JP2006080473A - Circuit board and process liquid for closely adhered layer - Google Patents

Circuit board and process liquid for closely adhered layer Download PDF

Info

Publication number
JP2006080473A
JP2006080473A JP2004322556A JP2004322556A JP2006080473A JP 2006080473 A JP2006080473 A JP 2006080473A JP 2004322556 A JP2004322556 A JP 2004322556A JP 2004322556 A JP2004322556 A JP 2004322556A JP 2006080473 A JP2006080473 A JP 2006080473A
Authority
JP
Japan
Prior art keywords
group
mercapto
functional
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322556A
Other languages
Japanese (ja)
Inventor
Shinya Sasaki
伸也 佐々木
Motoaki Tani
元昭 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004322556A priority Critical patent/JP2006080473A/en
Publication of JP2006080473A publication Critical patent/JP2006080473A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal surface processing liquid achieving high adhesion between metal and resin, and also to provide a metal surface processing method employing the same. <P>SOLUTION: The metal surface processing liquid for improving adhesion between resin and metal is an aqueous solution containing benzotriazole derivative expressed in an exemplary chemical formula (a). In bonding the metal and resin, the aqueous solution containing a compound is previously adhered to the metal surface, and then adhered to the resin after drying. In the chemical formula, at least one of X1 to X4 contains at least one functional group selected from among a hydroxyl group, a carboxyl group, an amino group, a nitro group, a mercapto group, an isocyanato group, a methacryl group, a vinyl group, a glycidyl group, an epoxy group, and an ureido group, and the others indicate hydrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は回路基板及びこれに用いる密着層用処理液に関する。   The present invention relates to a circuit board and a treatment solution for an adhesion layer used therefor.

近年、プリント配線板の微細化、多層化、及び電子部品の高密度実装化が急速に進み、プリント配線板に対してビルドアップ多層配線構造の検討が活発に行われている。ビルドアップ多層配線構造では、複数の配線層間に絶縁膜が形成されており、配線層間の導通をとるために、ビアホールと称される微細な穴を絶縁膜に形成する。ビアホールは、感光性樹脂を用いてフォトリソグラフィ技術により形成する方法や、レーザを照射し穴を形成する方法がある。   In recent years, miniaturization and multilayering of printed wiring boards and high-density mounting of electronic components have rapidly progressed, and a buildup multilayer wiring structure has been actively studied for printed wiring boards. In the build-up multilayer wiring structure, an insulating film is formed between a plurality of wiring layers, and minute holes called via holes are formed in the insulating film in order to establish conduction between the wiring layers. There are a method of forming a via hole by a photolithography technique using a photosensitive resin and a method of forming a hole by irradiating a laser.

次いで、無電解めっき又は電気めっきによって、この絶縁膜上に導体を形成し、これをエッチングして新たな配線パターンを形成する。その後、必要に応じて絶縁膜の形成から配線パターンまでの形成工程を繰り返せば、回路の集積度を高めることができる。   Next, a conductor is formed on the insulating film by electroless plating or electroplating, and this is etched to form a new wiring pattern. Thereafter, if the formation process from the formation of the insulating film to the wiring pattern is repeated as necessary, the degree of circuit integration can be increased.

従来技術として、シランカップリング剤は防錆被覆層として用いられるクロメート処理等の金属酸化物、水酸化物、水和物を含む被覆との密着力を高めることが知られている(下記特許文献1)。しかし、この提案のように金属酸化物、水酸化物、水和物を含む被覆層を用いた場合、多層配線板製造工程でハローイングが生じる問題がある。ここでハローイングとは、デスミア処理時に生じる銅配線とその上側の絶縁樹脂層との剥離をいう。   As a conventional technique, a silane coupling agent is known to increase adhesion with a coating containing a metal oxide, hydroxide, hydrate, etc., such as chromate treatment used as a rust-proof coating layer (the following patent documents) 1). However, when a coating layer containing a metal oxide, hydroxide, or hydrate is used as in this proposal, there is a problem that haloing occurs in the multilayer wiring board manufacturing process. Here, haloing refers to peeling between the copper wiring and the insulating resin layer on the upper side that occurs during the desmear process.

また、下層構造から、「銅/カップリング剤/第一の官能基(カップリング剤に含まれるカルボキシル基等)/第二の官能基(絶縁樹脂に含まれるイミド基等)/絶縁樹脂」の構造も提案されている(下記特許文献2)。しかし、この提案では銅とカップリング剤界面の改良がなされていないため、銅と絶縁樹脂の密着力が高くならないという問題がある。   Also, from the lower layer structure, “copper / coupling agent / first functional group (carboxyl group contained in coupling agent) / second functional group (imide group contained in insulating resin) / insulating resin” A structure has also been proposed (Patent Document 2 below). However, since this proposal does not improve the interface between copper and the coupling agent, there is a problem that the adhesion between copper and the insulating resin does not increase.

また、下記特許文献3には銅回路の表面をカップリング剤で処理するのに先立って、銅回路の表面を酸化処理した後に更に銅回路の表面を還元処理することが提案され、下記特許文献4には表面粗さが2.0μm以下の銅箔で絶縁樹脂層の表面に銅回路を設けることによって内層基板を形成し、前記内層基板に設けた銅回路の表面に、有機酸系エッチング液を用いて微細粗化し、この表面に絶縁樹脂層を重ねて多層積層することが提案されている。   Patent Document 3 below proposes that the surface of the copper circuit is oxidized before the copper circuit surface is treated with a coupling agent, and then the surface of the copper circuit is further reduced. 4, an inner layer substrate is formed by providing a copper circuit on the surface of the insulating resin layer with a copper foil having a surface roughness of 2.0 μm or less, and an organic acid etching solution is formed on the surface of the copper circuit provided on the inner layer substrate It has been proposed to finely roughen by using and to laminate an insulating resin layer on this surface.

また、防錆材である官能基を持たないベンゾトリアゾールを用いる方法(下記特許文献5)や官能基を持たないアゾール化合物と有機酸を混合することでアゾール化合物の厚膜を形成する方法(下記特許文献6)が提案されている。   In addition, a method using a benzotriazole having no functional group which is a rust preventive material (the following Patent Document 5) or a method of forming a thick film of an azole compound by mixing an azole compound having no functional group and an organic acid (described below) Patent Document 6) has been proposed.

しかし、下記特許文献3〜6の方法によっても、いまだ金属導体層と絶縁樹脂との密着力は十分ではなく、更なる改良が求められている。
特開平9-74273号公報 特開2002-353614号公報 特開平7-212039号公報 特開2004-140268号公報 特開平5-263275号公報 特開2002-321310号公報
However, even with the methods of Patent Documents 3 to 6 below, the adhesion between the metal conductor layer and the insulating resin is still insufficient, and further improvements are required.
JP-A-9-74273 Japanese Patent Laid-Open No. 2002-353614 Japanese Unexamined Patent Publication No. 7-212039 JP 2004-140268 A JP-A-5-263275 JP 2002-321310 A

本発明は、前記従来の問題を解決するため、金属と樹脂との間で高い密着性を得ることのできる回路基板及びこれに用いる密着層用処理液を提供する。   In order to solve the above-described conventional problems, the present invention provides a circuit board capable of obtaining high adhesion between a metal and a resin, and a treatment solution for an adhesion layer used therefor.

