WO2015186785A1 - 生体内のアシル化機能と置き換えられる人工触媒システム - Google Patents

生体内のアシル化機能と置き換えられる人工触媒システム Download PDF

Info

Publication number
WO2015186785A1
WO2015186785A1 PCT/JP2015/066179 JP2015066179W WO2015186785A1 WO 2015186785 A1 WO2015186785 A1 WO 2015186785A1 JP 2015066179 W JP2015066179 W JP 2015066179W WO 2015186785 A1 WO2015186785 A1 WO 2015186785A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
agent
chromosomal
cationic
mmol
Prior art date
Application number
PCT/JP2015/066179
Other languages
English (en)
French (fr)
Inventor
金井 求
茂裕 川島
健三 山次
海燕 朱
義史 天本
佳奈 田辺
伸茂 石黒
家安 劉
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2016525233A priority Critical patent/JP6736462B2/ja
Priority to EP15803039.5A priority patent/EP3156411B1/en
Priority to US15/115,355 priority patent/US20170008927A1/en
Publication of WO2015186785A1 publication Critical patent/WO2015186785A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to an artificial catalyst system that can be replaced with an acylation function in a living body, and more particularly, to an artificial catalyst system that can be replaced with an acetylation function or a malonylation function.
  • Protein post-translational modification in vivo plays a major role in biological function control. As post-translational modifications, there are various reactions such as methylation and phosphorylation. A typical example is histone acetylation. Histones are the main proteins that make up chromosomes. In addition to folding DNA and storing it in the nucleus, histones contain lysine residues that are acetylated by histone acetylases or by histone deacetylases. By being deacetylated, it is actively involved in the dynamic control of chromosome structure and associated gene transcription (Non-patent Document 1).
  • Non-patent Document 2 a drug for cutaneous T-cell lymphoma
  • Non-Patent Document 4 acylation modifications other than acetylation in histones, malonylation and succinylation have been found, and it has been suggested that these modifications play an important role in histone structure and function.
  • the cell is an integrated field of chemical reaction, and life activity is supported by the activity of an enzyme that is a kind of catalyst. Therefore, if an artificial catalyst system that can replace the enzyme function in the living body can be developed, it is possible to effectively treat the diseases caused by the enzyme deficiency or inactivation as described above. Therefore, the present invention aims to realize a medical treatment based on a new concept of “catalytic medical treatment” by developing an artificial catalytic system that can replace an in vivo enzyme function and introducing the system into a cell. To do.
  • an object of the present invention is to provide an artificial catalyst system that can replace a histone acylation function in a living body.
  • the present inventors first attempted to artificially reconstruct the acetylation function among the in vivo histone acylation functions. It is known to acetylate 4-dimethylaminopyridine (DMAP), which is widely used as a nucleophilic catalyst as an example of a catalyst, and a primary amine in water as an example of an acetylating agent under mild conditions. Methoxydiacetamide (NMD) was selected and cells were treated with a combination of these molecules to verify whether acetylation of chromosomal proteins including histones is enhanced.
  • DMAP 4-dimethylaminopyridine
  • NMD Methoxydiacetamide
  • the present inventors tried to improve these molecules to give them the ability to access the vicinity of chromosomes in the cells. Specifically, paying attention to the fact that the DNA in the chromosome is a polyanion, the ability to access the chromosome can be improved by electrostatic interaction by giving these molecules properties as a polycation. It was verified whether or not.
  • 4-dimethylaminopyridine (DMAP) which is a basic catalyst, exhibits a cationic property in water, so a plurality of molecules are bonded through a linker to produce a molecule having enhanced properties as a cation.
  • N-methoxydiacetamide which is an acetylating agent, does not show a cationic property in water
  • a molecule showing a cationic property was separately bound thereto.
  • Polyarginine which is a cationic polymer, is known as a cell membrane permeable peptide, but its localization to the chromosome is not known.
  • polyarginine was bound to N-methoxydiacetamide via a linker and its subcellular localization was verified, it was found that the synthesized molecule showed localization to the chromosome.
  • the present inventors have developed an artificial catalyst system that can replace the in vivo histone acetylation function by a method of synthetic chromosomal acetylation using a combination of a chromosomal localization nucleophilic catalyst and a chromosomal localization acetylating agent. Successfully established.
  • the present inventors also attempted to establish an artificial catalyst system that can replace the histone malonylation function.
  • 4-malonyloxybenzoic acid amide was selected as an example of a malonylating agent, and in the same manner as in the case of the acetylating agent, polyarginine was bound via a linker, and “chromosomal localization malonylation” was selected.
  • Agent was prepared.
  • the combination of the chromosomal local malonylating agent and the above chromosomal local nucleophilic catalyst was used to verify the malonylation ability of chromosomal proteins. As a result, it was revealed that malonylation of lysine occurred in histones H3 and H4 by treatment with a combination of these molecules (this malonylation is referred to as “synthetic chromosomal malonylation”).
  • the present inventors can replace the in vivo acylation function by “synthetic chromosomal acylation” using a combination of a chromosomal localization nucleophilic catalyst and a chromosomal localization acylating agent.
  • synthetic chromosomal acylation using a combination of a chromosomal localization nucleophilic catalyst and a chromosomal localization acylating agent.
  • the present invention relates to an artificial catalyst system for specifically acylating a chromosomal protein, a molecule used in the artificial catalyst system, and application of the artificial catalyst system to medicine, and more specifically, The invention is provided.
  • a drug for acylating a chromosomal protein comprising a combination of the following compound (a) and the following compound (b): (A) Compound having chromosomal localization and nucleophilic catalytic activity (b) Compound having chromosomal localization and lysine acylating activity (2) The number of compounds in (a) is effective for chromosomal localization
  • the drug according to (1) which has a structure in which a cationic nucleophilic catalyst is bound.
  • N represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity
  • N represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity
  • N represents a natural number within a range in which the compound has chromosomal localization and an activity to acetylate lysine
  • N represents a natural number within a range where the compound has chromosomal localization and an activity to malonylate lysine
  • a compound having chromosomal localization and nucleophilic catalytic activity (N represents a natural number within a range where the compound has chromosomal localization and an activity to malonylate lysine) (17) A compound having chromosomal localization and nucleophilic catalytic activity.
  • the number effective for chromosomal localization is 5 or more, (20) the compound.
  • N represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity
  • N represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity
  • N represents a natural number within a range in which the compound has chromosomal localization and an activity to acetylate lysine
  • N represents a natural number within a range where the compound has chromosomal localization and an activity to malonylate lysine
  • a disease caused by a decrease in acetylation of a chromosomal protein comprising a combination of the compound according to any one of (17) to (22) and the compound according to any one of (28) to (30) Drug to treat.
  • an artificial catalyst system by a technique called synthetic chromosome acylation using a combination of a chromosome-localized nucleophilic catalyst and a chromosome-localized acylating agent is provided.
  • the acetylation induced by the artificial catalyst of the present invention is independent of in vivo histone acetylase.
  • Synthetic chromosomal acetylation is performed by transferring the main function of histone acetylase, which functions by interacting with other proteins in vivo, by transferring a nucleophilic catalyst and an acetylating agent to the chromosome.
  • the fact that it could be replaced by an artificial catalyst system is in itself very innovative and surprising.
  • the artificial catalyst system of the present invention for example, it is possible to effectively treat a disease caused by a decrease in acetylation of a chromosomal protein.
  • This enhanced acetylation by the artificial catalyst system was specific to cancer cells in terms of effects such as cell cycle arrest, regardless of the cell type. Further, the site where acetylation is enhanced was different from the site where acetylation was enhanced by the action of a conventional histone deacetylase inhibitor. Therefore, according to the medical treatment using the artificial catalyst system of the present invention, a novel and specific pharmacological action can be expected.
  • the artificial catalyst system of the present invention was able to induce not only histone acetylation but also malonylation. Therefore, based on the basic principle of this system, it is considered that a wide range of acylations including acetylation and malonylation can be performed on histones.
  • A is a diagram showing the structures of DMAP and NMD
  • B is a photograph showing acetylation in the cell extract
  • C is a photograph showing acetylation in human MCF7 cells.
  • A is a diagram showing the structure of XDMAP-FITC
  • B is a photograph showing localization in human Hela cells
  • C is a photograph showing localization in human MCF7 cells
  • D is human Hela cells It is a photograph which shows acetylation in.
  • A is a diagram showing the structure of 8R-FITC, 3NMD-FITC, 3NMD-8R-FITC
  • B is a photograph showing the localization of 8R-FITC in human Hela cells
  • C is in human MCF7 cells It is a photograph which shows localization.
  • A is a figure which shows the structure of 8DMAP and 3NMD-8R
  • B is a photograph which shows the chromosome selective acetylation in a human MCF7 cell. It is a figure which shows the endogenous HAT independent of the acetylation by the artificial catalyst system of this invention.
  • A is a photograph showing the result of HAT knockdown in human MCF7 cells
  • B is a photograph showing the result of HAT knockdown in human Hela cells.
  • a comparison in human MCF7 cells, human Hela cells, and human RPE-1 cells is shown. The comparison with the action of SAHA, a histone deacetylase inhibitor, is also shown.
  • A is a graph showing the results of cell cycle analysis in human MCF7 cells
  • B is a graph showing the results of cell cycle analysis in human RPE1 cells
  • C is a photograph showing the evaluation of p53 knockdown
  • D is a graph showing the results of cell cycle analysis by p53 knockdown. It is a figure which shows the influence on the expression of p53 and its related gene in the cancer cell line of the acetylation by the artificial catalyst system of this invention.
  • A is a graph showing the results of analysis of p53 mRNA levels
  • B is a photograph showing the results of analysis of protein levels of p53, p21, and p27
  • C is the results of analysis of mRNA levels of p21 and p27
  • D is a graph showing the results of analysis of p21 and p27 mRNA levels by p53 knockdown. It is a summary figure of the artificial catalyst system (acetylation) of this invention.
  • Chromosomal protein selective by the artificial catalyst system of the present invention (combination of chromosome-localized nucleophilic catalyst and chromosome-localized malonylating agent, or combination of chromosome-localized nucleophilic catalyst and chromosome-localized acetylating agent) It is a figure which shows acylation. The right figure is a photograph showing the result of detecting malonylation, and the left figure is a photograph showing the result of detecting acetylation. The explanation of each lane is as follows. 1: No compound treatment, 2: 3Mal-BA-8R only added, 3: L-8DMAP and 3Mal-BA-8R added, 4: 3NMD-8R only added, 5: L-8DMAP and 3NMD-8R added.
  • the present invention provides chromosomally localized nucleophilic catalysts, ie compounds having chromosomal localization and nucleophilic catalytic activity.
  • the chromosomal localization nucleophilic catalyst of the present invention is one component of the artificial catalyst system of the present invention, and when introduced into a cell in combination with a chromosomal localized acylating agent described later, the chromosomal protein acyl Can be enhanced.
  • chromosome localization means a property that, when introduced into a cell, is present more in the chromosome than in other regions (eg, cytoplasm). Whether a compound has chromosomal localization is evaluated by binding a fluorescent dye such as fluorescein isothiocyanate (FITC) to the compound, introducing it into the cell, and observing the cell with a fluorescence microscope. can do.
  • fluorescent dye such as fluorescein isothiocyanate (FITC)
  • FITC fluorescein isothiocyanate
  • nucleophilic catalyst means a reaction catalyst that exhibits catalytic action through nucleophilic attack
  • nucleophilic catalytic activity means catalytic action through nucleophilic attack of the catalyst. .
  • the chromosome-localized nucleophilic catalyst of the present invention typically has a structure in which a number of cationic nucleophilic catalysts effective for chromosomal localization are bound.
  • the cationic nucleophilic catalyst binds to other cationic compounds as long as it has both activities.
  • the nucleophilic catalyst which does not show cationic property may have the structure which couple
  • the bond may be a bond via a linker.
  • Examples of the “cationic nucleophilic catalyst” used in the present invention include pyridine-based catalysts such as 4-dimethylaminopyridine (DMAP), imidazole-based catalysts such as 1-methylimidazole, 1,4-diazabicyclo [2.2.2 ] Bicyclooctane-based catalysts such as octane and phosphine-based catalysts such as tributylphosphine can be mentioned, but not limited thereto.
  • DMAP 4-dimethylaminopyridine
  • imidazole-based catalysts such as 1-methylimidazole
  • Bicyclooctane-based catalysts such as octane and phosphine-based catalysts such as tributylphosphine can be mentioned, but not limited thereto.
  • phosphine-based catalysts such as tributylphosphine
  • the chromosomal localization nucleophilic catalyst of the present invention is preferably a compound having a structure in which 5 or more 4-dimethylaminopyridines are bonded. More preferably, it is a compound having a structure in which 6 or more 4-dimethylaminopyridine is bonded, more preferably a compound having a structure in which 7 or more 4-dimethylaminopyridine is bonded, and further preferably 8 or more 4 -A compound having a structure in which dimethylaminopyridine is bonded.
  • the methyl group in 4-dimethylaminopyridine or the linker at the 3rd or 5th position of the pyridine preferably has a bonded structure, and particularly preferably has a structure bonded to a linker with carbon of a methyl group.
  • linker is not particularly limited as long as it does not inhibit the chromosomal localization and nucleophilic catalytic activity of the compound to be synthesized. Therefore, those skilled in the art can appropriately select or synthesize other linkers and use them in the present invention.
  • Other available linkers include, for example, cyclic peptide linkers, polyamidoamine linkers, N-methyl peptide linkers, peptoid linkers, ROMP polymer linkers.
  • the structure of other linkers can be considered innumerable, but some typical examples are shown below.
  • R and R ′ are arbitrary groups, which may be the same or different. N represents the number of repeating structures.
  • the cationic nucleophilic catalyst can be bound, for example, to R or R ′ of the linker structure directly or indirectly through a further linker structure. As long as the final synthesized compound has chromosomal localization and nucleophilic catalytic activity, it is not necessary to attach a cationic nucleophilic catalyst to all of R and R ′. In addition, the repetition of the structure in the ROMP polymer linker may be performed within the range in which the finally synthesized compound has chromosomal localization and nucleophilic catalytic activity.
  • chromosomal localization nucleophilic catalyst of the present invention as a whole is equivalent to or more than the polycationic property exhibited by the five 4-dimethylaminopyridines, some or all of the polycationic property is converted to other cations. May depend on the active compound.
  • examples of other cationic compounds include compounds having an amino group, a monoalkylamino group, a dialkylamino group, an imino group, a guanidino group, and the like.
  • Such compounds include, for example, basic amino acids such as arginine, monomethyl lysine and dimethyl lysine and their modified products, homopolymers thereof (polyarginine, poly (monomethyl lysine), poly (dimethyl lysine), etc.) and co-polymers.
  • Examples include polymers, polyethyleneimine, and DNA-binding dyes. Chromosomal localization can also be imparted to nucleophilic catalysts that do not exhibit cationic properties by binding to the above cationic compounds.
  • the following compounds having a linear structure can be preferably used.
  • n represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity.
  • n is 4 to 14, preferably 6 to 9.
  • the following compounds having a cyclic structure can also be suitably used.
  • n represents a natural number within a range where the compound has chromosomal localization and nucleophilic catalytic activity.
  • n is 4 to 14, preferably 6 to 9.
  • polylysine is used as a linker, but the ⁇ -amino group of the side chain of this polylysine is modified. Therefore, it should be noted that in these compounds, the polylysine structure itself no longer exhibits cationic properties.
  • the present invention provides chromosomal localization acylating agents, ie compounds having chromosomal localization and lysine acylating activity.
  • the chromosomal localized acylating agent of the present invention is another component of the artificial catalyst system of the present invention.
  • the chromosomal protein When introduced into a cell in combination with the above chromosomal localized nucleophilic catalyst, the chromosomal protein The acylation of can be enhanced.
  • the chromosomally localized acylating agent of the present invention has a structure in which the acylating agent and the cationic compound are bound.
  • the bond may be a bond via a linker.
  • the “cationic compound” is not particularly limited as long as it can impart chromosomal localization to the acylating agent.
  • a compound having an amino group, a monoalkylamino group, a dialkylamino group, an imino group, a guanidino group, etc. Can be mentioned.
  • the cationic compound is preferably a cationic polymer, for example, a basic amino acid such as arginine, monomethyllysine, dimethyllysine, or a homopolymer of a modified product thereof (polyarginine, poly (monomethyllysine), poly (dimethyllysine), etc. ), A copolymer, polyethyleneimine, and a DNA-binding dye.
  • acylating agent used in the present invention includes, for example, an acetylating agent and a malonylating agent, but other acylating agents may be used.
  • An acylating agent can be appropriately selected according to the type of acylation to be aimed at.
  • acetylating agent examples include, but are not limited to, N-methoxydiacetamide, phenyl thioacetate, and 4-nitrophenyl acetate.
  • a plurality of structures of these acetylating agents may be included.
  • N-methoxydiacetamide When N-methoxydiacetamide is bonded to a cationic compound via a linker, from the viewpoint of maintaining acetylation activity, it has a structure in which the methoxy group carbon in N-methoxydiacetamide is bonded to the linker. Preferably it is.
