JP2010255591A - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
JP2010255591A
JP2010255591A JP2009109107A JP2009109107A JP2010255591A JP 2010255591 A JP2010255591 A JP 2010255591A JP 2009109107 A JP2009109107 A JP 2009109107A JP 2009109107 A JP2009109107 A JP 2009109107A JP 2010255591 A JP2010255591 A JP 2010255591A
Authority
JP
Japan
Prior art keywords
fuel
amount
cylinder
intake
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109107A
Other languages
English (en)
Inventor
Koichi Ueda
広一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009109107A priority Critical patent/JP2010255591A/ja
Publication of JP2010255591A publication Critical patent/JP2010255591A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 燃料噴射停止中の点火継続による未燃燃料の燃焼処理を、より適切に行うこと。
【解決手段】 本発明のエンジン制御装置は、エンジンの気筒及び/又は吸気系の壁面に付着した燃料量である壁面付着燃料量を推定し、この壁面付着燃料量の推定値に基づいて燃焼予定燃料量(気筒内のガス中の燃料量)を推定し、この燃焼予定燃料量の推定値に基づいて燃料噴射停止処理中における気筒内のガスに対する点火を実行するか否かを決定する。
【選択図】 図3

Description

本発明は、エンジン制御装置に関する。
特開平6−137197号公報、特開2003−155940号公報、特開2006−348776号公報、等に開示されたエンジン制御装置は、燃料噴射停止後も点火を或る程度継続して気筒や吸気系の壁面に付着した燃料(残存未燃燃料)を燃焼させてから、点火を停止することで、燃焼室から排気系に排出される排気ガス中における未燃燃料の量を抑制するように構成されている。
上述のような従来のこの種のエンジン制御装置において、燃料噴射停止後の点火継続時間には、上述の残存未燃燃料が完全に燃焼され尽くすのに充分と考えられる時間が設定される(例えば、特開2006−348776号公報の段落[0027]参照。)。
しかしながら、従来のこの種のエンジン制御装置においては、燃料噴射停止後の点火継続時間が、残存未燃燃料に対して適切に設定されないことで、諸々の不具合が生じ得る。
具体的には、燃料噴射停止後の点火継続時間が、残存未燃燃料に対して長すぎる場合が生じ得る。この場合、残存未燃燃料が完全に燃焼され尽くした後であっても、点火がかなりの時間継続されてしまう。すると、未燃燃料の燃焼に供されない本来不必要な点火エネルギーが消費されるとともに、点火装置の寿命が低下する。
一方、燃料噴射停止後の点火継続時間が、残存未燃燃料に対して短すぎる場合が生じ得る。この場合、残存未燃燃料量が完全に燃焼され尽くす前に点火が停止されることで、排気ガス中へ未燃燃料が流出してしまう。
本発明は、このような課題に対処するためになされたものである。すなわち、本発明の目的は、燃料噴射停止中の点火継続による未燃燃料の燃焼処理を、より適切に行うことにある。
本発明のエンジン制御装置は、燃料付着量推定手段と、燃焼予定燃料量推定手段と、を備えている。
前記燃料付着量推定手段は、燃料挙動モデルを用いて壁面付着燃料量を推定するようになっている。ここで、前記壁面付着燃料量は、エンジンの気筒及び/又は吸気系の壁面に付着した燃料量である。また、前記燃料挙動モデルは、前記壁面への燃料付着挙動を表すモデルである。具体的には、この燃料挙動モデルは、燃料噴射弁からの噴射燃料の前記壁面への付着率や付着燃料の当該壁面における残留率を含む所定のパラメータに基づいて、前記燃料噴射弁から噴射された後の燃料の挙動を定めたモデルである。
前記燃焼予定燃料量推定手段は、前記燃料付着量推定手段によって推定された前記壁面付着燃料量に基づいて、燃焼予定燃料量(前記気筒内のガス中の燃料量)を推定するようになっている。
本発明の特徴は、前記エンジン制御装置が、前記燃焼予定燃料量推定手段によって推定された前記燃焼予定燃料量に基づいて、燃料噴射停止処理中における前記気筒内のガスに対する点火を実行するか否かを決定する、点火制御手段をさらに備えたことにある。
