WO2015186764A1 - エンジンの回転制御装置 - Google Patents
エンジンの回転制御装置 Download PDFInfo
- Publication number
- WO2015186764A1 WO2015186764A1 PCT/JP2015/066107 JP2015066107W WO2015186764A1 WO 2015186764 A1 WO2015186764 A1 WO 2015186764A1 JP 2015066107 W JP2015066107 W JP 2015066107W WO 2015186764 A1 WO2015186764 A1 WO 2015186764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotation
- engine
- ignition
- thinning
- speed
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D43/00—Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P11/00—Safety means for electric spark ignition, not otherwise provided for
- F02P11/02—Preventing damage to engines or engine-driven gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
Definitions
- the present invention relates to an engine rotation control device, and more particularly to an engine rotation control device that restricts an increase in engine rotation at a predetermined limit rotation speed for the purpose of preventing engine over-rotation or limiting the speed of a motorcycle.
- This type of engine rotation control device has conventionally played a role of limiting the increase in engine rotation for various purposes.
- the engine has a mechanical rotation limit, and excessive rotation exceeding the upper limit rotation speed causes serious troubles such as engine breakage.
- an upper limit vehicle speed is imposed on a two-wheeled vehicle or the like to limit the speed, some measures for limiting the upper limit vehicle speed are necessary in that case.
- an engine rotation control device of the present invention is detected by a fuel injection control means for controlling fuel injection of an engine, a rotation speed detection means for detecting the rotation speed of the engine, and a rotation speed detection means.
- a first rotation suppression means for continuously stopping fuel injection in each combustion cycle that is repeated with the rotation of the engine when the set engine rotation speed reaches a preset limit rotation speed;
- the storage means for storing the injection thinning rate and the engine rotational speed detected by the rotational speed detecting means rush into each injection thinning rotation area as the engine speed increases or decreases.
- a second rotation suppressing means for intermittently executing the fuel injection in each combustion cycle in accordance with the injection thinning rate injection thinning rate corresponding to the injection thinning speed region from the storage unit.
- each combustion cycle of the engine is performed according to the injection thinning rate corresponding to the injection thinning rotation region.
- the fuel injection is executed intermittently. Since the injection thinning rate increases in the injection thinning rotation region on the high rotation side, the engine output is gradually suppressed as the engine speed increases. Therefore, when the engine speed subsequently reaches the limit speed, the fuel injection is continuously stopped in each combustion cycle, but the difference in engine output at that time is reduced and torque shock is suppressed. In this way, the fuel injection is finally stopped continuously in this way, so that an increase in engine rotation is reliably prevented.
- Another engine rotation control device includes an ignition control means for controlling engine ignition, a rotation speed detection means for detecting the rotation speed of the engine, and an engine rotation speed detected by the rotation speed detection means in advance.
- a first rotation suppressing means for continuously stopping ignition in each combustion cycle repeated with the rotation of the engine when the set limit rotation speed is reached, and a low rotation side of the limit rotation speed are divided into a plurality of sections.
- a memory that corresponds to each ignition decimation rotation range and stores an ignition decimation rate that is set in advance so as to increase in the ignition decimation rotation range on the high rotation side in order to decimate the combustion cycle in which ignition is executed in each combustion cycle.
- the point corresponding to the ignition thinning rotation range Characterized by comprising a second rotation suppressing means for intermittently executing ignition at each combustion cycle in accordance with the ignition thinning rate thinning rate from the storage means.
- an ignition control means for controlling the ignition of the engine is provided, and the storage means increases so as to increase the ignition thinning rotation range on the high speed side in order to thin out the combustion cycle for executing the ignition in each combustion cycle.
- a preset ignition decimation rate is stored together with an injection decimation rate corresponding to each ignition decimation rotation range, and each time the second rotation suppression means enters each ignition decimation rotation region as the engine speed increases or decreases. It is desirable that the ignition decimation rate corresponding to the ignition decimation rotation range is read from the storage means and ignition is intermittently executed in each combustion cycle according to the ignition decimation rate. In such a configuration, ignition is also intermittently executed in each combustion cycle as in the case of fuel injection, so that the engine output is gradually suppressed as the engine rotates and the torque shock is suppressed. Played.
- the limit rotation speed is set in advance as the upper limit rotation speed of the engine.
- the lowest-rotation-side injection thinning-out rotation region and / or the ignition thinning-out rotation region be set at a higher rotation side than the normal rotation region including the maximum output rotation speed of the engine. In such a configuration, there is no possibility that the engine output is suppressed according to the injection thinning rate or the ignition thinning rate in the normal engine operation state, and the deterioration of the driving feeling due to this is prevented.
- the engine is mounted on the two-wheeled vehicle as a driving power source, and the limiting rotational speed is set as an engine rotational speed corresponding to the upper limit vehicle speed imposed on the two-wheeled vehicle for speed limitation. .
- the limiting rotational speed is set as an engine rotational speed corresponding to the upper limit vehicle speed imposed on the two-wheeled vehicle for speed limitation.
- the injection thinning rotation region and the ignition thinning rotation region are configured in this manner, the engine output can be suppressed in more stages than in the case where only fuel injection or only ignition is thinned out.
- the first rotation suppression unit is configured to execute continuous stop of fuel injection and continuous stop of ignition based on different limited rotational speeds.
- the torque shock is suppressed as compared with the case where these are simultaneously performed.
- the second rotation suppression unit is configured to stop the operation when the stroke determination unit becomes unable to determine the stroke.
- the engine As another aspect, it is desirable to configure the engine as a single cylinder. When configured in this way, even in a single cylinder engine, the engine output can be suppressed in stages as the rotation increases.
- the present invention when the engine rotation speed increases and it is necessary to limit the rotation increase of the engine at a predetermined limit rotation speed, it is possible to accurately limit the rotation increase without causing a torque shock. Requests such as over-rotation prevention and vehicle speed limitation can be reliably achieved.
- FIG. 1 is a system configuration diagram showing an engine rotation control device of this embodiment.
- the engine 1 of this embodiment is configured as a four-cycle single-cylinder gasoline engine with a displacement of 50 cc, and is mounted on a two-wheeled vehicle as a driving power source.
- the specification of the engine 1 is not limited to this, and can be arbitrarily changed. For example, it may be applied to a large displacement multi-cylinder engine.
- a piston 4 is slidably disposed in a cylinder 3 formed in a cylinder block 2 of the engine 1.
- the piston 4 is connected to a crankshaft 6 via a connecting rod 5 and interlocked with the reciprocating motion of the piston 4.
- the crankshaft 6 rotates.
- a flywheel 7 is attached to the rear end of the crankshaft 6 (on the transmission side (not shown)), and in a predetermined angular region on the outer periphery of the flywheel 7, there is a retractor projection 7a made of a magnetic material for detecting the crank angle. Is formed.
- an intake port 9a and an exhaust port 9b are formed, and a spark plug 10 is disposed in a posture in which the tip faces the inside of the cylinder.
- An intake passage 11 connected to the intake port 9a has an air cleaner 12 from the upstream side, a throttle valve 13 that opens and closes in response to the driver's throttle operation, a bypass passage 15 having an ISCV (idle speed control valve) 14, and An injector 16 that injects fuel toward the intake port 9a is provided.
- the exhaust passage 17 connected to the exhaust port 9b is provided with a three-way catalyst 18 (catalyst device) for purifying exhaust gas and a silencer (not shown).
- An intake valve 20 is disposed in the intake port 9a, and an exhaust valve 21 is disposed in the exhaust port 9b.
- These intake and exhaust valves 20 and 21 are urged toward the valve closing side by a valve spring 22 and are opened by an intake camshaft 23 and an exhaust camshaft 24 that are driven to rotate in synchronization with the crankshaft 6 on the cylinder head 9.
- the intake valve 20 and the exhaust valve 21 are opened and closed at a predetermined timing synchronized with the reciprocation of the piston 4, and the combustion cycle of the engine 1 consisting of four strokes of intake, compression, expansion and exhaust is 720 ° CA in crank angle. Repeated every time.
- the fuel (gasoline) stored in the fuel tank 25 is supplied to the injector 16 by a fuel pump 26.
- the fuel pump 26 is integrated with the injector 16 and connected to the fuel tank 25 via a supply hose 27 and a return hose 28, respectively.
- the fuel in the fuel tank 25 is introduced into the fuel pump 26 through the supply hose 27 and pressurized to a predetermined pressure, and the pressurized fuel is supplied to the injector 16 and surplus fuel is supplied. Is recovered in the fuel tank 25 via the return hose 28.
- fuel of a predetermined pressure is always supplied to the injector 16, and the fuel is injected toward the intake port 9a at a predetermined injection timing and injection amount according to the opening of the injector 16.
- the combustion cycle of the engine 1 described above is executed based on the control of the ECU 31 (engine control unit).
- ECU 31 engine control unit
- an electromagnetic pickup 32 that is arranged opposite to the flywheel 7 and outputs a detection signal synchronized with the reluctance protrusion 7 a
- a throttle sensor 33 that detects the opening of the throttle valve 13
- Various sensors such as an O 2 sensor 34 that is arranged and varies the output VS in a step-like manner according to a variation in the exhaust air-fuel ratio centered on stoichiometric (theoretical air-fuel ratio), a water temperature sensor 35 that detects the cooling water temperature Tw of the engine 1, etc. Sensors are connected.
