WO2015186743A1 - Liquid material dropping device and method - Google Patents

Liquid material dropping device and method Download PDF

Info

Publication number
WO2015186743A1
WO2015186743A1 PCT/JP2015/066051 JP2015066051W WO2015186743A1 WO 2015186743 A1 WO2015186743 A1 WO 2015186743A1 JP 2015066051 W JP2015066051 W JP 2015066051W WO 2015186743 A1 WO2015186743 A1 WO 2015186743A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
dropping
nozzles
dropping device
measuring unit
Prior art date
Application number
PCT/JP2015/066051
Other languages
French (fr)
Japanese (ja)
Inventor
生島 和正
Original Assignee
武蔵エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵エンジニアリング株式会社 filed Critical 武蔵エンジニアリング株式会社
Priority to KR1020167031980A priority Critical patent/KR102328887B1/en
Priority to CN201580030173.0A priority patent/CN106461989B/en
Publication of WO2015186743A1 publication Critical patent/WO2015186743A1/en
Priority to HK17105021.3A priority patent/HK1231567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to an apparatus and method for dropping a liquid material, and more particularly, to an apparatus and method for dropping a liquid material capable of simultaneously applying a plurality of points at which the distance between dropping points can be changed.
  • a drop injection method As a method for forming a liquid crystal layer in a manufacturing process of a liquid crystal panel, there is a method called a drop injection method (ODF).
  • ODF drop injection method
  • Patent Document 1 has a dispenser body connectable to a liquid material source, the dispenser body has a fluid channel, a fluid channel outlet in communication with the fluid channel, and a valve seat provided near the fluid channel outlet, A valve member movably provided in the fluid channel for selective contact with the valve seat and operatively coupled to the valve member for selectively moving the valve member into contact with the valve seat; A nozzle drive coupled to the dispenser body adjacent to the channel outlet, the jet nozzle being provided on the nozzle body, the fluid channel outlet; A plurality of nozzle outlets in communication with each other, and the valve member has a momentum sufficient to rapidly eject a plurality of droplets simultaneously from the plurality of nozzle outlets when contacting the valve seat.
  • Providing the liquid material, jetting dispenser is disclosed.
  • Patent Document 2 has a plurality of head units in which a plurality of nozzles that eject ink toward a sheet are arranged, and in a line head in which the plurality of head units are integrated, at least a part of each head unit.
  • a line head is disclosed, wherein the nozzle has an inclination with respect to the normal direction of the paper and has an inclination in a direction in which ink ejected from the nozzle lands near a boundary with an adjacent head unit.
  • an object of the present invention is to provide a liquid material dropping device and method that can easily change the distance between the dropping points when simultaneously applying a plurality of points.
  • the present invention relating to a dropping device includes a metering unit that measures a liquid material, a plunger that reciprocates in the metering unit, a nozzle unit that includes a plurality of nozzles having discharge ports, and a supply channel that supplies the liquid material to the metering unit.
  • the nozzle unit is configured so that the interval between one nozzle and an adjacent nozzle is the same.
  • the nozzles are arranged, and the nozzles are arranged so as to be inclined so that the angle ⁇ formed by one nozzle and the vertical line is the same.
  • the nozzle may be composed of n 2 (n is a natural number of 2 or more) nozzles.
  • the nozzle part has an outlet of the nozzle in the nozzle part.
  • the nozzle is arranged so as to face the outside with respect to the center in the vertical direction, or the nozzle is arranged in the nozzle portion so that the discharge port of the nozzle faces the inside with respect to the center in the vertical direction of the nozzle portion. It may be characterized by that.
  • the nozzle portion includes a nozzle block in which a single inflow channel and a branch channel that communicates with the inflow channel and the discharge port are formed, and the nozzle is mounted on the nozzle block. It may be a feature.
  • the present invention relating to a coating apparatus includes the above-described dropping device, a work table on which a substrate is placed, an XYZ driving device that relatively moves the dropping device and the work table, and a control unit having a storage device. It is characterized by that.
  • the coating apparatus may include a plurality of the dropping devices, wherein the number of nozzles of one dropping device, the nozzle interval, or the nozzle angle ⁇ is different from the nozzle interval or nozzle angle ⁇ of another dropping device.
  • a plurality of the dropping devices may be provided, and the number of nozzles, the nozzle interval, and the nozzle angle ⁇ of all the dropping devices may be the same.
  • the present invention relating to a dropping method is a dropping method using the above-described coating apparatus, and by adjusting a vertical distance between the work table and the dropping apparatus based on an input value, droplets discharged from the nozzle While adjusting the distance (L1, L2) between the dropping points and keeping the vertical distance between the work table and the dropping device constant, the liquid material is moved while moving the dropping device and the work table relative to each other in the horizontal direction. It is characterized by dripping in In the dropping method, a plurality of correlation patterns between the vertical distances of the work table and the dropping device and the distances (L1, L2) between the dropping points of the droplets are stored in the storage device of the control unit. The value may be a selection value of the correlation pattern.
  • the present invention relating to a dropping method from another viewpoint uses a coating apparatus including a plurality of the dropping apparatuses, wherein the number of nozzles, the interval between the nozzles, and the nozzle angle ⁇ of all the dropping apparatuses are the same.
  • a dripping method Comprising: Multi-chamfering is performed by performing the same dripping application
  • the workpiece may be a liquid crystal panel substrate, and the liquid material may be liquid crystal.
  • the present invention it is possible to easily change the distance between the dropping points when performing simultaneous application at a plurality of points.
  • FIG. 1 It is a schematic side view of the dripping apparatus which concerns on 1st Embodiment.
  • A A bottom view of a nozzle portion used in the dropping device according to the first embodiment, (b) AA sectional view and (c) BB sectional view. It is explanatory drawing explaining the relationship between the dropping height when performing dripping using the dripping apparatus which concerns on 1st Embodiment, and the distance between dropping points.
  • A) is a drop height Ha
  • (b) is a drop height Hb
  • (c) is a plan view when the drop height Hc.
  • A Bottom view of nozzle portion according to second embodiment, (b) CC sectional view and (c) DD sectional view.
  • A It is a bottom view of the nozzle part which concerns on 3rd Embodiment, and (b) It is EE sectional drawing. It is explanatory drawing explaining a state when a liquid is dripped at a board
  • the dropping device 1 includes four nozzles 4 arranged at equal intervals from the center in the vertical direction of the nozzle unit 6, and the substrate 46 is adjusted by adjusting the distance between the nozzle 4 and the substrate 46. It is possible to adjust the distance between the four dripping points that land on.
  • the dropping device 1 is attached to a coating device 51 including an XYZ driving device (52, 53, 54), and performs a coating operation while relatively moving with respect to a work table on which a coating target is placed.
  • XYZ driving device 52, 53, 54
  • the dropping device 1 of the first embodiment includes a tube-shaped measuring unit 2, a plunger 3 inscribed in the measuring unit 2, a nozzle unit 6 having a plurality of nozzles 4, a measuring unit 2, a nozzle unit 6, and a measuring unit 2.
  • the plunger-type dropping device includes a switching valve 7 for switching the communication of the supply flow path 15 and an L-shaped main body 9 having a built-in plunger driving device.
  • the measuring part 2 has a measuring hole which is a cylindrical space inside, and a plunger 3 is slidably inserted into the measuring hole.
  • the plunger 3 is a rod-shaped member having a large-diameter portion 8 at the end, and an end opposite to the large-diameter portion 8 is inserted into the measuring unit 2.
  • the plunger 3 is gripped by the plunger driving member 10 in the immediate vicinity of the large diameter portion 8 and can be moved in the direction of reference numeral 11 by a plunger driving device that moves the plunger driving member 10.
  • the plunger 3 slides in close contact with the inner wall of the measuring unit 2, the liquid 19 can be sucked into the measuring unit 2 and the liquid 19 can be pushed out from the measuring unit 2.
  • the switching valve 7 includes a flow path A12 that communicates with the supply flow path 15, a flow path B13 that communicates with the measuring section 2, and a flow path C14 that communicates with the nozzle section 6.
  • the first position for communication or the second position for communication between the measuring unit 2 and the nozzle unit 6 can be selectively switched.
  • the switching valve 7 may be configured as a rotary valve or a slide valve.
  • position so that the flow path B13 and the flow path C14 may become the same direction as a plunger moving direction (code
  • the supply channel 15 is a channel that communicates with a liquid pipe 18 for supplying the liquid 19 stored in the container 17, and is provided in the extending member 16.
  • the extending member 16 is fixed to the main body 9 so that the supply channel 15 and the channel A12 communicate with each other in an airtight manner.
  • a bubble removing mechanism 20 is provided between the supply channel 15 and the liquid pipe 18.
  • a mechanism having a main body wider than the first flow channel and having a discharge port of the first flow channel disposed above the suction port of the second flow channel (Patent No. 4898778) can be used.
  • the bubble removing mechanism 20 need not be provided.
  • a working gas supply pipe 23 that supplies a working gas for pumping the liquid 19 is connected to the container 17 that stores the liquid 19.
  • the main body 9 is attached to a base plate 25, and a container support member 24 that fixes the container 17 is attached to the upper part of the same base plate 25.
  • the base plate 25 is attached to a connecting member 26 for connecting to an XYZ driving device (52, 53, 54), a fixed stand, etc., which will be described later.
  • FIG. 2 shows a bottom view, an AA sectional view, and a BB sectional view of the nozzle unit 6 used in the dropping device according to the first embodiment.
  • the nozzle unit 6 of the first embodiment includes a nozzle block 27 having a pentagonal cross section and four nozzles 4 disposed on a nozzle connection surface 28 that is a lower surface of the nozzle block 27.
  • the nozzle portion 6 is detachably attached to the lower surface of the main body 9.
  • the four nozzles 4 are referred to as nozzles A to D (34 to 37), and the discharge ports 5 of the four nozzles are referred to as discharge ports A to D (38 to 41).
  • the nozzle connection surface 28 is formed by arranging four rectangular planes having the same size so that the center of the lower surface is the apex. That is, the nozzle block 27 is square when viewed from the bottom.
  • the number of partitions on the lower surface of the nozzle block 27 is not limited to the illustrated number of partitions, and an arbitrary plurality of partitions such as 2 to 16 can be set.
  • the number of partitions is n 2 (n is 2 or more). Is a natural number).
  • the number of sections on the lower surface of the nozzle block 27 and the number of nozzles 4 are preferably the same.