ここで、「燃料噴射停止処理」とは、エンジン運転中にて前記燃料噴射弁からの燃料噴射が停止されることをいう。この燃料噴射停止処理には、いわゆるフューエルカットが含まれ得る。このフューエルカットとは、エンジン運転中にて所定のフューエルカット条件(例えばアクセルオフでエンジン回転数が所定値以上)が成立した場合に、前記燃料噴射弁からの燃料噴射が中断(一時的停止)されることをいう。
前記エンジン制御装置は、吸入空気量制御手段をさらに備え得る。この吸入空気量制御手段は、前記燃料付着量推定手段によって推定された前記壁面付着燃料量、又は、前記燃焼予定燃料量推定手段によって推定された前記燃焼予定燃料量に基づいて、前記気筒内への吸入空気量を制御するようになっている。
上述のような構成を備えた本発明のエンジン制御装置においては、前記燃料付着量推定手段は、前記燃料挙動モデルを用いて、前記壁面付着燃料量を推定する。また、前記燃焼予定燃料量推定手段は、前記燃料付着量推定手段によって推定された前記壁面付着燃料量に基づいて、前記燃焼予定燃料量を推定する。
ところで、エンジン運転中にて、前記燃料噴射弁からの燃料噴射が停止されることがある(前記燃料噴射停止処理)。この燃料噴射停止処理中も、前記壁面付着燃料量及び前記燃焼予定燃料量の推定が行われる。そして、前記点火制御手段は、前記燃焼予定燃料量推定手段によって推定された前記燃焼予定燃料量に基づいて、燃料噴射停止処理中における前記気筒内のガスに対する点火を実行するか否かを決定する。
すなわち、本発明のエンジン制御装置においては、燃料噴射停止処理の開始時点からの点火継続時間及びその停止タイミングが、前記壁面付着燃料量及び前記燃焼予定燃料量の推定結果に基づいて決定される。よって、例えば、前記壁面における付着燃料により燃料噴射停止処理中でも前記燃焼予定燃料量が可燃範囲にあると推定される場合は、点火が継続される。そして、前記壁面における付着燃料が(ほぼ)無くなって燃料噴射停止処理中における前記燃焼予定燃料量が可燃範囲未満であると推定される場合は、点火継続が停止される。
ここで、例えば、前記吸入空気量制御手段によって、燃料噴射停止処理中の前記吸入空気量が、適宜制御(調整)され得る。これにより、燃料噴射停止中の点火(燃焼)継続状態が、より好ましく設定され得る。
具体的には、例えば、可及的速やかにフューエルカット中の点火継続を停止させ得るように前記吸入空気量を制御することで、ポンプ損失を可及的に低減させることが可能になる。あるいは、例えば、燃焼停止が長期間継続することによる空燃比制御の精度悪化を可及的に抑制するために、フューエルカット中の点火継続が或る程度継続するように前記吸入空気量が制御され得る。
このように、本発明によれば、燃料噴射停止処理の開始時点からの点火継続時間及びその停止タイミングが、前記壁面における燃料の付着及び残留の挙動の推定結果に応じて、精度よく決定される。したがって、本発明によれば、燃料噴射停止中の点火継続による未燃燃料の燃焼処理を、より適切に行うことが可能になる。
本発明の一実施形態が適用された火花点火式多気筒(4気筒)のエンジンの全体構成を示す概略図である。 図1に示されているポート噴射弁から噴射された燃料の挙動を定めたモデルである燃料挙動モデルの概略を示した概念図である。 図1に示されているCPUによって実行される、フューエルカット中点火制御処理の一具体例を示すフローチャートである。 図1に示されているCPUによって実行される、フューエルカット中点火制御処理の他の具体例を示すフローチャートである。 図1に示されているCPUによって実行される、フューエルカット中点火制御処理のさらに他の具体例を示すフローチャートである。
以下、本発明の実施形態について、図面を参照しつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。
よって、後述するように、本発明が、以下に説明する実施形態の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態に対して施され得る各種の変更(modification)は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。
<構成>
図1は、本発明の一実施形態が適用された火花点火式多気筒(4気筒)のエンジン1の全体構成を示す概略図である。エンジン1は、シリンダブロック部2と、シリンダヘッド部3と、吸気系統4と、排気系統5と、を備えている。
シリンダブロック部2は、シリンダブロック、シリンダブロックロワーケース、及びオイルパン等を含んでいる。シリンダヘッド部3は、シリンダブロック部2の上に固定されている。吸気系統4は、シリンダブロック部2及びシリンダヘッド部3の内部に形成された燃焼室CCにガソリン混合気を供給するように設けられている。排気系統5は、燃焼室CCから排出された排気ガスを外部に放出するように設けられている。
シリンダブロック部2は、シリンダ21、ピストン22、コンロッド23、及びクランクシャフト24を備えている。ピストン22は、シリンダ21内にて往復動可能に収容されている。クランクシャフト24は、ピストン22の往復動によって回転駆動されるように、コンロッド23を介してピストン22と連結されている。シリンダ21の内側の空間と、ピストン22の頂面と、シリンダヘッド部3の下端に設けられた凹部と、によって、燃焼室CCが形成されている。