本発明の回路基板は、銅又は銅合金の表面に、密着層とカップリング剤層を介して接着させた樹脂層を含む回路基板であって、前記密着層は、下記の化合物(a)〜(i)から選ばれる少なくとも一つであり、複数の官能基を含み、少なくとも一つの官能基は銅又は銅合金と反応し、残りの官能基はカップリング剤と反応する化合物の薄膜で形成され、前記密着層の表面にカップリング剤層が形成され、その表面に樹脂層が接着されていることを特徴とする。   The circuit board of the present invention is a circuit board comprising a resin layer bonded to the surface of copper or a copper alloy via an adhesion layer and a coupling agent layer, and the adhesion layer comprises the following compounds (a) to It is at least one selected from (i), includes a plurality of functional groups, at least one functional group reacts with copper or a copper alloy, and the remaining functional groups are formed of a thin film of a compound that reacts with a coupling agent. A coupling agent layer is formed on the surface of the adhesion layer, and a resin layer is adhered to the surface.

本発明の回路基板用処理液は、銅又は銅合金の表面に、密着層とカップリング剤層を介して接着させた樹脂層を含む回路基板に用いる密着層用処理液であって、前記密着層を形成する化合物は下記の化学式(a)〜(i)から選ばれる少なくとも一つであり、前記化合物を0.001〜10wt%含む水溶液であることを特徴とする。   The processing solution for a circuit board of the present invention is a processing solution for an adhesion layer used for a circuit board including a resin layer bonded to the surface of copper or a copper alloy via an adhesion layer and a coupling agent layer, The compound forming the layer is at least one selected from the following chemical formulas (a) to (i), and is an aqueous solution containing 0.001 to 10 wt% of the compound.

Figure 2006080473
Figure 2006080473

(但し、X1〜X4の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。) (However, at least one of X 1 to X 4 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)

Figure 2006080473
Figure 2006080473

(但し、X1〜X3の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。) (However, at least one of X 1 to X 3 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)

Figure 2006080473
Figure 2006080473

(但し、X1〜X2の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。) (However, at least one of X 1 to X 2 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)

Figure 2006080473
Figure 2006080473

(但し、X1〜X5の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。) (However, at least one of X 1 to X 5 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)

Figure 2006080473
Figure 2006080473

Figure 2006080473
Figure 2006080473

Figure 2006080473
Figure 2006080473

Figure 2006080473
Figure 2006080473

Figure 2006080473
Figure 2006080473

本発明は、密着層は複数の官能基を含む化合物で形成され、少なくとも一つの官能基は銅又は銅合金と反応し、残りの官能基はカップリング剤と反応する化合物の薄膜で形成され、前記密着層の表面にカップリング剤層が形成され、その表面に樹脂層が接着されていることにより、銅又は銅合金と樹脂側密着強度を高めることができる。   In the present invention, the adhesion layer is formed of a compound containing a plurality of functional groups, at least one functional group reacts with copper or a copper alloy, and the remaining functional groups are formed with a thin film of a compound that reacts with a coupling agent, A coupling agent layer is formed on the surface of the adhesion layer, and the resin layer is adhered to the surface, whereby the adhesion strength between the copper or the copper alloy and the resin can be increased.

本発明の回路基板は、銅又は銅合金の表面に、密着層とカップリング剤層を介して接着させた樹脂層を含む回路基板である。銅又は銅合金の表面に、カップリング剤層を介して樹脂層を接着させた回路基板は一般的であるが、さらに銅又は銅合金の表面とカップリング剤層との間に密着層を形成した点に特徴がある。この密着層は、複数の官能基を含み、少なくとも一つの官能基は銅又は銅合金と反応し、残りの官能基はカップリング剤と反応する化合物の薄膜で形成されている。すなわち、前記密着層の表面にカップリング剤層が形成され、その表面に樹脂層が接着されている。これにより、金属と樹脂の密着力を高くすることができる。これは例えば前記化学式(a)に示すベンゾトリアゾール誘導体を例に挙げると、トリアゾール基が金属と親和性が高く、X1〜X4の少なくとも一つの官能基が樹脂と親和性が高いため、金属と樹脂の密着力を高くできる。すなわち、一分子中に金属と樹脂の双方に親和性の高い官能基を有しているからである。 The circuit board of the present invention is a circuit board including a resin layer bonded to the surface of copper or a copper alloy via an adhesion layer and a coupling agent layer. A circuit board in which a resin layer is bonded to the surface of copper or a copper alloy via a coupling agent layer is common, but an adhesion layer is further formed between the surface of the copper or copper alloy and the coupling agent layer. There is a feature in the point. The adhesion layer includes a plurality of functional groups, at least one functional group reacts with copper or a copper alloy, and the remaining functional groups are formed of a thin film of a compound that reacts with a coupling agent. That is, a coupling agent layer is formed on the surface of the adhesion layer, and a resin layer is bonded to the surface. Thereby, the adhesive force of a metal and resin can be made high. For example, when the benzotriazole derivative represented by the chemical formula (a) is taken as an example, the triazole group has a high affinity with the metal, and at least one functional group of X 1 to X 4 has a high affinity with the resin. And the resin adhesion can be increased. That is, one molecule has a functional group having high affinity for both the metal and the resin.

前記化学式(a)〜(i)に示す化合物の濃度は、0.001〜10wt%である。0.001wt%未満ではピール強度が低く好ましくない。10wt%を超える量は過剰に密着層が付着し、多層膜を形成し、ピール強度が減少するため好ましくない。   The concentration of the compound represented by the chemical formulas (a) to (i) is 0.001 to 10 wt%. If it is less than 0.001 wt%, the peel strength is low, which is not preferable. An amount exceeding 10 wt% is not preferable because an adhesion layer is excessively adhered, a multilayer film is formed, and the peel strength is reduced.

前記化学式(a)〜(i)に示す化合物は、金属表面に単分子で付着する程度でよいため、前記の範囲の濃度が好ましい。この意味から、本発明でいう薄膜とは単分子膜程度の薄い膜をいう。   Since the compounds represented by the chemical formulas (a) to (i) may be attached to the metal surface as a single molecule, the concentration in the above range is preferable. In this sense, the thin film referred to in the present invention refers to a thin film of about a monomolecular film.

樹脂と金属とは、回路基板の樹脂と電極であることが好ましい。例えばプリント配線基板の樹脂と配線に使用できる。前記配線は銅又は銅合金であることが好ましい。前記回路基板は、フレキシブルプリント基板のように単層であってもよいし、多層回路基板であってもよい。   The resin and the metal are preferably a circuit board resin and an electrode. For example, it can be used for resin and wiring of a printed wiring board. The wiring is preferably copper or a copper alloy. The circuit board may be a single layer like a flexible printed board or a multilayer circuit board.

本発明は、金属と樹脂を接着させるに際し、前記化学式(a)〜(i)のいずれかの化合物を含む処理液を付着させ、水洗し、乾燥した後、樹脂と接着させるのが好ましい。このとき樹脂と接着する前に、さらにカップリング剤を付着させ、乾燥させた後、樹脂と接着させてもよい。   In the present invention, when the metal and the resin are bonded, the treatment liquid containing any one of the chemical formulas (a) to (i) is preferably adhered, washed with water, dried, and then bonded to the resin. At this time, before bonding with the resin, a coupling agent may be further adhered and dried, and then bonded to the resin.

前記複数の官能基のうち、銅又は銅合金と反応する官能基はカルボキシル基、アミノ基及びメルカプト基から選ばれる少なくとも一つであり、カップリング剤と反応する官能基は水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基及びウレイド基から選ばれる少なくとも一つであることが好ましい。   Among the plurality of functional groups, the functional group that reacts with copper or a copper alloy is at least one selected from a carboxyl group, an amino group, and a mercapto group, and the functional group that reacts with a coupling agent includes a hydroxyl group, a carboxyl group, and an amino group. It is preferably at least one selected from a group, a nitro group, a mercapto group, an isocyanato group, a methacryl group, a vinyl group, a glycidyl group, an epoxy group and a ureido group.