  • the nozzles 4 attached to the slope are arranged at equal intervals so as to form a square when viewed from the bottom. That is, nozzle A34, nozzle B35, nozzle C36 and nozzle D37 are arranged in a matrix. The interval between one nozzle 4 and another adjacent nozzle 4 is the same regardless of which nozzle 4 is selected.
  • Each nozzle 4 has one discharge port, and is attached so that the discharge port central axis 43 is perpendicular to the nozzle connection surface 28.
  • each surface of the nozzle connection surface 28 is inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27, so that the discharge ports A to D (38 to 41) It will face outward with respect to the vertical center.
  • the discharge ports A to D (38 to 41) are arranged so as to face each corner of the nozzle block 27. That is, the discharge ports A to D (38 to 41) are arranged on the diagonal line of the bottom surface 28 (see FIG. 2C). Accordingly, the quadrangle formed by connecting the four droplets 45 discharged from the discharge ports A to D (38 to 41) is a quadrangle similar to the arrangement of the nozzles A to D (34 to 37) of the nozzle block 27. It becomes.
  • the branch channels A to D (30 to 33) are coaxial with the central axes (discharge port central axes 43) of the nozzles A to D (34 to 37) so that the liquid 19 can be smoothly discharged. It is preferable to form.
  • ⁇ Discharge operation> The outline of the discharging operation in the dropping apparatus 1 described above is as follows. (1) Preparation (initial filling process) First, the liquid 19 is filled up to the upper end of the measuring unit 2 without inserting the plunger 3 into the measuring unit 2. Next, the plunger 3 is inserted into the measuring unit 2 and fixed to the plunger driving member 10. Next, the metering unit 2 and the nozzle unit 6 are communicated by the switching valve 7, and the plunger 3 is moved in the direction of the nozzle unit 6 (the advance direction) until the liquid 19 comes out from the discharge port 5.
  • FIG. 3 is an explanatory diagram for explaining the relationship between the height (H) of the nozzle portion 6 and the distance (L) between the dropping points when dropping is performed using the dropping device 1 according to the first embodiment.
  • the upper diagram shows a plan view when the substrate 46 is viewed from the upper surface when the upper diagram is viewed from the side surface.
  • the nozzle portion 6 is illustrated in a simplified manner.
  • the droplet 45 discharged from the discharge port 5 of the nozzle 4 reaches the substrate 46 as the coating surface while drawing a parabolic flight locus 44 because the nozzle 4 is inclined at a predetermined angle.
  • the distance between the nozzle portion 6 (discharge port 5) and the substrate 46 in other words, the height of the nozzle portion 6 (H By changing)
  • the distances (L1, L2) between the dropping points in the vertical direction and the horizontal direction can be changed.
  • the case of (b) drawn in the center is used as a reference.
  • the vertical dropping point distance is L1b
  • the horizontal dropping point distance is L2b.
  • the relationship between the inclination ( ⁇ ) of the nozzle 4, the height (H) of the nozzle portion 6, and the distances (L 1, L 2) between the dropping points in the vertical direction and the horizontal direction is made into a table or a graph by a prior experiment, and the control unit ( It may be stored in a storage device (not shown). By doing in this way, based on the table
  • the distance between the dropping points (L1, L2) is 7.5 mm, and when discharging is performed from a height of 10 mm, the dropping is performed.
  • the distance between the points (L1, L2) was 6.5 mm each and the height was 20 mm
  • the distance between the dropping points (L1, L2) was 8.5 mm each.
  • FIG. 4 the schematic perspective view of the coating device 51 provided with the dripping apparatus 1 which concerns on 1st Embodiment is shown.
  • the coating apparatus 51 of the embodiment is provided with a Z-axis driving device 54 that allows the dropping device 1 to move in the vertical direction (reference numeral 57) and a Z-axis driving apparatus 54, and is movable in the left-right direction (reference numeral 55).
  • X-axis driving device 52 Y-axis driving device 53 that enables beam 61 provided with X-axis driving device 52 to move in the front-rear direction (reference numeral 56), work table 58 on which substrate 46 is placed, and each of the drives It is mainly composed of a gantry 63 on which the devices (52, 53, 54) and the work table 58 are disposed, and a control unit (not shown).
  • the control unit adjusts the vertical distance between the work table 58 and the dropping device 1 based on the input value of the user, whereby the distance between the dropping points of the droplets discharged from each nozzle 4 (L 1, L2) is adjusted, and the dropping method of dropping the liquid material is performed while moving the dropping device 1 and the work table 58 relatively in the horizontal direction while keeping the vertical distance between the work table 58 and the dropping device 1 constant.
  • the dropping points to be dropped onto the workpiece are set by a matrix of m1 rows ⁇ m2 columns, and preferably both m1 and m2 are multiples (natural numbers) of the number of nozzles n.
  • the X-axis drive device 52 is provided with an X-axis slider 59 so as to sandwich this, and the Z-axis drive device 54 and the dropping device 1 can be moved.
  • Y sliders 60 are provided inside the Y axis driving device 53, and the beam 61 on which the X axis driving device 52 is provided is supported by the beam support member 62 and moves.
  • the XYZ driving device By configuring the XYZ driving device as described above, the dropping device 1 can be moved relative to the substrate 46.
  • the distance between the drop points (L1, L2) is adjusted by adjusting the discharge port position in the vertical direction (Z direction), so that a mechanism capable of positioning in the Z direction with high accuracy is driven by XYZ. It is preferable to employ in the apparatus.
  • an XYZ driving device a combination mechanism of a ball screw and a motor, a mechanism using a linear motor, a mechanism for transmitting power by a belt, a chain, or the like can be used.
  • the drive device is configured as a so-called gantry type.
  • any configuration may be used as long as the dropping device 1 and the substrate 46 (work table 58) can be relatively moved.
  • an X-axis drive device 52 and a Y-axis drive device 53 may be provided below the work table 58.
  • the number of installation is not limited to this, One may be sufficient and it may be two or more, such as three, Also good.
  • a plurality of dropping devices 1 there are a case where all the dropping devices 1 are the same type and a case where different types of dropping devices 1 are combined.
  • a plurality of the same dropping devices 1 it is possible to cope with so-called multi-chamfering in which a plurality of panels are manufactured in the substrate 46.
  • the distance between the dropping points can be adjusted more variously.
  • the coating apparatus 51 of the first embodiment described above it is possible to easily change the distances (L1, L2) between the dropping points when performing dozens or more of multi-point simultaneous coating.
  • the coating device 51 always keeps the liquid crystal spread uniformly by keeping the distance between the sealing material formed in the rectangular frame shape and the liquid crystal droplets in order to block the liquid crystal material, particularly in the dropping injection method (ODF). It is possible to.
  • FIG. 5 shows a bottom view, a CC sectional view, and a DD sectional view of the nozzle unit 6 used in the dropping device 1 according to the second embodiment.
  • the nozzle unit 6 of the second embodiment is such that the nozzles are arranged so that the discharge ports (38 to 41) of the four nozzles (34 to 37) face inward (center side of the nozzle unit 6). This is different from the first embodiment.
  • the four planes constituting the nozzle connection surface 28 are inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27 so that the center of the nozzle portion 6 is the innermost portion in the bottom view. . That is, each of the discharge ports A to D (38 to 41) of the nozzles A to D (34 to 37) when viewed from the bottom surface is directed to the vertical axis 42 of the nozzle block 27.
  • branch flow paths A to D (30 to 33) are formed to be bent in the middle. That is, the branch channels A to D (30 to 33) are formed in the direction radiating from the vertical shaft 42 in the upstream portion communicating with the inflow channel 29, and communicate with the nozzles A to D (34 to 37). In the downstream portion, a flow path coaxial with the discharge port central axis 43 of the nozzles A to D (34 to 37) is formed, and the upstream portion and the downstream portion are connected via a bent portion.
  • the distance between the nozzle and the substrate by adjusting the distance between the nozzle and the substrate, it is possible to adjust the distances (L1, L2) of the four dropping points that land on the substrate.
  • the distance between the drop points (L1, L2) is set in a narrower range than in the first embodiment. Suitable for adjusting scenes.
  • FIG. 6 shows a bottom view and an EE cross-sectional view of the nozzle unit 6 used in the dropping apparatus 1 according to the third embodiment.
  • the nozzle portion 6 of the third embodiment is the same as the first embodiment in that the square nozzles 4 are arranged in a matrix, but is different from the first embodiment in that the number of nozzles 4 is nine. It ’s different.
  • nine nozzle connection surfaces 28 which are the lower surfaces of the nozzle blocks 27 are partitioned into one, and one nozzle 4 is attached to each partition.
  • the nine sections constituting the nozzle connection surface 28 are rectangular planes of the same size, and are arranged so that the center of the lower surface is the apex.
  • the central section is arranged horizontally.
  • the eight sections other than the center are inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27 so that the discharge port 5 of the nozzle 4 faces outward. This angle is uniform so that the liquid droplet 45 to be applied is arranged at a square corner or a midpoint of the side.
  • the nozzle block 27 is square when viewed from the bottom.
  • the eight nozzles 4 other than the center are arranged at the center or apex of the side of the square in a bottom view that is slightly smaller than the nozzle block 27.
  • the nozzle 4 in the center is arranged at the intersection of the square diagonal lines. That is, the distance between the nozzles 4 adjacent in the horizontal direction is equal.
  • the nozzle unit 6 is configured by nine nozzles 4, but the number of nozzles 4 is not limited to this, and the nozzle unit 6 is configured by n 2 (n is a natural number of 2 or more) nozzles. It is possible. That is, for example, by setting the number of nozzles 4 to a square of 2 or more (that is, 4, 9, 16, 25, 36...), The distance between dropping points (L1) is maintained while maintaining a matrix-like dropping pattern. , L2) can be adjusted equally.
  • the distance between the nozzle and the substrate it is possible to adjust the distances (L1, L2) of the nine dropping points that land on the substrate.
  • nine drops can be performed simultaneously, so that the productivity can be increased as compared with the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Problem: To provide a liquid material dripping device and method by which it is possible to easily change the distance between dripping points when performing coating simultaneously at a plurality of positions. Solution: a dripping device and a method in which the dripping device is used, said dripping device being provided with a measuring unit (2) for measuring a liquid material, a plunger (3) that moves back and forth in the measuring unit (2), a nozzle unit (6) provided with a plurality of nozzles (4) that have discharge holes (5), a supply path (15) for supplying liquid material to the measuring unit (2), and a switching valve (7) for switching communication between the measuring unit (2) and the nozzle unit (6) and between the measuring unit (2) and the supply path (15), wherein adjacent nozzles (4) are arranged in the nozzle unit (6) at equidistant intervals, and the nozzles are disposed at an incline such that an angle θ between each nozzle and a vertical line is the same for all nozzles.