シリンダヘッド部3は、吸気ポート31、吸気弁32、可変吸気タイミング装置33(アクチュエータ33aを含む)、排気ポート34、排気弁35、エキゾーストカムシャフト36、点火プラグ37、イグナイタ38、及びポート噴射弁39を備えている。
吸気ポート31は、燃焼室CCに連通するように設けられている。吸気弁32は、インテークカムシャフト(可変吸気タイミング装置33に含まれる)の回転に応じて吸気ポート31を開閉するように設けられている。可変吸気タイミング装置33は、吸気弁32を駆動するための上述のインテークカムシャフトの位相角をアクチュエータ33aによって連続的に変更可能に構成されている。
排気ポート34は、燃焼室CCに連通するように設けられている。排気弁35は、エキゾーストカムシャフト36の回転に応じて排気ポート34を開閉するように設けられている。イグナイタ38は、点火プラグ37に与える高電圧を発生するイグニッションコイルを含んでいる。燃料噴射弁であるポート噴射弁39は、燃料を吸気ポート31内に噴射するように設けられている。
吸気系統4は、吸気管41、エアフィルタ42、及びスロットル弁43を備えている。吸気管41は、吸気ポート31とともに吸気通路を形成するインテークマニホールドを含んでいて、吸気ポート31に連通するように設けられている。エアフィルタ42は、吸気管41の端部に設けられている。スロットル弁43は、DCモータからなるスロットル弁アクチュエータ43aによって駆動されることで、吸気管41内における開口断面積を可変とするように設けられている。
排気系統5は、排気ポート34とともに排気通路を構成するエキゾーストマニホールド51及びエキゾーストパイプ52、並びに三元触媒53を備えている。
エキゾーストマニホールド51は、排気ポート34に連通するように設けられている。エキゾーストパイプ52は、エキゾーストマニホールド51(実際には、各排気ポート34に連通したそれぞれのエキゾーストマニホールド51が集合した部分)に接続されている。このエキゾーストパイプ52には、三元触媒53が介装されている。
また、エンジン1には、スロットルポジションセンサ61、カムポジションセンサ62、クランクポジションセンサ63、水温センサ64、熱線式エアフローメータ65、空燃比センサ67、及び圧力センサ66が設けられている。
スロットルポジションセンサ61は、スロットル弁43に対応する位置に設けられている。このスロットルポジションセンサ61は、スロットル弁43の開度に対応する信号(この信号からスロットル弁開度TAが取得される)を出力するようになっている。
カムポジションセンサ62は、シリンダヘッド部3に装着されている。このカムポジションセンサ62は、インテークカムシャフトが90°回転する毎に(すなわちクランクシャフト24が180°回転する毎に)一つのパルスを有する信号(G2信号:この信号は吸気弁32の開閉タイミングを表す)を発生するようになっている。
クランクポジションセンサ63は、シリンダブロック部2に装着されている。このクランクポジションセンサ63は、クランクシャフト24が10°回転する毎に幅狭のパルスを有するとともに同クランクシャフト24が360°回転する毎に幅広のパルスを有する信号(この信号からエンジン回転速度NEが計算される)を出力するようになっている。
水温センサ64は、シリンダブロック部2に装着されている。この水温センサ64は、エンジン1の冷却水の温度に対応する信号(この信号から冷却水温THWが取得される)を出力するようになっている。
熱線式エアフローメータ65は、吸気管41に配設されている。この熱線式エアフローメータ65は、吸気管41を流れる吸入空気の単位時間あたりの質量流量に応じた出力電圧(この出力から吸入空気量(流量)Gaが算出される)を出力するようになっている。
圧力センサ66は、吸気通路に配設されている。この圧力センサ66は、スロットル弁43よりも下流で吸気弁32よりも上流の吸気管41内のガスの圧力を検出し吸気管圧力Pmを表す信号を出力するようになっている。
空燃比センサ67は、三元触媒53の上流の排気通路(本例では、上記各々のエキゾーストマニホールド51が集合した部分)に配設されている。この空燃比センサ67は、排気ガスの空燃比に応じた電流を出力し、この電流に応じた電圧を出力する(この出力から排気ガスの空燃比が算出される)ようになっている。
<<制御装置>>
本実施形態に係る制御装置70は、CPU71、ROM72、RAM73、バックアップRAM74、及びインターフェース75を含むマイクロコンピュータである。CPU71、ROM72、RAM73、バックアップRAM74、及びインターフェース75は、双方向バス76によって互いに接続されている。
本発明の燃料付着量推定手段、燃焼予定燃料量推定手段、点火制御手段、吸入空気量制御手段を構成するCPU71は、エンジン1の各部の動作を制御するためのルーチン(プログラム)を実行するように構成されている。