- Various devices such as the igniter 36 for driving the ISCV 14, the injector 16 (control device), the fuel pump 26, and the spark plug 10 (control device) are connected to the output side of the ECU 31.
- the ECU 31 operates the engine 1 by executing various controls such as ignition control for driving the spark plug 10 and fuel injection control for driving the injector 16 (ignition control means, fuel injection). Control means). For example, the ECU 31 determines the target ignition timing based on the engine rotational speed Ne (rotational speed detecting means) calculated from the detection signal of the electromagnetic pickup 32 and the throttle opening degree ⁇ th detected by the throttle sensor 33 as ignition control. In parallel with this, the ECU 31 shapes the detection signal of the electromagnetic pickup 32 to generate a rectangular wave-shaped crank angle signal synchronized with the retractor protrusion 7a (in other words, the crank angle), and based on the crank angle signal, the target ignition timing is generated. After the timing corresponding to is specified, the igniter 36 is driven to ignite the spark plug 10.
- various controls such as ignition control for driving the spark plug 10 and fuel injection control for driving the injector 16 (ignition control means, fuel injection). Control means).
- the ECU 31 determines the target ignition timing based on the engine rotational speed Ne (rotational speed
- the ECU 31 determines the fuel injection amount (actually, the valve opening time of the injector 16) based on the engine rotational speed Ne, the throttle opening ⁇ th, etc., and drives the injector 16 at a predetermined timing of the intake stroke. Perform fuel injection.
- the ECU 31 has an overspeed prevention function for preventing the engine 1 from overspeeding.
- the technique of Patent Document 1 has been proposed.
- the engine speed Ne reaches the upper limit speed, only the ignition of the engine 1 is thinned out. There is a problem that torque shock occurs as well as rotation cannot be reliably prevented.
- a conventional over-speed preventing function that stops the ignition continuously in each combustion cycle of the engine 1 (prior to the patent document or earlier).
- new measures are taken to gradually thin out the combustion cycle in which ignition is performed in accordance with the increase in the rotational speed of the engine 1.
- stepwise thinning is performed for fuel injection as well as such stepwise thinning of ignition, and processing executed by the ECU 31 for this countermeasure will be described below.
- FIG. 2 is a schematic diagram showing a control map for setting a thinning rate for thinning out a combustion cycle for executing fuel injection and ignition, and this control map is stored in advance in the ECU 31 (storage means).
- the fuel injection thinning rate is referred to as an injection thinning rate Rfi
- the ignition thinning rate is referred to as an ignition thinning rate Rig.
- the injection decimation rate Rfi 1/3 means that fuel injection is stopped once every three times in each combustion cycle that is repeated as the engine 1 rotates.
- each combustion is performed according to the injection thinning rate Rfi that increases in two stages.
- Fuel injection is executed intermittently in the cycle (second rotation suppression means), and fuel injection is continuously stopped in each combustion cycle (first rotation suppression means) in the rotation range of 8000 rpm or higher.
- each rotation region of 7000 rpm or more in which the engine output is suppressed by such thinning of the fuel injection is referred to as an injection thinning rotation region.
- each combustion cycle is performed according to the ignition thinning rate Rig that increases in two stages.
- the ignition is intermittently executed (second rotation suppression means), and the ignition is continuously stopped in each combustion cycle (first rotation suppression means) in the rotation range of 8250 rpm or more.
- first rotation suppression means each rotational region of 7250 rpm or more in which the engine output is suppressed by such thinning-out of ignition.
- 8000 rpm at which fuel injection is continuously stopped and 8250 rpm at which ignition is continuously stopped function as the upper limit rotational speed (restricted rotational speed) of the engine 1.
- the injection thinning rotation region and the ignition thinning rotation region are set as different rotation regions. Specifically, the center of the ignition decimation rotation region matches the boundary of the adjacent injection decimation rotation region, and similarly, the center of the injection decimation rotation region coincides with the boundary of the adjacent ignition decimation rotation region. Yes.
- the suppression of the engine output accompanying the increase in the rotation of the engine 1 starts from 7000 rpm to which the injection decimation rate Rfi of 1/3 is applied.
- This rotation speed is the maximum output rotation speed of the engine 1. It is on the higher rotation side than the normal rotation region including.
- the engine output increases as the engine speed increases, and after a peak maximum output engine speed, the engine output starts decreasing.
- the engine 1 is operated within this normal rotation range.
- an engine overspeed prevention routine executed by the ECU 31 based on the control map set as described above will be described with reference to the flowchart of FIG. 3 and the time chart of FIG.
- the ECU 31 executes the overspeed prevention routine of FIG. 3 at a predetermined control interval during the operation of the engine 1.
- FIG. 4 a description will be given of an overspeed suppression state in the case where the engine 1 has been rotated up due to the accelerator fully opened from the idle operation. It should be noted that the increase in rotation of the engine 1 at this time may be caused by acceleration of the vehicle or by idling of the stopped engine 1, and the engine 1 overspeeds following the same procedure. It is suppressed.
- step S2 When the engine speed Ne increases from idling and reaches 7000 rpm or more, the ECU 31 makes a determination of No (No) in step S2 and proceeds to step S6 to determine whether or not the engine speed Ne is 8250 rpm or more. judge. When determination is No, it transfers to step S8, and it is determined whether the stroke determination process of the engine 1 is performed normally.
- the stroke determination process is a process in which the ECU 31 recognizes each stroke (intake, compression, expansion, exhaust) constituting the combustion cycle of the engine 1 (stroke determination means). That is, while the combustion cycle of the engine 1 has 720 ° CA as one cycle, the crank angle signal has 360 ° CA as one cycle. For example, the ON period of the current crank angle signal is immediately before the compression top dead center. The ECU 31 cannot discriminate whether it is the one immediately before the exhaust top dead center. Therefore, when the engine 1 is started, fuel injection and ignition are executed every 360 ° CA based on the crank angle signal, and the engine 1 is temporarily operated, and then the crank angle generated at 360 ° CA intervals.
- the time required for the ON period of the signal is measured, and the measured values of the two ON periods that follow each other are compared as the process determination process.
- the piston 4 is prevented from rising in the compression stroke, and the angular velocity of the crankshaft 6 decreases. Therefore, the side with the longer ON period is regarded as the compression stroke, and the side with the shorter ON period is regarded as the exhaust stroke.
- step S8 is a process assuming such a situation.
- the determination of Yes is made in step S8, and the engine speed Ne is obtained by the process after step S10. Accordingly, the engine 1 is operated while thinning out fuel injection and ignition.
- step S10 it is determined whether or not the engine speed Ne is less than 7250 rpm.
- step S10 the ECU 31 makes a determination of No in step S10 and proceeds to step S14 to determine whether the engine speed Ne is less than 7500 rpm.
- the timing of decimation for fuel injection and ignition at this time is synchronized (both fuel injection and ignition are stopped in the same combustion cycle), but the present invention is not limited to this. In addition, the case where the timing of thinning out is different is also included.
- step S14 the ECU 31 makes a determination of No in step S14 and proceeds to step S18 to determine whether or not the engine speed Ne is less than 7750 rpm.
- step S18 the ECU 31 makes a determination of No in step S18 and proceeds to step S22 to determine whether or not the engine speed Ne is less than 8000 rpm.
- step S22 the ECU 31 makes a determination of No in step S22 and proceeds to step S26 to determine whether the engine speed Ne is less than 8250 rpm.
- step S26 the process proceeds to step S28, where 1 is read as the injection decimation rate Rfi and 1/2 is read as the ignition decimation rate Rig from the control map.
- the engine 1 of the present embodiment is a port injection type
- combustion in the cylinder is not established only when fuel injection and ignition are executed in the same combustion cycle as in the cylinder injection type engine. For example, even if ignition is not executed in the same combustion cycle immediately after being injected into the intake port 9a, the injected fuel is burned in the cylinder if ignition is executed in the subsequent combustion cycles. Contributes to engine output. Therefore, based on the control map of FIG. 2 and the routine of FIG. 3, the engine output is suppressed every time either the injection decimation rate Rfi or the ignition decimation rate Rig increases in the rotation range of 7000 to 8250 rpm.
- the fuel injection is reduced by 1/3 at 7000 rpm or more, and the ignition is 1 at 7250 rpm or more with respect to the normal rotation range in which fuel injection and ignition are continuously executed at an engine rotation speed Ne of less than 7000 rpm.
- the fuel injection is decimated 1/2 at 7500 rpm or more, and the ignition is decimated 1/2 at 7750 rpm or more.
- the fuel injection and ignition are thinned out in stages, whereby the engine output is suppressed in stages in accordance with the increase in the rotation of the engine 1, and the rotation of the engine 1 is accordingly performed as shown in FIG. The rise gradually slows down.
- complete stop of fuel injection and ignition is also performed in stages according to the increase in the rotation of the engine 1 (8000 rpm, 8250 rpm). For this reason, compared with the case where fuel injection and ignition are completely stopped simultaneously, for example, the reduction of the engine output is divided into two, and the difference between the individual engine outputs is reduced.