Description

液体材料滴下装置および方法Liquid material dropping apparatus and method
 本発明は、液体材料滴下装置および方法に関し、詳細には、滴下点間の距離を変更可能な複数点同時塗布を行うことのできる液体材料滴下装置および方法に関する。 The present invention relates to an apparatus and method for dropping a liquid material, and more particularly, to an apparatus and method for dropping a liquid material capable of simultaneously applying a plurality of points at which the distance between dropping points can be changed.
 液晶パネルの製造工程において、液晶層を形成する方法の一つとして、滴下注入法(ODF)と呼ばれる方法がある。この方法は、貼り合わせ前に、貼り合わせを行う2枚の基板の一方に、液晶材料を定量滴下した後、真空中で貼り合わせる方法である。
 基板71への液晶材料の滴下は、液晶材料をせき止めるために矩形枠状に形成されたシール材73の枠内に収まるよう、液晶材料の小滴(液滴72)を複数個マトリクス状に配置するよう行われる(図7参照)。一台の滴下装置により一滴ずつ滴下していくのが基本であるが、処理速度向上のため複数滴同時に滴下することも行われる。例えば、一台の装置で複数滴同時に吐出を行う吐出装置として次のような装置がある。
As a method for forming a liquid crystal layer in a manufacturing process of a liquid crystal panel, there is a method called a drop injection method (ODF). This method is a method in which a liquid crystal material is quantitatively dropped onto one of two substrates to be bonded before bonding, and then bonded in a vacuum.
When the liquid crystal material is dropped onto the substrate 71, a plurality of liquid crystal material droplets (droplets 72) are arranged in a matrix so as to fit within the frame of the sealing material 73 formed in a rectangular frame shape to block the liquid crystal material. (See FIG. 7). Although it is basic to drop one drop at a time by one dropping device, dropping a plurality of drops at the same time is also performed to improve the processing speed. For example, there is the following apparatus as an ejection apparatus that ejects a plurality of droplets simultaneously with one apparatus.
 特許文献1には、液体材料源に連結可能なディスペンサ本体を有し、ディスペンサ本体は、流体チャネル、流体チャネルと連通した流体チャネル出口及び流体チャネル出口の近くに設けられた弁座を有し、弁座に選択的に接触可能に流体チャネル内に可動的に設けられた弁部材を有し、弁部材に作動的に結合されていて、弁部材を選択的に動かして弁座に接触させたり離脱させることができる弁駆動装置を有し、チャネル出口に隣接してディスペンサ本体に結合された噴出ノズルを有し、噴出ノズルは、ノズル本体と、ノズル本体に設けられていて、流体チャネル出口と連通した複数のノズル出口とを有し、弁部材は、弁座との接触時に、複数のノズル出口から複数の液滴を同時に迅速に噴出させるのに十分な運動量を流体チャネル出口内の液体材料に与える、ジェッティングディスペンサ、が開示される。 Patent Document 1 has a dispenser body connectable to a liquid material source, the dispenser body has a fluid channel, a fluid channel outlet in communication with the fluid channel, and a valve seat provided near the fluid channel outlet, A valve member movably provided in the fluid channel for selective contact with the valve seat and operatively coupled to the valve member for selectively moving the valve member into contact with the valve seat; A nozzle drive coupled to the dispenser body adjacent to the channel outlet, the jet nozzle being provided on the nozzle body, the fluid channel outlet; A plurality of nozzle outlets in communication with each other, and the valve member has a momentum sufficient to rapidly eject a plurality of droplets simultaneously from the plurality of nozzle outlets when contacting the valve seat. Providing the liquid material, jetting dispenser is disclosed.
 特許文献2には、用紙に向かってインクを吐出する複数のノズルが配列されたヘッドユニットを複数有し、この複数のヘッドユニットが一体化されたラインヘッドにおいて、各ヘッドユニットにおける少なくとも一部のノズルが、用紙の法線方向に対する傾きであって、そのノズルから吐出されるインクが隣り合うヘッドユニットとの境界寄りに着弾する向きの傾きを有することを特徴とするラインヘッド、が開示される。 Patent Document 2 has a plurality of head units in which a plurality of nozzles that eject ink toward a sheet are arranged, and in a line head in which the plurality of head units are integrated, at least a part of each head unit. A line head is disclosed, wherein the nozzle has an inclination with respect to the normal direction of the paper and has an inclination in a direction in which ink ejected from the nozzle lands near a boundary with an adjacent head unit. .
特開2007-167844号公報JP 2007-167844 A 特開2003-25565号公報JP 2003-25565 A
 従来、複数のノズルを有する滴下装置を用いて複数滴の同時塗布を行う場合、滴下点間の距離や塗布パターン形状を変更するには、ノズルが配設されるノズル部そのものを交換する必要があるが、ノズル部そのものを交換することは困難であった。他方で、ノズル部そのものを交換しないで滴下塗布を行うと、品質に大きな影響を与える場合があった。特に、液晶材料をせき止めるために矩形枠状に形成されたシール材の枠内に収まるようマトリクス状に液晶滴を塗布する場合、滴下点間の距離やパターン形状が容易に変えられないと、シール材の枠の大きさが変わったとき、シール材と液晶滴との距離を適切に保つことができず、貼り合わせた際に、液晶の広がり方にムラができてしまうという問題があった。 Conventionally, when applying a plurality of drops simultaneously using a dropping device having a plurality of nozzles, in order to change the distance between the dropping points and the application pattern shape, it is necessary to replace the nozzle part itself where the nozzles are disposed. However, it was difficult to replace the nozzle part itself. On the other hand, when the drop coating is performed without replacing the nozzle part itself, the quality may be greatly affected. In particular, when applying liquid crystal droplets in a matrix shape so as to fit within the frame of the sealing material formed in a rectangular frame shape to block the liquid crystal material, the distance between the dropping points and the pattern shape cannot be easily changed. When the size of the frame of the material is changed, the distance between the sealing material and the liquid crystal droplets cannot be properly maintained, and there is a problem that the spread of the liquid crystal becomes uneven when bonded.
 特許文献2のように、ノズル自体の形状を変形させる構成を採用すると、各ノズル間で吐出条件が異なってしまい、量や位置に関して高精度の塗布ができないという問題がある。 When a configuration in which the shape of the nozzle itself is deformed as in Patent Document 2, the discharge conditions differ between the nozzles, and there is a problem that high-precision coating cannot be performed with respect to the amount and position.
 そこで、本発明では、複数点同時塗布を行うにあたり、容易に滴下点間の距離が変更可能である液体材料滴下装置および方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a liquid material dropping device and method that can easily change the distance between the dropping points when simultaneously applying a plurality of points.
 滴下装置に係る本発明は、液体材料を計量する計量部と、計量部内を往復移動するプランジャと、吐出口を有するノズルを複数備えるノズル部と、計量部に液体材料を供給する供給流路と、計量部とノズル部および計量部と供給流路の連通を切り換える切換弁とを備える滴下装置において、前記ノズル部に、一のノズルと隣り合うノズルとの間隔がいずれも同一となるように前記ノズルを配置するとともに、一のノズルと垂直線が構成する角度θがいずれも同一となるように前記ノズルを傾けて配置したことを特徴とする。
 上記滴下装置において、前記ノズルが、n(nは2以上の自然数)個のノズルからなることを特徴としてもよく、これに加え、前記ノズル部に、前記ノズルの吐出口が前記ノズル部の鉛直方向中心に対し外側を向くように前記ノズルが配置されること、或いは、前記ノズル部に、前記ノズルの吐出口が前記ノズル部の鉛直方向中心に対し内側を向くように前記ノズルが配置されることを特徴としてもよい。
 上記滴下装置において、前記ノズル部が、一の流入流路および流入流路と前記吐出口と連通する分岐流路が形成されたノズルブロックを備え、当該ノズルブロックに前記ノズルが装着されることを特徴としてもよい。
The present invention relating to a dropping device includes a metering unit that measures a liquid material, a plunger that reciprocates in the metering unit, a nozzle unit that includes a plurality of nozzles having discharge ports, and a supply channel that supplies the liquid material to the metering unit. In the dropping device comprising a metering unit, a nozzle unit, and a switching valve for switching the communication between the metering unit and the supply flow path, the nozzle unit is configured so that the interval between one nozzle and an adjacent nozzle is the same. The nozzles are arranged, and the nozzles are arranged so as to be inclined so that the angle θ formed by one nozzle and the vertical line is the same.
In the above dropping apparatus, the nozzle may be composed of n 2 (n is a natural number of 2 or more) nozzles. In addition to this, the nozzle part has an outlet of the nozzle in the nozzle part. The nozzle is arranged so as to face the outside with respect to the center in the vertical direction, or the nozzle is arranged in the nozzle portion so that the discharge port of the nozzle faces the inside with respect to the center in the vertical direction of the nozzle portion. It may be characterized by that.
In the dropping device, the nozzle portion includes a nozzle block in which a single inflow channel and a branch channel that communicates with the inflow channel and the discharge port are formed, and the nozzle is mounted on the nozzle block. It may be a feature.
 塗布装置に係る本発明は、上記滴下装置と、基板が載置されるワークテーブルと、前記滴下装置とワークテーブルとを相対的に移動させるXYZ駆動装置と、記憶装置を有する制御部とを備えることを特徴とする。
 上記塗布装置において、前記滴下装置を複数備え、一の滴下装置のノズル数、ノズルの間隔またはノズルの角度θが、他の滴下装置のノズルの間隔またはノズルの角度θと異なることを特徴としてもよく、或いは、前記滴下装置を複数備え、全ての滴下装置のノズル数、ノズルの間隔およびノズルの角度θが同一であることを特徴としてもよい。
The present invention relating to a coating apparatus includes the above-described dropping device, a work table on which a substrate is placed, an XYZ driving device that relatively moves the dropping device and the work table, and a control unit having a storage device. It is characterized by that.
The coating apparatus may include a plurality of the dropping devices, wherein the number of nozzles of one dropping device, the nozzle interval, or the nozzle angle θ is different from the nozzle interval or nozzle angle θ of another dropping device. Alternatively, a plurality of the dropping devices may be provided, and the number of nozzles, the nozzle interval, and the nozzle angle θ of all the dropping devices may be the same.
 滴下方法に係る本発明は、上記塗布装置を用いた滴下方法であって、入力値に基づき前記ワークテーブルと前記滴下装置との垂直距離を調節することにより、前記ノズルから吐出された液滴の滴下点間距離(L1、L2)を調節し、前記ワークテーブルと前記滴下装置との垂直距離を一定としたまま、前記滴下装置と前記ワークテーブルとを水平方向に相対移動させながら液体材料をワークに滴下することを特徴とする。
 上記滴下方法において、前記制御部の記憶装置に、前記ワークテーブルおよび前記滴下装置の垂直距離と液滴の滴下点間距離(L1、L2)との相関関係パターンが複数記憶されており、前記入力値が、前記相関関係パターンの選択値であることを特徴としてもよい。
 別の観点からの滴下方法に係る本発明は、前記滴下装置を複数備え、全ての滴下装置のノズル数、ノズルの間隔およびノズルの角度θが同一であることを特徴とする塗布装置を用いた滴下方法であって、前記複数の滴下装置の全てで同一の滴下塗布を行うことにより、多面取りを行うことを特徴とする。ここで、前記ワークが液晶パネル基板であり、前記液体材料が液晶であることを特徴としてもよい。
The present invention relating to a dropping method is a dropping method using the above-described coating apparatus, and by adjusting a vertical distance between the work table and the dropping apparatus based on an input value, droplets discharged from the nozzle While adjusting the distance (L1, L2) between the dropping points and keeping the vertical distance between the work table and the dropping device constant, the liquid material is moved while moving the dropping device and the work table relative to each other in the horizontal direction. It is characterized by dripping in
In the dropping method, a plurality of correlation patterns between the vertical distances of the work table and the dropping device and the distances (L1, L2) between the dropping points of the droplets are stored in the storage device of the control unit. The value may be a selection value of the correlation pattern.
The present invention relating to a dropping method from another viewpoint uses a coating apparatus including a plurality of the dropping apparatuses, wherein the number of nozzles, the interval between the nozzles, and the nozzle angle θ of all the dropping apparatuses are the same. It is a dripping method, Comprising: Multi-chamfering is performed by performing the same dripping application | coating with all the said some dripping apparatus. Here, the workpiece may be a liquid crystal panel substrate, and the liquid material may be liquid crystal.
 本発明によれば、複数点同時塗布を行うにあたり、滴下点間の距離を容易に変更することが可能となる。 According to the present invention, it is possible to easily change the distance between the dropping points when performing simultaneous application at a plurality of points.