ROM72には、CPU71が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、定数(パラメータの初期値等)、等が予め格納されている。
RAM73は、CPU71がルーチンを実行する際に、必要に応じてデータを一時的に格納し得るように構成されている。
バックアップRAM74は、電源が投入された状態でCPU71がルーチンを実行する際にデータを格納するとともに、この格納したデータを電源遮断後も保持し得るように構成されている。
インターフェース75は、上述の熱線式エアフローメータ65、カムポジションセンサ62、クランクポジションセンサ63、水温センサ64、空燃比センサ67、及び圧力センサ66と電気的に接続されていて、これらのセンサからの検出信号をCPU71に供給するように構成されている。
また、インターフェース75は、CPU71によるルーチン実行によって発生する指令に応じて、可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、ポート噴射弁39、及びスロットル弁アクチュエータ43aへ駆動信号を送出するようになっている。
<実施形態の構成による動作の概要>
図2は、図1に示されているポート噴射弁39から噴射された燃料の挙動を定めたモデルである燃料挙動モデルの概略を示した概念図である。以下、本実施形態に係る制御装置70の動作の概要(燃料挙動モデルの概略)について、図1及び図2を参照しつつ説明する。以下の説明において、(k)は今回の吸気行程に対する値を示し、(k+1)は次回の吸気行程に対する値を示すものとする。
ポート噴射弁39から吸気ポート31内に噴射された燃料は、シリンダ21内に吸入される。このとき、燃料の一部は、吸気管41、吸気ポート31、及びシリンダ21の壁面に付着する。以下、吸気系(吸気管41及び吸気ポート31)の壁面における(未燃)燃料付着量を吸気系壁面付着燃料量fwと称する。また、シリンダ21の壁面における(未燃)燃料付着量をシリンダ壁面付着燃料量fwcと称する。
ポート噴射弁39による燃料噴射量fiのうちの吸気系の壁面に新たに付着する割合を吸気系壁面燃料付着率R(0≦R<1)、吸気系の壁面に既に付着している燃料が吸気行程にて残留する割合を吸気系壁面燃料残留率P(0≦P<1)、吸気行程にてシリンダ21内に吸入される燃料量を筒内流入燃料量fcとすると、以下の式(1)及び(2)が成立する。
fc(k)=(1−P)・fw(k)+(1−R)・fi(k)・・・(1)
fw(k+1)=P・fw(k)+R・fi(k)・・・(2)
また、筒内流入燃料量fcのうちのシリンダ21の壁面に新たに付着する割合をシリンダ壁面燃料付着率Rc(0≦Rc<1)、シリンダ21の壁面に既に付着している燃料がそのまま残留する割合をシリンダ壁面燃料残留率Pc(0≦Pc<1)、燃焼室CC内のガス中の燃料量(燃焼行程にて燃焼室CC内にて燃焼に供され得る燃料量)を燃焼予定燃料量fcbとすると、以下の式(3)及び(4)が成立する。
fcb(k)=(1−Pc)・fwc(k)+(1−Rc)・fc(k)・・・(3)
fwc(k+1)=Pc・fwc(k)+Rc・fc(k)・・・(4)
上記(1)ないし(4)式から理解されるように、今回の吸気行程における燃焼室CC内のガス中の燃料量である燃焼予定燃料量fcb(k)は、燃料噴射停止処理中(式(1)におけるfi(k)=0)であっても、吸気系壁面付着燃料量fw(k)及びシリンダ壁面付着燃料量fwc(k)が0でない限り、0にはならない。
そこで、制御装置70(CPU71)は、上述の燃料挙動モデルを用いて推定された燃焼予定燃料量fcb(k)に基づいて、燃料噴射停止処理中におけるシリンダ21(燃焼室CC)内のガスに対して、点火プラグ37及びイグナイタ38による点火を実行するか否かを決定する。
具体的には、制御装置70は、燃料噴射停止処理(例えばフューエルカット)中であっても、吸気系やシリンダ21の壁面における付着燃料により、燃焼予定燃料量fcb(k)が燃焼可能な所定量以上となると推定される場合は、点火プラグ37による点火を継続する。これにより、燃焼室CCから排気ポート34に排出される排気ガス中への未燃燃料の流出が、良好に抑制される。
一方、制御装置70は、吸気系やシリンダ21の壁面における付着燃料が(ほぼ)無くなって、燃料噴射停止処理中における燃焼予定燃料量fcb(k)がゼロあるいは可燃範囲未満となると推定された時点で、点火継続を停止する(その後、通常のフューエルカットあるいはエンジン停止処理を実行する。)。これにより、壁面付着燃料の燃焼に供されない本来不必要な点火エネルギーの消費が可及的に抑制される。また、点火プラグ37及びイグナイタ38の不用意な寿命低下が、良好に抑制される。
このように、本実施形態の制御装置70によれば、燃料噴射停止処理の開始時点からの点火継続時間及びその停止タイミングが、吸気系及びシリンダ21の壁面における燃料の付着及び残留の挙動の推定結果に応じて、精度よく決定される。