  • malonylating agent examples include, but are not limited to, 4-malonyloxybenzoic acid amide, phenyl thiomalonate and 4-nitrophenyl malonate.
  • a chromosomal localized malonylating agent a plurality of structures of these malonylating agents may be included.
  • 4-malonyloxybenzoic acid amide When 4-malonyloxybenzoic acid amide is bonded to a cationic compound via a linker, from the viewpoint of maintaining malonylation activity, etc., it has a structure in which it is bonded to the linker by an amide group in 4-malonyloxybenzoic acid amide. It is preferable.
  • linker is not particularly limited as long as it does not inhibit the chromosomal localization of the compound to be synthesized and the activity of acylating lysine. Therefore, those skilled in the art can appropriately select or synthesize other linkers and use them in the present invention. Examples of other linkers that can be used include alkyl linkers, oligoethylene glycol linkers, and peptide linkers. The structure of other linkers can be considered innumerable, but some typical examples are shown below.
  • one end of the linker is expressed as a structure in which N-methoxydiacetamide, which is an acetylating agent, is bonded, but another acylating agent may be bonded.
  • the cationic compound can be bound, for example, directly or indirectly via a further linker structure to the end of the linker opposite to the end to which the acylating agent is bound.
  • the amino acid having a repeating structure is a basic amino acid and the chromosomal localization can be ensured by the repeating structure, an additional cationic compound is added to the end opposite to the end to which the acylating agent is bound. There is no need to combine them.
  • an acetylating agent or a malonylating agent having the following structure can be preferably used.
  • n represents a natural number within a range in which the compound has chromosomal localization and activity to acetylate lysine.
  • n is 5 to 15, preferably 5 to 10.
  • a compound having the following structure is used as an example of an acetylating agent.
  • n represents a natural number within a range in which the compound has chromosomal localization and an activity to malonylate lysine.
  • n is 5 to 15, preferably 5 to 10.
  • a compound having the following structure is used as an example of a malonylating agent.
  • ⁇ Combination agent> Chromosomal protein acylating agent-
  • acylation of chromosomal proteins can be enhanced when a combination of a chromosomal localization nucleophilic catalyst and a chromosomal localization acylating agent is introduced into a cell.
  • the present invention provides an agent for acylating a chromosomal protein comprising a combination of the chromosomal localization nucleophilic catalyst and the chromosomal localization acylating agent.
  • the present invention also provides a method for acylating a chromosomal protein using the combination.
  • the “chromosomal proteins” that are acylated are primarily histones (particularly histones H3 and H4).
  • acetylation of lysine (K56, K115, K122) present in the globular region is particularly enhanced in histone H3. Since the region where acetylation is enhanced is different from the case where the region is treated with a known histone deacetylase inhibitor (see FIG. 6), according to the chromosomal protein acetylating agent of the present invention, the known histone deacetylation is performed. It is possible to bring about a new action different from that of a oxidase inhibitor. It is also possible to enhance acetylation of chromosomal proteins other than histones (see FIG. 4B).
  • Acylation of a lysine residue of a chromosomal protein can be evaluated, for example, by Western blotting using an anti-acetylated lysine antibody or an anti-malonylated lysine antibody.
  • an antibody specific for the specific lysine residue that is acylated may be used.
  • the present invention provides an agent for inducing the expression of p53, p21 or p27 in cancer cells, comprising a combination of the above chromosomal localized nucleophilic catalyst and the above chromosomal localized acetylating agent.
  • the present invention also provides a method for inducing expression of p53, p21 or p27 in cancer cells using the combination.
  • expression means both expression (transcription) at the mRNA level and expression (translation) at the protein level. “Inducing” expression means that the level of expression is increased from before the combination is applied.
  • Expression at the mRNA level can be evaluated by, for example, real-time PCR using a specific primer, and expression at the protein level can be evaluated, for example, by Western blotting using a specific antibody. .
  • nucleotide sequence of the typical human-derived p53 (gene name TP53) cDNA and the amino acid sequence of the protein are listed in the registration number CAA26306 in the ENA (European Nucleotide Archive) database as a typical human-derived p21 / CIP1 ( The nucleotide sequence of the cDNA of the gene name CDKN1A) and the amino acid sequence of the protein are listed in the registration number AAA16109 in the ENA database, and the nucleotide sequence of the typical human-derived p27 / KIP1 (gene name CDKN1B) cDNA and the amino acid sequence of the protein are And the registration number AAL78041 in the ENA database. It should be understood that these sequences are exemplary, and that individual differences and mutations can occur in the sequences in nature.
  • the present invention provides a drug for treating a disease caused by a decrease in acetylation of a chromosomal protein, comprising a combination of the chromosomal localized nucleophilic catalyst and the chromosomal localized acetylating agent.
  • the present invention also provides a method for treating a disease caused by a decrease in acetylation of a chromosomal protein, comprising administering the combination to a patient.
  • the “disease caused by a decrease in acetylation of chromosomal proteins” in the present invention is preferably cancer.
  • endogenous histone acetylase is inactivated, and it is feared that treatment with a histone deacetylase inhibitor cannot be expected to increase acetylation (Pasqualucci, L. et al. ., Nature 2011, 471, 189-195).
  • the therapeutic agent of the present invention even when the endogenous histone acetylase is inactivated, its function can be supplemented, and a medicinal effect that cannot be achieved by a conventional histone deacetylase inhibitor is exhibited. can do.
  • the therapeutic agent of the present invention may be used in combination with other anticancer agents and other cancer treatment methods (for example, radiation therapy, immunotherapy).
  • Histone acetylation has been suggested to increase the degree of DNA exposure by relaxing the chromatin structure, increasing the sensitivity of chromosomal DNA to DNA damaging agents and radiation (Oleinick et al., Int. J. Radiat Biol. 1994, 66, 523-529, Gorisch SM, et al., J Cell Sci 2005, 118, 5825-5834, Camphausen K, et al. Int J Cancer 2005, 114, 380-366, Karagiannis TC & El -Osta A.
  • chromosomal-localized nucleophilic catalyst and the above-mentioned chromosomal-localized acetylating agent may be combined with auxiliary moieties that enhance therapeutically useful properties.
  • Typical useful properties include, for example, facilitating the delivery of the compound to the target area (e.g., tumor), sustaining the therapeutic concentration of the compound in the target area, and the pharmacokinetic and pharmacodynamic properties of the compound. Modifying or improving the therapeutic index or safety profile of the compound.
  • a suitable auxiliary moiety for example, an antibody that specifically recognizes the target region or a ligand for a receptor expressed in the target region can be used.
  • the chromosomal localized nucleophilic catalyst and the chromosomal localized acylating agent which are active ingredients, can be formulated by a known pharmaceutical method.
  • the agent of the present invention includes “a combination” of a chromosomal localized nucleophilic catalyst and a chromosomal localized acylating agent means that both the chromosomal localized nucleophilic catalyst and the chromosomal localized acylating agent are active ingredients.
  • It may be in the form of a single agent containing as a combination agent of a preparation containing a chromosomal localized nucleophilic catalyst as an active ingredient and a preparation containing a chromosomal localized acylating agent as an active ingredient Means.
  • Examples of the pharmacologically acceptable carrier used in the formulation include sterilized water, physiological saline, vegetable oil, solvent, base, emulsifier, suspension, surfactant, stabilizer, flavoring agent, fragrance, Excipients, vehicles, preservatives, binders, diluents, tonicity agents, soothing agents, bulking agents, disintegrating agents, buffering agents, coating agents, lubricants, coloring agents, sweeteners, thickeners, Examples include, but are not limited to, flavoring agents, solubilizing agents, and other additives.
  • the active ingredient can be in various forms such as tablets, powders, granules, capsules, and liquids depending on the purpose of treatment. It can also be administered in the form of a liposome delivery system.
  • the liposome may be supplemented with the above-mentioned auxiliary moieties (for example, antibodies and ligands) that enhance therapeutically useful properties.
  • the patient can be administered orally or parenterally.
  • parenteral administration include intravenous administration, arterial administration, intramuscular administration, intrathoracic administration, intraperitoneal administration, and direct administration to a target site (for example, a tumor).
  • the drug of the present invention is a concomitant drug
  • the preparations may be administered at the same time, or may be administered with a time difference within a range that does not diminish the effect of the combination.
  • the dose is not particularly limited as long as it is an amount effective for treating the target disease, and may be appropriately selected according to the patient's age, weight, symptom, health condition, disease progress and the like.
  • the frequency of administration is not particularly limited and can be appropriately selected depending on the purpose.
  • the dose per day may be administered once a day or divided into multiple doses. May be.
  • the dose range of the active ingredient is usually about 0.01 mg / kg body weight to about 500 mg / kg body weight, preferably about 0.1 mg / kg body weight to about 100 mg per day. / kg body weight.
  • it is preferably administered once a day or divided into 2 to 4 times, and repeated at appropriate intervals.
  • the expression inducer such as chromosomal protein acylating agent or p53 of the present invention
  • a reagent such as sterilized water, physiological saline, buffer, preservative, etc.
  • Other acceptable components can be included.
  • the reagent can be administered to a target according to the purpose (for example, a cell, a fraction thereof, a tissue, an experimental animal, etc.) to acylate a chromosomal protein and induce expression of p53 or the like.
  • the obtained resin was placed in a vial, and water (0.125 ml), triisopropylsilane (TIPS: 0.125 ml), and trifluoroacetic acid (TFA: 4.75 ml) were added thereto and stirred at room temperature for 90 minutes.
  • the resin was removed by filtration, the filtrate was concentrated, diethyl ether (30 ml) was added to the residue, and the resulting precipitate was collected by filtration to obtain a crude product.
  • Purification by HPLC (ODS, linear gradient; 10-90% acetonitrile / 0.1% TFA aqueous solution, 60 minutes, 254 nm, 10 ml / minute) gave the desired product as a white solid (Compound 13, 36.8 mg).
  • L-8DMAP (Compound 2) Rink Amide AM resin (0.79 mmol / g, 100 mg, 0.079 mmol) was weighed onto a PD-10 column (GE Healthcare) and swollen with DMF. The Fmoc group was removed by adding a DMF solution of 20% piperidine and stirring for 10 minutes.
  • Example 1 Chromosomal protein acetylation by chromosomal localized acetylating agent and chromosomal localized nucleophilic catalyst and analysis of cancer cell specific cell cycle arrest and action mechanism
  • Materials and methods i) Cell Culture and Cell Fractionation Hela cells and MCF-7 cells were cultured in Dulbecco's modified Eagle's Medium (DMEM) medium containing 10% fetal bovine serum, 100 U / ml penicillin, 100 U / ml streptomycin. The cells were cultured at 37 ° C. in the presence of 5% CO 2 .
  • DMEM Dulbecco's modified Eagle's Medium
  • Anti-Histone H3 (acetyl K122) antibody (ab33309, Abcam), Acetylated-Lysine antibody (# 9441, Cell Signaling), Anti-Histone H3 (acetyl K56) antibody (ab76307, Abcam), Anti-acetyl Histone H3 (Lys115) (# 07-934, Millipore), Anti-P53 (DO-1) (sc-126, Santa cruz), Anti-Histone H3 (acetyl K9) antibody (ab4441, Abcam), Anti-Histone H3 (acetyl K14) antibody (ab52946, Abcam), Anti-Acetyl-Histone H4 (Ac-Lys16) (H9164, Sigma), Anti-Acetyl-Histone H4 (Ac-Lys5) (SAB4500307, Sigma), anti-acetyl tubulin (T6793, Sigma), Anti-p21 / WAF1 / Cip1 Antibody (05-655, Mill
  • RNAi transfection Using Lipofectamine (iv) RNAi transfection Using Lipofectamine (R) RNAiMAX Transfection Reagent (Invitrogen), 25% confluent MCF-7 or Hela cells were added with CBP, p300, p53, and GL2 siRNA as a control at a final concentration of 5 nM, 37 Incubated for 72 hours.
  • R RNAiMAX Transfection Reagent
  • RNA and (Oligo (dT) 20 ) were used for cDNA synthesis.
  • Real-time PCR reaction was performed using LightCycler 480 SYBR Green I Master System (Roche) and LightCycler 480 System II (Roche).
  • the housekeeping gene Actin was used as an internal control.
  • Expression data were normalized by Actin, 2 - ⁇ CT method (Livak KJ & Schmittgen TD (2001 ) Methods 25: 402-408) were analyzed using. Three independent experiments were performed, and in each experiment, the average value in 3 wells was calculated.
  • the primer sequences used are shown below.
  • the cell extract was collected and fractionated into a chromosome fraction (Chromatin) and a cytoplasmic fraction (Cytoplasm), followed by protein acetylation. Levels were evaluated by Western blotting. As a result, the protein group contained in the cytoplasm fraction was highly acetylated, whereas the protein acetylation in the chromosome fraction containing histones was not changed (FIG. 1C). This result revealed that L-DMAP and NMD can enhance acetylation of lysine residues in human cultured cells. On the other hand, acetylation of chromosomal proteins including histones could not be enhanced, suggesting that L-DMAP or NMD may be difficult to access near the chromosome in cells.
  • FIG. 2A In order to investigate the intracellular localization of DMAP, a compound in which fluorescein isothiocyanate (FITC) was fused to L-DMAP was synthesized (FIG. 2A). As a result, L-DMAP-FITC signals were mainly accumulated in the cytoplasm, and no accumulation in the nucleus or chromosome was observed (FIGS. 2B and C).
  • the basic amino acid lysine and arginine clusters are used as cell membrane permeable peptides (Mitchell, D.J. et al., The journal of peptide research: official journal of the American Peptide Society 2000, 56, 318-325), the localization to the chromosome is not known.
  • L-DMAP which is also a basic catalyst, was clustered to show cell membrane permeability, and whether it also showed localization to the chromosome.
  • FITC a compound in which FITC is fused to 3, 5, 6, 7 or 8 linked L-DMAPs was synthesized, and its intracellular localization in human cervical cancer HeLa cells or MCF-7 cells was synthesized.
  • Figure 2A As a result, as the number of L-DMAPs increased, remarkable chromosomal localization was observed, and L-3DMAP-FITC was partially localized to the chromosome almost completely above L-5DMAP-FITC (Fig. 2B, C).
  • FIG. 3A a compound in which FITC was fused to 3NMD was synthesized.
  • FIG. 3C the 3NMD-FITC signal was uniformly present throughout the cell, and no accumulation in the nucleus or chromosome was observed (FIG. 3C).
  • 8Arginine (8R) is known as a cell membrane permeable peptide (Mitchell, D.J. et al., The journal of peptide research: official journal of the American Peptide Society 2000, 56, 318-325), 8DMAP and Similarly, since it has a polycation structure in water, accumulation on the chromosome was expected.
  • a chromosomal localization catalyst developed above and 3NMD-8R (Fig. 4A), a chromosomal localization acetylating agent, are administered to MCF-7 cells and cultured for 3 hours.
  • the acetylation level of was evaluated.
  • the protein group contained in the cytoplasm fraction was hardly acetylated, whereas the protein in the chromosome fraction containing histones was highly acetylated (FIG. 4B).
  • acetylation specific antibodies against lysine present in the N-terminal tail region and globular domain of histone H3 the acetylation levels of individual acetylation were examined.
  • the increased acetylation in the cell is due to a chemical reaction by the administered catalyst and the acetylating agent, and is expected not to depend on the intracellular acetylase.
  • CBP and p300 are the major histone acetylases (HATs) in the cell.
  • HATs histone acetylases
  • HDAC histone deacetylase
  • “Synthetic chromosomal acetylation SynCAc” may have the possibility of showing cancer cell selectivity, similar to HDAC inhibitors.
  • cancer cell selectivity of “synthetic chromosomal acetylated SynCAc” was examined using MCF-7 cells which are cancer cells and RPE-1 cells which are normal cells. Both compounds were administered to MCF-7 cells, and the ratio of the cell cycle after 15 hours, 18 hours, and 22 hours was examined. As a result, it was found that the ratio of G1 phase increased with time (FIG. 7A). Interestingly, no such G1 arrest phenotype was seen when both compounds were administered to RPE-1 cells (FIG. 7B).
  • G1 phase arrest is known to be controlled by the tumor suppressor gene p53 (Hartwell, L.H. & Kastan, M.B. Science 1994, 266, 1821-1828).
  • p53 tumor suppressor gene
  • knockdown of p53 was performed by RNAi method (FIG. 7C).
  • RNAi method FIG. 7D.
  • cancer cells are LoVo cells (colorectal adenocarcinoma), RKO cells (colorectal cancer), HT1080 cells (fibrosarcoma). Increased the protein level, whereas MRC-5 cells, which are normal cells, did not show such an increase.
  • Example 2 Malonylation of a chromosomal protein using a chromosomal localized malonylating agent and a chromosomal localized nucleophilic catalyst
  • a cytoplasmic extract obtained by extracting reconstituted nucleosomes (0.346 ⁇ M: DNA equivalent) from HeLa cells and 20 mM Tris-HCl (pH 7.5) Mix in solution, add catalyst L-8DMAP and malonylated donor 3Mal-BA-8R, react at room temperature for 3 hours, separate on SDS-PAGE gel, and then Western blotting to detect malonylated protein was detected.
  • acetylated protein was also detected with the catalyst L-8DMAP and the acetylated donor 3NMD-8R in the same manner.
  • the primary antibody is Pan Anti-Malonyllysine Antibody (PTM-901, PTM Biolabs) for detecting malonylated protein, and Acetylated-Lysine antibody (# 9441, Cell Signaling) for detecting acetylated protein. Each was used.
  • An artificial catalyst system based on the concept of catalytic medicine can be applied to various reactions involving enzymes in the living body.
  • the artificial catalyst system targeting the enzyme can be used to treat the disease. Can contribute widely to the medical field.
  • An artificial catalyst system using a combination of a chromosomal localized nucleophilic catalyst and a chromosomal localized acetylating agent can be used for the treatment of diseases caused by reduced acetylation of chromosomal proteins.
  • Deacetylase inhibitors have little utility, and have high utility value in diseases caused by inactivation of histone acetylase.
  • the present invention has succeeded in establishing an artificial catalyst system based on the concept of catalytic medicine for the first time in the world, and opens the way to new medicine that is essentially different from the conventional medical concept of regulating the function of endogenous enzymes. Is.
  • siRNA sequence DNA / RNA binding molecule SEQ ID NO: 11-20 ⁇ 223> Artificially synthesized primer sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)