第1実施形態に係る滴下装置の概略側面図である。It is a schematic side view of the dripping apparatus which concerns on 1st Embodiment. (a)第1実施形態に係る滴下装置で用いるノズル部の底面図、(b)A-A断面図および(c)B-B断面図である。(A) A bottom view of a nozzle portion used in the dropping device according to the first embodiment, (b) AA sectional view and (c) BB sectional view. 第1実施形態に係る滴下装置を用いて滴下を行うときの滴下高さと滴下点間距離との関係を説明する説明図である。(a)は滴下高さHaのとき、(b)は滴下高さHbのとき、(c)は滴下高さHcのときの平面図を示している。It is explanatory drawing explaining the relationship between the dropping height when performing dripping using the dripping apparatus which concerns on 1st Embodiment, and the distance between dropping points. (A) is a drop height Ha, (b) is a drop height Hb, (c) is a plan view when the drop height Hc. 第1実施形態に係る塗布装置の概略斜視図である。It is a schematic perspective view of the coating device which concerns on 1st Embodiment. (a)第2実施形態に係るノズル部の底面図、(b)C-C断面図および(c)D-D断面図である。(A) Bottom view of nozzle portion according to second embodiment, (b) CC sectional view and (c) DD sectional view. (a)第3実施形態に係るノズル部の底面図および(b)E-E断面図である。(A) It is a bottom view of the nozzle part which concerns on 3rd Embodiment, and (b) It is EE sectional drawing. 液晶パネルの製造工程において基板に液体を滴下したときの状態を説明する説明図である。It is explanatory drawing explaining a state when a liquid is dripped at a board | substrate in the manufacturing process of a liquid crystal panel.
 以下に、本発明を実施するための形態例を説明する。
《第1実施形態》
 第1実施形態に係る滴下装置1は、ノズル部6の鉛直方向中心から等間隔に配置された四つのノズル4を備えており、ノズル4と基板46との距離を調節することにより、基板46に着弾する四つの滴下点の距離を調節することが可能である。この滴下装置1は、XYZ駆動装置(52、53、54)を備える塗布装置51に取り付けられ、塗布対象物が載置されたワークテーブルに対して相対移動しながら塗布作業を行う。
 以下では、滴下装置1および塗布装置51の構成および動作を詳細に説明する。
Below, the form example for implementing this invention is demonstrated.
<< First Embodiment >>
The dropping device 1 according to the first embodiment includes four nozzles 4 arranged at equal intervals from the center in the vertical direction of the nozzle unit 6, and the substrate 46 is adjusted by adjusting the distance between the nozzle 4 and the substrate 46. It is possible to adjust the distance between the four dripping points that land on. The dropping device 1 is attached to a coating device 51 including an XYZ driving device (52, 53, 54), and performs a coating operation while relatively moving with respect to a work table on which a coating target is placed.
Below, the structure and operation | movement of the dripping apparatus 1 and the coating device 51 are demonstrated in detail.
<滴下装置>
 図1に、第1実施形態に係る滴下装置1の概略側面図を示す。
 第1実施形態の滴下装置1は、管形状の計量部2と、計量部2に内接するプランジャ3と、ノズル4を複数有するノズル部6と、計量部2とノズル部6および計量部2と供給流路15の連通を切り換える切換弁7と、プランジャ駆動装置を内蔵する側面視L字形の本体9とを備えるプランジャ式滴下装置である。
 計量部2は、内部に円柱状の空間である計量孔を有しており、計量孔にはプランジャ3が摺動自在に挿入されている。
 プランジャ3は、端部に太径部8を有する棒状部材であり、太径部8とは反対側の端部が計量部2内へ挿入される。プランジャ3は、太径部8のすぐ近くをプランジャ駆動部材10により把持され、プランジャ駆動部材10を移動させるプランジャ駆動装置により符号11方向に移動可能となっている。プランジャ3が計量部2の内壁に密接摺動することで、計量部2内に液体19を吸い込んだり、計量部2から液体19を押し出したりすることができる。
<Drip device>
In FIG. 1, the schematic side view of the dripping apparatus 1 which concerns on 1st Embodiment is shown.
The dropping device 1 of the first embodiment includes a tube-shaped measuring unit 2, a plunger 3 inscribed in the measuring unit 2, a nozzle unit 6 having a plurality of nozzles 4, a measuring unit 2, a nozzle unit 6, and a measuring unit 2. The plunger-type dropping device includes a switching valve 7 for switching the communication of the supply flow path 15 and an L-shaped main body 9 having a built-in plunger driving device.
The measuring part 2 has a measuring hole which is a cylindrical space inside, and a plunger 3 is slidably inserted into the measuring hole.
The plunger 3 is a rod-shaped member having a large-diameter portion 8 at the end, and an end opposite to the large-diameter portion 8 is inserted into the measuring unit 2. The plunger 3 is gripped by the plunger driving member 10 in the immediate vicinity of the large diameter portion 8 and can be moved in the direction of reference numeral 11 by a plunger driving device that moves the plunger driving member 10. When the plunger 3 slides in close contact with the inner wall of the measuring unit 2, the liquid 19 can be sucked into the measuring unit 2 and the liquid 19 can be pushed out from the measuring unit 2.
 切換弁7は、供給流路15と連通する流路A12と、計量部2と連通する流路B13と、ノズル部6と連通する流路C14とを備え、供給流路15と計量部2を連通する第一位置、または計量部2とノズル部6を連通する第二位置を選択的に切り換えることができる。ここで、切換弁7は回転バルブとして構成してもよいし、スライドバルブとして構成してもよい。なお、流路B13と流路C14とは、プランジャ移動方向(符号11)と同じ方向となるように配置されることが好ましい。これは、吐出に際し、プランジャ3による力を無駄なく液体19へと伝えるためである。 The switching valve 7 includes a flow path A12 that communicates with the supply flow path 15, a flow path B13 that communicates with the measuring section 2, and a flow path C14 that communicates with the nozzle section 6. The first position for communication or the second position for communication between the measuring unit 2 and the nozzle unit 6 can be selectively switched. Here, the switching valve 7 may be configured as a rotary valve or a slide valve. In addition, it is preferable to arrange | position so that the flow path B13 and the flow path C14 may become the same direction as a plunger moving direction (code | symbol 11). This is to transmit the force by the plunger 3 to the liquid 19 without waste during discharge.
 供給流路15は、容器17に貯留された液体19を供給するための液体配管18と連通する流路であり、延設部材16に内設される。延設部材16は、供給流路15と流路A12が気密に連通するように本体9に固設されている。供給流路15と液体配管18との間には、気泡除去機構20が設けられている。気泡除去機構20としては、例えば、液材供給部側に連通する第1の流路と、計量部側に連通する第2の流路と、第1の流路と第2の流路とを連通する、第1の流路より幅広の本体とを有し第1の流路の排出口が第2の流路の吸入口よりも上方位置に配設される機構(出願人に係る特許第4898778号参照)を用いることができる。なお、気泡除去機構20は設けなくともよい。
 液体19を貯留する容器17には、液体19を圧送するための作動気体を供給する作動気体供給配管23が接続される。
 本体9は、ベース板25に取り付けられており、同じベース板25の上部には、容器17を固定する容器支持部材24が取り付けられている。ベース板25は、後述するXYZ駆動装置(52、53、54)や固定スタンド等と接続するための接続部材26に取り付けられている。
The supply channel 15 is a channel that communicates with a liquid pipe 18 for supplying the liquid 19 stored in the container 17, and is provided in the extending member 16. The extending member 16 is fixed to the main body 9 so that the supply channel 15 and the channel A12 communicate with each other in an airtight manner. A bubble removing mechanism 20 is provided between the supply channel 15 and the liquid pipe 18. As the bubble removal mechanism 20, for example, a first flow path communicating with the liquid material supply unit side, a second flow path communicating with the measuring unit side, a first flow path, and a second flow path are provided. A mechanism having a main body wider than the first flow channel and having a discharge port of the first flow channel disposed above the suction port of the second flow channel (Patent No. 4898778) can be used. The bubble removing mechanism 20 need not be provided.
A working gas supply pipe 23 that supplies a working gas for pumping the liquid 19 is connected to the container 17 that stores the liquid 19.
The main body 9 is attached to a base plate 25, and a container support member 24 that fixes the container 17 is attached to the upper part of the same base plate 25. The base plate 25 is attached to a connecting member 26 for connecting to an XYZ driving device (52, 53, 54), a fixed stand, etc., which will be described later.
<ノズル部>
 図2に、第1実施形態に係る滴下装置で用いるノズル部6の底面図並びにA-A断面図およびB-B断面図をそれぞれ表す。
 第1実施形態のノズル部6は、断面が五角形であるノズルブロック27と、ノズルブロック27の下面であるノズル接続面28に配設された四つのノズル4とを備えて構成される。このノズル部6は、本体9の下面に着脱自在に装着されている。
 以下では説明の便宜上、四つのノズル4をノズルA~D(34~37)といい、四つのノズルの吐出口5を吐出口A~D(38~41)と呼ぶものとする。
 ノズルブロック27内部には、滴下装置1の流路C14と連通する流入流路29と、流入流路29からノズルA~D(34~37)へと分岐する分岐流路A~D(30~33)が形成されている。
 ノズルブロック27の斜面である下面は、四つに区画され、1つの区画に1つのノズル4がそれぞれ取り付けられる(符号34~37)。第1実施形態では、図2に示すように、四つの同じ大きさの方形状平面を下面の中心が頂点となるような配置とすることで、ノズル接続面28を形成している。すなわち、ノズルブロック27は、底面から見ると正方形である。ノズルブロック27の下面の区画数は、例示の区画数に限定されず、例えば2~16など任意の複数区画を設定することが可能であるが、区画数の数はn(nは2以上の自然数)であることが好ましい。ノズルブロック27の下面の区画数とノズル4の数は、同一とすることが好ましい。
<Nozzle part>
FIG. 2 shows a bottom view, an AA sectional view, and a BB sectional view of the nozzle unit 6 used in the dropping device according to the first embodiment.
The nozzle unit 6 of the first embodiment includes a nozzle block 27 having a pentagonal cross section and four nozzles 4 disposed on a nozzle connection surface 28 that is a lower surface of the nozzle block 27. The nozzle portion 6 is detachably attached to the lower surface of the main body 9.
Hereinafter, for convenience of explanation, the four nozzles 4 are referred to as nozzles A to D (34 to 37), and the discharge ports 5 of the four nozzles are referred to as discharge ports A to D (38 to 41).
Inside the nozzle block 27, there are an inflow channel 29 communicating with the channel C14 of the dropping device 1, and branch channels A to D (30 to 30) that branch from the inflow channel 29 to the nozzles A to D (34 to 37). 33) is formed.
The lower surface, which is the slope of the nozzle block 27, is divided into four sections, and one nozzle 4 is attached to each section (reference numerals 34 to 37). In the first embodiment, as shown in FIG. 2, the nozzle connection surface 28 is formed by arranging four rectangular planes having the same size so that the center of the lower surface is the apex. That is, the nozzle block 27 is square when viewed from the bottom. The number of partitions on the lower surface of the nozzle block 27 is not limited to the illustrated number of partitions, and an arbitrary plurality of partitions such as 2 to 16 can be set. For example, the number of partitions is n 2 (n is 2 or more). Is a natural number). The number of sections on the lower surface of the nozzle block 27 and the number of nozzles 4 are preferably the same.
 斜面に取り付けられた各ノズル4は、底面から見て正方形を構成するように等間隔に配置されている。すなわち、ノズルA34、ノズルB35、ノズルC36およびノズルD37がマトリクス状に配置されている。一のノズル4と隣り合う他のノズル4との間隔は、いずれのノズル4を選択しても同一である。
 また、各ノズル4は1つの吐出口を有しており、吐出口中心軸43がノズル接続面28に対して垂直になるよう取り付けられている。第1実施形態では、ノズル接続面28の各面が、ノズルブロック27の垂直軸42に対してそれぞれ所定の角度傾いているので、吐出口A~D(38~41)がそれぞれノズルブロック27の鉛直方向中心に対して外側を向くこととなる。ノズル接続面28の各面の傾きの角度は、均等である。すなわち、図2に示したθa、θb、θc、θdが全て同じ(θa=θb=θc=θd)になるようにする。別の言い方をすれば、一のノズル4と垂直線が構成する角度θ(例えば、5~60度)は、どのノズル4を選択しても同一となる。
The nozzles 4 attached to the slope are arranged at equal intervals so as to form a square when viewed from the bottom. That is, nozzle A34, nozzle B35, nozzle C36 and nozzle D37 are arranged in a matrix. The interval between one nozzle 4 and another adjacent nozzle 4 is the same regardless of which nozzle 4 is selected.
Each nozzle 4 has one discharge port, and is attached so that the discharge port central axis 43 is perpendicular to the nozzle connection surface 28. In the first embodiment, each surface of the nozzle connection surface 28 is inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27, so that the discharge ports A to D (38 to 41) It will face outward with respect to the vertical center. The angle of inclination of each surface of the nozzle connection surface 28 is uniform. That is, θa, θb, θc, and θd shown in FIG. 2 are all the same (θa = θb = θc = θd). In other words, the angle θ (for example, 5 to 60 degrees) formed by one nozzle 4 and a vertical line is the same regardless of which nozzle 4 is selected.
