를 가질 수 있다.
상술한 활성화 물질을 첨가하는 것에 더하여 상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상에 소성가공을 인가하는 단계를 더 포함할 수 있다.
한편, 상기 전구체는 기계적 가압으로 성형하여 제조한 펠렛 또는 상기 펠렛을 파쇄한 것을 포함할 수 있다.
또한 상기 알루미늄 용탕의 온도는 알루미늄의 융점이상 950℃이하의 범위를 가질 수 있다.
또한 상기 알루미늄 용탕은 순수 알루미늄 용탕 또는 1종 이상의 합금원소를 포함하는 알루미늄 합금 용탕을 포함할 수 있으며, 상기 합금원소는 마그네슘(Mg), 실리콘(Si), 구리(Cu), 망간(Mn), 크롬(Cr), 아연(Zn), 니켈(Ni), 철(Fe), 주석(Sn) 또는 리튬(Li)을 포함할 수 있다.
본 발명의 또 다른 관점에 의하면, 상술한 제조방법에 의해 제조된 알루미늄 기지 복합재료를 용해하여 용탕을 형성하는 단계; 상기 용탕에 합금원소를 첨가하는 단계; 및 상기 용탕을 주조하는 단계를 포함할 수 있다.
본 발명의 또 다른 관점에 의하면, 알루미늄 기지; 및 상기 알루미늄 기지 상에 분포하는 알루미나 및 티타늄 화합물 입자;를 포함하며, 상기 알루미나 및 티타늄 화합물 입자는 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 상기 티타늄 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합된 전구체로부터 형성된 것인, 알루미늄 기지 복합재료가 제공된다.
본 발명의 또 다른 관점에 의하면, 알루미늄 기지; 상기 알루미늄 기지 상에 분포하는 알루미나 및 티타늄 화합물 입자;를 포함하며, 상기 알루미나 및 티타늄 화합물 입자는 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 상기 티타늄 화합물을 형성할 수 있는 비금속원소의 공급물질이 혼합된 전구체로부터 형성된 것이며, 상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상은 소성가공을 인가받은 것인, 알루미늄 기지 복합재료가 제공된다.
상기 티타늄 화합물 입자는 탄화 티타늄 입자이고, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다.
상기 티타늄 화합물 입자는 붕화 티타늄를 포함하고, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 붕소 화합물 분말을 포함할 수 있다.
상기 티타늄 화합물 입자는 탄화 티타늄 입자이고, 상기 티타늄의 공급물질은 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 알루미늄 기지 복합재료의 제조방법은 종래의 제조방법에 비하여 낮은 용탕온도에서 반응합성이 가능하고, 반응이 촉진되어 제조공정 시간을 단축시킬 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 반응식 1 및 2의 반응으로 발생하는 열에 의한 단열온도(adiabatic temperature)를 계산한 결과를 나타낸 그래프이다.
도 2는 반응식 4 및 5의 반응으로 발생하는 열에 의한 단열온도(adiabatic temperature)를 계산한 결과를 나타낸 그래프이다.
도 3은 반응식 6의 반응으로 발생하는 열에 의한 단열온도(adiabatic temperature)를 계산한 결과를 나타낸 그래프이다.
도 4는 반응식 6의 반응에 산화 구리를 7 내지 8중량% 첨가한 후의 단열 온도의 변화를 계산한 결과를 나타낸 그래프이다.
도 5는 본 발명의 실험예 1에 따라 제조된 알루미늄 기지 복합재료의 미세조직을 관찰한 결과이다.
도 6은 본 발명의 실험예 1에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 7은 본 발명의 비교예 1에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 8은 본 발명의 실험예 8에 따라 제조된 알루미늄 기지 복합재료의 미세조직을 관찰한 결과이다.
도 9는 본 발명의 실험예 8에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 10은 본 발명의 비교예 2에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 11은 본 발명의 실험예 13에 따라 제조된 알루미늄 기지 복합재료의 미세조직을 관찰한 결과이다.
도 12는 본 발명의 실험예 13에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 13은 본 발명의 실험예 17에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 14는 본 발명의 실험예 17에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 15는 본 발명의 비교예 17에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
도 16은 본 발명의 비교예 17에 따라 제조된 알루미늄 기지 복합재료의 X-선 회절분석결과를 나타낸 것이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
본 명세서 및 특허청구범위에서는 순수 알루미늄을 용해한 용탕 또는 1종 이상의 합금원소를 포함하는 알루미늄 합금 용탕을 모두 알루미늄 용탕으로 지칭한다.
알루미늄 기지 복합재료를 제조하기 위해, 우선 알루미늄 기지에 분포시킬 강화재를 형성하기 위한 전구체가 제공된다. 여기서 전구체는 알루미늄 용탕 내에서 서로 반응하여 강화재를 생성할 수 있는 반응물질들이 혼합되어 있는 혼합체를 의미한다. 이때 상기 전구체는 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합되어 있는 혼합체 일 수 있다.
상기 티타늄의 공급물질은 알루미늄 복합기지의 기지 상에 형성되는 탄화 티타늄, 붕화 티타늄과 같은 티타늄 화합물을 형성하기 위하여 티타늄을 공급하는 물질이다. 상기 비금속원소의 공급물질은 상기 티타늄의 공급물질로부터 공급되는 티타늄과 반응하여 상기 티타늄 화합물을 형성하는 비금속원소를 공급하는 물질이다. 상기 활성화 물질은 전구체 내에서의 반응을 활성화하기 위한 물질로서, 이에 대해서는 뒤에서 좀 더 자세하게 기술하도록 한다.
본 발명의 제1실시예에 의하면, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다. 이 경우 알루미늄 복합재료의 기지에는 강화재로서 알루미나와 탄화 티타늄이 형성될 수 있다.
알루미늄, 산화 티타늄 및 탄소 간에는 아래의 반응식 1과 같은 반응을 통해 탄화 티타늄과 알루미나가 생성된다.
4Al + 3TiO2 + 3C → 2Al2O3 + 3TiC [반응식 1]