Abstract

 染色体局在性求核触媒と染色体局在性アシル化剤の組み合わせを用いた合成的染色体アシル化という手法で、生体内のヒストンアシル化機能と置き換えられる人工触媒システムを確立することに成功した。

Description

生体内のアシル化機能と置き換えられる人工触媒システム
 本発明は、生体内のアシル化機能と置き換えられる人工触媒システムに関し、特に、アセチル化機能またはマロニル化機能と置き換えられる人工触媒システムに関する。
 生体内におけるタンパク質翻訳後修飾は生体機能制御において大きな役割を担っている。翻訳後修飾にはメチル化、リン酸化など種々の反応があるが、代表的な例としてヒストンのアセチル化がある。ヒストンは、染色体を構成する主要なタンパク質であり、DNAを折りたたんで核内に収納する役割を持つだけでなく、ヒストン中のリジン残基がヒストンアセチル化酵素によるアセチル化やヒストン脱アセチル化酵素による脱アセチル化を受けることで、染色体構造とそれに伴う遺伝子転写の動的制御に積極的に関与している(非特許文献1)。
 ヒストンのアセチル化の亢進が遺伝子転写の亢進につながることから、ヒストン脱アセチル化酵素を阻害することによりがん抑制遺伝子の転写を促進する抗がん剤の開発が行われてきている。その代表例として、皮膚T細胞リンパ腫の薬剤であるZolinzaが挙げられる(非特許文献2)。
 疾病の治療を目的とした低分子医薬の多くは、生体が内在的に持つ酵素の機能調節、特に阻害によってその薬効を発揮する。しかしながら、このような作用を持つ低分子医薬を用いた手法では、酵素自体の欠損や失活が疾病の原因である場合、その治療効果が期待できないという問題がある。例えば、ある種のB細胞リンパ腫では内在性ヒストンアセチル化酵素が失活しているため、ヒストン脱アセチル化酵素阻害剤による処置では、アセチル化の亢進が期待できないことが危惧されている(非特許文献3)。
 さらに、最近になり、ヒストンにおけるアセチル化以外のアシル化修飾として、マロニル化とスクシニル化が見出され、これらの修飾がヒストンの構造や機能において重要な役割を担っていることが示唆されている(非特許文献4)。
Brownell, J. E. et al., Cell 1996, 84, 843-851 Richon, V. M. et al., Proc. Natl. Acad. Sci. USA 1996, 93, 5705-5708 Pasqualucci, L. et al., Nature 2011, 471, 189-195 Xie, Z. et al., Mol Cell Proteomics. 2012 May;11(5), 100-107
 細胞は統合された化学反応の場であり、生命活動は触媒の一種である酵素の活性によって支えられている。従って、仮に、生体内の酵素機能と置き換えられる人工触媒システムが開発できれば、上記のような酵素の欠損や失活に起因する疾患の治療を効果的に行うことが可能となる。そこで、本発明は、生体内の酵素機能と置き換えられる人工触媒システムを開発し、当該システムを細胞内に導入することにより、「触媒医療」という新たな概念に基づく医療を実現することを目的とする。この「触媒医療」の一例として、本発明は、生体内のヒストンアシル化機能と置き換えられる人工触媒システムを提供することを目的とする。
 本発明者らは、上記課題の解決のため、まず、生体内のヒストンアシル化機能の中でもアセチル化機能について、人工的に再構築を試みた。触媒の一例として求核触媒として広く使用されている4-ジメチルアミノピリジン(DMAP)を、アセチル化剤の一例として水中で1級アミンを温和な条件でアセチル化することが知られているN-メトキシジアセトアミド(NMD)を選択し、これら分子の組み合わせで細胞を処理し、ヒストンを含む染色体タンパク質のアセチル化が亢進されるか否かにつき検証を行った。しかしながら、これら分子の組み合わせでは、細胞質に存在するタンパク質については高度にアセチル化されるものの、ヒストンを含む染色体タンパク質のアセチル化は亢進されなかった。また、これら分子の細胞内局在を検証したところ、この結果と一致して、核内および染色体への集積は認められなかった。
 そこで、本発明者らは、細胞内において染色体近傍にアクセスする能力をこれら分子に付与するための改良を試みた。具体的には、染色体中のDNAがポリアニオンであることに着目し、これら分子にポリカチオンとしての性質を付与することで、静電的相互作用により、染色体へアクセスする能力を向上させることができるか否かにつき検証した。ここで塩基性触媒である4-ジメチルアミノピリジン(DMAP)はそれ自体が水中でカチオン性を示すことから、リンカーを介して複数結合させ、カチオンとしての性質を強化した分子を作製した。そして、作製した分子を細胞内に導入し、その局在を検証したところ、4-ジメチルアミノピリジンを3つ結合すると部分的な染色体局在を示し、5つ以上結合すると顕著な染色体局在を示すことが判明した。
 一方、アセチル化剤であるN-メトキシジアセトアミド(NMD)についてはそれ自体が水中でカチオン性を示さないことから、別途、カチオン性を示す分子を結合させることとした。カチオン性ポリマーであるポリアルギニンは、細胞膜透過性ペプチドとして知られているが、染色体への局在性は知られていない。そこで、ポリアルギニンをリンカーを介してN-メトキシジアセトアミドに結合させ、その細胞内局在を検証したところ、合成した分子が染色体への局在性を示すことが判明した。
 「染色体局在性求核触媒」と「染色体局在性アセチル化剤」の双方の作製に成功したことから、本発明者らは、次いで、それらの染色体タンパク質に対するアセチル化能につき検証を行った。その結果、これら分子の組み合わせによる処理で、内因性のヒストンアセチル化酵素非依存的に、細胞種を問わず、ヒストンを含む染色体タンパク質特異的にアセチル化が亢進することが判明した(このアセチル化を「合成的染色体アセチル化」と称する)。ヒストンについては、特にヒストンH3の球状領域に存在するリジンのアセチル化が顕著に亢進した。
 さらに、これら分子の組み合わせによる合成的染色体アセチル化の細胞増殖への影響を解析したところ、驚くべきことに、正常細胞の細胞周期には影響を与えずに、がん細胞特異的に細胞周期の停止が促進されることが判明した。このがん細胞特異的な細胞周期の停止は、がん抑制遺伝子であるp53依存的であり、がん細胞ではp53とサイクリン依存性キナーゼ阻害因子であるp21およびp27の発現が誘導されていた。
 こうして本発明者らは、染色体局在性求核触媒と染色体局在性アセチル化剤の組み合わせを用いた合成的染色体アセチル化という手法で、生体内のヒストンアセチル化機能と置き換えられる人工触媒システムを確立することに成功した。
 この成功を受けて、本発明者らは、さらに、ヒストンマロニル化機能と置き換えられる人工触媒システムの確立をも試みた。具体的には、マロニル化剤の一例として4-マロニルオキシ安息香酸アミドを選択し、上記アセチル化剤の場合と同様に、リンカーを介してポリアルギニンを結合させて、「染色体局在性マロニル化剤」を作製した。そして、染色体局在性マロニル化剤と上記の染色体局在性求核触媒を組み合わせて、染色体タンパク質に対するマロニル化能の検証を行った。その結果、これら分子の組み合わせによる処理で、ヒストンH3とH4においてリジンのマロニル化が顕著に生じることが判明した(このマロニル化を「合成的染色体マロニル化」と称する)。
 以上から、本発明者らは、染色体局在性求核触媒と染色体局在性アシル化剤の組み合わせを用いた「合成的染色体アシル化」により、生体内のアシル化機能を置き換えることが可能であることを見出すとともに、この人工触媒システムを利用することで、生体内のアシル化機能の低下に起因する疾患の治療などを行うことが可能であることを見出し、本発明を完成するに至った。
 本発明は、染色体タンパク質を特異的にアシル化するための人工触媒システム、当該人工触媒システムに用いられる分子、並びに当該人工触媒システムの医療などへの応用に関するものであり、より詳しくは、以下の発明を提供するものである。
 (1)下記(a)の化合物と下記(b)の化合物の組み合わせを含む、染色体タンパク質をアシル化するための薬剤。
(a)染色体局在性および求核触媒活性を有する化合物
(b)染色体局在性およびリジンをアシル化する活性を有する化合物
 (2)(a)の化合物が、染色体局在に有効な数のカチオン性求核触媒が結合した構造を有する、(1)に記載の薬剤。
 (3)(a)の化合物におけるカチオン性求核触媒がリンカーを介して結合している、(2)に記載の薬剤。
 (4)(a)の化合物におけるカチオン性求核触媒が4-ジメチルアミノピリジンである、(2)または(3)に記載の薬剤。
 (5)(a)の化合物が、5以上の4-ジメチルアミノピリジンが結合した構造を有する、(4)に記載の薬剤。
 (6)(a)の化合物が、下記のいずれかの構造を有する、(1)に記載の薬剤。
Figure JPOXMLDOC01-appb-C000009
(nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
Figure JPOXMLDOC01-appb-C000010
(nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
 (7)(b)の化合物が、アシル化剤とカチオン性化合物とが結合した構造を有する、(1)~(6)のいずれかに記載の薬剤。
 (8)(b)の化合物におけるアシル化剤とカチオン性化合物とがリンカーを介して結合している、(7)に記載の薬剤。
 (9)(b)の化合物におけるカチオン性化合物がカチオン性ポリマーである、(7)または(8)に記載の薬剤。
 (10)(b)の化合物におけるカチオン性ポリマーがポリアルギニンである、(9)に記載の薬剤。
 (11)(b)の化合物におけるアシル化剤がアセチル化剤である、(7)~(10)のいずれかに記載の薬剤。
 (12)(b)の化合物におけるアセチル化剤がN-メトキシジアセトアミドである、(11)に記載の薬剤。
 (13)(b)の化合物が下記構造を有する、(12)に記載の薬剤。
Figure JPOXMLDOC01-appb-C000011
(nは、化合物が染色体局在性およびリジンをアセチル化する活性を有する範囲内での自然数を示す)
 (14)(b)の化合物におけるアシル化剤がマロニル化剤である、(7)~(10)のいずれかに記載の薬剤。
 (15)(b)の化合物におけるマロニル化剤が4-マロニルオキシ安息香酸アミドである、(14)に記載の薬剤。
 (16)(b)の化合物が下記構造を有する、(15)に記載の薬剤。
Figure JPOXMLDOC01-appb-C000012
(nは、化合物が染色体局在性およびリジンをマロニル化する活性を有する範囲内での自然数を示す)
 (17)染色体局在性および求核触媒活性を有する化合物。
 (18)染色体局在に有効な数のカチオン性求核触媒が結合した構造を有する、(17)に記載の化合物。
 (19)カチオン性求核触媒がリンカーを介して結合している、(18)に記載の化合物。
 (20)カチオン性求核触媒が4-ジメチルアミノピリジンである、(18)または(19)に記載の化合物。
 (21)染色体局在に有効な数が5以上である、(20)に化合物。
 (22)下記のいずれかの構造を有する、(17)に記載の化合物。
Figure JPOXMLDOC01-appb-C000013
(nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
Figure JPOXMLDOC01-appb-C000014
(nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
 (23)染色体局在性およびリジンをアシル化する活性を有する化合物。
 (24)アシル化剤とカチオン性化合物とが結合した構造を有する、(23)に記載の化合物。
 (25)アシル化剤とカチオン性化合物とがリンカーを介して結合している、(24)に記載の化合物。
 (26)カチオン性化合物がカチオン性ポリマーである、(24)または(25)に記載の化合物。
 (27)カチオン性ポリマーがポリアルギニンである、(26)に記載の化合物。
 (28)アシル化剤がアセチル化剤である、(24)~(27)のいずれかに記載の化合物。
 (29)アセチル化剤がN-メトキシジアセトアミドである、(28)に記載の化合物。
 (30)下記構造を有する、(29)に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(nは、化合物が染色体局在性およびリジンをアセチル化する活性を有する範囲内での自然数を示す)
 (31)アシル化剤がマロニル化剤である、(24)~(27)のいずれかに記載の化合物。
 (32)マロニル化剤が4-マロニルオキシ安息香酸アミドである、(31)に記載の化合物。
 (33)下記構造を有する、(32)に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
(nは、化合物が染色体局在性およびリジンをマロニル化する活性を有する範囲内での自然数を示す)
 (34)(17)~(22)のいずれかに記載の化合物と(28)~(30)のいずれかに記載の化合物との組み合わせを含む、がん細胞においてp53、p21またはp27の発現を誘導するための薬剤。
 (35)(17)~(22)のいずれかに記載の化合物と(28)~(30)のいずれかに記載の化合物との組み合わせを含む、染色体タンパク質のアセチル化の低下に起因する疾患を治療するための薬剤。
 (36)染色体タンパク質のアセチル化の減少に起因する疾患ががんである、(35)に記載の薬剤。
 本発明により、染色体局在性求核触媒と染色体局在性アシル化剤との組み合わせを用いた合成的染色体アシル化という手法による人工触媒システムが提供された。
 本発明の人工触媒により誘導されるアセチル化は、生体内のヒストンアセチル化酵素に非依存的である。生体内で他のタンパク質との相互作用などを通じて機能を発揮しているヒストンアセチル化酵素の主要な機能を、求核触媒とアセチル化剤とを染色体へ移行させて合成的染色体アセチル化を行うという人工的な触媒システムで置き換えることができたということは、それ自体、極めて画期的で驚くべきことである。
 本発明の人工触媒システムによれば、例えば、染色体タンパク質のアセチル化の低下に起因する疾患の治療を効果的に行うことが可能となる。この人工触媒システムによるアセチル化の亢進は細胞の種類を問わないにも拘わらず、細胞周期の停止などの作用についてはがん細胞に特異的であった。また、アセチル化が亢進される部位は、従来のヒストン脱アセチル化酵素阻害剤の作用によりアセチル化が亢進される部位と異なっていた。従って、本発明の人工触媒システムを用いた医療によれば、新規かつ特異的な薬理作用も期待できる。
 本発明の人工触媒システムは、ヒストンのアセチル化のみならず、マロニル化をも誘導することができた。従って、このシステムの基本原理に基づけば、ヒストンに対して、アセチル化およびマロニル化を含め広くアシル化を行うことが可能であると考えられる。
4-ジメチルアミノピリジン(DMAP)およびN-メトキシジアセトアミド(NMD)の構造とそれらの組み合わせによるアセチル化の亢進を示す図である。Aは、DMAPとNMDの構造を示す図であり、Bは、細胞抽出液中でのアセチル化を示す写真であり、Cは、ヒトMCF7細胞でのアセチル化を示す写真である。 染色体局在性求核触媒の特性を示す図である。Aは、XDMAP-FITCの構造を示す図であり、Bは、ヒトHela細胞における局在を示す写真であり、Cは、ヒトMCF7細胞における局在を示す写真であり、Dは、ヒトHela細胞でのアセチル化を示す写真である。 染色体局在性アセチル化剤の特性を示す図である。Aは、8R-FITC、3NMD-FITC、3NMD-8R-FITCの構造を示す図であり、Bは、ヒトHela細胞における8R-FITCの局在を示す写真であり、Cは、ヒトMCF7細胞における局在を示す写真である。 本発明の人工触媒システム(染色体局在性求核触媒と染色体局在性アセチル化剤の組み合わせ)による染色体タンパク質選択的アセチル化の亢進を示す図である。Aは、8DMAPと3NMD-8Rの構造を示す図であり、Bは、ヒトMCF7細胞での染色体選択的アセチル化を示す写真である。 本発明の人工触媒システムによるアセチル化の内在性HAT非依存性を示す図である。Aは、ヒトMCF7細胞におけるHATノックダウンの結果を示す写真であり、Bは、ヒトHela細胞におけるHATノックダウンの結果を示す写真である。 本発明の人工触媒システムによるアセチル化の細胞非特異性を示す図である。ヒトMCF7細胞、ヒトHela細胞、およびヒトRPE-1細胞における比較を示した。また、ヒストン脱アセチル化酵素阻害剤であるSAHAの作用との比較も併せて示した。 本発明の人工触媒システムによるアセチル化の亢進の細胞周期への影響を示す図である。Aは、ヒトMCF7細胞における細胞周期解析の結果を示すグラフであり、Bは、ヒトRPE1細胞における細胞周期解析の結果を示すグラフであり、Cは、p53ノックダウンの評価を示す写真であり、Dは、p53ノックダウンによる細胞周期解析の結果を示すグラフである。 本発明の人工触媒システムによるアセチル化のがん細胞株におけるp53およびその関連遺伝子の発現への影響を示す図である。Aは、p53mRNAレベルの解析の結果を示すグラフであり、Bは、p53、p21、およびp27のタンパク質レベルの解析の結果を示す写真であり、Cは、p21およびp27のmRNAレベルの解析の結果を示すグラフであり、Dは、p53ノックダウンによるp21およびp27のmRNAレベルの解析の結果を示すグラフである。 本発明の人工触媒システム(アセチル化)のまとめの図である。 本発明の人工触媒システム(染色体局在性求核触媒と染色体局在性マロニル化剤の組み合わせ、または染色体局在性求核触媒と染色体局在性アセチル化剤との組み合わせ)による染色体タンパク質選択的アシル化を示す図である。図右は、マロニル化を検出した結果を示す写真であり、図左は、アセチル化を検出した結果を示す写真である。各レーンの説明は次の通りである。1:化合物処理なし、2:3Mal-BA-8Rのみ添加、3:L-8DMAPと3Mal-BA-8Rを添加、4:3NMD-8Rのみ添加、5:L-8DMAPと3NMD-8Rを添加。
 <染色体局在性求核触媒>
 本発明は、染色体局在性求核触媒、すなわち、染色体局在性および求核触媒活性を有する化合物を提供する。本発明の染色体局在性求核触媒は、本発明の人工触媒システムの一つの構成要素であり、後述の染色体局在性アシル化剤との組み合わせで細胞に導入した場合に、染色体タンパク質のアシル化を亢進させることができる。
 ここで「染色体局在性」とは、細胞内に導入した場合に、他の領域(例えば、細胞質)よりも染色体に多く存在するようになる性質を意味する。化合物が染色体局在性を有するか否かは、当該化合物にフルオレセインイソチオシアネート(FITC)などの蛍光色素を結合し、それを細胞内に導入して、蛍光顕微鏡で細胞を観察することにより、評価することができる。また、「求核触媒」とは、求核攻撃を介して触媒作用を発現する反応触媒を意味し、「求核触媒活性」とは、当該触媒の求核攻撃を介した触媒作用を意味する。
 本実施例において、ポリカチオン性を求核触媒に付与することにより、当該求核触媒に染色体局在性を付与することができることが判明した。本発明の染色体局在性求核触媒は、典型的には、染色体局在に有効な数のカチオン性求核触媒が結合した構造を有する。しかしながら、本発明の染色体局在性求核触媒の活性の本質は、染色体局在性および求核触媒活性にあるため、両活性を有する限り、カチオン性求核触媒が他のカチオン性化合物に結合した構造を有していてもよく、また、カチオン性を示さない求核触媒が他のカチオン性化合物に結合した構造を有していてもよい。上記結合は、リンカーを介した結合であってもよい。
 本発明において用いられる「カチオン性求核触媒」としては、例えば、4-ジメチルアミノピリジン(DMAP)などのピリジン系触媒、1-メチルイミダゾールなどのイミダゾール系触媒、1,4-ジアザビシクロ[2.2.2]オクタンなどのビシクロオクタン系触媒、トリブチルフォスフィンなどのフォスフィン系触媒が挙げられるが、これらに制限されない。本実施例において、カチオン性求核触媒として4-ジメチルアミノピリジンを用いる場合には、それを5以上結合すると顕著な染色体局在性を示すことが判明した。従って、本発明の染色体局在性求核触媒としては、5以上の4-ジメチルアミノピリジンが結合した構造を有する化合物が好ましい。より好ましくは、6以上の4-ジメチルアミノピリジンが結合した構造を有する化合物であり、さらに好ましくは7以上の4-ジメチルアミノピリジンが結合した構造を有する化合物であり、さらに好ましくは8以上の4-ジメチルアミノピリジンが結合した構造を有する化合物である。
 複数の4-ジメチルアミノピリジンをリンカーを介して結合させる場合には、求核触媒活性の維持などの観点から、4-ジメチルアミノピリジンにおけるメチル基の炭素またはピリジンの3位若しくは5位でリンカーと結合した構造を有していることが好ましく、メチル基の炭素でリンカーと結合した構造を有していることが特に好ましい。
 本実施例に好ましいリンカーの一例を示したが、リンカーとしては、合成される化合物の染色体局在性と求核触媒活性を阻害しない限り、特に制限はない。従って、当業者であれば、他のリンカーを適宜選択または合成して本発明に利用することができる。利用可能な他のリンカーとしては、例えば、環状ペプチドリンカー、ポリアミドアミンリンカー、N-メチルペプチドリンカー、ペプトイドリンカー、ROMPポリマーリンカーが挙げられる。他のリンカーの構造は無数に考えられるが、以下に、いくつかの構造の代表例を示した。
Figure JPOXMLDOC01-appb-C000017
(RとR'は任意の基であり、同一であっても異なっていてもよい。nは構造の繰り返し数を示す。)
 カチオン性求核触媒は、例えば、上記リンカー構造のRまたはR'に、直接またはさらなるリンカー構造を介して間接的に結合させることができる。最終的に合成される化合物が染色体局在性および求核触媒活性を有する限り、RおよびR'の全てにカチオン性求核触媒を結合させる必要はない。また、ROMPポリマーリンカーにおける構造の繰返しは、最終的に合成される化合物が染色体局在性および求核触媒活性を有する範囲内で行えばよい。
 本発明の染色体局在性求核触媒は、全体として、5つの4-ジメチルアミノピリジンにより発揮されるポリカチオン性と同等またはそれ以上である限り、ポリカチオン性の一部または全部を他のカチオン性化合物に依存してもよい。他のカチオン性化合物としては、例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、イミノ基、グアニジノ基などを有する化合物が挙げられる。このような化合物としては、例えば、アルギニン、モノメチルリジン、ジメチルリジンなどの塩基性アミノ酸やその修飾体、それらの単独重合体(ポリアルギニン、ポリ(モノメチルリジン)、ポリ(ジメチルリジン)など)や共重合体、ポリエチレンイミン、DNA結合色素が挙げられる。上記のカチオン性化合物と結合させれば、カチオン性を示さない求核触媒に染色体局在性を付与することもできる。