 また、吐出口A~D(38~41)は、ノズルブロック27の各角を向くように配置されている。すなわち、底面28の対角線上に吐出口A~D(38~41)が位置するように配置されている(図2(c)参照)。従って、吐出口A~D(38~41)から吐出される四つの液滴45を結んで形成される四角形は、ノズルブロック27のノズルA~D(34~37)の配置と相似形の四角形となる。分岐流路A~D(30~33)は、液体19の吐出が円滑に行われるよう、ノズルA~D(34~37)のそれぞれの中心軸(吐出口中心軸43)と同軸になるよう形成することが好ましい。 Further, the discharge ports A to D (38 to 41) are arranged so as to face each corner of the nozzle block 27. That is, the discharge ports A to D (38 to 41) are arranged on the diagonal line of the bottom surface 28 (see FIG. 2C). Accordingly, the quadrangle formed by connecting the four droplets 45 discharged from the discharge ports A to D (38 to 41) is a quadrangle similar to the arrangement of the nozzles A to D (34 to 37) of the nozzle block 27. It becomes. The branch channels A to D (30 to 33) are coaxial with the central axes (discharge port central axes 43) of the nozzles A to D (34 to 37) so that the liquid 19 can be smoothly discharged. It is preferable to form.
<吐出動作>
 以上に説明した滴下装置1における吐出動作の概要は、次のとおりである。
(1)準備(初期充填工程)
 まず、プランジャ3を計量部2内へ挿入しない状態で、液体19を計量部2の上端にまで充填する。ついで、プランジャ3を計量部2内へ挿入し、プランジャ駆動部材10に固定する。ついで、切換弁7により計量部2とノズル部6とを連通し、吐出口5から液体19が出るまでプランジャ3をノズル部6の方向(進出方向)へ移動させる。
(2)吐出工程
 切換弁7により計量部2とノズル部6とを連通し、プランジャ3を進出方向へ高速に移動させることで四つの吐出口5から同じ量の液体19を飛翔吐出する。
(3)吸引工程
 切換弁7により供給流路15と計量部2とを連通し、プランジャ3を進出方向とは逆の方向(後退方向)へ移動させ、液体19を計量部2内へと吸引する。
 上記(2)と(3)の工程を繰り返すことで、連続定量吐出による塗布作業を行うことができる。なお、上記(2)と(3)の工程は、どちらが先でもよい。
<Discharge operation>
The outline of the discharging operation in the dropping apparatus 1 described above is as follows.
(1) Preparation (initial filling process)
First, the liquid 19 is filled up to the upper end of the measuring unit 2 without inserting the plunger 3 into the measuring unit 2. Next, the plunger 3 is inserted into the measuring unit 2 and fixed to the plunger driving member 10. Next, the metering unit 2 and the nozzle unit 6 are communicated by the switching valve 7, and the plunger 3 is moved in the direction of the nozzle unit 6 (the advance direction) until the liquid 19 comes out from the discharge port 5.
(2) Discharge process The metering unit 2 and the nozzle unit 6 are communicated by the switching valve 7 and the plunger 3 is moved at high speed in the advancing direction, so that the same amount of liquid 19 is ejected from the four discharge ports 5.
(3) Suction process The supply flow path 15 and the metering unit 2 are communicated by the switching valve 7, the plunger 3 is moved in the direction opposite to the advancing direction (retracting direction), and the liquid 19 is sucked into the metering unit 2. To do.
By repeating the steps (2) and (3), a coating operation by continuous quantitative discharge can be performed. Note that either of the steps (2) and (3) may be performed first.
<滴下点間距離の調節>
 図3に、第1実施形態に係る滴下装置1を用いて滴下を行うときのノズル部6の高さ(H)と滴下点間距離(L)との関係を説明する説明図を示す。図3中、上側の図は側面から見たとき、下側の図は基板46を上面から見た時の平面図を示している。なお、図3では、ノズル部6のみを簡略化して描いている。
 ノズル4の吐出口5から排出された液滴45は、ノズル4が所定の角度傾いているために、放物線状の飛翔軌跡44を描きながら、塗布面である基板46に到達する。ノズル部6の中心から等間隔に配置された四つのノズル4が放射状に均等に傾いているので、基板46に塗布された液滴45は、正方形の角部に配置されたような矩形状のパターンとなる。すなわち、図3下側に示すように、縦方向の滴下点距離(L1)と横方向の滴下点距離(L2)とは同じになる(L1=L2)。
<Adjustment of distance between dropping points>
FIG. 3 is an explanatory diagram for explaining the relationship between the height (H) of the nozzle portion 6 and the distance (L) between the dropping points when dropping is performed using the dropping device 1 according to the first embodiment. In FIG. 3, the upper diagram shows a plan view when the substrate 46 is viewed from the upper surface when the upper diagram is viewed from the side surface. In FIG. 3, only the nozzle portion 6 is illustrated in a simplified manner.
The droplet 45 discharged from the discharge port 5 of the nozzle 4 reaches the substrate 46 as the coating surface while drawing a parabolic flight locus 44 because the nozzle 4 is inclined at a predetermined angle. Since the four nozzles 4 arranged at equal intervals from the center of the nozzle part 6 are inclined evenly radially, the droplet 45 applied to the substrate 46 has a rectangular shape as arranged at the corners of the square. It becomes a pattern. That is, as shown in the lower side of FIG. 3, the vertical dropping point distance (L1) and the horizontal dropping point distance (L2) are the same (L1 = L2).
 また、ノズル4が所定の角度傾いていて放物線状の飛翔軌跡44を描くために、ノズル部6(吐出口5)と基板46との間の距離(言い換えると、ノズル部6の高さ(H))を変えることで、縦方向および横方向の滴下点間距離(L1、L2)を変えることができる。
 ここで、中央に描かれた(b)の場合を基準とする。(b)の場合、基板46から吐出口5までの距離がHbのとき、縦方向の滴下点距離はL1bであり、横方向の滴下点距離はL2bである。(a)のようにノズル部6を低くすると、液滴45は、放物線状に広がる前に基板46に到達するので、(b)の場合と比べ滴下点間距離は短くなる(La<Lb)。
 一方、(c)のようにノズル部6を高くすると、液滴45は、放物線状に広がった後に基板46に到達するので、(b)の場合と比べ滴下点間距離は長くなる(Lc>Lb)。
 このように、各ノズル4が所定の角度傾いているために、ノズル部6の高さ(H)を変えるだけで、縦方向および横方向の滴下点間距離(L1、L2)を変えることができる。
Further, in order to draw a parabolic flight trajectory 44 when the nozzle 4 is inclined at a predetermined angle, the distance between the nozzle portion 6 (discharge port 5) and the substrate 46 (in other words, the height of the nozzle portion 6 (H By changing)), the distances (L1, L2) between the dropping points in the vertical direction and the horizontal direction can be changed.
Here, the case of (b) drawn in the center is used as a reference. In the case of (b), when the distance from the substrate 46 to the discharge port 5 is Hb, the vertical dropping point distance is L1b, and the horizontal dropping point distance is L2b. When the nozzle portion 6 is lowered as shown in (a), since the droplet 45 reaches the substrate 46 before spreading in a parabolic shape, the distance between the dropping points is shorter than in the case of (b) (La <Lb). .
On the other hand, when the nozzle portion 6 is raised as shown in (c), since the droplet 45 reaches the substrate 46 after spreading in a parabolic shape, the distance between the dropping points becomes longer than in the case of (b) (Lc> Lb).
As described above, since each nozzle 4 is inclined at a predetermined angle, the distance (L1, L2) between the dropping points in the vertical direction and the horizontal direction can be changed only by changing the height (H) of the nozzle portion 6. it can.
 ノズル4の傾き(θ)、ノズル部6の高さ(H)並びに縦方向および横方向の滴下点間距離(L1、L2)との関係は、予めの実験により表やグラフとし、制御部(図示せず)の記憶装置に記憶しておくとよい。このようにすることで、表示装置(図示せず)に表示された表やグラフに基づき、所望の縦方向および横方向の滴下点間距離(L1、L2)を設定変更で簡単に実現することが可能となる。発明者の実験によると、例えばノズル4を10度傾けたとき、高さ15mmから吐出を行うと滴下点間距離(L1、L2)は各7.5mmとなり、高さ10mmから吐出を行うと滴下点間距離(L1、L2)は各6.5mm、高さ20mmから吐出を行うと滴下点間距離(L1、L2)は各8.5mmとなった。 The relationship between the inclination (θ) of the nozzle 4, the height (H) of the nozzle portion 6, and the distances (L 1, L 2) between the dropping points in the vertical direction and the horizontal direction is made into a table or a graph by a prior experiment, and the control unit ( It may be stored in a storage device (not shown). By doing in this way, based on the table | surface and graph displayed on the display apparatus (not shown), the desired distance between the drop points (L1, L2) in the vertical direction and the horizontal direction can be easily realized by changing the setting. Is possible. According to the inventor's experiment, for example, when the nozzle 4 is tilted by 10 degrees, when discharging is performed from a height of 15 mm, the distance between the dropping points (L1, L2) is 7.5 mm, and when discharging is performed from a height of 10 mm, the dropping is performed. When the distance between the points (L1, L2) was 6.5 mm each and the height was 20 mm, the distance between the dropping points (L1, L2) was 8.5 mm each.
<塗布装置>
 図4に、第1実施形態に係る滴下装置1を備える塗布装置51の概略斜視図を示す。
 実施形態の塗布装置51は、滴下装置1を上下方向(符号57)へ移動可能とするZ軸駆動装置54と、Z軸駆動装置54が取り付けられ、左右方向(符号55)へ移動可能とするX軸駆動装置52と、X軸駆動装置52が設けられるビーム61を前後方向(符号56)へ移動可能とするY軸駆動装置53と、基板46を載置するワークテーブル58と、上記各駆動装置(52、53、54)とワークテーブル58が配設される架台63と、図示しない制御部とから主に構成される。この塗布装置51は、制御部が、ユーザの入力値に基づきワークテーブル58と滴下装置1との垂直距離を調節することにより、各ノズル4から吐出された液滴の滴下点間距離(L1、L2)を調節し、ワークテーブル58と滴下装置1との垂直距離を一定としたまま、滴下装置1とワークテーブル58とを水平方向に相対移動させながら液体材料を滴下する滴下方法を実施することが可能である。ここで、ワークに滴下する滴下点はm1行×m2列の行列により設定され、好ましくはm1およびm2のいずれもがノズル数nの倍数(自然数)となるようにする。
<Coating device>
In FIG. 4, the schematic perspective view of the coating device 51 provided with the dripping apparatus 1 which concerns on 1st Embodiment is shown.
The coating apparatus 51 of the embodiment is provided with a Z-axis driving device 54 that allows the dropping device 1 to move in the vertical direction (reference numeral 57) and a Z-axis driving apparatus 54, and is movable in the left-right direction (reference numeral 55). X-axis driving device 52, Y-axis driving device 53 that enables beam 61 provided with X-axis driving device 52 to move in the front-rear direction (reference numeral 56), work table 58 on which substrate 46 is placed, and each of the drives It is mainly composed of a gantry 63 on which the devices (52, 53, 54) and the work table 58 are disposed, and a control unit (not shown). In the coating device 51, the control unit adjusts the vertical distance between the work table 58 and the dropping device 1 based on the input value of the user, whereby the distance between the dropping points of the droplets discharged from each nozzle 4 (L 1, L2) is adjusted, and the dropping method of dropping the liquid material is performed while moving the dropping device 1 and the work table 58 relatively in the horizontal direction while keeping the vertical distance between the work table 58 and the dropping device 1 constant. Is possible. Here, the dropping points to be dropped onto the workpiece are set by a matrix of m1 rows × m2 columns, and preferably both m1 and m2 are multiples (natural numbers) of the number of nozzles n.
 X軸駆動装置52には、これを挟むようにX軸スライダ59が設けられており、Z軸駆動装置54および滴下装置1を移動させることができる。また、Y軸駆動装置53の内側には、それぞれYスライダ60が設けられており、その上をX軸駆動装置52が設けられたビーム61がビーム支持部材62に支えられて移動する。XYZ駆動装置を上記のように構成することで、滴下装置1を基板46に対して相対的に移動させることができる。本発明では、垂直方向(Z方向)の吐出口位置を調節することにより、滴下点間距離(L1、L2)を調節するので、Z方向の位置決めを高精度に行うことができる機構をXYZ駆動装置に採用することが好ましい。このようなXYZ駆動装置としては、ボールネジとモータとの組み合わせ機構、リニアモータを用いた機構、ベルトやチェーンなどで動力を伝える機構などを用いることができる。
 なお、本実施形態では、駆動装置をいわゆるガントリ型として構成したが、滴下装置1と基板46(ワークテーブル58)とを相対的に移動させることができるものであれば、どのような構成でもよい。例えば、ワークテーブル58の下部にX軸駆動装置52およびY軸駆動装置53を設けて構成してもよい。
The X-axis drive device 52 is provided with an X-axis slider 59 so as to sandwich this, and the Z-axis drive device 54 and the dropping device 1 can be moved. In addition, Y sliders 60 are provided inside the Y axis driving device 53, and the beam 61 on which the X axis driving device 52 is provided is supported by the beam support member 62 and moves. By configuring the XYZ driving device as described above, the dropping device 1 can be moved relative to the substrate 46. In the present invention, the distance between the drop points (L1, L2) is adjusted by adjusting the discharge port position in the vertical direction (Z direction), so that a mechanism capable of positioning in the Z direction with high accuracy is driven by XYZ. It is preferable to employ in the apparatus. As such an XYZ driving device, a combination mechanism of a ball screw and a motor, a mechanism using a linear motor, a mechanism for transmitting power by a belt, a chain, or the like can be used.
