WO2015186712A1 - Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same - Google Patents

Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same Download PDF

Info

Publication number
WO2015186712A1
WO2015186712A1 PCT/JP2015/065934 JP2015065934W WO2015186712A1 WO 2015186712 A1 WO2015186712 A1 WO 2015186712A1 JP 2015065934 W JP2015065934 W JP 2015065934W WO 2015186712 A1 WO2015186712 A1 WO 2015186712A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
laser
insulating layer
via hole
resin laminate
Prior art date
Application number
PCT/JP2015/065934
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 卓也
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020167031857A priority Critical patent/KR102126109B1/en
Priority to CN201580029640.8A priority patent/CN106416437A/en
Priority to JP2016525191A priority patent/JP6551405B2/en
Publication of WO2015186712A1 publication Critical patent/WO2015186712A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents

Definitions

  • the present invention relates to a resin laminate for a printed wiring board for forming a fine via hole, a multilayer printed wiring board having a fine via hole in a resin insulating layer, and a method for manufacturing the same.
  • the through holes and blind vias required for interlayer connection of printed wiring boards are formed by laser processing and drilling.
  • a method for forming a blind via by laser processing a method using a UV-YAG laser and a method using a carbon dioxide gas laser are known.
  • the UV-YAG laser has good processability for small-diameter holes, it is not always satisfactory from the viewpoint of cost and processing speed.
  • a carbon dioxide laser is excellent in terms of cost and processing speed, since the wavelength is long and the spot diameter is large, the workability of a small diameter hole is inferior to that of a UV-YAG laser having a short wavelength and a small spot diameter.
  • the bottom diameter is smaller than the top diameter and the shape is more tapered, reducing the conduction reliability of the blind via. It becomes a factor.
  • Patent Documents 1 to 3 describe a method for producing a multilayer printed wiring board using an adhesive film
  • Patent Document 1 uses a support base film having a release layer and an adhesive film made of a thermosetting resin composition. Then, a method of laminating the adhesive film on the core substrate and thermally curing it with the supporting base film attached, or with the supporting base film attached or after peeling is disclosed with a laser or drilling method.
  • Patent Document 2 discloses a method of laminating an insulating layer on one surface of a metal foil and further peeling a peelable organic film on the surface of the insulating layer, and laser processing from the organic film surface side.
  • Patent Document 3 when forming a blind via using a carbon dioxide laser in an insulating layer containing a large amount of an inorganic filler, the top diameter and In order to form a blind via having a good hole formation with a small difference from the via bottom diameter, it is disclosed that a carbonic acid laser is used for an insulating layer on which a plastic film is laminated.
  • Patent Documents 1 and 2 relate to the formation of a via hole having a top diameter of 100 ⁇ m or more
  • Patent Document 3 describes that the top diameter is 100 ⁇ m or less, preferably 90 ⁇ m or less, and more preferably 80 ⁇ m or less. Therefore, these documents do not mention formation of fine via holes having a top diameter of 30 ⁇ m or less.
  • the present inventors conducted extensive research on a method for forming a via hole having a small top diameter and a small difference between the top diameter and the bottom diameter with a laser (preferably a carbon dioxide gas laser).
  • a laser preferably a carbon dioxide gas laser
  • the thickness of the release film for laser attenuation is set to be more than 50 ⁇ m to 180 ⁇ m or less, a fine via hole having a top diameter of 30 ⁇ m or less and a difference between the top diameter and the bottom diameter of 10 ⁇ m or less can be formed.
  • the present invention has been reached.
  • the present invention relates to: [1] A resin laminate for a printed wiring board comprising a resin insulation layer for forming fine via holes and a release film for laser attenuation laminated on the resin insulation layer, wherein the release film has a thickness of 50 ⁇ m A resin laminate having a thickness of 180 ⁇ m or less.
  • the polyester is selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • the resin laminate according to Item 2 which is a seed or two or more.
  • the thermosetting resin composition comprises: Epoxy resin; Item 7.
  • a method for producing a multilayer printed wiring board comprising: A circuit board having a base material and a conductive circuit formed on the base material, the resin laminate according to any one of items 1 to 9, and the conductive circuit of the circuit board and the resin laminate of the circuit board. Laminate so that the resin insulation layer faces, Forming a via hole penetrating from the release film side for laser attenuation of the resin laminate to the resin insulation layer by a laser; Peeling off the release film from the resin insulation layer.
  • the resin laminate is the resin laminate according to item 8, Item 11.
  • the method according to Item 10 further comprising fully curing the resin insulation layer in a semi-cured state after the circuit board and the resin laminate are laminated and before forming the via hole.
  • the laser is a carbon dioxide laser.
  • the laser energy is 0.3 mJ to 5 mJ.
  • Item 10 further comprising roughening the surface of the resin insulation layer after peeling off the release film, forming a conductor layer on the roughened surface by plating, and patterning the conductor layer to form a circuit.
  • a multilayer printed wiring board obtained by the method according to any one of items 10 to 15.
  • a circuit board having a base material and a conductive circuit formed on the base material, and a resin insulating layer of the resin laminate according to any one of items 1 to 9 laminated on the circuit board
  • the resin insulating layer has a via hole formed by a laser, the top diameter of the via hole is 30 ⁇ m or less, and the difference between the top diameter and the bottom diameter is 10 ⁇ m or less.
  • Multilayer printed wiring board is a via hole formed by a laser, the top diameter of the via hole is 30 ⁇ m or less, and the difference between the top diameter and the bottom diameter is 10 ⁇ m or less.
  • a via hole is formed with a laser from the side of the release film.
  • This release film can attenuate or cut off a low energy intensity laser.
  • a via hole having a small top diameter and a small difference between the top diameter and the bottom diameter can be formed in the resin insulating layer. Therefore, by laminating the resin laminate of the present invention on a circuit board and forming a via hole, a multilayer printed wiring board including a via hole having a small diameter and high conductivity reliability can be formed.
  • FIG. 1 is a schematic diagram showing a laser intensity distribution of a carbon dioxide laser.
  • FIG. 2A shows a cross-sectional view of a resin plate after laser processing of a resin plate made of a resin insulating layer having a thickness of 20 ⁇ m.
  • FIG. 2B shows a cross-sectional view of the resin laminate after laser processing from the release film side with respect to a resin laminate including a resin insulating layer having a thickness of 20 ⁇ m and a release film having a thickness of 100 ⁇ m.
  • One aspect of the present invention relates to a resin laminate for a printed wiring board including a resin insulating layer for forming fine via holes and a release film for laser attenuation laminated on the resin insulating layer.
  • the mold film has a thickness of more than 50 ⁇ m and 180 ⁇ m or less.
  • the type of resin constituting the resin insulation layer in the resin laminate of the present invention is a resin used in the production of printed wiring boards, and a fine via hole is formed by using a laser (preferably a carbon dioxide laser). Any resin may be used as long as it is an insulating resin that can be formed. The size of the hole formed when using a laser is usually not greatly affected by the resin composition.
  • the fine via hole formed in the resin insulating layer refers to a via hole having a top diameter of 30 ⁇ m or less and a difference between the top diameter and the bottom diameter of 10 ⁇ m or less.
  • the difference between the top diameter and the bottom diameter the better. More preferably, it is 8 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the top diameter is preferably as small as possible, for example, 30 ⁇ m or less, more preferably 27 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the top diameter is usually preferably 15 ⁇ m or more.
  • the thickness of the resin insulating layer can be selected as long as the top diameter of the via hole and the difference between the top diameter and the bottom diameter of the via hole can be achieved.
  • the upper limit of the thickness of the resin insulating layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less from the viewpoint of forming a via hole having a difference between the top diameter and the bottom diameter of 10 ⁇ m or less.
  • the lower limit of the thickness of the insulating layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more, from the viewpoint of insulation reliability of the insulating layer.
  • the size of via holes required for interlayer connection of printed wiring boards is desirably finer for miniaturization and higher density of wiring.
  • a printed wiring board using a fine via hole it is required to miniaturize the wiring itself formed on the wiring board.
  • Additive methods and semi-additive methods are well known as methods for forming high-density fine wiring.
  • fine wiring is formed by electroless plating or electrolytic plating.
  • a contact area between the insulating layer and the wiring is reduced, which may cause a problem that the wiring is easily peeled off. Therefore, from the viewpoint of finer wiring and higher density, when forming a finer via hole, it is desirable that the resin insulating layer has higher plating peel strength.
  • the plating peel strength of the resin insulating layer is preferably 0.4 kN / m or more, more preferably 0.5 kN / m, from the viewpoint of preventing peeling of the plating formed on the resin insulating layer. m or more.
  • the plating peel strength varies depending on the surface roughness of the resin insulating layer.
  • the range of the plating peel described above may be any range of plating peel strength before or after the roughening treatment, but preferably means the range of plating peel strength after the roughening treatment.
  • a release film has been usually used to prevent adhesion to a pressurizing means when a resin insulating layer is laminated on a circuit board having a conductive circuit and heated and pressed.
  • the release film is peeled off, the surface of the resin insulating layer is further roughened, and a conductor layer is formed on the roughened surface by plating.
  • the conductor layer is patterned to form a circuit.
  • the release film has a laser attenuation application in addition to the application of preventing adhesion to the pressing means.
  • laser attenuation refers to blocking or attenuating a low-intensity laser that is considered to cause a taper of the hole cross section of the resin insulating layer in the laser intensity distribution in the laser.
  • the laser intensity distribution is usually a Gaussian distribution (FIG. 1).
  • FOG. 1 Gaussian distribution
  • FIG. 2A when passing through a mask (small hole) that reduces the beam diameter, light interferes and interference fringes occur. Even with a laser corresponding to such a low-intensity distribution including the interference fringes, a part of the resin insulating layer is scraped off, which may cause a taper (FIG. 2A).
  • the release film for laser attenuation according to the present invention is not intended to be limited to theory, but, for example, in the distribution of laser intensity, the laser with low intensity distribution including the interference fringe portion is attenuated or By blocking, the taper of the hole formed in the resin insulating layer can be minimized.
  • the laser intensity to be blocked or attenuated varies depending on the thickness of the release film for laser attenuation, and those skilled in the art appropriately select the thickness of the release film for laser attenuation suitable for forming fine via holes. can do.
  • the release film for laser attenuation of the present invention prevents the resin insulation layer from being excavated by a laser that is spread and distributed on the low intensity side of the laser intensity distribution. Thereby, the taper of the hole formed in the resin insulating layer can be reduced. Therefore, the release film for laser attenuation of the present invention is required to have a thickness sufficient to prevent excavation of the resin insulating layer by a low-intensity laser in the laser intensity distribution, From the standpoint of achieving the desired laser block or attenuation, it is preferably greater than 50 ⁇ m. More preferably, it is more than 60 ⁇ m, more preferably more than 70 ⁇ m.
  • the thickness of the release film The upper limit of the thickness is 180 ⁇ m or less, more preferably 150 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the release film for laser attenuation may be any film as long as it can attenuate the laser and peel off the resin insulating layer after heat curing.
  • polyester polycarbonate (hereinafter abbreviated as “PC”).
  • acrylic resins such as polymethyl methacrylate (PMMA), cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, and the like.
  • polyester is preferable, and polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”), polyethylene terephthalate (PET), polybutylene naphthalate (PBN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate ( PTT) is preferred.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PBN polybutylene naphthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • damping which contains laser absorptive components, such as black carbon.
  • the release film may be provided with a release layer on the surface of the thermosetting resin composition layer so that the release film can be peeled after the thermosetting resin composition layer is heat-cured.
  • the release agent used for the release layer is not particularly limited as long as the release film can be peeled after the thermosetting resin composition layer is thermally cured.
  • the resin laminate of the present invention can be produced by a method known to those skilled in the art.
  • a resin varnish in which a thermosetting resin composition is dissolved in an organic solvent is prepared. It can be produced by coating on a support film and drying the organic solvent by heating or blowing hot air to form a resin composition layer. Since the resin laminate is laminated on the circuit board and cured, the resin laminate is preferably in a semi-cured state.
  • the resin used for the resin insulating layer of the present invention is not particularly limited as long as it is a resin used for an insulating layer of a printed wiring board, but is a thermosetting resin from the viewpoint of heat resistance, insulation, and plating adhesion. It is preferable.
  • the thermosetting resin include an epoxy resin, a cyanate ester resin, a bismaleimide resin, an imide resin, a phenol resin, a double bond-added polyphenylene ether resin, and an unsaturated polyester resin. One of these may be used alone, or two or more may be used in any combination and ratio.
  • a mixture of an epoxy resin and a cyanate ester resin is preferable, and a bismaleimide resin is also preferably added.
  • a curing agent is preferably used to cure the epoxy resin.
  • curing agent in order to adjust a hardening rate suitably as needed, it is also possible to use a hardening accelerator together.
  • the resin composition used for the insulating layer of the present invention contains an inorganic filler from the viewpoint of low thermal expansion as long as desired characteristics are not impaired.
  • epoxy resin used as the thermosetting resin of the resin insulating layer is not limited as long as it has two or more epoxy groups in one molecule, and any conventionally known epoxy resin can be used.
  • epoxy resins include, for example, biphenyl aralkyl type epoxy resins, naphthalene tetrafunctional type epoxy resins, xylene type epoxy resins, naphthol aralkyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, resins, bisphenol A novolaks.
  • Type epoxy resin trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl novolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester And a compound obtained by epoxidizing a double bond such as butadiene, a compound obtained by a reaction of a hydroxyl group-containing silicone resin and epichlorohydrin, and the like.
  • biphenyl aralkyl type epoxy resins naphthalene tetrafunctional type epoxy resins, xylene type epoxy resins, and naphthol aralkyl type epoxy resins are particularly preferable from the viewpoints of copper plating adhesion and flame retardancy.
  • These epoxy resins can be used alone or in combination of two or more.
  • Examples of the biphenyl aralkyl type epoxy resin include those having a structure represented by the formula (1).
  • Examples of the naphthalene tetrafunctional type epoxy resin include those having a structure represented by the formula (2).
  • Examples of the type epoxy resin include those having a structure represented by Formula (3), and examples of the naphthol aralkyl type epoxy resin include those having a structure represented by Formula (4).
  • n1 represents an integer of 1 or more.
  • n2 represents an integer of 1 or more.
  • N3 represents an average value of 1 to 6
  • X represents a glycidyl group or a hydrocarbon group having 1 to 8 carbon atoms
  • the ratio of hydrocarbon group / glycidyl group is 0.05 to 2.0.
  • the weight average molecular weight (Mw) of the epoxy resin is not limited, but from the viewpoint of developing the toughness of the cured resin, it is usually preferably 250 or more, and more preferably 300 or more. From the viewpoint of improving the heat resistance of the cured resin, it is usually 5000 or less, preferably 3000 or less.
  • the content of the epoxy compound in the resin composition used for the resin insulation layer of the present invention is not particularly limited, but in the range of 20 to 80% by mass of the resin solid content in the resin composition from the viewpoint of heat resistance and curability.
  • the range of 30 to 70% by mass is particularly preferable.
  • a maleimide compound having a maleimide group such as bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3,5-dimethyl- 4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, and polyphenylmethanemaleimide constitute the resin insulation layer
  • These maleimide compounds may be used in a resin composition and improve the moisture absorption heat resistance of the insulating layer.
  • These maleimide compound prepolymers or maleimide compound and amine compound prepolymers can also be blended, and one or two or more of them can be used as appropriate.
  • the curing agent is not particularly limited as long as it is usually used as a curing agent for the above-described thermosetting resin.
  • examples include phenol compounds, polyphenol compounds, cyanate ester compounds, active ester compounds, dicyandiamide, carboxylic acid amides, amine compounds, various acid anhydrides, Lewis acid complexes, and the like. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the use ratio is not limited. For example, it is usually 1 part by mass or more, especially 5 parts by mass or more, and usually 100 parts by mass of the resin solid content of the thermosetting resin. It is preferably 100 parts by mass or less, particularly 70 parts by mass or less.
  • curing agent changes with kinds of thermosetting resin and a hardening
  • the ratio (RF2 / RF1) to the number of reactive groups of the curing agent that reacts (this is expressed as RF2) is usually 0.3 or more, particularly 0.7 or more, and usually 3 or less, preferably 2.5 or less. It is preferable to use at such a ratio.
  • the cyanate ester compound used as a curing agent has excellent properties such as chemical resistance and adhesion, and because of its excellent chemical resistance, it is possible to form a uniform roughened surface. It can be suitably used as a component of the resin composition in the present invention.
  • As the cyanate ester compound generally known compounds can be used.
  • the naphthol aralkyl cyanate ester compound represented by the formula (5), the novolak cyanate ester represented by the formula (6), and the biphenylaralkyl cyanate ester represented by the formula (7) are flame retardant. It is particularly preferable because of its excellent thermal resistance, high curability, and low thermal expansion coefficient of the cured product.
  • R1 represents a hydrogen atom or a methyl group
  • n4 represents an integer of 1 or more.
  • R2 represents a hydrogen atom or a methyl group
  • n5 represents an integer of 1 or more.
  • R3 represents a hydrogen atom or a methyl group
  • n6 represents an integer of 1 or more.
  • the active ester compound used as a curing agent has excellent characteristics such as low dielectric constant, low dielectric loss tangent, low water absorption, low thermal expansion coefficient, high glass transition temperature, etc., and excellent electrical characteristics and high glass transition temperature. Therefore, it can be suitably used as a component of the resin composition of the present invention.
  • preferred examples include Epicron HPC-8000 (DIC Corporation) and Epicron HPC-8000-65T (DIC Corporation).
  • inorganic filler An inorganic filler will not be specifically limited if it is normally used in this industry. Furthermore, one type or a plurality of types of inorganic fillers may be used. Examples of inorganic fillers include silicas such as magnesium hydroxide, magnesium oxide, natural silica, fused silica, amorphous silica, and hollow silica, molybdenum compounds such as boehmite, molybdenum oxide, and zinc molybdate, alumina, talc, and calcined talc. , Mica, short glass fiber, and spherical glass (glass fine powders such as E glass, T glass, and D glass).
  • silicas such as magnesium hydroxide, magnesium oxide, natural silica, fused silica, amorphous silica, and hollow silica
  • molybdenum compounds such as boehmite, molybdenum oxide, and zinc molybdate
  • an acid-soluble inorganic filler is preferable.
  • an acid-soluble inorganic filler By including an acid-soluble inorganic filler, a roughened surface with low roughness can be formed on the surface of the insulating layer, and a resin insulating layer having excellent plating adhesion when metal plating is formed on the roughened surface. Obtainable. This is not intended to be limited by theory, but the acid-soluble inorganic filler does not dissolve in the roughening step with the alkaline oxidant in the desmear treatment step, and is not dissolved in the acidic reducing agent.
  • a resin structure having high chemical resistance can be provided, so that it is soluble in acid even in a roughening step with an alkaline oxidizing agent. This is because the inorganic filler does not fall off.
  • Examples of the acid-soluble inorganic filler used in the present invention include magnesium hydroxide and magnesium oxide. These are eluted in the neutralizing solution in the desmear treatment of the insulating layer surface, and have the effect of forming a uniform roughened surface and improving the plating peel strength.
  • magnesium hydroxide Echo Mag Z-10 and Echo Mug PZ-1 manufactured by Tateho Chemical Industry Co., Ltd.
  • Examples thereof include MGZ-1, MGZ-3, MGZ-6R manufactured by Chemical Industry Co., Ltd., Kisuma 5, Kisuma 5A, Kisuma 5P manufactured by Kyowa Chemical Industry Co., Ltd., and the like.
  • Examples of magnesium oxide include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
  • the average particle diameter of the acid-soluble inorganic filler is preferably 0.1 to 2.0 ⁇ m from the viewpoint of obtaining uniform surface roughness after desmear treatment.
  • the average particle diameter is the median diameter (median diameter).
  • the particle diameter at 50% is generally measured by a wet laser diffraction / scattering method.
  • the content of the acid-soluble inorganic filler in the resin composition used for the resin insulating layer of the present invention is 5 to 150 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. Is preferable from the viewpoint of the roughness of the surface of the insulating layer.
  • the acid-soluble inorganic filler is preferably surface-treated from the viewpoint of moisture absorption heat resistance and chemical resistance. Specifically, silane coupling treatment with a silane coupling agent, KBM-403 treatment, and KBM-3063 treatment are preferably performed.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • Specific examples include aminosilanes such as ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -Vinylsilanes such as methacryloxypropyltrimethoxysilane, cationic silanes such as N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc.
  • the wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used for coatings.
  • wetting and dispersing agents such as Disperbyk-110, 111, 180, 161, BYK-W996, W9010, W903 manufactured by Big Chemie Japan Co., Ltd. may be mentioned.
  • the curing accelerator is an optional component and is added to the resin composition in order to adjust the curing rate as necessary. These are not particularly limited as long as they are known and generally used as a curing accelerator for cyanate ester compounds and epoxy resins. Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, dimethylaminopyridine, tertiary amine and the like. One of these curing accelerators may be used alone, or two or more thereof may be used in any combination and ratio.
  • the curable resin composition may contain other components without departing from the gist of the present invention.
  • other components for example, other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, other flame retardant compounds, additives and the like can be used in combination. These are not particularly limited as long as they are generally used.
  • flame retardant compounds include phosphoric acid esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, silicone compounds, and the like.
  • Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners Etc., and can be used in appropriate combinations as desired.
  • thermosetting resins thermoplastic resins and oligomers thereof
  • various polymer compounds such as elastomers, other flame retardant compounds, and additives
  • chopped strands or milled fibers such as glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, antifoaming agent, rheology modifier, flame retardant, filler, polymerization inhibitor, pigment , Dyes, coupling agents, ion scavengers, release agents and the like.
  • One of these other components may be used alone, or two or more thereof may be used in any combination and ratio.
  • the cyanate ester compound and the epoxy resin have a ratio of the cyanate group number of the cyanate ester compound to the number of epoxy groups of the epoxy resin (CN / Ep) of 0.7 to 0.7 in the resin composition. It is preferable to blend at 2.5. When CN / Ep is in the range of 0.7 to 2.5, good flame retardancy and curability can be obtained.
  • the resin structure of the present invention is prepared by preparing a curable resin composition containing an epoxy resin, a curing agent, optionally an inorganic filler, optionally a curing accelerator, and optionally other components.
  • the cured resin composition is cured to form a cured resin product, and then a surface roughening treatment is applied to at least one surface of the obtained cured resin product.
  • the method for preparing the curable resin composition is not limited, and it is possible to uniformly mix the epoxy resin, the curing agent, optionally the inorganic filler, optionally the curing accelerator, and optionally other components. Any method can be used as long as it is a simple method. Examples include the following.
  • a curable resin composition is prepared by adding a curing accelerator according to the above, uniformly mixing in a liquid state, and further defoaming treatment as necessary.
  • a mixer or the like After uniformly mixing the epoxy resin, curing agent, inorganic filler as necessary, and curing accelerator and other components added as necessary, heat roll, biaxial A method of preparing a curable resin composition by melt-kneading using an extruder, a kneader or the like.
  • Epoxy resin, curing agent, inorganic filler as necessary, and curing accelerator and other components added as necessary are dissolved in a solvent such as methyl ethyl ketone, acetone, toluene, etc. to form a varnish.
  • a solvent such as methyl ethyl ketone, acetone, toluene, etc.
  • the process after the addition of the curing agent is preferably performed as quickly as possible.
  • the method of curing the curable resin composition to form a cured resin product is not limited, and any conventionally selected curing method for the epoxy resin composition can be used.
  • a curing method include a thermal curing method, an energy beam curing method (electron beam curing method, ultraviolet curing method, etc.), a moisture curing method, and the like, and a thermal curing method is preferable.
  • the curable resin composition when solid at room temperature, for example, after pulverization and tableting, it is cured by a conventionally known molding method such as transfer molding, compression molding, injection molding, etc. A product (cured molded product) can be produced.
  • the curable resin composition is liquid or varnished at room temperature
  • the curable resin composition is poured into a mold (molding), poured into a container (potting, etc.), or applied onto a substrate.
  • the resin cured product can be obtained by a method such as (lamination), impregnation into fibers (filaments) or the like (filament wiping or the like), followed by heat curing.
  • the liquid or varnish-like curable resin composition at normal temperature may be cast, potted, contained, coated, impregnated into fibers, etc., if necessary, and then heated and dried to be in a semi-cured state
  • (B stage) is used, tackiness is reduced and workability can be improved.
  • the curable resin composition of the present invention having a varnish shape is applied to a carrier film using a coating device such as a comma coater, a die coater, or a gravure coater, dried, and formed into a cured film shape. It can also be used, or it can be used after vacuum degassing.
  • a coating device such as a comma coater, a die coater, or a gravure coater, dried, and formed into a cured film shape. It can also be used, or it can be used after vacuum degassing.
  • the curing temperature and curing time for curing the curable resin composition may vary depending on the type of epoxy resin and curing agent, etc., for example, conditions of a curing temperature of 20 to 250 ° C., a curing time of 1 to 24 hours, etc. Is adopted.
  • the resin laminate of the present invention may include a protective film laminated on the opposite side of the laser attenuation film on the resin insulating layer.
  • the protective film protects the resin insulation layer from physical damage while preventing the adhesion of dust and debris during the flow of the resin laminate until it is laminated on the circuit board. can do.
  • Examples of such a protective film include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyester films such as PET and PEN, PC, and polyimide films.
  • the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the protective film may be arbitrary, but is, for example, in the range of 5 to 30 ⁇ m. In order to distinguish from the release film for laser attenuation, the protective film may be colored or may be described as being a protective film.
  • Another aspect of the present invention relates to a method for manufacturing a multilayer printed wiring board using the resin laminate of the present invention.
  • the resin laminate of the present invention is placed on a circuit board having a base material and a conductive circuit formed on the base material, and the conductive circuit of the circuit board and the resin insulating layer of the resin laminate face each other.
  • a step of laminating the layers When a semi-cured resin laminate is used, a full curing step may be included after lamination.
  • the operation of thermosetting the resin insulating layer made of a thermosetting resin can be performed according to a conventional method.
  • the conditions at this time are generally used in this technical field and may be any conditions that can cure the thermosetting resin.
  • the pressure is 5 to 40 kgf / cm 2
  • the temperature is 120 to 180 ° C.
  • the time is 20 to 100 minutes.
  • the press time can be performed.
  • Heating and pressurization can be performed by pressing a heated metal plate such as a SUS mirror plate from the plastic film side.
  • an adhesive sheet is sufficient for circuit irregularities on the circuit board.
  • the lamination step can also be performed using a vacuum laminator.
  • the resin laminate is heated and pressurized under reduced pressure to laminate the resin laminate on the circuit board.
  • the lamination conditions may be those generally used in the field, for example, a temperature of 70 to 140 ° C., a pressure in the range of 1 to 11 kgf / cm 2 , and a reduced pressure of 20 mmHg (26.7 hPa) or less. Is called.
  • the laminated adhesive film may be smoothed by hot pressing with a metal plate.
  • the laminating step and the smoothing step can be continuously performed by a commercially available vacuum laminator.
  • thermosetting step can be performed after the laminating step or after the smoothing step.
  • the resin composition is thermoset to form an insulating layer.
  • the thermosetting conditions vary depending on the type of thermosetting resin composition, but generally the curing temperature is 170 to 190 ° C. and the curing time is 15 to 60 minutes.
  • the method for producing a multilayer printed wiring board of the present invention further includes a step of irradiating the laminated circuit board and the resin laminate with a laser from the release film side for laser attenuation of the resin laminate.
  • a step of irradiating the laminated circuit board and the resin laminate with a laser from the release film side for laser attenuation of the resin laminate By laser irradiation, fine via holes that penetrate the resin insulating layer can be formed.
  • the top diameter of the via hole is preferably 30 ⁇ m or less, and the difference between the top diameter and the bottom diameter is 10 ⁇ m or less.
  • the kind of laser to irradiate is not limited. Examples include a carbon dioxide laser, a YAG laser, and an excimer laser. Of these, a carbon dioxide laser is preferred. As the carbon dioxide laser to be irradiated, a laser having a wavelength of 9.2 to 10.8 ⁇ m is generally used.
  • the number of shots may be performed once or a plurality of times. However, in order to exert the laser attenuation effect of the release film for laser attenuation, the number of shots is preferably one and even when it is performed a plurality of times. The second and subsequent times are preferably cleaning shots with reduced output.
  • the output energy of the carbon dioxide laser can appropriately set according to the thickness of the resin insulating layer, the thickness of the release film for laser attenuation, and the desired hole diameter.
  • the greater the thickness of the resin insulation layer and the thickness of the release film for laser attenuation the higher the required output energy of the carbon dioxide laser.
  • the energy of the carbon dioxide laser is too low, the bottom diameter is smaller than the top diameter and the shape is strongly tapered due to a decrease in workability.
  • the output energy is, for example, 0.3 mJ or more, particularly more than 0.6 mJ. , Preferably 0.8 mJ or more.
  • the output energy is 5 mJ or less, more preferably 3 mJ or less.
  • the pulse width of the carbon dioxide laser is not particularly limited and can be selected in a wide range from a pulse of about 0.5 ⁇ s to 100 ⁇ s. From the viewpoint of suppressing the top diameter to 30 ⁇ m or less, the upper limit is preferably 30 ⁇ s or less, more preferably 15 ⁇ s or less.
  • the method for producing the multilayer printed wiring board of the present invention may further include a step of peeling the release film from the resin layer after forming the via hole by laser irradiation. After peeling off the release film, a roughening treatment step for roughening the surface of the resin insulating layer may be performed.
  • the method of the surface roughening treatment is not limited, and may be appropriately selected according to the type of the epoxy resin and, if necessary, the inorganic filler, and examples include ultraviolet irradiation treatment, plasma treatment, and solvent treatment. Any one of these may be applied alone, or two or more thereof may be applied in any combination.
  • the ultraviolet irradiation treatment is performed by irradiating the surface of the cured resin with ultraviolet rays.
  • the wavelength of the ultraviolet light is not limited, but is usually 20 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and usually 400 nm or less, preferably 350 nm or less, and more preferably 300 nm or less.
  • the irradiation time of ultraviolet rays is not limited, it is usually 2 minutes or more, preferably 5 minutes or more, and usually 240 minutes or less, preferably 120 minutes or less.
  • the plasma treatment is performed by irradiating the surface of the cured resin with plasma.
  • the kind of plasma is arbitrary. Examples include plasmas of oxygen (oxygen plasma), argon (argon plasma), air (air plasma), nitrogen (nitrogen plasma), and the like. Any of these may be used alone, or two or more of these may be used in any combination and ratio.
  • the plasma irradiation time is not limited, it is usually 2 minutes or more, preferably 5 minutes or more, and usually 240 minutes or less, preferably 120 minutes or less.
  • the solvent treatment examples include, but are not limited to, an oxidation treatment with an acidic solvent and a reduction treatment with an alkaline solvent.
  • a solvent process it is preferable to implement the solvent process which consists of a swelling process, a surface roughening and smear melt
  • the swelling step is performed by swelling the surface insulating layer using a swelling agent.
  • the swelling agent is not limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolving step.
  • Examples include alkaline solutions and surfactant solutions.
  • the surface roughening and smear dissolution process is performed using an oxidizing agent.
  • an oxidizing agent a permanganate solution etc. are mentioned, for example, A potassium permanganate aqueous solution, a sodium permanganate aqueous solution, etc. are mentioned as a suitable specific example.
  • Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
  • the oxidizing agent used in the previous step is neutralized with a reducing agent.
  • the reducing agent include amine-based reducing agents, and preferred specific examples include acidic reducing agents such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, and nitrilotriacetic acid aqueous solution.
  • the method for producing a multilayer printed wiring board according to the present invention includes a plating step of forming a conductor layer by plating on the surface of a resin insulating layer after or without roughening, and a circuit on the formed conductor layer.
  • a circuit forming (patterning) step for forming the pattern may be further included.
  • the plating process is performed by, for example, forming a conductor layer by a method combining electroless plating and electrolytic plating on the surface of the insulating layer on which irregularities are formed by roughening treatment, or forming the conductor layer only by electroless plating. Is called.
  • the conductor layer can be formed of a metal such as copper, aluminum, nickel, silver, or gold, or an alloy of these metals, but copper is particularly preferable.
  • the copper plating layer can be formed by a method combining electroless copper plating and electrolytic copper plating, or by forming a plating resist having a pattern opposite to that of the conductor layer, and forming the conductor layer only by electroless copper plating.
  • Examples of the circuit forming process include a semi-additive method, a full additive method, a subtractive method, and the like.
  • the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
  • the pattern forming method by the semi-additive method after forming a thin conductor layer on the surface of the insulating layer by electroless plating, etc., electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
  • a method of forming a pattern by a full additive method there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
  • An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done.
  • the pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating.
  • the drying after electroless is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and the drying after the electroplating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example.
  • the circuit board used for the production of the multilayer printed wiring board of the present invention is mainly a pattern on one or both sides of a substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, etc. This means that a processed conductor layer (circuit) is formed. Further, when the multilayer printed wiring board is manufactured, an inner layer circuit board of an intermediate product in which an insulating layer and / or a conductor layer is further formed is also included in the circuit board referred to in the present invention.
  • the surface of the conductor layer (circuit) is preferably subjected to a roughening treatment in advance by a blackening treatment or the like from the viewpoint of adhesion of the insulating layer to the circuit board.
  • a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), 76 ml of water, and 44 ml of methylene chloride were charged.
  • the ⁇ -naphthol aralkyl resin (SN485, OH group equivalent: 214 g / eq.) Represented by the following formula (8 ′) is stirred with the temperature in the reactor kept at ⁇ 5 to + 5 ° C. and the pH at 1 or less. Softening point: 86 ° C., Nippon Steel Chemical Co., Ltd. 20 g (0.0935 mol) and triethylamine 14.16 g (0.14 mol) dissolved in 92 ml of methylene chloride were added dropwise over 1 hour using a dropping funnel. After completion of the dropwise addition, 4.72 g (0.047 mol) of triethylamine was further added dropwise over 15 minutes. (In the formula, the average value of n is 3 to 4.)
  • epoxy resin 47.5 parts by mass of biphenyl aralkyl type epoxy resin represented by the formula (1) (NC-3000-H, manufactured by Nippon Kayaku Co., Ltd.), and as the second epoxy resin, naphthalene type epoxy resin (HP4710, manufactured by DIC Corporation) 12.7 parts by mass, as a cyanate ester compound, ⁇ -naphthol aralkyl-type cyanate ester compound represented by the formula (8) obtained by Synthesis Example 1 (cyanate equivalent: 261 g) / Eq.) Methyl ethyl ketone (hereinafter sometimes abbreviated as “MEK”) solution (non-volatile content: 50 mass%) 51.4 parts by mass (25.7 parts by mass in terms of non-volatile content), maleimide compound represented by formula (9 11.1 parts by weight of a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Co., Ltd.), 2,4,5-triphenyl
  • Adhesive film was temporarily attached to both sides of a copper-clad laminate with a circuit formation (circuit conductor thickness 18 ⁇ m) of 510 ⁇ 340 mm size and thickness 0.2 mm, and a temperature of 130 ° C. by a vacuum laminator manufactured by Nichigo Morton Co., Ltd. Lamination was performed on both surfaces under the conditions of a pressure of 10 kgf / cm 2 and an atmospheric pressure of 5 mmHg or less, and further, hot pressing with a SUS end plate was performed under the conditions of a temperature of 180 ° C. and a pressure of 10 kgf / cm 2 . Next, the film was thermally cured at 180 ° C.
  • Example 1 Use of PET film with release layer having a total thickness of 75 ⁇ m
  • a PET film with a release layer having a total thickness of 75 ⁇ m was used, and the thickness of the resin composition layer after drying was 20 ⁇ m. Then, the coating was uniformly performed, and drilling was performed with the processing energy described in the column of Example 1 in Table 1.
  • Example 2 Use of a PET film with a release layer having a total thickness of 100 ⁇ m
  • a PET film with a release layer having a total thickness of 100 ⁇ m was used, and the thickness of the resin composition layer after drying was It apply
  • Example 3 Use of PET film with release layer having a total thickness of 125 ⁇ m PET film with release layer having a total thickness of 125 ⁇ m was used as a release film for laser attenuation, and the thickness of the resin composition layer after drying was uniformly applied so as to be 20 ⁇ m, and drilling was performed with the processing energy described in the column of Example 3 in Table 1.
  • Example 4 Use of PET film with a release layer having a total thickness of 100 ⁇ m
  • a PET film with a release layer having a total thickness of 100 ⁇ m was used, and the thickness of the resin composition layer after drying was uniformly applied so as to be 8 ⁇ m, and drilling was performed with the processing energy described in the column of Example 4 in Table 1.
  • Example 5 Use of a PEN film with a release layer having a total thickness of 100 ⁇ m
  • a PEN film with a release layer having a total thickness of 100 ⁇ m was used, and the thickness of the resin composition layer after drying was uniformly applied so as to be 20 ⁇ m, and drilling was performed with the processing energy described in the column of Example 5 in Table 1.
  • Example 6 Combined use of magnesium oxide and silica as inorganic fillers
  • a varnish (resin composition solution) was obtained in the same manner as in the resin composition except that 50 parts by mass of -130MC was added to the varnish.
  • drilling was performed with the processing energy described in the column of Example 6 in Table 1.
  • Comparative Example 1 Use of PET Film with Release Layer with a Total Thickness of 38 ⁇ m
  • a PET film with a release layer with a total thickness of 38 ⁇ m was used, and the thickness of the resin composition layer after drying was uniformly applied so as to be 20 ⁇ m, and drilling was performed with the processing energy described in the column of Comparative Example 1 in Table 1. (Mask diameter 0.4 mm).
  • Comparative Example 2 Use of PET film with release layer having a total thickness of 50 ⁇ m PET film with release layer having a total thickness of 50 ⁇ m was used as a release film for laser attenuation, and the thickness of the resin composition layer after drying was applied uniformly so as to be 20 ⁇ m, and drilling was performed with the processing energy described in the column of Comparative Example 2 in Table 1. (Mask diameter 0.4 mm).
  • Comparative Example 3 Use of PET Film with Release Layer with a Total Thickness of 188 ⁇ m
  • a PET film with a release layer with a total thickness of 188 ⁇ m was used, and the thickness of the resin composition layer after drying was uniformly applied so as to be 20 ⁇ m, and drilling was performed with the processing energy described in the column of Comparative Example 3 in Table 1.
  • Comparative Example 4 Use of PET Film with Release Layer with a Total Thickness of 38 ⁇ m
  • a PET film with a release layer with a total thickness of 38 ⁇ m was used, and the thickness of the resin composition layer after drying was uniformly applied so as to be 8 ⁇ m, and drilling was performed with the processing energy described in the column of Comparative Example 4 in Table 1 (mask diameter 0.4 mm).
  • Comparative Example 5 Use of Resin Composition with Low Peeling Peel Strength as Resin Composition
  • epoxy resin biphenyl aralkyl type epoxy resin (NC-3000-H, manufactured by Nippon Kayaku Co., Ltd.) and naphthalene type epoxy resin (HP4710)
  • 60.2 parts by mass of bisphenol A type epoxy resin (Epicoat 1001, manufactured by Mitsubishi Chemical Corporation) and no inorganic filler are blended instead of DIC Co., Ltd. (Resin composition solution) was obtained.
  • Electrolytic copper plating was applied, and drying was performed at 130 ° C. for 1 hour.
  • Comparative Example 5 since swelling occurred in the electroless copper plating layer after drying, subsequent evaluation could not be performed.
  • electrolytic copper plating was performed so that the thickness of the plated copper was 18 ⁇ m, and drying was performed at 180 ° C. for 1 hour.
  • Measurement method 1 Measuring top and bottom diameters of vias Observe blind vias with a digital microscope (Keyence VHX-2000) and measure the top and bottom diameters of the vias at 10 approximate circle diameters. The average value was obtained. The results are shown in Table 1.
  • 2) Adhesive strength of plated copper A laminated plate provided with plated copper was prepared, and the adhesive strength of the plated copper was measured three times according to JIS C6481, and the average value was obtained. About the sample swollen by the drying after electrolytic copper plating, it evaluated using the part which is not swollen. The results are shown in Table 1.
  • Example 2 For Example 2 and Comparative Example 1, after forming the via hole, the resin laminate was cut, and the cut cross section of the via hole was photographed. The results are shown in FIGS. 2A (Comparative Example 1) and B (Example 2).