 本発明の染色体局在性求核触媒としては、直鎖状構造を有する下記化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000018
 ここで、nは化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す。通常、nは、4~14であり、好ましくは6~9である。
 本実施例においては、一例として、直鎖状構造を有する下記化合物を用いている。
Figure JPOXMLDOC01-appb-C000019
 本発明の染色体局在性求核触媒としては、環状構造を有する下記化合物もまた好適に用いることができる。
Figure JPOXMLDOC01-appb-C000020
 ここで、nは化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す。通常、nは、4~14であり、好ましくは6~9である。
 本実施例においては、一例として、環状構造を有する下記化合物を用いている。
Figure JPOXMLDOC01-appb-C000021
 なお、上記化合物にはリンカーとしてポリリジンが用いられているが、このポリリジンの側鎖のε-アミノ基は修飾されている。従って、これら化合物において、ポリリジン構造自体は、もはやカチオン性を発揮していないことに留意されたい。
 <染色体局在性アシル化剤>
 本発明は、染色体局在性アシル化剤、すなわち、染色体局在性およびリジンをアシル化する活性を有する化合物を提供する。本発明の染色体局在性アシル化剤は、本発明の人工触媒システムの他の一つの構成要素であり、上記の染色体局在性求核触媒との組み合わせで細胞に導入した場合に、染色体タンパク質のアシル化を亢進させることができる。
 本実施例において、ポリカチオン性をアシル化剤に付与することにより、当該アシル化剤に染色体局在性を付与することができることが判明した。従って、本発明の染色体局在性アシル化剤は、アシル化剤とカチオン性化合物とが結合した構造を有する。上記結合は、リンカーを介した結合であってもよい。
 「カチオン性化合物」としては、アシル化剤に染色体局在性を付与し得る限り特に制限はなく、例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、イミノ基、グアニジノ基などを有する化合物が挙げられる。カチオン性化合物としては、カチオン性ポリマーが好ましく、例えば、アルギニン、モノメチルリジン、ジメチルリジンなどの塩基性アミノ酸やその修飾体の単独重合体(ポリアルギニン、ポリ(モノメチルリジン)、ポリ(ジメチルリジン)など)や共重合体、ポリエチレンイミン、DNA結合色素が挙げられる。
 本発明において用いられる「アシル化剤」には、例えば、アセチル化剤およびマロニル化剤が含まれるが、これら以外のアシル化剤であっても良い。目的とするアシル化の種類に応じて、アシル化剤を適宜選択することができる。
 「アセチル化剤」としては、例えば、N-メトキシジアセトアミド、チオ酢酸フェニル、酢酸4-ニトロフェニルが挙げられるが、これらに制限されない。染色体局在性アセチル化剤の作製においては、これらアセチル化剤の構造が複数含まれていてもよい。
 N-メトキシジアセトアミドをリンカーを介してカチオン性化合物と結合させる場合には、アセチル化活性の維持などの観点から、N-メトキシジアセトアミドにおけるメトキシ基の炭素でリンカーと結合した構造を有していることが好ましい。
 「マロニル化剤」としては、例えば、4-マロニルオキシ安息香酸アミド、チオマロン酸フェニル、マロン酸4-ニトロフェニル挙げられるが、これらに制限されない。染色体局在性マロニル化剤の作製においては、これらマロニル化剤の構造が複数含まれていてもよい。
 4-マロニルオキシ安息香酸アミドをリンカーを介してカチオン性化合物と結合させる場合には、マロニル化活性の維持などの観点から、4-マロニルオキシ安息香酸アミドにおけるアミド基でリンカーと結合した構造を有していることが好ましい。
 本実施例に好ましいリンカーの一例を示したが、リンカーとしては、合成される化合物の染色体局在性とリジンをアシル化する活性を阻害しない限り、特に制限はない。従って、当業者であれば、他のリンカーを適宜選択または合成して本発明に利用することができる。利用可能な他のリンカーとしては、例えば、アルキルリンカー、オリゴエチレングリコールリンカー、ペプチドリンカーが挙げられる。他のリンカーの構造は無数に考えられるが、以下に、いくつかの構造の代表例を示した。
Figure JPOXMLDOC01-appb-C000022
(Rは任意の基であり、nは構造の繰り返し数を示す。)
 これらの例において、リンカーの一端は、アセチル化剤であるN-メトキシジアセトアミドを結合させた構造として表現したが、他のアシル化剤を結合させてもよい。カチオン性化合物は、例えば、リンカーの両端のうち、アシル化剤が結合した端と反対の端に、直接またはさらなるリンカー構造を介して間接的に結合させることができる。ペプチドリンカーにおいては、繰り返し構造を有するアミノ酸が塩基性アミノ酸であり、かつ、当該繰り返し構造により染色体局在性が担保できる場合、アシル化剤が結合した端と反対の端に、さらなるカチオン性化合物を結合させる必要はない。
 本発明の染色体局在性アシル化剤としては、下記構造を有するアセチル化剤またはマロニル化剤を好適に用いることができる。
 [アセチル化剤]
Figure JPOXMLDOC01-appb-C000023
 ここで、nは化合物が染色体局在性およびリジンをアセチル化する活性を有する範囲内での自然数を示す。通常、nは、5~15であり、好ましくは5~10である。
 本実施例においては、アセチル化剤の一例として、下記構造を有する化合物を用いている。
Figure JPOXMLDOC01-appb-C000024
 [マロニル化剤]
Figure JPOXMLDOC01-appb-C000025
 ここで、nは化合物が染色体局在性およびリジンをマロニル化する活性を有する範囲内での自然数を示す。通常、nは、5~15であり、好ましくは5~10である。
 本実施例においては、マロニル化剤の一例として、下記構造を有する化合物を用いている。
 <組み合わせ剤>
 -染色体タンパク質アシル化剤-
 本実施例において、染色体局在性求核触媒と染色体局在性アシル化剤との組み合わせを細胞に導入した場合に、染色体タンパク質のアシル化を亢進させることができることが見出された。従って、本発明は、上記染色体局在性求核触媒と上記染色体局在性アシル化剤との組み合わせを含む、染色体タンパク質をアシル化するための薬剤を提供する。また、本発明は、当該組み合わせを用いる、染色体タンパク質をアシル化する方法を提供する。アシル化される「染色体タンパク質」は、主としてヒストン(特にヒストンH3およびH4)である。
 アセチル化を行う場合、ヒストンH3においては、特に、球状領域に存在するリジン(K56、K115、K122)のアセチル化が亢進される。アセチル化が亢進される領域が公知のヒストン脱アセチル化酵素阻害剤で処理した場合と異なることから(図6参照のこと)、本発明の染色体タンパク質アセチル化剤によれば、公知のヒストン脱アセチル化酵素阻害剤と異なる新たな作用をもたらすことができる。また、ヒストン以外の染色体タンパク質のアセチル化を亢進させることも可能である(図4B参照のこと)。
 染色体タンパク質のリジン残基のアシル化は、例えば、抗アセチル化リジン抗体や抗マロニル化リジン抗体を用いたウェスタンブロッティング法により評価することが可能である。特定のリジン残基(例えば、ヒストンH3のK56、K115、K122)のアシル化を評価する場合には、アシル化された当該特定のリジン残基に特異的な抗体を用いればよい。
 -p53などの発現誘導剤-
 また、本実施例においては、上記染色体タンパク質のアセチル化により、がん細胞において、がん抑制遺伝子であるp53並びにサイクリン依存性キナーゼ阻害因子であるp21およびp27の発現が誘導されることが見出された。従って、本発明は、上記染色体局在性求核触媒と上記染色体局在性アセチル化剤との組み合わせを含む、がん細胞においてp53、p21またはp27の発現を誘導するための薬剤を提供する。また、本発明は当該組み合わせを用いる、がん細胞においてp53、p21またはp27の発現を誘導する方法を提供する。
 ここで「発現」とは、mRNAレベルでの発現(転写)およびタンパク質レベルでの発現(翻訳)の双方を含む意である。発現を「誘導する」とは、上記組み合わせを作用させる前よりも発現のレベルが増加していることを意味する。
 mRNAレベルでの発現は、例えば、特異的なプライマーを用いたリアルタイムPCR法により、タンパク質レベルでの発現は、例えば、特異的な抗体を用いたウェスタンブロッティング法により、それぞれ評価することが可能である。
 なお、典型的なヒト由来のp53(遺伝子名TP53)のcDNAの塩基配列およびタンパク質のアミノ酸配列は、ENA(European Nucleotide Archive)データベース中の登録番号CAA26306に、典型的なヒト由来のp21/CIP1(遺伝子名CDKN1A)のcDNAの塩基配列およびタンパク質のアミノ酸配列は、ENAデータベース中の登録番号AAA16109に、典型的なヒト由来のp27/KIP1(遺伝子名CDKN1B)のcDNAの塩基配列およびタンパク質のアミノ酸配列は、ENAデータベース中の登録番号AAL78041に、それぞれ掲載されている。これら配列は例示であり、自然界において配列に個体差や変異が生じうることは理解されたい。
 -染色体タンパク質アセチル化の低下に起因する疾患の治療剤-
 本発明は、上記染色体局在性求核触媒と上記染色体局在性アセチル化剤との組み合わせを含む、染色体タンパク質のアセチル化の低下に起因する疾患を治療するための薬剤を提供する。また、本発明は、当該組み合わせを患者に投与することを含む、染色体タンパク質のアセチル化の低下に起因する疾患を治療する方法を提供する。
 本実施例において、当該組み合わせががん細胞特異的にその細胞周期を停止させる作用を有することが見出された。従って、本発明における「染色体タンパク質のアセチル化の低下に起因する疾患」は、好ましくはがんである。ある種のB細胞リンパ腫では内在性ヒストンアセチル化酵素が失活しているため、ヒストン脱アセチル化酵素阻害剤による処置では、アセチル化の亢進が期待できないことが危惧される(Pasqualucci, L. et al., Nature 2011, 471, 189-195)。本発明の治療剤によれば、内在性ヒストンアセチル化酵素が失活している場合でも、その機能を補うことが可能であり、従来のヒストン脱アセチル化酵素阻害剤ではなし得ない薬効を発揮することができる。
 また、本発明の治療剤は、他の抗がん剤や他のがん治療法(例えば、放射線療法、免疫療法)と併用してもよい。ヒストンのアセチル化がクロマチン構造を弛緩させることによりDNAの露出度を増大させ、DNA傷害性薬剤や放射線に対する染色体DNAの感受性を高めることが示唆されている(Oleinick et al., Int. J. Radiat. Biol. 1994, 66, 523-529、Gorisch SM, et al., J Cell Sci 2005, 118, 5825-5834、Camphausen K, et al. Int J Cancer 2005, 114, 380-366、Karagiannis TC & El-Osta A. Oncogene 2006, 25, 3885-3893、Kim MS, et al., Exp Cell Res 2005, 306, 94-102、Kim MS, et al., Cancer Res 2003, 63, 7291-7300、Piacentini P, et al., Virchows Arch 2006, 448, 797-804)。本発明の治療剤は、染色体タンパク質をアセチル化する活性を有し、クロマチン構造を弛緩させると考えられることから、DNAを標的とする薬剤(例えば、DNA傷害作用を有する抗がん剤)やDNAを標的とする治療法(例えば、放射線療法)と併用すれば、相乗効果が期待できる。
 上記染色体局在性求核触媒と上記染色体局在性アセチル化剤を治療剤として用いる場合には、これら化合物は、治療上の有用な特性を増進する補助部分と結合してもよい。代表的な有用な特性としては、例えば、標的領域(例えば、腫瘍)に対する化合物の送達を促進すること、標的領域において化合物の治療濃度を持続させること、化合物の薬物動態特性や薬力学的特性を改変すること、または化合物の治療指数または安全性プロフィールを改善すること、が挙げられる。また、好適な補助部分としては、例えば、標的領域を特異的に認識する抗体や標的領域に発現する受容体に対するリガンドを利用することができる。
 -製剤化および投与態様-
 本発明の染色体タンパク質アシル化剤を医薬として用いる場合には、有効成分である染色体局在性求核触媒と染色体局在性アシル化剤を、公知の製剤学的方法で製剤化することができる。本発明の薬剤が染色体局在性求核触媒と染色体局在性アシル化剤との「組み合わせを含む」とは、染色体局在性求核触媒と染色体局在性アシル化剤の双方を有効成分として含む単剤の形態であっても、染色体局在性求核触媒を有効成分として含む製剤と染色体局在性アシル化剤を有効成分とする製剤との併用剤の形態であってもよいことを意味する。
 製剤化において用いられる薬理学上許容される担体としては、例えば、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤あるいはその他の添加剤などが挙げられるが、これらに制限されない。上記有効成分は、治療目的などに応じて、錠剤、散剤、顆粒剤、カプセル剤、液剤などの各種形態とすることができる。また、リポソーム送達系の形態で投与することもできる。当該リポソームには、治療上の有用な特性を増進する上記補助部分(例えば、抗体やリガンドなど)を付加することもできる。
 患者への投与は、経口的な投与でも非経口的な投与でも可能である。非経口的な投与としては、例えば、静脈投与、動脈投与、筋肉内投与、胸腔内投与、腹腔内投与、標的部位(例えば、腫瘍)への直接投与などが挙げられる。本発明の薬剤が併用剤の場合には、各製剤は、同時に投与されてもよく、また、併用の効果を減殺しない範囲内で時間差をおいて投与されてもよい。
 投与量は、目的の疾患を治療するのに有効な量であれば特に制限はなく、患者の年齢、体重、症状、健康状態、疾患の進行状況などに応じて、適宜選択すればよい。投与頻度としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、1日あたりの投与量を、1日に1回で投与してもよいし、複数回に分けて投与してもよい。本発明の薬剤をヒトに投与する場合、有効成分の投与量の範囲は、1日当たり、通常、約0.01mg/kg体重~約500mg/kg体重、好ましくは、約0.1mg/kg体重~約100mg/kg体重である。ヒトに投与する場合、好ましくは、1日あたり1回、あるいは2~4回に分けて投与され、適当な間隔で繰り返すことが好ましい。
 なお、本発明の染色体タンパク質アシル化剤やp53などの発現誘導剤を試薬として用いる場合、上記有効成分の他、必要に応じて、滅菌水や生理食塩水、緩衝剤、保存剤など、試薬として許容される他の成分を含むことができる。当該試薬は、目的に応じた対象(例えば、細胞やその分画物、組織、実験動物など)に投与して、染色体タンパク質をアシル化させ、また、p53などの発現を誘導することができる。
 以下、合成例および実施例に基づいて本発明をより具体的に説明するが、本発明はそれらに限定されるものではない。
 [合成例1] 染色体局在性アシル化剤の合成
 (1)染色体局在性アセチル化剤の合成
Figure JPOXMLDOC01-appb-C000027
 (i)2-(2-(2-Azidoethoxy)ethoxy)ethan-1-ol(化合物3)
 トリエチレングリコール(10.0g, 66.6mmol)をテトラヒドロフラン(THF: 47.6ml)に溶解し、トリエチルアミン(NEt3: 7.12ml, 51.3mmol)を室温で加えたのち、反応液を氷冷した。そこにメタンスルホニルクロリド(MsCl: 1.84ml, 23.8mmol)をゆっくりと滴下したのち、室温で9時間撹拌した。反応液を濃縮後、残渣をエタノール(47.6ml)に溶解した。そこにアジ化ナトリウム(3.09g, 47.6mmol)を加え、11時間加熱還流した。室温まで冷却後、反応液を濃縮し残渣を酢酸エチルに溶解した。有機層を24mlの飽和食塩水で洗浄後、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2から1/4)で精製し、無色油状物質(化合物3, 2.80g, 16.0mmol, 67%収率)を得た。各種スペクトルは文献値(Amaral, S. P. et al., Org. Lett. 2011, 13, 4522-4525)と一致した。
 (ii)2-(2-(2-Azidoethoxy)ethoxy)ethyl 4-methylbenzenesulfonate(化合物4)
 化合物3(2.80g, 16.0mmol)を塩化メチレン(32.0ml)に溶解し、p-トルエンスルフォニルクロリド(TsCl: 3.66g, 19.2mmol)とトリエチルアミン(4.43ml, 32.0mmol)を加え室温で14時間撹拌した。1Mの塩酸水溶液を加え、水層を塩化メチレンで抽出し、集めた有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1から2/1)で精製し、無色油状物質(化合物4, 4.92g, 14.9mmol, 93%収率)を得た。各種スペクトルは文献値(Deng, L. et al., Org. Biomol. Chem. 2011, 9, 3188-3198)と一致した。
 (iii)Methyl 3,4,5-tris(2-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoate(化合物5)
 Methyl gallate(688mg, 3.73mmol)をN,N-ジメチルホルムアミド(DMF: 94.0ml)に溶解し、炭酸カリウム(5.16g, 37.3mmol)を加えた。そこにDMF(19.0ml)に溶解した化合物4(4.92g, 14.9mmol)を加えたのち、80℃で24時間撹拌した。室温まで冷却したのち、固体をろ過して除き、ろ液を濃縮した。残渣をt-ブタノールに溶解したのち再度濃縮した。残渣を塩化メチレンに溶解し、有機層を水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物(4.00g)を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1から1/4)で精製し、薄い黄色油状物質(化合物5, 2.30g, 3.51mmol, 94%収率)を得た。各種スペクトルは文献値(Amaral, S. P. et al., Org. Lett. 2011, 13, 4522-4525)と一致した。
 (iv)3,4,5-Tris(2-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoic acid(化合物6)
 化合物5(1.82g, 2.78mmol)をエタノール(77.3ml)に溶解し、1M水酸化カリウム水溶液(5.17ml, 5.17mmol)を加えて、2時間加熱還流した。室温まで冷却したのち、反応液を留去した。残渣を塩化メチレンに溶解し、そこに1M塩酸水溶液を水層が酸性(pH=1)を示すまで注意深く加えた。水層を塩化メチレンで抽出し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物(化合物6, 1.67g)を得た。得られた粗生成物は精製せずに次の反応に用いた。
 (v)Methyl(3,4,5-tris(2-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoyl)glycinate(化合物7)
 粗生成物6(1.36g)を塩化メチレン(10.6ml)に溶解し、グリシンメチルエステル塩酸塩(293mg, 2.33mmol)、N-(3-ジメチルアミノプロピル)-N′-エチルカルボジイミド塩酸塩(WSC: 447mg, 2.33mmol)、トリエチルアミン(0.646ml, 4.66mmol)、4-(ジメチルアミノ)ピリジン(DMAP: 25.9mg, 0.212mmol)を加えて室温で22時間撹拌した。1M塩酸水溶液を加えたのち、水層を塩化メチレンで抽出した。集めた有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物(1.72g)を得た。シリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=100/0から13/1)で精製し、薄い黄色油状物質(化合物7, 1.15g, 1.61mmol, 2工程71%収率)を得た。
 1H NMR(CDCl3, 500MHz) δ7.05(s, 2H), 6.76(t, J=5.2Hz, 1H), 4.16-4.14(m, 8H), 3.80(t, J=5.2Hz, 4H), 3.75(t, J=5.2Hz, 2H), 3.73(s, 3H), 3.68-3.66(m, 6H), 3.62-3.59(m, 12H), 3.32(t, J=4.9Hz, 6H); 13C NMR(CDCl3, 125MHz) δ170.4, 166.9, 152.4, 141.6, 128.7, 107.0, 77.2, 72.3, 70.6, 70.6, 70.6, 70.5, 70.4, 69.9, 69.9, 69.7, 68.9, 52.3, 50.5, 41.6; ESI-MS m/z 735 [M+Na]+.
 (vi)(3,4,5-Tris(2-(2-(2-azidoethoxy)ethoxy)ethoxy)benzoyl)glycine(化合物8)
 化合物7(319mg, 0.448mmol)をメタノール(4.48ml)に溶解し、1M水酸化ナトリウム水溶液(0.895ml, 0.895mmol)を加えて、室温で90分撹拌した。Amberlyst 15-DRYを反応液が酸性(pH=4)になるまで加えた。ろ過したのち、ろ液を濃縮して粗生成物(化合物8, 297mg)を得た。得られた粗生成物は精製せずに次の反応に用いた。
Figure JPOXMLDOC01-appb-C000028
 (vii)2-(Prop-2-yn-1-yloxy)isoindoline-1,3-dione(化合物9)
 プロパルギルブロミド(4.01g, 33.7mmol)をDMF(76.6ml)に溶解し、N-hydroxyphthalimide(5.00g, 30.7mmol)、1,8-diazabicyclo[5.4.0]undec-7-ene(DBU: 4.58ml, 30.7mmol)を加えて室温で1時間撹拌した。反応液を氷冷した1M塩酸水溶液(768ml)に注意深く注ぎ、生じた沈殿をろ取し、水、エタノール、ジエチルエーテルの順で洗浄して目的物を白色粉末(化合物9, 5.27g, 26.2mmol, 85%収率)として得た。各種スペクトルは文献値(Kim, J. N. et al., Synth. Commun. 1992, 22, 1427-1432)と一致した。