In the present embodiment, the drive device is configured as a so-called gantry type. However, any configuration may be used as long as the dropping device 1 and the substrate 46 (work table 58) can be relatively moved. . For example, an X-axis drive device 52 and a Y-axis drive device 53 may be provided below the work table 58.
 第1実施形態では、滴下装置1を4台設ける構成を例示しているが、設置台数はこれに限定されず、1台であってもよいし2台、3台などの複数台であってもよい。
 滴下装置1を複数台設ける構成においては、全て同一種類の滴下装置1とする場合と、異なる種類の滴下装置1を組み合わせる場合とがある。同一の滴下装置1を複数台設けた場合には、基板46内に複数のパネルを製作する、いわゆる多面取りに対応可能となる。異なる種類の滴下装置1を組み合わせた場合(例えば、滴下装置1ごとにノズル4の傾斜角度などを変えたノズル部6を設けた場合)には、一種類の滴下装置1と比べ、滴下点間距離(L1、L2)をより多様に調整することが可能となる。
In 1st Embodiment, although the structure which provides four dripping apparatuses 1 is illustrated, the number of installation is not limited to this, One may be sufficient and it may be two or more, such as three, Also good.
In the configuration in which a plurality of dropping devices 1 are provided, there are a case where all the dropping devices 1 are the same type and a case where different types of dropping devices 1 are combined. In the case where a plurality of the same dropping devices 1 are provided, it is possible to cope with so-called multi-chamfering in which a plurality of panels are manufactured in the substrate 46. When different types of dropping devices 1 are combined (for example, when the nozzle unit 6 in which the inclination angle of the nozzle 4 is changed for each dropping device 1 is provided), compared with one type of dropping device 1, the distance between the dropping points The distances (L1, L2) can be adjusted more variously.
 以上に説明した第1実施形態の塗布装置51によれば、数十個以上の多点同時塗布を行うにあたり、滴下点間の距離(L1、L2)を容易に変更することが可能となる。この塗布装置51は、特に滴下注入法(ODF)において、液晶材料をせき止めるために矩形枠状に形成されたシール材と液晶滴との距離を適切に保つことで、液晶の広がり方を常に均一とすることを可能とするものである。 According to the coating apparatus 51 of the first embodiment described above, it is possible to easily change the distances (L1, L2) between the dropping points when performing dozens or more of multi-point simultaneous coating. The coating device 51 always keeps the liquid crystal spread uniformly by keeping the distance between the sealing material formed in the rectangular frame shape and the liquid crystal droplets in order to block the liquid crystal material, particularly in the dropping injection method (ODF). It is possible to.
《第2実施形態》
 図5に、第2実施形態に係る滴下装置1で用いるノズル部6の底面図並びにC-C断面図およびD-D断面図をそれぞれ表す。以下では、第1実施形態と同じ部分(ノズル部6以外の部分)は説明を省略し、異なる部分のみ説明する。
 第2実施形態のノズル部6は、四つのノズル(34~37)の各吐出口(38~41)が内側(ノズル部6の中心側)に向くように各ノズルが配設される点で、第1実施形態と相異する。
 第2実施形態では、ノズル接続面28を構成する四つの平面が、ノズル部6の中心が底面視最奥部となるように、ノズルブロック27の垂直軸42に対して所定の角度傾いている。すなわち、底面から見たときのノズルA~D(34~37)の吐出口A~D(38~41)のそれぞれが、ノズルブロック27の垂直軸42に向くようになっている。
 ノズルブロック27内部には、滴下装置1の流路C14と連通する流入流路29と、流入流路29からノズルA~D(34~37)へと分岐する分岐流路A~D(30~33)が形成される点は第1実施形態と同じである。しかし、分岐流路A~D(30~33)が途中で折れ曲がるように形成される点で第1実施形態と相異する。すなわち、分岐流路A~D(30~33)は、流入流路29と連通する上流部分では垂直軸42から放射する方向に流路が形成され、ノズルA~D(34~37)と連通する下流部分ではノズルA~D(34~37)の吐出口中心軸43と同軸の流路が形成され、上流部分と下流部分が屈曲部を介して接続されている。
<< Second Embodiment >>
FIG. 5 shows a bottom view, a CC sectional view, and a DD sectional view of the nozzle unit 6 used in the dropping device 1 according to the second embodiment. In the following, description of the same parts as those in the first embodiment (parts other than the nozzle part 6) will be omitted, and only different parts will be described.
The nozzle unit 6 of the second embodiment is such that the nozzles are arranged so that the discharge ports (38 to 41) of the four nozzles (34 to 37) face inward (center side of the nozzle unit 6). This is different from the first embodiment.
In the second embodiment, the four planes constituting the nozzle connection surface 28 are inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27 so that the center of the nozzle portion 6 is the innermost portion in the bottom view. . That is, each of the discharge ports A to D (38 to 41) of the nozzles A to D (34 to 37) when viewed from the bottom surface is directed to the vertical axis 42 of the nozzle block 27.
Inside the nozzle block 27, there are an inflow channel 29 communicating with the channel C14 of the dropping device 1, and branch channels A to D (30 to 30) that branch from the inflow channel 29 to the nozzles A to D (34 to 37). 33) is the same as in the first embodiment. However, it differs from the first embodiment in that the branch flow paths A to D (30 to 33) are formed to be bent in the middle. That is, the branch channels A to D (30 to 33) are formed in the direction radiating from the vertical shaft 42 in the upstream portion communicating with the inflow channel 29, and communicate with the nozzles A to D (34 to 37). In the downstream portion, a flow path coaxial with the discharge port central axis 43 of the nozzles A to D (34 to 37) is formed, and the upstream portion and the downstream portion are connected via a bent portion.
 第2実施形態においても、ノズルと基板との距離を調節することにより、基板に着弾する四つの滴下点の距離(L1、L2)を調節することが可能である。第2実施形態は、四つのノズル(34~37)の各吐出口(38~41)が内側に向いているので、第1実施形態よりも狭い範囲で滴下点間距離(L1、L2)を調節する場面に適している。 Also in the second embodiment, by adjusting the distance between the nozzle and the substrate, it is possible to adjust the distances (L1, L2) of the four dropping points that land on the substrate. In the second embodiment, since the discharge ports (38-41) of the four nozzles (34-37) face inward, the distance between the drop points (L1, L2) is set in a narrower range than in the first embodiment. Suitable for adjusting scenes.
《第3実施形態》
 図6に、第3実施形態に係る滴下装置1で用いるノズル部6の底面図およびE-E断面図をそれぞれ表す。以下では、第1実施形態と同じ部分(ノズル部6以外の部分)は説明を省略し、異なる部分のみ説明する。
 第3実施形態のノズル部6は、平方数のノズル4がマトリクス状に配置されている点は第1実施形態と共通するが、ノズル4の数が九つである点で第1実施形態と相異する。第3実施形態のノズル部6は、ノズルブロック27の下面であるノズル接続面28が九つに区画されており、一つの区画に一つのノズル4がそれぞれ取り付けられる。ノズル接続面28を構成する九つの区画は、同じ大きさの方形状平面からなり、下面の中心が頂点となるような配置されている。ここで、中心の区画は、水平に配置されている。中心以外の八つの区画は、ノズル4の吐出口5が外側を向くよう、ノズルブロック27の垂直軸42に対して所定の角度傾いている。この角度は、塗布される液滴45が四角形の角や辺の中点に配置されるよう、均等になっている。
<< Third Embodiment >>
FIG. 6 shows a bottom view and an EE cross-sectional view of the nozzle unit 6 used in the dropping apparatus 1 according to the third embodiment. In the following, description of the same parts as those in the first embodiment (parts other than the nozzle part 6) is omitted, and only different parts will be described.
The nozzle portion 6 of the third embodiment is the same as the first embodiment in that the square nozzles 4 are arranged in a matrix, but is different from the first embodiment in that the number of nozzles 4 is nine. It ’s different. In the nozzle portion 6 of the third embodiment, nine nozzle connection surfaces 28 which are the lower surfaces of the nozzle blocks 27 are partitioned into one, and one nozzle 4 is attached to each partition. The nine sections constituting the nozzle connection surface 28 are rectangular planes of the same size, and are arranged so that the center of the lower surface is the apex. Here, the central section is arranged horizontally. The eight sections other than the center are inclined at a predetermined angle with respect to the vertical axis 42 of the nozzle block 27 so that the discharge port 5 of the nozzle 4 faces outward. This angle is uniform so that the liquid droplet 45 to be applied is arranged at a square corner or a midpoint of the side.
 ノズルブロック27は、底面から見ると正方形である。中心以外の八つのノズル4は、ノズルブロック27より一回り小さい底面視正方形の辺の中央または頂点に配置されている。この正方形の対角線の交点に、中心にあるノズル4は配置されている。すなわち、水平方向に隣り合う各ノズル4の距離は等しくなっている。
 第3実施形態では、九つのノズル4によりノズル部6を構成したが、ノズル4の数はこれに限定されず、n(nは2以上の自然数)個のノズルによりノズル部6を構成することが可能である。すなわち、例えば、ノズル4の数を2以上の平方(すなわち、4、9、16、25、36・・・)とすることで、マトリクス状の滴下パターンを維持しつつ、滴下点間距離(L1、L2)を均等に調整することが可能である。
The nozzle block 27 is square when viewed from the bottom. The eight nozzles 4 other than the center are arranged at the center or apex of the side of the square in a bottom view that is slightly smaller than the nozzle block 27. The nozzle 4 in the center is arranged at the intersection of the square diagonal lines. That is, the distance between the nozzles 4 adjacent in the horizontal direction is equal.
In the third embodiment, the nozzle unit 6 is configured by nine nozzles 4, but the number of nozzles 4 is not limited to this, and the nozzle unit 6 is configured by n 2 (n is a natural number of 2 or more) nozzles. It is possible. That is, for example, by setting the number of nozzles 4 to a square of 2 or more (that is, 4, 9, 16, 25, 36...), The distance between dropping points (L1) is maintained while maintaining a matrix-like dropping pattern. , L2) can be adjusted equally.
 第3実施形態においても、ノズルと基板との距離を調節することにより、基板に着弾する九つの滴下点の距離(L1、L2)を調節することが可能である。第3実施形態では、九つの滴下を同時に行うことができるので、第1実施形態と比べ生産性を高めることが可能である。 Also in the third embodiment, by adjusting the distance between the nozzle and the substrate, it is possible to adjust the distances (L1, L2) of the nine dropping points that land on the substrate. In the third embodiment, nine drops can be performed simultaneously, so that the productivity can be increased as compared with the first embodiment.
1:滴下装置、2:計量部、3:プランジャ、4:ノズル、5:吐出口、6:ノズル部、7:切換弁、8:太径部、9:本体、10:プランジャ駆動部材、11:プランジャ移動方向、12:流路A、13:流路B、14:流路C、15:供給流路、16:延設部材、17:容器、18:液体配管、19:液体、20:気泡除去機構、21:液体の流れ、22:気体の流れ、23:作動気体供給配管、24:容器支持部材、25:ベース板、26:接続部材、27:ノズルブロック、28:ノズル接続面、29:流入流路、30:分岐流路A、31:分岐流路B、32:分岐流路C、33:分岐流路D、34:ノズルA、35:ノズルB、36:ノズルC、37:ノズルD、38:吐出口A、39:吐出口B、40:吐出口C、41:吐出口D、42:ノズルブロックの垂直軸、43:吐出口中心軸、44:飛翔軌跡、45:液滴、46:基板(塗布面)、47:分岐流路、51:塗布装置、52:X軸駆動装置、53:Y軸駆動装置、54:Z軸駆動装置、55:X移動方向(左右方向)、56:Y移動方向(前後方向)、57:Z移動方向(上下方向)、58:ワークテーブル、59:X軸スライダ、60:Y軸スライダ、61:ビーム、62:ビーム支持部材、63:架台、71:基板、72:液滴、73:シール材 DESCRIPTION OF SYMBOLS 1: Dropping device, 2: Metering part, 3: Plunger, 4: Nozzle, 5: Discharge port, 6: Nozzle part, 7: Switching valve, 8: Large diameter part, 9: Main body, 10: Plunger drive member, 11 : Plunger moving direction, 12: Channel A, 13: Channel B, 14: Channel C, 15: Supply channel, 16: Extension member, 17: Container, 18: Liquid piping, 19: Liquid, 20: Bubble removal mechanism, 21: liquid flow, 22: gas flow, 23: working gas supply pipe, 24: container support member, 25: base plate, 26: connection member, 27: nozzle block, 28: nozzle connection surface, 29: Inflow channel, 30: Branch channel A, 31: Branch channel B, 32: Branch channel C, 33: Branch channel D, 34: Nozzle A, 35: Nozzle B, 36: Nozzle C, 37 : Nozzle D, 38: discharge port A, 39: discharge port B, 40: discharge port C, 41: discharge port 42: Vertical axis of nozzle block, 43: Discharge port central axis, 44: Flight trajectory, 45: Droplet, 46: Substrate (application surface), 47: Branch channel, 51: Application device, 52: X-axis drive Device: 53: Y-axis drive device, 54: Z-axis drive device, 55: X movement direction (left-right direction), 56: Y movement direction (front-back direction), 57: Z movement direction (up-down direction), 58: Work table 59: X-axis slider, 60: Y-axis slider, 61: Beam, 62: Beam support member, 63: Base, 71: Substrate, 72: Droplet, 73: Sealing material