なお、吸気系壁面燃料付着率R、吸気系壁面燃料残留率P、シリンダ壁面燃料付着率Rc、及びシリンダ壁面燃料残留率Pcは、筒内吸入空気量Mc、スロットル弁開度TA、冷却水温THW、等のパラメータ(これらは上述の各センサの出力に基づいて取得され得る)と、これらのパラメータを引数とするテーブルと、に基づいて取得され得る。
<実施形態の構成による動作の具体例>
続いて、上述の構成を備えた本実施形態の制御装置70の動作の具体例について、以下に説明する。なお、フローチャートを示す図面においては、「ステップ」は“S”と略称されているものとする。
<<第一の具体例>>
図3は、図1に示されているCPU71によって実行される、フューエルカット中点火制御処理の一具体例を示すフローチャートである。CPU71は、図3に示されているルーチンを、各シリンダ21におけるクランク角が吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行する。
このルーチンの処理が開始されると、まず、ステップ310にて、現在フューエルカット中であるか否かが判定される。フューエルカット中でない場合(ステップ310=No)、それ以降の処理がスキップされ、本ルーチンが一旦終了する。よって、以下、現在フューエルカット中であるものとして(ステップ310=Yes)、説明を続行する。
次に、ステップ320にて、吸気系及びシリンダ21の壁面に付着(残留)した燃料があるか否かが判定される。具体的には、例えば、吸気系壁面付着燃料量fw及びシリンダ壁面付着燃料量fwcが、それぞれ所定の閾値fw0及びfwc0(これらは0あるいは小さな値に設定され得る)より大きいか否かが判定される。
吸気系及びシリンダ21の壁面に付着(残留)した燃料が(所定量)ない場合(ステップ320=No)、処理がステップ330に進行し、点火フラグがオフにセットされ、本ルーチンが一旦終了する。この場合、点火プラグ37及びイグナイタ38による点火は実行されず、通常のフューエルカットが行われることとなる。
吸気系及びシリンダ21の壁面に付着(残留)した燃料が(所定量)ある場合(ステップ320=Yes)、処理がステップ340に進行し、上述の燃料挙動モデルに基づいて算出された燃焼予定燃料量fcbが取得される。
具体的には、燃焼予定燃料量fcb(n)は、空燃比フィードバック制御(燃料噴射量制御:例えば、特開平7−166922号公報、特開平10−159632号公報、特開2003−97304号公報、特開2007−278137号公報、特開2009−30460号公報、等参照)のために、上述の所定クランク角度毎に算出されて、RAM73あるいはバックアップRAM74に格納されている。よって、このステップ340においては、かかる格納値における最新の値(今回の値fcb(k))がCPU71によって読み取られる。
続いて、処理がステップ350に進行する。ステップ350においては、筒内空燃比afが、筒内吸入空気量Mc及びステップ340にて取得された燃焼予定燃料量fcbに基づいて、以下の式(5)により算出される。
af=Mc/fcb・・・(5)
続くステップ355においては、筒内空燃比afが可燃範囲(例えば9〜18)内にあるか否かが判定される。筒内空燃比afが可燃範囲内にある場合(ステップ355=Yes)、処理がステップ360に進行し、点火フラグがオンにセットされ、本ルーチンが一旦終了する。この場合、フューエルカット中であっても、所定の点火タイミングにて、点火プラグ37及びイグナイタ38による点火が実行される。
筒内空燃比afが可燃範囲内にない場合(ステップ355=No)、処理がステップ370に進行し、燃焼室CC内の燃料を燃焼させるために実現すべき筒内吸入空気量である可燃限界要求空気量mcrが算出される。そして、続くステップ375にて、かかる可燃限界要求空気量mcrがスロットル操作によって実現可能であるか否かが判定される。
ステップ370にて算出された可燃限界要求空気量mcrがスロットル操作によって実現可能である場合(ステップ375=Yes)、処理がステップ380に進行する。ステップ380においては、CPU71は、スロットル弁アクチュエータ43aを駆動することでスロットル弁43の開度を操作する。その後、処理がステップ360に進行し、点火フラグがオンにセットされ、本ルーチンが一旦終了する。
一方、ステップ370にて算出された可燃限界要求空気量mcrがスロットル操作によって実現可能でない場合(ステップ375=Yes)、処理がステップ330に進行し、点火フラグがオフにセットされ、本ルーチンが一旦終了する。
この具体例によれば、上述のように、燃料噴射停止処理の開始時点からの点火継続時間及びその停止タイミングが、吸気系及びシリンダ21の壁面における燃料の付着及び残留の挙動の推定結果に応じて、精度よく決定される。さらに、この具体例によれば、当該壁面における燃料の付着(残留)量が少なくなった場合に適宜スロットル操作を行うことで、燃焼室CCから排気ポート34に排出される排気ガス中への未燃燃料の流出量が、可及的に抑制される。
<<第二の具体例>>