 (viii)O-(Prop-2-yn-1-yl)hydroxylammonium chloride(化合物10)
 ヒドラジン水和物(1.44g, 28.8mmol)と化合物9(5.27g, 26.2mmol)を混合し室温で5分撹拌したのち、ジエチルエーテル(26.2ml)を加えてさらに45分激しく撹拌した。生じた沈殿をろ過して除き、ジエチルエーテルで洗浄したのち、合わせたろ液に撹拌しながら2M塩酸(ジエチルエーテル溶液、19.0ml, 38.0mmol)を加えて、室温で3時間撹拌した。生じた沈殿をろ取し、ジエチルエーテルで洗浄して目的物を白色固体(化合物10, 2.76g, 25.6mmol, 98%収率)として得た。各種スペクトルは文献値(Banerjee, D. et al., ChemBioChem 2010, 11, 1273-1279)と一致した。
 (ix)N-Acetyl-N-(prop-2-yn-1-yloxy)acetamide(化合物11)
 化合物10(300mg, 2.79mmol)を塩化メチレン(2.79ml)に溶解して氷冷したのち、トリエチルアミン(1.55ml, 11.2mmol)、無水酢酸(Ac2O: 0.659ml, 6.97mmol)をゆっくりと加えたあと、反応液を室温で3時間撹拌した。ジエチルエーテルを加えて生じた沈殿をろ過して除き、ろ液を濃縮することで粗生成物(1.32g)を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1から3/2)で精製し、無色油状物質(化合物11, 298mg, 1.92mmol, 69%収率)を得た。
 1H NMR(CDCl3, 500MHz) δ4.65(d, J=2.4Hz, 2H), 2.59(t, J=2.4Hz, 1H), 2.36(s, 6H); 13C NMR(CDCl3, 125MHz) δ170.1, 78.2, 76.4, 62.9, 24.9; ESI-MS m/z 178 [M+Na]+.
Figure JPOXMLDOC01-appb-C000029
 (x)アジド化合物(化合物13)
 PD-10カラム(GEヘルスケア)にRink-Amide-AM resin(0.79mmol/g, 100mg, 0.079mmol)を計り取り、塩化メチレン(3ml)を加えて10時間震盪して樹脂を膨潤させた。吸引ろ過により塩化メチレンを除きDMF(3ml)で5回洗浄したのち、20%ピペリジン(DMF溶液, 2ml)を加えて30秒間震盪した。吸引ろ過し、さらに20%ピペリジン(DMF溶液, 2ml)を加えて10分間震盪した。吸引ろ過したのちDMF(3ml)で10回洗浄し、そこにFmoc-Arg(Pbf)-OH(314mg, 0.484mmol, Fmoc: 9-fluorenylmethyloxycarbonyl, Pbf: 2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl chloride)、O-(6-Chlorobenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate(HCTU: 189mg, 0.457mmol)、DMF(2ml)、iPr2NEt(0.0790ml, 0.453mmol)を加えて1時間震盪した。吸引ろ過したのち、DMF(3ml)で5回洗浄した。ピペリジンによるFmoc基の除去とFmoc-Arg(Pbf)-OHの縮合を8回繰り返し、最後に再びピペリジンによるFmoc基の除去を行うことで化合物12を得た。そこにHCTU(189mg, 0.457mmol)、DMF(2ml)に溶解した化合物8(331mg, 0.474mmol)、iPr2NEt(0.0790ml, 0.453mmol)を加えて2時間震盪した。吸引ろ過したのち、DMF(3ml)で5回洗浄し、さらにメタノール(3ml)で5回洗浄した。得られた樹脂をバイアルにとり、そこに水(0.125ml)、トリイソプロピルシラン(TIPS: 0.125ml)、トリフルオロ酢酸(TFA: 4.75ml)を加えて室温で90分間撹拌した。樹脂をろ過して除き、ろ液を濃縮したのち、残渣にジエチルエーテル(30ml)を加えて生じた沈殿をろ取して粗生成物を得た。HPLC(ODS, linear gradient; 10-90%アセトニトリル/0.1% TFA水溶液, 60分, 254nm, 10ml/分)で精製し、目的物を白色固体(化合物13, 36.8mg)として得た。HPLC保持時間27.6分。MALDI-TOF MS m/z Calcd: 1947.13 [M+H]+, Found: 1947.47.
 (xi)アセチル化剤(化合物1)
 化合物13(38.4mg)を水(5.41ml)、t-ブタノール(5.42ml)に溶解し、化合物11のt-ブタノール溶液(60mM, 1.97ml, 0.118mmol)を加えた。そこに別途調製した2mM銅触媒溶液(tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine(TBTA): 10.5mg, 0.0198mmolにt-ブタノール(2.46ml)、4mM CuSO4水溶液(2.46ml)を加えて調製、4.92ml)と25mMアスコルビン酸ナトリウム水溶液(25mM, 1.97ml, 0.0493mmol)を加え室温で撹拌した。4時間後さらに化合物11(18.0mg, 0.116mmol)、4mM銅触媒溶液(TBTA:10.5mg, 0.0198mmolにt-ブタノール(1.23ml)、8mM CuSO4水溶液(1.23ml)を加えて調製、2.46ml)、アスコルビン酸ナトリウム(9.8mg, 0.0495mmol)を加えて室温で2時間撹拌した。反応液を濃縮し、水(7ml)を加えて不溶物をろ過して除いたのち、ろ液をHPLC(ODS, linear gradient; 10-90%アセトニトリル/0.1% TFA水溶液, 60分, 254nm, 10ml/分)で精製して目的物を白色固体(化合物1, 36.7mg)として得た。HPLC保持時間26.3分。MALDI-TOF MS (CHCA) m/z Calcd: 2412.31 [M+H]+, Found: 2412.01.
 (2)染色体局在性マロニル化剤の合成
Figure JPOXMLDOC01-appb-C000030
 (i)4-hydroxy-N-(prop-2-yn-1-yl)benzamide(化合物S2)
 4-hydroxybenzoic acid(S1, 1.0g, 7.2mmol)をDMF(5ml)に溶解し、そこにN-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride(EDCI, 1.7g, 8.9mmol)、HOBT(0.5g, 4.7mmol)およびプロパルギルアミン(0.5ml, 7.2mmol)を加えて終夜撹拌した。溶媒を留去して粗生成物を得たのち、シリカゲルカラムクロマトグラフィー(クロロホルム/アセトン=8/1から4/1)で精製し、目的物を淡黄色固体(S2, 753.6mg, 60%収率)として得た。
 1H NMR(CD3OD, 400MHz) δ7.69(d, J=9.1Hz, 2H), 6.81(d, J=9.1Hz, 2H), 4.11(d, J=2.5Hz, 2H), 2.55(t, J=2.5Hz, 1H).
 (ii)benzyl(4-(prop-2-yn-1-ylcarbamoyl)phenyl)malonate(化合物S3)
 化合物S2(175.2mg, 1.0mmol)を2,2-dimethyl-1,3-dioxane-4,6-dione(144.1mg, 1.0mmol)と混合し、100度で2時間撹拌した。室温まで冷却したのち、アセトニトリル(5ml)、ベンジルアルコール(360μl, 3.0mmol)およびEDCI(372.0mg, 2.0mmol)を加えて、室温で8時間撹拌した。溶媒を留去したのち、残渣を酢酸エチルに溶解し、有期層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥、ろ過したのち、ろ液を濃縮して粗生成物を得た。HPLC(YMC-Pack ODS-AM(20mmI.D.x250) column, linear gradient; 1-90% アセトニトリル/0.1% TFA水溶液, 60分, 230nm, 10mL/分)で精製し、目的物を黄色固体(S3, 82.0mg, 0.23mmol, 23%収率)として得た。HPLC保持時間 30.0分。
 1H NMR(CDCl3, 400MHz) δ7.77(d, J=8.7Hz, 2H), 7.36(s, 5H), 7.12(d, J=8.7Hz, 2H), 6.16(s, 1H), 5.23(s, 2H), 4.22-4.25(dd, J=2.8, 5.5Hz, 2H), 3.65(s, 2H), 2.27(t, J=2.8Hz, 1H).
 (iii)Bn-3Mal-8R(化合物S5)
 化合物S4(16.0mg, 0.0056mmol)を水-tBuOH(1:1, 5.6ml)に溶解し、アルキンS3のアセトニトリル溶液(160mM, 0.29ml, 0.0448mmol)、別途調製したCu-TBTAの水-tBuOH溶液(CuSO4: TBTA=1:1, 1mM, 0.626ml, 0.0056mmol)、およびアスコルビン酸水溶液(50mM, 0.56ml, 0.0280mmol)を加えて4度で1時間撹拌したのち、HPLC(YMC-Pack ODS-AM(20mmI.D.x250) column, linear gradient; 30-50% アセトニトリル/0.1% TFA水溶液, 60分, 230nm, 10mL/分)で精製し、凍結乾燥後に目的物を白色固体(S5, 13.13mg, 60%収率)として得た。HPLC保持時間: 28.0分。
 (iv)3Mal-8R(化合物S6)
 Bn-3Mal-8R(S5, 1.9mg, 0.00049mmol)を水-メタノール(3:1, 0.8ml)に溶解し、10% Pd/C(0.6mg)を加えて、水素雰囲気下室温で1時間撹拌したのち、反応液をセライトろ過し、ろ液を濃縮することで粗生成物を得た。HPLC(YMC-Pack ODS-AM(10mmI.D.x250) column, linear gradient; 10-30% アセトニトリル/0.1% TFA水溶液, 60分, 230nm, 3mL/分)で精製し、凍結乾燥後に目的物を白色固体(S6, 0.51mg, 29%収率)として得た。
 MALDI-TOF MS (CHCA) m/z Calcd: 2731.33[M+H]+, Found: 2731.56, HPLC保持時間: 38.0分。
 [合成例2] 染色体局在性求核触媒の合成
Figure JPOXMLDOC01-appb-C000031
 (i)Methyl 3-(methyl-4-pyridylamino)propionate(化合物15)
 フラスコにアクリル酸メチル(9.00ml, 99.9mmol)、4-(methylamino)pyridine(化合物14, 541mg, 5.00mmol)を加え、85℃で19時間還流した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=15/1から10/1)で精製することで目的物を淡黄色の油状化合物(化合物15, 800mg, 4.12mmol, 82%収率)として得た。各種スペクトルは文献値(Bhattacharya, S. & Snehalatha, K. J. Chem. Soc., Perkin Trans. 2 1996, 2021-2025)と一致した。
 (ii)3-(Methyl-4-pyridylamino)propionic acid(化合物16)
 フラスコにmethyl 3-(methyl-4-pyridylamino)propionate(化合物15, 777mg, 4.00mmol)、メタノール(5.00ml)、2M水酸化ナトリウム水溶液(5.00ml, 10.0mmol)を加え、室温で9時間撹拌した。1N塩酸(7ml)を加え、pH7に調整した後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=1/1から2/3)で精製することで目的物を白色固体(化合物16, 680mg, 3.78mmol, 94%収率)として得た。各種スペクトルは文献値(Bhattacharya, S. & Snehalatha, K. J. Chem. Soc., Perkin Trans. 2 1996, 2021-2025)と一致した。
Figure JPOXMLDOC01-appb-C000032
 (iii)L-8DMAP(化合物2)
 Rink Amide AM resin(0.79mmol/g, 100mg, 0.079mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで8回洗浄後、それぞれ5当量のFmoc-L-Lys(Mtt)-OH(247mg, 0.395mmol, Mtt: 4-methyltrityl)、1-hydroxybenzotriazole(HOBt: 60.5mg, 0.395mmol)、N,N’-ジイソプロピルカルボジイミド(DIC: 0.0610ml, 0.395mmol)、DMF(3ml)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計7回行い、樹脂上にhepta-L-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことで、Mtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16(284mg, 1.58mmol)、HOBt(242mg, 1.58mmol)、DIC(0.247ml, 1.58mmol)、DMF(3ml)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS, 2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、氷浴中、ジエチルエーテルを加え、得られた沈殿をろ取し、組成生物を得た。HPLC(ODS, linear gradient; 10-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 10ml/分)により精製し、凍結乾燥することで目的物を白色固体(2, 42.0mg)として得た。HPLC保持時間15.3分。MALDI-TOF MS (CHCA) : m/z Calcd: 2211.33 [M+H]+, Found: 2211.59。
Figure JPOXMLDOC01-appb-C000033
 (iv)D-8DMAP(化合物S7):
 NovaPEG Rink Amide resin(0.45mmol/g, 222mg, 0.10mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで10回洗浄後、それぞれ4当量のFmoc-D-Lys(Mtt)-OH(250mg, 0.40mmol)、HOBt(61.3mg, 0.40mmol)、DIC(61.9μL, 0.40mmol)、DMF(3mL)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計7回行い、樹脂上にhepta-D-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことでMtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16 (360mg, 2.0mmol)、HOBt(306mg, 2.0mmol)、DIC(310μL, 2.0mmol)、DMF(3mL)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS, 2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、ジエチルエーテルを加え、得られた沈殿をろ取し、粗生成物を得た。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S7, 45.4mg)として得た。逆相HPLCによる保持時間=15.1分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 553.59[M+4H]4+, found: 553.59。
Figure JPOXMLDOC01-appb-C000034
 (v)L-5DMAP(化合物S8):
 NovaPEG Rink Amide resin(0.45mmol/g, 222mg, 0.10mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで10回洗浄後、それぞれ4当量のFmoc-L-Lys(Mtt)-OH(250mg, 0.40mmol)、HOBt(61.3mg, 0.40mmol)、DIC(61.9μL, 0.40mmol)、DMF(3mL)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計4回行い、樹脂上にtetra-L-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことでMtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16(225mg, 1.25mmol)、HOBt(191mg, 1.25mmol)、DIC(193μL, 1.25mmol)、DMF(3mL)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS、2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、ジエチルエーテルを加え、得られた沈殿をろ取し、粗生成物を得た。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S8, 35.2mg)として得た。逆相HPLCによる保持時間=14.3分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 447.61[M+3H]3+, found: 447.53。
 (vi)L-6DMAP(化合物S9):
 NovaPEG Rink Amide resin(0.45mmol/g, 222mg, 0.10mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで10回洗浄後、それぞれ4当量のFmoc-L-Lys(Mtt)-OH(250mg, 0.40mmol)、HOBt(61.3mg, 0.40mmol)、DIC(61.9μL, 0.40mmol)、DMF(3mL)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計5回行い、樹脂上にpenta-L-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことでMtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16(270mg, 1.50mmol)、HOBt(229mg, 1.50mmol)、DIC(232μL, 1.50mmol)、DMF(3mL)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS, 2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、ジエチルエーテルを加え、得られた沈殿をろ取し、粗生成物を得た。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S9, 57.8mg)として得た。逆相HPLCによる保持時間=14.5分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 408.50[M+4H]4+, found: 408.43。
 (vii)L-7DMAP(化合物S10):
 NovaPEG Rink Amide resin(0.45mmol/g, 222mg, 0.10mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで10回洗浄後、それぞれ4当量のFmoc-L-Lys(Mtt)-OH(250mg, 0.40mmol)、HOBt(61.3mg, 0.40mmol)、DIC(61.9μL, 0.40mmol)、DMF(3mL)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計6回行い、樹脂上にhexa-L-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことでMtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16(315mg, 1.75mmol)、HOBt(256mg, 1.75mmol)、DIC(271μL, 1.75mmol)、DMF(3mL)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS, 2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、ジエチルエーテルを加え、得られた沈殿をろ取し、粗生成物を得た。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S10, 57.6mg)として得た。逆相HPLCによる保持時間=14.6分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 481.05[M+4H]4+, found: 480.96。
Figure JPOXMLDOC01-appb-C000035
 (viii)H-8DMAP-OH(化合物S11)
 Fmoc-L-Lys(Mtt)-Alko-PEG resin(0.22mmol/g, 455mg, 0.10mmol)をPD-10カラム(GEヘルスケア)に計りとり、DMFで膨潤させた。20%ピペリジンのDMF溶液を加え10分撹拌することで、Fmoc基の除去を行った。DMFで10回洗浄後、それぞれ4当量のFmoc-L-Lys(Mtt)-OH(250mg, 0.40mmol)、HOBt(61.3mg, 0.40mmol)、DIC(61.9μL, 0.40mmol)、DMF(3mL)を加え、室温で1時間撹拌し、アミノ酸のカップリング反応を行った。同様に、Fmoc基の除去・カップリング反応の操作を計6回行い、樹脂上にH-octa-L-Lys(Mtt)を調製した。DMFで洗浄後、さらにジクロロメタンで5回洗浄し溶媒置換した。3% TFA, 5% TIPSのジクロロメタン溶液を加え、30秒撹拌を12回繰り返すことでMtt基を除去した。ジクロロメタンで洗浄後、DMFに溶媒置換し、リジン残基アミノ基に対してそれぞれ2.5当量の化合物16(360mg, 2.0mmol)、HOBt(306mg, 2.0mmol)、DIC(310μL, 2.0mmol)、DMF(3mL)を加え、室温で15時間撹拌した。DMFで洗浄後、メタノールで溶媒置換し、樹脂を真空乾燥した。得られた樹脂をバイアルに取り、2.5% TIPS, 2.5% 水のTFA溶液を加え、1時間撹拌し、ペプチドを樹脂から切り出した。溶媒を減圧留去し、ジエチルエーテルを加え、得られた沈殿をろ取し、粗生成物を得た。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S11, 192mg)として得た。逆相HPLCによる保持時間=14.6分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 585.86[M+4H]4+, found: 585.64。