- the injection thinning rotation region and the ignition thinning rotation region are set as different rotation regions, and the fuel thinning rate Rfi and the ignition thinning rate Rig are alternately increased when the engine speed increases. For this reason, compared with the case where only fuel injection or only ignition is thinned out, the engine output can be suppressed in more stages, and a better running feeling can be realized.
- the engine output can be suppressed in a stepwise manner as in this embodiment.
- Such a single cylinder engine 1 cannot be applied.
- This embodiment can be regarded as particularly suitable for the single-cylinder engine 1 because the same operational effects can be obtained even with the single-cylinder engine 1.
- the fuel injected into the intake port 9a is combusted in the combustion cycle from the next time onward, and therefore when the fuel injection and ignition are completely stopped before and after (8000 rpm). , 8250 rpm) in-cylinder combustion transition cannot be determined in detail.
- the engine rotational speed Ne reaches 8000 rpm or more, it can be considered that the engine continues to increase due to the continuation of combustion and then starts to decrease beyond 8250 rpm.
- the engine speed Ne decreases to less than 8000 rpm and starts to increase again when the in-cylinder combustion is resumed by restarting the fuel injection with 1/2 decimation, so long as the driver keeps the throttle fully open. Repeat fluctuations.
- the fluctuation state of the engine rotational speed Ne is not limited to that shown in the figure, but in any case, the in-cylinder combustion when the engine rotational speed Ne changes from a decrease to an increase is restarted at once by continuous fuel injection and ignition. Without being started, the fuel is gradually resumed by 1 / 2-thinning fuel injection and ignition. As a result, when the throttle is fully opened, the fuel injection and ignition of the engine 1 are alternately repeated between the operation state that is decimated 1/2 and the operation state that is continuously stopped.
- step S8 the ECU 31 proceeds from step S2 to step S6 in FIG. 3 to step S8. Since the stroke determination process is not normal, the determination of No is made in step S8, the process proceeds to step S4, and 0 is read as the injection decimation rate Rfi and the ignition decimation rate Rig.
- the process proceeds to step S30, and 1 is read as the injection thinning rate Rfi and the ignition thinning rate Rig.
- the engine rotational speed Ne is less than 8250 rpm
- the engine 1 is operated without being subjected to output suppression by thinning out fuel injection or ignition.
- the engine rotational speed Ne exceeds 8250 rpm
- the fuel injection and ignition are completely stopped and the engine 1 is overrun. Rotation is prevented.
- the control content of the ECU 31 at this time is equivalent to conventional over-rotation prevention control without thinning, and switching the control content in this way when the stroke determination process is abnormal is based on the following knowledge.
- the ECU 31 When an abnormality occurs in the stroke determination process, the ECU 31 performs fuel injection and ignition at every 360 ° CA as in the case of engine start before the stroke determination described above.
- This control mode assumes a so-called limp home that avoids inability to drive the vehicle.
- the frequency of fuel injection and ignition is doubled, even if the same thinning rates Rfi and Rig as in normal times are applied. It is not possible to achieve the target decimation. Further, for example, the ignition executed just before the exhaust top dead center is meaningless ignition (so-called abandoned fire), but the ECU 31 cannot recognize each stroke of the combustion cycle. This point is also a factor that cannot achieve the target decimation.
- the upper limit rotational speed of the engine 1 is set as the limiting rotational speed to prevent the engine 1 from being damaged due to excessive rotation, but the present invention is not limited to this.
- an upper limit vehicle speed may be imposed on a two-wheeled vehicle or the like for speed limitation.
- the engine rotation speed Ne corresponding to the upper limit vehicle speed is set as the limit rotation speed, and the fuel injection and ignition of the engine 1 are stopped when the engine rotation speed Ne increases and reaches the limit rotation speed while the vehicle is running. Is taken.
- Ne vehicle speed
- the same setting as in the embodiment can be applied to the injection thinning rate Rfi, the ignition thinning rate Rig, and the like. Therefore, although not redundantly explained, since the engine output is gradually reduced as the vehicle speed approaches the upper limit vehicle speed, the speed of the two-wheeled vehicle can be limited at the upper limit vehicle speed while suppressing the torque shock, and the engine near the upper limit vehicle speed. It is possible to prevent the deterioration of the driving feeling when the output is suddenly suppressed.