이때 상기 반응은 발열반응이며, 일단 반응이 시작되면 자발적으로 반응이 일어난다. 이러한 자발반응을 이용한 자전연소반응에 의할 경우, 자체 반응에 의해 생성된 반응열에 의해 자발적으로 연소파가 전파되면서 반응이 지속되게 된다. 따라서 알루미늄, 산화 티타늄 및 탄소로 이루어진 전구체를 고온의 알루미늄 용탕에 첨가하는 경우, 반응식 1의 반응이 자발적으로 일어나면서 알루미나와 탄화 티타늄이 생성되게 된다. 이때 반응식 1의 자발반응을 유도하기 위해서는 용탕의 온도를 1000℃ 이상으로 유지하여야 한다.
알루미늄의 주조에 있어서, 알루미늄 용탕의 온도는 가능하면 낮게 유지하는 것이 소재의 제조 측면에서 유리하다. 즉, 용탕의 온도를 1000℃ 이상의 고온으로 유지하기 위해서는 높은 에너지를 공급하기 위한 추가적인 장치가 필요하게 된다. 또한 용탕 내 첨가된 합금원소가 용탕이 유지되는 동안 증발되기 쉬우며, 알루미늄 합금의 특성을 저하시키는 용탕 내 수소 농도가 증가할 수 있다.
본 실시예에서는 알루미늄 용탕의 온도를 감소시키기 위해 상기 전구체에는 상기 분말들 간의 반응을 촉진시키기 위한 활성화 물질이 포함될 수 있다.
여기서 활성화 물질은 일 예로서, 상기 전구체를 이루는 분말들 중 어느 하나 이상과 발열반응을 일으키는 것일 수 있다. 이러한 활성화 물질은 상기 분말들 중 어느 하나 이상과의 반응을 통해 반응열을 생성하여 반응식 1에 의해 발생되는 반응열에 추가적으로 반응을 위한 열량을 공급할 수 있다.
이러한 활성화 물질은 알루미늄과 반응하여 발열반응을 일으키는 물질일 수 있으며, 이러한 물질은 산화 구리, 산화 코발트, 산화 망간, 산화 니켈, 산화 철, 산화 바나듐, 산화 크롬 및 산화 텅스텐 중 어느 하나를 포함할 수 있다.
예를 들어 산화 구리는 반응식 2와 같이 알루미늄과 반응하여 큰 반응열을 생성하게 된다.
2Al + 3CuO → Al2O3 + 3Cu [반응식 2]
도 1에는 각각 반응식 1 및 2의 반응으로 발생하는 열에 의한 단열온도(adiabatic temperature)를 계산한 결과를 나타내었다. 도 1의 A는 반응식 1의 단열온도 값이며, B는 반응식 2의 단열온도 값이다. 도 1의 A 및 B를 참조하면, 반응식 1에 의한 단열온도는 약 2368K임에 비해, 반응식 2에 의한 단열온도는 3044K에 이른다. 따라서 반응식 2에 의해 생성되는 열량에 의해 반응식 1의 반응이 촉진될 수 있으며, 이에 대응하여 반응식 1이 자발적으로 반응하게 하기 위한 알루미늄 용탕의 최소 온도를 감소시킬 수 있게 된다.
도 1의 C에는 산화 구리를 첨가하였을 경우의 반응식 1의 단열온도를 계산한 결과가 나타나 있으며, 이를 참조하면 단열온도가 2833K까지 증가하는 것을 알 수 있다. 이러한 단열온도의 증가는 실제 반응식 1을 일으키기 위한 용탕의 온도가 그만큼 감소된다는 것을 의미한다.
다른 예로서 산화 니켈의 경우에는 알루미늄과의 반응시 단열온도가 3183K, 산화철의 경우에는 3133K로 계산되었으며, 위 산화 구리와 같은 효과를 나타낼 수 있다.
한편, 상기 활성화 물질의 다른 예로서, 상기 전구체를 이루는 산화 티타늄의 분해를 촉진시키는 물질일 수 있다. 즉, 반응식 1의 반응은 산화 티타늄이 분해되고, 이로부터 생성된 생성된 티타늄(Ti)이 상기 전구체를 이루는 알루미늄에 고용된 후 다시 탄소와 반응하여 탄화 티타늄을 생성하는 과정을 거치게 된다. 따라서 산화 티타늄의 분해를 촉진할 경우, 반응식 1의 반응이 촉진 될 수 있다.
이러한 활성화 물질은 주기율표의 알칼리금속 또는 알칼리토금속에 속하는 원소 또는 이러한 원소의 산화물 일 수 있다. 예를 들어, 이러한 활성화 물질로서 바륨(Ba), 칼슘(Ca), 스트론튬(Sr), 칼륨(K) 및 이들의 산화물을 포함할 수 있다.
전구체를 구성하는 분말들 간의 반응을 촉진시키기 위한 또 다른 예로서, 알루미늄 용탕에 첨가되는 전구체를 구성하는 분말들 중 어느 하나 이상은 소성가공을 인가받은 것일 수 있다.
예를 들어 알루미늄 분말, 산화 티타늄 분말 및 탄소 분말을 볼밀(ball-mill) 등과 같은 분말에 소성가공을 인가할 수 있는 장치에 투입한 후, 소정 시간 동안 위 분말들에 기계적으로 소성가공함으로써, 위 분말들 각각을 에너지적으로 활성화 시킬 수 있다. 이와 같이 소성가공을 인가받은 분말들을 혼합 후 펠렛으로 성형함으로써 알루미늄 용탕에 투입되는 전구체를 제조할 수 있다.
이러한 방법에 의할 경우 소성가공에 의해 분말들의 활성화가 이루어짐에 따라, 반응식 1의 반응이 촉진되게 되며, 결과적으로 더 낮은 알루미늄 용탕 온도에서도 반응식 1이 자발적으로 일어날 수 있게 된다.
이상과 같이 예시된 전구체를 구성하는 분말들의 반응을 촉진하는 방법들은 서로 선택적으로 두 가지 이상 조합되어 적용될 수 있음은 물론이다. 예를 들어, 알루미늄과 발열반응하는 활성화 물질 및 산화 티타늄의 분해를 촉진하는 활성화 물질을 같이 첨가할 수 있다. 또는 위 활성화 물질 중 어느 하나 이상을 알루미늄 분말, 산화 티타늄 분말 및 탄소 분말과 같이 혼합 한 후 기계적으로 소성가공을 부여하여 전구체를 제조할 수 있다.
이때 알루미늄과의 반응을 통해 단열온도를 향상시키기 위해 첨가되는 활성화 물질의 조성비는 전구체 내에서 0.1중량% 내지 40중량%, 바람직하게는 0.5중량% 내지 40중량%, 더 바람직하게는 1중량% 내지 40중량%, 더욱 더 바람직하게는 3중량% 내지 40중량%가 첨가될 수 있다.
활성화 물질의 입자 크기가 작을수록 단열온도 상승의 효과를 보기위해 첨가되는 활성화 물질의 조성비가 감소하게 되며, 이는 활성화 물질의 입자 크기가 작을수록 전체 표면적을 증가하기 때문으로 생각된다.
그러나 활성화 물질의 조성이 0.1중량% 미만인 경우에는 사실상 활성화 물질의 첨가에 따른 단열온도 상승의 효과를 기대하기 어려우며, 따라서 최소한 0.1 중량% 이상, 바람직하게는 0.5중량% 이상, 더 바람직하게는 1중량% 이상, 더욱 바람직하게는 3중량% 이상 첨가하여 알루미늄과 완전히 반응하도록 하게 한다
한편, 40중량%을 초과하는 경우에는 알루미늄 용탕의 주조특성 또는 알루미늄 기지의 특성에 영향을 줄 수 있다. 예를 들어 산화 구리의 경우, 알루미늄에 의해 구리(Cu)로 환원되며, 이렇게 환원된 구리가 알루미늄의 용탕에 다량 존재하는 경우 용탕의 주조성을 저하시킬 수 있으며, 제조된 소재를 압연이나 압출등으로 가공할 경우 가공성을 나쁘게 할 수 있다.
산화 티타늄의 분해를 촉진하기 위해 첨가되는 활성화 물질은 전구체 내에서 5중량% 이하(0초가)로 첨가될 수 있다. 이러한 물질이 5중량%를 초과하여 첨가되는 경우, 알루미늄 용탕 내에서 잔존하며 용탕의 점도를 증가시키는 악영향을 줄 수 있다. 한편, 이러한 원소들은 실리콘(Si)이 첨가된 알루미늄-실리콘 합금을 기지로 하는 복합재료에서는 공정상(共晶相) 실리콘을 개량(미세화)하는 효과도 얻을 수 있다.