 (ix)cyclo-L-8DMAP(化合物S12)
 化合物S11(163mg, 50μmol)、HATU(38mg, 100μmol)をDMF(100mL)に溶解したのち、DIEA(35μL, 200μmol)を加え、反応液を室温で3時間撹拌した。0.1% TFA水溶液(2mL)を加えた後、溶媒を減圧留去し、0.1% TFA水溶液(5mL)に再度溶解した。HPLC(Triart column, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 100分, 230nm, 3mL/分)により精製し、凍結乾燥することで目的物を白色固体(S12, 100mg)として得た。収率62%。逆相HPLCによる保持時間=15.3分(ODS column, 4.6x150mm, linear gradient; 0-100%アセトニトリル/0.1% TFA水溶液, 40分, 230nm, 0.9ml/分)。MS(ESI): m/z calcd: 581.36[M+4H]4+, found: 581.12。
 [実施例1] 染色体局在性アセチル化剤と染色体局在性求核触媒による染色体タンパク質のアセチル化並びにがん細胞特異的な細胞周期停止とその作用機序の解析
 (1)材料と方法
 (i)細胞培養と細胞分画
 Hela細胞とMCF-7細胞の培養は10% fetal bovine serum, 100U/ml penicillin, 100U/ml streptomycinを含むDulbecco’s modified Eagle’s Medium(DMEM)培地を用いた。細胞は37℃、5% CO2存在下で培養した。
 細胞分画は以下のように行った。約106個の細胞をトリプシン処理により培養ディッシュより剥がし、PBSでwash後、細胞ペレットを冷やしたcell lysis buffer[50mM Tris(pH=7.5), 300mM NaCl, 0.3% Triton X-100, protease inhibitor cocktail and 1mM PMSF]で懸濁し、30分氷上に置く。遠心(4℃, 1500rpmで2分間)後、上精を細胞質画分として回収する。一方、ペレットを2mM MgCl2とBenzonase(Novagen, 71206)を含むcell lysis bufferに懸濁し、30分氷上に置く。その後、4mM EDTAを加えて反応を止める。遠心(4℃, 15000rpmで15分間)後、上精を染色体画分として回収する。
 (ii)ウエスタンブロッティング
 タンパク質を4-20% SDS-PAGEゲルで分離し、PVDF膜に転写した後、TBSTに懸濁した5%スキムミルクによりブロッキングを行い、PVDF膜を1次抗体と反応を行った。用いた1次抗体は以下の通りである。Anti-Histone H3(acetyl K122) antibody(ab33309, Abcam), Acetylated-Lysine antibody(#9441, Cell Signaling), Anti-Histone H3(acetyl K56) antibody(ab76307, Abcam), Anti-acetyl Histone H3(Lys115)(#07-934, Millipore), Anti-P53(DO-1)(sc-126, Santa cruz), Anti-Histone H3(acetyl K9) antibody(ab4441, Abcam), Anti-Histone H3(acetyl K14) antibody(ab52946, Abcam), Anti-Acetyl-Histone H4(Ac-Lys16)(H9164, Sigma), Anti-Acetyl-Histone H4(Ac-Lys5)(SAB4500307, Sigma), anti-acetyl tubulin(T6793, Sigma), Anti-p21/WAF1/Cip1 Antibody(05-655, Millipore), Anti-p27(Kip1)(04-240, Millipore)。TBSTで洗浄後、化学発光検出試薬Luminata Forte Western HRP Substrate(Millipore)によりPVDF膜を処理し、ImageQuant LAS 4000(GE healthcare life sciences)で検出を行った。
 (iii)蛍光顕微鏡
 カバーグラス上に接着させた細胞にFITC付き化合物を加えて培養した後、PBSで洗浄し、3.7%ホルムアルデヒドで10分間固定し、PBSで2回洗浄後、蛍光顕微鏡(Axioplan2; Carl Zeiss)で観察および写真データの取得を行った。
 (iv)RNAiトランスフェクション
 Lipofectamine(R) RNAiMAX Transfection Reagent(Invitrogen)を用い、25%コンフルエンスのMCF-7またはHela細胞にCBP、p300、p53、およびコントロールとしてGL2のsiRNAを終濃度5nMで加え、37度で72時間培養した。siRNAの配列は以下に示す。
CBP-f:5'-CGGCACAGCCUCUCAGUCATT-3'(配列番号:1)
CBP-r:5'-UGACUGAGAGGCUGUGCCGTT-3'(配列番号:2)
p300-f:5'-UGACACAGGCAGGCUUGACUUTT-3'(配列番号:3)
p300-r:5'-AAGUCAAGCCUGCCUGUGUCATT-3'(配列番号:4)
hp53#1-f:5'-GACUCCAGUGGUAAUCUACTT-3'(配列番号:5)
hp53#1-r:5'-GUAGAUUACCACUGGAGUCTT-3'(配列番号:6)
hp53#2-f:5'-CUACUUCCUGAAAACAACGTT-3'(配列番号:7)
hp53#2-r:5'-CGUUGUUUUCAGGAAGUAGTT-3'(配列番号:8)
GL2-f:5'-CGUACGCGGAAUACUUCGATT-3'(配列番号:9)
GL2-r:5'-UCGAAGUAUUCCGCGUACGTT-3'(配列番号:10)
 (v)RNA抽出およびリアルタイムPCR法によるRNAの定量
 RNeasy MinElute Cleanup Kit(Qiagen)を用い、各細胞からRNAを抽出した。2μgのRNAと(Oligo(dT)20)をcDNA合成に用いた。リアルタイムPCR反応はLightCycler 480 SYBR Green I Master System(Roche)およびLightCycler480 System II(Roche)を用いて行った。ハウスキーピング遺伝子Actinを内部コントロールとして用いた。発現データはActinで正規化し、2-ΔΔCT法(Livak KJ & Schmittgen TD (2001) Methods 25: 402-408)を用いて解析を行った。3回の独立した実験を行い、各実験において、3ウェルにおける平均値を算出した。用いたプライマーの配列を以下に示す。
p53-f:5’-CCCAAGCAATGGATGATTTGA-3’(配列番号:11)
p53-r:5’-GGCATTCTGGGAGCTTCATCT-3’(配列番号:12)
p21-f:5’-GCGATGGAACTTCGACTTTGT-3’(配列番号:13)
p21-r:5’-GGGCTTCCTCTTGGAGAAGAT-3’(配列番号:14)
p27-f:5’-AGACGGGGTTAGCGGAGCAA-3’(配列番号:15)
p27-r:5’-TCTTGGGCGTCTGCTCCACA-3’(配列番号:16)
GAPDH-f:5’-GGTGAAGGTCGGAGTCAACG-3’(配列番号:17)
GAPDH-r:5’-TGGGTGGAATCATATTGGAACA-3’(配列番号:18)
Actin-f:5’-TTGCCGACAGGATGCAGAA-3’(配列番号:19)
Actin-r:5’-GCCGATCCACACGGAGTACT-3’(配列番号:20)
 (vi)細胞周期解析
 DMEM培地で培養した60-70%コンフルエンスの細胞に化合物を添加し、15-22時間培養した。サンプルの調整はBD cycle test plus DNA Reagent kit(BD Biosciences)を用いて行い、フローサイトメーターで解析を行った。
 (2)結果
 まずはじめに触媒として求核性触媒として広く使用されている4-ジメチルアミノピリジン(DMAP)、アセチル化剤として水中で1級アミンを温和な条件でアセチル化することが知られているN-メトキシジアセトアミド(NMD)を用いて検討を行った(Yasuo Kikugawa, et al., Tetrahedron Letters 1990, 31, 243-246)。ヒト乳がんMCF-7細胞の細胞抽出液(核画分)をこれらの化合物と混合し、室温において12時間反応を行ったところ、ヒストンH3およびH4のリジン残基アセチル化が促進された(図1A、B)。次に、MCF-7細胞をL-DMAPおよびNMDで3時間処理した後に、細胞抽出液を回収し、染色体画分(Chromatin)と細胞質画分(Cytoplasm)に分画した後、タンパク質のアセチル化レベルをウエスタンブロッティングにより評価した。その結果、細胞質画分に含まれるタンパク質群は高度にアセチル化されたのに対し、ヒストンを含む染色体画分中のタンパク質アセチル化は変化がなかった(図1C)。この結果から、L-DMAPおよびNMDはヒト培養細胞中でタンパク質のリジン残基のアセチル化を亢進できることが明らかになった。一方で、ヒストンを含む染色体タンパク質のアセチル化を亢進することはできなかったことから、L-DMAPまたはNMDが細胞内において、染色体近傍にアクセスしにくい可能性が示唆された。
 DMAPの細胞内局在を調べるために、L-DMAPにフルオレセインイソチオシアナート(FITC)を融合した化合物を合成した(図2A)。その結果、L-DMAP-FITCのシグナルは細胞質に主に集積しており、核内および染色体への集積は見られなかった(図2B、C)。塩基性アミノ酸であるリジンおよびアルギニンのクラスターは、細胞膜透過性ペプチドとして使われているが(Mitchell, D. J. et al., The journal of peptide research : official journal of the American Peptide Society 2000, 56, 318-325)、染色体への局在性は知られていない。同じく塩基性の触媒であるL-DMAPをクラスター化することにより細胞膜透過性を示すか否か、さらに染色体への局在性をも示すか否かの検討を行った。具体的には、L-DMAPが3、5、6、7、8個連結したものにFITCを融合した化合物を合成し、ヒト子宮頸がんHeLa細胞またはMCF-7細胞における細胞内局在を調べた(図2A)。その結果、L-DMAPの数が増えるほど、顕著な染色体局在が観察され、L-3DMAP-FITCは部分的に、L-5DMAP-FITC以上でほぼ完全に染色体へと局在化した(図2B、C)。
 次に、Hela細胞をL-8DMAPおよびNMDで3時間処理した後に、上述と同様に、細胞内のタンパク質のアセチル化レベルを評価した。しかし、ヒストンを含む染色体画分中のタンパク質アセチル化は変化がなかった(図2D)。
 次に、NMDの細胞内局在を調べるために、3NMDにFITCを融合した化合物を合成した(図3A)。その結果、3NMD-FITCのシグナルは細胞内全体に均一に存在しており、核内および染色体への集積は見られなかった(図3C)。8アルギニン(8R)は細胞膜透過性ペプチドとして知られており(Mitchell, D. J. et al., The journal of peptide research : official journal of the American Peptide Society 2000, 56, 318-325)、8DMAPと同様に水中でポリカチオン構造をとるため、染色体への集積が予想された。FITCを融合した8R-FITCを合成してHeLa細胞において細胞内局在を調べたところ、核内および染色体へと局在化した(図3B)。3NMDを染色体へと局在化させるため、3NMDを8Rと融合した化合物を合成し、MCF-7細胞における細胞内局在を調べたところ、予想通り、核内および染色体へと局在化することができた(図3C)。この結果から、以後、染色体局在アセチル化剤として3NMD-8Rを用いることとした。
 上記で開発した染色体局在触媒である8DMAPと染色体局在アセチル化剤である3NMD-8R(図4A)をMCF-7細胞に投与し、3時間培養後に、上述と同様に、細胞内のタンパク質のアセチル化レベルを評価した。その結果、細胞質画分に含まれるタンパク質群はほとんどアセチル化されなかったのに対し、ヒストンを含む染色体画分中のタンパク質が高度にアセチル化された(図4B)。ヒストンH3のN末端テイル領域および球状領域(globular domain)に存在するリジンに対するアセチル化特異的抗体を用いて、個々のアセチル化レベルを調べた結果、N末端テイル領域に存在するK9およびK14のアセチル化は変化がなかったのに対し、H3球状領域に存在するK56、K115およびK122のアセチル化が顕著に亢進していた(図4B)。また、ヒストンH4のN末端テイル領域に存在するK5およびK16のアセチル化も変化がなかった(図4B)。
 なお、染色体局在性触媒としてL-8DMAPに代えて、D-8DMAP、L-nDMAP(n=5~7)、またはcyclo-L-8DMAPを用いてK122のアセチル化を検討したところ、L-8DMAPと同程度であった。
 以上の結果から、染色体局在触媒および染色体局在アセチル化剤の組み合わせにより、細胞内のヒストンを含む染色体タンパク質の選択的なアセチル化の亢進に成功した。
 細胞内で亢進したアセチル化は、投与した触媒およびアセチル化剤による化学反応によるもので、細胞内のアセチル化酵素には依存しないことが予想される。この可能性を検討するために、細胞内の主なヒストンアセチル化酵素(HAT)であるCBPおよびp300(Ogryzko, V. V. et al., Cell 1996, 87, 953-959、Bannister, A. J. & Kouzarides, T. Nature 1996, 384, 641-643)をRNAi法によりノックダウンしたMCF-7細胞およびHeLa細胞に8DMAPおよび3NMD-8Rを投与し、3時間培養後に、上述と同様に、細胞内のタンパク質のアセチル化レベルを評価した。HATのノックダウンにより、予想通りヒストンH3のアセチル化レベルは顕著に減少したにも関わらず、両化合物を加えることにより、染色体タンパク質のアセチル化およびH3球状領域に存在するK56のアセチル化が、コントロール細胞と同様に亢進していたことから、染色体局在触媒および染色体局在アセチル化剤による染色体タンパク質選択的アセチル化は内在性のアセチル化酵素に依存しないことが示唆された(図5A、B)。以下、この8DMAPおよび3NMD-8Rを添加する系を「合成的染色体アセチル化SynCAc(synthetic chromatin acetylation by artificial catalyst)」と呼ぶ。
 ヒストン脱アセチル化酵素(HDAC)の阻害剤は、ヒストンならびに様々なタンパク質のアセチル化を亢進することが知られており、ある種のがん細胞に対して選択的に増殖抑制効果を示すため、抗がん剤として機能することが知られている(Marks, P. A. Oncogene 2007, 26, 1351-1356)。MCF-7細胞、HeLa細胞および正常細胞であるhTERT RPE-1(以下RPE-1)細胞において、HDAC阻害剤(SAHA)処理を行ったところ、いずれの細胞種においても、ヒストンH3およびH4のテイル領域のリジンアセチル化が顕著に亢進し、細胞質ではチューブリンのアセチル化が顕著に亢進していた(図6)。一方、H3球状領域に存在するK56のアセチル化は変化がなかった(図6)。「合成的染色体アセチル化SynCAc」を同様の3細胞種で比較を行ったところ、いずれの細胞種においても、染色体タンパク質およびヒストンH3球状領域の選択的なアセチル化の亢進がみられた(図6)。この結果から、「合成的染色体アセチル化SynCAc」は、HDAC阻害剤とは異なるパターンで、ヒストンおよび染色体タンパク質のアセチル化を亢進し、この反応は細胞種に依存せずに起こることが示唆された。
 「合成的染色体アセチル化SynCAc」は、HDAC阻害剤と同様に、がん細胞選択性を示す可能性が考えられる。その可能性を検討するため、がん細胞であるMCF-7細胞および正常細胞であるRPE-1細胞を用いて、「合成的染色体アセチル化SynCAc」のがん細胞選択性ついて調べた。両化合物をMCF-7細胞に投与し、15時間、18時間、22時間後における細胞周期の割合を調べた結果、G1期の割合が経時的に増加することを見いだした(図7A)。興味深いことに、このようなG1期停止の表現型は両化合物をRPE-1細胞に投与したときは全く見られなかった(図7B)。G1期停止は、がん抑制遺伝子p53によって制御されていることが知られている(Hartwell, L. H. & Kastan, M. B. Science 1994, 266, 1821-1828)。「合成的染色体アセチル化SynCAc」によるG1期停止がp53に依存しているか調べるために、RNAi法によりp53のノックダウンを行った(図7C)。p53をノックダウンしたMCF-7細胞に両化合物を投与したところ、G1期停止は起こらなかったことから、「合成的染色体アセチル化SynCAc」によるG1期停止はp53依存的であることが明らかになった(図7D)。
 上記の結果から、「合成的染色体アセチル化」によりp53の活性化が起きている可能性が示唆された。この可能性を検討するため、P53mRNAレベルをRT-qPCR法により、タンパク質レベルをウエスタンブロッティング法によって調べた。その結果、「合成的染色体アセチル化SynCAc」により、MCF-7細胞ではp53のmRNAおよびタンパク質レベルが増加していたのに対し、RPE-1細胞ではそのような増加は見られなかった(図8A、B)。p53はその下流で、サイクリン依存性キナーゼ阻害因子p21(CIP1/WAF1)の転写を促進することにより細胞周期G1期停止を引き起こすことが知られている(Hartwell, L. H. & Kastan, M. B. Science 1994, 266, 1821-1828)。また、p53による制御を受けているか不明瞭であるものの、別のサイクリン依存性キナーゼ阻害因子p27(KIP1)もその発現上昇が細胞周期G1期停止を引き起こすことが知られている(Hartwell, L. H. & Kastan, M. B. Science 1994, 266, 1821-1828、Toyoshima, H. & Hunter, T. Cell 1994, 78, 67-74)。そこで次に、p21およびp27のmRNAレベルの変化をRT-qPCR法により、タンパク質レベルをウエスタンブロッティング法によって調べた。その結果、「合成的染色体アセチル化」により、MCF-7細胞ではp21およびp27のmRNAおよびタンパク質レベルが増加していたのに対し、RPE-1細胞ではそのような増加は見られなかった(図8B,C)。また、この増加はp53依存的であった(図8D)。なお、他のがん細胞および正常細胞でもp21のタンパク質レベルの検証を行った結果、がん細胞であるLoVo細胞(結腸直腸腺癌)、RKO細胞(結腸直腸癌)、HT1080細胞(繊維肉腫)ではタンパク質レベルが増加していたのに対し、正常細胞であるMRC-5細胞ではそのような増加は見られなかった。
 以上の結果から、本発明者らが開発した染色体局在触媒8DMAPおよび染色体局在アセチル化剤3NMD-8Rの組み合わせにより、ヒト培養細胞において、内在性アセチル化酵素非依存的な「合成的染色体アセチル化SynCAc」を引き起こし、ヒトがん細胞においてがん抑制遺伝子p53依存的な細胞周期停止を促進することが可能となった(図9)。
 [実施例2] 染色体局在性マロニル化剤と染色体局在性求核触媒による染色体タンパク質のマロニル化
 再構成ヌクレオソーム(0.346μM: DNA換算)をHeLa細胞から抽出した細胞質抽出液と20mM Tris-HCl(pH7.5)溶液中で混合し、触媒L-8DMAPおよびマロニル化ドナー3Mal-BA-8Rを加えて室温で3時間反応し、SDS-PAGEゲルで分離後、ウエスタンブロッティング法により、マロニル化タンパク質を検出した。比較のため、同様にして、触媒L-8DMAPおよびアセチル化ドナー3NMD-8Rによるアセチル化タンパク質の検出も行った。ウエスタンブロッティング法においては、1次抗体として、マロニル化タンパク質検出用にPan Anti-Malonyllysine Antibody(PTM-901, PTM Biolabs)を、アセチル化タンパク質検出用にAcetylated-Lysine antibody(#9441, Cell  Signaling)をそれぞれ用いた。
 その結果、L-8DMAPと3Mal-BA-8Rの組み合わせにより、ヒストンH3およびH4のリジンのマロニル化が検出された(図10右)。L-8DMAPと3NMD-8Rの組み合わせにおいても、先の実験の結果と一致して、ヒストンH3およびH4のリジンのアセチル化が検出された(図10左)。
 触媒医療の概念に基づく人工触媒システムは、生体内の酵素が関与する様々な反応に応用することが可能である。特に、生体内の酵素の欠損や失活が特定の疾患に関与している場合には、当該酵素を標的とした人工触媒システムにより、当該疾患の治療を行うことが可能となるため、本発明は広く医療分野に貢献しうる。
 染色体局在性求核触媒と染色体局在性アセチル化剤との組み合わせを用いた人工触媒システムは、染色体タンパク質のアセチル化の低下に起因する疾患の治療に利用可能であり、特に、従来のヒストン脱アセチル化酵素阻害剤が薬効を発揮し難い、ヒストンアセチル化酵素の失活に起因する疾患において高い利用価値を有する。
 本発明は、世界で初めて、触媒医療の概念に基づく人工触媒システムの確立に成功したものであり、内在性酵素の機能調節という従来の医療概念と本質的に異なる新たな医療への途を切り開くものである。
配列番号1~10
<223> siRNAの配列:DNA/RNA結合分子
配列番号11~20
<223> 人工的に合成されたプライマーの配列