図4は、図1に示されているCPU71によって実行される、フューエルカット中点火制御処理の他の具体例を示すフローチャートである。CPU71は、図4に示されているルーチンを、各シリンダ21におけるクランク角が吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行する。
このルーチンの処理が開始されると、まず、ステップ410にて、現在フューエルカット中であるか否かが判定される。フューエルカット中でない場合(ステップ410=No)、それ以降の処理がスキップされ、本ルーチンが一旦終了する。よって、以下、現在フューエルカット中であるものとして(ステップ410=Yes)、説明を続行する。
次に、ステップ420にて、シリンダ21の内壁温度保持等のための燃焼継続要求があるか否かが判定される。燃焼継続要求がない場合(ステップ420=No)、それ以降の処理がスキップされ、本ルーチンが一旦終了する。よって、以下、燃焼継続要求があるものとして(ステップ420=Yes)、説明を続行する。
続いて、ステップ430にて、上述の燃料挙動モデルに基づいて算出された燃焼予定燃料量fcb(k)、並びにシリンダ壁面付着燃料量の今回値fwc(k)及び前回値fwc(k-1)が取得される。このステップ430における処理の具体的内容は、上述の第一の具体例におけるステップ340と同様である。その後、処理がステップ440に進行する。
ステップ440においては、燃焼予定燃料量fcbが所定値fcb0以上であるか否かが判定される。すなわち、今回の燃焼予定燃料量fcbが燃焼可能燃料量以上であるか否かが判定される。この所定値(燃焼可能燃料量)fcb0は、筒内吸入空気量Mc等を引数とするテーブルによって取得され得る。
今回の燃焼予定燃料量fcbが燃焼可能燃料量fcb0以上である場合(ステップ440=Yes)、処理がステップ450に進行し、シリンダ壁面付着燃料量変化率dfwc(シリンダ壁面付着燃料量fwcの変化率)が、以下の式によって算出される。
dfwc=fwc(k)−fwc(k-1)
このステップ450の処理の後に、処理がステップ460に進行する。ステップ460においては、CPU71は、シリンダ壁面付着燃料量変化率dfwcに応じて、スロットル弁アクチュエータ43aを駆動してスロットル弁43の開度を操作する。その後、本ルーチンが一旦終了する。この場合、フューエルカット中であっても、所定の点火タイミングにて、点火プラグ37及びイグナイタ38による点火が実行される。
ステップ460においては、具体的には、シリンダ21の壁面における付着燃料量の減少率が上昇傾向にある場合は、かかる減少率を抑制するように、スロットル弁43の開度が閉方向に操作される。また、かかる減少率が所定の閾値以上である場合に、スロットル弁43の開度が閉方向に操作される。これにより、フューエルカット中の点火継続が、極めて短時間で終了することなく、或る程度継続され得るようになる。したがって、燃焼停止が長期間継続することによる空燃比制御の精度悪化が可及的に抑制され得る。
一方、今回の燃焼予定燃料量fcbが燃焼可能燃料量fcb0より少ない場合(ステップ440=No)、処理がステップ470に進行し、フューエルカット復帰要求フラグがオンにセットされる。フューエルカット復帰要求フラグがオンにセットされた後は、制御装置70は、フューエルカット要求と燃焼継続要求との優先度を考慮しつつ、通常のフューエルカットを実行する。
<<第三の具体例>>
図5は、図1に示されているCPU71によって実行される、フューエルカット中点火制御処理のさらに他の具体例を示すフローチャートである。CPU71は、図5に示されているルーチンを、各シリンダ21におけるクランク角が吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行する。
本具体例におけるステップ510ないし550の処理は、上述の第二の具体例におけるステップ410ないし450と同様である。よって、ステップ510ないし550の説明は、上述の第二の具体例におけるステップ410ないし450の説明を援用する。
ステップ560においては、CPU71は、シリンダ壁面付着燃料量変化率dfwcに応じて、スロットル弁アクチュエータ43aを駆動してスロットル弁43の開度を操作する。その後、本ルーチンが一旦終了する。この場合、フューエルカット中であっても、所定の点火タイミングにて、点火プラグ37及びイグナイタ38による点火が実行される。
ステップ560においては、具体的には、シリンダ21の壁面における付着燃料量の減少率が下降傾向にある場合は、かかる減少率を上昇させるように、スロットル弁43の開度が開方向に操作される。また、かかる減少率が所定の閾値以下である場合に、スロットル弁43の開度が開方向に操作される。これにより、フューエルカット中の点火継続が、極めて短時間で終了するようになる。したがって、通常のフューエルカットが可及的すみやかに実行され、ポンプ損失が可及的に低減される。
一方、今回の燃焼予定燃料量fcbが燃焼可能燃料量fcb0より少ない場合(ステップ540=No)、処理がステップ570に進行し、燃焼完了フラグがオンにセットされる。すなわち、壁面付着燃料の即時燃焼完了要求が満足されたことが判定される。その後は、制御装置70は、通常のフューエルカットを実行する。