본 발명에 따른 제2실시예로서, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 붕소 화합물 분말을 포함할 수 있다. 이 경우 알루미늄 복합재료의 기지에는 강화재로서 알루미나와 붕화 티타늄이 형성될 수 있다.
알루미나와 붕화 티타늄을 형성하기 위하여 알루미늄(Al) 분말, 붕소(B) 분말 및 산화 티타늄(TiO2) 간에는 아래의 반응식 3과 같은 반응이 일어나게 된다.
4Al + 3TiO2 + 6B → 2Al2O3 + 3TiB2 [반응식 3]
이때 반응식 3의 붕소 대신 붕소 화합물을 이용할 수 있으며, 이러한 붕소 화합물은 예를 들어, 산화 붕소(B2O3) 또는 지르코늄 붕화물 (ZrB12)일 수 있다. 붕소 화합물로서 산화 붕소를 사용하는 경우, 아래 반응식 4에 의해 알루미나 및 붕화 티타늄이 형성될 수 있다.
10Al + 3TiO2 + 3B2O3 → 5Al2O3 + 3TiB2 [반응식 4]
이때 상기 반응은 발열반응이며, 일단 반응이 시작되면 자발적으로 반응이 일어난다. 이러한 자발반응을 이용한 자전연소반응에 의할 경우, 자체 반응에 의해 생성된 반응열에 의해 자발적으로 연소파가 전파되면서 반응이 지속되게 된다. 따라서 알루미늄, 산화 붕소 및 산화 티타늄으로 이루어진 전구체를 고온의 알루미늄 용탕에 첨가하는 경우, 반응식 3의 반응이 자발적으로 일어나면서 알루미나와 붕화 티타늄이 생성되게 된다.
위 반응식 3도 가능한 낮은 온도로 유지되는 알루미늄 용탕에서 일어나는 것이 바람직하며, 이를 위해 본 발명의 일 실시예에 따르면 상기 전구체에는 상기 분말들 간의 반응을 촉진시키기 위한 활성화 물질을 더 포함할 수 있다. 상기 활성화 물질은 상기 전구체를 구성하는 분말들 중 어느 하나 이상과 발열반응을 일으키는 것일 수 있다. 이러한 활성화 물질은 상기 분말들 중 어느 하나 이상과의 반응을 통해 반응열을 생성하여 반응식 3에 의해 발생되는 반응열에 추가적으로 반응을 위한 열량을 공급할 수 있다.
이러한 활성화 물질은 알루미늄과 반응하여 발열반응을 일으키는 물질일 수 있으며, 이러한 물질은 산화 구리, 산화 코발트, 산화 망간, 산화 니켈, 산화 철, 산화 바나듐, 산화 크롬 및 산화 텅스텐 중 어느 하나를 포함할 수 있다.
예를 들어 산화 구리는 반응식 5과 같이 알루미늄과 반응하여 큰 반응열을 생성하게 된다.
2Al + 3CuO → Al2O3 + 3Cu [반응식 5]
도 2에는 각각 반응식 4 및 5의 반응으로 발생하는 열에 의한 단열온도(adiabatic temperature)를 계산한 결과를 나타내었다. 도 2의 A는 반응식 4의 단열온도 값이며, B는 반응식 5의 단열온도 값이다. 도 2를 참조하면, 반응식 4에 의한 단열온도는 약 2682K임에 비해, 반응식 5에 의한 단열온도는 3044K에 이른다. 따라서 반응식 5에 의해 생성되는 열량에 의해 반응식 4의 반응이 촉진될 수 있으며, 이에 대응하여 반응식 4가 자발적으로 반응하게 하기 위한 알루미늄 용탕의 최소 온도를 감소시킬 수 있게 된다.
도 2의 C에는 산화 구리를 첨가하였을 경우의 반응식 4의 단열온도를 계산한 결과이며, 이를 참조하면 단열온도가 2833K까지 증가하는 것을 알 수 있다. 이러한 단열온도의 증가는 실제 반응식 4를 일으키기 위한 용탕의 온도가 그만큼 감소된다는 것을 의미한다.
다른 예로서 산화 니켈의 경우에는 알루미늄과의 반응시 단열온도가 3183K, 산화철의 경우에는 3133K로 계산되었으며, 위 산화 구리와 같은 효과를 나타낼 수 있다.
한편, 상기 활성화 물질의 다른 예로서, 상기 전구체를 이루는 산화 티타늄의 분해를 촉진시키는 물질일 수 있다. 즉, 반응식 4의 반응은 산화 티타늄이 분해되고, 이로부터 생성된 티타늄(Ti)이 상기 전구체를 이루는 알루미늄에 고용된 후 다시 산화 붕소에서 분해된 붕소와 반응하여 붕화 티타늄을 생성하는 과정을 거치게 된다. 따라서 산화 티타늄의 분해를 촉진할 경우, 반응식 4의 반응이 촉진 될 수 있다.
이러한 활성화 물질은 주기율표의 알칼리금속 또는 알칼리토금속에 속하는 원소 또는 이러한 원소의 산화물 일 수 있다. 예를 들어, 이러한 활성화 물질로서 바륨(Ba), 칼슘(Ca), 스트론튬(Sr) 및 칼륨(K) 및 이들의 산화물을 포함할 수 있다.
전구체를 구성하는 분말들 간의 반응을 촉진시키기 위한 또 다른 예로서, 알루미늄 용탕에 첨가되는 전구체를 구성하는 분말들 중 어느 하나 이상은 소성가공을 인가받은 것일 수 있다.
예를 들어 알루미늄 분말, 산화 붕소 분말 및 산화 티타늄 분말을 볼밀(ball-mill) 등과 같은 분말에 소성가공을 인가할 수 있는 장치에 투입한 후, 소정 시간 동안 위 분말들에 기계적으로 소성가공함으로써, 위 분말들 각각을 에너지적으로 활성화 시킬 수 있다. 이와 같이 소성가공을 인가받은 분말들을 혼합 후 펠렛으로 성형함으로써 알루미늄 용탕에 투입되는 전구체를 제조할 수 있다.
이러한 방법에 의할 경우 소성가공에 의해 분말들의 활성화가 이루어짐에 따라, 반응식 4의 반응이 촉진되게 되며, 결과적으로 더 낮은 알루미늄 용탕 온도에서도 반응식 4가 자발적으로 일어날 수 있게 된다.
이상과 같이 예시된 전구체를 구성하는 분말들의 반응을 촉진하는 방법들은 서로 선택적으로 두 가지 이상 조합되어 적용될 수 있음은 물론이다. 예를 들어, 알루미늄과 발열반응하는 활성화 물질 및 산화 티타늄의 분해를 촉진하는 활성화 물질을 같이 첨가할 수 있다. 또는 위 활성화 물질 중 어느 하나 이상을 알루미늄 분말, 산화 붕소 분말 및 산화 티타늄 분말과 같이 혼합 한 후 기계적으로 소성가공을 부여하여 전구체를 제조할 수 있다.
이때 알루미늄과의 반응을 통해 단열온도를 향상시키기 위해 첨가되는 활성화 물질의 조성비는 전구체 내에서 0.1중량% 내지 40중량%, 바람직하게는 0.5중량% 내지 40중량%, 더 바람직하게는 1중량% 내지 40중량%, 더욱 더 바람직하게는 3중량% 내지 40중량%가 첨가될 수 있다.
활성화 물질의 입자 크기가 작을수록 단열온도 상승의 효과를 보기위해 첨가되는 활성화 물질의 조성비가 감소하게 되며, 이는 활성화 물질의 입자 크기가 작을수록 전체 표면적을 증가하기 때문으로 생각된다.
그러나 활성화 물질의 조성이 0.1중량% 미만인 경우에는 사실상 활성화 물질의 첨가에 따른 단열온도 상승의 효과를 기대하기 어려우며, 따라서 최소한 0.1 중량% 이상, 바람직하게는 0.5중량% 이상, 더 바람직하게는 1중량% 이상, 더욱 바람직하게는 3중량% 이상 첨가하여 알루미늄과 완전히 반응하도록 하게 한다
한편, 40중량%을 초과하는 경우에는 알루미늄 용탕의 주조특성 또는 알루미늄 기지의 특성에 영향을 줄 수 있다. 예를 들어 산화 구리의 경우, 알루미늄에 의해 구리(Cu)로 환원되며, 이렇게 환원된 구리가 알루미늄의 용탕에 다량 존재하는 경우 용탕의 주조성을 저하시킬 수 있으며, 제조된 소재를 압연이나 압출등으로 가공할 경우 가공성을 나쁘게 할 수 있다.
또한 산화 티타늄의 분해를 촉진하기 위해 첨가되는 활성화 물질은 전구체 내에서 5중량% 이하로 첨가될 수 있다. 이러한 물질을 5중량%을 초과하여 첨가되는 경우, 알루미늄 용탕 내에서 잔존하며 용탕의 점도를 증가시키는 악영향을 줄 수 있다. 한편, 이러한 원소들은 실리콘(Si)이 첨가된 알루미늄-실리콘 합금을 기지로 하는 복합재료에서는 공정(共晶) 실리콘을 개량(미세화)하는 효과도 얻을 수 있다.
본 실시예에서는 붕소 화합물로서 산화 붕소(B2O3)를 이용하였으나, 산화붕소 대신 지르코늄 붕화물(ZrB12)을 이용할 수 있다.
본 발명에 따른 제3실시예로서, 상기 티타늄의 공급물질은 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함할 수 있다. 이 경우 알루미늄 복합재료의 기지에는 강화재로서 탄화 티타늄이 형성될 수 있다.
탄소와 티타늄에서는 반응식 6과 같은 반응을 통해 탄화 티타늄이 생성된다.
Ti + C → TiC [반응식 6]
이 반응은 발열반응이며, 일단 반응이 시작되면 자발적으로 반응이 일어난다. 이러한 자발반응을 이용한 자전연소반응에 의할 경우, 자체 반응에 의해 생성된 반응열을 이용하여 외부에서 에너지를 공급하지 않아도 자발적으로 연소파가 전파되면서 반응이 지속되게 된다. 다만 알루미늄 용탕에서 반응식 6의 반응으로 탄화 티타늄이 생성될 때, 티타늄과 탄소는 직접 반응하여 탄화 티타늄이 생성되는 것이 아니라 중간 매개체로 알루미늄이 필요하다. 즉, 아래 반응식 7과 반응식 8과 같은 중간 매개물인 Al3Ti와 Al4C3가 생성되고, 이들의 반응으로 인해 최종적으로 반응식 9와 같이 탄화 티타늄이 생성된다.
3Al + Ti = Al3Ti [반응식 7]
4Al + 3C = Al4C3 [반응식 8]
3Al3Ti + Al4C3 = 3TiC + 13Al [반응식 9]
따라서 알루미늄 분말, 티타늄 분말 및 탄소 분말로 이루어진 전구체를 고온의 알루미늄 용탕에 첨가하는 경우, 반응식6의 반응이 자발적으로 일어나면서 탄화 티타늄이 생성되게 된다.
도 3은 탄화 티타늄의 단열온도를 계산한 결과로, 펠렛(pellet)내 첨가된 알루미늄 분말의 중량%(wt.%)에 따른 반응식 6의 단열온도(adiabatic temperature, K) 의 변화를 나타낸 것이다.
도 3을 참조하여 설명하면 위에서 설명한 것과 같이 반응식 6의 반응을 통해 알루미늄 용탕에서 탄화 티타늄을 생성시키기 위해서는 중간 매개물을 생성해야 하고, 이러한 중간 매개물의 생성을 위해서는 일정량 이상의 알루미늄을 혼합분말에 첨가해야 한다. 하지만, 알루미늄을 첨가하게 되면 단열온도가 급격히 감소하게 되는데, 이는 반응열이 작아지고, 반응이 느려지게 되는 것을 의미한다.
단열온도가 감소하면 알루미늄 용탕에서 반응식 6의 반응이 완전하게 일어나지 않게 되어 알루미늄 기지에는 Al3Ti 같은 금속간화합물이 생성될 수 있다. 이러한 금속간화합물은 매우 경도가 높지만 취성 또한 높아서 미세조직 중에 이러한 상들이 다량 존재하게 되면 기계적 특성을 저하시키게 되는 문제가 발생한다. 또한, Al3Ti가 용탕에 존재하면 용탕의 점도를 증가시켜 유동성을 저하시키게 되어 주조성을 저하시키는 문제가 있다. 따라서 이와 같이 반응식 6의 자발반응을 유도하기 위해서는 용탕의 온도를 1000℃ 이상으로 유지하여야 한다.
상술한 바와 같이 알루미늄의 주조에 있어서, 알루미늄 용탕의 온도는 가능하면 낮게 유지하는 것이 유리하므로 알루미늄 용탕의 온도는 감소시키면서, 탄화 티타늄이 생성되는 반응에는 지장을 주지 않기 위해 상기 전구체는 티타늄 분말, 탄소 분말 및 알루미늄 분말 중 어느 하나 이상과 발열반응을 일으켜 반응을 촉진시키기 위한 활성화 물질을 더 포함할 수 있다.
예를 들어 산화 구리(CuO)의 경우 알루미늄과 아래 반응식 10과 같은 반응이 일어난다.
2Al + 3CuO → Al2O3 + 3Cu [반응식 10]
반응식 10은 발열반응이므로 이러한 반응에 의해 생성된 열로 인하여 단열온도를 증가시킬 수 있다. 따라서 알루미늄의 추가로 인해 발생하는 단열온도의 저하를 막아줄 수 있고, 더 낮은 온도에서 완전한 반응이 이루어 질 수 있도록 도와줄 수 있다.
즉, 반응식 6의 반응에 추가로 혼합되는 알루미늄으로 인하여 낮아지는 단열온도를 금속산화물의 발열반응으로 보상해주고, 더 낮은 알루미늄 용탕온도에서도 반응식 6의 반응이 자발적으로 일어날 수 있게 하며, 반응을 촉진시켜 금속간화합물의 잔량을 억제하고, 탄화 티타늄의 합성반응을 원활하게 해 줄 수 있다.
도 4는 반응식 6의 반응에 산화 구리를 7 내지 8중량% 첨가한 후의 단열 온도의 변화를 계산한 결과를 보여주는 그림이다.
도 3 및 도 4를 참조하면, 알루미늄 분말의 첨가 함량이 20중량% 이상인 경우에는 반응식 6의 반응만으로 이루어지는 단열온도에 비하여 단열온도가 증가함을 확인할 수 있었다. 반응식 6의 경우 알루미늄 분말을 20중량% 첨가하게 되면 단열온도가 2750K였으나, 산화 구리를 더 첨가할 경우 동일한 알루미늄 분량 함량에서 단열온도가 2793K로 증가하는 것을 알 수 있다. 알루미늄 분말의 함량이 30중량%인 경우에는 산화 구리를 첨가하지 않은 경우 및 첨가한 경우에 각각 단열온도가 2148K 및 2495K로, 산화 구리의 첨가에 따라 단열온도가 약 350K정도 증가한 것을 확인할 수 있었다. 따라서 산화 구리의 첨가로 탄화 티타늄의 합성 반응이 촉진될 수 있으며, 이에 대응하여 반응식 6이 자발적으로 반응하게 하기 위한 알루미늄 용탕의 최소 온도를 감소시킬 수 있게 된다.
여기서 산화 구리는 활성화 물질의 일 예로서, 알루미늄 분말을 포함한 전구체 분말과 발열반응을 일으킬 수 있다. 이러한 활성화 물질은 알루미늄을 포함한 전구체 물질들과의 반응을 통해 반응열을 생성하여 반응식 6에 의해 발생되는 반응열에 추가적으로 반응을 위한 열량을 공급할 수 있다.
이러한 활성화 물질은 알루미늄과 반응하여 발열반응을 일으키는 물질일 수 있으며, 산화 구리, 산화 코발트, 산화 망간, 산화 니켈, 산화 철, 산화 바나듐, 산화 크롬 및 산화 텅스텐 중 어느 하나를 포함할 수 있다.
이때 알루미늄과의 반응을 통해 단열온도를 향상시키기 위해 첨가되는 활성화 물질의 조성비는 전구체 내에서 0.1중량% 내지 40중량%, 바람직하게는 0.5중량% 내지 40중량%, 더 바람직하게는 1중량% 내지 40중량%, 더욱 더 바람직하게는 3중량% 내지 40중량%가 첨가될 수 있다.
활성화 물질의 입자 크기가 작을수록 단열온도 상승의 효과를 보기위해 첨가되는 활성화 물질의 조성비가 감소하게 되며, 이는 활성화 물질의 입자 크기가 작을수록 전체 표면적을 증가하기 때문으로 생각된다.