Abstract

 Provided is a method for processing or manufacturing a printed circuit board in which it is possible to form a via hole in which the top diameter is reduced and the difference between the top diameter and the bottom diameter is smaller. Also provided is a resin laminate used in this method. A printed wiring board resin laminate including a resin insulating layer for forming a fine via hole and a release film for laser attenuation laminated on the resin insulating layer, wherein the thickness of the release film for laser attenuation is set to over 50 μm and no more than 180 μm, making it possible to form a via hole having a top diameter of 30 μm or less and a difference between the top diameter and the bottom diameter of 10 μm or less.

Description

微細ビアホール形成のためのプリント配線板用樹脂積層体、並びに、樹脂絶縁層に微細ビアホールを有する多層プリント配線板及びその製造方法Resin laminate for printed wiring board for forming fine via hole, multilayer printed wiring board having fine via hole in resin insulating layer, and manufacturing method thereof
 本発明は、微細ビアホール形成のためのプリント配線板用樹脂積層体、並びに、樹脂絶縁層に微細ビアホールを有する多層プリント配線板及びその製造方法に関する。 The present invention relates to a resin laminate for a printed wiring board for forming a fine via hole, a multilayer printed wiring board having a fine via hole in a resin insulating layer, and a method for manufacturing the same.
 近年、電子機器の小型化、高性能化が進み、多層プリント配線板は、電子部品の実装密度を向上させるため、導体配線の微細化が進んでおり、その配線形成技術が望まれている。絶縁層上に高密度の微細配線を形成する方法としては、無電解めっきのみで導体層を形成するアディティブ法や、無電解めっきで全面に薄い銅層を形成した後に電解めっきで導体層を形成し、そのあとに薄い銅層をフラッシュエッチングするセミアディティブ法等が知られている。 In recent years, miniaturization and high performance of electronic devices have progressed, and in multilayer printed wiring boards, conductor wiring has been miniaturized in order to improve the mounting density of electronic components, and the wiring forming technology is desired. As a method of forming high-density fine wiring on the insulating layer, an additive method in which a conductor layer is formed only by electroless plating, or a conductor layer is formed by electrolytic plating after forming a thin copper layer on the entire surface by electroless plating. Then, a semi-additive method for flash-etching a thin copper layer after that is known.
 プリント配線板の層間接続で必要となるスルーホールやブラインドビアは、レーザー加工やドリル加工により形成されている。レーザー加工によるブラインドビアの形成方法として、UV-YAGレーザーを使用する方法と、炭酸ガスレーザーを使用する方法が知られている。UV-YAGレーザーは小径穴の加工性が良好であるものの、コストや加工速度の観点から、必ずしも満足のいくものではない。一方で、炭酸ガスレーザーは、コストや加工速度の点では優れるものの、波長が長くスポット径が大きいため、小径穴の加工性は短波長でスポット径の小さいUV-YAGレーザーよりも劣っている。炭酸ガスレーザーで小径のブラインドビアを形成するには、低い加工エネルギーで加工する必要があるため、ボトム径がトップ径に比べて小さく、テーパーの強い形状となり、ブラインドビアの導通信頼性を低下させる要因となる。 The through holes and blind vias required for interlayer connection of printed wiring boards are formed by laser processing and drilling. As a method for forming a blind via by laser processing, a method using a UV-YAG laser and a method using a carbon dioxide gas laser are known. Although the UV-YAG laser has good processability for small-diameter holes, it is not always satisfactory from the viewpoint of cost and processing speed. On the other hand, although a carbon dioxide laser is excellent in terms of cost and processing speed, since the wavelength is long and the spot diameter is large, the workability of a small diameter hole is inferior to that of a UV-YAG laser having a short wavelength and a small spot diameter. In order to form a small-diameter blind via with a carbon dioxide laser, it is necessary to process with low processing energy. Therefore, the bottom diameter is smaller than the top diameter and the shape is more tapered, reducing the conduction reliability of the blind via. It becomes a factor.
 特許文献1~3は、接着フィルムを使用した多層プリント配線板の製造方法が記載され、特許文献1には、離型層を有する支持ベースフィルムと熱硬化性樹脂組成物からなる接着フィルムを使用して、コア基板に該接着フィルムを積層し、支持ベースフィルムの付いた状態で熱硬化後、支持ベースフィルムの付いたままで、或いは、剥離後にレーザー又はドリルにより穴開けする工法が開示されている。また、特許文献2には、金属箔の片面に絶縁層、さらにその絶縁層表面に引き剥がし可能な有機フィルムを積層し、有機フィルム面側からレーザー加工する工法が開示されている。また、特許文献3には、無機充填材を多く含有する絶縁層に、炭酸ガスレーザーを用いてブラインドビアを形成する際に、ビア周辺の絶縁層表面に大きな凹凸を生じさせず、トップ径とビアボトム径との差が小さい良好な穴形成のブラインドビアを形成するために、プラスチックフィルムが積層された絶縁層に対して炭酸レーザーを用いることを開示している。特許文献1及び2は、トップ径として100μm以上のビアホールの形成に関しており、特許文献3は、トップ径として100μm以下、好ましくは90μm以下とし、より好ましくは80μm以下と記載している。したがって、これらの文献には、30μm以下のトップ径を有する微細なビアホールの形成については言及されていない。 Patent Documents 1 to 3 describe a method for producing a multilayer printed wiring board using an adhesive film, and Patent Document 1 uses a support base film having a release layer and an adhesive film made of a thermosetting resin composition. Then, a method of laminating the adhesive film on the core substrate and thermally curing it with the supporting base film attached, or with the supporting base film attached or after peeling is disclosed with a laser or drilling method. . Patent Document 2 discloses a method of laminating an insulating layer on one surface of a metal foil and further peeling a peelable organic film on the surface of the insulating layer, and laser processing from the organic film surface side. Further, in Patent Document 3, when forming a blind via using a carbon dioxide laser in an insulating layer containing a large amount of an inorganic filler, the top diameter and In order to form a blind via having a good hole formation with a small difference from the via bottom diameter, it is disclosed that a carbonic acid laser is used for an insulating layer on which a plastic film is laminated. Patent Documents 1 and 2 relate to the formation of a via hole having a top diameter of 100 μm or more, and Patent Document 3 describes that the top diameter is 100 μm or less, preferably 90 μm or less, and more preferably 80 μm or less. Therefore, these documents do not mention formation of fine via holes having a top diameter of 30 μm or less.
特開2001-196743号公報JP 2001-196743 A 特許第3899544号公報Japanese Patent No. 3899544 国際公開第2009/066759号International Publication No. 2009/0666759
 プリント配線板に用いられる樹脂絶縁層にビアホールを形成するにあたり、ビアホールの小径化を達成するために、炭酸ガスレーザーの出力エネルギーを低下させると、トップ径からボトム径にかけてテーパーの強い形状となり、トップ径とボトム径との差が大きくなるという問題がある。したがって、トップ径を小径化しつつ、トップ径とボトム径との差が小さいビアホールを形成可能なプリント配線板の加工又は製造方法、並びにかかる方法に用いる樹脂積層体が依然として望まれている。 When forming a via hole in the resin insulation layer used for printed wiring boards, if the output energy of the carbon dioxide laser is reduced in order to reduce the diameter of the via hole, it becomes a shape with a strong taper from the top diameter to the bottom diameter. There is a problem that the difference between the diameter and the bottom diameter increases. Therefore, there is still a demand for a method of processing or manufacturing a printed wiring board capable of forming a via hole having a small difference between the top diameter and the bottom diameter while reducing the top diameter, and a resin laminate used in such a method.
 本発明者らは、トップ径が小さく、かつトップ径とボトム径との差が小さいビアホールをレーザー(好ましくは炭酸ガスレーザー)で形成する方法について鋭意研究を行ったところ、樹脂絶縁層に積層されたレーザー減衰用の離型フィルムの厚さを50μm超から180μm以下とした場合に、トップ径が30μm以下であり、かつトップ径とボトム径との差が10μm以下の微細ビアホールを形成できることを見出し、本発明に至った。 The present inventors conducted extensive research on a method for forming a via hole having a small top diameter and a small difference between the top diameter and the bottom diameter with a laser (preferably a carbon dioxide gas laser). In addition, when the thickness of the release film for laser attenuation is set to be more than 50 μm to 180 μm or less, a fine via hole having a top diameter of 30 μm or less and a difference between the top diameter and the bottom diameter of 10 μm or less can be formed. The present invention has been reached.
 したがって、本発明は以下に関する:
[1] 微細ビアホール形成用の樹脂絶縁層と、前記樹脂絶縁層に積層されたレーザー減衰用の離型フィルムとを含むプリント配線板用樹脂積層体であって、離型フィルムの厚さが50μm超、180μm以下である、樹脂積層体。
[2] 前記レーザー減衰用の離型フィルムが、ポリエステルから形成される、項目1に記載の樹脂積層体。
[3] 前記ポリエステルが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリブチレンテレフタレート(PBT)、及びポリトリメチレンテレフタレート(PTT)からなる群から選ばれる1種又は2種以上である、項目2に記載の樹脂積層体。
[4] 前記樹脂絶縁層に形成されるビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、項目1~3のいずれか一項に記載の方法。
[5] 前記樹脂絶縁層の厚さが3~50μmである、項目1~4のいずれか一項に記載の樹脂積層体。
[6] 前記樹脂絶縁層が、熱硬化性樹脂組成物から形成される、項目1~5のいずれか一項に記載の樹脂積層体。
[7] 前記熱硬化性樹脂組成物が、
 エポキシ樹脂;
 シアン酸エステル化合物;及び
 無機充填材
 を含む、項目6に記載の樹脂積層体。
[8] 前記熱硬化性樹脂組成物が半硬化されてなる、項目6又は7に記載の樹脂積層体。
[9] 前記樹脂絶縁層のめっきピール強度が、0.4kN/m以上である、項目1~8のいずれか一項に記載の樹脂積層体。
[10] 多層プリント配線板を製造する方法であって、
 基材と基材上に形成された導電回路とを有する回路基板に、項目1~9のいずれか一項に記載の樹脂積層体を、前記回路基板の前記導電回路と前記樹脂積層体の前記樹脂絶縁層とが対向するように積層し、
 レーザーにより前記樹脂積層体の前記レーザー減衰用の離型フィルム側から前記樹脂絶縁層まで貫通するビアホールを形成し、
 前記離型フィルムを前記樹脂絶縁層から剥離する
ことを含む方法。
[11] 前記樹脂積層体が項目8に記載の樹脂積層体であると共に、
 前記回路基板と前記樹脂積層体との積層後、ビアホールの形成前に、半硬化状態の前記樹脂絶縁層を全硬化させることを更に含む、項目10に記載の方法。
[12]レーザーが炭酸ガスレーザーである、項目10又は11に記載の方法。
[13] レーザーのエネルギーが、0.3mJ~5mJである、項目12に記載の方法。
[14] 樹脂絶縁層に形成されるビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、項目10~13のいずれか一項に記載の方法。
[15] 前記離型フィルムの剥離後、前記樹脂絶縁層の表面を粗化し、粗化表面にめっきにより導体層を形成し、導体層をパターニングして回路を形成することを更に含む、項目10~14の何れか一項に記載の方法。
[16] 項目10~15のいずれか一項に記載の方法により得られる多層プリント配線板。
[17] 基材と前記基材上に形成された導電回路とを有する回路基板、及び、当該回路基板に積層された項目1~9のいずれか一項に記載の樹脂積層体の樹脂絶縁層を含む多層プリント配線板であって、前記樹脂絶縁層がレーザーにより形成されたビアホールを有するとともに、当該ビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、多層プリント配線板。
Accordingly, the present invention relates to:
[1] A resin laminate for a printed wiring board comprising a resin insulation layer for forming fine via holes and a release film for laser attenuation laminated on the resin insulation layer, wherein the release film has a thickness of 50 μm A resin laminate having a thickness of 180 μm or less.
[2] The resin laminate according to item 1, wherein the release film for laser attenuation is formed of polyester.
[3] The polyester is selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT). Item 3. The resin laminate according to Item 2, which is a seed or two or more.
[4] The method according to any one of Items 1 to 3, wherein a top diameter of the via hole formed in the resin insulating layer is 30 μm or less, and a difference between the top diameter and the bottom diameter is 10 μm or less.
[5] The resin laminate according to any one of items 1 to 4, wherein the resin insulating layer has a thickness of 3 to 50 μm.
[6] The resin laminate according to any one of items 1 to 5, wherein the resin insulating layer is formed from a thermosetting resin composition.
[7] The thermosetting resin composition comprises:
Epoxy resin;
Item 7. The resin laminate according to Item 6, comprising a cyanate ester compound; and an inorganic filler.
[8] The resin laminate according to item 6 or 7, wherein the thermosetting resin composition is semi-cured.
[9] The resin laminate according to any one of items 1 to 8, wherein the plating peel strength of the resin insulating layer is 0.4 kN / m or more.
[10] A method for producing a multilayer printed wiring board, comprising:
A circuit board having a base material and a conductive circuit formed on the base material, the resin laminate according to any one of items 1 to 9, and the conductive circuit of the circuit board and the resin laminate of the circuit board. Laminate so that the resin insulation layer faces,
Forming a via hole penetrating from the release film side for laser attenuation of the resin laminate to the resin insulation layer by a laser;
Peeling off the release film from the resin insulation layer.
[11] The resin laminate is the resin laminate according to item 8,
Item 11. The method according to Item 10, further comprising fully curing the resin insulation layer in a semi-cured state after the circuit board and the resin laminate are laminated and before forming the via hole.
[12] The method according to item 10 or 11, wherein the laser is a carbon dioxide laser.
[13] The method according to item 12, wherein the laser energy is 0.3 mJ to 5 mJ.
[14] The method according to any one of Items 10 to 13, wherein a top diameter of the via hole formed in the resin insulating layer is 30 μm or less, and a difference between the top diameter and the bottom diameter is 10 μm or less.
[15] Item 10 further comprising roughening the surface of the resin insulation layer after peeling off the release film, forming a conductor layer on the roughened surface by plating, and patterning the conductor layer to form a circuit. The method according to any one of 1 to 14.
[16] A multilayer printed wiring board obtained by the method according to any one of items 10 to 15.
[17] A circuit board having a base material and a conductive circuit formed on the base material, and a resin insulating layer of the resin laminate according to any one of items 1 to 9 laminated on the circuit board The resin insulating layer has a via hole formed by a laser, the top diameter of the via hole is 30 μm or less, and the difference between the top diameter and the bottom diameter is 10 μm or less. Multilayer printed wiring board.
 本発明の樹脂積層体に対し、適切な出力エネルギーを選択して、レーザー減衰用の離型フィルムを付けた状態で、当該離型フィルムの側から、レーザーにてビアホールを形成すると、レーザー減衰用の離型フィルムにより、低エネルギー強度のレーザーを減衰又はカットオフすることができる。それにより、樹脂絶縁層にはトップ径が小さく、かつトップ径とボトム径との差が小さいビアホールを形成することが可能になる。したがって、本発明の樹脂積層体を回路基板に積層し、ビアホールを形成することにより、小径かつ導電信頼性の高いビアホールを含む多層プリント配線板を形成することができる。 For the resin laminate of the present invention, when an appropriate output energy is selected and a release film for laser attenuation is attached, a via hole is formed with a laser from the side of the release film. This release film can attenuate or cut off a low energy intensity laser. Thereby, a via hole having a small top diameter and a small difference between the top diameter and the bottom diameter can be formed in the resin insulating layer. Therefore, by laminating the resin laminate of the present invention on a circuit board and forming a via hole, a multilayer printed wiring board including a via hole having a small diameter and high conductivity reliability can be formed.
図1は、炭酸ガスレーザーのレーザー強度分布を示す模式図である。FIG. 1 is a schematic diagram showing a laser intensity distribution of a carbon dioxide laser. 図2Aは、厚さ20μmの樹脂絶縁層からなる樹脂板に対し、レーザー加工した後の樹脂板の断面図を示す。図2Bは、厚さ20μmの樹脂絶縁層と厚さ100μmの離型フィルムとを含む樹脂積層体に対し、離型フィルム側からレーザー加工した後の樹脂積層体の断面図を示す。FIG. 2A shows a cross-sectional view of a resin plate after laser processing of a resin plate made of a resin insulating layer having a thickness of 20 μm. FIG. 2B shows a cross-sectional view of the resin laminate after laser processing from the release film side with respect to a resin laminate including a resin insulating layer having a thickness of 20 μm and a release film having a thickness of 100 μm.
 本発明の1の態様は、微細ビアホール形成用の樹脂絶縁層と、前記樹脂絶縁層に積層されたレーザー減衰用の離型フィルムとを含むプリント配線板用樹脂積層体に関しており、ここで、離型フィルムの厚さが50μm超、180μm以下であることを特徴とする。 One aspect of the present invention relates to a resin laminate for a printed wiring board including a resin insulating layer for forming fine via holes and a release film for laser attenuation laminated on the resin insulating layer. The mold film has a thickness of more than 50 μm and 180 μm or less.
 本発明の樹脂積層体中の樹脂絶縁層を構成する樹脂の種類としては、プリント配線板の製造に用いられる樹脂であって、レーザー(好ましくは炭酸ガスレーザー)を用いることにより、微細なビアホールを形成可能である絶縁性の樹脂であれば任意の樹脂であってよい。レーザーを用いた際に形成される穴の大きさは、樹脂の組成には通常大きく影響されることはない。 The type of resin constituting the resin insulation layer in the resin laminate of the present invention is a resin used in the production of printed wiring boards, and a fine via hole is formed by using a laser (preferably a carbon dioxide laser). Any resin may be used as long as it is an insulating resin that can be formed. The size of the hole formed when using a laser is usually not greatly affected by the resin composition.
 本発明では、樹脂絶縁層に形成される微細ビアホールとは、ビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下であるビアホールをいう。導電信頼性を高める観点から、トップ径とボトム径との差が小さいほど好ましく、より好ましくは8μm以下、さらに好ましくは5μm以下である。導体配線の微細化の観点から、トップ径は、小さいほど好ましく、例えば30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下である。一方で、導電信頼性を高める観点から、トップ径は通常、15μm以上が好ましい。 In the present invention, the fine via hole formed in the resin insulating layer refers to a via hole having a top diameter of 30 μm or less and a difference between the top diameter and the bottom diameter of 10 μm or less. From the viewpoint of enhancing the conductive reliability, the smaller the difference between the top diameter and the bottom diameter, the better. More preferably, it is 8 μm or less, and more preferably 5 μm or less. From the viewpoint of miniaturization of the conductor wiring, the top diameter is preferably as small as possible, for example, 30 μm or less, more preferably 27 μm or less, and further preferably 25 μm or less. On the other hand, from the viewpoint of improving the conductive reliability, the top diameter is usually preferably 15 μm or more.
 樹脂絶縁層の厚さは、上で規定されたビアホールのトップ径、並びにビアホールのトップ径とボトム径の差を達成できる限りにおいて任意の厚さを選択することができる。樹脂絶縁層の厚さの上限は、トップ径とボトム径との差が10μm以下であるビアホールを形成する観点から、50μm以下が好ましく、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。一方で、絶縁層の厚さの下限は、絶縁層の絶縁信頼性の観点から、3μm以上が好ましく、より好ましくは5μm以上であり、さらに好ましくは10μm以上である。 The thickness of the resin insulating layer can be selected as long as the top diameter of the via hole and the difference between the top diameter and the bottom diameter of the via hole can be achieved. The upper limit of the thickness of the resin insulating layer is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less from the viewpoint of forming a via hole having a difference between the top diameter and the bottom diameter of 10 μm or less. . On the other hand, the lower limit of the thickness of the insulating layer is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more, from the viewpoint of insulation reliability of the insulating layer.