Claims (36)

  1.  下記(a)の化合物と下記(b)の化合物の組み合わせを含む、染色体タンパク質をアシル化するための薬剤。
    (a)染色体局在性および求核触媒活性を有する化合物
    (b)染色体局在性およびリジンをアシル化する活性を有する化合物
  2.  (a)の化合物が、染色体局在に有効な数のカチオン性求核触媒が結合した構造を有する、請求項1に記載の薬剤。
  3.  (a)の化合物におけるカチオン性求核触媒がリンカーを介して結合している、請求項2に記載の薬剤。
  4.  (a)の化合物におけるカチオン性求核触媒が4-ジメチルアミノピリジンである、請求項2または3に記載の薬剤。
  5.  (a)の化合物が、5以上の4-ジメチルアミノピリジンが結合した構造を有する、請求項4に記載の薬剤。
  6.  (a)の化合物が、下記のいずれかの構造を有する、請求項1に記載の薬剤。
    Figure JPOXMLDOC01-appb-C000001
    (nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
    Figure JPOXMLDOC01-appb-C000002
    (nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
  7.  (b)の化合物が、アシル化剤とカチオン性化合物とが結合した構造を有する、請求項1~6のいずれかに記載の薬剤。
  8.  (b)の化合物におけるアシル化剤とカチオン性化合物とがリンカーを介して結合している、請求項7に記載の薬剤。
  9.  (b)の化合物におけるカチオン性化合物がカチオン性ポリマーである、請求項7または8に記載の薬剤。
  10.  (b)の化合物におけるカチオン性ポリマーがポリアルギニンである、請求項9に記載の薬剤。
  11.  (b)の化合物におけるアシル化剤がアセチル化剤である、請求項7~10のいずれかに記載の薬剤。
  12.  (b)の化合物におけるアセチル化剤がN-メトキシジアセトアミドである、請求項11に記載の薬剤。
  13.  (b)の化合物が下記構造を有する、請求項12に記載の薬剤。
    Figure JPOXMLDOC01-appb-C000003
    (nは、化合物が染色体局在性およびリジンをアセチル化する活性を有する範囲内での自然数を示す)
  14.  (b)の化合物におけるアシル化剤がマロニル化剤である、請求項7~10のいずれかに記載の薬剤。
  15.  (b)の化合物におけるマロニル化剤が4-マロニルオキシ安息香酸アミドである、請求項14に記載の薬剤。
  16.  (b)の化合物が下記構造を有する、請求項15に記載の薬剤。
    Figure JPOXMLDOC01-appb-C000004
    (nは、化合物が染色体局在性およびリジンをマロニル化する活性を有する範囲内での自然数を示す)
  17.  染色体局在性および求核触媒活性を有する化合物。
  18.  染色体局在に有効な数のカチオン性求核触媒が結合した構造を有する、請求項17に記載の化合物。
  19.  カチオン性求核触媒がリンカーを介して結合している、請求項18に記載の化合物。
  20.  カチオン性求核触媒が4-ジメチルアミノピリジンである、請求項18または19に記載の化合物。
  21.  染色体局在に有効な数が5以上である、請求項20に化合物。
  22.  下記のいずれかの構造を有する、請求項17に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
    Figure JPOXMLDOC01-appb-C000006
    (nは、化合物が染色体局在性および求核触媒活性を有する範囲内での自然数を示す)
  23.  染色体局在性およびリジンをアシル化する活性を有する化合物。
  24.  アシル化剤とカチオン性化合物とが結合した構造を有する、請求項23に記載の化合物。
  25.  アシル化剤とカチオン性化合物とがリンカーを介して結合している、請求項24に記載の化合物。
  26.  カチオン性化合物がカチオン性ポリマーである、請求項24または25に記載の化合物。
  27.  カチオン性ポリマーがポリアルギニンである、請求項26に記載の化合物。
  28.  アシル化剤がアセチル化剤である、請求項24~27のいずれかに記載の化合物。
  29.  アセチル化剤がN-メトキシジアセトアミドである、請求項28に記載の化合物。
  30.  下記構造を有する、請求項29に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (nは、化合物が染色体局在性およびリジンをアセチル化する活性を有する範囲内での自然数を示す)
  31.  アシル化剤がマロニル化剤である、請求項24~27のいずれかに記載の化合物。
  32.  マロニル化剤が4-マロニルオキシ安息香酸アミドである、請求項31に記載の化合物。
  33.  下記構造を有する、請求項32に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (nは、化合物が染色体局在性およびリジンをマロニル化する活性を有する範囲内での自然数を示す)
  34.  請求項17~22のいずれかに記載の化合物と請求項28~30のいずれかに記載の化合物との組み合わせを含む、がん細胞においてp53、p21またはp27の発現を誘導するための薬剤。
  35.  請求項17~22のいずれかに記載の化合物と請求項28~30のいずれかに記載の化合物との組み合わせを含む、染色体タンパク質のアセチル化の低下に起因する疾患を治療するための薬剤。
  36.  染色体タンパク質のアセチル化の減少に起因する疾患ががんである、請求項35に記載の薬剤。
PCT/JP2015/066179 2014-06-04 2015-06-04 生体内のアシル化機能と置き換えられる人工触媒システム WO2015186785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016525233A JP6736462B2 (ja) 2014-06-04 2015-06-04 生体内のアシル化機能と置き換えられる人工触媒システム
EP15803039.5A EP3156411B1 (en) 2014-06-04 2015-06-04 Artificial catalyst system capable of substituting for in vivo acylation function
US15/115,355 US20170008927A1 (en) 2014-06-04 2015-06-04 Artificial catalyst system substitutable for in vivo acylation function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115494 2014-06-04
JP2014-115494 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186785A1 true WO2015186785A1 (ja) 2015-12-10