Claims (12)

  1.  液体材料を計量する計量部と、計量部内を往復移動するプランジャと、吐出口を有するノズルを複数備えるノズル部と、計量部に液体材料を供給する供給流路と、計量部とノズル部および計量部と供給流路の連通を切り換える切換弁とを備える滴下装置において、
     前記ノズル部に、一のノズルと隣り合うノズルとの間隔がいずれも同一となるように前記ノズルを配置するとともに、一のノズルと垂直線が構成する角度θがいずれも同一となるように前記ノズルを傾けて配置したことを特徴とする滴下装置。
    Measuring unit for measuring liquid material, plunger reciprocating in measuring unit, nozzle unit having a plurality of nozzles having discharge ports, supply channel for supplying liquid material to measuring unit, measuring unit, nozzle unit and measuring unit In the dropping device comprising a switching valve for switching the communication between the section and the supply channel,
    In the nozzle portion, the nozzles are arranged so that the intervals between one nozzle and adjacent nozzles are the same, and the angle θ formed by one nozzle and the vertical line is the same. A dropping device characterized in that the nozzle is inclined.
  2.  前記ノズルが、n(nは2以上の自然数)個のノズルからなることを特徴とする請求項1に記載の滴下装置。 The dropping device according to claim 1, wherein the nozzle is composed of n 2 (n is a natural number of 2 or more) nozzles.
  3.  前記ノズル部に、前記ノズルの吐出口が前記ノズル部の鉛直方向中心に対し外側を向くように前記ノズルが配置されることを特徴とする請求項2に記載の滴下装置。 3. The dropping device according to claim 2, wherein the nozzle is disposed in the nozzle portion such that the discharge port of the nozzle faces outward with respect to the vertical center of the nozzle portion.
  4.  前記ノズル部に、前記ノズルの吐出口が前記ノズル部の鉛直方向中心に対し内側を向くように前記ノズルが配置されることを特徴とする請求項2に記載の滴下装置。 3. The dropping device according to claim 2, wherein the nozzle is disposed in the nozzle portion such that the discharge port of the nozzle faces inward with respect to a vertical center of the nozzle portion.
  5.  前記ノズル部が、一の流入流路および流入流路と前記吐出口と連通する分岐流路が形成されたノズルブロックを備え、当該ノズルブロックに前記ノズルが装着されることを特徴とする請求項1、2、3または4に記載の滴下装置。 The nozzle section includes a nozzle block in which an inflow channel and a branch channel that communicates with the inflow channel and the discharge port are formed, and the nozzle is mounted on the nozzle block. The dropping apparatus according to 1, 2, 3 or 4.
  6.  請求項1に記載の滴下装置と、基板が載置されるワークテーブルと、前記滴下装置とワークテーブルとを相対的に移動させるXYZ駆動装置と、記憶装置を有する制御部とを備える塗布装置。 A coating apparatus comprising: the dropping device according to claim 1; a work table on which a substrate is placed; an XYZ driving device that relatively moves the dropping device and the work table; and a control unit having a storage device.
  7.  前記滴下装置を複数備え、一の滴下装置のノズル数、ノズルの間隔またはノズルの角度θが、他の滴下装置のノズルの間隔またはノズルの角度θと異なることを特徴とする請求項6に記載の塗布装置。 7. The apparatus according to claim 6, comprising a plurality of the dropping devices, wherein the number of nozzles, the nozzle interval, or the nozzle angle θ of one dropping device is different from the nozzle interval or nozzle angle θ of another dropping device. Coating device.
  8.  前記滴下装置を複数備え、全ての滴下装置のノズル数、ノズルの間隔およびノズルの角度θが同一であることを特徴とする請求項6に記載の塗布装置。 The coating apparatus according to claim 6, comprising a plurality of the dropping devices, wherein the number of nozzles, the interval between the nozzles, and the nozzle angle θ of all the dropping devices are the same.
  9.  請求項6、7または8の塗布装置を用いた滴下方法であって、
     入力値に基づき前記ワークテーブルと前記滴下装置との垂直距離を調節することにより、前記ノズルから吐出された液滴の滴下点間距離(L1、L2)を調節し、前記ワークテーブルと前記滴下装置との垂直距離を一定としたまま、前記滴下装置と前記ワークテーブルとを水平方向に相対移動させながら液体材料をワークに滴下することを特徴とする滴下方法。
    A dripping method using the coating apparatus according to claim 6, 7 or 8,
    By adjusting the vertical distance between the work table and the dropping device based on the input value, the distance (L1, L2) between the dropping points of the droplets discharged from the nozzle is adjusted, and the work table and the dropping device are adjusted. A dropping method characterized in that the liquid material is dropped onto the workpiece while the dropping device and the work table are relatively moved in the horizontal direction while keeping the vertical distance to the workpiece constant.
  10.  前記制御部の記憶装置に、前記ワークテーブルおよび前記滴下装置の垂直距離と液滴の滴下点間距離(L1、L2)との相関関係パターンが複数記憶されており、
     前記入力値が、前記相関関係パターンの選択値であることを特徴とする請求項9に記載の滴下方法。
    In the storage device of the control unit, a plurality of correlation patterns between the vertical distance of the work table and the dropping device and the distance (L1, L2) between droplet dropping points are stored,
    The dripping method according to claim 9, wherein the input value is a selection value of the correlation pattern.
  11.  請求項8の塗布装置を用いた滴下方法であって、前記複数の滴下装置の全てで同一の滴下塗布を行うことにより、多面取りを行うことを特徴とする滴下方法。 A dripping method using the coating apparatus according to claim 8, wherein multi-chamfering is performed by performing the same dripping application with all of the plurality of dropping apparatuses.
  12.  前記ワークが液晶パネル基板であり、前記液体材料が液晶であることを特徴とする請求項11に記載の滴下方法。 The dripping method according to claim 11, wherein the workpiece is a liquid crystal panel substrate and the liquid material is liquid crystal.
PCT/JP2015/066051 2014-06-06 2015-06-03 Liquid material dropping device and method WO2015186743A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167031980A KR102328887B1 (en) 2014-06-06 2015-06-03 Liquid material dropping device and method
CN201580030173.0A CN106461989B (en) 2014-06-06 2015-06-03 Liquid material dripping device and method
HK17105021.3A HK1231567A1 (en) 2014-06-06 2017-05-18 Liquid material dropping device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-117925 2014-06-06
JP2014117925A JP6389379B2 (en) 2014-06-06 2014-06-06 Liquid material dropping apparatus and method