- the rotation control device of the single cylinder engine 1 mounted on the two-wheeled vehicle is embodied, but the present invention is not limited to this, and the present invention may be applied to a multi-cylinder engine or a tricycle engine.
- the requirements such as the injection and ignition thinning rotation regions and the number of thinning rotation regions, the thinning rates Rfi and Rig of each thinning rotation region, and the upper limit rotation speed described in the above embodiment are merely examples, and are limited to these. It is not a thing. Needless to say, if the specifications of the engine 1 are different, the requirements can be arbitrarily changed accordingly.
- the injection thinning rotation region and the ignition thinning rotation region are set as different rotation regions, and the fuel thinning rate Rfi and the ignition thinning rate Rig are alternately increased according to the rotation increase of the engine 1.
- the thinning rates Rfi and Rig for fuel injection and ignition may be set in the same thinning rotation region, and the thinning rates Rfi and Rig for both may be increased at the same timing.
- fuel injection and ignition are completely stopped at different engine rotational speeds Ne (8000 rpm, 8250 rpm). However, they may be executed simultaneously at the same rotational speed, for example, 8000 rpm or 8250 rpm.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
単気筒エンジン1のエンジン回転速度Neが上昇して7000rpm以上になると燃料噴射を1/3間引き(燃焼サイクル3回に1回を間引きにより中止)、7250rpm以上になると点火を1/3間引き、7500rpm以上になると燃料噴射を1/2間引き、7750rpm以上になると点火を1/2間引き、8000rpm以上になると燃料噴射を完全中止し、8250rpm以上になると点火を完全中止する。これによりエンジン出力を段階的に抑制して、トルクショック無くエンジン1の過回転を防止する。
Description
本発明は、エンジンの回転制御装置に係り、詳しくはエンジンの過回転防止や二輪車の速度制限等を目的として所定の制限回転速度でエンジンの回転上昇を制限するエンジンの回転制御装置に関する。
この種のエンジンの回転制御装置は、従来から種々の目的でエンジンの回転上昇を制限する役割を奏している。例えばエンジンには機構的な回転限界があり、上限回転速度を超えた過回転はエンジン破損等の重篤なトラブルを引き起こしてしまう。また二輪車等には速度制限のために上限車速が課せられることがあるため、その場合には上限車速に制限するための何らかの対策が必要である。
これらの要求に対応すべく従来からの回転制御装置では、車両の走行中にエンジン回転速度が上昇して上限回転速度に到達した時点、或いは車両の上限車速に対応して予め設定された制限回転速度に到達した時点で、エンジンの回転に伴って繰り返される各燃焼サイクルで連続的に燃料噴射や点火を中止して、エンジンの回転上昇を制限している。この回転上昇の制限によりエンジンの過回転防止や車両の速度制限等が行われるのであるが、エンジン出力が急減するため、トルクショックにより走行フィーリングが悪化するという問題がある。
その対策として、例えば特許文献1の技術では、エンジン回転速度が上昇して上限回転速度に到達すると、エンジンの点火を完全に停止させることなく周期的に間引くことによってトルクショックの防止を図っている。
その対策として、例えば特許文献1の技術では、エンジン回転速度が上昇して上限回転速度に到達すると、エンジンの点火を完全に停止させることなく周期的に間引くことによってトルクショックの防止を図っている。
しかしながら、エンジンの過回転防止は重篤なエンジン破損の回避のために確実に実行する必要があり、車両の速度制限についても同様である。そのために特許文献1の技術の場合には、エンジン回転速度が上限回転速度に到達した時点で点火を大きく間引く(点火中止の燃焼サイクルの割合を増加させる)必要があるが、このような設定であったとしても、ある燃焼サイクルでは点火が実行されて筒内燃焼によりトルクを生じるため、上記エンジンの過回転防止を確実に達成できる保証はない。
しかも、上限回転速度で点火を大きく間引けばエンジン出力が急減してトルクショックに直結してしまう。即ち上限回転速度を境界として、その直前の各燃焼サイクルで連続的に点火を実行している運転状態と、点火を大きく間引いた運転状態との間でエンジン出力に大きな格差が生じることから、トルクショックが避けられないのである。結果として特許文献1の技術によれば、エンジンの過回転防止を確実に達成できないばかりか、トルクショックの発生により走行フィーリングを悪化させるという問題があり、当該技術を車両の速度制限に応用した場合にも同様の問題が発生してしまう。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、エンジン回転速度が上昇して所定の制限回転速度でエンジンの回転上昇を制限する必要が生じたときに、トルクショックを生じることなく的確に回転上昇を制限でき、もってエンジンの過回転防止や車両の速度制限等の要求を確実に達成することができるエンジンの回転制御装置を提供することにある。
上記の目的を達成するため、本発明のエンジンの回転制御装置は、エンジンの燃料噴射を制御する燃料噴射制御手段と、エンジンの回転速度を検出する回転速度検出手段と、回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときにエンジンの回転に伴って繰り返される各燃焼サイクルで燃料噴射を連続的に中止する第1の回転抑制手段と、制限回転速度の低回転側を複数に区分する各噴射間引き回転域にそれぞれ対応し、各燃焼サイクルの中で燃料噴射を実行する燃焼サイクルを間引くために高回転側の噴射間引き回転域ほど増加するように予め設定された噴射間引き率を記憶する記憶手段と、回転速度検出手段により検出されたエンジン回転速度が増減に伴って各噴射間引き回転域に突入する毎に、噴射間引き回転域に対応する噴射間引き率を記憶手段から読み出して噴射間引き率に従って各燃焼サイクルで燃料噴射を間欠的に実行する第2の回転抑制手段とを具備したことを特徴とする。
このように構成したエンジンの回転制御装置によれば、エンジン回転速度が上昇して各噴射間引き回転域に突入する毎に、それらの噴射間引き回転域に対応する噴射間引き率に従ってエンジンの各燃焼サイクルで燃料噴射が間欠的に実行される。高回転側の噴射間引き回転域ほど噴射間引き率が増加するため、エンジンの回転上昇に伴ってエンジン出力が次第に抑制される。従って、その後にエンジン回転速度が制限回転速度に達すると各燃焼サイクルで燃料噴射が連続的に中止されるが、その際のエンジン出力の格差が少なくなりトルクショックが抑制される。そして、このように最終的には燃料噴射が連続的に中止されるため、エンジンの回転上昇が確実に防止される。
また別の本発明のエンジンの回転制御装置は、エンジンの点火を制御する点火制御手段と、エンジンの回転速度を検出する回転速度検出手段と、回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときにエンジンの回転に伴って繰り返される各燃焼サイクルで点火を連続的に中止する第1の回転抑制手段と、制限回転速度の低回転側を複数に区分する各点火間引き回転域にそれぞれ対応し、各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように予め設定された点火間引き率を記憶する記憶手段と、回転速度検出手段により検出されたエンジン回転速度が増減に伴って各点火間引き回転域に突入する毎に、点火間引き回転域に対応する点火間引き率を記憶手段から読み出して点火間引き率に従って各燃焼サイクルで点火を間欠的に実行する第2の回転抑制手段とを具備したことを特徴とする。
このように構成したエンジンの回転制御装置によれば、エンジン回転速度が上昇して各点火間引き回転域に突入する毎に、それらの点火間引き回転域に対応する点火間引き率に従ってエンジンの各燃焼サイクルで点火が間欠的に実行される。高回転側の点火間引き回転域ほど点火間引き率が増加するため、エンジンの回転上昇に伴ってエンジン出力が次第に抑制される。従って、その後にエンジン回転速度が制限回転速度に達すると各燃焼サイクルで点火が連続的に中止されるが、その際のエンジン出力の格差が少なくなりトルクショックが抑制される。そして、このように最終的には点火が連続的に中止されるため、エンジンの回転上昇が確実に防止される。
その他の態様として、エンジンの点火を制御する点火制御手段を備え、記憶手段が、各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように各点火間引き回転域に対応して予め設定された点火間引き率を噴射間引き率と共に記憶し、第2の回転抑制手段が、エンジン回転速度が増減に伴って各点火間引き回転域に突入する毎に、点火間引き回転域に対応する点火間引き率を記憶手段から読み出して点火間引き率に従って各燃焼サイクルで点火を間欠的に実行するように構成することが望ましい。
このように構成した場合には、燃料噴射と同様に点火も各燃焼サイクルで間欠的に実行されることから、エンジンの回転上昇に伴ってエンジン出力が次第に抑制されて、トルクショックの抑制作用が奏される。
このように構成した場合には、燃料噴射と同様に点火も各燃焼サイクルで間欠的に実行されることから、エンジンの回転上昇に伴ってエンジン出力が次第に抑制されて、トルクショックの抑制作用が奏される。
その他の態様として、制限回転速度が、エンジンの上限回転速度として予め設定されていることが望ましい。
このように構成した場合には、トルクショックを抑制しながら過回転によりエンジンが破損する事態を確実に防止可能となる。
このように構成した場合には、トルクショックを抑制しながら過回転によりエンジンが破損する事態を確実に防止可能となる。
その他の態様として、最も低回転側の噴射間引き回転域及び/または点火間引き回転域が、エンジンの最大出力回転速度を含む常用回転域よりも高回転側に設定されていることが望ましい。
このように構成した場合には、通常のエンジン運転状態で噴射間引き率や点火間引き率に従ってエンジン出力が抑制される可能性がなくなり、これに起因する走行フィーリングの悪化が防止される。
このように構成した場合には、通常のエンジン運転状態で噴射間引き率や点火間引き率に従ってエンジン出力が抑制される可能性がなくなり、これに起因する走行フィーリングの悪化が防止される。
その他の態様として、エンジンが走行用動力源として二輪車に搭載されており、制限回転速度が、速度制限のために二輪車に課せられた上限車速に対応するエンジン回転速度として設定されていることが望ましい。
このように構成した場合には、トルクショックを抑制しながら上限車速で二輪車の速度を制限可能になると共に、上限車速付近でエンジン出力が急に抑制されたときの走行フィーリングの悪化が防止される。
このように構成した場合には、トルクショックを抑制しながら上限車速で二輪車の速度を制限可能になると共に、上限車速付近でエンジン出力が急に抑制されたときの走行フィーリングの悪化が防止される。
その他の態様として、噴射間引き回転域と点火間引き回転域とを異なる回転域として設定することが望ましい。
このように構成した場合には、燃料噴射のみ或いは点火のみを間引いた場合に比較して、より多段階でエンジン出力を抑制可能となる。
このように構成した場合には、燃料噴射のみ或いは点火のみを間引いた場合に比較して、より多段階でエンジン出力を抑制可能となる。
その他の態様として、第1の回転抑制手段が、燃料噴射の連続的な中止と点火の連続的な中止とを異なる制限回転速度に基づき実行するように構成することが望ましい。
このように構成した場合には、燃料噴射の連続的な中止と点火の連続的な中止とが段階的に行われるため、これらが同時に行われた場合に比較してトルクショックが抑制される。
このように構成した場合には、燃料噴射の連続的な中止と点火の連続的な中止とが段階的に行われるため、これらが同時に行われた場合に比較してトルクショックが抑制される。
その他の態様として、エンジンの行程を判別する行程判別手段をさらに備え、第2の回転抑制手段が、行程判別手段が行程を判別不能になったときに作動を停止するように構成することが望ましい。
このように構成した場合には、エンジンの行程を判別不能になると、第2の回転抑制手段により燃料噴射や点火を適切に間引くことができなくなるが、第2の回転抑制手段の作動が停止されて第1の回転抑制手段だけでエンジンの回転上昇が抑制されるため、不適切な間引きによってエンジン回転上昇の抑制に支障をきたす事態が防止される。
このように構成した場合には、エンジンの行程を判別不能になると、第2の回転抑制手段により燃料噴射や点火を適切に間引くことができなくなるが、第2の回転抑制手段の作動が停止されて第1の回転抑制手段だけでエンジンの回転上昇が抑制されるため、不適切な間引きによってエンジン回転上昇の抑制に支障をきたす事態が防止される。
その他の態様として、エンジンを単気筒として構成することが望ましい。
このように構成した場合には、単気筒エンジンであっても回転上昇に伴って段階的にエンジン出力を抑制可能となる。
このように構成した場合には、単気筒エンジンであっても回転上昇に伴って段階的にエンジン出力を抑制可能となる。
本発明によれば、エンジン回転速度が上昇して所定の制限回転速度でエンジンの回転上昇を制限する必要が生じたときに、トルクショックを生じることなく的確に回転上昇を制限でき、もってエンジンの過回転防止や車両の速度制限等の要求を確実に達成することができる。
以下、本発明を二輪車に搭載されるエンジンの過回転を防止する回転制御装置に具体化した一実施形態を説明する。
図1は本実施形態のエンジンの回転制御装置を示すシステム構成図である。
本実施形態のエンジン1は、排気量50ccの4サイクル単気筒ガソリンエンジンとして構成されており、走行用動力源として二輪車に搭載されている。但し、エンジン1の仕様については、これに限定されるものではなく任意に変更可能であり、例えば大排気量の多気筒エンジンに適用してもよい。
図1は本実施形態のエンジンの回転制御装置を示すシステム構成図である。
本実施形態のエンジン1は、排気量50ccの4サイクル単気筒ガソリンエンジンとして構成されており、走行用動力源として二輪車に搭載されている。但し、エンジン1の仕様については、これに限定されるものではなく任意に変更可能であり、例えば大排気量の多気筒エンジンに適用してもよい。
エンジン1のシリンダブロック2に形成されたシリンダ3内にはピストン4が摺動可能に配設され、ピストン4はコンロッド5を介してクランク軸6に連結されてピストン4の往復動に連動してクランク軸6が回転するようになっている。クランク軸6の後端(図示しない変速機側)にはフライホイール7が取り付けられ、フライホイール7の外周上の所定の角度領域にはクランク角を検出するための磁性体からなるリラクタ突起7aが形成されている。
シリンダブロック2上に固定されたシリンダヘッド9には吸気ポート9a及び排気ポート9bが形成されると共に、先端を筒内に臨ませた姿勢で点火プラグ10が配設されている。吸気ポート9aに接続された吸気通路11には、上流側よりエアクリーナ12、運転者のスロットル操作に応じて開閉されるスロットルバルブ13、ISCV(アイドルスピードコントロールバルブ)14を備えたバイパス通路15、及び吸気ポート9aに向けて燃料を噴射するインジェクタ16が設けられている。また排気ポート9bに接続された排気通路17には、排ガスを浄化するための三元触媒18(触媒装置)及び図示しない消音器が設けられている。
吸気ポート9aには吸気バルブ20が配設され、排気ポート9bには排気バルブ21が配設されている。これらの吸排気バルブ20,21はバルブスプリング22により閉弁側に付勢されると共に、シリンダヘッド9上でクランク軸6に同期して回転駆動される吸気カム軸23及び排気カム軸24により開弁される。これによりピストン4の往復動に同期した所定のタイミングで吸気バルブ20及び排気バルブ21が開閉し、吸気、圧縮、膨張、排気の4つの行程からなるエンジン1の燃焼サイクルがクランク角で720°CA毎に繰り返される。
上記インジェクタ16には、燃料タンク25内に貯留された燃料(ガソリン)が燃料ポンプ26により供給される。燃料ポンプ26はインジェクタ16と一体化され、供給ホース27及びリターンホース28を介してそれぞれ燃料タンク25に対して接続されている。
燃料ポンプ26が作動すると燃料タンク25内の燃料が供給ホース27を介して燃料ポンプ26内に導かれて所定圧に加圧され、加圧後の燃料がインジェクタ16に供給されると共に、余剰燃料がリターンホース28を介して燃料タンク25に回収される。これによりインジェクタ16には常に所定圧の燃料が供給され、インジェクタ16の開弁に応じて所定の噴射時期及び噴射量で吸気ポート9aに向けて燃料が噴射される。
燃料ポンプ26が作動すると燃料タンク25内の燃料が供給ホース27を介して燃料ポンプ26内に導かれて所定圧に加圧され、加圧後の燃料がインジェクタ16に供給されると共に、余剰燃料がリターンホース28を介して燃料タンク25に回収される。これによりインジェクタ16には常に所定圧の燃料が供給され、インジェクタ16の開弁に応じて所定の噴射時期及び噴射量で吸気ポート9aに向けて燃料が噴射される。
エンジン1の運転中には、吸気行程でピストン4の下降に伴って発生した負圧によりエアクリーナ12を介して吸気通路11内に外気が吸入され、吸入空気はスロットルバルブ13の開度に応じて流量調整された後、インジェクタ16からの噴射燃料と混合しながら吸気バルブ20の開弁中にエンジン1の筒内に流入する。続く圧縮行程での圧縮を経て混合気は圧縮上死点の近傍で点火プラグ10により点火され、膨張行程中に燃焼してピストン4を介してクランク軸6に回転力を付与する。続く排気行程では燃焼後の排ガスが排気バルブ21の開弁中に筒内より排出され、排気通路17を流通しながら三元触媒18及び消音器を経て外部に排出される。
以上のエンジン1の燃焼サイクルは、ECU31(エンジン制御ユニット)の制御に基づき実行される。そのためにECU31の入力側には、上記フライホイール7に対向配置されてリラクタ突起7aに同期した検出信号を出力する電磁ピックアップ32、スロットルバルブ13の開度を検出するスロットルセンサ33、排気通路17に配設されてストイキ(理論空燃比)を中心とした排気空燃比の変動に応じて出力VSをステップ状に変動させるO2センサ34、エンジン1の冷却水温Twを検出する水温センサ35等の各種センサ類が接続されている。また、ECU31の出力側には、上記ISCV14、インジェクタ16(制御機器)、燃料ポンプ26、点火プラグ10(制御機器)を駆動するイグナイタ36等の各種デバイス類が接続されている。
これらのセンサ情報に基づきECU31は、点火プラグ10を駆動するための点火制御、インジェクタ16を駆動するための燃料噴射制御等の各種制御を実行してエンジン1を運転する(点火制御手段、燃料噴射制御手段)。
例えばECU31は点火制御として、電磁ピックアップ32の検出信号から算出したエンジン回転速度Ne(回転速度検出手段)及びスロットルセンサ33により検出されたスロットル開度θth等に基づき目標点火時期を決定する。これと並行してECU31は、電磁ピックアップ32の検出信号を波形整形してリラクタ突起7a(換言するとクランク角)に同期した矩形波状のクランク角信号を生成し、そのクランク角信号に基づき目標点火時期に対応するタイミングを特定した上で、イグナイタ36を駆動して点火プラグ10を点火させる。
例えばECU31は点火制御として、電磁ピックアップ32の検出信号から算出したエンジン回転速度Ne(回転速度検出手段)及びスロットルセンサ33により検出されたスロットル開度θth等に基づき目標点火時期を決定する。これと並行してECU31は、電磁ピックアップ32の検出信号を波形整形してリラクタ突起7a(換言するとクランク角)に同期した矩形波状のクランク角信号を生成し、そのクランク角信号に基づき目標点火時期に対応するタイミングを特定した上で、イグナイタ36を駆動して点火プラグ10を点火させる。
またECU31は燃料噴射制御として、エンジン回転速度Ne及びスロットル開度θth等に基づき燃料噴射量(実際にはインジェクタ16の開弁時間)を決定し、吸気行程の所定タイミングでインジェクタ16を駆動して燃料噴射を実行する。
一方、ECU31はエンジン1の過回転を防止する過回転防止機能を備えている。エンジン1の過回転を防止する対策としては特許文献1の技術が提案されているが、エンジン回転速度Neが上限回転速度に到達した時点でエンジン1の点火を間引くだけのため、エンジン1の過回転を確実に防止できないばかりかトルクショックが発生するという問題がある。
このような問題点を鑑みて本実施形態では、エンジン1の過回転の防止のために、エンジン1の各燃焼サイクルで連続的に点火を中止する従来からの過回転防止機能(特許文献以前の技術)を備えた上で、エンジン回転速度Neが上限回転速度に到達する以前において、エンジン1の回転上昇に応じて点火を実行する燃焼サイクルを段階的に間引く新たな対策を講じている。加えて、このような点火の段階的な間引きと同じく燃料噴射についても段階的な間引きを実行しており、以下、この対策のためにECU31が実行する処理を説明する。
図2は燃料噴射及び点火を実行する燃焼サイクルを間引くための間引き率を設定する制御マップを示す模式図であり、この制御マップが予めECU31に記憶されている(記憶手段)。以下の説明では、燃料噴射の間引き率を噴射間引き率Rfiと称し、点火の間引き率を点火間引き率Rigと称する。