그러나 활성화 물질의 조성이 0.1중량% 미만인 경우에는 사실상 활성화 물질의 첨가에 따른 단열온도 상승의 효과를 기대하기 어려우며, 따라서 최소한 0.1 중량% 이상, 바람직하게는 0.5중량% 이상, 더 바람직하게는 1중량% 이상, 더욱 바람직하게는 3중량% 이상 첨가하여 알루미늄과 완전히 반응하도록 하게 한다
한편, 40중량%을 초과하는 경우에는 알루미늄 용탕의 주조특성 또는 알루미늄 기지의 특성에 영향을 줄 수 있다. 예를 들어 산화 구리의 경우, 알루미늄에 의해 구리(Cu)로 환원되며, 이렇게 환원된 구리가 알루미늄의 용탕에 다량 존재하는 경우 용탕의 주조성을 저하시킬 수 있으며, 제조된 소재를 압연이나 압출등으로 가공할 경우 가공성을 나쁘게 할 수 있다.
전구체를 구성하는 분말들 간의 반응을 촉진시키기 위한 또 다른 예로서, 알루미늄 용탕에 첨가되는 전구체를 구성하는 분말들 중 어느 하나 이상은 소성가공을 인가받은 것일 수 있다.
예를 들어 티타늄 분말, 탄소 분말 및 알루미늄 분말을 볼밀(ball-mill) 등과 같은 분말을 소성가공을 인가할 수 있는 장치에 투입한 후, 소정 시간 동안 위 분말들에 기계적으로 소성가공함으로써, 위 분말들 각각을 에너지적으로 활성화 시킬 수 있다.
이러한 방법에 의할 경우 소성가공에 의해 분말들의 활성화가 이루어짐에 따라, 반응식 6의 반응이 촉진되게 되며, 결과적으로 더 낮은 알루미늄 용탕 온도에서도 반응식 6이 자발적으로 일어날 수 있게 된다.
이상과 같이 예시된 전구체를 구성하는 분말들의 반응을 촉진하는 방법들은 서로 조합되어 적용될 수 있음은 물론이다. 예를 들어, 알루미늄 분말, 티타늄 분말 및 탄소 분말을 혼합하여 기계적으로 소성가공을 인가한 후 알루미늄과 발열반응하는 활성화 물질도 첨가하여 전구체를 제조하거나 혹은 알루미늄과 발열반응하는 활성화 물질을 알루미늄 분말, 티타늄 분말 및 탄소 분말과 같이 혼합 한 후 기계적으로 소성가공을 부여하여 전구체를 제조할 수 있다.
상술한 제1 내지 제3실시예에서와 같이 활성화 물질을 첨가하거나 또는 소성가공을 부여하여 제조한 전구체들을 펠렛으로 형성할 수 있다. 이때 펠렛은 직접 알루미늄 용탕에 투입되거나 혹은 소정의 크기로 파쇄되어 투입될 수 있다. 이러한 전구체를 알루미늄 용탕 내에 투입하고 소정 시간 유지한 후 이를 주조함으로써 알루미늄 기지 복합재료를 제조할 수 있다. 이때 용탕의 온도가 950℃ 이하의 온도로 유지하는 것이 가능하다.
한편 상술한 제1 내지 제3실시예에서 알루미늄 용탕은 순수한 알루미늄을 용해하거나 순수한 알루미늄에 합금원소를 1종 이상 첨가하여 제조할 수 있다. 첨가될 수 있는 합금원소는 마그네슘(Mg), 실리콘(Si), 구리(Cu), 망간(Mn), 크롬(Cr), 아연(Zn), 니켈(Ni), 철(Fe), 주석(Sn) 및 리튬(Li)을 포함한다.
한편 이와 같이 본 발명의 실시예들에 의해 제조된 알루미늄 기지 복합재료(제1알루미늄 기지 복합재료)를 다시 재용해하여 용탕을 형성한 후, 상술한 합금원소들을 첨가한 후 주조하여 알루미늄 기지 복합재료(제2알루미늄 기지 복합재료)를 제조할 수 있다. 예를 들어 제1알루미늄 기지 복합재료는 순수 알루미늄 기지에 탄화 티타늄과 알루미나를 강화상으로 포함하는 것일 수 있으며, 이를 재용해한 후 용도 또는 합금설계의 목적을 고려하여 적절한 합금원소를 선택하여 첨가함으로써 특성에 맞는 제2알루미늄 기지 복합재료를 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위해서 실험예들을 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다.
표 1에는 알루미나 및 탄화 티타늄이 강화재로 분산된 알루미늄 기지 복합재료의 제조에 이용된 전구체의 조성 및 반응시 유지한 용탕의 온도가 나타나 있다.
표 1
시편 용탕 펠렛의 조성 (중량%) 용탕온도(℃) 반응여부
CuO TiO2 C CaO SrO2 Al
실험예 1 순수 알루미늄 31.3 31.7 4.8 0 0 bal. 850 반응
실험예 2 순수 알루미늄 22.2 33.7 5.0 0 0 bal. 900 반응
실험예 3 순수 알루미늄 21.1 42.7 6.4 1.0 0 bal. 900 반응
실험예 4 순수 알루미늄 21.1 42.7 6.4 0 1.1 bal. 900 반응
실험예 5 A356 31.3 31.7 4.8 0 0 bal. 880 반응
실험예 6 A6061 31.3 31.7 4.8 0 0 bal. 880 반응
비교예 1 순수 알루미늄 0 58.4 8.8 0 0 bal. 930 미반응
실험예 1, 2, 5 및 6의 전구체는 알루미늄 분말, 산화 티타늄 분말 및 탄소 분말에 산화 구리 분말을 첨가하여 제조하였다. 실험예 3은 위 분말들에 산화 칼슘을 추가로 첨가하였으며, 실험예 4는 스트론튬 산화물을 추가로 첨가하였다.
또한 실험예 1 내지 4의 용탕은 순수 알루미늄 주괴를 절단하여 용해로에서 완전히 용해하여 형성하였으며, 실험예 5 및 6은 각각 상용 알루미늄 합금인 A356 합금 및 A6061 합금을 이용하여 용탕을 형성하였다.
한편 위 실험예들과 비교하기 위한 비교예는 알루미늄 분말, 산화 티타늄 분말 및 탄소 분말로 이루어진 전구체를 순수 알루미늄 용탕에 투입하여 제조한 것이었다.
위 실험예와 비교예는 혼합된 분말을 프레스로 가압성형하여 제조한 펠렛 형태의 전구체를 용탕에 투입하고, 투입된 펠렛이 완전히 반응하여 소진된 것을 확인한 다음, 흑연봉으로 교반한 후 금형몰드에 주조하여 제조하였다.
표 1을 참조하면, 실험예 1 내지 실험예 6은 모두 용탕의 온도가 900℃ 이하의 온도에서 모두 탄화 티타늄 및 알루미나가 생성되었음을 확인할 수 있었다. 도 5는 실험예 1의 미세조직을 관찰한 결과로서, 미세한 탄화 티타늄 및 알루미나 입자(흑색 입자)가 기지에 생성된 것을 볼 수 있었으며, 이는 도 6의 X-선 회절 분석 결과를 통해 확인할 수 있었다.
이에 비해 비교예 1에서는 전구체를 930℃로 유지되는 용탕에 투입한 후 10분 이상 유지하여도 반응이 일어나지 않았다. 이를 주조한 후 X-선 회절 분석한 경우에도 탄화 티타늄 또는 알루미나의 회절 피크를 발견할 수 없었다(도 7). 이로부터 비교예 1의 경우에는 950℃이하의 용탕온도에서 탄화 티타늄 및 알루미나로 강화된 알루미늄 복합재료를 제조하지 못함을 확인하였다.
표 2에는 알루미나 및 붕화 티타늄이 강화재로 분산된 알루미늄 기지 복합재료의 제조에 이용된 전구체의 조성 및 반응시 유지한 용탕의 온도가 나타나 있다.
표 2
시편 기지합금 펠렛의 조성 (wt.%) 용탕온도(℃) 반응여부
CuO TiO2 B2O3 ZrB12 CaO SrO2 Al
실험예 7 순수 알루미늄 20.7 20.9 18.3 - - - Bal. 880 반응
실험예 8 순수 알루미늄 11.8 24.0 21.0 - - - Bal. 900 반응
실험예 9 A356 11.8 24.0 21.0 - - - Bal. 890 반응
실험예 10 A6061 11.8 24.0 21.0 - - - Bal. 895 반응