本発明において、前記の化合物処理によって密着力が向上する理由は、例えばメルカプト基が銅との強い結合を有するとともに他の官能基がカップリング剤と反応することにより樹脂との反応できるためと考えられる。同一の官能基を2以上有していても、1つの官能基が銅又は銅合金と反応すると、立体障害により他の官能基はもはや銅又は銅合金と反応せず、次に塗布するカップリング剤と反応することになる。なお、メルカプト基、カルボキシル基等は、Na,K,Liなどのアルカリ金属塩として用いてもよい。このようにすると水溶液として用いる際に溶解度が高くなる。   In the present invention, the reason why the adhesion is improved by the compound treatment is considered to be because, for example, the mercapto group has a strong bond with copper and the other functional group can react with the coupling agent to react with the resin. It is done. Even if it has two or more of the same functional group, if one functional group reacts with copper or copper alloy, the other functional group no longer reacts with copper or copper alloy due to steric hindrance, and the coupling to be applied next time It will react with the agent. In addition, you may use a mercapto group, a carboxyl group, etc. as alkali metal salts, such as Na, K, and Li. This increases the solubility when used as an aqueous solution.

前記カップリング剤の分子中には、アミノ基、メルカプト基、エポキシ基、イミダゾール基、ジアルキルアミノ基、ピリジン基の少なくとも一つを含むシラン系カップリング剤であることが好ましい。   A silane coupling agent containing at least one of an amino group, a mercapto group, an epoxy group, an imidazole group, a dialkylamino group, and a pyridine group in the molecule of the coupling agent is preferable.

本発明の応用例として、支持基板上に絶縁樹脂膜層と配線層を1層づつ交互に積み上げ、インナービアホールを有する多層回路基板において、前記化学式(a)〜(i)に示すいずれかの含窒素化合物又は芳香族カルボン酸化合物又はこれらのアルカリ金属塩水溶液を用い、含窒素化合物又は芳香族カルボン酸化合物を配線表面に付着させる第一の工程と、その上に絶縁樹脂膜を形成する第二の工程とを含む多層回路基板の製造方法としてもよい。   As an application example of the present invention, an insulating resin film layer and a wiring layer are alternately stacked on a support substrate one by one, and a multilayer circuit substrate having an inner via hole includes any one of the chemical formulas (a) to (i). A first step of attaching a nitrogen-containing compound or aromatic carboxylic acid compound to the wiring surface using a nitrogen compound or an aromatic carboxylic acid compound or an alkali metal salt aqueous solution thereof, and a second step of forming an insulating resin film thereon It is good also as a manufacturing method of a multilayer circuit board including these processes.

また本発明の他の応用例として、支持基板上に絶縁樹脂膜層と配線層を1層ずつ交互に積み上げ、インナービアホールを有する多層回路基板の製造方法において、前記化学式(a)〜(i)に示すいずれかの含窒素化合物又は芳香族カルボン酸化合物を配線表面に付着させる第一の工程と、その表面をカップリング剤で処理する第二の工程と、その上に絶縁樹脂膜を形成する第三の工程とを含む多層回路基板の製造方法としてもよい。   As another application example of the present invention, in the method of manufacturing a multilayer circuit board having an inner via hole by alternately stacking insulating resin film layers and wiring layers one by one on a support substrate, the chemical formulas (a) to (i) A first step of adhering any one of the nitrogen-containing compound or aromatic carboxylic acid compound to the wiring surface, a second step of treating the surface with a coupling agent, and forming an insulating resin film thereon It is good also as a manufacturing method of a multilayer circuit board containing a 3rd process.

前記含窒素化合物としては、ベンゾトリアゾール、プリン、プテリジン及びその誘導体であることが好ましい。前記芳香族カルボン酸としては安息香酸が好ましい。また、前記の反応に必要な官能基としては、水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、ウレイド基であることが好ましい。   The nitrogen-containing compound is preferably benzotriazole, purine, pteridine and derivatives thereof. The aromatic carboxylic acid is preferably benzoic acid. The functional group necessary for the reaction is preferably a hydroxyl group, a carboxyl group, an amino group, a nitro group, a mercapto group, an isocyanato group, a methacryl group, a vinyl group, a glycidyl group, an epoxy group, or a ureido group.

前記カップリング剤としては、カップリング剤の分子中に、アミノ基、メルカプト基、エポキシ基、イミダゾール基、ジアルキルアミノ基、ピリジン基の少なくとも一つを含むシラン系カップリング剤であることが好ましい。   The coupling agent is preferably a silane coupling agent containing at least one of an amino group, a mercapto group, an epoxy group, an imidazole group, a dialkylamino group, and a pyridine group in the molecule of the coupling agent.

前記絶縁樹脂膜は、耐熱性など絶縁膜としての性能上、ポリイミド樹脂、エポキシ樹脂、ビスマレイミド樹脂、マレイミド樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、オレフィン樹脂、フッ素含有樹脂、液晶ポリマー、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂等が好ましい。   The insulating resin film is a polyimide resin, epoxy resin, bismaleimide resin, maleimide resin, cyanate resin, polyphenylene ether resin, polyphenylene oxide resin, olefin resin, fluorine-containing resin, liquid crystal polymer, in terms of performance as an insulating film such as heat resistance. Polyether imide resins, polyether ether ketone resins, and the like are preferable.

前記配線材料は、電気抵抗などの配線としての性能上、銅又は銅合金であることが好ましい。また配線材料の作成方法は、下地めっき層の上に電気銅めっきを形成するセミアディティブ法、銅板を貼り付けて一体化した後エッチングにより配線パターンを形成するサブトラ法、予め配線を形成しておき転写により貼り付ける転写法のいずれを採用してもよい。   The wiring material is preferably copper or a copper alloy in terms of performance as wiring such as electric resistance. The wiring material can be prepared by a semi-additive method in which electrolytic copper plating is formed on the underlying plating layer, a sub-trader method in which a wiring pattern is formed by etching after pasting and integrating a copper plate, or wiring is formed in advance. Any of the transfer methods of attaching by transfer may be employed.

本発明において、前記化学式(a)〜(i)に示すいずれかの含窒素化合物又は芳香族カルボン酸化合物処理によって密着力が向上する理由は、窒素部位又はカルボン酸部位と銅又は銅合金との配位結合が強いことと樹脂との反応に必要な官能基が含まれているためと考えられる。   In the present invention, the reason why the adhesion is improved by treatment with any of the nitrogen-containing compounds or aromatic carboxylic acid compounds represented by the chemical formulas (a) to (i) is that the nitrogen site or carboxylic acid site and copper or copper alloy This is presumably because of the strong coordination bond and the functional group necessary for the reaction with the resin.

本発明においては、メルカプト基及びメルカプト基を含まない他の官能基の少なくとも一つを有する有機化合物又は対応するアルカリ金属塩の水溶液によってメルカプト基及びメルカプト基を含まない他の官能基の少なくとも一つを有する有機化合物を銅配線表面に付着させる第一の工程と、メルカプト基及びメルカプト基を含まない他の官能基の少なくとも一つを有する有機化合物が付着した銅配線表面にシランカップリング剤を付着させる第二の工程と、メルカプト基及びメルカプト基含まない他の官能基の少なくとも一つを有する有機化合物及びシランカップリング剤が付着した銅配線表面に樹脂と接着させる第三の工程を含んでいてもよい。メルカプト基及びメルカプト基を含まない他の官能基の少なくとも一つを有する有機化合物としては例えば前記に示すメルカプトフェノール誘導体、メルカプト基を有するビフェニル誘導体、チアジチオール誘導体、トリアジン誘導体などがあげられる。   In the present invention, at least one of a mercapto group and another functional group not containing a mercapto group by an aqueous solution of an organic compound having at least one of a mercapto group and another functional group not containing a mercapto group or a corresponding alkali metal salt. A first step of attaching an organic compound having a silane coupling agent to a copper wiring surface, and attaching a silane coupling agent to the copper wiring surface to which an organic compound having at least one of a mercapto group and another functional group not containing a mercapto group is attached And a third step of adhering the resin to the surface of the copper wiring to which the organic compound having at least one of the mercapto group and the other functional group not containing the mercapto group and the silane coupling agent are attached. Also good. Examples of the organic compound having at least one of a mercapto group and another functional group not containing a mercapto group include the mercaptophenol derivatives, biphenyl derivatives having a mercapto group, thiadithiol derivatives, and triazine derivatives.

またメルカプト基及びメルカプト基を含まない他の官能基の少なくとも一つを有する有機化合物として、官能基を有する脂肪族メルカプタンを用いても良い。   Moreover, you may use the aliphatic mercaptan which has a functional group as an organic compound which has at least 1 of the other functional group which does not contain a mercapto group and a mercapto group.

前記配線材料は、電気抵抗などの配線としての性能上、銅又は銅合金であることが好ましい。また配線材料の作成方法は、下地めっき層の上に電気銅めっきを形成するセミアディティブ法、銅板を貼り付けて一体化した後エッチングにより配線パターンを形成するサブトラ法、予め配線を形成しておき転写により貼り付ける転写法のいずれを採用してもよい。   The wiring material is preferably copper or a copper alloy in terms of performance as wiring such as electric resistance. The wiring material can be prepared by a semi-additive method in which electrolytic copper plating is formed on the underlying plating layer, a sub-trader method in which a wiring pattern is formed by etching after pasting and integrating a copper plate, or wiring is formed in advance. Any of the transfer methods of attaching by transfer may be employed.

本発明の表面処理方法の一例として、ビルドアップ多層回路基板を形成する方法を図1A〜H及び図2A〜Gを用いて説明する。   As an example of the surface treatment method of the present invention, a method for forming a build-up multilayer circuit board will be described with reference to FIGS. 1A to 1H and 2A to 2G.

まず、回路を形成したガラス繊維強化樹脂基板1上に、ビルドアップ樹脂絶縁膜2を形成する。ビルドアップ樹脂絶縁膜2としては、例えば厚さ40μmの熱硬化性エポキシ樹脂シートを使用する。このビルドアップ樹脂絶縁膜表面2は、密着性を得るための処理を施した後、無電解めっきやスパッタ法などで、金属の通電層3を例えば厚さ0.3〜1μmで形成する(図1A)。次にレジスト樹脂4をパターニングし(図1B)、開口部に電気銅めっき5を成長させる(図1C)。電気銅めっき5の厚さは例えば15〜20μmとする。次にレジスト樹脂4を剥離した後に(図1D)、銅めっき層5以外の領域の通電層3をエッチングで除去する。これにより下側導体層10を形成する(図1E)。   First, the buildup resin insulating film 2 is formed on the glass fiber reinforced resin substrate 1 on which the circuit is formed. As the build-up resin insulation film 2, for example, a thermosetting epoxy resin sheet having a thickness of 40 μm is used. The build-up resin insulating film surface 2 is subjected to a treatment for obtaining adhesion, and then a metal conductive layer 3 is formed with a thickness of 0.3 to 1 μm, for example, by electroless plating or sputtering (see FIG. 1A). Next, the resist resin 4 is patterned (FIG. 1B), and an electrolytic copper plating 5 is grown in the opening (FIG. 1C). The thickness of the electrolytic copper plating 5 is, for example, 15 to 20 μm. Next, after peeling off the resist resin 4 (FIG. 1D), the conductive layer 3 in a region other than the copper plating layer 5 is removed by etching. Thus, the lower conductor layer 10 is formed (FIG. 1E).

次に、例えば前記化学式(a)〜(i)に示す化合物を0.001〜10wt%含む水溶液を下側通電層10の表面に付着させる。処理方法は、浸漬法やスプレーによる吹き付け法などを用いることが出来る。前記化学式(a)〜(i)に示す化合物は銅表面に配位結合し、吸着層6が形成される(図1F)。その後、吸着層6の表面にカップリング剤7により表面処理を行う。カップリング剤処理の方法としては、浸漬法、スプレーによる吹きつけ法などを用いることができる。その後、水洗して余分なものは除去し、乾燥する(図1G)。この上に樹脂絶縁層8を形成する(図1H)。樹脂絶縁膜8としては、例えば厚さ40μmの熱硬化性エポキシ樹脂シートを使用する。   Next, for example, an aqueous solution containing 0.001 to 10 wt% of the compounds represented by the chemical formulas (a) to (i) is attached to the surface of the lower conductive layer 10. As a treatment method, a dipping method or a spraying method using a spray can be used. The compounds represented by the chemical formulas (a) to (i) are coordinated to the copper surface to form the adsorption layer 6 (FIG. 1F). Thereafter, the surface of the adsorption layer 6 is subjected to a surface treatment with a coupling agent 7. As a method for treating the coupling agent, an immersion method, a spraying method using a spray, or the like can be used. Thereafter, the excess is removed by washing with water and dried (FIG. 1G). A resin insulating layer 8 is formed thereon (FIG. 1H). As the resin insulating film 8, for example, a thermosetting epoxy resin sheet having a thickness of 40 μm is used.

次に、上下の配線の導通をとるために、ビアホール9を形成する(図2A)。ビアホール9は例えばレーザ照射にて孔設される。その後、図1Aと同様に無電解めっきやスパッタ法などで、金属の通電層11を例えば厚さ0.3〜1μmで形成する(図2B)。次に図1Bと同様にレジスト樹脂12をパターニングし(図2C)、開口部に電気銅めっき層13を例えば配線部は厚さ15〜20μm、ビア部は50〜65μmに成長させる(図2D)。次にレジスト樹脂12を剥離した後に(図2E)、通電層11をエッチングで除去し、電気銅めっき層13とその下の通電層11からなる上側導体層10'を形成する。その後、図1F−Gと同様に吸着層6'とカップリング剤7'の層を形成する(図2F)。この上に樹脂絶縁層8と同様に絶縁樹脂層8'を被覆する(図2G)。   Next, a via hole 9 is formed in order to establish conduction between the upper and lower wirings (FIG. 2A). The via hole 9 is formed by, for example, laser irradiation. Thereafter, similarly to FIG. 1A, a metal conductive layer 11 is formed to a thickness of, for example, 0.3 to 1 μm by electroless plating or sputtering (FIG. 2B). Next, the resist resin 12 is patterned in the same manner as in FIG. 1B (FIG. 2C), and an electrolytic copper plating layer 13 is grown in the opening to a thickness of, for example, 15 to 20 μm and the via to a thickness of 50 to 65 μm (FIG. 2D). . Next, after the resist resin 12 is peeled off (FIG. 2E), the conductive layer 11 is removed by etching to form an upper conductor layer 10 ′ composed of the electrolytic copper plating layer 13 and the conductive layer 11 therebelow. Then, the layer of adsorption layer 6 'and coupling agent 7' is formed like FIG. 1F-G (FIG. 2F). An insulating resin layer 8 ′ is coated thereon in the same manner as the resin insulating layer 8 (FIG. 2G).

このプロセスを繰り返すことにより、多層回路基板が形成できる。図2Gのように形成された下側導体層10及び上側導体層10'は絶縁樹脂8、8'との強固な密着一体化ができる。   By repeating this process, a multilayer circuit board can be formed. The lower conductor layer 10 and the upper conductor layer 10 ′ formed as shown in FIG. 2G can be tightly integrated with the insulating resins 8 and 8 ′.

次に、本発明の更に具体的に説明するために実施例を挙げる。なお、本発明がこれらの実施例に限定されない。   Next, examples will be given to more specifically explain the present invention. Note that the present invention is not limited to these examples.

[実施例1]
厚さ35μmの電気めっき銅箔をニトロベンゾトリアゾール(大和化成社製商品名”VERZONE N−BTA”)1wt%及び炭酸ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シート(味の素社製商品名”ABF”)が接するように重ね、真空プレスで温度:150℃、圧力:1MPa、時間:5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。
[Example 1]
An electroplated copper foil having a thickness of 35 μm is immersed in an aqueous solution containing 1 wt% of nitrobenzotriazole (trade name “VERZONE N-BTA” manufactured by Daiwa Kasei Co., Ltd.) and 1 wt% of sodium carbonate (manufactured by Kanto Chemical Co., Ltd.) for 1 minute at room temperature. Processed. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. A semi-cured (B stage) thermosetting epoxy resin sheet (trade name “ABF” manufactured by Ajinomoto Co., Inc.) in a semi-cured state is brought into contact with the treated surface, and the temperature is 150 ° C., pressure: 1 MPa, time by vacuum press. Pressed for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure.

次に銅箔を1cm幅に切り込み、ピール強度を測定した。その後1.0kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.8kgf/cmが得られた。ここで熱ストレスの印加とは、170℃、1時間の熱ストレスを4サイクル印加した処理をいう。これは以下の実施例でも同じである。   Next, the copper foil was cut into a width of 1 cm, and the peel strength was measured. Thereafter, a peel strength of 1.0 kgf / cm was obtained. Even after application of thermal stress, 0.8 kgf / cm was obtained. Here, the application of heat stress refers to a treatment in which four cycles of heat stress at 170 ° C. for 1 hour are applied. The same applies to the following embodiments.

[実施例2]
厚さ35μmの電気めっき銅箔をカルボキシルベンゾトリアゾール(大和化成社製”VERZONE C−BTA”)1wt%及び炭酸ナトリウム(関東化学製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、1.1gf/cmのピール強度が得られた。熱ストレスを印加した後でも0.9kgf/cmが得られた。
[Example 2]
An electroplated copper foil having a thickness of 35 μm was subjected to an immersion treatment at room temperature for 1 minute using an aqueous solution containing 1 wt% of carboxyl benzotriazole (“VERZONE C-BTA” manufactured by Daiwa Kasei Co., Ltd.) and 1 wt% of sodium carbonate (manufactured by Kanto Chemical). After washing with water, it was dried by baking at 100 ° C. for 30 minutes. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 1.1 gf / cm was obtained. 0.9 kgf / cm was obtained even after application of thermal stress.

[実施例3]
厚さ35μmの電気めっき銅箔をニトロベンゾトリアゾール(大和化成社製”N−BTA”)0.1wt%及び炭酸ナトリウム(関東化学製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗後、100℃で30分のベークで乾燥した。次に1wt%のγ−アミノプロピルトリエトキシシラン(信越化学工業社製”KBE−903”)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。0.9kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.7kgf/cmが得られた。
[Example 3]
An electroplated copper foil having a thickness of 35 μm was dipped at room temperature for 1 minute using an aqueous solution containing 0.1 wt% of nitrobenzotriazole (“N-BTA” manufactured by Daiwa Kasei Co., Ltd.) and 1 wt% of sodium carbonate (manufactured by Kanto Chemical). . After washing with water, it was dried at 100 ° C. for 30 minutes. Next, it was dipped in 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. A peel strength of 0.9 kgf / cm was obtained. Even after application of heat stress, 0.7 kgf / cm was obtained.

[比較例1]
厚さ35μmの電気めっき銅箔を官能基を有しないベンゾトリアゾール(大和化成社製”VERZONE Crystal #120”)1wt%の水溶液で室温、1分間浸漬処理を行った。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.1kgf/cm以下のピール強度しか得られず全く密着していないことがわかった。
[Comparative Example 1]
A 35 μm-thick electroplated copper foil was immersed in a 1 wt% aqueous solution of benzotriazole having no functional group (“VERZONE Crystal # 120” manufactured by Daiwa Kasei Co., Ltd.) at room temperature for 1 minute. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. It piled up so that the thermosetting epoxy resin sheet of a semi-hardened state (B stage) might touch the treated surface, and it pressed at 150 ° C and 1 MPa for 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, it was found that only a peel strength of 0.1 kgf / cm or less was obtained and there was no adhesion.

[実施例4]
厚さ35μmの電気めっき銅箔を4−カルボキシ安息香酸(関東化学社製)1wt%及び炭酸ナトリウム(関東化学製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.8kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。
[Example 4]
A 35 μm-thick electroplated copper foil was immersed in an aqueous solution containing 1 wt% of 4-carboxybenzoic acid (manufactured by Kanto Chemical Co.) and 1 wt% of sodium carbonate (manufactured by Kanto Chemical) at room temperature for 1 minute. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.8 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

[実施例5]
厚さ35μmの電気めっき銅箔を4−カルボキシ安息香酸(関東化学社製)1wt%及び炭酸ナトリウム(関東化学製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。次に1wt%のγ−グリシドキシプロピルプロピルトリメトキシシラン(KBM−403:信越化学工業製)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.9kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.7kgf/cmが得られた。
[Example 5]
A 35 μm-thick electroplated copper foil was immersed in an aqueous solution containing 1 wt% of 4-carboxybenzoic acid (manufactured by Kanto Chemical Co.) and 1 wt% of sodium carbonate (manufactured by Kanto Chemical) at room temperature for 1 minute. Next, it was immersed in a 1 wt% aqueous solution of γ-glycidoxypropylpropyltrimethoxysilane (KBM-403: manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. It piled up so that the thermosetting epoxy resin sheet of a semi-hardened state (B stage) might touch the treated surface, and it pressed at 150 ° C and 1 MPa for 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.9 kgf / cm was obtained. Even after application of heat stress, 0.7 kgf / cm was obtained.

[実施例6]
厚さ35μmの電気めっき銅箔を5アミノ−2ヒドロキシ安息香酸(5−アミノサリチル酸、関東化学社製)0.1wt%溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.9kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.7kgf/cmが得られた。
[Example 6]
An electroplated copper foil having a thickness of 35 μm was immersed for 1 minute at room temperature using a 0.1 wt% solution of 5-amino-2hydroxybenzoic acid (5-aminosalicylic acid, manufactured by Kanto Chemical Co., Inc.). After washing with water, it was dried by baking at 100 ° C. for 30 minutes. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.9 kgf / cm was obtained. Even after application of heat stress, 0.7 kgf / cm was obtained.

[実施例7]
厚さ35μmの電気めっき銅箔を6−アミノプリン(アデニン、関東化学社製)0.1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.7kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。
[Example 7]
An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution containing 0.1 wt% of 6-aminopurine (adenine, manufactured by Kanto Chemical Co., Ltd.) for 1 minute at room temperature. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.7 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

[実施例8]
厚さ35μmの電気めっき銅箔を2−アミノプテリジン−4、6−ジオール(キサントプテリン一水和物、関東化学製)0.1wt%及び炭酸ナトリウム(関東化学製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1Mpa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.7kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.5kgf/cmが得られた。
[Example 8]
An aqueous solution containing an electroplated copper foil having a thickness of 35 μm and containing 2-aminopteridine-4,6-diol (xantopterin monohydrate, manufactured by Kanto Chemical) 0.1 wt% and sodium carbonate (produced by Kanto Chemical) 1 wt%. Used and immersed for 1 minute at room temperature. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. The heat-cured epoxy resin sheet in the semi-cured state (B stage) used in Example 1 was stacked on the treated surface, and pressed with a vacuum press at 150 ° C., 1 Mpa for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.7 kgf / cm was obtained. Even after applying heat stress, 0.5 kgf / cm was obtained.

[実施例9]
厚さ35μmの電気めっき銅箔を2−アミノプテリジン−4、6−ジオール(キサントプテリン一水和物、関東化学社製)0.1wt%及び炭酸ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。次に1wt%のγ−メルカプトプロピルトリメトキシシラン(KBM−803:信越化学工業製)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、実施例1で使用した半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シートが接するように重ね、真空プレスで150℃、1MPa、5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。銅箔を1cm幅に切り込み、ピール強度を測定した。その結果、0.8kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。
[Example 9]
35 μm thick electroplated copper foil containing 2-aminopteridine-4,6-diol (xantopterin monohydrate, manufactured by Kanto Chemical Co.) 0.1 wt% and sodium carbonate (produced by Kanto Chemical Co.) 1 wt% Immersion treatment was performed at room temperature for 1 minute using an aqueous solution. Next, it was immersed in a 1 wt% γ-mercaptopropyltrimethoxysilane (KBM-803: Shin-Etsu Chemical Co., Ltd.) aqueous solution and baked at 100 ° C. for 30 minutes to terminate the coupling agent reaction. It piled up so that the thermosetting epoxy resin sheet of the semi-hardened state (B stage) used in Example 1 might touch the treated surface, and it pressed at 150 ° C, 1 MPa, and 5 minutes by vacuum press. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure. The copper foil was cut into a 1 cm width, and the peel strength was measured. As a result, a peel strength of 0.8 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

以上の実施例1〜9、比較例1の結果を表1にまとめて示す。   The results of Examples 1 to 9 and Comparative Example 1 are summarized in Table 1.

Figure 2006080473
Figure 2006080473

[実施例10]
厚さ35μmの電気めっき銅箔をメルカプトフェノール(三協化成製)1wt%及び水酸化ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。次に1wt%のγ−アミノプロピルトリエトキシシラン(信越化学工業社製”KBE−903”)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シート(味の素社製商品名”ABF”)が接するように重ね、真空プレスで温度:150℃、圧力:1MPa、時間:5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。
[Example 10]
An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution containing 1 wt% of mercaptophenol (manufactured by Sankyo Kasei) and 1 wt% of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) for 1 minute at room temperature. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. Next, it was dipped in 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. A semi-cured (B stage) thermosetting epoxy resin sheet (trade name “ABF” manufactured by Ajinomoto Co., Inc.) in contact with the treated surface is overlaid, and is subjected to a vacuum press at a temperature of 150 ° C., a pressure of 1 MPa, and a time of: Pressed for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure.

次に銅箔を1cm幅に切り込み、ピール強度を測定した。その後0.8kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。   Next, the copper foil was cut into a width of 1 cm, and the peel strength was measured. Thereafter, a peel strength of 0.8 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

[実施例11]
厚さ35μmの電気めっき銅箔を2−チオ酢酸−5−メルカプト−1,3,4−チアジアゾール(東洋化成工業製)1wt%及び水酸化ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、窒素ガンで表面を乾燥させた。次に1wt%のγ−アミノプロピルトリエトキシシラン(信越化学工業社製”KBE−903”)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シート(味の素社製商品名”ABF”)が接するように重ね、真空プレスで温度:150℃、圧力:1MPa、時間:5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。
[Example 11]
An aqueous solution containing 1 wt% 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole (manufactured by Toyo Kasei Kogyo Co., Ltd.) and 1 wt% sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) is used. And immersion treatment at room temperature for 1 minute. After washing with water, the surface was dried with a nitrogen gun. Next, it was dipped in 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. A semi-cured (B stage) thermosetting epoxy resin sheet (trade name “ABF” manufactured by Ajinomoto Co., Inc.) in contact with the treated surface is overlaid, and is subjected to a vacuum press at a temperature of 150 ° C., a pressure of 1 MPa, and a time of: Pressed for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure.

次に銅箔を1cm幅に切り込み、ピール強度を測定した。その後0.8kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。   Next, the copper foil was cut into a width of 1 cm, and the peel strength was measured. Thereafter, a peel strength of 0.8 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

[実施例12]
厚さ35μmの電気めっき銅箔をアミノチオフェノール(関東化学製)1wt%及び水酸化ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、窒素ガンで乾燥させた。次に1wt%のγ−アミノプロピルトリエトキシシラン(信越化学工業社製”KBE−903”)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シート(味の素社製商品名”ABF”)が接するように重ね、真空プレスで温度:150℃、圧力:1MPa、時間:5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。
[Example 12]
An electroplated copper foil having a thickness of 35 μm was immersed in an aqueous solution containing 1 wt% of aminothiophenol (manufactured by Kanto Chemical) and 1 wt% of sodium hydroxide (manufactured by Kanto Chemical) at room temperature for 1 minute. After washing with water, it was dried with a nitrogen gun. Next, it was immersed in a 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. A semi-cured (B stage) thermosetting epoxy resin sheet (trade name “ABF” manufactured by Ajinomoto Co., Inc.) in a semi-cured state is brought into contact with the treated surface, and the temperature is 150 ° C., pressure: 1 MPa, time by vacuum press. Pressed for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure.

次に銅箔を1cm幅に切り込み、ピール強度を測定した。その後0.8kgf/cmのピール強度が得られた。熱ストレスを印加した後でも0.6kgf/cmが得られた。   Next, the copper foil was cut into a width of 1 cm, and the peel strength was measured. Thereafter, a peel strength of 0.8 kgf / cm was obtained. Even after application of thermal stress, 0.6 kgf / cm was obtained.

[実施例13]
厚さ35μmの電気めっき銅箔に、表2に示す量のメルカプトフェノール(三協化成製)及び水酸化ナトリウム(関東化学社製)1wt%を含む水溶液を用い、室温で1分間浸漬処理した。水洗した後、100℃で30分のベークで乾燥した。次に1wt%のγ−アミノプロピルトリエトキシシラン(信越化学工業社製”KBE−903”)水溶液で浸漬処理し、100℃で30分のベークを行い、カップリング剤反応を終結させた。処理面に対して、半硬化状態(Bステージ)の熱硬化性エポキシ樹脂シート(味の素社製商品名”ABF”)が接するように重ね、真空プレスで温度:150℃、圧力:1MPa、時間:5分間プレスした。その後、真空プレスから取り出し、大気圧下で170℃、1時間エポキシ樹脂を硬化させた。
[Example 13]
A 35 μm-thick electroplated copper foil was immersed in an aqueous solution containing 1 wt% of mercaptophenol (manufactured by Sankyo Kasei) and sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) in the amounts shown in Table 2 for 1 minute at room temperature. After washing with water, it was dried by baking at 100 ° C. for 30 minutes. Next, it was dipped in 1 wt% aqueous solution of γ-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) and baked at 100 ° C. for 30 minutes to complete the coupling agent reaction. A semi-cured (B stage) thermosetting epoxy resin sheet (trade name “ABF” manufactured by Ajinomoto Co., Inc.) in contact with the treated surface is overlaid, and is subjected to a vacuum press at a temperature of 150 ° C., a pressure of 1 MPa, and a time of: Pressed for 5 minutes. Thereafter, the epoxy resin was taken out from the vacuum press and cured at 170 ° C. for 1 hour under atmospheric pressure.

次に銅箔を1cm幅に切り込み、ピール強度を測定した。このピール強度と熱ストレス後のピール強度を表2に示す。   Next, the copper foil was cut into a width of 1 cm, and the peel strength was measured. Table 2 shows the peel strength and the peel strength after heat stress.

Figure 2006080473
Figure 2006080473

[産業上の利用可能性]
本発明は、多層配線基板、フレキシブルプリント基板等のプリント配線基板に好適であるほか、半導体、キャパシタ、抵抗等のチップ部品を含む樹脂モールド製品など各種製品に適用できる。
[Industrial applicability]
The present invention is suitable for printed wiring boards such as multilayer wiring boards and flexible printed boards, and can be applied to various products such as resin mold products including chip parts such as semiconductors, capacitors and resistors.

A〜Hは本発明の一実施形態における多層基板の形成工程を示す断面図。AH is sectional drawing which shows the formation process of the multilayer substrate in one Embodiment of this invention. A〜Gは本発明の一実施形態における多層基板の形成工程を示す断面図。FIGS. 4A to 4G are cross-sectional views showing a process for forming a multilayer substrate in one embodiment of the present invention.

符号の説明Explanation of symbols

1 基板
2,8,8’ 絶縁樹脂層
3,11 無電解めっき層
4,12 レジスト樹脂層
5,13 電気銅めっき層
6,6’ 吸着層
7,7' カップリング層
9 ビアホール
10 下側導体層
10' 上側導体層

1 Substrate 2, 8, 8 'Insulating resin layer 3, 11 Electroless plating layer 4, 12 Resist resin layer 5, 13 Electro copper plating layer 6, 6' Adsorption layer 7, 7 'Coupling layer 9 Via hole 10 Lower conductor Layer 10 'Upper conductor layer

Claims (5)

銅又は銅合金の表面に、密着層とカップリング剤層を介して接着させた樹脂層を含む回路基板であって、
前記密着層は、複数の官能基を含み、少なくとも一つの官能基は銅又は銅合金と反応し、残りの官能基はカップリング剤と反応する化合物の薄膜で形成され、
前記密着層の表面にカップリング剤層が形成され、その表面に樹脂層が接着されていることを特徴とする回路基板。
A circuit board comprising a resin layer bonded to the surface of copper or a copper alloy via an adhesion layer and a coupling agent layer,
The adhesion layer includes a plurality of functional groups, at least one functional group reacts with copper or a copper alloy, and the remaining functional groups are formed of a thin film of a compound that reacts with a coupling agent,
A circuit board, wherein a coupling agent layer is formed on a surface of the adhesion layer, and a resin layer is adhered to the surface.
前記密着層を形成する化合物は下記の化学式(a)〜(i)から選ばれる少なくとも一つである請求項1に記載の回路基板。
Figure 2006080473
(但し、X1〜X4の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X3の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X2の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X5の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
The circuit board according to claim 1, wherein the compound forming the adhesion layer is at least one selected from the following chemical formulas (a) to (i).
Figure 2006080473
(However, at least one of X 1 to X 4 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 3 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 2 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 5 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
前記複数の官能基のうち、銅又は銅合金と反応する官能基はカルボキシル基、アミノ基及びメルカプト基から選ばれる少なくとも一つであり、
カップリング剤と反応する官能基は水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基及びウレイド基から選ばれる少なくとも一つである請求項2に記載の回路基板。
Among the plurality of functional groups, the functional group that reacts with copper or a copper alloy is at least one selected from a carboxyl group, an amino group, and a mercapto group,
The functional group that reacts with the coupling agent is at least one selected from a hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. 2. The circuit board according to 2.
前記カップリング剤の分子中にアミノ基、メルカプト基、エポキシ基、イミダゾール基、ジアルキルアミノ基及びピリジン基から選ばれる少なくとも一つを含む請求項1に記載の回路基板。   The circuit board according to claim 1, wherein the molecule of the coupling agent includes at least one selected from an amino group, a mercapto group, an epoxy group, an imidazole group, a dialkylamino group, and a pyridine group. 銅又は銅合金の表面に、密着層とカップリング剤層を介して接着させた樹脂層を含む回路基板に用いる密着層用処理液であって、
前記密着層を形成する化合物は下記の化学式(a)〜(i)から選ばれる少なくとも一つであり、
前記化合物を0.001〜10wt%含む水溶液であることを特徴とする回路基板用処理液。
Figure 2006080473
(但し、X1〜X4の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X3の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X2の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
(但し、X1〜X5の少なくとも一つは水酸基、カルボキシル基、アミノ基、ニトロ基、メルカプト基、イソシアナト基、メタクリル基、ビニル基、グリシジル基、エポキシ基、及びウレイド基から選ばれる少なくとも1つの官能基を含み、他は水素を示す。)
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
A treatment solution for an adhesion layer used for a circuit board including a resin layer adhered to the surface of copper or a copper alloy via an adhesion layer and a coupling agent layer,
The compound forming the adhesion layer is at least one selected from the following chemical formulas (a) to (i):
A processing solution for circuit boards, which is an aqueous solution containing 0.001 to 10 wt% of the compound.
Figure 2006080473
(However, at least one of X 1 to X 4 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 3 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 2 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
(However, at least one of X 1 to X 5 is at least one selected from hydroxyl group, carboxyl group, amino group, nitro group, mercapto group, isocyanato group, methacryl group, vinyl group, glycidyl group, epoxy group, and ureido group. Contains one functional group, the other represents hydrogen.)
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
Figure 2006080473
JP2004322556A 2004-08-10 2004-11-05 Circuit board and process liquid for closely adhered layer Pending JP2006080473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322556A JP2006080473A (en) 2004-08-10 2004-11-05 Circuit board and process liquid for closely adhered layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004233603 2004-08-10
JP2004322556A JP2006080473A (en) 2004-08-10 2004-11-05 Circuit board and process liquid for closely adhered layer

Publications (1)

Publication Number Publication Date
JP2006080473A true JP2006080473A (en) 2006-03-23

Family

ID=36159647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322556A Pending JP2006080473A (en) 2004-08-10 2004-11-05 Circuit board and process liquid for closely adhered layer

Country Status (1)

Country Link
JP (1) JP2006080473A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235629A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Circuit board and its manufacturing method
WO2009028156A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Wiring member, metal component with resin and resin sealed semiconductor device, and processes for producing them
JP2009059910A (en) * 2007-08-31 2009-03-19 Panasonic Corp Lead, wiring member, package component, metal component with resin and resin sealed semiconductor device, and manufacturing method of them
JP2010087285A (en) * 2008-09-30 2010-04-15 Fujitsu Ltd Method for manufacturing multilayer circuit board
KR20100128335A (en) * 2008-03-21 2010-12-07 엔쏜 인코포레이티드 Adhesion promotion of metal to laminate with a multi-functional compound
US9017822B2 (en) 2006-03-03 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Wiring member, resin-coated metal part and resin-sealed semiconductor device, and manufacturing method for the resin-coated metal part and the resin-sealed semiconductor device
US10557061B2 (en) 2011-12-26 2020-02-11 Dic Corporation Adhesive tape
US11388822B2 (en) 2020-08-28 2022-07-12 Applied Materials, Inc. Methods for improved polymer-copper adhesion
WO2023199849A1 (en) * 2022-04-13 2023-10-19 コニカミノルタ株式会社 Non-photosensitive surface modifier, layered product, printed wiring board, and electronic device
US11818849B1 (en) 2023-04-21 2023-11-14 Yield Engineering Systems, Inc. Increasing adhesion of metal-organic interfaces by silane vapor treatment
US11919036B1 (en) 2023-04-21 2024-03-05 Yield Engineering Systems, Inc. Method of improving the adhesion strength of metal-organic interfaces in electronic devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264003A (en) * 1993-03-11 1994-09-20 Nippon Light Metal Co Ltd Method of surface treatment for imparting mildewproofness and hydrophilicity to aluminum material
JPH07212039A (en) * 1994-01-14 1995-08-11 Matsushita Electric Works Ltd Treating method of circuit board
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2002026475A (en) * 2000-07-07 2002-01-25 Mitsui Mining & Smelting Co Ltd Copper foil circuit with carrier foil, method of manufacturing printed wiring board, using the same, and printed wiring board
JP2002353614A (en) * 2001-05-29 2002-12-06 Fujitsu Ltd Substrate having multilayer interconnection layer and method of manufacturing the same
JP2002371370A (en) * 2001-06-15 2002-12-26 Mec Kk Agent and method for surface treating copper or copper alloy, and method for manufacturing printed circuit board
JP2003103562A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Manufacturing method for metal insert resin joined molded article, and manufacturing method for pressure gauge having metal insert resin joined molded article
JP2004119961A (en) * 2002-09-02 2004-04-15 Furukawa Techno Research Kk Copper foil for chip-on film, plasma display panel, and high-frequency printed wiring board
JP2004146846A (en) * 2003-12-19 2004-05-20 Sony Chem Corp Flexible printed wiring board
JP2004172576A (en) * 2002-10-30 2004-06-17 Sony Corp Etching liquid, method of etching, and method of manufacturing semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264003A (en) * 1993-03-11 1994-09-20 Nippon Light Metal Co Ltd Method of surface treatment for imparting mildewproofness and hydrophilicity to aluminum material
JPH07212039A (en) * 1994-01-14 1995-08-11 Matsushita Electric Works Ltd Treating method of circuit board
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2002026475A (en) * 2000-07-07 2002-01-25 Mitsui Mining & Smelting Co Ltd Copper foil circuit with carrier foil, method of manufacturing printed wiring board, using the same, and printed wiring board
JP2002353614A (en) * 2001-05-29 2002-12-06 Fujitsu Ltd Substrate having multilayer interconnection layer and method of manufacturing the same
JP2002371370A (en) * 2001-06-15 2002-12-26 Mec Kk Agent and method for surface treating copper or copper alloy, and method for manufacturing printed circuit board
JP2003103562A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Manufacturing method for metal insert resin joined molded article, and manufacturing method for pressure gauge having metal insert resin joined molded article
JP2004119961A (en) * 2002-09-02 2004-04-15 Furukawa Techno Research Kk Copper foil for chip-on film, plasma display panel, and high-frequency printed wiring board
JP2004172576A (en) * 2002-10-30 2004-06-17 Sony Corp Etching liquid, method of etching, and method of manufacturing semiconductor device
JP2004146846A (en) * 2003-12-19 2004-05-20 Sony Chem Corp Flexible printed wiring board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017822B2 (en) 2006-03-03 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Wiring member, resin-coated metal part and resin-sealed semiconductor device, and manufacturing method for the resin-coated metal part and the resin-sealed semiconductor device
JP2008235629A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Circuit board and its manufacturing method
WO2009028156A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Wiring member, metal component with resin and resin sealed semiconductor device, and processes for producing them
JP2009059910A (en) * 2007-08-31 2009-03-19 Panasonic Corp Lead, wiring member, package component, metal component with resin and resin sealed semiconductor device, and manufacturing method of them
KR101632450B1 (en) 2008-03-21 2016-06-21 엔쏜 인코포레이티드 Adhesion promotion of metal to laminate with a multi-functional compound
KR20100128335A (en) * 2008-03-21 2010-12-07 엔쏜 인코포레이티드 Adhesion promotion of metal to laminate with a multi-functional compound
JP2011515542A (en) * 2008-03-21 2011-05-19 エントン インコーポレイテッド Promoting metal adhesion to laminates using a multifunctional molecular system
JP2010087285A (en) * 2008-09-30 2010-04-15 Fujitsu Ltd Method for manufacturing multilayer circuit board
US10557061B2 (en) 2011-12-26 2020-02-11 Dic Corporation Adhesive tape
US11388822B2 (en) 2020-08-28 2022-07-12 Applied Materials, Inc. Methods for improved polymer-copper adhesion
WO2023199849A1 (en) * 2022-04-13 2023-10-19 コニカミノルタ株式会社 Non-photosensitive surface modifier, layered product, printed wiring board, and electronic device
US11818849B1 (en) 2023-04-21 2023-11-14 Yield Engineering Systems, Inc. Increasing adhesion of metal-organic interfaces by silane vapor treatment
US11919036B1 (en) 2023-04-21 2024-03-05 Yield Engineering Systems, Inc. Method of improving the adhesion strength of metal-organic interfaces in electronic devices

Similar Documents

Publication Publication Date Title
JP4747770B2 (en) Method for manufacturing printed wiring board and method for manufacturing semiconductor chip mounting substrate
US20070074900A1 (en) Printed circuit board and manufacturing method thereof
JP4817733B2 (en) Metal surface treatment liquid, laminate and method for producing laminate
EP1718785A2 (en) Method for zinc coating aluminum
JP5531092B2 (en) Method for manufacturing a circuit carrier layer and its use for manufacturing a circuit carrier
TWI758418B (en) Method of manufacturing a circuit board by selectively etching a seed layer
JP2006080473A (en) Circuit board and process liquid for closely adhered layer
JPH1143778A (en) Surface treatment of copper and copper alloy
JP2007081214A (en) Method of manufacturing printed circuit board
CN108353510B (en) Multilayer printed wiring board and method for manufacturing same
JP4843538B2 (en) Circuit board and manufacturing method thereof
JP2007049116A (en) Multilayer wiring board and manufacturing method thereof
JP4508140B2 (en) Built-in module
JP2007035995A (en) Copper surface treatment liquid, method for manufacturing laminate and laminate
JP4707273B2 (en) Manufacturing method of multilayer printed wiring board
WO2004084597A1 (en) Material for multilayer printed circuit board with built-in capacitor, substrate for multilayer printed circuit board, multilayer printed circuit board and methods for producing those
JP4129665B2 (en) Manufacturing method of substrate for semiconductor package
JP2009123986A (en) Method for manufacturing multi-layer circuit board
JP5317099B2 (en) Adhesive layer forming solution
JP4508141B2 (en) Stainless steel transfer substrate, stainless steel transfer substrate with plating circuit layer
JP4727194B2 (en) Circuit board
JP4370490B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JPH05259611A (en) Production of printed wiring board
JPH0217953B2 (en)
JP4648122B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110113

A521 Written amendment

Effective date: 20110314

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531