噴射間引き率Rfiに関しては、エンジン回転速度Ne=7000rpm未満の回転域で燃料噴射の完全実行を(間引きの中止)を意味する0が設定され、7000~7500rpmの回転域で1/3が設定され、7500~8000rpmの回転域で1/2が設定され、8000rpm以上の回転域で燃料噴射の完全中止を意味する1が設定されている。例えば噴射間引き率Rfi=1/3とは、エンジン1の回転に伴って繰り返される各燃焼サイクルの中で3回に1回の燃料噴射が間引きの対象となって中止されることを意味し、この点は点火間引き率Rigに関しても同様である。
従って、7000rpm未満の回転域では、エンジン1の各燃焼サイクルで通常通りに燃料噴射が連続的に実行され、7000~8000rpmの回転域では、2段階に増加する噴射間引き率Rfiにそれぞれ従って各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、8000rpm以上の回転域では、各燃焼サイクルで燃料噴射が連続的に中止される(第1の回転抑制手段)。以下、このような燃料噴射の間引きによりエンジン出力が抑制される7000rpm以上の各回転域を噴射間引き回転域と称する。
また、点火間引き率Rigに関しては、エンジン回転速度Ne=7250rpm未満の回転域で点火の完全実行(間引きの中止)を意味する0が設定され、7250~7750rpmの回転域で1/3が設定され、7750~8250rpmの回転域で1/2が設定され、8250rpm以上の回転域で点火の完全中止を意味する1が設定されている。
従って、7250rpm未満の回転域では、エンジン1の各燃焼サイクルで通常通りに点火が連続的に実行され、7250~8250rpmの回転域では、2段階に増加する点火間引き率Rigにそれぞれ従って各燃焼サイクルで間欠的に点火噴射が実行され(第2の回転抑制手段)、8250rpm以上の回転域では、各燃焼サイクルで点火が連続的に中止される(第1の回転抑制手段)。以下、このような点火の間引きによりエンジン出力が抑制される7250rpm以上の各回転域を点火間引き回転域と称する。
そして本実施形態では、燃料噴射が連続的に中止される8000rpm、及び点火が連続的に中止される8250rpmがエンジン1の上限回転速度(制限回転速度)として機能する。
以上の説明から明らかなように、噴射間引き回転域と点火間引き回転域とは異なる回転域として設定されている。詳しくは、隣接する噴射間引き回転域の境界に対し点火間引き回転域の中央が一致し、同様に、隣接する点火間引き回転域の境界に対し噴射間引き回転域の中央が一致するように設定されている。
そして詳細は後述するが、エンジン1の回転上昇に伴うエンジン出力の抑制は、1/3の噴射間引き率Rfiが適用される7000rpmから開始されるが、この回転速度はエンジン1の最大出力回転速度を含む常用回転域よりも高回転側である。
そして詳細は後述するが、エンジン1の回転上昇に伴うエンジン出力の抑制は、1/3の噴射間引き率Rfiが適用される7000rpmから開始されるが、この回転速度はエンジン1の最大出力回転速度を含む常用回転域よりも高回転側である。
即ち、周知のようにエンジン出力は回転上昇と共に増加してピークの最大出力回転速度を経た後に低下に転じることから、最大出力回転速度をある程度超えた回転域を上限としてエンジン1の常用回転域が定まり、通常はこの常用回転域内でエンジン1が運転される。このような常用回転域に対して高回転側に、噴射間引き率Rfi=1/3の噴射間引き回転域(詳しくは、その下限の7000rpm)が設定されている。
次に、以上のように設定された制御マップに基づきECU31により実行されるエンジン過回転防止ルーチンを図3のフローチャート、及び図4のタイムチャートに従って説明する。
ECU31は図3の過回転防止ルーチンをエンジン1の運転中に所定の制御インターバルで実行する。以下、図4に示すように、エンジン1がアイドル運転からアクセル全開により回転上昇した場合の過回転の抑制状況を説明する。なお、このときのエンジン1の回転上昇は、車両の加速を伴うものであっても停車中のエンジン1の空吹かしによるものであっても相違なく、同様の手順を追ってエンジン1の過回転が抑制される。
ECU31は図3の過回転防止ルーチンをエンジン1の運転中に所定の制御インターバルで実行する。以下、図4に示すように、エンジン1がアイドル運転からアクセル全開により回転上昇した場合の過回転の抑制状況を説明する。なお、このときのエンジン1の回転上昇は、車両の加速を伴うものであっても停車中のエンジン1の空吹かしによるものであっても相違なく、同様の手順を追ってエンジン1の過回転が抑制される。
まず、ステップS2でエンジン回転速度Neが7000rpm未満であるか否かを判定し、判定がYes(肯定)のときにはステップS4に移行して、図2の制御マップから噴射間引き率Rfi及び点火間引き率Rigとして0を読み出す。従って、燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=0に従ってエンジン1の各燃焼サイクルで燃料噴射及び点火が連続的に実行され、エンジン1は出力を抑制されることなく通常通りに運転される。エンジン1の常用回転域が7000rpm未満であることから、このように通常時には燃料噴射や点火の間引きによる出力抑制を受けずにエンジン1が運転され、エンジン出力の抑制に起因する走行フィーリングの悪化を防止することができる。
アイドル運転よりエンジン回転速度Neが上昇して7000rpm以上になると、ECU31はステップS2でNo(否定)の判定を下してステップS6に移行し、エンジン回転速度Neが8250rpm以上であるか否かを判定する。判定がNoのときにはステップS8に移行し、エンジン1の行程判別処理が正常に行われているか否かを判定する。
行程判別処理とは、エンジン1の燃焼サイクルを構成する各行程(吸気、圧縮、膨張、排気)をECU31が認識する処理である(行程判別手段)。即ち、エンジン1の燃焼サイクルが720°CAを1周期としているのに対し、クランク角信号は360°CAを1周期としているため、例えば現在のクランク角信号のON期間が圧縮上死点の直前のものか排気上死点の直前のものかをECU31は判別できない。
そこで、エンジン1を始動する際に、クランク角信号に基づき燃料噴射及び点火を360°CA毎にそれぞれ実行して暫定的にエンジン1を運転させた上で、360°CA間隔で発生するクランク角信号のON期間の所要時間を計測し、行程判別処理として相前後する2つのON期間の計測値を比較する。排気行程に比較して圧縮行程ではピストン4の上昇が妨げられてクランク軸6の角速度が低下するため、ON期間が長い側を圧縮行程と見なし、ON期間が短い側を排気行程と見なす。
そこで、エンジン1を始動する際に、クランク角信号に基づき燃料噴射及び点火を360°CA毎にそれぞれ実行して暫定的にエンジン1を運転させた上で、360°CA間隔で発生するクランク角信号のON期間の所要時間を計測し、行程判別処理として相前後する2つのON期間の計測値を比較する。排気行程に比較して圧縮行程ではピストン4の上昇が妨げられてクランク軸6の角速度が低下するため、ON期間が長い側を圧縮行程と見なし、ON期間が短い側を排気行程と見なす。
以降のエンジン1の運転中には、行程判別処理の結果に従って720°CA毎に吸気行程で燃料噴射を実行し、圧縮上死点の直前で点火を実行するのであるが、電磁ピックアップ32の故障等の要因でECU31が行程判別できなくなる場合がある。上記ステップS8は、このような事態を想定した処理であり、ECU31は正常に行程判別処理を実行しているときにはステップS8でYesの判定を下し、ステップS10以降の処理によりエンジン回転速度Neに応じて燃料噴射及び点火を間引きながらエンジン1を運転させる。
まずステップS10では、エンジン回転速度Neが7250rpm未満であるか否かを判定する。判定がYesのとき(エンジン回転速度Neが7000~7250rpmの回転域に突入したことを意味し、以下の他の回転域でも同様である)にはステップS12に移行して、制御マップから噴射間引き率Rfiとして1/3を読み出し、点火間引き率Rigとして0を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1/3に従って燃料噴射が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、点火制御では、点火間引き率Rig=0に従って各燃焼サイクルで点火が連続的に実行される。
さらにエンジン回転速度Neが上昇して7250rpm以上になると、ECU31はステップS10でNoの判定を下してステップS14に移行し、エンジン回転速度Neが7500rpm未満であるか否かを判定する。判定がYesのときにはステップS16に移行して、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1/3を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1/3に従って燃料噴射及び点火が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射や点火が実行される(第2の回転抑制手段)。
なお、本実施形態では、このときの燃料噴射及び点火に対する間引きのタイミングを同期させているが(同一燃焼サイクルで燃料噴射及び点火を共に中止する)、本発明はこれに限定されるものではなく、双方の間引きのタイミングが相違する場合も含むものとする。
なお、本実施形態では、このときの燃料噴射及び点火に対する間引きのタイミングを同期させているが(同一燃焼サイクルで燃料噴射及び点火を共に中止する)、本発明はこれに限定されるものではなく、双方の間引きのタイミングが相違する場合も含むものとする。
さらにエンジン回転速度Neが上昇して7500rpm以上になると、ECU31はステップS14でNoの判定を下してステップS18に移行し、エンジン回転速度Neが7750rpm未満であるか否かを判定する。判定がYesのときにはステップS20に移行して、制御マップから噴射間引き率Rfiとして1/2を読み出し、点火間引き率Rigとして1/3を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1/2に従って燃料噴射が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、点火制御では、点火間引き率Rig=1/3に従って点火が間引かれて各燃焼サイクルで間欠的に点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して7750rpm以上になると、ECU31はステップS18でNoの判定を下してステップS22に移行し、エンジン回転速度Neが8000rpm未満であるか否かを判定する。判定がYesのときにはステップS24に移行して、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1/2を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1/2に従って燃料噴射及び点火が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射や点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して8000rpm以上になると、ECU31はステップS22でNoの判定を下してステップS26に移行し、エンジン回転速度Neが8250rpm未満であるか否かを判定する。判定がYesのときにはステップS28に移行して、制御マップから噴射間引き率Rfiとして1を読み出し、点火間引き率Rigとして1/2を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1に従ってエンジン1の各燃焼サイクルで燃料噴射が連続的に中止され(第1の回転抑制手段)、点火制御では、点火間引き率Rig=1/2に従って点火が間引かれて各燃焼サイクルで間欠的に点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して8250rpm以上になるとステップS26でNoの判定を下し、再度本ルーチンを開始したときにステップS2からステップS6を経てステップS30に移行する。ステップS30では、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1に従って各燃焼サイクルで燃料噴射及び点火が連続的に中止される(第1の回転抑制手段)。
本実施形態のエンジン1はポート噴射型であるため、筒内噴射型エンジンのように同一燃焼サイクル内で燃料噴射と点火とが実行された場合のみ筒内での燃焼が成立するわけではない。例えば吸気ポート9a内に噴射されたものの直後の同一燃焼サイクル内で点火が実行されなかった場合であっても、次回以降の燃焼サイクルで点火が実行されれば噴射燃料は筒内で燃焼してエンジン出力に貢献する。このため、図2の制御マップ及び図3のルーチンに基づき、7000~8250rpmの回転域では、噴射間引き率Rfi或いは点火間引き率Rigの何れかが増加する毎にエンジン出力が抑制される。
より具体的には、エンジン回転速度Neが7000rpm未満の燃料噴射及び点火を連続的に実行する通常回転域に対して、7000rpm以上では燃料噴射が1/3間引かれ、7250rpm以上では点火が1/3間引かれ、7500rpm以上では燃料噴射が1/2間引かれ、7750rpm以上では点火が1/2間引かれる。
そして、以上のように燃料噴射及び点火が段階的に間引かれることにより、エンジン1の回転上昇に応じてエンジン出力が段階的に抑制され、それに応じて図4に示すようにエンジン1の回転上昇が次第に鈍くなる。従って、燃料噴射及び点火の間引き運転(Ne<8000rpm)から燃料噴射及び点火の完全中止(Ne≧8000rpm)に移行する時点では既にエンジン出力が十分に抑制されているため、移行する際のエンジン出力の格差が非常に少ない。
そして、以上のように燃料噴射及び点火が段階的に間引かれることにより、エンジン1の回転上昇に応じてエンジン出力が段階的に抑制され、それに応じて図4に示すようにエンジン1の回転上昇が次第に鈍くなる。従って、燃料噴射及び点火の間引き運転(Ne<8000rpm)から燃料噴射及び点火の完全中止(Ne≧8000rpm)に移行する時点では既にエンジン出力が十分に抑制されているため、移行する際のエンジン出力の格差が非常に少ない。
しかも、燃料噴射及び点火の完全中止もエンジン1の回転上昇に応じて段階的に行われる(8000rpm、8250rpm)。このため、例えば燃料噴射及び点火が同時に完全中止された場合に比較して、エンジン出力の縮小が2回に分割されて個々のエンジン出力の格差が少なくなる。
以上の一連のECU31の処理により、エンジン1が回転上昇して7000rpm以上になると燃料噴射及び点火が段階的に間引かれ、さらに8000rpm以上になると燃料噴射及び点火が段階的に完全中止され、それに伴ってエンジン出力が段階的に抑制される。よって、エンジン1の過回転を防止する際のトルクショックを抑制でき、もって良好な走行フィーリングを継続することができる。しかも、最終的には8250rpm以上の回転域で燃料噴射及び点火を共に完全中止するため、良好な走行フィーリングを確保した上でエンジン1の回転上昇を的確に制限でき、これにより過回転によるエンジン破損を確実に防止することができる。
特に本実施形態では、噴射間引き回転域と点火間引き回転域とが異なる回転域として設定され、エンジン回転上昇時には燃料間引き率Rfiと点火間引き率Rigとが交互に増加される。このため燃料噴射のみ或いは点火のみを間引いた場合に比較して、より多段階でエンジン出力を抑制でき、一層良好な走行フィーリングを実現することができる。
また、例えば多気筒エンジンにおいては、回転上昇時に燃料噴射や点火を中止する気筒を徐々に増加させれば、本実施形態と同じく段階的にエンジン出力を抑制できるが、この手法は本実施形態のような単気筒エンジン1には適用できない。本実施形態は単気筒エンジン1であっても同様の作用効果が得られることから、特に単気筒エンジン1に対して好適なものと見なせる。
また、例えば多気筒エンジンにおいては、回転上昇時に燃料噴射や点火を中止する気筒を徐々に増加させれば、本実施形態と同じく段階的にエンジン出力を抑制できるが、この手法は本実施形態のような単気筒エンジン1には適用できない。本実施形態は単気筒エンジン1であっても同様の作用効果が得られることから、特に単気筒エンジン1に対して好適なものと見なせる。
なお、上記のようにポート噴射型エンジン1では、吸気ポート9a内への噴射燃料が次回以降の燃焼サイクルで燃焼されるため、燃料噴射と点火とが相前後して完全中止されたとき(8000rpm、8250rpm)の筒内燃焼の推移を詳細には断定できない。例えば図4に示すようにエンジン回転速度Neは8000rpm以上になっても燃焼の継続により上昇し続け、8250rpmを超えて下降に転じる場合が考えられる。その後エンジン回転速度Neは、8000rpm未満まで低下して1/2間引きの燃料噴射の再開により筒内燃焼が再開された時点で再び上昇に転じ、運転者がスロットル全開に保っている限りは以上の変動を繰り返す。
エンジン回転速度Neの変動状況は図示したものに限らないが、何れにしてもエンジン回転速度Neが低下から上昇に転じたときの筒内燃焼は、連続的な燃料噴射及び点火で一気に再開されることなく、1/2間引きの燃料噴射及び点火により緩やかに再開される。結果としてスロットル全開が継続されている場合のエンジン1の燃料噴射及び点火は、1/2間引きされた運転状態と連続的に中止された運転状態との間で交互に繰り返される。
このような状況において、従来からの間引き無しの過回転防止制御では燃料噴射や点火の連続的な実行と中止とが交互に繰り返されるが、これに対して本実施形態ではエンジン出力の変動が大幅に縮小される。よって、エンジン1の回転上昇を制限する際だけでなく、その後にスロットル全開が継続されている状況においても、エンジン出力の変動を縮小してトルクショックを抑制することができる。
以上がECU31により正常な行程判別処理が実行されているときのエンジン1の過回転防止処理である。次に、ECU31の行程判別処理に異常が生じた場合について図3に戻って説明を続ける。
エンジン回転速度Neが8250rpm未満の場合、ECU31は図3のステップS2からステップS6を経てステップS8に移行する。行程判別処理が正常でないことからステップS8でNoの判定を下してステップS4に移行し、噴射間引き率Rfi及び点火間引き率Rigとして0を読み出す。また、エンジン回転速度Neが上昇して8250rpm以上になるとステップS30に移行して、噴射間引き率Rfi及び点火間引き率Rigとして1を読み出す。
エンジン回転速度Neが8250rpm未満の場合、ECU31は図3のステップS2からステップS6を経てステップS8に移行する。行程判別処理が正常でないことからステップS8でNoの判定を下してステップS4に移行し、噴射間引き率Rfi及び点火間引き率Rigとして0を読み出す。また、エンジン回転速度Neが上昇して8250rpm以上になるとステップS30に移行して、噴射間引き率Rfi及び点火間引き率Rigとして1を読み出す。
従って、エンジン回転速度Neが8250rpm未満の回転域では、燃料噴射や点火の間引きによる出力抑制を受けずにエンジン1が運転され、8250rpm以上になると燃料噴射及び点火が完全中止されてエンジン1の過回転が防止される。このときのECU31の制御内容は、従来からの間引き無しの過回転防止制御に相当するものであり、行程判別処理の異常時にこのように制御内容を切り換えるのは、以下の知見に基づく。
ECU31は行程判別処理に異常が生じた場合、上記した行程判別前であるエンジン始動時と同様に、燃料噴射及び点火を360°CA毎にそれぞれ実行する。この制御モードは車両の走行不能を回避する所謂リンプホームを想定したものであるが、燃料噴射及び点火の頻度が2倍になるため、正常時と同一の間引き率Rfi,Rigを適用しても目的の間引きを実現できない。また、例えば排気上死点の直前で実行される点火は意味のない点火(所謂捨て火)であるにも拘わらず、ECU31が燃焼サイクルの各行程を認識不能な故に、捨て火の点火が間引きの対象となる場合もあり、この点も目的の間引きを実現できない要因となる。
そこで、行程判別処理の異常時には燃料噴射及び点火を適切に間引くことが不可能と見なし、従来からの間引き無しの過回転防止制御に切り換えているのである。これにより不適切な間引きの実施で肝心のエンジン1の過回転防止に支障をきたす事態を未然に防止することができる。
そこで、行程判別処理の異常時には燃料噴射及び点火を適切に間引くことが不可能と見なし、従来からの間引き無しの過回転防止制御に切り換えているのである。これにより不適切な間引きの実施で肝心のエンジン1の過回転防止に支障をきたす事態を未然に防止することができる。
ところで、本実施形態ではエンジン1の上限回転速度を制限回転速度として設定してエンジン1の過回転による破損を防止したが、本発明はこれに限るものではない。例えば、二輪車等には速度制限のために上限車速が課せられることがあり、このような場合には、車両の走行中に上限車速未満に車速を制限(所謂スピードリミッタ)する必要が生じる。そこで、上限車速に対応するエンジン回転速度Neを制限回転速度として設定し、車両走行中にエンジン回転速度Neが上昇して制限回転速度に達した時点でエンジン1の燃料噴射や点火を中止する対策が講じられる。
そして、このような場合にも本実施形態と同じく、エンジン回転速度Ne(=車速)の上昇に伴って燃料噴射や点火を実行する燃焼サイクルを段階的に間引くようにしてもよい。このときにも制限回転速度の設定が相違するだけで、噴射間引き率Rfiや点火間引き率Rig等に関しては実施形態と同様の設定を適用することができる。よって、重複する説明はしないが、車速が上限車速に接近するほどエンジン出力が段階的に抑制されることから、トルクショックを抑制しながら上限車速で二輪車を速度制限できると共に、上限車速付近でエンジン出力が急に抑制されたときの走行フィーリングの悪化を未然に防止することができる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、二輪車に搭載された単気筒エンジン1の回転制御装置として具体化したが、これに限るものではなく多気筒エンジンに適用したり、三輪車用のエンジンに適用したりしてもよい。また上記実施形態で述べた噴射及び点火間引き回転域及び各間引き回転域の数、各間引き回転域の間引き率Rfi,Rig、上限回転速度等の諸要件は一例に過ぎず、これに限定されるものではない。当然であるが、エンジン1の仕様等が相違すればそれに応じて各要件を任意に変更することができる。
また上記実施形態では、噴射間引き回転域と点火間引き回転域とを異なる回転域として設定し、エンジン1の回転上昇に応じて燃料間引き率Rfiと点火間引き率Rigとを交互に増加させたが、これに限るものではない。例えば燃料噴射及び点火の間引き率Rfi,Rigを同一の間引き回転域で設定し、両間引き率Rfi,Rigを同一タイミングで増加させるようにしてもよい。また、エンジン1の過回転防止のために必ずしも燃料噴射及び点火の双方を中止する必要はなく、例えばエンジン1の回転上昇に応じて燃料噴射のみの間引き及び完全中止、或いは点火のみの間引き及び完全中止を実行するようにしてもよい。
また上記実施形態では、燃料噴射及び点火の完全中止を異なるエンジン回転速度Ne(8000rpm、8250rpm)で行ったが、同一回転速度、例えば8000rpm或いは8250rpmで同時に実行するようにしてもよい。