 プリント配線板の層間接続で必要となるビアホールの大きさは、配線の微細化と高密度化のため、より微細であることが望ましい。微細ビアホールを用いたプリント配線板では、配線板上に形成される配線自体も微細化することが求められる。高密度な微細配線を形成する方法としてアディティブ法やセミアディティブ法が良く知られており、これらの方法では微細配線を無電解めっきや電解めっきで形成している。しかしながら、配線を微細化した場合、絶縁層と配線の密着面積が小さくなるため、配線が剥がれやすくなるという問題が生じうる。したがって、配線の微細化と高密度化の観点から、より微細なビアホールを形成する場合には、樹脂絶縁層がより高いめっきピール強度を有する事が望ましい。 The size of via holes required for interlayer connection of printed wiring boards is desirably finer for miniaturization and higher density of wiring. In a printed wiring board using a fine via hole, it is required to miniaturize the wiring itself formed on the wiring board. Additive methods and semi-additive methods are well known as methods for forming high-density fine wiring. In these methods, fine wiring is formed by electroless plating or electrolytic plating. However, when the wiring is miniaturized, a contact area between the insulating layer and the wiring is reduced, which may cause a problem that the wiring is easily peeled off. Therefore, from the viewpoint of finer wiring and higher density, when forming a finer via hole, it is desirable that the resin insulating layer has higher plating peel strength.
 プリント配線板の製造に当たり、樹脂絶縁層に形成されためっきの剥離を防止する観点から、樹脂絶縁層のめっきピール強度が0.4kN/m以上であることが好ましく、より好ましくは0.5kN/m以上である。めっきピール強度は、樹脂絶縁層の表面粗さに応じて変化する。上で記載しためっきピールの範囲は、粗化処理前又は粗化処理後のいずれのめっきピール強度の範囲であってもよいが、好ましくは粗化処理後のめっきピール強度の範囲を意味する。 In the production of a printed wiring board, the plating peel strength of the resin insulating layer is preferably 0.4 kN / m or more, more preferably 0.5 kN / m, from the viewpoint of preventing peeling of the plating formed on the resin insulating layer. m or more. The plating peel strength varies depending on the surface roughness of the resin insulating layer. The range of the plating peel described above may be any range of plating peel strength before or after the roughening treatment, but preferably means the range of plating peel strength after the roughening treatment.
[離型フィルム]
 従来、離型フィルムは、樹脂絶縁層を、導電回路を有する回路基板に積層し、加熱加圧する際において、加圧手段に対する接着を防止するために通常使用されてきた。この場合、樹脂積層体が回路基板に接着した後に、離型フィルムは剥離され、樹脂絶縁層に対してさらに、表面の粗化処理が行われて、粗化表面にめっきにより導体層を形成し、導体層をパターニングして回路が形成される。一方、本発明の態様では、離型フィルムは、加圧手段に対する接着の防止の用途の他に、さらにレーザー減衰用途を有する。
[Release film]
Conventionally, a release film has been usually used to prevent adhesion to a pressurizing means when a resin insulating layer is laminated on a circuit board having a conductive circuit and heated and pressed. In this case, after the resin laminate is bonded to the circuit board, the release film is peeled off, the surface of the resin insulating layer is further roughened, and a conductor layer is formed on the roughened surface by plating. The conductor layer is patterned to form a circuit. On the other hand, in the embodiment of the present invention, the release film has a laser attenuation application in addition to the application of preventing adhesion to the pressing means.
 本発明において、レーザー減衰とは、レーザーにおけるレーザー強度の分布において、樹脂絶縁層の孔断面のテーパーの原因となると考えられる低強度のレーザーを遮断又は減衰することをいう。レーザーの強度分布は、通常、ガウシアン分布を取っている(図1)が、ビーム径を細くするマスク(小さい穴)を経由する際、光が干渉し、干渉縞が生じる。このような干渉縞の部分を含む低強度の分布に相当するレーザーであっても、樹脂絶縁層が一部削れてしまい、テーパーを形成する原因となりうる(図2A)。したがって、本発明のレーザー減衰用の離型フィルムは、理論に限定されることを意図するものではないが、例えばレーザー強度の分布において、干渉縞の部分を含む低強度の分布のレーザーを減衰又は遮断することにより、樹脂絶縁層に形成される孔のテーパーを最小限にすることができる。遮断又は減衰されるレーザー強度は、レーザー減衰用の離型フィルムの厚さに応じて変化し、当業者であれば、微細なビアホール形成に適したレーザー減衰用離型フィルムの厚さを適宜選択することができる。 In the present invention, laser attenuation refers to blocking or attenuating a low-intensity laser that is considered to cause a taper of the hole cross section of the resin insulating layer in the laser intensity distribution in the laser. The laser intensity distribution is usually a Gaussian distribution (FIG. 1). However, when passing through a mask (small hole) that reduces the beam diameter, light interferes and interference fringes occur. Even with a laser corresponding to such a low-intensity distribution including the interference fringes, a part of the resin insulating layer is scraped off, which may cause a taper (FIG. 2A). Therefore, the release film for laser attenuation according to the present invention is not intended to be limited to theory, but, for example, in the distribution of laser intensity, the laser with low intensity distribution including the interference fringe portion is attenuated or By blocking, the taper of the hole formed in the resin insulating layer can be minimized. The laser intensity to be blocked or attenuated varies depending on the thickness of the release film for laser attenuation, and those skilled in the art appropriately select the thickness of the release film for laser attenuation suitable for forming fine via holes. can do.
 本発明のレーザー減衰用の離型フィルムは、理論に限定されることを意図するわけではないが、レーザー強度分布のうち、低強度側に広がって分布するレーザーによる樹脂絶縁層の掘削を防止することにより、樹脂絶縁層に形成された孔のテーパーを少なくすることができる。したがって、本発明のレーザー減衰用の離型フィルムは、レーザー強度分布における低強度のレーザーによる樹脂絶縁層の掘削を防止するのに十分な厚さであることが必要とされ、その厚さは、所望のレーザー遮断又は減衰を達成する観点から、50μm超が好ましい。より好ましくは60μm超、さらに好ましくは70μm超である。一方で厚さが厚くなると、貫通孔の形成のためレーザーの出力を高めることが必要となり、その場合、孔のトップ径が大きくなってしまうことから好ましくなく、この点から、離型フィルムの厚さの上限としては、180μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。 Although the release film for laser attenuation of the present invention is not intended to be limited to theory, it prevents the resin insulation layer from being excavated by a laser that is spread and distributed on the low intensity side of the laser intensity distribution. Thereby, the taper of the hole formed in the resin insulating layer can be reduced. Therefore, the release film for laser attenuation of the present invention is required to have a thickness sufficient to prevent excavation of the resin insulating layer by a low-intensity laser in the laser intensity distribution, From the standpoint of achieving the desired laser block or attenuation, it is preferably greater than 50 μm. More preferably, it is more than 60 μm, more preferably more than 70 μm. On the other hand, if the thickness is increased, it is necessary to increase the laser output for the formation of the through hole. In this case, it is not preferable because the top diameter of the hole becomes large. From this point, the thickness of the release film The upper limit of the thickness is 180 μm or less, more preferably 150 μm or less, and still more preferably 100 μm or less.
 レーザー減衰用の離型フィルムは、レーザーの減衰と、樹脂絶縁層の熱硬化後の剥離が可能であれば、任意のフィルムであってよく、例えばポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミドなどが挙げられる。中でも、ポリエステルが好ましく、特にポリエチレンナフタレート(以下「PEN」と略称することがある)、ポリエチレンテレフタレート(PET)、ポリブチレンナフタレート(PBN)、ポリブチレンテレフタレート(PBT)、及びポリトリメチレンテレフタレート(PTT)が好ましい。また、レーザー減衰用の離型フィルムは、ブラックカーボン等のレーザー吸収性成分を含むものを使用してもよい。なお、離型フィルムには、熱硬化性樹脂組成物層の加熱硬化後に離型フィルムを剥離可能とするために、その熱硬化性樹脂組成物層の被形成面に離型層を設けてもよい。離型層に使用する離型剤としては、熱硬化性樹脂組成物層を熱硬化した後に離型フィルムが剥離可能であれば特に限定されず、例えば、シリコーン系離型剤、アルキッド樹脂系離型剤等が挙げられる。 The release film for laser attenuation may be any film as long as it can attenuate the laser and peel off the resin insulating layer after heat curing. For example, polyester, polycarbonate (hereinafter abbreviated as “PC”). And acrylic resins such as polymethyl methacrylate (PMMA), cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, and the like. Among these, polyester is preferable, and polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”), polyethylene terephthalate (PET), polybutylene naphthalate (PBN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate ( PTT) is preferred. Moreover, you may use the release film for laser attenuation | damping which contains laser absorptive components, such as black carbon. The release film may be provided with a release layer on the surface of the thermosetting resin composition layer so that the release film can be peeled after the thermosetting resin composition layer is heat-cured. Good. The release agent used for the release layer is not particularly limited as long as the release film can be peeled after the thermosetting resin composition layer is thermally cured. For example, a silicone release agent or an alkyd resin release agent is used. Examples include molds.
 本発明の樹脂積層体は、当業者に公知の方法で製造することができ、例えば有機溶剤に熱硬化性樹脂組成物を溶解させた樹脂ワニスを調製し、この樹脂ワニスを、ダイコーター等を用いて、支持フィルム上に塗布し、加熱あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。樹脂積層体は、回路基板に積層させて硬化させることから、半硬化状態であることが好ましい。 The resin laminate of the present invention can be produced by a method known to those skilled in the art. For example, a resin varnish in which a thermosetting resin composition is dissolved in an organic solvent is prepared. It can be produced by coating on a support film and drying the organic solvent by heating or blowing hot air to form a resin composition layer. Since the resin laminate is laminated on the circuit board and cured, the resin laminate is preferably in a semi-cured state.
[樹脂絶縁層]
 本発明の樹脂絶縁層に用いられる樹脂としては、プリント配線板の絶縁層に用いられる樹脂であれば特に限定されないが、耐熱性、絶縁性、めっき密着性の観点から、熱硬化性樹脂であることが好ましい。
 熱硬化性樹脂の具体例としては、エポキシ樹脂、シアン酸エステル樹脂、ビスマレイミド樹脂、イミド樹脂、フェノール樹脂、二重結合付加ポリフェニレンエーテル樹脂、不飽和ポリエステル樹脂等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で用いてもよい。
 中でも、優れたピール強度を有する樹脂絶縁層を提供する観点から、エポキシ樹脂とシアン酸エステル樹脂の混合物が好ましく、さらにビスマレイミド樹脂も添加されていることが好ましい。
 本発明の樹脂絶縁層に用いられる樹脂組成物には、例えばエポキシ樹脂の硬化を行うため、硬化剤を用いることが好ましい。
 また、硬化剤を使用する際には必要に応じ硬化速度を適宜調整するために硬化促進剤を併用することも可能である。
 さらに、本発明の絶縁層に用いられる樹脂組成物には、所期の特性が損なわれない範囲において、低熱膨張の観点から無機充填材を含むことが好ましい。
[Resin insulation layer]
The resin used for the resin insulating layer of the present invention is not particularly limited as long as it is a resin used for an insulating layer of a printed wiring board, but is a thermosetting resin from the viewpoint of heat resistance, insulation, and plating adhesion. It is preferable.
Specific examples of the thermosetting resin include an epoxy resin, a cyanate ester resin, a bismaleimide resin, an imide resin, a phenol resin, a double bond-added polyphenylene ether resin, and an unsaturated polyester resin. One of these may be used alone, or two or more may be used in any combination and ratio.
Among these, from the viewpoint of providing a resin insulating layer having excellent peel strength, a mixture of an epoxy resin and a cyanate ester resin is preferable, and a bismaleimide resin is also preferably added.
In the resin composition used for the resin insulating layer of the present invention, for example, a curing agent is preferably used to cure the epoxy resin.
Moreover, when using a hardening | curing agent, in order to adjust a hardening rate suitably as needed, it is also possible to use a hardening accelerator together.
Furthermore, it is preferable that the resin composition used for the insulating layer of the present invention contains an inorganic filler from the viewpoint of low thermal expansion as long as desired characteristics are not impaired.
[エポキシ樹脂]
 前記樹脂絶縁層の熱硬化性樹脂として用いられるエポキシ樹脂としては、1分子中に2以上のエポキシ基を有するものであればその種類は限定されず、従来公知の任意のエポキシ樹脂が使用できる。エポキシ樹脂の例としては、例えば、ビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。これらの中でも特にめっき銅付着性と難燃性の観点からビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂であることが特に好ましい。これらのエポキシ樹脂は、1種もしくは2種以上を適宜混合して使用することが可能である。
[Epoxy resin]
The epoxy resin used as the thermosetting resin of the resin insulating layer is not limited as long as it has two or more epoxy groups in one molecule, and any conventionally known epoxy resin can be used. Examples of epoxy resins include, for example, biphenyl aralkyl type epoxy resins, naphthalene tetrafunctional type epoxy resins, xylene type epoxy resins, naphthol aralkyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, resins, bisphenol A novolaks. Type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl novolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester And a compound obtained by epoxidizing a double bond such as butadiene, a compound obtained by a reaction of a hydroxyl group-containing silicone resin and epichlorohydrin, and the like. Among these, biphenyl aralkyl type epoxy resins, naphthalene tetrafunctional type epoxy resins, xylene type epoxy resins, and naphthol aralkyl type epoxy resins are particularly preferable from the viewpoints of copper plating adhesion and flame retardancy. These epoxy resins can be used alone or in combination of two or more.
 ビフェニルアラルキル型エポキシ樹脂としては、例えば式(1)で表される構造を有するものがあり、ナフタレン4官能型エポキシ樹脂としては、例えば式(2)で表される構造を有するものがあり、キシレン型エポキシ樹脂としては、例えば式(3)で表される構造を有するものがあり、ナフトールアラルキル型エポキシ樹脂としては、例えば式(4)で表される構造を有するものがある。 Examples of the biphenyl aralkyl type epoxy resin include those having a structure represented by the formula (1). Examples of the naphthalene tetrafunctional type epoxy resin include those having a structure represented by the formula (2). Examples of the type epoxy resin include those having a structure represented by Formula (3), and examples of the naphthol aralkyl type epoxy resin include those having a structure represented by Formula (4).
Figure JPOXMLDOC01-appb-C000001
(式中、n1は1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, n1 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(式中、n2は1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, n2 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000004
(n3は平均値として1~6の数を示し、Xはグリシジル基又は炭素数1~8の炭化水素基を示し、炭化水素基/グリシジル基の比率は0.05~2.0である。)
Figure JPOXMLDOC01-appb-C000004
(N3 represents an average value of 1 to 6, X represents a glycidyl group or a hydrocarbon group having 1 to 8 carbon atoms, and the ratio of hydrocarbon group / glycidyl group is 0.05 to 2.0. )
 エポキシ樹脂の重量平均分子量(Mw)は、制限されるものではないが、硬化樹脂の靱性発現の観点から、通常250以上、中でも300以上であることが好ましく、また、未硬化樹脂の塗布性及び硬化樹脂の耐熱性を向上させる観点から、通常5000以下、中でも3000以下であることが好ましい。 The weight average molecular weight (Mw) of the epoxy resin is not limited, but from the viewpoint of developing the toughness of the cured resin, it is usually preferably 250 or more, and more preferably 300 or more. From the viewpoint of improving the heat resistance of the cured resin, it is usually 5000 or less, preferably 3000 or less.
 本発明の樹脂絶縁層に用いられる樹脂組成物におけるエポキシ化合物の含有量は特に限定されないが、耐熱性及び硬化性の観点から樹脂組成物中の樹脂固形分のうち、20~80質量%の範囲が好ましく、30~70質量%の範囲が特に好適である。 The content of the epoxy compound in the resin composition used for the resin insulation layer of the present invention is not particularly limited, but in the range of 20 to 80% by mass of the resin solid content in the resin composition from the viewpoint of heat resistance and curability. The range of 30 to 70% by mass is particularly preferable.
[マレイミド化合物]
 その他の成分として、マレイミド基を有するマレイミド化合物、例えば、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミドが樹脂絶縁層を構成する樹脂組成物に用いられてもよく、これらのマレイミド化合物は、絶縁層の吸湿耐熱性を向上させる。なお、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどの形で配合する事もでき、1種もしくは2種以上を適宜混合して使用することも可能である。
[Maleimide compound]
As other components, a maleimide compound having a maleimide group, such as bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl- 4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, and polyphenylmethanemaleimide constitute the resin insulation layer These maleimide compounds may be used in a resin composition and improve the moisture absorption heat resistance of the insulating layer. These maleimide compound prepolymers or maleimide compound and amine compound prepolymers can also be blended, and one or two or more of them can be used as appropriate.
[硬化剤]
 硬化剤としては、上述の熱硬化性樹脂の硬化剤として通常使用されているものであれば、特に限定されない。例としては、フェノール化合物、ポリフェノール化合物、シアン酸エステル化合物、活性エステル化合物、ジシアンジアミド、カルボン酸アミド、アミン化合物、各種酸無水物、ルイス酸錯体等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で用いてもよい。硬化剤を使用する場合、その使用比率は限定されるものではないが、例えば熱硬化性樹脂の樹脂固形分100質量部に対して、通常1質量部以上、中でも5質量部以上、また、通常100質量部以下、中でも70質量部以下とすることが好ましい。また、熱硬化性樹脂と硬化剤との使用比率は、熱硬化性樹脂及び硬化剤の種類によって異なるが、例えば、熱硬化性樹脂の反応性基(これをRF1と表す。)と、これと反応する硬化剤の反応性基数(これをRF2と表す。)との比(RF2/RF1)が、通常0.3以上、中でも0.7以上、また、通常3以下、好ましくは2.5以下となるような比率で用いることが好ましい。
[Curing agent]
The curing agent is not particularly limited as long as it is usually used as a curing agent for the above-described thermosetting resin. Examples include phenol compounds, polyphenol compounds, cyanate ester compounds, active ester compounds, dicyandiamide, carboxylic acid amides, amine compounds, various acid anhydrides, Lewis acid complexes, and the like. One of these may be used alone, or two or more may be used in any combination and ratio. When the curing agent is used, the use ratio is not limited. For example, it is usually 1 part by mass or more, especially 5 parts by mass or more, and usually 100 parts by mass of the resin solid content of the thermosetting resin. It is preferably 100 parts by mass or less, particularly 70 parts by mass or less. Moreover, although the use ratio of a thermosetting resin and a hardening | curing agent changes with kinds of thermosetting resin and a hardening | curing agent, for example, the reactive group (this is expressed as RF1) of a thermosetting resin, and this. The ratio (RF2 / RF1) to the number of reactive groups of the curing agent that reacts (this is expressed as RF2) is usually 0.3 or more, particularly 0.7 or more, and usually 3 or less, preferably 2.5 or less. It is preferable to use at such a ratio.
 硬化剤として使用されるシアン酸エステル化合物は、耐薬品性、接着性などに優れた特性を有し、その優れた耐薬品性により、均一な粗化面を形成することが可能であるため、本発明における樹脂組成物の成分として好適に使用することができる。シアン酸エステル化合物としては、一般に公知のものを使用でき、例えば式(5)で表されるナフトールアラルキル型シアン酸エステル化合物、式(6)で表されるノボラック型シアン酸エステル、式(7)で表されるビフェニルアラルキル型シアン酸エステル、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、ビス(3,5-ジメチル4-シアナトフェニル)メタン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、2、2’-ビス(4-シアナトフェニル)プロパン、ビス(3、5-ジメチル、4-シアナトフェニル)メタン等が挙げられる。 The cyanate ester compound used as a curing agent has excellent properties such as chemical resistance and adhesion, and because of its excellent chemical resistance, it is possible to form a uniform roughened surface. It can be suitably used as a component of the resin composition in the present invention. As the cyanate ester compound, generally known compounds can be used. For example, a naphthol aralkyl cyanate ester compound represented by the formula (5), a novolac cyanate ester represented by the formula (6), a formula (7) Biphenylaralkyl cyanate represented by the formula 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, bis (3,5-dimethyl4-cyanatophenyl) Methane, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis (4-cyanatophenyl) methane, bis 4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, 2,2′-bis (4-cyanatophenyl) ) Propane, bis (3,5-dimethyl, 4-cyanatophenyl) methane and the like.
 この中でも式(5)で表されるナフトールアラルキル型シアン酸エステル化合物、式(6)で表されるノボラック型シアン酸エステル、式(7)で表されるビフェニルアラルキル型シアン酸エステルが難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低いことから特に好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子又はメチル基を示し、n4は1以上の整数を示す。)
Among these, the naphthol aralkyl cyanate ester compound represented by the formula (5), the novolak cyanate ester represented by the formula (6), and the biphenylaralkyl cyanate ester represented by the formula (7) are flame retardant. It is particularly preferable because of its excellent thermal resistance, high curability, and low thermal expansion coefficient of the cured product.
Figure JPOXMLDOC01-appb-C000005
(In the formula, R1 represents a hydrogen atom or a methyl group, and n4 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000006
(式中、R2は水素原子又はメチル基を示し、n5は1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R2 represents a hydrogen atom or a methyl group, and n5 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000007
(式中、R3は水素原子又はメチル基を示し、n6は1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R3 represents a hydrogen atom or a methyl group, and n6 represents an integer of 1 or more.)
 硬化剤として使用される活性エステル化合物は、低誘電率、低誘電正接、低吸水率、低熱膨張率、高ガラス転移温度などに優れた特性を有し、電気特性及び高ガラス転移温度が優れることから本発明の樹脂組成物の成分として好適に使用することができる。一般に公知のものを使用できるが、好適にはエピクロンHPC-8000(DIC株式会社)、エピクロンHPC-8000-65T(DIC株式会社)等が挙げられる。 The active ester compound used as a curing agent has excellent characteristics such as low dielectric constant, low dielectric loss tangent, low water absorption, low thermal expansion coefficient, high glass transition temperature, etc., and excellent electrical characteristics and high glass transition temperature. Therefore, it can be suitably used as a component of the resin composition of the present invention. Generally known ones can be used, and preferred examples include Epicron HPC-8000 (DIC Corporation) and Epicron HPC-8000-65T (DIC Corporation).
[無機充填材]
 無機充填材は、当業界において通常使用されているものであれば特に限定されない。さらに、1種類、又は複数の種類の無機充填材が使用されてもよい。無機充填材としては、例えば、水酸化マグネシウム、酸化マグネシウム、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、ベーマイト、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、アルミナ、タルク、焼成タルク、マイカ、ガラス短繊維、球状ガラス(EガラスやTガラス、Dガラスなどのガラス微粉末類)、などが挙げられる。
 特に、好ましいめっきピールを有する樹脂絶縁層の樹脂構造体を提供する観点から、酸に可溶な無機充填材が好ましい。酸に可溶な無機充填材を含むことにより、絶縁層表面に低粗度な粗化面を形成でき、該粗化面に金属めっきを形成した際のめっき密着性に優れた樹脂絶縁層を得ることができる。これは、理論に限定されることを意図するものではないが、酸に可溶な無機充填材が、デスミア処理工程におけるアルカリ性の酸化剤による粗化工程では溶解せず、酸性の還元剤による中和工程で溶解することに加え、シアン酸エステル化合物を用いた場合に、高い耐薬品性を有する樹脂構造体を提供でき、それによって、アルカリ性の酸化剤による粗化工程においても酸に可溶な無機充填材が脱落しない効果によるものである。
[Inorganic filler]
An inorganic filler will not be specifically limited if it is normally used in this industry. Furthermore, one type or a plurality of types of inorganic fillers may be used. Examples of inorganic fillers include silicas such as magnesium hydroxide, magnesium oxide, natural silica, fused silica, amorphous silica, and hollow silica, molybdenum compounds such as boehmite, molybdenum oxide, and zinc molybdate, alumina, talc, and calcined talc. , Mica, short glass fiber, and spherical glass (glass fine powders such as E glass, T glass, and D glass).
In particular, from the viewpoint of providing a resin structure of a resin insulating layer having a preferable plating peel, an acid-soluble inorganic filler is preferable. By including an acid-soluble inorganic filler, a roughened surface with low roughness can be formed on the surface of the insulating layer, and a resin insulating layer having excellent plating adhesion when metal plating is formed on the roughened surface. Obtainable. This is not intended to be limited by theory, but the acid-soluble inorganic filler does not dissolve in the roughening step with the alkaline oxidant in the desmear treatment step, and is not dissolved in the acidic reducing agent. In addition to being dissolved in the summing step, when a cyanate ester compound is used, a resin structure having high chemical resistance can be provided, so that it is soluble in acid even in a roughening step with an alkaline oxidizing agent. This is because the inorganic filler does not fall off.
 本発明に使用される酸に可溶な無機充填材としては、水酸化マグネシウム、酸化マグネシウムが挙げられる。これらは絶縁層表面のデスミア処理において中和液に溶出し、均一な粗化面を形成してめっきピール強度を向上させる効果がある。具体的には、水酸化マグネシウムとしてタテホ化学工業(株)製のエコーマグZ-10、エコーマグPZ-1、神島化学工業(株)製のマグシーズN、マグシーズS、マグシーズEP、マグシーズEP2-A、堺化学工業(株)製のMGZ-1、MGZ-3、MGZ-6R、協和化学工業(株)製のキスマ5、キスマ5A、キスマ5P等が挙げられる。酸化マグネシウムとしてタテホ化学工業(株)製のFNM-G、堺化学工業(株)製のSMO、SMO-0.1、SMO-S-0.5等が挙げられる。 Examples of the acid-soluble inorganic filler used in the present invention include magnesium hydroxide and magnesium oxide. These are eluted in the neutralizing solution in the desmear treatment of the insulating layer surface, and have the effect of forming a uniform roughened surface and improving the plating peel strength. Specifically, as magnesium hydroxide, Echo Mag Z-10 and Echo Mug PZ-1 manufactured by Tateho Chemical Industry Co., Ltd., Magsees N, Magseeds S, Magseeds EP, Magseeds EP2-A manufactured by Kamishima Chemical Industry Co., Ltd. Examples thereof include MGZ-1, MGZ-3, MGZ-6R manufactured by Chemical Industry Co., Ltd., Kisuma 5, Kisuma 5A, Kisuma 5P manufactured by Kyowa Chemical Industry Co., Ltd., and the like. Examples of magnesium oxide include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
 前記酸に可溶な無機充填材の平均粒子径としては、デスミア処理後に均一な表面粗度を得る観点から0.1~2.0μmであることが好ましい。ここで平均粒子径とは、メジアン径(メディアン径)であり、測定した粉体の粒度分布を2つに分けたときの大きい側の個数又は質量と小さい側の質量が全粉体のそれの50%をしめるときの粒子径で、一般的には湿式レーザー回折・散乱法により測定される。 The average particle diameter of the acid-soluble inorganic filler is preferably 0.1 to 2.0 μm from the viewpoint of obtaining uniform surface roughness after desmear treatment. Here, the average particle diameter is the median diameter (median diameter). When the particle size distribution of the measured powder is divided into two, the number or mass on the large side and the mass on the small side are those of the whole powder. The particle diameter at 50% is generally measured by a wet laser diffraction / scattering method.
 本発明の樹脂絶縁層に用いられる樹脂組成物中における前記酸に可溶な無機充填材の含有量は、樹脂組成物中の樹脂固形分100質量部に対し、5~150質量部であることが絶縁層表面の粗度の観点から好ましい。 The content of the acid-soluble inorganic filler in the resin composition used for the resin insulating layer of the present invention is 5 to 150 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. Is preferable from the viewpoint of the roughness of the surface of the insulating layer.
 また、前記酸に可溶な無機充填材は、表面処理されたものであることが、吸湿耐熱性、耐薬品性の観点から好ましい。具体的には、シランカップリング剤によるシランカップリング処理、KBM-403処理、KBM-3063処理を行うことが好ましい。 The acid-soluble inorganic filler is preferably surface-treated from the viewpoint of moisture absorption heat resistance and chemical resistance. Specifically, silane coupling treatment with a silane coupling agent, KBM-403 treatment, and KBM-3063 treatment are preferably performed.
 前記シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられ、1種もしくは2種以上を適宜組み合わせて使用することも可能である。また湿潤分散剤とは、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン(株)製のDisperbyk-110、111、180、161、BYK-W996、W9010、W903等の湿潤分散剤が挙げられる。 The silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ -Vinylsilanes such as methacryloxypropyltrimethoxysilane, cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc. It is also possible to use one kind or a combination of two or more kinds as appropriate. The wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used for coatings. For example, wetting and dispersing agents such as Disperbyk-110, 111, 180, 161, BYK-W996, W9010, W903 manufactured by Big Chemie Japan Co., Ltd. may be mentioned.
[硬化促進剤]
 硬化促進剤は任意成分であり、必要に応じ硬化速度を適宜調整するために樹脂組成物に添加される。これらはシアン酸エステル化合物やエポキシ樹脂の硬化促進剤として公知であり一般に使用されるものであれば、特に限定されるものではない。これらの具体例として、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類及びその誘導体、ジメチルアミノピリジン、第3級アミン等が挙げられる。これらの硬化促進剤は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
[Curing accelerator]
The curing accelerator is an optional component and is added to the resin composition in order to adjust the curing rate as necessary. These are not particularly limited as long as they are known and generally used as a curing accelerator for cyanate ester compounds and epoxy resins. Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, dimethylaminopyridine, tertiary amine and the like. One of these curing accelerators may be used alone, or two or more thereof may be used in any combination and ratio.
[その他の成分]
 硬化性樹脂組成物は、本発明の主旨を逸脱しない範囲において、その他の成分を含んでいてもよい。その他の成分として、例えば他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性化合物、添加剤などの併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミンやベンゾグアナミンなどの窒素化合物、オキサジン環含有化合物、シリコーン系化合物等が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤等、所望に応じて適宜組み合わせて使用することも可能である。
[Other ingredients]
The curable resin composition may contain other components without departing from the gist of the present invention. As other components, for example, other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, other flame retardant compounds, additives and the like can be used in combination. These are not particularly limited as long as they are generally used. Examples of flame retardant compounds include phosphoric acid esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, silicone compounds, and the like. Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners Etc., and can be used in appropriate combinations as desired.
 その他の成分として、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性化合物、添加剤などの併用も可能である。さらに、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等のチョップドストランドもしくはミルドファイバー、消泡剤、レオロジー調整剤、難燃剤、充填材、重合防止剤、顔料、染料、カップリング剤、イオン補足剤、離型剤等が挙げられる。これらその他の成分は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 Other components such as other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, other flame retardant compounds, and additives can be used in combination. Furthermore, chopped strands or milled fibers such as glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, antifoaming agent, rheology modifier, flame retardant, filler, polymerization inhibitor, pigment , Dyes, coupling agents, ion scavengers, release agents and the like. One of these other components may be used alone, or two or more thereof may be used in any combination and ratio.
[各成分の使用比率]
 本発明の樹脂積層体の製造時における各成分の使用比率は、限定されるものではないが、例えば以下のとおりである。
[Use ratio of each component]
Although the usage ratio of each component at the time of manufacture of the resin laminated body of this invention is not limited, For example, it is as follows.
 硬化剤としてシアン酸エステル化合物を用いる場合、シアン酸エステル化合物とエポキシ樹脂は、樹脂組成物中のシアン酸エステル化合物のシアネート基数とエポキシ樹脂のエポキシ基数の比(CN/Ep)が0.7~2.5で配合することが好ましい。CN/Epが0.7~2.5の範囲であれば良好な難燃性と硬化性を得ることができる。 When the cyanate ester compound is used as the curing agent, the cyanate ester compound and the epoxy resin have a ratio of the cyanate group number of the cyanate ester compound to the number of epoxy groups of the epoxy resin (CN / Ep) of 0.7 to 0.7 in the resin composition. It is preferable to blend at 2.5. When CN / Ep is in the range of 0.7 to 2.5, good flame retardancy and curability can be obtained.
[樹脂構造体の製法]
 本発明の樹脂構造体は、エポキシ樹脂と、硬化剤と、任意により無機充填材と、任意により硬化促進剤と、任意によりその他の成分とを含む硬化性樹脂組成物を調製し、斯かる硬化性樹脂組成物を硬化させて樹脂硬化物を形成した後、得られた樹脂硬化物の少なくとも一の表面に表面粗化処理を施すことを含む製法により製造される。
[Production method of resin structure]
The resin structure of the present invention is prepared by preparing a curable resin composition containing an epoxy resin, a curing agent, optionally an inorganic filler, optionally a curing accelerator, and optionally other components. The cured resin composition is cured to form a cured resin product, and then a surface roughening treatment is applied to at least one surface of the obtained cured resin product.
 硬化性樹脂組成物を調製する手法は制限されず、エポキシ樹脂と、硬化剤と、任意により無機充填材と、任意により硬化促進剤と、任意によりその他の成分とを均一に混合することが可能な手法であれば、任意の手法を利用可能である。例としては以下が挙げられる。 The method for preparing the curable resin composition is not limited, and it is possible to uniformly mix the epoxy resin, the curing agent, optionally the inorganic filler, optionally the curing accelerator, and optionally other components. Any method can be used as long as it is a simple method. Examples include the following.
(i)エポキシ樹脂を反応器に導入し、エポキシ樹脂が固体の場合は適当な温度で加熱して液体にし、そこに任意により無機充填材を加えて完全に溶解させ、そこに硬化剤及び必要に応じて硬化促進剤を加えて液体状で均一に混合し、更に必要に応じて脱泡処理して硬化性樹脂組成物を調製する方法。
(ii)ミキサー等を用いて、エポキシ樹脂、硬化剤、必要に応じて無機充填材、及び必要に応じて添加される硬化促進剤やその他の成分を均一に混合した後、熱ロール、二軸押出機、ニーダー等を使用して溶融混練して硬化性樹脂組成物を調製する方法。
(I) An epoxy resin is introduced into a reactor, and when the epoxy resin is solid, it is heated to an appropriate temperature to make it liquid, and optionally an inorganic filler is added and completely dissolved therein, and a curing agent and necessary are added there. A curable resin composition is prepared by adding a curing accelerator according to the above, uniformly mixing in a liquid state, and further defoaming treatment as necessary.
(Ii) Using a mixer or the like, after uniformly mixing the epoxy resin, curing agent, inorganic filler as necessary, and curing accelerator and other components added as necessary, heat roll, biaxial A method of preparing a curable resin composition by melt-kneading using an extruder, a kneader or the like.
(iii)エポキシ樹脂、硬化剤、必要に応じて無機充填材及び必要に応じて添加される硬化促進剤やその他の成分を、例えばメチルエチルケトン、アセトン、トルエン等の溶剤に溶解してワニス状の硬化性樹脂組成物を調製する方法。 (Iii) Epoxy resin, curing agent, inorganic filler as necessary, and curing accelerator and other components added as necessary are dissolved in a solvent such as methyl ethyl ketone, acetone, toluene, etc. to form a varnish. For preparing a conductive resin composition.
 なお、エポキシ樹脂と必要に応じて無機充填材の混合物に、硬化剤を加えると硬化反応が開始するので、硬化剤の添加した後の工程はできるだけ短時間で迅速に行なうことが好ましい。 In addition, since a curing reaction starts when a curing agent is added to a mixture of an epoxy resin and an inorganic filler as necessary, the process after the addition of the curing agent is preferably performed as quickly as possible.
 硬化性樹脂組成物を硬化させて樹脂硬化物を形成する手法も制限されず、従来から採用されているエポキシ樹脂組成物の硬化方法を任意に選択して用いることが可能である。斯かる硬化方法の例としては、熱硬化法、エネルギー線硬化法(電子線硬化法、紫外線硬化法等)、湿気硬化法等が挙げられるが、熱硬化法が好ましい。 The method of curing the curable resin composition to form a cured resin product is not limited, and any conventionally selected curing method for the epoxy resin composition can be used. Examples of such a curing method include a thermal curing method, an energy beam curing method (electron beam curing method, ultraviolet curing method, etc.), a moisture curing method, and the like, and a thermal curing method is preferable.
 具体的に、硬化性樹脂組成物が常温で固体状である場合は、例えば粉砕、打錠後に、トランスファー成形、コンプレッション成形、インジェクション成形等の従来公知の成形方法で硬化成形することにより、樹脂硬化物(硬化した成形品)を製造することができる。 Specifically, when the curable resin composition is solid at room temperature, for example, after pulverization and tableting, it is cured by a conventionally known molding method such as transfer molding, compression molding, injection molding, etc. A product (cured molded product) can be produced.
 一方、硬化性樹脂組成物が常温で液状やワニス状を呈する場合は、例えば硬化性樹脂組成物を型に注いだり(成形)、容器に注いだり(ポッティング等)、基材上に塗布したり(積層)、繊維(フィラメント)等に含浸させたり(フィラメントワイディング等)する等の適当な方法で施した後、加熱硬化させる等の手法により、樹脂硬化物を得ることができる。また、常温で液状やワニス状の硬化性樹脂組成物は、必要であれば、注型、ポッティング、含、塗工、繊維への含浸等を行った後、加熱や乾燥を行って半硬化状態(Bステージ)にすると、タック性が低減して作業性を向上させることができる。また、ワニス状を呈する本発明の硬化性樹脂組成物は、コンマコーター、ダイコーター、グラビアコーター等の塗工装置を使用してキャリアフィルムに塗工し、乾燥し、硬化させたフィルム状に成形することもできるし、真空脱泡して使用することもできる。 On the other hand, when the curable resin composition is liquid or varnished at room temperature, for example, the curable resin composition is poured into a mold (molding), poured into a container (potting, etc.), or applied onto a substrate. The resin cured product can be obtained by a method such as (lamination), impregnation into fibers (filaments) or the like (filament wiping or the like), followed by heat curing. In addition, the liquid or varnish-like curable resin composition at normal temperature may be cast, potted, contained, coated, impregnated into fibers, etc., if necessary, and then heated and dried to be in a semi-cured state When (B stage) is used, tackiness is reduced and workability can be improved. In addition, the curable resin composition of the present invention having a varnish shape is applied to a carrier film using a coating device such as a comma coater, a die coater, or a gravure coater, dried, and formed into a cured film shape. It can also be used, or it can be used after vacuum degassing.
 硬化性樹脂組成物を硬化させる際の硬化温度および硬化時間は、エポキシ樹脂や硬化剤の種類等に応じて異なり得るが、例えば、硬化温度20~250℃、硬化時間1~24時間の条件等が採用される。 The curing temperature and curing time for curing the curable resin composition may vary depending on the type of epoxy resin and curing agent, etc., for example, conditions of a curing temperature of 20 to 250 ° C., a curing time of 1 to 24 hours, etc. Is adopted.
[保護フィルム]
 本発明の樹脂積層体は、樹脂絶縁層上のレーザー減衰用フィルムの反対側に積層された保護フィルムを含んでもよい。保護フィルムは、回路基板への積層を行うまでの間、樹脂積層体の流通過程において、ほこりやゴミの付着を防止すると共に、樹脂絶縁層の表面を物理的ダメージから守り、樹脂絶縁層を保護することができる。このような保護フィルムとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、PET、PEN等のポリエステル、PC、ポリイミド等のフィルムを挙げることができる。なお、保護フィルムには、マッド処理、コロナ処理の他、離型処理が施してあってもよい。保護フィルムの厚みは、任意であってよいが、例えば5~30μmの範囲である。レーザー減衰用の離型フィルムとの区別を付けるため、保護フィルムには、着色がされていてもよいし、保護フィルムである旨の記載があってもよい。
[Protective film]
The resin laminate of the present invention may include a protective film laminated on the opposite side of the laser attenuation film on the resin insulating layer. The protective film protects the resin insulation layer from physical damage while preventing the adhesion of dust and debris during the flow of the resin laminate until it is laminated on the circuit board. can do. Examples of such a protective film include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyester films such as PET and PEN, PC, and polyimide films. The protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment. The thickness of the protective film may be arbitrary, but is, for example, in the range of 5 to 30 μm. In order to distinguish from the release film for laser attenuation, the protective film may be colored or may be described as being a protective film.
[プリント配線板の製造方法]
 本発明の別の態様では、本発明の樹脂積層体を用いた多層プリント配線板を製造する方法に関する。この方法は、基材と基材上に形成された導電回路とを有する回路基板に、本発明の樹脂積層体を、前記回路基板の前記導電回路と前記樹脂積層体の樹脂絶縁層とが対向するように積層する工程を含む。半硬化状態の樹脂積層体を用いた場合には、積層後に全硬化工程を含んでもよい。熱硬化性樹脂からなる樹脂絶縁層を熱硬化する作業は従来の方法に準じて行うことができる。例えば、回路基板の片面または両面に樹脂積層体を、樹脂絶縁層と回路基板とが対向するように重ね、SUS鏡板等の金属板を用いて、加熱および加圧し、積層プレスを行うことにより、全硬化されてもよい。この際の条件は、本技術分野で一般に使用されており、熱硬化性樹脂を硬化できる条件であればよく、例えば5~40kgf/cm2の圧力、120~180℃の温度、20~100分のプレス時間で行うことができる。加熱および加圧は、加熱されたSUS鏡板等の金属板をプラスチックフィルム側からプレスすることにより行うことができるが、金属板を直接プレスするのではなく、回路基板の回路凹凸に接着シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスを行うのが好ましい。積層工程は、真空ラミネーターを使用して行うこともできる。この場合、樹脂積層体を、減圧下で、加熱および加圧し、回路基板に樹脂積層体をラミネートする。ラミネートの条件は、分野で一般に使用されている条件であればよく、例えば70~140℃の温度、1~11kgf/cm2の範囲の圧力、並びに20mmHg(26.7hPa)以下の減圧下で行われる。ラミネート工程の後に、金属板による熱プレスにより、ラミネートされた接着フィルムの平滑化を行ってもよい。上記ラミネート工程および平滑化工程は、市販されている真空ラミネーターによって連続的に行うことができる。ラミネート工程の後、または平滑化工程の後、熱硬化工程を行うことができる。熱硬化工程は、樹脂組成物を熱硬化し、絶縁層を形成する。熱硬化条件は熱硬化性樹脂組成物の種類等によっても異なるが、一般に硬化温度が170~190℃、硬化時間が15~60分である。
[Method of manufacturing printed wiring board]
Another aspect of the present invention relates to a method for manufacturing a multilayer printed wiring board using the resin laminate of the present invention. In this method, the resin laminate of the present invention is placed on a circuit board having a base material and a conductive circuit formed on the base material, and the conductive circuit of the circuit board and the resin insulating layer of the resin laminate face each other. A step of laminating the layers. When a semi-cured resin laminate is used, a full curing step may be included after lamination. The operation of thermosetting the resin insulating layer made of a thermosetting resin can be performed according to a conventional method. For example, by laminating a resin laminate on one side or both sides of a circuit board so that the resin insulation layer and the circuit board face each other, using a metal plate such as a SUS end plate, heating and pressing, and performing a lamination press, It may be fully cured. The conditions at this time are generally used in this technical field and may be any conditions that can cure the thermosetting resin. For example, the pressure is 5 to 40 kgf / cm 2 , the temperature is 120 to 180 ° C., and the time is 20 to 100 minutes. The press time can be performed. Heating and pressurization can be performed by pressing a heated metal plate such as a SUS mirror plate from the plastic film side. However, instead of directly pressing the metal plate, an adhesive sheet is sufficient for circuit irregularities on the circuit board. It is preferable to press through an elastic material such as heat-resistant rubber so as to follow. The lamination step can also be performed using a vacuum laminator. In this case, the resin laminate is heated and pressurized under reduced pressure to laminate the resin laminate on the circuit board. The lamination conditions may be those generally used in the field, for example, a temperature of 70 to 140 ° C., a pressure in the range of 1 to 11 kgf / cm 2 , and a reduced pressure of 20 mmHg (26.7 hPa) or less. Is called. After the laminating step, the laminated adhesive film may be smoothed by hot pressing with a metal plate. The laminating step and the smoothing step can be continuously performed by a commercially available vacuum laminator. A thermosetting step can be performed after the laminating step or after the smoothing step. In the thermosetting step, the resin composition is thermoset to form an insulating layer. The thermosetting conditions vary depending on the type of thermosetting resin composition, but generally the curing temperature is 170 to 190 ° C. and the curing time is 15 to 60 minutes.
 さらに本発明の多層プリント配線板の製造方法では、積層された回路基板と樹脂積層体に対し、樹脂積層体のレーザー減衰用の離型フィルム側からレーザーを照射する工程を含む。レーザーの照射により、樹脂絶縁層を貫通する微細なビアホールを形成することができる。この微細なビアホールの大きさは、好ましくはビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である。 The method for producing a multilayer printed wiring board of the present invention further includes a step of irradiating the laminated circuit board and the resin laminate with a laser from the release film side for laser attenuation of the resin laminate. By laser irradiation, fine via holes that penetrate the resin insulating layer can be formed. As for the size of the fine via hole, the top diameter of the via hole is preferably 30 μm or less, and the difference between the top diameter and the bottom diameter is 10 μm or less.
 照射するレーザーの種類は制限されない。例としては炭酸ガスレーザー、YAGレーザー、エキシマレーザー等が挙げられる。中でも炭酸ガスレーザーが好ましい。
 照射する炭酸ガスレーザーには、一般に9.2~10.8μmの波長のレーザーが使用される。また、ショット数は、1回又は複数回行われてもよいが、レーザー減衰用の離型フィルムのレーザー減衰効果を発揮するため、好ましくは1回であり、複数回行われる場合であっても、2回目以降は、出力を減じたクリーニングショットであることが好ましい。炭酸ガスレーザーの出力エネルギーは、当業者であれば、樹脂絶縁層の厚さ、レーザー減衰用の離型フィルムの厚さ、及び所望の孔径に応じて適宜設定することができる。通常、樹脂絶縁層の厚さ及びレーザー減衰用の離型フィルムの厚さが厚くなるほど、必要とされる炭酸ガスレーザーの出力エネルギーは高くなる。一方で、炭酸ガスレーザーのエネルギーが低すぎると、加工性の低下により、ボトム径がトップ径に比べて小さい、テーパーの強い形状となる。したがって、厚さ50μm超のレーザー減衰用離型フィルムを用いる観点及び/又はトップ径とボトム径との差を10μm以下にする観点から、出力エネルギーは、例えば0.3mJ以上、中でも0.6mJ超、好ましくは0.8mJ以上である。一方で、トップ径を30μm以下に抑える観点から、出力エネルギーは、5mJ以下、より好ましくは3mJ以下である。炭酸ガスレーザーのパルス幅は特に限定されず、0.5μs~100μs程度のパルスまで広い範囲で選択可能であるが、トップ径を30μm以下に抑える観点から、上限は30μs以下が好ましく、より好ましくは15μs以下である。
The kind of laser to irradiate is not limited. Examples include a carbon dioxide laser, a YAG laser, and an excimer laser. Of these, a carbon dioxide laser is preferred.
As the carbon dioxide laser to be irradiated, a laser having a wavelength of 9.2 to 10.8 μm is generally used. In addition, the number of shots may be performed once or a plurality of times. However, in order to exert the laser attenuation effect of the release film for laser attenuation, the number of shots is preferably one and even when it is performed a plurality of times. The second and subsequent times are preferably cleaning shots with reduced output. Those skilled in the art can appropriately set the output energy of the carbon dioxide laser according to the thickness of the resin insulating layer, the thickness of the release film for laser attenuation, and the desired hole diameter. Usually, the greater the thickness of the resin insulation layer and the thickness of the release film for laser attenuation, the higher the required output energy of the carbon dioxide laser. On the other hand, if the energy of the carbon dioxide laser is too low, the bottom diameter is smaller than the top diameter and the shape is strongly tapered due to a decrease in workability. Accordingly, from the viewpoint of using a laser attenuating release film having a thickness of more than 50 μm and / or a difference between the top diameter and the bottom diameter of 10 μm or less, the output energy is, for example, 0.3 mJ or more, particularly more than 0.6 mJ. , Preferably 0.8 mJ or more. On the other hand, from the viewpoint of suppressing the top diameter to 30 μm or less, the output energy is 5 mJ or less, more preferably 3 mJ or less. The pulse width of the carbon dioxide laser is not particularly limited and can be selected in a wide range from a pulse of about 0.5 μs to 100 μs. From the viewpoint of suppressing the top diameter to 30 μm or less, the upper limit is preferably 30 μs or less, more preferably 15 μs or less.
 本発明の多層プリント配線板を製造する方法は、レーザー照射によるビアホールの形成後、離型フィルムを樹脂層から剥離する工程をさらに含んでもよい。離型フィルムの剥離後、樹脂絶縁層の表面に対し、粗化を行う粗化処理工程が行われてもよい。表面粗化処理の手法も制限されず、エポキシ樹脂と、必要に応じて無機充填材の種類に応じて適宜選択すればよいが、紫外線照射処理、プラズマ処理、溶媒処理等が挙げられる。これらは何れか一種を単独で施してもよく、二種以上を任意の組み合わせで施してもよい。 The method for producing the multilayer printed wiring board of the present invention may further include a step of peeling the release film from the resin layer after forming the via hole by laser irradiation. After peeling off the release film, a roughening treatment step for roughening the surface of the resin insulating layer may be performed. The method of the surface roughening treatment is not limited, and may be appropriately selected according to the type of the epoxy resin and, if necessary, the inorganic filler, and examples include ultraviolet irradiation treatment, plasma treatment, and solvent treatment. Any one of these may be applied alone, or two or more thereof may be applied in any combination.
 紫外線照射処理は、樹脂硬化物の表面に対して、紫外線を照射して行う。紫外線の波長は限定されないが、通常は20nm以上、中でも50nm以上、更には100nm以上、また、通常は400nm以下、中でも350nm以下、更には300nm以下の範囲が好ましい。紫外線の照射時間も限定されないが、通常2分以上、中でも5分以上とすることが好ましく、また、通常240分以下、中でも120分以下とすることが好ましい。 The ultraviolet irradiation treatment is performed by irradiating the surface of the cured resin with ultraviolet rays. The wavelength of the ultraviolet light is not limited, but is usually 20 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and usually 400 nm or less, preferably 350 nm or less, and more preferably 300 nm or less. Although the irradiation time of ultraviolet rays is not limited, it is usually 2 minutes or more, preferably 5 minutes or more, and usually 240 minutes or less, preferably 120 minutes or less.
 プラズマ処理は、樹脂硬化物の表面に対して、プラズマを照射して行う。プラズマの種類は任意である。例としては酸素(酸素プラズマ)、アルゴン(アルゴンプラズマ)、空気(エアプラズマ)、窒素(窒素プラズマ)等のプラズマが挙げられる。これらは何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で用いてもよい。プラズマの照射時間も限定されないが、通常2分以上、中でも5分以上とすることが好ましく、また、通常240分以下、中でも120分以下とすることが好ましい。 The plasma treatment is performed by irradiating the surface of the cured resin with plasma. The kind of plasma is arbitrary. Examples include plasmas of oxygen (oxygen plasma), argon (argon plasma), air (air plasma), nitrogen (nitrogen plasma), and the like. Any of these may be used alone, or two or more of these may be used in any combination and ratio. Although the plasma irradiation time is not limited, it is usually 2 minutes or more, preferably 5 minutes or more, and usually 240 minutes or less, preferably 120 minutes or less.
 溶媒処理としては、限定されるものではないが、例えば酸性溶媒による酸化処理、アルカリ性溶媒による還元処理等が挙げられる。中でも、溶媒処理としては、膨潤工程、表面粗化及びスミア溶解工程、及び中和工程からなる溶媒処理を実施することが好ましい。 Examples of the solvent treatment include, but are not limited to, an oxidation treatment with an acidic solvent and a reduction treatment with an alkaline solvent. Especially, as a solvent process, it is preferable to implement the solvent process which consists of a swelling process, a surface roughening and smear melt | dissolution process, and a neutralization process.
 膨潤工程は、膨潤剤を用いて表面絶縁層を膨潤させることにより行う。膨潤剤としては、表面絶縁層の濡れ性が向上し、次の表面粗化及びスミア溶解工程において酸化分解が促進される程度にまで表面絶縁層を膨潤させることができるものであれば、制限されない。例としては、アルカリ溶液、界面活性剤溶液等が挙げられる。 The swelling step is performed by swelling the surface insulating layer using a swelling agent. The swelling agent is not limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolving step. . Examples include alkaline solutions and surfactant solutions.
 表面粗化及びスミア溶解工程は、酸化剤を用いて行う。酸化剤としては、例えば過マンガン酸塩溶液等が挙げられ、好適な具体例としては、過マンガン酸カリウム水溶液、過マンガン酸ナトリウム水溶液等が挙げられる。斯かる酸化剤処理はウェットデスミアと呼ばれるが、当該ウェットデスミアに加えて、プラズマ処理やUV処理によるドライデスミア、バフ等による機械研磨、サンドブラスト等の他の公知の粗化処理を、適宜組み合わせて実施してもよい。 The surface roughening and smear dissolution process is performed using an oxidizing agent. As an oxidizing agent, a permanganate solution etc. are mentioned, for example, A potassium permanganate aqueous solution, a sodium permanganate aqueous solution, etc. are mentioned as a suitable specific example. Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
 中和工程は、前工程で使用した酸化剤を還元剤で中和するものである。還元剤としては、アミン系還元剤が挙げられ、好適な具体例としては、ヒドロキシルアミン硫酸塩水溶液、エチレンジアミン四酢酸水溶液、ニトリロ三酢酸水溶液等の酸性還元剤が挙げられる。 In the neutralization step, the oxidizing agent used in the previous step is neutralized with a reducing agent. Examples of the reducing agent include amine-based reducing agents, and preferred specific examples include acidic reducing agents such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, and nitrilotriacetic acid aqueous solution.
 本発明の多層プリント配線板を製造する方法は、粗化処理後又は粗化処理を行わずに、樹脂絶縁層の表面にめっきにより導体層を形成するめっき工程、及び形成された導体層に回路を形成する回路形成(パターニング)工程をさらに含んでもよい。これらの工程は、多層プリント配線板の製造に用いられている従来公知の各種方法に従って行うことができる。 The method for producing a multilayer printed wiring board according to the present invention includes a plating step of forming a conductor layer by plating on the surface of a resin insulating layer after or without roughening, and a circuit on the formed conductor layer. A circuit forming (patterning) step for forming the pattern may be further included. These steps can be performed according to various conventionally known methods used in the production of multilayer printed wiring boards.
 めっき工程は、例えば、粗化処理により凸凹が形成された絶縁層表面に無電解めっきと電解めっきを組み合わせた方法で導体層を形成するか、無電解めっきのみで導体層を形成することにより行われる。導体層としては、銅、アルミニウム、ニッケル、銀、金等の金属又はこれら金属の合金等で形成できるが、特に銅が好ましい。銅めっき層は、無電解銅めっきと電解銅めっきを組み合わせた方法か、導体層とは逆パターンのめっきレジストを形成し、無電解銅めっきのみで導体層を形成することができる。 The plating process is performed by, for example, forming a conductor layer by a method combining electroless plating and electrolytic plating on the surface of the insulating layer on which irregularities are formed by roughening treatment, or forming the conductor layer only by electroless plating. Is called. The conductor layer can be formed of a metal such as copper, aluminum, nickel, silver, or gold, or an alloy of these metals, but copper is particularly preferable. The copper plating layer can be formed by a method combining electroless copper plating and electrolytic copper plating, or by forming a plating resist having a pattern opposite to that of the conductor layer, and forming the conductor layer only by electroless copper plating.
 回路形成工程は、セミアディティブ法、フルアディティブ法、サブトラクティブ法等が挙げられる。中でも、微細配線パターンを形成する観点からは、セミアディティブ法が好ましい。 Examples of the circuit forming process include a semi-additive method, a full additive method, a subtractive method, and the like. Among these, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
 セミアディティブ法でパターン形成する手法の例としては、絶縁層表面に無電解めっき等により薄い導体層を形成した後、めっきレジストを用いて選択的に電解めっきを施し(パターンめっき)、その後めっきレジストを剥離し、全体を適量エッチングして配線パターン形成する手法が挙げられる。 As an example of the pattern forming method by the semi-additive method, after forming a thin conductor layer on the surface of the insulating layer by electroless plating, etc., electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
 フルアディティブ法でパターン形成する手法の例としては、絶縁層表面にめっきレジストを用いて予めパターン形成を行い、選択的に無電解めっき等を付着させることにより配線パターンを形成する手法が挙げられる。 As an example of a method of forming a pattern by a full additive method, there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
 サブトラクティブ法でパターン形成する手法の例としては、絶縁層表面にめっきにより導体層を形成した後、エッチングレジストを用いて選択的に導体層を除去することにより、配線パターンを形成する手法が挙げられる。 An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done.
 めっきにより配線パターンを形成する際に、絶縁層と導体層との密着強度を向上させる観点から、めっきの後に乾燥工程を行うことが好ましい。セミアディティブ法によるパターン形成では、無電解めっきと電解めっきとを組み合わせて行うが、その際、無電解めっきの後と、電解めっきの後に、それぞれ乾燥を行うことが好ましい。無電解後の乾燥は、例えば80~180℃で10~120分に亘って行うことが好ましく、電解めっき後の乾燥は、例えば130~220℃で10~120分に亘って行うことが好ましい。 When forming a wiring pattern by plating, it is preferable to perform a drying step after plating from the viewpoint of improving the adhesion strength between the insulating layer and the conductor layer. The pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating. The drying after electroless is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and the drying after the electroplating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example.
 本発明の多層プリント配線板の製造に用いる回路基板とは、主として、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また、多層プリント配線板を製造する際に、さらに絶縁層および/または導体層が形成されるべき中間製造物の内層回路基板も本発明でいう回路基板に含まれる。なお、導体層(回路)表面は黒化処理等により予め粗化処理が施されていた方が絶縁層の回路基板への密着性の観点から好ましい。 The circuit board used for the production of the multilayer printed wiring board of the present invention is mainly a pattern on one or both sides of a substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, etc. This means that a processed conductor layer (circuit) is formed. Further, when the multilayer printed wiring board is manufactured, an inner layer circuit board of an intermediate product in which an insulating layer and / or a conductor layer is further formed is also included in the circuit board referred to in the present invention. The surface of the conductor layer (circuit) is preferably subjected to a roughening treatment in advance by a blackening treatment or the like from the viewpoint of adhesion of the insulating layer to the circuit board.
 [シアン酸エステル化合物の製造]
・合成例1 α-ナフトールアラルキル型シアン酸エステル化合物(式(8)の化合物)の合成:
Figure JPOXMLDOC01-appb-C000008
(式中、nの平均値は3~4である。)
[Production of cyanate ester compounds]
Synthesis Example 1 Synthesis of α-naphthol aralkyl cyanate ester compound (compound of formula (8)):
Figure JPOXMLDOC01-appb-C000008
(In the formula, the average value of n is 3 to 4.)
 温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予め食塩水により0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76ml、及び塩化メチレン44mlを仕込んだ。 A reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), 76 ml of water, and 44 ml of methylene chloride were charged.
 この反応器内の温度を-5~+5℃、pHを1以下に保ちながら、撹拌下、下記式(8’)で表されるα-ナフトールアラルキル樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mlに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。
Figure JPOXMLDOC01-appb-C000009
(式中、nの平均値は3~4である。)
The α-naphthol aralkyl resin (SN485, OH group equivalent: 214 g / eq.) Represented by the following formula (8 ′) is stirred with the temperature in the reactor kept at −5 to + 5 ° C. and the pH at 1 or less. Softening point: 86 ° C., Nippon Steel Chemical Co., Ltd. 20 g (0.0935 mol) and triethylamine 14.16 g (0.14 mol) dissolved in 92 ml of methylene chloride were added dropwise over 1 hour using a dropping funnel. After completion of the dropwise addition, 4.72 g (0.047 mol) of triethylamine was further added dropwise over 15 minutes.
Figure JPOXMLDOC01-appb-C000009
(In the formula, the average value of n is 3 to 4.)
 滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機層を分取した。得られた有機層を水100mlで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、上記式(8)で表されるα-ナフトールアラルキル樹脂のシアン酸エステル化合物(α-ナフトールアラルキル型シアン酸エステル化合物)23.5gを得た。 After completion of the dropping, the reaction solution was separated after stirring at the same temperature for 15 minutes, and the organic layer was separated. The obtained organic layer was washed twice with 100 ml of water, and then methylene chloride was distilled off under reduced pressure using an evaporator. Finally, the mixture was concentrated to dryness at 80 ° C. for 1 hour, and expressed by the above formula (8). 23.5 g of a cyanate ester compound (α-naphthol aralkyl type cyanate ester compound) of α-naphthol aralkyl resin was obtained.
[樹脂組成物の作成]
 エポキシ樹脂として、式(1)で表されるビフェニルアラルキル型エポキシ樹脂(NC-3000-H、日本化薬(株)製)47.5質量部、更に第2のエポキシ樹脂として、ナフタレン型エポキシ樹脂(HP4710、DIC(株)製)12.7質量部、シアン酸エステル化合物として、合成例1により得られた式(8)で表されるα-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)のメチルエチルケトン(以下「MEK」と略す場合がある。)溶液(不揮発分50質量%)51.4質量部(不揮発分換算で25.7質量部)、マレイミド化合物として、式(9)で表されるマレイミド化合物(BMI-2300、大和化成(株)製)11.1質量部、硬化促進剤として2,4,5-トリフェニルイミダゾール(和光純薬製)のPMA溶液(不揮発分1質量%)300質量部(不揮発分換算で3.0質量部)及びオクチル酸亜鉛のMEK溶液(不揮発分1質量%)7質量部(不揮発分換算で0.07質量部)をMEKに溶解又は分散させた。さらに、無機充填材として、酸化マグネシウム(SMO-0.4、堺化学工業(株)製、平均粒子径0.4μm)125質量部を添加して、高速攪拌装置を用いて30分間攪拌して、ワニス(エポキシ樹脂、シアン酸エステル樹脂、マレイミド化合物、無機充填材を含む樹脂組成物の溶液)を得た。
Figure JPOXMLDOC01-appb-C000010
(式中、R1~4は、各々独立に水素原子又はメチル基を示し、nは平均値として1~10の範囲である。)
[Preparation of resin composition]
As epoxy resin, 47.5 parts by mass of biphenyl aralkyl type epoxy resin represented by the formula (1) (NC-3000-H, manufactured by Nippon Kayaku Co., Ltd.), and as the second epoxy resin, naphthalene type epoxy resin (HP4710, manufactured by DIC Corporation) 12.7 parts by mass, as a cyanate ester compound, α-naphthol aralkyl-type cyanate ester compound represented by the formula (8) obtained by Synthesis Example 1 (cyanate equivalent: 261 g) / Eq.) Methyl ethyl ketone (hereinafter sometimes abbreviated as “MEK”) solution (non-volatile content: 50 mass%) 51.4 parts by mass (25.7 parts by mass in terms of non-volatile content), maleimide compound represented by formula (9 11.1 parts by weight of a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Co., Ltd.), 2,4,5-triphenyl as a curing accelerator 300 parts by mass of PMA solution (non-volatile content 1% by mass) of midazole (manufactured by Wako Pure Chemical Industries, Ltd.) (3.0% by mass in terms of non-volatile content) and 7 parts by mass of MEK solution of zinc octylate (non-volatile content 1% by mass) 0.07 parts by mass in terms of minutes) was dissolved or dispersed in MEK. Further, 125 parts by mass of magnesium oxide (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 μm) was added as an inorganic filler, and the mixture was stirred for 30 minutes using a high-speed stirring device. A varnish (a solution of a resin composition containing an epoxy resin, a cyanate ester resin, a maleimide compound, and an inorganic filler) was obtained.
Figure JPOXMLDOC01-appb-C000010
(Wherein R 1 to 4 each independently represent a hydrogen atom or a methyl group, and n is in the range of 1 to 10 as an average value.)
[樹脂積層体の作成]
 得られたワニスを、離型層付きPETフィルムの離型面に、乾燥後の樹脂組成物層の厚みが8μm又は20μmとなるようにダイコーターにて均一に塗布し、150~180℃で3分間乾燥した。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、507×336mmサイズのシート状の接着フィルムを得た。
[Create resin laminate]
The obtained varnish was uniformly applied to the release surface of the PET film with a release layer with a die coater so that the thickness of the resin composition layer after drying was 8 μm or 20 μm, and was applied at 150 to 180 ° C. 3 Dried for minutes. Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm to obtain a sheet-like adhesive film having a size of 507 × 336 mm.
[樹脂絶縁層へのビアホールの形成]
 接着フィルムを回路形成(回路導体厚18μm)された、510×340mmサイズ、厚さ0.2mmの銅張積層板の両面へ仮付けし、ニチゴーモートン(株)製真空ラミネーターにより、温度130℃、圧力10kgf/cm2、気圧5mmHg以下の条件で両面にラミネートし、さらに連続的に温度180℃、圧力10kgf/cm2の条件でSUS鏡板による熱プレスを行った。次いで、離型層付きPETフィルムが付いた状態で180℃、30分の条件で熱硬化させ、回路基板両面に絶縁層を形成した。室温まで冷却後、離型層付きPETフィルムを剥離せず、その上から三菱電機(株)製炭酸ガスレーザー装置(ML605GTWIII-H-5200U)により孔あけを行い、ブラインドビア(トップ径20~30μmを想定)を形成した。なお、想定トップ径20~30μmとするため、本例の離型層付きPETフィルムが接着した状態での孔あけにおけるマスク径は0.6mmを使用した。
[Formation of via hole in resin insulation layer]
Adhesive film was temporarily attached to both sides of a copper-clad laminate with a circuit formation (circuit conductor thickness 18 μm) of 510 × 340 mm size and thickness 0.2 mm, and a temperature of 130 ° C. by a vacuum laminator manufactured by Nichigo Morton Co., Ltd. Lamination was performed on both surfaces under the conditions of a pressure of 10 kgf / cm 2 and an atmospheric pressure of 5 mmHg or less, and further, hot pressing with a SUS end plate was performed under the conditions of a temperature of 180 ° C. and a pressure of 10 kgf / cm 2 . Next, the film was thermally cured at 180 ° C. for 30 minutes with a PET film with a release layer attached, and insulating layers were formed on both sides of the circuit board. After cooling to room temperature, the PET film with a release layer was not peeled off, and a hole was drilled from above using a carbon dioxide laser device (ML605GTWIII-H-5200U) manufactured by Mitsubishi Electric Corporation, and blind vias (top diameter 20-30 μm) Assumed). In addition, in order to set the assumed top diameter to 20 to 30 μm, a mask diameter of 0.6 mm was used for drilling in the state where the PET film with a release layer of this example was adhered.
実施例1:総厚み75μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚み75μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の実施例1の欄に記載の加工エネルギーにて、孔あけを行った。
Example 1: Use of PET film with release layer having a total thickness of 75 μm As a release film for laser attenuation, a PET film with a release layer having a total thickness of 75 μm was used, and the thickness of the resin composition layer after drying was 20 μm. Then, the coating was uniformly performed, and drilling was performed with the processing energy described in the column of Example 1 in Table 1.
実施例2:総厚み100μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが100μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の実施例2の欄に記載の加工エネルギーにて、孔あけを行った。
Example 2: Use of a PET film with a release layer having a total thickness of 100 µm As a release film for laser attenuation, a PET film with a release layer having a total thickness of 100 µm was used, and the thickness of the resin composition layer after drying was It apply | coated uniformly so that it might be set to 20 micrometers, and the hole was drilled with the processing energy as described in the column of Example 2 of Table 1.
実施例3:総厚みが125μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが125μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の実施例3の欄に記載の加工エネルギーにて、孔あけを行った。
Example 3: Use of PET film with release layer having a total thickness of 125 μm PET film with release layer having a total thickness of 125 μm was used as a release film for laser attenuation, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 20 μm, and drilling was performed with the processing energy described in the column of Example 3 in Table 1.
実施例4:総厚みが100μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが100μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが8μmとなるように均一に塗布し、表1の実施例4の欄に記載の加工エネルギーにて、孔あけを行った。
Example 4: Use of PET film with a release layer having a total thickness of 100 µm As a release film for laser attenuation, a PET film with a release layer having a total thickness of 100 µm was used, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 8 μm, and drilling was performed with the processing energy described in the column of Example 4 in Table 1.
実施例5:総厚みが100μmの離型層付きPENフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが100μmの離型層付きPENフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の実施例5の欄に記載の加工エネルギーにて、孔あけを行った。
Example 5: Use of a PEN film with a release layer having a total thickness of 100 μm As a release film for laser attenuation, a PEN film with a release layer having a total thickness of 100 μm was used, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 20 μm, and drilling was performed with the processing energy described in the column of Example 5 in Table 1.
実施例6:無機充填材として酸化マグネシウムとシリカの併用
 無機充填材として、酸化マグネシウム75質量部(SMO-0.4、堺化学工業(株)製、平均粒子径0.4μm)、シリカ(SFP-130MC)50質量部をワニスに配合した以外は、前記樹脂組成物と同様にしてワニス(樹脂組成物の溶液)を得た。
 得られたワニスを使用し、レーザー減衰用の離型フィルムとして、総厚みが100μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の実施例6の欄に記載の加工エネルギーにて、孔あけを行った。
Example 6: Combined use of magnesium oxide and silica as inorganic fillers As inorganic fillers, 75 parts by mass of magnesium oxide (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 μm), silica (SFP) A varnish (resin composition solution) was obtained in the same manner as in the resin composition except that 50 parts by mass of -130MC was added to the varnish.
Using the obtained varnish, using a PET film with a release layer with a total thickness of 100 μm as the release film for laser attenuation, and uniformly applying the resin composition layer after drying to a thickness of 20 μm Then, drilling was performed with the processing energy described in the column of Example 6 in Table 1.
比較例1:総厚みが38μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが38μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の比較例1の欄に記載の加工エネルギーにて、孔あけを行った。(マスク径0.4mm)。
Comparative Example 1: Use of PET Film with Release Layer with a Total Thickness of 38 μm As a release film for laser attenuation, a PET film with a release layer with a total thickness of 38 μm was used, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 20 μm, and drilling was performed with the processing energy described in the column of Comparative Example 1 in Table 1. (Mask diameter 0.4 mm).
比較例2:総厚みが50μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが50μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の比較例2の欄に記載の加工エネルギーにて、孔あけを行った。(マスク径0.4mm)。
Comparative Example 2: Use of PET film with release layer having a total thickness of 50 μm PET film with release layer having a total thickness of 50 μm was used as a release film for laser attenuation, and the thickness of the resin composition layer after drying Was applied uniformly so as to be 20 μm, and drilling was performed with the processing energy described in the column of Comparative Example 2 in Table 1. (Mask diameter 0.4 mm).
比較例3:総厚みが188μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが188μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の比較例3の欄に記載の加工エネルギーにて、孔あけを行った。
Comparative Example 3: Use of PET Film with Release Layer with a Total Thickness of 188 μm As a release film for laser attenuation, a PET film with a release layer with a total thickness of 188 μm was used, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 20 μm, and drilling was performed with the processing energy described in the column of Comparative Example 3 in Table 1.
比較例4:総厚みが38μmの離型層付きPETフィルムの使用
 レーザー減衰用の離型フィルムとして、総厚みが38μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが8μmとなるように均一に塗布し、表1の比較例4の欄に記載の加工エネルギーにて、孔あけを行った(マスク径0.4mm)。
Comparative Example 4: Use of PET Film with Release Layer with a Total Thickness of 38 μm As a release film for laser attenuation, a PET film with a release layer with a total thickness of 38 μm was used, and the thickness of the resin composition layer after drying Was uniformly applied so as to be 8 μm, and drilling was performed with the processing energy described in the column of Comparative Example 4 in Table 1 (mask diameter 0.4 mm).
比較例5:樹脂組成物としてめっきピール強度の低い樹脂組成物の使用
 エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(NC-3000-H、日本化薬(株)製)、及びナフタレン型エポキシ樹脂(HP4710、DIC(株)製)の代わりにビスフェノールA型エポキシ樹脂(エピコート1001、三菱化学(株)製)60.2質量部、無機充填材を配合しない以外は、前記樹脂組成物と同様にしてワニス(樹脂組成物の溶液)を得た。
 得られたワニスを使用し、レーザー減衰用の離型フィルムとして、総厚み75μmの離型層付きPETフィルムを使用し、乾燥後の樹脂組成物層の厚みが20μmとなるように均一に塗布し、表1の比較例5の欄に記載の加工エネルギーにて、孔あけを行った。
Comparative Example 5: Use of Resin Composition with Low Peeling Peel Strength as Resin Composition As epoxy resin, biphenyl aralkyl type epoxy resin (NC-3000-H, manufactured by Nippon Kayaku Co., Ltd.) and naphthalene type epoxy resin (HP4710) In the same manner as the resin composition except that 60.2 parts by mass of bisphenol A type epoxy resin (Epicoat 1001, manufactured by Mitsubishi Chemical Corporation) and no inorganic filler are blended instead of DIC Co., Ltd. (Resin composition solution) was obtained.
Using the resulting varnish, using a PET film with a release layer with a total thickness of 75 μm as a release film for laser attenuation, apply uniformly so that the thickness of the resin composition layer after drying is 20 μm. Drilling was performed with the processing energy described in the column of Comparative Example 5 in Table 1.
湿式粗化処理と導体層めっき
 実施例1~6及び比較例1~5でレーザー孔あけ後に離型層付きPETフィルムを剥離し、デスミア処理を兼ねた絶縁層の表面処理を実施した。表面処理は上村工業製のデスミア処理プロセス(膨潤:アップデスMDS-37、粗化:アップデスMDE-40およびアップデスELC-SH、中和:アップデスMDN-62)にて、膨潤60℃×5分、粗化70℃×20分、中和35℃×5分の工程を通すことで行った。上村工業製の無電解銅めっきプロセス(使用薬液名:MCD-PL、MDP-2、MAT-SP、MAB-4-C、MEL-3-APEA ver.2)にて、約0.5μmの無電解銅めっきを施し、130℃で1時間の乾燥を行った。比較例5は乾燥後、無電解銅めっき層に膨れが発生したため、その後の評価が実施できなかった。続いて、電解銅めっきをめっき銅の厚みが18μmになるように施し、180℃で1時間の乾燥を行った。
Wet roughening treatment and conductor layer plating In Examples 1 to 6 and Comparative Examples 1 to 5, the PET film with a release layer was peeled off after laser drilling, and surface treatment of the insulating layer also serving as desmear treatment was performed. Surface treatment is desmear treatment process (swelling: Updes MDS-37, roughening: Updes MDE-40 and Updes ELC-SH, neutralization: Updes MDN-62) manufactured by Uemura Kogyo Co., Ltd. It was carried out by passing through a process of 5 minutes, roughening 70 ° C. × 20 minutes and neutralization 35 ° C. × 5 minutes. With an electroless copper plating process manufactured by Uemura Kogyo (names of chemicals used: MCD-PL, MDP-2, MAT-SP, MAB-4-C, MEL-3-APEA ver. 2) Electrolytic copper plating was applied, and drying was performed at 130 ° C. for 1 hour. In Comparative Example 5, since swelling occurred in the electroless copper plating layer after drying, subsequent evaluation could not be performed. Subsequently, electrolytic copper plating was performed so that the thickness of the plated copper was 18 μm, and drying was performed at 180 ° C. for 1 hour.
測定方法
1)ビアのトップ径、ボトム径測定
 デジタルマイクロスコープ(キーエンス製VHX-2000)にてブラインドビアの観察を行い、ビアのトップ径およびボトム径を3点近似円の直径で10箇所測定し、平均値を求めた。結果を表1に示した。
2)めっき銅接着力
 めっき銅を施した積層板を準備し、めっき銅の接着力をJIS C6481に準じて3回測定して平均値を求めた。電解銅めっき後の乾燥で膨れたサンプルに関しては、膨れていない部分を用いて評価を行った。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000011
Measurement method 1) Measuring top and bottom diameters of vias Observe blind vias with a digital microscope (Keyence VHX-2000) and measure the top and bottom diameters of the vias at 10 approximate circle diameters. The average value was obtained. The results are shown in Table 1.
2) Adhesive strength of plated copper A laminated plate provided with plated copper was prepared, and the adhesive strength of the plated copper was measured three times according to JIS C6481, and the average value was obtained. About the sample swollen by the drying after electrolytic copper plating, it evaluated using the part which is not swollen. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
 実施例2と比較例1について、ビアホールの形成後、樹脂積層体を切断し、ビアホールの切断断面を撮影した。結果を図2A(比較例1)及びB(実施例2)に示す。 For Example 2 and Comparative Example 1, after forming the via hole, the resin laminate was cut, and the cut cross section of the via hole was photographed. The results are shown in FIGS. 2A (Comparative Example 1) and B (Example 2).
 1  樹脂絶縁層
 2  レーザー減衰用の離型フィルム
 3  ビアホール
 4  トップ径
 5  ボトム径
 6  テーパー
DESCRIPTION OF SYMBOLS 1 Resin insulating layer 2 Release film for laser attenuation 3 Via hole 4 Top diameter 5 Bottom diameter 6 Taper

Claims (17)

  1.  微細ビアホール形成用の樹脂絶縁層と、前記樹脂絶縁層に積層されたレーザー減衰用の離型フィルムとを含むプリント配線板用樹脂積層体であって、離型フィルムの厚さが50μm超、180μm以下である、樹脂積層体。 A resin laminate for a printed wiring board comprising a resin insulation layer for forming fine via holes and a release film for laser attenuation laminated on the resin insulation layer, wherein the release film has a thickness of more than 50 μm and 180 μm A resin laminate which is the following.
  2.  前記レーザー減衰用の離型フィルムが、ポリエステルから形成される、請求項1に記載の樹脂積層体。 The resin laminate according to claim 1, wherein the release film for laser attenuation is formed of polyester.
  3.  前記ポリエステルが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリブチレンテレフタレート(PBT)、及びポリトリメチレンテレフタレート(PTT)からなる群から選ばれる1種又は2種以上である、請求項2に記載の樹脂積層体。 The polyester is one or two selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT). The resin laminate according to claim 2, which is a seed or more.
  4.  前記樹脂絶縁層に形成されるビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a top diameter of the via hole formed in the resin insulating layer is 30 µm or less, and a difference between the top diameter and the bottom diameter is 10 µm or less.
  5.  前記樹脂絶縁層の厚さが3~50μmである、請求項1~4のいずれか一項に記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 4, wherein the resin insulating layer has a thickness of 3 to 50 µm.
  6.  前記樹脂絶縁層が、熱硬化性樹脂組成物から形成される、請求項1~5のいずれか一項に記載の樹脂積層体。 The resin laminate according to any one of Claims 1 to 5, wherein the resin insulation layer is formed from a thermosetting resin composition.
  7.  前記熱硬化性樹脂組成物が、エポキシ樹脂、シアン酸エステル化合物、及び無機充填材を含む、請求項6に記載の樹脂積層体。 The resin laminate according to claim 6, wherein the thermosetting resin composition comprises an epoxy resin, a cyanate ester compound, and an inorganic filler.
  8.  前記熱硬化性樹脂組成物が半硬化されてなる、請求項6又は7に記載の樹脂積層体。 The resin laminate according to claim 6 or 7, wherein the thermosetting resin composition is semi-cured.
  9.  前記樹脂絶縁層のめっきピール強度が、0.4kN/m以上である、請求項1~8のいずれか一項に記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 8, wherein a plating peel strength of the resin insulation layer is 0.4 kN / m or more.
  10.  多層プリント配線板を製造する方法であって、
     基材と基材上に形成された導電回路とを有する回路基板に、請求項1~9のいずれか一項に記載の樹脂積層体を、前記回路基板の前記導電回路と前記樹脂積層体の前記樹脂絶縁層とが対向するように積層し、
     レーザーにより前記樹脂積層体の前記レーザー減衰用の離型フィルム側から前記樹脂絶縁層まで貫通するビアホールを形成し、
     前記離型フィルムを前記樹脂絶縁層から剥離する
    ことを含む方法。
    A method of manufacturing a multilayer printed wiring board,
    A circuit board having a base material and a conductive circuit formed on the base material, the resin laminate according to any one of claims 1 to 9, and the conductive circuit of the circuit board and the resin laminate of the circuit board. Laminated so that the resin insulation layer faces,
    Forming a via hole penetrating from the release film side for laser attenuation of the resin laminate to the resin insulation layer by a laser;
    Peeling off the release film from the resin insulation layer.
  11.  前記樹脂積層体が請求項8に記載の樹脂積層体であると共に、
     前記回路基板と前記樹脂積層体との積層後、ビアホールの形成前に、半硬化状態の前記樹脂絶縁層を全硬化させることを更に含む、請求項10に記載の方法。
    While the resin laminate is the resin laminate according to claim 8,
    The method according to claim 10, further comprising fully curing the resin insulation layer in a semi-cured state after the circuit board and the resin laminate are laminated and before forming the via hole.
  12.  レーザーが炭酸ガスレーザーである、請求項10又は11に記載の方法。 The method according to claim 10 or 11, wherein the laser is a carbon dioxide gas laser.
  13.  レーザーのエネルギーが、0.3mJ~5mJである、請求項12に記載の方法。 The method according to claim 12, wherein the energy of the laser is 0.3 mJ to 5 mJ.
  14.  樹脂絶縁層に形成されるビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、請求項10~13のいずれか一項に記載の方法。 The method according to any one of claims 10 to 13, wherein a top diameter of the via hole formed in the resin insulating layer is 30 μm or less, and a difference between the top diameter and the bottom diameter is 10 μm or less.
  15.  前記離型フィルムの剥離後、前記樹脂絶縁層の表面を粗化し、粗化表面にめっきにより導体層を形成し、導体層をパターニングして回路を形成することを更に含む、請求項10~14のいずれか一項に記載の方法。 The method further comprises roughening the surface of the resin insulating layer after peeling the release film, forming a conductor layer on the roughened surface by plating, and patterning the conductor layer to form a circuit. The method as described in any one of.
  16.  請求項10~15のいずれか一項に記載の方法により得られる多層プリント配線板。 A multilayer printed wiring board obtained by the method according to any one of claims 10 to 15.
  17.  基材と前記基材上に形成された導電回路とを有する回路基板、及び、当該回路基板に積層された請求項1~9のいずれか一項に記載の樹脂積層体の樹脂絶縁層を含む多層プリント配線板であって、前記樹脂絶縁層がレーザーにより形成されたビアホールを有するとともに、当該ビアホールのトップ径が30μm以下であり、トップ径とボトム径との差が10μm以下である、多層プリント配線板。 A circuit board having a base material and a conductive circuit formed on the base material, and a resin insulating layer of the resin laminate according to any one of claims 1 to 9 laminated on the circuit board. A multilayer printed wiring board, wherein the resin insulating layer has a via hole formed by a laser, the top diameter of the via hole is 30 μm or less, and the difference between the top diameter and the bottom diameter is 10 μm or less. Wiring board.
PCT/JP2015/065934 2014-06-03 2015-06-02 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same WO2015186712A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167031857A KR102126109B1 (en) 2014-06-03 2015-06-02 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
CN201580029640.8A CN106416437A (en) 2014-06-03 2015-06-02 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
JP2016525191A JP6551405B2 (en) 2014-06-03 2015-06-02 Resin laminate for printed wiring board for forming fine via holes, multilayer printed wiring board having fine via holes in resin insulating layer, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115093 2014-06-03
JP2014115093 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186712A1 true WO2015186712A1 (en) 2015-12-10

Family

ID=54766781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065934 WO2015186712A1 (en) 2014-06-03 2015-06-02 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP6551405B2 (en)
KR (1) KR102126109B1 (en)
CN (1) CN106416437A (en)
TW (1) TWI663895B (en)
WO (1) WO2015186712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197379B2 (en) 2017-03-31 2021-12-07 Mitsubishi Gas Chemical Company, Inc. Method for producing printed wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140275A (en) * 1997-11-11 1999-05-25 Sumitomo Chem Co Ltd Polyfuctional cyanic acid ester resin composition and printed circuit board
JPH11186719A (en) * 1997-12-19 1999-07-09 Hitachi Chem Co Ltd Manufacturing multilayered wiring board
JP2000022297A (en) * 1998-06-30 2000-01-21 Kyocera Corp Wiring board and its manufacturing method
JP2002313914A (en) * 2001-04-18 2002-10-25 Sony Corp Method for forming wiring, method for arranging element using it and method for manufacturing image display device
JP2003231762A (en) * 2002-02-13 2003-08-19 Mitsubishi Gas Chem Co Inc Prepreg and laminated sheet
JP2007016105A (en) * 2005-07-06 2007-01-25 Fujitsu Ltd Metal-surface treating liquid, laminated body, and method for manufacturing laminated body
JP2014039068A (en) * 2007-11-22 2014-02-27 Ajinomoto Co Inc Method for producing multilayer printed wiring board

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584956A (en) * 1992-12-09 1996-12-17 University Of Iowa Research Foundation Method for producing conductive or insulating feedthroughs in a substrate
JP3899544B2 (en) 1996-03-06 2007-03-28 日立化成工業株式会社 Manufacturing method of multilayer wiring board
JPH11342492A (en) * 1998-05-29 1999-12-14 Mitsubishi Gas Chem Co Inc Auxiliary sheet for carbon dioxide laser piercing
JPH11330667A (en) * 1998-05-12 1999-11-30 Mitsubishi Gas Chem Co Inc Auxiliary material for drilling carbon dioxide gas laser
JP2001007535A (en) * 1999-06-17 2001-01-12 Mitsubishi Gas Chem Co Inc Manufacture of multilayer printed wiring board with through-hole of high reliability
JP4300687B2 (en) 1999-10-28 2009-07-22 味の素株式会社 Manufacturing method of multilayer printed wiring board using adhesive film
JP4683758B2 (en) * 2001-04-26 2011-05-18 京セラ株式会社 Wiring board manufacturing method
EP1289354B1 (en) * 2001-09-01 2005-11-30 TRUMPF LASERTECHNIK GmbH Process for manufacturing holes in a multilayer printed circuit board
JP4707289B2 (en) * 2001-09-27 2011-06-22 京セラ株式会社 Manufacturing method of multilayer wiring board
KR100443375B1 (en) * 2001-12-28 2004-08-09 삼성전기주식회사 Method for preparing multilayer printed circuit board by build-up process
JP2005005283A (en) * 2003-06-09 2005-01-06 Mitsubishi Gas Chem Co Inc Laser boring auxiliary sheet
WO2005076682A1 (en) * 2004-02-04 2005-08-18 Ibiden Co., Ltd. Multilayer printed wiring board
JP2007307599A (en) * 2006-05-20 2007-11-29 Sumitomo Electric Ind Ltd Body formed with through-hole and laser beam machining method
KR20150120939A (en) * 2012-11-29 2015-10-28 코닝 인코포레이티드 Sacrificial cover layers for laser drilling substrates and methods thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140275A (en) * 1997-11-11 1999-05-25 Sumitomo Chem Co Ltd Polyfuctional cyanic acid ester resin composition and printed circuit board
JPH11186719A (en) * 1997-12-19 1999-07-09 Hitachi Chem Co Ltd Manufacturing multilayered wiring board
JP2000022297A (en) * 1998-06-30 2000-01-21 Kyocera Corp Wiring board and its manufacturing method
JP2002313914A (en) * 2001-04-18 2002-10-25 Sony Corp Method for forming wiring, method for arranging element using it and method for manufacturing image display device
JP2003231762A (en) * 2002-02-13 2003-08-19 Mitsubishi Gas Chem Co Inc Prepreg and laminated sheet
JP2007016105A (en) * 2005-07-06 2007-01-25 Fujitsu Ltd Metal-surface treating liquid, laminated body, and method for manufacturing laminated body
JP2014039068A (en) * 2007-11-22 2014-02-27 Ajinomoto Co Inc Method for producing multilayer printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197379B2 (en) 2017-03-31 2021-12-07 Mitsubishi Gas Chemical Company, Inc. Method for producing printed wiring board

Also Published As

Publication number Publication date
CN106416437A (en) 2017-02-15
KR20170012228A (en) 2017-02-02
TWI663895B (en) 2019-06-21
JP6551405B2 (en) 2019-07-31
TW201611670A (en) 2016-03-16
JPWO2015186712A1 (en) 2017-04-20
KR102126109B1 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
JP6217775B2 (en) Resin composition
JP6163803B2 (en) Resin composition
JP2010168470A (en) Resin composition
JP5446866B2 (en) Epoxy resin composition
JP6428153B2 (en) Resin composition
JPWO2012131971A1 (en) Precured material, roughened precured material and laminate
JP6418273B2 (en) Resin composition
JP2010215858A (en) Epoxy resin composition, sheet-like molding, laminated sheet, prepreg, cured product and multilayer laminated sheet
JP2015230901A (en) Resin laminate and printed wiring board
JP2016079366A (en) Resin composition
JP2012211269A (en) Precured product, roughened precured product and laminate
JP5293065B2 (en) Resin composition
JP2016010964A (en) Resin sheet and printed wiring board
KR102645236B1 (en) Copper foil with an insulating resin layer
JP2015034300A (en) Resin composition
JP6551405B2 (en) Resin laminate for printed wiring board for forming fine via holes, multilayer printed wiring board having fine via holes in resin insulating layer, and method for manufacturing the same
JP6281233B2 (en) Resin composition
JP6653065B2 (en) Resin sheet and printed wiring board
JP2015086293A (en) Prepreg and multilayer printed wiring board
WO2020203418A1 (en) Copper foil having insulating resin layer attached thereto, and laminate and laminate manufacture method each using same
JP2012255174A (en) Resin composition
JP6485728B2 (en) Resin composition for printed wiring board material, prepreg, resin sheet, metal foil-clad laminate and printed wiring board using the same
JP2011195644A (en) Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2015098601A1 (en) Manufacturing method for circuit board
JP2017039898A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525191

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167031857

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802808

Country of ref document: EP

Kind code of ref document: A1