실험예 11 순수 알루미늄 6.3 25.7 22.5 - - - Bal. 900 반응
실험예 12 순수 알루미늄 6.3 25.7 22.5 - 0.6 - Bal. 900 반응
실험예 13 순수 알루미늄 17.6 35.7 - 16.5 - 0.6 Bal. 900 반응
실험예 14 순수 알루미늄 9.9 40.1 - 18.5 - - Bal. 910 반응
비교예 2 순수 알루미늄 - 28.1 24.6 - - - Bal. 930 미반응
비교예 3 순수 알루미늄 - 45.6 - 21.0 - - Bal. 930 미반응
실험예 7 내지 12의 전구체는 알루미늄 분말, 산화 구리 분말, 산화 티타늄 분말 및 산화 붕소 분말을 첨가하여 제조하였다. 실험예 11는 위 분말들에 산화 칼슘을(CaO) 추가로 첨가하였으며, 실험예 12는 스트론튬 산화물(SrO2)을 추가로 첨가하였다.
위 실험예와 비교예에서 실험예 9와 10을 제외한 나머지의 용탕에는 순수 알루미늄 주괴를 절단하여 용해로에서 완전히 용해하여 형성하였으며, 실험예 9 및 10은 각각 상용 알루미늄 합금인 A356 합금 및 A6061 합금을 이용하여 용탕을 형성하였다.
위 실험예와 비교예는 혼합된 분말을 프레스로 가압성형하여 제조한 펠렛 형태의 전구체를 용탕에 투입하고, 투입된 펠렛이 완전히 반응하여 소진된 것을 확인한 다음, 흑연봉으로 교반한 후 금형몰드에 주조하여 제조하였다.
표 2를 참조하면, 실험예 7 내지 14는 모두 용탕의 온도가 910℃ 이하의 온도에서 모두 알루미나 및 붕화 티타늄이 생성되었음을 확인할 수 있었다. 도 8은 실험예 8의 미세조직을 관찰한 결과로서, 미세한 붕화 티타늄(회색 입자) 및 알루미나 입자(흑색 입자)가 기지에 생성된 것을 볼 수 있었으며, 이는 도 9의 X-선 회절 분석 결과를 통해 확인할 수 있었다.
이에 비해 비교예 2는 전구체로 알루미늄 분말, 산화 티타늄 분말 및 산화 붕소 분말을 첨가하였고, 산화 구리 분말은 첨가하지 않고 제조하였다. 이를 930℃의 온도로 유지되는 용탕에 투입하였는데, 투입 후 10분을 유지하여도 반응이 일어나지 않았다. 이를 주조한 후 X-선 회절 분석한 경우에도 붕화 티타늄 또는 알루미나의 회절 피크를 발견할 수 없었다(도 10).
실험예 13, 14의 전구체는 알루미늄 분말, 산화 구리 분말, 산화 티타늄 분말 및 지르코늄 붕화물 분말을 첨가하여 제조하였다. 표 2을 참조하면 용탕의 온도가 910℃ 이하의 온도에서 모두 알루미나 및 붕화 티타늄이 생성되었음을 확인할 수 있었다. 도 11은 실험예 13의 미세조직을 관찰한 결과로서, 미세한 붕화 티타늄 입자(회색 입자) 및 알루미나 입자(검은색 입자)가 기지에 생성된 것을 볼 수 있었으며, 이는 도 12의 X-선 회절 분석 결과를 통해 확인할 수 있었다.
한편, 비교에 3의 경우에도 비교예 2와 같이 930℃로 유지되는 용탕에 투입하고 10분을 유지하여도 반응이 일어나지 않았으며, 이로 인해 붕화 티타늄 및 알루미나로 강화된 알루미늄 기지 복합재료를 제조하지 못함을 확인하였다.
표 3에는 알루미나 및 탄화 티타늄이 강화재로 분산된 알루미늄 기지 복합재료의 제조에 이용된 전구체의 조성 및 반응시 유지한 용탕의 온도가 나타나 있다.
실험예 15 내지 실험예 20의 전구체는 티타늄 분말, 탄소 분말, 알루미늄 분말 및 활성화 물질로서 산화 구리 분말의 첨가량을 달리하여 혼합시켜 제조 하였다. 전구체는 완전히 혼합한 후 프레스로 가압성형하여 펠렛으로 제조하였다.
알루미늄 용탕은 실험예 20을 제외하고, 순 알루미늄 주괴를 절단하여 용해로에서 완전히 용해한 후 일정한 온도로 유지하였는데, 이때 용탕의 온도를 약 810℃ 내지 920℃로 달리하였다. 용해된 알루미늄 용탕에 제조된 펠렛을 투입하고, 투입된 펠렛이 완전히 반응하여 용탕속으로 스며들면 흑연봉으로 교반을 시키고, 이후 금형몰드에 주조하여 복합재료를 제조하였다.
표 3
시편 용탕 펠렛의 조성(중량%) 용탕온도(℃) 반응여부
CuO Al Ti + C
실험예 15 순수 알루미늄 7.2 37.5 잔량, Ti:C 비율은원자비로 1:1 916 완전 반응
실험예 16 순수 알루미늄 9.5 19.2 잔량, Ti:C 비율은원자비로 1:1 815 완전 반응
실험예 17 순수 알루미늄 15.4 26.3 잔량, Ti:C 비율은원자비로 1:1 815 완전 반응
실험예 18 순수 알루미늄 8.4 28.4 잔량, Ti:C 비율은원자비로 1:1 816 완전 반응
실험예 19 순수 알루미늄 3.1 20.6 잔량, Ti:C 비율은원자비로 1:1 814 완전 반응
실험예 20 A6061 7.2 37.5 잔량, Ti:C 비율은원자비로 1:1 901 완전 반응
비교예 4 순수 알루미늄 0 12.0 잔량, Ti:C 비율은원자비로 1:1 815 불완전 반응
비교예 5 순수 알루미늄 0 21.3 잔량, Ti:C 비율은원자비로 1:1 810 불완전 반응
비교예 6 순수 알루미늄 0 40.4 잔량, Ti:C 비율은원자비로 1:1 920 불완전 반응
표 3을 참조하면, 실험예 15 내지 실험예 20은 모두 용탕의 온도가 916℃ 이하의 온도에서 탄화 티타늄이 생성되었음을 확인할 수 있었다. 도 13은 실험예 17의 미세조직을 관찰한 결과로서, 미세한 탄화 티타늄 입자(진한회색 부분)가 기지에 생성된 것을 볼 수 있었으며, 이는 도 14의 X-선 회절 분석 결과를 통해서도 확인할 수 있었다.
실험예 19의 경우 산화 구리 분말을 3.1중량%만 첨가하여도 반응이 완전하게 일어났으며, 실험예 20의 경우 알루미늄 용탕으로 A6061 합금을 사용하여 완전한 반응을 일으켰다. 실험예 19 및 20 모두 미세조직 내부에 금속간화합물인 Al3Ti가 거의 없고 탄화 티타늄으로 이루어진 복합재료를 얻을 수 있었다.
한편, 비교예 4 내지 6을 참조하면, 산화 구리 분말을 첨가하지 않았을 경우, 불완전한 반응이 일어났다. 비교예 4의 경우, 815℃의 알루미늄 용탕에 알루미늄을 12 중량% 밖에 첨가하지 않았음에도 불구하고, 완전한 반응이 일어나지 않았다.
이와 반대로, 산화 구리를 3.1중량% 첨가한 실험예 19의 경우 비교예 4 보다 낮은 온도인 814℃의 알루미늄 용탕에 알루미늄을 20.6중량%로 더 많이 첨가 하였음에도 불구하고 완전한 반응이 일어났다. 이를 통해 산화 구리를 첨가하게 되면 더 낮은 용탕 온도에서 탄화 티타늄 입자를 생성하는 완전한 반응이 일어난다는 것을 확일 할 수 있었다.
비교예 6의 경우에는 용탕의 온도를 920℃ 까지 증가시켜도 완전한 반응이 일어나지 않았다. 도 15는 비교예 3의 미세조직을 관찰한 결과로서 미세조직 내부에 탄화 티타늄 이외에 조대한 금속간화합물(백색 화살표)인 Al3Ti가 형성된 것을 확인할 수 있었다. 이는 도 16의 X-선 회절 분석 결과를 통해서도 확인할 수 있었다.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.