また上記実施形態では、燃料噴射及び点火の完全中止を異なるエンジン回転速度Ne(8000rpm、8250rpm)で行ったが、同一回転速度、例えば8000rpm或いは8250rpmで同時に実行するようにしてもよい。
1 エンジン
31 ECU(回転速度検出手段、燃料噴射制御手段、点火制御手段、記憶手段、行程判別手段)
32 電磁ピックアップ(回転速度検出手段)
31 ECU(回転速度検出手段、燃料噴射制御手段、点火制御手段、記憶手段、行程判別手段)
32 電磁ピックアップ(回転速度検出手段)
Claims (10)
- エンジンの燃料噴射を制御する燃料噴射制御手段と、
上記エンジンの回転速度を検出する回転速度検出手段と、
上記回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときに上記エンジンの回転に伴って繰り返される各燃焼サイクルで上記燃料噴射を連続的に中止する第1の回転抑制手段と、
上記制限回転速度の低回転側を複数に区分する各噴射間引き回転域にそれぞれ対応し、上記各燃焼サイクルの中で燃料噴射を実行する燃焼サイクルを間引くために高回転側の噴射間引き回転域ほど増加するように予め設定された噴射間引き率を記憶する記憶手段と、
上記回転速度検出手段により検出されたエンジン回転速度が増減に伴って上記各噴射間引き回転域に突入する毎に、該噴射間引き回転域に対応する上記噴射間引き率を上記記憶手段から読み出して該噴射間引き率に従って上記各燃焼サイクルで上記燃料噴射を間欠的に実行する第2の回転抑制手段と
を具備したことを特徴とするエンジンの回転制御装置。 - エンジンの点火を制御する点火制御手段と、
上記エンジンの回転速度を検出する回転速度検出手段と、
上記回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときに上記エンジンの回転に伴って繰り返される各燃焼サイクルで上記点火を連続的に中止する第1の回転抑制手段と、
上記制限回転速度の低回転側を複数に区分する各点火間引き回転域にそれぞれ対応し、上記各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように予め設定された点火間引き率を記憶する記憶手段と、
上記回転速度検出手段により検出されたエンジン回転速度が増減に伴って上記各点火間引き回転域に突入する毎に、該点火間引き回転域に対応する上記点火間引き率を上記記憶手段から読み出して該点火間引き率に従って上記各燃焼サイクルで上記点火を間欠的に実行する第2の回転抑制手段と
を具備したことを特徴とするエンジンの回転制御装置。 - 上記エンジンの点火を制御する点火制御手段を備え、
上記記憶手段は、上記各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように上記各点火間引き回転域に対応して予め設定された点火間引き率を上記噴射間引き率と共に記憶し、
上記第2の回転抑制手段は、上記エンジン回転速度が増減に伴って上記各点火間引き回転域に突入する毎に、該点火間引き回転域に対応する上記点火間引き率を上記記憶手段から読み出して該点火間引き率に従って上記各燃焼サイクルで上記点火を間欠的に実行する
ことを特徴とする請求項1に記載のエンジンの回転制御装置。 - 上記制限回転速度は、上記エンジンの上限回転速度として予め設定されている
ことを特徴とする請求項1乃至3の何れかに記載のエンジンの回転制御装置。 - 最も低回転側の上記噴射間引き回転域及び/または点火間引き回転域は、上記エンジンの最大出力回転速度を含む常用回転域よりも高回転側に設定されている
ことを特徴とする請求項4に記載のエンジンの回転制御装置。 - 上記エンジンは走行用動力源として二輪車に搭載されており、
上記制限回転速度は、速度制限のために上記二輪車に課せられた上限車速に対応するエンジン回転速度として設定されている
ことを特徴とする請求項1乃至3の何れかに記載のエンジンの回転制御装置。 - 上記噴射間引き回転域と上記点火間引き回転域とが異なる回転域として設定された
ことを特徴とする請求項3乃至6の何れかに記載のエンジンの回転制御装置。 - 上記第1の回転抑制手段は、上記燃料噴射の連続的な中止と上記点火の連続的な中止とを異なる制限回転速度に基づき実行する
ことを特徴とする請求項3乃至7の何れかに記載のエンジンの回転制御装置。 - 上記エンジンの行程を判別する行程判別手段をさらに備え、
上記第2の回転抑制手段は、上記行程判別手段が行程を判別不能になったときに作動を停止する
ことを特徴とする請求項1乃至8の何れかに記載のエンジンの回転制御装置。 - 上記エンジンは単気筒である
ことを特徴とする請求項1乃至9の何れかに記載のエンジンの回転制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-114906 | 2014-06-03 | ||
JP2014114906A JP2015229932A (ja) | 2014-06-03 | 2014-06-03 | エンジンの回転制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186764A1 true WO2015186764A1 (ja) | 2015-12-10 |
Family
ID=54766832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066107 WO2015186764A1 (ja) | 2014-06-03 | 2015-06-03 | エンジンの回転制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015229932A (ja) |
WO (1) | WO2015186764A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021042710A (ja) * | 2019-09-10 | 2021-03-18 | 株式会社やまびこ | 作業機用エンジン装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01294965A (ja) * | 1988-05-20 | 1989-11-28 | Oki Electric Ind Co Ltd | 内燃機関の点火制御方式 |
JPH05133265A (ja) * | 1991-11-11 | 1993-05-28 | Japan Electron Control Syst Co Ltd | 内燃機関の電子制御燃料噴射装置 |
JPH09291864A (ja) * | 1996-02-29 | 1997-11-11 | Suzuki Motor Corp | 船外機のエンジン制御装置 |
JP2008157178A (ja) * | 2006-12-26 | 2008-07-10 | Honda Motor Co Ltd | エンジン制御装置 |
JP2011157906A (ja) * | 2010-02-02 | 2011-08-18 | Denso Corp | 内燃機関の制御装置 |
JP2013011176A (ja) * | 2011-06-28 | 2013-01-17 | Toyota Motor Corp | 内燃機関の制御装置 |
-
2014
- 2014-06-03 JP JP2014114906A patent/JP2015229932A/ja active Pending
-
2015
- 2015-06-03 WO PCT/JP2015/066107 patent/WO2015186764A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01294965A (ja) * | 1988-05-20 | 1989-11-28 | Oki Electric Ind Co Ltd | 内燃機関の点火制御方式 |
JPH05133265A (ja) * | 1991-11-11 | 1993-05-28 | Japan Electron Control Syst Co Ltd | 内燃機関の電子制御燃料噴射装置 |
JPH09291864A (ja) * | 1996-02-29 | 1997-11-11 | Suzuki Motor Corp | 船外機のエンジン制御装置 |
JP2008157178A (ja) * | 2006-12-26 | 2008-07-10 | Honda Motor Co Ltd | エンジン制御装置 |
JP2011157906A (ja) * | 2010-02-02 | 2011-08-18 | Denso Corp | 内燃機関の制御装置 |
JP2013011176A (ja) * | 2011-06-28 | 2013-01-17 | Toyota Motor Corp | 内燃機関の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2015229932A (ja) | 2015-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5919697B2 (ja) | ディーゼルエンジンの始動制御装置 | |
JP5229006B2 (ja) | 内燃機関の制御装置 | |
RU2703872C2 (ru) | Способ и система для управления двигателем | |
JP5742682B2 (ja) | 内燃機関の始動制御装置 | |
JP4291762B2 (ja) | エンジン停止制御装置及びそれを搭載した車両 | |
JP2009019577A (ja) | 内燃機関の制御装置 | |
JP6197825B2 (ja) | エンジンの制御装置 | |
RU2696660C2 (ru) | Система и способ для эксплуатации двигателя | |
WO2015186764A1 (ja) | エンジンの回転制御装置 | |
JP2007327399A (ja) | 内燃機関の制御装置 | |
JP6107378B2 (ja) | 空燃比インバランス判定装置 | |
JP5888041B2 (ja) | 圧縮自己着火式エンジンの始動制御装置 | |
JP2006132399A (ja) | 過給機付エンジンの制御装置および制御方法 | |
JP5888605B2 (ja) | 内燃機関の制御装置 | |
JP6372552B2 (ja) | 圧縮着火式エンジンの制御方法および制御装置 | |
JP2007278174A (ja) | 内燃機関の燃料カット制御装置 | |
JP2016050502A (ja) | 内燃機関の制御装置 | |
JP6301204B2 (ja) | エンジンの始動制御装置 | |
WO2021112221A1 (ja) | 内燃機関の駆動制御装置 | |
WO2015186760A1 (ja) | エンジンの制御装置 | |
JP7092519B2 (ja) | 内燃機関の制御装置 | |
JP2004332662A (ja) | 内燃機関のアイドル振動低減装置 | |
JP6414584B2 (ja) | 圧縮着火式エンジンの制御方法および制御装置 | |
JP5857829B2 (ja) | 圧縮自己着火式エンジンの始動制御装置 | |
JP5935754B2 (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15802761 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15802761 Country of ref document: EP Kind code of ref document: A1 |