Publications (1)

Publication Number Publication Date
WO2015186743A1 true WO2015186743A1 (en) 2015-12-10

Family

ID=54766812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066051 WO2015186743A1 (en) 2014-06-06 2015-06-03 Liquid material dropping device and method

Country Status (6)

Country Link
JP (1) JP6389379B2 (en)
KR (1) KR102328887B1 (en)
CN (1) CN106461989B (en)
HK (1) HK1231567A1 (en)
TW (2) TWI718061B (en)
WO (1) WO2015186743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034105A (en) * 2016-08-31 2018-03-08 Ntn株式会社 Liquid application unit, liquid application device, and liquid application method
US11112656B2 (en) * 2017-08-11 2021-09-07 Boe Technology Group Co., Ltd. Liquid crystal dripping nozzle, liquid crystal dripping device and method for dripping liquid crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263467A (en) * 1997-03-25 1998-10-06 Nichiha Corp Coating of building panel and apparatus therefor
JP2007167844A (en) * 2005-12-22 2007-07-05 Nordson Corp Jetting dispenser having a large number of jetting nozzle outlets
WO2009104421A1 (en) * 2008-02-21 2009-08-27 武蔵エンジニアリング株式会社 Device and method for discharging liquid material
JP2009291684A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method of forming functional film pattern
JP2010194399A (en) * 2009-02-23 2010-09-09 Fuji Xerox Co Ltd Liquid droplet discharge head and liquid droplet discharge device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436785B2 (en) * 1994-01-25 2003-08-18 芝浦メカトロニクス株式会社 Substrate cleaning equipment
KR100730365B1 (en) * 1999-08-18 2007-06-19 코닌클리케 필립스 일렉트로닉스 엔.브이. Method of obtaining a pattern of concave spaces or apertures in a plate, and a brittle-like material and a pdp and a micro-electromechanical system, and a plasma-addressed liquid crystal display
JP2003025565A (en) 2001-07-11 2003-01-29 Sharp Corp Line head and printer comprising it
JP2004145090A (en) * 2002-10-25 2004-05-20 Seiko Epson Corp Apparatus and method for manufacturing liquid crystal display device
CN1261230C (en) * 2003-05-19 2006-06-28 乐金电子(沈阳)有限公司 Ink jetting coating unit for making display board
CN100383566C (en) * 2004-05-19 2008-04-23 精工爱普生株式会社 Method of manufacturing color filter substrate, method of manufacturing electro-optical device, electro-optical device, and electronic apparatus
JP2006272292A (en) * 2005-03-30 2006-10-12 Matsushita Electric Ind Co Ltd Viscous fluid applying apparatus
US20080062376A1 (en) * 2006-09-12 2008-03-13 United Microdisplay Optronics Corp. Method of fabricating a liquid crystal panel and alignment method
JP5244366B2 (en) * 2007-10-30 2013-07-24 武蔵エンジニアリング株式会社 Liquid material dripping method, program and apparatus
JP5126185B2 (en) * 2009-08-26 2013-01-23 カシオ計算機株式会社 Coating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263467A (en) * 1997-03-25 1998-10-06 Nichiha Corp Coating of building panel and apparatus therefor
JP2007167844A (en) * 2005-12-22 2007-07-05 Nordson Corp Jetting dispenser having a large number of jetting nozzle outlets
WO2009104421A1 (en) * 2008-02-21 2009-08-27 武蔵エンジニアリング株式会社 Device and method for discharging liquid material
JP2009291684A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method of forming functional film pattern
JP2010194399A (en) * 2009-02-23 2010-09-09 Fuji Xerox Co Ltd Liquid droplet discharge head and liquid droplet discharge device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034105A (en) * 2016-08-31 2018-03-08 Ntn株式会社 Liquid application unit, liquid application device, and liquid application method
US11112656B2 (en) * 2017-08-11 2021-09-07 Boe Technology Group Co., Ltd. Liquid crystal dripping nozzle, liquid crystal dripping device and method for dripping liquid crystal

Also Published As

Publication number Publication date
TW201607613A (en) 2016-03-01
CN106461989B (en) 2021-01-12
HK1231567A1 (en) 2017-12-22
TWI717320B (en) 2021-02-01
JP2015230458A (en) 2015-12-21
TW202035028A (en) 2020-10-01
JP6389379B2 (en) 2018-09-12
TWI718061B (en) 2021-02-01
KR102328887B1 (en) 2021-11-18
KR20170015289A (en) 2017-02-08
CN106461989A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
TWI692379B (en) Coating device and coating method
JP5340181B2 (en) Liquid material discharge apparatus and method
JP6364168B2 (en) Liquid material discharging apparatus and coating method
KR102492633B1 (en) Liquid material application method and apparatus for carrying out the method
JP6389379B2 (en) Liquid material dropping apparatus and method
JP6243278B2 (en) Coating liquid coating apparatus and method
JP2015230458A5 (en)
KR101345927B1 (en) Apparatus and Method for Dispensing Liquid Material
KR20170001354A (en) Ink-jet unit
US11975494B2 (en) Nozzle and applicator system for fabric bonding
JP2010198297A (en) Pressure-regulating valve and droplet discharge device provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802696

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167031980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802696

Country of ref document: EP

Kind code of ref document: A1