<変形例の例示列挙>
なお、上述の実施形態は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の代表的な実施形態を単に例示したものにすぎない。よって、本発明はもとより上述の実施形態に何ら限定されるものではない。
したがって、本発明の本質的部分を変更しない範囲内において、上述の実施形態に対して種々の変形が施され得ることは、当然である。
以下、代表的な変形例について、幾つか例示する。もっとも、言うまでもなく、変形例とて、以下に列挙されたものに限定されるものではない。また、複数の変形例が、技術的に矛盾しない範囲内において、適宜、複合的に適用され得る。
本発明(特に、本発明の課題を解決するための手段を構成する各構成要素における、作用的・機能的に表現されているもの)は、上述の実施形態や、下記変形例の記載に基づいて限定解釈されてはならない。このような限定解釈は、(先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
(A)本発明は、上述の実施形態にて開示された具体的な装置構成に限定されない。例えば、本発明は、ガソリンエンジン、ディーゼルエンジン、メタノールエンジン、バイオエタノールエンジン、その他任意のタイプの内燃機関に適用可能である。気筒数、気筒配列方式(直列、V型、水平対向)、燃料供給方式も、特に限定はない。
ポート噴射弁39とともに、あるいはこれに代えて、燃焼室CC内に燃料を直接噴射するための筒内噴射弁が設けられていてもよい(例えば特開2007−278137号公報等参照)。かかる構成に対しても、本発明は好適に適用される。
(B)本発明は、上記の実施形態にて開示された具体的な処理に限定されない。例えば、本発明の適用対象は、フューエルカットに限定されない。よって、本発明は、エンジン停止処理に対しても好適に適用され得る。
燃料挙動モデルにおいて、吸気系付着分に、吸気弁32への付着分が考慮されてもよい(例えば特開2009−30460号公報等参照)。また、筒内付着分に、ピストン22の頂面への付着分が考慮されてもよい(例えば特開平7−166922号公報等参照)。さらに、燃料挙動モデルにおいて、筒内付着及び吸気系付着の一方のみが考慮されてもよい。
上述の各具体例におけるスロットル操作に代えて、あるいはこれとともに、吸気弁32の開閉タイミングやリフト量の可変操作が行われてもよい。
また、吸気系や筒内の付着燃料量やその減量率を適宜制御するために、吸気弁32やスロットル弁43その他の吸気流制御弁が操作されてもよい。
さらに、上述の第二及び第三の具体例において、スロットル操作が常に行われてもよい。この場合、付着量の変化率(減少率)に重み付けが行われる(変化量が大きいほどスロットル操作量が大)。これにより、運転状態の連続性が確保され、ドライバビリティに対する悪影響が可及的に抑制され得る。
(C)その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の範囲内に含まれることは当然である。
また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。
さらに、本明細書にて引用した各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして援用され得る。
1…エンジン CC…燃焼室
2…シリンダブロック部 21…シリンダ 22…ピストン
3…シリンダヘッド部 31…吸気ポート 32…吸気弁
33…可変吸気タイミング装置 34…排気ポート 35…排気弁
37…点火プラグ 38…イグナイタ 39…ポート噴射弁
4…吸気系統 41…吸気管 43…スロットル弁
5…排気系統 70…制御装置 71…CPU
特開平6−137197号公報 特開2003−155940号公報 特開2006−348776号公報

Claims (2)

  1. エンジンの気筒及び/又は吸気系の壁面に付着した燃料量である壁面付着燃料量を、前記壁面への燃料付着挙動を表す燃料挙動モデルを用いて推定する、燃料付着量推定手段と、
    前記燃料付着量推定手段によって推定された前記壁面付着燃料量に基づいて、前記気筒内のガス中の燃料量である燃焼予定燃料量を推定する、燃焼予定燃料量推定手段と、
    前記燃焼予定燃料量推定手段によって推定された前記燃焼予定燃料量に基づいて、燃料噴射停止処理中における前記気筒内のガスに対する点火を実行するか否かを決定する、点火制御手段と、
    を備えたことを特徴とする、エンジン制御装置。
  2. 請求項1に記載の、エンジン制御装置において、
    前記燃料付着量推定手段によって推定された前記壁面付着燃料量、又は、前記燃焼予定燃料量推定手段によって推定された前記燃焼予定燃料量に基づいて、前記気筒内への吸入空気量を制御する、吸入空気量制御手段をさらに備えたことを特徴とする、エンジン制御装置。