Family

ID=54766853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066179 WO2015186785A1 (ja) 2014-06-04 2015-06-04 生体内のアシル化機能と置き換えられる人工触媒システム

Country Status (4)

Country Link
US (1) US20170008927A1 (ja)
EP (1) EP3156411B1 (ja)
JP (1) JP6736462B2 (ja)
WO (1) WO2015186785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043584A (ja) * 2015-08-28 2017-03-02 国立大学法人 東京大学 選択的な染色体タンパク質のアシル化を行うための人工触媒システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424328A1 (en) * 2002-11-28 2004-06-02 Jubilant Organosys Limited Process for producing 4-dimethyl amino pyridine (4-DMAP)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424328A1 (en) * 2002-11-28 2004-06-02 Jubilant Organosys Limited Process for producing 4-dimethyl amino pyridine (4-DMAP)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HANGXIANG WANG ET AL.: "Chemical Cell -Surface Receptor Engineering Using Affinity-Guided, Multivalent Organocatalysts", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 31, 2011, pages 12220 - 12228, XP055238986, ISSN: 0002-7863 *
JAMES E. BROWNELL ET AL.: "Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation", CELL, vol. 84, no. 6, 1996, pages 843 - 851, XP000877462, ISSN: 0092-8674 *
YASUO KIKUGAWA ET AL.: "N-METHOXYDIACETAMIDE: A NEW SELECTIVE ACETYLATING AGENT", TETRAHEDRON LETTERS, vol. 31, no. 2, 1990, pages 243 - 246, XP055238989 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043584A (ja) * 2015-08-28 2017-03-02 国立大学法人 東京大学 選択的な染色体タンパク質のアシル化を行うための人工触媒システム
WO2017038760A1 (ja) * 2015-08-28 2017-03-09 国立大学法人東京大学 選択的な染色体タンパク質のアシル化を行うための人工触媒システム
US11021461B2 (en) 2015-08-28 2021-06-01 The University Of Tokyo Artificial catalyst system for selective acylation of chromosome protein

Also Published As

Publication number Publication date
JPWO2015186785A1 (ja) 2017-04-20
EP3156411B1 (en) 2021-03-03
JP6736462B2 (ja) 2020-08-05
EP3156411A4 (en) 2018-01-03
US20170008927A1 (en) 2017-01-12
EP3156411A1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
Li et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy
JP6730285B2 (ja) Rna干渉組成物及び悪性腫瘍のための方法
JP6433001B2 (ja) 腫瘍細胞へのRNAiトリガーのインビボ送達のためのポリ結合体
BR122020024388B1 (pt) Oligonucleotídeo e composição farmacêutica
BRPI0620806B1 (pt) A complex and composition comprising a peptide and a charge molecule, and use of said composition
EA000584B1 (ru) Конъюгаты соединения, содержащего сульфгидрильную группу, и производного жирной кислоты, способ получения конъюгатов, промежуточные соединения для их получения, способы повышения абсорбции и пролонгированного сохранения в крови и тканях млекопитающего соединения, содержащего сульфгидрильную группу
JP5875006B2 (ja) オリゴヌクレオチド、およびオリゴヌクレオチドを有効成分として含有する脂質異常症治療剤
KR20130136494A (ko) 효소 민감성 결합을 갖는 In Vivo 폴리뉴클레오티드 전달 컨쥬게이트
RU2753517C2 (ru) Антисмысловые олигонуклеотиды к hif-1-альфа
JP2020535171A (ja) 去勢抵抗性前立腺癌
JP5364847B2 (ja) 組織特異的なペプチド模倣リガンドを用いる標的化送達
Wang et al. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor
JP2013503904A5 (ja)
Cong et al. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice
JP5700409B2 (ja) Hsp90を標的にした新規抗がんキメラペプチド
Patil et al. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective
JP6736462B2 (ja) 生体内のアシル化機能と置き換えられる人工触媒システム
WO2000023476A1 (fr) Peptides specifiques pour la neovascularisation
KR20240038967A (ko) Cug 반복을 표적화하기 위한 안티센스 화합물 및 방법
CN117529490A (zh) 用于将药物递送至肝细胞的环状肽-N-乙酰半乳糖胺(GalNAc)缀合物
BR112020017892A2 (pt) Derivado de ácido nucleico peptídico, método para tratamento de doenças ou condições associadas à transcrição do gene da mmp-1 humana, método para tratamento do envelhecimento da pele, composição farmacêutica e composição cosmética
RU2802418C2 (ru) Антисмысловые олигонуклеотиды матриксной металлопротеиназы-1
KR20220152383A (ko) 대식세포를 표적으로 하는 펩타이드, 컨쥬게이트, 조성물 및 그의 용도
JP2021183572A (ja) アシル基ドナー分子
JP6675119B2 (ja) 選択的な染色体タンパク質のアシル化を行うための人工触媒システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525233

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015803039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15115355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE