JP2007016105A - Metal-surface treating liquid, laminated body, and method for manufacturing laminated body - Google Patents

Metal-surface treating liquid, laminated body, and method for manufacturing laminated body Download PDF

Info

Publication number
JP2007016105A
JP2007016105A JP2005197806A JP2005197806A JP2007016105A JP 2007016105 A JP2007016105 A JP 2007016105A JP 2005197806 A JP2005197806 A JP 2005197806A JP 2005197806 A JP2005197806 A JP 2005197806A JP 2007016105 A JP2007016105 A JP 2007016105A
Authority
JP
Japan
Prior art keywords
group
metal
insulating resin
metal wiring
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005197806A
Other languages
Japanese (ja)
Other versions
JP4817733B2 (en
Inventor
Shinya Sasaki
伸也 佐々木
Motoaki Tani
元昭 谷
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005197806A priority Critical patent/JP4817733B2/en
Publication of JP2007016105A publication Critical patent/JP2007016105A/en
Application granted granted Critical
Publication of JP4817733B2 publication Critical patent/JP4817733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-surface treating liquid capable of improving the adhesion between a metal surface and an insulating resin; a method for manufacturing a laminated body capable of improving the adhesion between a metal wiring layer and an insulating resin layer; and a laminated body improved in the adhesion between a metal wiring layer and an insulating resin layer. <P>SOLUTION: The metal-surface treating liquid contains a triazine-thiol derivative having a specific structure and is used for treating the metal surface, on which an insulating resin film 2 is to be formed. Preferably, the metal-surface treating liquid is coexisted with an organic acid or a carbonic acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属表面処理技術に関する。より具体的には、金属配線層に接して絶縁樹脂層を有する積層体、たとえば支持基板上に金属配線層と絶縁樹脂層とを持つ回路基板において、金属配線層と絶縁樹脂層との密着性を向上させるための金属配線層の表面処理技術に関する。   The present invention relates to a metal surface treatment technique. More specifically, in a laminate having an insulating resin layer in contact with a metal wiring layer, for example, a circuit board having a metal wiring layer and an insulating resin layer on a support substrate, adhesion between the metal wiring layer and the insulating resin layer The present invention relates to a surface treatment technology of a metal wiring layer for improving the resistance.

近年、プリント配線板の微細化、多層化および電子部品の高密度実装化が急速に進み、プリント配線板に対してビルドアップ多層配線構造の検討が活発に行われている。   In recent years, miniaturization and multilayering of printed wiring boards and high-density mounting of electronic components have rapidly progressed, and a buildup multilayer wiring structure has been actively studied for printed wiring boards.

ビルドアップ多層配線構造では、複数の配線層間に絶縁樹脂層が形成されており、配線層間の導通をとるために、ビアホールと称される微細な穴を絶縁樹脂層に形成する。ビアホールは、たとえば、感光性樹脂を用いてフォトリソグラフィ技術により形成する方法や、レーザを照射し穴を形成する方法で作製される。   In the build-up multilayer wiring structure, an insulating resin layer is formed between a plurality of wiring layers, and fine holes called via holes are formed in the insulating resin layer in order to establish conduction between the wiring layers. The via hole is produced by, for example, a method using a photosensitive resin by a photolithography technique or a method of forming a hole by irradiating a laser.

次いで、無電解メッキまたは電気メッキによって、この絶縁樹脂層上に導体を形成し、これをエッチングして新たな配線パターンを形成する。その後、必要に応じて絶縁樹脂層の形成から配線パターンまでの形成工程を繰り返せば、回路の集積度を高めることができる。   Next, a conductor is formed on the insulating resin layer by electroless plating or electroplating, and this is etched to form a new wiring pattern. Thereafter, if the formation process from the formation of the insulating resin layer to the wiring pattern is repeated as necessary, the degree of circuit integration can be increased.

従来からビルドアップ配線基板の配線のほとんどは、銅から成り立っているが、銅は樹脂との密着性が低いことが知られている。そのため、ビルドアップ配線基板の銅配線とその上側の絶縁樹脂層との密着性を向上させるために、次の処理がなされている。   Conventionally, most of the wiring of the build-up wiring board is made of copper, but copper is known to have low adhesion to a resin. Therefore, in order to improve the adhesion between the copper wiring of the build-up wiring board and the insulating resin layer on the upper side, the following processing is performed.

すなわち、塩化第二銅液、塩化第二鉄液、硫酸/過酸化水素水液、ギ酸系水溶液などで銅配線の表面をエッチング(化学研磨)し、10点平均表面粗さ(R)2μm以上の微細突起を作り、配線の上側に形成される樹脂が微細突起のアンカー作用により銅配線表面に強固に固定されるようにする処理がなされている。 That is, the surface of the copper wiring is etched (chemically polished) with cupric chloride solution, ferric chloride solution, sulfuric acid / hydrogen peroxide solution, formic acid aqueous solution, etc., and 10-point average surface roughness (R z ) 2 μm A process is performed in which the fine protrusions are formed and the resin formed on the upper side of the wiring is firmly fixed to the copper wiring surface by the anchor action of the fine protrusions.

しかしながら、近年ビルドアップ配線基板にも高周波の信号が伝送されるようになり、特に1GHzを超える周波数領域においては、微細突起のある配線構造では表皮効果による伝送損失、特に導体損が増大するという問題が生じてきた。   However, in recent years, high-frequency signals have also been transmitted to build-up wiring boards, and particularly in the frequency region exceeding 1 GHz, there is a problem that transmission loss due to the skin effect, particularly conductor loss, increases in a wiring structure with fine protrusions. Has arisen.

銅配線と絶縁樹脂間との密着性は、上記物理的アンカー効果に起因する密着性以外には、銅と絶縁樹脂中の構成成分との間の化学的密着がある。分子レベルでは、各種のトリアジンチオールを用いた方法が開示されている。具体的には、特許文献1では、導体上にトリアジンチオール層が形成されている。この方法では樹脂がトリアジンチオールと反応可能なABS樹脂等に限定されている。また、特許文献2では、導体上にトリアジンチオール層を形成し、さらにトリアジンチオールと反応または吸着可能な有機化合物を形成し、絶縁樹脂との密着を高めている。しかし、この方法では銅表面の酸化を避けることができないため、0.5kgf/cm(換算値は0.5kN/m)以下のピール強度しか得られなかった。   The adhesion between the copper wiring and the insulating resin includes chemical adhesion between the copper and the constituent components in the insulating resin, in addition to the adhesion due to the physical anchor effect. At the molecular level, methods using various triazine thiols are disclosed. Specifically, in Patent Document 1, a triazine thiol layer is formed on a conductor. In this method, the resin is limited to an ABS resin that can react with triazine thiol. In Patent Document 2, a triazine thiol layer is formed on a conductor, and an organic compound capable of reacting or adsorbing with triazine thiol is further formed to enhance adhesion with the insulating resin. However, since this method cannot avoid oxidation of the copper surface, only a peel strength of 0.5 kgf / cm (converted value is 0.5 kN / m) or less was obtained.

これに対しては、トリアジンチオール皮膜を有機メッキして製膜し、その上に絶縁樹脂層を形成する方法が提案されている(特許文献3参照)。すなわち、まず逆バイアスをかけて銅表面の酸化皮膜を除去し、しかる後にトリアジンチオールを有機メッキする方法である。しかしながら、メッキするためにはシード電極層が必須であり、孤立した配線部位への適用が困難であるといった問題がある。   For this, a method has been proposed in which a triazine thiol film is formed by organic plating to form an insulating resin layer thereon (see Patent Document 3). That is, first, a reverse bias is applied to remove the oxide film on the copper surface, and then triazine thiol is organically plated. However, a seed electrode layer is essential for plating, and there is a problem that it is difficult to apply to an isolated wiring site.

なお、これまで金属表面と絶縁樹脂との密着性に関する問題を、銅を例にして説明したが、金属表面と絶縁樹脂との密着性の問題は、多かれ少なかれ、他の金属についても存在する問題である。

特開平10−335782号公報(特許請求の範囲) 特開2001−203462号公報(特許請求の範囲) 森邦夫,表面技術,2000年,第51巻,No.3,p.276
Up to now, the problem regarding the adhesion between the metal surface and the insulating resin has been explained using copper as an example. However, the problem with the adhesion between the metal surface and the insulating resin is more or less the problem that also exists for other metals. It is.

Japanese Patent Laid-Open No. 10-335782 (Claims) JP 2001-203462 A (Claims) Kunio Mori, Surface Technology, 2000, 51, No. 3, p. 276

本発明は、上記問題を解決し、金属表面と絶縁樹脂との密着性を向上させる新規な技術を提供することを目的としている。本発明のさらに他の目的および利点は、以下の説明から明らかになるであろう。   An object of the present invention is to solve the above problems and provide a novel technique for improving the adhesion between a metal surface and an insulating resin. Still other objects and advantages of the present invention will become apparent from the following description.

本発明の第一の態様によれば、下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを含んでなる金属表面処理液が提供される。   According to the first aspect of the present invention, there is provided a metal surface treatment liquid comprising at least one triazine thiol derivative having a structure represented by the following formulas (1) to (3).

Figure 2007016105
Figure 2007016105

Figure 2007016105
Figure 2007016105

Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)
本発明態様により金属表面と絶縁樹脂との密着性を向上させることができる。具体的には金属配線層に接して絶縁樹脂層を有する積層体において、金属配線層と絶縁樹脂層との間の密着性を向上させることができる。従って、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を得ることができる。
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group.)
According to the embodiment of the present invention, the adhesion between the metal surface and the insulating resin can be improved. Specifically, in a laminate having an insulating resin layer in contact with the metal wiring layer, adhesion between the metal wiring layer and the insulating resin layer can be improved. Therefore, it is possible to obtain a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure.

金属表面処理液が、さらに、有機酸および炭酸からなる群から選ばれた少なくとも一つの酸を含むこと、金属表面処理液のpHが7以下であること、金属表面処理液が、水とアルコールとの少なくとも一つを含んでなること、金属表面処理液が、金属表面と絶縁樹脂との密着性を向上させるための処理液であること、とりわけ、金属表面処理液が、金属配線層と絶縁樹脂層との密着性を向上させるための処理液であること、が好ましい。   The metal surface treatment liquid further contains at least one acid selected from the group consisting of an organic acid and carbonic acid, the pH of the metal surface treatment liquid is 7 or less, and the metal surface treatment liquid comprises water and alcohol. The metal surface treatment liquid is a treatment liquid for improving the adhesion between the metal surface and the insulating resin. In particular, the metal surface treatment liquid comprises the metal wiring layer and the insulating resin. It is preferable that it is a processing liquid for improving adhesiveness with a layer.

本発明の他の一態様によれば、金属配線層に接して絶縁樹脂層を有する積層体であって、当該金属配線表面と当該絶縁樹脂層との間に、下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを挟んだ積層体が提供される。   According to another aspect of the present invention, there is provided a laminated body having an insulating resin layer in contact with a metal wiring layer, wherein the following formulas (1) to (3) are provided between the metal wiring surface and the insulating resin layer. And a laminate sandwiching at least one of the triazine thiol derivatives having the structure shown in FIG.

Figure 2007016105
Figure 2007016105

Figure 2007016105
Figure 2007016105

Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)。本発明態様により、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を得ることができる。前記金属配線表面と前記絶縁樹脂層との間に、さらに、シランカップリング剤を挟んだ積層体であることが好ましい。
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group). According to the aspect of the present invention, it is possible to obtain a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure. A laminate in which a silane coupling agent is further sandwiched between the metal wiring surface and the insulating resin layer is preferable.

本発明のさらに他の一態様によれば、金属配線層に接して絶縁樹脂層を有する積層体であって、上記の金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成してなる積層体が提供される。本発明態様により、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を得ることができる。   According to still another aspect of the present invention, a laminate having an insulating resin layer in contact with a metal wiring layer, the metal wiring surface is treated with the metal surface treatment liquid, and the insulating resin is formed thereon. A laminated body formed by forming a layer is provided. According to the aspect of the present invention, it is possible to obtain a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure.

前記金属表面処理液での金属配線表面の処理が、前記金属表面処理液中への金属配線表面の浸漬または前記金属表面処理液による金属配線表面へのスプレーであること、および、前記金属表面処理液による前記金属配線表面の処理後、前記絶縁樹脂層の形成前に、金属表面処理液により処理された金属配線表面をシラン系カップリング剤で処理してなること、が好ましい。   The treatment of the metal wiring surface with the metal surface treatment liquid is immersion of the metal wiring surface in the metal surface treatment liquid or spraying the metal wiring surface with the metal surface treatment liquid, and the metal surface treatment It is preferable that the surface of the metal wiring treated with the metal surface treatment liquid is treated with a silane coupling agent after the treatment of the metal wiring surface with the liquid and before the formation of the insulating resin layer.

また、上記二つの積層体の態様に共通して、前記金属配線層が銅または銅合金よりなること、前記積層体が多層配線構造を持つ半導体集積回路装置であること、および、前記絶縁樹脂層が、ポリイミド樹脂、エポキシ樹脂、ビスマレイミド樹脂、マレイミド樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、オレフィン樹脂、フッ素含有樹脂、液晶ポリマー、ポリエーテルイミド樹脂およびポリエーテルエーテルケトン樹脂からなる群から選ばれた少なくとも一つの樹脂を含んでなるものであること、が好ましい。   Further, in common with the two laminated body embodiments, the metal wiring layer is made of copper or a copper alloy, the laminated body is a semiconductor integrated circuit device having a multilayer wiring structure, and the insulating resin layer From the group consisting of polyimide resin, epoxy resin, bismaleimide resin, maleimide resin, cyanate resin, polyphenylene ether resin, polyphenylene oxide resin, olefin resin, fluorine-containing resin, liquid crystal polymer, polyetherimide resin and polyether ether ketone resin It is preferable that it comprises at least one selected resin.

本発明の更に他の一態様によれば、金属配線層に接して絶縁樹脂層を有する積層体の製造方法において、上記金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成する、積層体の製造方法が提供される。本発明態様により、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を製造することができる。   According to still another aspect of the present invention, in a method for manufacturing a laminate having an insulating resin layer in contact with a metal wiring layer, the metal wiring surface is treated with the metal surface treatment liquid, and the insulating resin is formed thereon. A method of manufacturing a laminate is provided that forms a layer. According to the aspect of the present invention, it is possible to manufacture a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure.

前記金属表面処理液での金属配線表面の処理が、前記金属表面処理液中への金属配線表面の浸漬または前記金属表面処理液による金属配線表面へのスプレーであること、前記金属表面処理液による前記金属配線表面の処理後、前記絶縁樹脂層の形成前に、金属表面処理液により処理された金属配線表面をシラン系カップリング剤で処理すること、前記金属配線層が銅または銅合金よりなること、前記積層体が多層配線構造を持つ半導体集積回路装置であること、および、前記金属表面処理液中の前記トリアジンチオール誘導体の濃度が0.1mmol/L〜1000mmol/Lの範囲にあること、が好ましい。   The treatment of the surface of the metal wiring with the metal surface treatment liquid is immersion of the surface of the metal wiring in the metal surface treatment liquid or spray onto the surface of the metal wiring with the metal surface treatment liquid. After the treatment of the metal wiring surface and before the formation of the insulating resin layer, the metal wiring surface treated with the metal surface treatment liquid is treated with a silane coupling agent, and the metal wiring layer is made of copper or a copper alloy. The laminated body is a semiconductor integrated circuit device having a multilayer wiring structure, and the concentration of the triazine thiol derivative in the metal surface treatment liquid is in the range of 0.1 mmol / L to 1000 mmol / L. Is preferred.

本発明により金属表面と絶縁樹脂との密着性を向上させることができる。具体的には金属配線層に接して絶縁樹脂層を有する積層体において、金属配線層と絶縁樹脂層との間の密着性を向上させることができる。従って、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を得ることができる。   According to the present invention, the adhesion between the metal surface and the insulating resin can be improved. Specifically, in a laminate having an insulating resin layer in contact with the metal wiring layer, adhesion between the metal wiring layer and the insulating resin layer can be improved. Therefore, it is possible to obtain a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure.

以下に、本発明の実施の形態を図、式、実施例等を使用して説明する。なお、これらの図、式、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, formulas, examples and the like. In addition, these figures, formulas, examples, etc., and explanations illustrate the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

本発明に係る金属表面処理液は、特定の化学構造を有するトリアジンチオール誘導体を少なくとも一つ含んでなる。   The metal surface treatment liquid according to the present invention comprises at least one triazine thiol derivative having a specific chemical structure.

本発明において金属表面処理液による処理の対象となる金属表面は、無電解メッキ法、電解メッキ法、蒸着法、スパッタ法、ダマシン法等どのような方法で作製された金属の表面であってもよい。なお、本発明において「金属」には合金も含まれる。この金属は、公知の金属(合金を含む)から適宜選択することができる。たとえば銅、金、銀、ニッケルおよびこれらを含む合金を例示することができる。合金における上記金属の含有量については特に制限はない。特に金属が空気中における酸化等の化学的変化を受け易いものである場合に本発明の効果が大きい。この意味で、本発明において「金属」(たとえば、本発明に係る金属配線)は銅または銅合金の場合が好ましい。   In the present invention, the metal surface to be treated with the metal surface treatment liquid may be a metal surface produced by any method such as an electroless plating method, an electrolytic plating method, a vapor deposition method, a sputtering method, or a damascene method. Good. In the present invention, “metal” includes alloys. This metal can be appropriately selected from known metals (including alloys). For example, copper, gold, silver, nickel and alloys containing these can be exemplified. There is no restriction | limiting in particular about content of the said metal in an alloy. The effect of the present invention is particularly great when the metal is susceptible to chemical changes such as oxidation in the air. In this sense, in the present invention, the “metal” (for example, the metal wiring according to the present invention) is preferably copper or a copper alloy.