JP2009109107A 2009-04-28 2009-04-28 エンジン制御装置 Pending JP2010255591A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109107A JP2010255591A (ja) 2009-04-28 2009-04-28 エンジン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109107A JP2010255591A (ja) 2009-04-28 2009-04-28 エンジン制御装置

Publications (1)

Publication Number Publication Date
JP2010255591A true JP2010255591A (ja) 2010-11-11

Family

ID=43316758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109107A Pending JP2010255591A (ja) 2009-04-28 2009-04-28 エンジン制御装置

Country Status (1)

Country Link
JP (1) JP2010255591A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166376A (ja) * 2016-03-15 2017-09-21 トヨタ自動車株式会社 内燃機関の制御装置
FR3080890A1 (fr) * 2018-05-07 2019-11-08 Continental Automotive France Procede de gestion de l'injection et de l'allumage d'un moteur a combustion interne
US10683821B2 (en) 2017-02-16 2020-06-16 Toyota Jidosha Kabushiki Kaisha Engine control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166376A (ja) * 2016-03-15 2017-09-21 トヨタ自動車株式会社 内燃機関の制御装置
US10683821B2 (en) 2017-02-16 2020-06-16 Toyota Jidosha Kabushiki Kaisha Engine control device
US10837387B2 (en) 2017-02-16 2020-11-17 Toyota Jidosha Kabushiki Kaisha Engine control device
FR3080890A1 (fr) * 2018-05-07 2019-11-08 Continental Automotive France Procede de gestion de l'injection et de l'allumage d'un moteur a combustion interne

Similar Documents

Publication Publication Date Title
JP5310733B2 (ja) 内燃機関の制御装置
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
JP2007009807A (ja) 内燃機関の制御装置
JP2007278137A (ja) 内燃機関の燃料噴射割合制御装置
JP2009228447A (ja) 内燃機関の燃料噴射制御装置
JP4985459B2 (ja) 燃料噴射制御装置
JP4534914B2 (ja) 内燃機関の燃料噴射制御装置
JP2020026751A (ja) 内燃機関の制御装置
JP5716842B2 (ja) 内燃機関の制御装置
JP2010255591A (ja) エンジン制御装置
JP2010203326A (ja) 内燃機関の制御装置
JP6197825B2 (ja) エンジンの制御装置
JP4348705B2 (ja) 内燃機関の燃料噴射制御装置
US9903303B2 (en) Control apparatus for internal combustion engine
JP4010280B2 (ja) 内燃機関の燃料噴射量制御装置
JP4816591B2 (ja) 内燃機関の制御装置
JP2008095508A (ja) エンジンの制御装置
JP2005090325A (ja) 燃料噴射量制御装置
JP2006170172A (ja) 内燃機関のバルブ特性制御装置
JP7092519B2 (ja) 内燃機関の制御装置
JP5029302B2 (ja) 内燃機関の制御装置
WO2021112221A1 (ja) 内燃機関の駆動制御装置
JP2012112263A (ja) 内燃機関の制御装置
JP4915324B2 (ja) 内燃機関の制御装置
JP2009235908A (ja) エンジン制御装置