Claims (26)

  1. 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합된 전구체를 준비하는 단계;
    상기 전구체를 알루미늄 용탕에 첨가하는 단계; 및
    상기 알루미늄 용탕을 주조하는 단계;
    를 포함하는, 알루미늄 기지 복합재료 제조방법.
  2. 알루미늄 분말, 티타늄의 공급물질 및 티타늄과 결합하여 화합물을 형성할 수 있는 비금속원소의 공급물질이 혼합된 전구체를 준비하는 단계;
    상기 전구체를 알루미늄 용탕에 첨가하는 단계; 및
    상기 알루미늄 용탕을 주조하는 단계;
    를 포함하며, 상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상은 소성가공을 인가받은 것인, 알루미늄 기지 복합재료 제조방법.
  3. 제1항 또는 제2항에 있어서, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함하는, 알루미늄 기지 복합재료 제조방법.
  4. 제1항 또는 제2항에 있어서, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 붕소 화합물 분말을 포함하는, 알루미늄 기지 복합재료 제조방법.
  5. 제1항 또는 제2항에 있어서, 상기 티타늄의 공급물질은 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함하는, 알루미늄 기지 복합재료 제조방법.
  6. 제4항에 있어서, 상기 붕소 화합물 분말은 산화 붕소 분말 또는 지르코늄 붕화물 분말을 포함하는, 알루미늄 기지 복합재료 제조방법.
  7. 제1항에 있어서, 상기 활성화 물질은 상기 알루미늄 분말, 티타늄의 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상과 발열반응을 일으키는 물질인, 알루미늄 기지 복합재료 제조방법.
  8. 제1항에 있어서, 상기 활성화 물질은 알루미늄과 발열반응을 일으키는 물질인, 알루미늄 기지 복합재료 제조방법.
  9. 제8항에 있어서, 상기 활성화 물질은 산화 구리, 산화 코발트, 산화 망간, 산화 니켈, 산화 철, 산화 바나듐, 산화 크롬 및 산화 텅스텐 중 어느 하나를 포함하는, 알루미늄 기지 복합재료 제조방법.
  10. 제8항에 있어서, 상기 활성화 물질은 상기 전구체 내에서 0.1중량% 내지 40중량%의 범위를 가지는, 알루미늄 기지 복합재료 제조방법.
  11. 제3항 또는 제4항에 있어서, 상기 활성화 물질은 상기 산화 티타늄의 분해를 촉진 시키는 물질인, 알루미늄 기지 복합재료 제조방법.
  12. 제7항에 있어서, 상기 활성화 물질은 상기 산화 티타늄의 분해를 촉진 시키는 물질을 더 포함하는, 알루미늄 기지 복합재료 제조방법.
  13. 제11항 또는 제12항에 있어서, 상기 산화 티타늄의 분해를 촉진 시키는 물질은 알칼리금속, 알칼리토금속 또는 상기 금속들의 산화물을 포함하는, 알루미늄 기지 복합재료 제조방법.
  14. 제13항에 있어서, 상기 산화 티타늄의 분해를 촉진 시키는 물질은 바륨, 칼슘, 스트론튬, 칼륨 및 이들 중 어느 하나의 산화물을 포함하는, 알루미늄 기지 복합재료 제조방법.
  15. 제11항 또는 제12항에 있어서, 상기 산화 티타늄의 분해를 촉진 시키는 물질은 상기 전구체 내에서 5중량% 이하(0초과)의 범위를 가지는, 알루미늄 기지 복합재료 제조방법.
  16. 제1항에 있어서, 상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상에 소성가공을 인가하는 단계를 더 포함하는, 알루미늄 기지 복합재료 제조방법.
  17. 제1항 또는 제2항에 있어서, 상기 전구체는 기계적 가압으로 성형하여 제조한 펠렛 또는 상기 펠렛을 파쇄한 것을 포함하는, 알루미늄 기지 복합재료 제조방법.
  18. 제1항 또는 제2항에 있어서, 상기 알루미늄 용탕의 온도는 알루미늄의 융점이상 950℃이하의 범위를 가지는, 알루미늄 기지 복합재료 제조방법.
  19. 제1항 또는 제2항에 있어서, 상기 알루미늄 용탕은 순수 알루미늄 용탕 또는 1종 이상의 합금원소를 포함하는 알루미늄 합금 용탕을 포함하는, 알루미늄 기지 복합재료 제조방법.
  20. 제19항에 있어서, 상기 합금원소는 마그네슘(Mg), 실리콘(Si), 구리(Cu), 망간(Mn), 크롬(Cr), 아연(Zn), 니켈(Ni), 철(Fe), 주석(Sn) 또는 리튬(Li)을 포함하는, 알루미늄 기지 복합재료 제조방법.
  21. 제1항 또는 제2항의 제조방법에 의해 제조된 알루미늄 기지 복합재료를 용해하여 용탕을 형성하는 단계;
    상기 용탕에 합금원소를 첨가하는 단계; 및
    상기 용탕을 주조하는 단계를 포함하는, 알루미늄 기지 복합재료 제조방법.
  22. 알루미늄 기지; 및
    상기 알루미늄 기지 상에 분포하는 알루미나 및 티타늄 화합물 입자;를 포함하며,
    상기 알루미나 및 티타늄 화합물 입자는 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 상기 티타늄 화합물을 형성할 수 있는 비금속원소의 공급물질 및 활성화 물질이 혼합된 전구체로부터 형성된 것인, 알루미늄 기지 복합재료.
  23. 알루미늄 기지;
    상기 알루미늄 기지 상에 분포하는 알루미나 및 티타늄 화합물 입자;를 포함하며,
    상기 알루미나 및 티타늄 화합물 입자는 알루미늄 분말, 티타늄의 공급물질, 티타늄과 결합하여 상기 티타늄 화합물을 형성할 수 있는 비금속원소의 공급물질이 혼합된 전구체로부터 형성된 것이며,
    상기 알루미늄 분말, 티타늄 공급물질 및 비금속원소의 공급물질 중 어느 하나 이상은 소성가공을 인가받은 것인, 알루미늄 기지 복합재료.
  24. 제22항 또는 제23항에 있어서, 상기 티타늄 화합물 입자는 탄화 티타늄 입자이고, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함하는, 알루미늄 기지 복합재료.
  25. 제22항 또는 제23항에 있어서, 상기 티타늄 화합물 입자는 붕화 티타늄를 포함하고, 상기 티타늄의 공급물질은 산화 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 붕소 화합물 분말을 포함하는, 알루미늄 기지 복합재료.
  26. 제22항 또는 제23항에 있어서, 상기 티타늄 화합물 입자는 탄화 티타늄 입자이고, 상기 티타늄의 공급물질은 티타늄 분말을 포함하고, 상기 비금속원소의 공급물질은 탄소 분말을 포함하는, 알루미늄 기지 복합재료.
PCT/KR2012/001894 2011-03-18 2012-03-16 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료 WO2012128506A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/004,824 US9670568B2 (en) 2011-03-18 2012-03-16 Method of preparing aluminum matrix composites and aluminum matrix composites prepared by using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020110024151A KR101228024B1 (ko) 2011-03-18 2011-03-18 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
KR10-2011-0024151 2011-03-18
KR10-2011-0027821 2011-03-28
KR1020110027821A KR101282276B1 (ko) 2011-03-28 2011-03-28 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
KR1020110092162A KR101281789B1 (ko) 2011-09-09 2011-09-09 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
KR10-2011-0092162 2011-09-09

Publications (3)

Publication Number Publication Date
WO2012128506A2 true WO2012128506A2 (ko) 2012-09-27
WO2012128506A3 WO2012128506A3 (ko) 2012-11-15
WO2012128506A9 WO2012128506A9 (ko) 2013-01-03

Family

ID=46879863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001894 WO2012128506A2 (ko) 2011-03-18 2012-03-16 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료

Country Status (2)

Country Link
US (1) US9670568B2 (ko)
WO (1) WO2012128506A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150376745A1 (en) * 2013-02-11 2015-12-31 National Research Council Of Canada Metal matrix composite and method of forming
RU2616315C1 (ru) * 2015-12-07 2017-04-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ получения алюмоматричного композитного материала

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822276B1 (ko) * 2016-04-28 2018-01-25 현대자동차주식회사 자동차용 실린더 블록 제조방법
CN114956920A (zh) * 2022-04-14 2022-08-30 成都银河动力有限公司 一种水下切割用破障药柱及制备方法
CN114875276B (zh) * 2022-04-22 2022-10-14 山东迈奥晶新材料有限公司 嵌合式复合粒子增强铝基复合材料及其制备方法
CN114990390B (zh) * 2022-05-26 2023-04-07 江苏大学 一种原位自生双元纳米颗粒增强铝基复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158764A (ja) * 1996-12-02 1998-06-16 Toyota Motor Corp 耐凝着性と強度に優れたAl基複合材料およびその製造方法
JPH1143729A (ja) * 1997-07-23 1999-02-16 Sumitomo Light Metal Ind Ltd 高温強度に優れたアルミニウム複合材料の製造方法
KR100397576B1 (ko) * 2001-03-06 2003-09-17 한국기계연구원 용탕함침법에 의한 고부피분율 알루미늄 복합재료 제조용조성물 및 그 복합재료의 제조방법
JP2008260023A (ja) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd 金属複合材料の製造方法及び金属複合材料からなる部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985557A (en) * 1973-04-09 1976-10-12 Ethyl Corporation Method of producing a high strength composite of zircon
KR101228024B1 (ko) 2011-03-18 2013-01-30 한국기계연구원 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158764A (ja) * 1996-12-02 1998-06-16 Toyota Motor Corp 耐凝着性と強度に優れたAl基複合材料およびその製造方法
JPH1143729A (ja) * 1997-07-23 1999-02-16 Sumitomo Light Metal Ind Ltd 高温強度に優れたアルミニウム複合材料の製造方法
KR100397576B1 (ko) * 2001-03-06 2003-09-17 한국기계연구원 용탕함침법에 의한 고부피분율 알루미늄 복합재료 제조용조성물 및 그 복합재료의 제조방법
JP2008260023A (ja) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd 金属複合材料の製造方法及び金属複合材料からなる部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150376745A1 (en) * 2013-02-11 2015-12-31 National Research Council Of Canada Metal matrix composite and method of forming
US9945012B2 (en) * 2013-02-11 2018-04-17 National Research Council Of Canada Metal matrix composite and method of forming
RU2616315C1 (ru) * 2015-12-07 2017-04-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ получения алюмоматричного композитного материала

Also Published As

Publication number Publication date
WO2012128506A3 (ko) 2012-11-15
US20140037494A1 (en) 2014-02-06
US9670568B2 (en) 2017-06-06
WO2012128506A9 (ko) 2013-01-03

Similar Documents

Publication Publication Date Title
WO2012128506A2 (ko) 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
WO2017111334A1 (ko) 질화알루미늄 및 질화알루미늄기 복합상 물질의 합성 방법
WO2017069525A1 (ko) 알루미늄 및 알루미늄 합금의 분말성형방법
US4772452A (en) Process for forming metal-second phase composites utilizing compound starting materials
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
JP2667484B2 (ja) 複合材料及びその製造方法
WO2011122784A2 (en) Magnesium alloy for room temperature and manufacturing method thereof
Dudina et al. In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
CN112028613A (zh) 一种应用添加催化剂酚醛树脂的镁碳砖
WO2012161463A2 (ko) 합금제조방법 및 이에 의해 제조된 합금
WO2012161460A2 (ko) 알루미늄 합금 및 그 제조방법
WO2012161484A2 (ko) 실리콘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법
WO2011074720A1 (ko) 가스분무법을 이용한 금속복합분말의 제조방법 및 제조장치
WO2012053813A2 (ko) 내산화성, 내부식성 또는 내피로성이 개선된 알루미늄 합금 및 상기 알루미늄 합금을 이용하여 제조한 다이캐스팅재 및 압출재
KR101281794B1 (ko) 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
JP2007254862A (ja) 複合金属成形材料の製造方法及び複合金属成形品の製造方法
JPH0625774A (ja) TiB2 分散TiAl基複合材料の製造方法
KR101228024B1 (ko) 알루미늄 기지 복합재료 제조방법 및 이에 의해 제조된 알루미늄 기지 복합재료
JP2001342528A (ja) マグネシウム合金の細粒化剤およびその製造方法およびそれを用いた微細化方法
WO2012161461A2 (ko) 알루미늄 합금 및 그 제조방법
WO2012161485A2 (ko) 실리콘화합물과 칼슘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법
US7927518B2 (en) Semi solid TiB2 precursor mixture
WO2014077653A1 (ko) 아연합금 및 이의 제조방법
WO2013157903A1 (ko) 알루미늄 합금 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761117

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14004824

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761117

Country of ref document: EP

Kind code of ref document: A2