本発明に係る金属表面は、上記のアンカー処理を受けたものであってもよい。そのような場合にはより高い密着性が得られることが多い。アンカー処理における金属表面10点平均表面粗さは0.5〜5μmの範囲が好ましい。   The metal surface according to the present invention may have been subjected to the anchor treatment described above. In such a case, higher adhesion is often obtained. The metal surface 10-point average surface roughness in the anchor treatment is preferably in the range of 0.5 to 5 μm.

上記特定の化学構造を有するトリアジンチオール誘導体は、下記式(1)〜(3)のいずれかで表すことができる。   The triazine thiol derivative having the specific chemical structure can be represented by any of the following formulas (1) to (3).

Figure 2007016105
Figure 2007016105

Figure 2007016105
Figure 2007016105

Figure 2007016105
式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。
Figure 2007016105
In the formulas (1) to (3), R is, independently of each other, a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A is hydrogen, NH 4 , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, methacryloxy independently for each formula Group, acryloxy group, amino group, ureido group, mercapto group or isocyanate group.

上記特定の化学構造を有するトリアジンチオール誘導体により密着力が向上する理由は、一以上のメルカプト基が金属と反応し、残ったメルカプト基に加えて、下記式(4)で表される構造部分が絶縁樹脂と反応することにより高い密着力が得られるからであると推察される。なお、式(4)中のnおよびXは、式(1)〜(3)中のnおよびXと同じ意味を有する。   The reason why the adhesion is improved by the triazine thiol derivative having the above specific chemical structure is that one or more mercapto groups react with the metal, and in addition to the remaining mercapto group, the structural portion represented by the following formula (4) It is presumed that this is because high adhesion can be obtained by reacting with the insulating resin. In addition, n and X in Formula (4) have the same meaning as n and X in Formulas (1) to (3).

Figure 2007016105
このトリアジンチオール誘導体は、公知の任意の方法で合成することができる。たとえば、1,3,5−トリアジン−2,4,6−トリチオンと水酸化アルカリ金属若しくはアルカリ金属ボロンハイドライドとを水若しくは有機溶媒に溶解するか、または、1,3,5−トリアジン−2,4,6−トリチオンとアミンとを水若しくは有機溶媒に溶解することによりトリアジントリチオールやその塩を作製し、このようにして得たトリチオール化合物をシラン化合物と反応させて作製することができる。
Figure 2007016105
This triazine thiol derivative can be synthesized by any known method. For example, 1,3,5-triazine-2,4,6-trithione and alkali metal hydroxide or alkali metal boron hydride are dissolved in water or an organic solvent, or 1,3,5-triazine-2, A triazine trithiol or a salt thereof can be prepared by dissolving 4,6-trithione and an amine in water or an organic solvent, and the trithiol compound thus obtained can be reacted with a silane compound.

このトリアジンチオール誘導体は、本発明に係る金属表面処理液中に1種のみ存在しても複数存在してもよい。本発明の趣旨に反しない限り、その純度にも特に制限はなく、中間体や副産物が混在していてもよい場合もある。   One or more triazine thiol derivatives may be present in the metal surface treatment liquid according to the present invention. As long as it is not contrary to the gist of the present invention, the purity is not particularly limited, and an intermediate or a by-product may be mixed.

本発明に係る金属表面処理液中におけるトリアジンチオール誘導体の濃度は、処理に必要な時間等実情に応じて適宜定めればよい。一般的には0.1mmol/L〜1000mmol/Lの範囲が好ましい。トリアジンチオール誘導体が複数ある場合はその合計が0.1mmol/L〜1000mmol/Lの範囲が好ましい。0.1mmol/Lよりの薄い濃度では、金属表面に十分な膜厚のトリアジンチオール誘導体層が形成されず、また、1000mmol/Lよりも濃いとトリアジンチオール誘導体層が厚くなりすぎ、トリアジンチオール誘導体同士の反応が起こるため、絶縁樹脂と反応することが困難になる場合がある。   What is necessary is just to determine suitably the density | concentration of the triazine thiol derivative in the metal surface treatment liquid which concerns on this invention according to actual conditions, such as time required for a process. Generally, the range of 0.1 mmol / L to 1000 mmol / L is preferable. When there are a plurality of triazine thiol derivatives, the total is preferably in the range of 0.1 mmol / L to 1000 mmol / L. When the concentration is lower than 0.1 mmol / L, a triazine thiol derivative layer having a sufficient thickness is not formed on the metal surface. When the concentration is higher than 1000 mmol / L, the triazine thiol derivative layer becomes too thick. Since this reaction occurs, it may be difficult to react with the insulating resin.

本発明に係る金属表面処理液は、さらに、有機酸および炭酸からなる群から選ばれた少なくとも一つの酸を含むことが好ましい。本発明に係る金属表面が空気中における酸化等の化学的変化を受け易いものである場合には、酸化被膜が生じ、トリアジンチオール誘導体による(ピール強度等で測定できる)密着力が低下する場合があるが、本発明に係る有機酸や炭酸(以下「本発明に係る有機酸や炭酸」を纏めて言う場合は「「本発明に係る酸」と呼称する)が共存すると、密着性の低下を防止することが可能となる。なお、本発明において「金属表面」には、そのような化学的変化を受ける前の表面も、そのような化学的変化を受けた後の表面も含まれるが、本発明に係る酸が共存する金属表面処理液は、後者に対して好ましく使用することができる。たとえば銅配線を大気中で形成した場合や、銅配線を、酸素に触れない環境下で形成した後空気に触れた場合が該当する。   The metal surface treatment liquid according to the present invention preferably further contains at least one acid selected from the group consisting of an organic acid and carbonic acid. In the case where the metal surface according to the present invention is susceptible to chemical changes such as oxidation in the air, an oxide film is formed, and the adhesion (measured by peel strength, etc.) due to the triazine thiol derivative may be reduced. However, when the organic acid or carbonic acid according to the present invention (hereinafter referred to as "the acid according to the present invention" collectively refers to "the organic acid or carbonic acid according to the present invention"), the adhesiveness is reduced. It becomes possible to prevent. In the present invention, the “metal surface” includes a surface before undergoing such a chemical change and a surface after undergoing such a chemical change, but the acid according to the present invention coexists. The metal surface treatment liquid can be preferably used for the latter. For example, the case where the copper wiring is formed in the atmosphere, or the case where the copper wiring is formed in an environment where it is not exposed to oxygen and then exposed to air is applicable.

本発明に係る酸はトリアジンチオール誘導体と共存して金属表面に作用することが重要である。たとえば、本発明に係る酸で処理した後にトリアジンチオール誘導体で処理する場合には、両処理の間に短時間でも空気に曝されると効果が減少する。両処理の間に短時間でも空気に曝さないようにする場合にはある程度の効果は得られると思われるが、装置が複雑になりコストアップにつながる。   It is important that the acid according to the present invention acts on the metal surface together with the triazine thiol derivative. For example, in the case of treating with the acid according to the present invention and then treating with a triazine thiol derivative, the effect decreases when exposed to air even for a short time between both treatments. If it is not exposed to air even for a short time between both treatments, it seems that a certain effect can be obtained, but the apparatus becomes complicated and leads to an increase in cost.

本発明に係る有機酸の種類については特に制限はなく、目的に応じて適宜選択することができる。炭素数1〜6までの、飽和または不飽和の脂肪族または脂環族の基と1個または2個のカルボン酸基とを有する有機酸を例示することができる。ヒドロキシ基が含まれていてもよい。より具体的には、ギ酸、酢酸、プロピオン酸、オクチル酸、グリコール酸、酪酸、イソ酪酸、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、マレイン酸、アセチレンジカルボン酸、乳酸、酒石酸、リンゴ酸およびクエン酸を例示することができる。   There is no restriction | limiting in particular about the kind of organic acid which concerns on this invention, According to the objective, it can select suitably. Examples thereof include organic acids having 1 to 6 carbon atoms and having saturated or unsaturated aliphatic or alicyclic groups and one or two carboxylic acid groups. A hydroxy group may be included. More specifically, formic acid, acetic acid, propionic acid, octylic acid, glycolic acid, butyric acid, isobutyric acid, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, oxalic acid, malonic acid, succinic acid, adipic acid, maleic acid And acetylenedicarboxylic acid, lactic acid, tartaric acid, malic acid and citric acid.

本発明に係る炭酸は公知のどのような方法で作製してもよい。炭酸塩を塩酸等で中和して作製してもよく、水中に炭酸ガスを吹き込んで作製してもよい。   Carbonic acid according to the present invention may be produced by any known method. It may be prepared by neutralizing carbonate with hydrochloric acid or the like, or by blowing carbon dioxide into water.

本発明に係る酸は、系が中性または酸性側の時にその効果を発揮する。pHが7を超えると酸化被膜を溶解する速度が極めて遅くなる。すなわち、本発明に係る金属表面処理液のpHが7以下であることが好ましい。系のpHは、本発明に係る金属表面処理液中における本発明に係る酸の種類および濃度の他に、本発明に係るトリアジンチオール誘導体の化学構造、その濃度等により変化するので、本発明に係る酸の種類と使用量は、本発明に係るトリアジンチオール誘導体の種類と使用量とを考慮して、本発明に係る金属表面処理液のpHが7以下となるように決めることが好ましい。本発明に係る金属表面処理液のpHは3〜7の範囲にあることがより好ましい。   The acid according to the present invention exhibits its effect when the system is neutral or acidic. When pH exceeds 7, the speed | rate which melt | dissolves an oxide film will become very slow. That is, the pH of the metal surface treatment liquid according to the present invention is preferably 7 or less. The pH of the system varies depending on the chemical structure of the triazine thiol derivative according to the present invention, its concentration, etc. in addition to the type and concentration of the acid according to the present invention in the metal surface treatment liquid according to the present invention. The type and amount of acid used are preferably determined so that the pH of the metal surface treatment solution according to the present invention is 7 or less in consideration of the type and amount of the triazine thiol derivative according to the present invention. The pH of the metal surface treatment liquid according to the present invention is more preferably in the range of 3-7.

本発明に係るトリアジンチオール誘導体等は溶媒中に溶解して使用される。使用できる溶媒には特に制限はないが、溶解度及び使用の容易さから、水とアルコールとの少なくともいずれか一方を含むものが好ましい。水とアルコールの混合溶媒または水溶媒がより好ましい。   The triazine thiol derivative according to the present invention is used after being dissolved in a solvent. Although there is no restriction | limiting in particular in the solvent which can be used, The thing containing at least any one of water and alcohol is preferable from solubility and the ease of use. A mixed solvent of water and alcohol or a water solvent is more preferable.

本発明に係る金属表面処理液には、本発明の趣旨に反しない限り、他の剤を共存させてもよい。   In the metal surface treatment liquid according to the present invention, other agents may coexist as long as not departing from the spirit of the present invention.

本発明に係る金属表面処理液は、金属表面と絶縁樹脂との間の密着性を向上させること、たとえば金属配線層と絶縁樹脂層との間の密着性を向上させること、を目的とする金属表面の処理に適する。具体的には金属配線層に接して絶縁樹脂層を有する積層体(たとえば多層配線構造を持つ半導体集積回路装置)において、金属配線層と絶縁樹脂層との間の密着性を向上させることができる。従って、密着性に優れた積層体、たとえば多層配線構造を持つ半導体集積回路装置を得ることができる。   The metal surface treatment liquid according to the present invention is a metal intended to improve the adhesion between the metal surface and the insulating resin, for example, to improve the adhesion between the metal wiring layer and the insulating resin layer. Suitable for surface treatment. Specifically, in a laminate having an insulating resin layer in contact with the metal wiring layer (for example, a semiconductor integrated circuit device having a multilayer wiring structure), the adhesion between the metal wiring layer and the insulating resin layer can be improved. . Therefore, it is possible to obtain a laminated body having excellent adhesion, for example, a semiconductor integrated circuit device having a multilayer wiring structure.

このような積層体は、上記金属表面処理液で金属配線表面を処理し、その上に絶縁樹脂層を形成することで得ることができる。この処理については特に制限はないが、金属表面処理液中への金属配線表面の浸漬または金属表面処理液による金属配線表面へのスプレーが簡便かつ確実であり好ましい。なお、金属表面処理液は、使用直前に所定の組成にすればよい。スプレーの場合には、複数の噴射源に別々の組成の処理液があり、スプレーにより本発明に係る組成になるものであってもよい場合もある。   Such a laminate can be obtained by treating the metal wiring surface with the metal surface treatment liquid and forming an insulating resin layer thereon. The treatment is not particularly limited, but immersion of the metal wiring surface in the metal surface treatment solution or spraying on the metal wiring surface with the metal surface treatment solution is preferable because it is simple and reliable. In addition, what is necessary is just to make a metal surface treatment liquid into a predetermined composition just before use. In the case of spraying, there are cases where processing liquids having different compositions are present in a plurality of injection sources, and the composition according to the present invention may be obtained by spraying.

本発明に係る金属配線は、上述のごとく、無電解メッキ法、電解メッキ法、蒸着法、スパッタ法、ダマシン法等どのような方法で作製されたものでもよく、インナービアホール、スルーホール、接続端子等を含んだものでもよい。処理の際に金属配線に通電する必要もないため、孤立した配線部位への適用も可能である。   As described above, the metal wiring according to the present invention may be produced by any method such as electroless plating, electrolytic plating, vapor deposition, sputtering, damascene, inner via hole, through hole, connection terminal. Etc. may be included. Since it is not necessary to energize the metal wiring during processing, it can be applied to isolated wiring parts.

本発明に係る金属表面上の樹脂や金属配線上に設ける絶縁樹脂層には、公知の材料を選択して使用することができる。具体的には、耐熱性や絶縁性に優れた、ポリイミド樹脂、エポキシ樹脂、ビスマレイミド樹脂、マレイミド樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、オレフィン樹脂、フッ素含有樹脂、液晶ポリマー、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂等を挙げることができる。なお、これらを複数種使用してもよい。   A known material can be selected and used for the resin on the metal surface and the insulating resin layer provided on the metal wiring according to the present invention. Specifically, polyimide resin, epoxy resin, bismaleimide resin, maleimide resin, cyanate resin, polyphenylene ether resin, polyphenylene oxide resin, olefin resin, fluorine-containing resin, liquid crystal polymer, polyether having excellent heat resistance and insulation properties Examples thereof include imide resins and polyether ether ketone resins. A plurality of these may be used.

本発明に係る金属表面処理液による金属配線表面の処理後、絶縁樹脂層の形成前に、金属表面処理液により処理された金属配線表面をカップリング剤で処理してもよい。このようにすると、金属表面上にあるトリアジンチオール誘導体の金属と反応に関与しないメルカプト基や式(4)の基がカップリング剤と反応し、さらにカップリング剤の官能基が絶縁樹脂と反応することでトリアジンチオール誘導体のみでは反応性に乏しい絶縁樹脂に対しても高い密着力が得られるようになる。この目的のために使用できるカップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。特にシラン系カップリング剤が好ましい。カップリング剤の分子中に、アミノ基、メルカプト基、エポキシ基、イミダゾール基、ジアルキルアミノ基、ピリジン基の少なくとも一つを含むことが好ましい。   After the metal wiring surface is treated with the metal surface treatment liquid according to the present invention, the metal wiring surface treated with the metal surface treatment liquid may be treated with a coupling agent before the insulating resin layer is formed. If it does in this way, the mercapto group and group of Formula (4) which do not participate in reaction with the metal of the triazine thiol derivative on the metal surface will react with the coupling agent, and the functional group of the coupling agent will react with the insulating resin. As a result, only the triazine thiol derivative can provide high adhesion to an insulating resin having poor reactivity. Examples of coupling agents that can be used for this purpose include silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like. A silane coupling agent is particularly preferable. It is preferable that the molecule of the coupling agent contains at least one of an amino group, a mercapto group, an epoxy group, an imidazole group, a dialkylamino group, and a pyridine group.

シラン系カップリング剤は、公知のシラン系カップリング剤から適宜選択することができる。具体例としては、ビニルトリクロロシラン、ビニルトリス(2−メトキシ)シラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。   The silane coupling agent can be appropriately selected from known silane coupling agents. Specific examples include vinyltrichlorosilane, vinyltris (2-methoxy) silane, vinyltriethoxysilane, methacryloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycidoxypropyl. Trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3 -Aminopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane and the like.

カップリング剤による処理については特に制限はないが、カップリング剤液中への銅配線表面の浸漬またはカップリング剤液による銅配線表面へのスプレーが簡便かつ確実であり好ましい。   Although there is no restriction | limiting in particular about the process by a coupling agent, The immersion to the copper wiring surface in a coupling agent liquid or the spraying to the copper wiring surface by a coupling agent liquid is simple and reliable, and preferable.

なお、上記を積層体の構成の観点から見直すと、金属配線層に接して絶縁樹脂層を有する積層体であって、当該金属配線表面と当該絶縁樹脂層との間に、上記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを挟んだ積層体や、金属配線表面と絶縁樹脂層との間に、さらに、シランカップリング剤を挟んだ積層体は、金属配線層と絶縁樹脂層との間の密着性の向上した積層体であると考えることができる。   When the above is reconsidered from the viewpoint of the configuration of the laminate, the laminate has an insulating resin layer in contact with the metal wiring layer, and the above formula (1) is provided between the metal wiring surface and the insulating resin layer. A laminate in which at least one of the triazine thiol derivatives having the structure shown in (3) is sandwiched, or a laminate in which a silane coupling agent is further sandwiched between the metal wiring surface and the insulating resin layer, It can be considered that the laminate has improved adhesion between the layer and the insulating resin layer.

この場合、挟まれたトリアジンチオール誘導体の存在は、オージェ分析、X線マイクロアナライザー(XMA)分析、X線光電子分光装置(XPS)、FT−IR分析等で確認することができる。挟まれたトリアジンチオール誘導体は、金属配線層や絶縁樹脂層と、これまで説明してきたような結合等を生じているものと考えられる。また、シランカップリング剤は、トリアジンチオール誘導体の層と絶縁樹脂層との間に生じさせることが好ましいと言える。ただし、本発明に係る密着効果が発揮される限り、金属配線層や絶縁樹脂層との結合が実際に生じているかどうかの検証やシランカップリング剤がどこにあるかの検証は不要である。   In this case, the presence of the sandwiched triazine thiol derivative can be confirmed by Auger analysis, X-ray microanalyzer (XMA) analysis, X-ray photoelectron spectrometer (XPS), FT-IR analysis, or the like. It is considered that the triazine thiol derivative sandwiched between the metal wiring layer and the insulating resin layer forms a bond as described above. In addition, it can be said that the silane coupling agent is preferably formed between the triazine thiol derivative layer and the insulating resin layer. However, as long as the adhesion effect according to the present invention is exhibited, it is not necessary to verify whether or not bonding with the metal wiring layer or the insulating resin layer actually occurs or where the silane coupling agent is.

本発明に係る金属表面処理液で当該金属配線表面を処理してなる積層体は、一つの積層体中に金属配線層と絶縁樹脂層との組み合わせを複数個有する場合も多い。その典型例がビルドアップ多層回路基板である。以下に、本発明の配線表面処理方法を用いてビルドアップ多層回路基板を形成する方法を図1を用いて例示的に説明する。   The laminate obtained by treating the surface of the metal wiring with the metal surface treatment liquid according to the present invention often has a plurality of combinations of metal wiring layers and insulating resin layers in one laminate. A typical example is a build-up multilayer circuit board. Hereinafter, a method for forming a build-up multilayer circuit board using the wiring surface treatment method of the present invention will be described with reference to FIG.

図1は、ビルドアップ多層回路基板形成時の模式的断面図である。まず、図1(1)に示すように、回路を形成したガラス繊維強化樹脂基板1上に、ビルドアップ絶縁樹脂層2を形成する。絶縁樹脂層2の表面は、密着性を得るための表面粗化処理を施した後、無電解メッキやスパッタ法などで、金属の通電層3を形成する。   FIG. 1 is a schematic cross-sectional view when forming a build-up multilayer circuit board. First, as shown in FIG. 1A, a build-up insulating resin layer 2 is formed on a glass fiber reinforced resin substrate 1 on which a circuit is formed. The surface of the insulating resin layer 2 is subjected to a surface roughening treatment for obtaining adhesion, and then a metal conductive layer 3 is formed by electroless plating or sputtering.

次に図1(2)に示すように、レジスト4をパターニング形成し、ついで図1(3)に示すように、その開口部に電気メッキ金属5を成長させる。ついで図1(4)に示すように、レジストを剥離した後に、図1(5)に示すように通電層3をエッチングで除去する。   Next, as shown in FIG. 1 (2), a resist 4 is formed by patterning. Then, as shown in FIG. 1 (3), an electroplated metal 5 is grown in the opening. Next, as shown in FIG. 1 (4), after the resist is removed, the conductive layer 3 is removed by etching as shown in FIG. 1 (5).

次に図1(6)に示すように、本発明に係る金属表面処理液で表面処理を行う。処理方法は、浸漬法やスプレーによる吹き付け法などを用いることができる。処理後、水等の適当な液体で処理面を洗浄すると、本発明に係るトリアジン誘導体6が配線(金属メッキ部分)の上にのみ残存する。   Next, as shown in FIG. 1 (6), the surface treatment is performed with the metal surface treatment liquid according to the present invention. As a treatment method, a dipping method, a spraying method using a spray, or the like can be used. After the treatment, when the treated surface is washed with an appropriate liquid such as water, the triazine derivative 6 according to the present invention remains only on the wiring (metal plating portion).

その後、図1(7)に示すように、配線表面にシラン系カップリング剤処理を行い、シラン系カップリング剤層7を形成してもよい。カップリング剤処理の方法としては、浸漬法、スプレーによる吹きつけ法などを用いることができる。   Thereafter, as shown in FIG. 1 (7), the wiring surface may be treated with a silane coupling agent to form a silane coupling agent layer 7. As a method for the coupling agent treatment, an immersion method, a spraying method using a spray, or the like can be used.

この後、図1(8)に示すように、次の層である絶縁樹脂層8を形成する。絶縁樹脂層の形成には公知の方法、たとえば半硬化の樹脂シートを貼り付ける方法や溶剤を含む樹脂ワニスを塗布する方法などを採用することができる。ついで、上下の配線の導通をとるために、ビアホールを形成する。このプロセスを繰り返すことにより、多層回路基板を形成できる。   Thereafter, as shown in FIG. 1 (8), an insulating resin layer 8 as the next layer is formed. For forming the insulating resin layer, a known method such as a method of attaching a semi-cured resin sheet or a method of applying a resin varnish containing a solvent can be employed. Next, a via hole is formed in order to establish conduction between the upper and lower wirings. By repeating this process, a multilayer circuit board can be formed.

次に本発明の実施例および比較例を詳述する。下記例中のトリアジン誘導体の番号は表1のトリアジン誘導体の番号と一致する。なお、すべての例は空気雰囲気中で行った。   Next, examples and comparative examples of the present invention will be described in detail. The numbers of triazine derivatives in the following examples correspond to the numbers of triazine derivatives in Table 1. All examples were performed in an air atmosphere.

[実施例1]
0.1mol/Lの2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)および0.1mol/Lのγ−アミノプロピルトリエトキシシラン(KBE−903:信越化学工業製)をメチルテトラヒドロフラン中に混合し、80℃で2時間還流し、アミノ基を有するトリアジン誘導体1を得た。
[Example 1]
0.1 mol / L 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Sunthiol N-1, manufactured by Sankyo Kasei) and 0.1 mol / L γ-aminopropyltriethoxy Silane (KBE-903: manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed in methyltetrahydrofuran and refluxed at 80 ° C. for 2 hours to obtain triazine derivative 1 having an amino group.

厚さ35μmの電気メッキ銅箔を、1重量%のトリアジン誘導体1および、トリアジン誘導体1を溶解させるための水酸化ナトリウム0.1重量%を溶解させた水溶液中に5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。銅箔上にトリアジン誘導体が残存することをオージェ電子分光法で確認した。   An electroplated copper foil having a thickness of 35 μm was immersed for 5 minutes in an aqueous solution in which 1% by weight of triazine derivative 1 and 0.1% by weight of sodium hydroxide for dissolving triazine derivative 1 were dissolved, and then washed with water. And baked at 100 ° C. for 30 minutes and dried. It was confirmed by Auger electron spectroscopy that the triazine derivative remained on the copper foil.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間の加熱でエポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Then, it removed from the vacuum press and the epoxy resin was hardened by heating at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、密着力としてのピール強度を測定した。1.1kgf/cm(換算値は1.1kN/m)と既存のアンカー効果と同程度の高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength as adhesion was measured. 1.1 kgf / cm (converted value is 1.1 kN / m), a high peel strength comparable to the existing anchor effect was obtained.

[実施例2]
0.1mol/Lの2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)および0.1mol/Lのγ−メルカプトプロピルトリメトキシシラン(KBM−803:信越化学工業製)をメチルテトラヒドロフラン中に混合し、80℃で2時間還流し、メルカプト基を有するトリアジン誘導体2を得た。
[Example 2]
0.1 mol / L 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Santhiol N-1, manufactured by Sankyo Kasei) and 0.1 mol / L γ-mercaptopropyltrimethoxy Silane (KBM-803: manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed in methyltetrahydrofuran and refluxed at 80 ° C. for 2 hours to obtain a triazine derivative 2 having a mercapto group.

厚さ35μmの電気メッキ銅箔を、1重量%のトリアジン誘導体2および水酸化ナトリウム0.1重量%を溶解させた水溶液中に5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。   An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution in which 1% by weight of triazine derivative 2 and 0.1% by weight of sodium hydroxide were dissolved, washed with water, baked at 100 ° C. for 30 minutes, Dried.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間の加熱でエポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Then, it removed from the vacuum press and the epoxy resin was hardened by heating at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。1.0kgf/cm(換算値は1.0kN/m)と既存のアンカー効果と同程度の高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. A peel strength as high as 1.0 kgf / cm (converted value is 1.0 kN / m), which is similar to the existing anchor effect, was obtained.

[実施例3]
0.1mol/Lの2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)および0.1mol/Lのγ−グリシドキシプロピルトリメトキシシラン(KBM−403:信越化学工業製)をメチルテトラヒドロフラン中に混合し、80℃で2時間還流し、エポキシ基を有するトリアジン誘導体3を得た。
[Example 3]
0.1 mol / L 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Sunthiol N-1, manufactured by Sankyo Kasei) and 0.1 mol / L γ-glycidoxypropyl Trimethoxysilane (KBM-403: manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed in methyltetrahydrofuran and refluxed at 80 ° C. for 2 hours to obtain a triazine derivative 3 having an epoxy group.

厚さ35μmの電気メッキ銅箔を、1重量%のトリアジン誘導体3および水酸化ナトリウム0.1重量%を溶解させた水溶液中に5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。   An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution in which 1% by weight of triazine derivative 3 and 0.1% by weight of sodium hydroxide were dissolved, washed with water, baked at 100 ° C. for 30 minutes, Dried.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間の加熱でエポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Then, it removed from the vacuum press and the epoxy resin was hardened by heating at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。0.9kgf/cm(換算値は0.9kN/m)と既存のアンカー効果と同程度の高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. 0.9 kgf / cm (converted value is 0.9 kN / m), a peel strength as high as the existing anchor effect was obtained.

[実施例4]
0.2mol/Lの2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)および0.1mol/Lのγ−アミノプロピルトリエトキシシラン(KBE−903:信越化学工業製)をメチルテトラヒドロフラン中に混合し、80℃で2時間還流し、アミノ基を有するトリアジン誘導体4を得た。
[Example 4]
0.2 mol / L 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Santhiol N-1, manufactured by Sankyo Kasei) and 0.1 mol / L γ-aminopropyltriethoxy Silane (KBE-903: manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed in methyltetrahydrofuran and refluxed at 80 ° C. for 2 hours to obtain triazine derivative 4 having an amino group.

厚さ35μmの電気メッキ銅箔を、1重量%のトリアジン誘導体4および水酸化ナトリウム0.1重量%を溶解させた水溶液中に5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。   An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution in which 1% by weight of triazine derivative 4 and 0.1% by weight of sodium hydroxide were dissolved, washed with water, baked at 100 ° C. for 30 minutes, Dried.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間の加熱でエポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Then, it removed from the vacuum press and the epoxy resin was hardened by heating at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。1.1kgf/cm(換算値は1.1kN/m)と既存のアンカー効果と同程度の高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. 1.1 kgf / cm (converted value is 1.1 kN / m), a high peel strength comparable to the existing anchor effect was obtained.

[実施例5]
0.3mol/Lの2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)および0.1mol/Lのγ−アミノプロピルトリエトキシシラン(KBE−903:信越化学工業製)をメチルテトラヒドロフラン中に混合し、80℃で2時間還流し、アミノ基を有するトリアジン誘導体5を得た。
[Example 5]
0.3 mol / L 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Sunthiol N-1, manufactured by Sankyo Kasei) and 0.1 mol / L γ-aminopropyltriethoxy Silane (KBE-903: manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed in methyltetrahydrofuran and refluxed at 80 ° C. for 2 hours to obtain triazine derivative 5 having an amino group.

厚さ35μmの電気メッキ銅箔を、1重量%のトリアジン誘導体5および水酸化ナトリウム0.1重量%を溶解させた水溶液中に5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。   An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution in which 1% by weight of triazine derivative 5 and 0.1% by weight of sodium hydroxide were dissolved, washed with water, baked at 100 ° C. for 30 minutes, Dried.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間の加熱でエポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Then, it removed from the vacuum press and the epoxy resin was hardened by heating at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。0.9kgf/cm(換算値は0.9kN/m)と既存のアンカー効果と同程度の高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. 0.9 kgf / cm (converted value is 0.9 kN / m), a peel strength as high as the existing anchor effect was obtained.

[比較例1]
厚さ35μmの電気メッキ銅箔を、2,4,6−トリメルカプト−1,3,5−トリアジン1ナトリウム塩(サンチオールN−1、三協化成製)1重量%水溶液で5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させた。
[Comparative Example 1]
A 35 μm-thick electroplated copper foil is immersed in a 1,4% aqueous solution of 2,4,6-trimercapto-1,3,5-triazine monosodium salt (Santhiol N-1, Sankyo Kasei) for 5 minutes. After washing with water, it was baked at 100 ° C. for 30 minutes and dried.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間エポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。0.5kgf/cm(換算値は0.5kN/m)のピール強度しか得られなかった。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. Only a peel strength of 0.5 kgf / cm (converted value was 0.5 kN / m) was obtained.

[比較例2]
厚さ35μmの電気メッキ銅箔を、1重量%のγ−アミノプロピルトリエトキシシラン(カップリング剤、KBE−903:信越化学工業製)水溶液を用い、室温で5分間浸漬処理し、水洗後、100℃で30分ベークし、乾燥させ、カップリング剤処理を行った。
[Comparative Example 2]
An electroplated copper foil having a thickness of 35 μm was immersed in a 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (coupling agent, KBE-903: manufactured by Shin-Etsu Chemical Co., Ltd.) for 5 minutes at room temperature, washed with water, It was baked at 100 ° C. for 30 minutes, dried, and treated with a coupling agent.

処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで、150℃,1MPa,5分間の条件下、プレスした。その後、真空プレスから取り出し、大気圧下で180℃,1時間エポキシ樹脂を硬化させた。   The treatment surface was overlapped so that the thermosetting epoxy resin sheet in a semi-cured state (B stage) was in contact with the treated surface, and was pressed by a vacuum press under conditions of 150 ° C., 1 MPa, 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 180 ° C. for 1 hour under atmospheric pressure.

このようにして得た積層体を1cm幅に切り込み、ピール強度を測定した。0.3kgf/cm(換算値は0.3kN/m)のピール強度しか得られなかった。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength was measured. Only a peel strength of 0.3 kgf / cm (converted value was 0.3 kN / m) was obtained.

以上の実施例1〜5、比較例1および2の結果を表1にまとめた。   The results of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1.

Figure 2007016105
[実施例6]
1重量%のトリアジン誘導体1および水酸化ナトリウム0.1重量%を溶解させた水溶液に代えて、1重量%のトリアジン誘導体1および水酸化ナトリウム0.1重量%および1重量%の酢酸を溶解させた水溶液を使用した以外は、実施例1と同様にして積層体を得た。
Figure 2007016105
[Example 6]
Instead of an aqueous solution in which 1% by weight of triazine derivative 1 and 0.1% by weight of sodium hydroxide are dissolved, 1% by weight of triazine derivative 1 and 0.1% by weight of sodium hydroxide and 1% by weight of acetic acid are dissolved. A laminate was obtained in the same manner as in Example 1 except that an aqueous solution was used.

このようにして得た積層体を1cm幅に切り込み、密着力としてのピール強度を測定した。1.1kgf/cm(換算値は1.1kN/m)と高いピール強度が得られた。   The laminate thus obtained was cut into a width of 1 cm, and the peel strength as adhesion was measured. A high peel strength of 1.1 kgf / cm (converted value was 1.1 kN / m) was obtained.

なお、上記に開示した内容から、下記の付記に示した発明が導き出せる。   In addition, the invention shown to the following additional remarks can be derived from the content disclosed above.

(付記1)
下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを含んでなる金属表面処理液。
(Appendix 1)
A metal surface treatment liquid comprising at least one of triazine thiol derivatives having a structure represented by the following formulas (1) to (3).

Figure 2007016105
Figure 2007016105

Figure 2007016105
Figure 2007016105

Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)
(付記2)
さらに、有機酸および炭酸からなる群から選ばれた少なくとも一つの酸を含む、付記1に記載の金属表面処理液。
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group.)
(Appendix 2)
The metal surface treatment solution according to appendix 1, further comprising at least one acid selected from the group consisting of an organic acid and carbonic acid.

(付記3)
pHが7以下である、付記1または2に記載の金属面処理液。
(Appendix 3)
The metal surface treatment solution according to Supplementary Note 1 or 2, wherein the pH is 7 or less.

(付記4)
水とアルコールとの少なくとも一つを含んでなる、付記1〜3のいずれかに記載の金属表面処理液。
(Appendix 4)
4. The metal surface treatment liquid according to any one of supplementary notes 1 to 3, comprising at least one of water and alcohol.

(付記5)
金属表面と絶縁樹脂との密着性を向上させるための処理液である、付記1〜4のいずれかに記載の金属表面処理液。
(Appendix 5)
The metal surface treatment liquid according to any one of appendices 1 to 4, which is a treatment liquid for improving the adhesion between the metal surface and the insulating resin.

(付記6)
金属配線層と絶縁樹脂層との密着性を向上させるための処理液である、付記1〜5のいずれかに記載の金属表面処理液。
(Appendix 6)
The metal surface treatment liquid according to any one of appendices 1 to 5, which is a treatment liquid for improving adhesion between the metal wiring layer and the insulating resin layer.

(付記7)
金属配線層に接して絶縁樹脂層を有する積層体であって、
当該金属配線表面と当該絶縁樹脂層との間に、下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを挟んだ積層体。
(Appendix 7)
A laminate having an insulating resin layer in contact with a metal wiring layer,
A laminate in which at least one triazine thiol derivative having a structure represented by the following formulas (1) to (3) is sandwiched between the metal wiring surface and the insulating resin layer.

Figure 2007016105
Figure 2007016105

Figure 2007016105
Figure 2007016105

Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)
(付記8)
前記金属配線表面と前記絶縁樹脂層との間に、さらに、シランカップリング剤を挟んだ積層体。
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group.)
(Appendix 8)
A laminate in which a silane coupling agent is further sandwiched between the metal wiring surface and the insulating resin layer.

(付記9)
金属配線層に接して絶縁樹脂層を有する積層体であって、
付記1〜6のいずれかに記載の金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成してなる積層体。
(Appendix 9)
A laminate having an insulating resin layer in contact with a metal wiring layer,
The laminated body formed by processing the said metal wiring surface with the metal surface treatment liquid in any one of Additional remarks 1-6, and forming the said insulating resin layer on it.

(付記10)
前記金属表面処理液での金属配線表面の処理が、前記金属表面処理液中への金属配線表面の浸漬または前記金属表面処理液による金属配線表面へのスプレーである、付記9に記載の積層体。
(Appendix 10)
The laminate according to appendix 9, wherein the treatment of the surface of the metal wiring with the metal surface treatment liquid is immersion of the surface of the metal wiring in the metal surface treatment liquid or spray onto the surface of the metal wiring with the metal surface treatment liquid. .

(付記11)
前記金属表面処理液による前記金属配線表面の処理後、前記絶縁樹脂層の形成前に、金属表面処理液により処理された金属配線表面をシラン系カップリング剤で処理してなる、付記9または10に記載の積層体。
(Appendix 11)
Additional treatment 9 or 10 wherein the metal wiring surface treated with the metal surface treatment liquid is treated with a silane coupling agent after the treatment of the metal wiring surface with the metal surface treatment liquid and before the formation of the insulating resin layer. The laminated body as described in.

(付記12)
前記金属配線層が銅または銅合金よりなる、付記7〜11のいずれかに記載の積層体。
(Appendix 12)
The laminate according to any one of appendices 7 to 11, wherein the metal wiring layer is made of copper or a copper alloy.

(付記13)
前記積層体が多層配線構造を持つ半導体集積回路装置である、付記7〜12のいずれかに記載の積層体。
(Appendix 13)
The laminated body according to any one of appendices 7 to 12, wherein the laminated body is a semiconductor integrated circuit device having a multilayer wiring structure.

(付記14)
前記絶縁樹脂層が、ポリイミド樹脂、エポキシ樹脂、ビスマレイミド樹脂、マレイミド樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、オレフィン樹脂、フッ素含有樹脂、液晶ポリマー、ポリエーテルイミド樹脂およびポリエーテルエーテルケトン樹脂からなる群から選ばれた少なくとも一つの樹脂を含んでなるものである、付記7〜13のいずれかに記載の積層体。
(Appendix 14)
The insulating resin layer is made of polyimide resin, epoxy resin, bismaleimide resin, maleimide resin, cyanate resin, polyphenylene ether resin, polyphenylene oxide resin, olefin resin, fluorine-containing resin, liquid crystal polymer, polyetherimide resin, and polyether ether ketone resin. The laminate according to any one of appendices 7 to 13, comprising at least one resin selected from the group consisting of:

(付記15)
金属配線層に接して絶縁樹脂層を有する積層体の製造方法において、
付記1〜6のいずれかに記載の金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成する、積層体の製造方法。
(Appendix 15)
In the manufacturing method of the laminate having the insulating resin layer in contact with the metal wiring layer,
The manufacturing method of a laminated body which processes the said metal wiring surface with the metal surface treatment liquid in any one of Additional remarks 1-6, and forms the said insulating resin layer on it.

(付記16)
前記金属表面処理液での金属配線表面の処理が、前記金属表面処理液中への金属配線表面の浸漬または前記金属表面処理液による金属配線表面へのスプレーである、付記15に記載の積層体の製造方法。
(Appendix 16)
The laminate according to appendix 15, wherein the treatment of the surface of the metal wiring with the metal surface treatment liquid is immersion of the surface of the metal wiring in the metal surface treatment liquid or spray onto the surface of the metal wiring with the metal surface treatment liquid. Manufacturing method.

(付記17)
前記金属表面処理液による前記金属配線表面の処理後、前記絶縁樹脂層の形成前に、金属表面処理液により処理された金属配線表面をシラン系カップリング剤で処理する、付記15または16に記載の積層体の製造方法。
(Appendix 17)
Item 15. The supplementary note 15 or 16, wherein the metal wiring surface treated with the metal surface treatment liquid is treated with a silane coupling agent after the treatment of the metal wiring surface with the metal surface treatment liquid and before the formation of the insulating resin layer. The manufacturing method of the laminated body.

(付記18)
前記金属配線層が銅または銅合金よりなる、付記15〜17のいずれかに記載の積層体の製造方法。
(Appendix 18)
The method for manufacturing a laminate according to any one of appendices 15 to 17, wherein the metal wiring layer is made of copper or a copper alloy.

(付記19)
前記積層体が多層配線構造を持つ半導体集積回路装置である、付記15〜18のいずれかに記載の積層体の製造方法。
(Appendix 19)
The method for manufacturing a laminate according to any one of appendices 15 to 18, wherein the laminate is a semiconductor integrated circuit device having a multilayer wiring structure.

(付記20)
前記金属表面処理液中の前記トリアジンチオール誘導体の濃度が0.1mmol/L〜1000mmol/Lの範囲にある、付記15〜19のいずれかに記載の積層体の製造方法。
(Appendix 20)
The manufacturing method of the laminated body in any one of Additional remarks 15-19 in which the density | concentration of the said triazine thiol derivative in the said metal surface treatment liquid exists in the range of 0.1 mmol / L-1000 mmol / L.

ビルドアップ多層回路基板形成時の模式的断面図である。It is a typical sectional view at the time of build-up multilayer circuit board formation.

符号の説明Explanation of symbols

1 ガラス繊維強化樹脂基板
2 絶縁樹脂層
3 通電層
4 レジスト
5 電気メッキ金属
6 トリアジン誘導体
7 シラン系カップリング剤層
8 絶縁樹脂層
DESCRIPTION OF SYMBOLS 1 Glass fiber reinforced resin board | substrate 2 Insulating resin layer 3 Current carrying layer 4 Resist 5 Electroplating metal 6 Triazine derivative 7 Silane coupling agent layer 8 Insulating resin layer

Claims (5)

下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを含んでなる金属表面処理液。
Figure 2007016105
Figure 2007016105
Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)
A metal surface treatment liquid comprising at least one of triazine thiol derivatives having a structure represented by the following formulas (1) to (3).
Figure 2007016105
Figure 2007016105
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group.)
さらに、有機酸および炭酸からなる群から選ばれた少なくとも一つの酸を含む、請求項1に記載の金属表面処理液。   The metal surface treatment solution according to claim 1, further comprising at least one acid selected from the group consisting of an organic acid and carbonic acid. 金属配線層に接して絶縁樹脂層を有する積層体であって、
当該金属配線表面と当該絶縁樹脂層との間に、下記式(1)〜(3)に示す構造を有するトリアジンチオール誘導体の少なくとも一つを挟んだ積層体。
Figure 2007016105
Figure 2007016105
Figure 2007016105
(式(1)〜(3)において、Rは、互いに独立に、メチル基、ヒドロキシ基、メトキシ基またはエトキシ基であり、Aは、各式内および各式毎に独立に、水素、NH、リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムであり、nは、各式毎に独立に、0〜3の整数であり、Xは、各式毎に独立に、ビニル基、グリシドキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基またはイソシアナート基である。)
A laminate having an insulating resin layer in contact with a metal wiring layer,
A laminate in which at least one triazine thiol derivative having a structure represented by the following formulas (1) to (3) is sandwiched between the metal wiring surface and the insulating resin layer.
Figure 2007016105
Figure 2007016105
Figure 2007016105
(In the formulas (1) to (3), R independently represents a methyl group, a hydroxy group, a methoxy group or an ethoxy group, and A represents hydrogen, NH 4 independently in each formula and for each formula. , Lithium, sodium, potassium, rubidium or cesium, n is an integer of 0 to 3 independently for each formula, and X is a vinyl group, glycidoxy group, styryl group, independently of each formula, A methacryloxy group, an acryloxy group, an amino group, a ureido group, a mercapto group or an isocyanate group.)
金属配線層に接して絶縁樹脂層を有する積層体であって、
請求項1または2に記載の金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成してなる積層体。
A laminate having an insulating resin layer in contact with a metal wiring layer,
The laminated body formed by processing the said metal wiring surface with the metal surface treatment liquid of Claim 1 or 2, and forming the said insulating resin layer on it.
金属配線層に接して絶縁樹脂層を有する積層体の製造方法において、
請求項1または2に記載の金属表面処理液で当該金属配線表面を処理し、その上に当該絶縁樹脂層を形成する、積層体の製造方法。
In the manufacturing method of the laminate having the insulating resin layer in contact with the metal wiring layer,
The manufacturing method of a laminated body which processes the said metal wiring surface with the metal surface treatment liquid of Claim 1 or 2, and forms the said insulating resin layer on it.
JP2005197806A 2005-07-06 2005-07-06 Metal surface treatment liquid, laminate and method for producing laminate Expired - Fee Related JP4817733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197806A JP4817733B2 (en) 2005-07-06 2005-07-06 Metal surface treatment liquid, laminate and method for producing laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197806A JP4817733B2 (en) 2005-07-06 2005-07-06 Metal surface treatment liquid, laminate and method for producing laminate

Publications (2)

Publication Number Publication Date
JP2007016105A true JP2007016105A (en) 2007-01-25
JP4817733B2 JP4817733B2 (en) 2011-11-16

Family

ID=37753550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197806A Expired - Fee Related JP4817733B2 (en) 2005-07-06 2005-07-06 Metal surface treatment liquid, laminate and method for producing laminate

Country Status (1)

Country Link
JP (1) JP4817733B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212478A1 (en) * 2006-03-03 2007-09-13 Takahiro Fukunaga Wiring member, resin-coated metal part and resin-sealed semiconductor device, and manufacturing method for the resin-coated metal part and the resin-sealed semiconductor device
JP2008235629A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Circuit board and its manufacturing method
JP2008277749A (en) * 2007-04-02 2008-11-13 Shinko Electric Ind Co Ltd Wiring board and its manufacturing method
JP2010070786A (en) * 2008-09-17 2010-04-02 Shin-Etsu Chemical Co Ltd Metal surface treatment agent, surface-treated steel, method for treating the same, coated steel, and method for producing the same
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
US8843325B2 (en) 2011-03-31 2014-09-23 Sony Corporation Individual information determining method, individual information determining device, electronic apparatus, and individual information determining program
JP2015076610A (en) * 2013-10-10 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Surface-treated copper foil and copper-clad laminate plate including the same, printed circuit board using the same, and method for manufacturing the same
WO2015186712A1 (en) * 2014-06-03 2015-12-10 三菱瓦斯化学株式会社 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
WO2016076264A1 (en) * 2014-11-14 2016-05-19 富士通株式会社 Junction and method for manufacturing same, cooling device, and electronic device using cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357610B2 (en) * 2017-10-09 2023-10-06 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrocoating material containing at least one triazine compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105895A (en) * 1984-10-29 1986-05-23 新神戸電機株式会社 Manufacture of printed wiring board
JPS6453495A (en) * 1987-08-25 1989-03-01 Toshiba Chem Corp Substrate for multilayer printed wiring
JPH06316640A (en) * 1992-10-28 1994-11-15 Iwate Pref Gov Method for bonding metal to organic material such as rubber, plastic and coating or the like
JPH10335782A (en) * 1997-06-04 1998-12-18 Sankyo Kasei Co Ltd Structure of molded circuit component
JPH1154936A (en) * 1997-08-04 1999-02-26 Toagosei Co Ltd Multilayered printed wiring board and its manufacture
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2004167687A (en) * 2002-11-15 2004-06-17 Polyplastics Co Method for compounding metal on surface of cycloolefinic resin molded product and metal-compounded cycloolefinic resin molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105895A (en) * 1984-10-29 1986-05-23 新神戸電機株式会社 Manufacture of printed wiring board
JPS6453495A (en) * 1987-08-25 1989-03-01 Toshiba Chem Corp Substrate for multilayer printed wiring
JPH06316640A (en) * 1992-10-28 1994-11-15 Iwate Pref Gov Method for bonding metal to organic material such as rubber, plastic and coating or the like
JPH10335782A (en) * 1997-06-04 1998-12-18 Sankyo Kasei Co Ltd Structure of molded circuit component
JPH1154936A (en) * 1997-08-04 1999-02-26 Toagosei Co Ltd Multilayered printed wiring board and its manufacture
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2004167687A (en) * 2002-11-15 2004-06-17 Polyplastics Co Method for compounding metal on surface of cycloolefinic resin molded product and metal-compounded cycloolefinic resin molded product

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017822B2 (en) * 2006-03-03 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Wiring member, resin-coated metal part and resin-sealed semiconductor device, and manufacturing method for the resin-coated metal part and the resin-sealed semiconductor device
US20070212478A1 (en) * 2006-03-03 2007-09-13 Takahiro Fukunaga Wiring member, resin-coated metal part and resin-sealed semiconductor device, and manufacturing method for the resin-coated metal part and the resin-sealed semiconductor device
JP2008235629A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Circuit board and its manufacturing method
JP2008277749A (en) * 2007-04-02 2008-11-13 Shinko Electric Ind Co Ltd Wiring board and its manufacturing method
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
JP2010070786A (en) * 2008-09-17 2010-04-02 Shin-Etsu Chemical Co Ltd Metal surface treatment agent, surface-treated steel, method for treating the same, coated steel, and method for producing the same
US8843325B2 (en) 2011-03-31 2014-09-23 Sony Corporation Individual information determining method, individual information determining device, electronic apparatus, and individual information determining program
JP2015076610A (en) * 2013-10-10 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Surface-treated copper foil and copper-clad laminate plate including the same, printed circuit board using the same, and method for manufacturing the same
WO2015186712A1 (en) * 2014-06-03 2015-12-10 三菱瓦斯化学株式会社 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
KR20170012228A (en) * 2014-06-03 2017-02-02 미츠비시 가스 가가쿠 가부시키가이샤 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
CN106416437A (en) * 2014-06-03 2017-02-15 三菱瓦斯化学株式会社 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
JPWO2015186712A1 (en) * 2014-06-03 2017-04-20 三菱瓦斯化学株式会社 Resin laminate for printed wiring board for forming fine via hole, multilayer printed wiring board having fine via hole in resin insulating layer, and manufacturing method thereof
KR102126109B1 (en) 2014-06-03 2020-06-23 미츠비시 가스 가가쿠 가부시키가이샤 Printed circuit board resin laminate for forming fine via hole, and multilayer printed circuit board having fine via hole in resin insulating layer and method for manufacturing same
WO2016076264A1 (en) * 2014-11-14 2016-05-19 富士通株式会社 Junction and method for manufacturing same, cooling device, and electronic device using cooling device

Also Published As

Publication number Publication date
JP4817733B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4817733B2 (en) Metal surface treatment liquid, laminate and method for producing laminate
JP5307117B2 (en) Copper surface treatment agent and surface treatment method
JP5663739B2 (en) Copper surface conditioning composition and surface treatment method
JP6204430B2 (en) Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
CN109983157B (en) Method for preparing printed circuit board
TWI533768B (en) Printed wiring board and method for manufacturing printed wiring board, surface-treating agent for metal, and ic package substrate
WO2017051898A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
JPH1046359A (en) Multilayer circuit board and its production
JP2008182273A (en) Method of forming insulating resin layer on metal
JP2007035995A (en) Copper surface treatment liquid, method for manufacturing laminate and laminate
JP2018145475A (en) Rust-prevention treatment liquid and its application
WO2010121938A1 (en) Multilayer printed circuit board manufacture
JP2007049116A (en) Multilayer wiring board and manufacturing method thereof
JP2006080473A (en) Circuit board and process liquid for closely adhered layer
JP5522617B2 (en) Adhesive layer forming liquid and adhesive layer forming method
JP5447271B2 (en) Copper wiring board and manufacturing method thereof
JP6440484B2 (en) Metal surface treatment liquid, surface treatment method and use thereof
JP2005167173A (en) Method of forming insulating resin layer on metal, method of treating internal conductor circuit, method of manufacturing printed wiring board, and multilayered wiring board
JP4572363B2 (en) Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
JP5317099B2 (en) Adhesive layer forming solution
JP4648122B2 (en) Wiring board and manufacturing method thereof
JP4727194B2 (en) Circuit board
KR100336108B1 (en) Inner circuitry substrate for multilayer printed circuit and surface-treating method of the same
JP4850525B2 (en) Multilayer circuit board and manufacturing method thereof
JP2016204725A (en) Metal surface treatment method, and utilization thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees