JPH05259611A - Production of printed wiring board - Google Patents

Production of printed wiring board

Info

Publication number
JPH05259611A
JPH05259611A JP5351792A JP5351792A JPH05259611A JP H05259611 A JPH05259611 A JP H05259611A JP 5351792 A JP5351792 A JP 5351792A JP 5351792 A JP5351792 A JP 5351792A JP H05259611 A JPH05259611 A JP H05259611A
Authority
JP
Japan
Prior art keywords
copper foil
copper
printed wiring
wiring board
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5351792A
Other languages
Japanese (ja)
Inventor
Shuichi Hatakeyama
修一 畠山
Akishi Nakaso
昭士 中祖
Masao Sugano
雅雄 菅野
Yorio Iwasaki
順雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5351792A priority Critical patent/JPH05259611A/en
Publication of JPH05259611A publication Critical patent/JPH05259611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of producing a printed wiring board which allows excellent efficient adhesion of a metal to a resin layer without using adhesive. CONSTITUTION:Copper foil 1 is oxidized so as to form finely shaped copper oxide 2 on the surface of the copper foil and the copper oxide on the surface of the copper foil is reduced to be metallic copper or low oxidized reduced copper 3. After overlaying the copper foil with a resin layer through the processed plane of the copper foil 1, at least the oxidized and reduced copper foil is removed from the resin board 4 in a position wherein wiring is to be formed by the method which includes etching, a wiring process including electroless plating is performed on the resin board 4 and a circuit is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント配線板の製造法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a printed wiring board.

【0002】[0002]

【従来の技術】近年、電子機器は、小型化・軽量化・多
機能化などの要求が一段と活発化し、それに伴いプリン
ト配線板においても、高密度化・高信頼性化の要求が高
まっている。このような要求に対して、現在プリント配
線板の主流となっているのはサブトラクティブ法である
が、この製造法では細線化や小径スルーホール化が困難
であり、高密度化への十分な対応には限界がある。これ
に対し、絶縁基板に無電解めっきによって導電性金属を
所望の厚さまでめっきし、配線パターンを形成するアデ
ィティブ法が提案されている。アディティブ法は、スル
ーホールに対する無電解めっきの付き回り性が良好なた
め、サブトラクティブ法に比べ、アスペクト比の高いス
ルーホール内でも均一なめっきが得られる。また、パタ
ーン形成性はサブトラクティブ法ではレジスト解像性と
エッチング精度に影響されるのに対し、アディティブ法
ではレジスト解像性のみによるため精度が高い。よっ
て、ファインパターン、高アスペクト比の高密度配線板
の製造に原理的に適している。
2. Description of the Related Art In recent years, electronic devices have become more and more demanded to be smaller, lighter and more multifunctional, and accordingly, printed wiring boards are required to have higher density and higher reliability. .. In response to such demands, the subtractive method is currently the mainstream of printed wiring boards, but it is difficult to make thin wires and small-diameter through holes with this manufacturing method, and it is sufficient for high density. There is a limit to the correspondence. On the other hand, an additive method has been proposed in which a conductive metal is plated on an insulating substrate to a desired thickness by electroless plating to form a wiring pattern. Since the additive method has good throwing power of the electroless plating on the through hole, uniform plating can be obtained even in the through hole having a high aspect ratio as compared with the subtractive method. The pattern formability is affected by the resist resolution and etching accuracy in the subtractive method, but is high in the additive method because it depends only on the resist resolution. Therefore, it is in principle suitable for manufacturing a high density wiring board having a fine pattern and a high aspect ratio.

【0003】このようなアディティブ法によるプリント
配線板の製造においては、絶縁基板と無電解めっきによ
って形成された導電性金属との密着力がプリント配線板
の諸特性にとって極めて重要である。絶縁基板とめっき
金属との密着力を確保する代表的な方法は、ABS系、
ゴム系等の接着剤層を基板表面に設け、化学粗化液で処
理することによって、接着剤の表面に微細な凹凸形状を
付与し、この粗化面のアンカー効果を利用するものであ
る。
In the production of a printed wiring board by such an additive method, the adhesion between the insulating substrate and the conductive metal formed by electroless plating is extremely important for the various characteristics of the printed wiring board. Typical methods for ensuring the adhesion between the insulating substrate and the plated metal are ABS,
By providing an adhesive layer of rubber or the like on the surface of the substrate and treating it with a chemical roughening liquid, fine irregularities are imparted to the surface of the adhesive, and the anchor effect of this roughened surface is utilized.

【0004】この他、接着剤を用いずに粗面化を行う方
法もある。特開昭63−168077号公報に開示され
る方法は、酸化処理によって、銅箔表面に酸化銅の微細
凹凸形状を付与し、これをプリプレグと積層し、銅箔及
び酸化銅を除去することによって基板表面に転写された
粗化面を露出する方法である。
In addition to this, there is also a method of roughening without using an adhesive. In the method disclosed in Japanese Patent Laid-Open No. 63-168077, a fine uneven shape of copper oxide is provided on the surface of a copper foil by an oxidation treatment, and this is laminated with a prepreg to remove the copper foil and the copper oxide. This is a method of exposing the roughened surface transferred to the substrate surface.

【0005】[0005]

【発明が解決しようとする課題】上記した接着剤を粗化
する方法は、粗化液を用いなければならない。使用でき
る粗化液のほとんどは酸化剤を含むものであり、毒性が
強い。そのため作業環境が悪く、特別な廃液処理も必要
である。また、このように粗化可能な接着剤は一般的に
電気絶縁特性が悪く、耐湿絶縁特性や高温絶縁特性に難
がある。加えて、接着剤の耐熱性が不十分であるため、
高温での密着性低下が大きいほか、寸法変化率も高く、
その適用には限界があった。
In the method of roughening the adhesive described above, a roughening liquid must be used. Most of the roughening liquids that can be used contain an oxidizing agent and are highly toxic. Therefore, the working environment is bad and special waste liquid treatment is required. In addition, such an adhesive that can be roughened generally has poor electrical insulation properties, and has poor moisture-resistant insulation properties and high-temperature insulation properties. In addition, because the heat resistance of the adhesive is insufficient,
In addition to a large decrease in adhesion at high temperatures, the dimensional change rate is high,
Its application was limited.

【0006】一方、特開昭63−168077号公報の
方法は接着剤を使用せず、酸化銅の微細形状を転写して
粗面化を行うため、接着剤に起因する特性の低下や接着
剤の粗化に伴う取り扱いの危険性及び環境の悪化を解消
することができる。しかし、転写用の銅箔は金属銅と酸
化銅の2層構造であり、酸化銅はアンモニウム系アルカ
リ性銅エッチング液には不溶・難溶性のため、このエッ
チング液では金属銅の除去はできるが、酸化銅は除去で
きず基板表面に残存してしまい、この場合には酸化銅の
除去を別途行わなければならなかった。アンモニア系ア
ルカリ性銅エッチング液を用いるエッチングシステム
は、現在のプリント配線板製造において汎用性が高く、
このような理由から、金属銅/酸化銅の2層からなる転
写用銅箔は現システムへの適合性が必ずしも良いとは言
えなかった。
On the other hand, the method disclosed in Japanese Patent Laid-Open No. 63-168077 does not use an adhesive, but transfers the fine shape of copper oxide to roughen the surface. It is possible to eliminate the danger of handling and the deterioration of the environment due to the roughening of. However, the copper foil for transfer has a two-layer structure of metallic copper and copper oxide, and since copper oxide is insoluble or hardly soluble in an ammonium-based alkaline copper etching solution, this etching solution can remove metallic copper. Copper oxide could not be removed and remained on the surface of the substrate. In this case, copper oxide had to be removed separately. An etching system using an ammonia-based alkaline copper etching solution has high versatility in current printed wiring board manufacturing,
For these reasons, the transfer copper foil composed of two layers of metallic copper / copper oxide was not always suitable for the current system.

【0007】[0007]

【課題を解決するための手段】本発明のプリント配線板
の製造法は、銅箔を酸化処理して銅箔表面に微細形状を
有する酸化銅を形成し、次いで、還元処理して銅箔表面
の酸化銅を金属銅または低酸化状態の還元銅とし、この
銅箔処理面を介して樹脂層と積層後、少なくとも配線形
成予定位置の樹脂基板から酸化・還元処理した銅箔をエ
ッチングを含む方法によって除去し、樹脂基板に無電解
めっきを含む配線加工を行い、回路を形成することを特
徴とするものである。
The method for manufacturing a printed wiring board according to the present invention comprises the steps of oxidizing a copper foil to form copper oxide having a fine shape on the surface of the copper foil, and then subjecting it to a reduction treatment to form a copper foil surface. In the method, the copper oxide is used as metallic copper or reduced copper in a low oxidation state, and after laminating with the resin layer via the copper foil-treated surface, at least the copper foil subjected to the oxidation / reduction treatment is etched from the resin substrate at the wiring formation planned position. Then, the resin substrate is subjected to wiring processing including electroless plating to form a circuit.

【0008】本発明で用いる銅箔表面に酸化銅を形成す
るには種々の方法がある。例えば、亜塩素酸ナトリウ
ム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸
カリウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸
アンモニウム等の酸化剤を含む処理液に銅箔を浸漬して
処理する方法である。処理液組成の1例としては NaClO2 : 5 〜150 g/l Na3PO4/12H2O : 10 〜 60 g/l NaOH : 1 〜 50 g/l が好ましい。上記処理液の処理温度は50〜95℃で、
銅箔の浸漬時間は15秒から5分間である。浸漬でなく
処理液の噴霧でもよい。また、陽極酸化によっても酸化
銅は形成できる。銅箔を陽極としNaOH等を含む塩基
性溶液中、1〜15 Adm-2、10〜40分間の電解が良
好である。
There are various methods for forming copper oxide on the surface of the copper foil used in the present invention. For example, a method of treating a copper foil by immersing it in a treatment liquid containing an oxidizing agent such as sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, sodium persulfate, potassium persulfate, and ammonium persulfate. Is. As an example of the composition of the treatment liquid, NaClO 2 : 5 to 150 g / l Na 3 PO 4 / 12H 2 O: 10 to 60 g / l NaOH: 1 to 50 g / l is preferable. The treatment temperature of the treatment liquid is 50 to 95 ° C.,
The immersion time of the copper foil is 15 seconds to 5 minutes. The treatment liquid may be sprayed instead of dipping. Copper oxide can also be formed by anodic oxidation. Electrolysis with a copper foil as an anode in a basic solution containing NaOH or the like for 1 to 15 Adm -2 for 10 to 40 minutes is good.

【0009】使用する銅箔としては、他の金属箔や有機
質フィルムの支持体の上に銅箔が形成されたものでも良
い。支持体を使用しない場合は、銅箔の厚さに特に制限
はないが、取り扱い上及び価格の点から18〜70μm
のものが良好である。また、本発明の方法で作製したプ
リント配線板とめっき金属の密着力を高めるためには、
銅箔表面を予め粗面化しておくのが好ましい。その粗面
化の方法としては、研磨、ホーニング、エッチング、電
気めっき、無電解めっき等がある。例えば、銅張積層板
用の銅箔は良好に使用できる。酸化処理前には酸化銅が
均一に形成されるようにするために、銅箔は脱脂洗浄や
塩酸水溶液または硫酸水溶液で処理して使用することが
望ましい。
The copper foil used may be another metal foil or a copper foil formed on a support of an organic film. When the support is not used, the thickness of the copper foil is not particularly limited, but it is 18 to 70 μm in terms of handling and price.
Things are good. Further, in order to enhance the adhesion between the printed wiring board produced by the method of the present invention and the plated metal,
It is preferable to roughen the surface of the copper foil in advance. The surface roughening method includes polishing, honing, etching, electroplating, electroless plating and the like. For example, a copper foil for a copper-clad laminate can be favorably used. Before the oxidation treatment, the copper foil is preferably degreased and washed or treated with an aqueous solution of hydrochloric acid or an aqueous solution of sulfuric acid so that the copper oxide is uniformly formed.

【0010】銅箔表面に形成した酸化銅を金属銅または
低酸化状態に還元するには種々の方法がある。例えば、
ジメチルアミンボラン、ジボラン、水素化ほう素ナトリ
ウム、水素化ほう素カリウム、ヒドラジン、ホルムアル
デヒド、活性水素等の還元剤を含む処理液の少なくとも
1つ以上に酸化銅を形成した銅箔を浸漬して処理する方
法である。処理液組成の1例としては (CH3)2NH・BH3 : 2〜20g/l NaOH : 1〜30g/l が好ましい。上記処理液の処理条件は、温度10〜80
℃で、酸化銅を形成した銅箔の浸漬時間は15秒〜5分
間である。浸漬でなく処理液の噴霧でも良い。また、酸
化銅を形成した銅箔を陰極とする電解やAl等の銅より
も、酸化還元電位の低い金属と接触または近接によって
も酸化銅の還元は可能である。
There are various methods for reducing the copper oxide formed on the surface of the copper foil to metallic copper or a low oxidation state. For example,
Treatment is performed by immersing a copper foil on which copper oxide is formed in at least one treatment liquid containing a reducing agent such as dimethylamine borane, diborane, sodium borohydride, potassium borohydride, hydrazine, formaldehyde, and active hydrogen. Is the way to do it. As an example of the composition of the treatment liquid, (CH 3 ) 2 NH.BH 3 : 2 to 20 g / l NaOH: 1 to 30 g / l is preferable. The processing conditions for the above processing liquid are temperature 10 to 80.
The immersion time of the copper foil on which copper oxide is formed at 15 ° C. is 15 seconds to 5 minutes. The treatment liquid may be sprayed instead of immersion. Further, the copper oxide can be reduced by electrolysis using a copper foil on which copper oxide is formed as a cathode or by contact with or in proximity to a metal having a lower redox potential than copper such as Al.

【0011】酸化・還元処理した銅箔面にシランカップ
リング剤を塗布する場合は、NH2C3H6Si(OC2H5)3、NH2C2
H4NHC3H6Si(OC2H5)3、HSC3H6Si(OC2H5)3、C6H5CH2NH2+C
2H4NHC3H6Si(OCH3)3・Cl-等を用いることができる。こ
れらのシランカップリング剤は、日本ユニカー株式会
社、信越シリコーン株式会社、東芝シリコーン株式会社
等から販売されている。これらのシランカップリング剤
は水、有機溶剤またはその混合溶液に溶解して使用す
る。シランカップリング剤の濃度は通常0.1g/l 以
上、最適濃度はその種類によっても異なるが、0.5〜
50g/l の範囲が良好である。塗布方法はシランカップ
リング剤溶液への浸漬またはシランカップリング剤溶液
の噴霧等がある。シランカップリング剤塗布後は乾燥す
るのが好ましい。乾燥条件の1例は温度110℃、時間
30分間である。
When a silane coupling agent is applied to a copper foil surface that has been subjected to oxidation / reduction treatment, NH 2 C 3 H 6 Si (OC 2 H 5 ) 3 , NH 2 C 2
H 4 NHC 3 H 6 Si ( OC 2 H 5) 3, HSC 3 H 6 Si (OC 2 H 5) 3, C 6 H 5 CH 2 NH 2 + C
2 H 4 NHC 3 H 6 Si (OCH 3 ) 3 · Cl − and the like can be used. These silane coupling agents are sold by Nippon Unicar Co., Ltd., Shin-Etsu Silicone Co., Ltd., Toshiba Silicone Co., Ltd., etc. These silane coupling agents are used by dissolving them in water, an organic solvent or a mixed solution thereof. The concentration of the silane coupling agent is usually 0.1 g / l or more, and the optimum concentration is 0.5-
A range of 50 g / l is good. The coating method includes dipping in a silane coupling agent solution or spraying the silane coupling agent solution. It is preferable to dry after applying the silane coupling agent. One example of drying conditions is a temperature of 110 ° C. and a time of 30 minutes.

【0012】酸化・還元した銅箔あるいは更に必要に応
じて、シランカップリング剤の塗布を行った銅箔と積層
する絶縁材料からなる樹脂層は、エポキシ、変性ポリイ
ミド、ポリイミド、フェノール等一般の銅張積層板に用
いられる熱硬化性樹脂やポリエチレン、テフロン、ポリ
エーテルサルフォン、ポリエーテルイミド等の熱可塑性
樹脂が用いられる。これらは、紙やガラス布等の基材に
樹脂を含浸させたプリプレグや接着フィルムとして使用
できる。また、液状のワニスを酸化・還元した銅箔、あ
るいは更に必要に応じてシランカップリング剤の塗布を
行った銅箔に塗布し、適当な条件で乾燥後用いても良
い。
The resin layer made of an insulating material to be laminated with an oxidized / reduced copper foil or, if necessary, a copper foil coated with a silane coupling agent is an ordinary copper such as epoxy, modified polyimide, polyimide or phenol. A thermosetting resin used for the stretched laminated board or a thermoplastic resin such as polyethylene, Teflon, polyether sulfone, or polyetherimide is used. These can be used as a prepreg or an adhesive film obtained by impregnating a base material such as paper or glass cloth with a resin. Alternatively, the liquid varnish may be applied to a copper foil obtained by oxidation / reduction, or a copper foil coated with a silane coupling agent if necessary, and may be dried under appropriate conditions before use.

【0013】酸化・還元した銅箔、あるいは更に必要に
応じてシランカップリング剤の塗布を行った銅箔と樹脂
層を積層した後、銅箔を除去するにはエッチング液が用
いられる。このエッチング液には、プリント配線板のエ
ッチング液として一般的に使用されている過硫酸アンモ
ニウム、塩化銅と塩酸の水溶液、塩化鉄と塩酸の水溶液
等の他、銅アンモニウム錯体を主体とするアルカリ性水
溶液も使うことができる。エッチング前には銅箔表面を
機械的に研磨するのが望ましい。
An etching solution is used to remove the copper foil after the resin layer is laminated with the oxidized / reduced copper foil, or the copper foil coated with a silane coupling agent as required. This etching solution includes ammonium persulfate, which is generally used as an etching solution for printed wiring boards, an aqueous solution of copper chloride and hydrochloric acid, an aqueous solution of iron chloride and hydrochloric acid, and an alkaline aqueous solution mainly containing a copper ammonium complex. Can be used. It is desirable to mechanically polish the surface of the copper foil before etching.

【0014】銅箔除去後の樹脂基板にシランカップリン
グ剤を塗布する場合は、上記の酸化・還元処理した銅箔
に塗布する場合と同様のシランカップリング剤を同様の
方法で使用できる。無電解めっきに先立つ触媒処理はパ
ラジウム触媒等を用いることができる。触媒処理の代わ
りに触媒入り材料を用いてもよい。無電解めっきは、無
電解銅めっき、無電解ニッケルめっき等が用いられる。
プリント配線板の導体としては、一般に無電解銅めっき
が用いられている。無電解銅めっきだけで導体を形成す
る場合は、めっき銅の機械的特性が優れる厚付け用無電
解銅めっき液を用いるのがよい。電気めっきを併用する
場合は、上記の触媒処理後に無電解めっきを行った後、
電気めっきを行う。
When the silane coupling agent is applied to the resin substrate after removal of the copper foil, the same silane coupling agent as that applied to the above-mentioned oxidized / reduced copper foil can be used in the same manner. The catalyst treatment prior to electroless plating may use a palladium catalyst or the like. A catalyst-containing material may be used instead of the catalyst treatment. As the electroless plating, electroless copper plating, electroless nickel plating, or the like is used.
Electroless copper plating is generally used as a conductor of a printed wiring board. When the conductor is formed only by electroless copper plating, it is preferable to use an electroless copper plating solution for thickening, which has excellent mechanical properties of plated copper. When using electroplating together, after performing electroless plating after the above catalyst treatment,
Perform electroplating.

【0015】[0015]

【作用】銅箔に形成される酸化銅は大きさがサブミクロ
ン以下の繊維状〜柱状あるいは粒状結晶である。これを
還元処理すると銅の酸化数が減少し、金属銅あるいは低
酸化状態へと物性的には変化するが、酸化銅の形状はほ
ぼ維持されたままであり、銅箔上には大きさがザブミク
ロン以下の微細形状を有する(金属)銅等が形成され
る。そのため、酸化・還元処理した銅箔と樹脂層を積層
した後、銅箔を除去した樹脂基板の表面には、酸化銅を
還元した銅の上記形状の凹凸が転写・形成される。無電
解めっきと樹脂基板の密着性を確保・向上するには、こ
のサブミクロン以下の微細形状が重要である。
The copper oxide formed on the copper foil is a fibrous to columnar or granular crystal having a size of submicron or less. When this is subjected to reduction treatment, the oxidation number of copper decreases and the physical properties change to metallic copper or a low oxidation state, but the shape of copper oxide remains almost the same, and the size on the copper foil is submicron. Copper (metal) having the following fine shape is formed. Therefore, after the copper foil subjected to the oxidation / reduction treatment and the resin layer are laminated, the unevenness of the above-described copper reduced copper oxide is transferred / formed on the surface of the resin substrate from which the copper foil has been removed. In order to secure / improve the adhesion between the electroless plating and the resin substrate, the submicron or smaller fine shape is important.

【0016】使用する銅箔の表面は粗面化処理されたも
のが望ましい。適当なものは銅張積層板用銅箔の粗面で
ある。この銅箔粗面は1〜12μm 程度の表面粗さ(十
点平均粗さ)を有する。この1〜12μm の粗面上に、
更に上記方法によるサブミクロン以下の微細形状を付与
した表面形状が、有機質絶縁材料に転写されることによ
って無電解めっき金属と密着力の高いプリント配線板用
樹脂基板が得られる。この方法において、酸化・還元処
理した銅箔表面にシランカップリング剤を塗布した場
合、あるいは積層後酸化・還元処理した銅箔を除去した
絶縁性有機材料にシランカップリング剤を塗布した場合
は、シランカップリング剤を塗布しない場合と比べ、無
電解めっきの密着力が著しく向上する。
The surface of the copper foil used is preferably roughened. A suitable material is a rough surface of copper foil for copper clad laminates. The rough surface of the copper foil has a surface roughness (10-point average roughness) of about 1 to 12 μm. On this rough surface of 1-12 μm,
Further, by transferring the surface shape imparted with a fine shape of submicron or less by the above method to the organic insulating material, a resin substrate for a printed wiring board having a high adhesion with the electroless plated metal can be obtained. In this method, when the silane coupling agent is applied to the oxidized / reduced copper foil surface, or when the silane coupling agent is applied to the insulating organic material from which the oxidized / reduced copper foil after lamination is removed, The adhesion of electroless plating is significantly improved as compared with the case where no silane coupling agent is applied.

【0017】[0017]

【実施例】実施例1 銅張積層板用銅箔NDGA−35(日本電解株式会社
製、商品名)を用意し、この銅箔を前処理として脱脂液
ニュートラルクリーン(シップレイ社製、商品名)に5
分間浸漬し、流水洗後、10vol.%硫酸に2分間浸漬
し、流水洗を行ってから、次の条件で酸化処理を行っ
た。 NaClO2 : 90 g/l Na3PO4/12H2O : 10 g/l NaOH : 15 g/l 純水 : 1 l になる量 温度 : 85 ℃ 処理時間 : 2 分間 酸化処理後、流水で洗浄し、次の条件で還元処理を行っ
た。 (CH3)2NH・BH3 : 5 g/l NaOH : 5 g/l 純水 : 1 l になる量 温度 : 50 ℃ 処理時間 : 2 分間 還元処理後、流水で洗浄し、80℃で30分間乾燥し
た。次に銅箔の酸化・還元処理面が、ガラス布基材エポ
キシプリプレグGE−67WG2L(日立化成工業株式
会社製、商品名)と接するように、ガラス布基材エポキ
シ基板E−67(日立化成工業株式会社製、商品名)と
構成し、積層プレスした。積層条件は成形圧力30kg/c
m2、温度170℃、時間60分間である。次にNCドリ
ルで穴あけを行ってから、アンモニウム系アルカリ銅エ
ッチング液アルファイン9106(上村工業株式会社
製、商品名)を用いて、銅箔を完全に除去し、水洗して
から塩化パラジウムを含む処理液に浸漬して無電解銅め
っき反応を開始させるためのパラジウム触媒を付与し
た。次にドライフィルムフォトレジストであるフォテッ
クSR−3000−35(日立化成工業株式会社製、商
品名)を用いて、ラミネート、露光、現像を順次行い、
めっきレジストを形成した。次に下記条件の無電解銅め
っきを行った。 CuSO4 ・5H2O : 1 g/l EDTA・4Na : 40 g/l 37%CH2O : 3 ml/l めっき液添加剤 : 少々 pH : 12.4 めっき液温度 : 70 ℃ めっき膜厚 : 35 μm
Example 1 A copper foil NDGA-35 for copper clad laminate (Nippon Electrolytic Co., Ltd., trade name) was prepared, and the degreasing liquid neutral clean (Shipley Co., trade name) was used as a pretreatment for this copper foil. To 5
After dipping for 1 minute, washing with running water, dipping in 10 vol.% Sulfuric acid for 2 minutes, washing with running water, and then oxidation treatment under the following conditions. NaClO 2 : 90 g / l Na 3 PO 4 / 12H 2 O: 10 g / l NaOH: 15 g / l Pure water: 1 l Amount Temperature: 85 ° C Treatment time: 2 minutes After oxidation treatment, rinse with running water Then, reduction treatment was performed under the following conditions. (CH 3 ) 2NH ・ BH 3 : 5 g / l NaOH: 5 g / l Pure water: 1 l Amount Temperature: 50 ℃ Treatment time: 2 minutes After reduction treatment, wash with running water and then at 80 ℃ for 30 minutes Dried. Then oxidation-reduction treatment surface of the copper foil, glass cloth-based epoxy prepreg GE-67WG 2 L (manufactured by Hitachi Chemical Co., Ltd., trade name) so as to be in contact with, glass cloth-based epoxy substrate E-67 (Hitachi The product was manufactured by Kasei Kogyo Co., Ltd. and was laminated and pressed. Laminating condition is molding pressure 30kg / c
m 2 , temperature 170 ° C., time 60 minutes. Next, after making a hole with an NC drill, the copper foil was completely removed using an ammonium-based alkaline copper etching solution Alfain 9106 (manufactured by Uemura Kogyo Co., Ltd.), washed with water, and then containing palladium chloride. A palladium catalyst for initiating the electroless copper plating reaction was applied by dipping in the treatment liquid. Then, using a dry film photoresist, Fotec SR-3000-35 (manufactured by Hitachi Chemical Co., Ltd., trade name), lamination, exposure, and development are sequentially performed,
A plating resist was formed. Next, electroless copper plating was performed under the following conditions. CuSO 4・ 5H 2 O: 1 g / l EDTA ・ 4Na: 40 g / l 37% CH 2 O: 3 ml / l Plating solution additive: Little pH: 12.4 Plating solution temperature: 70 ℃ Plating film thickness: 35 μm

【0018】実施例2 実施例1で用いた銅箔を実施例1と同じ方法で前処理、
酸化処理、還元処理を順次行った。次いで、この銅箔を
NH2C3H6Si(OC2H5)3 の10g/l 水溶液に3分間浸漬し、
110℃で30分間乾燥した。その後、実施例1と同じ
方法で積層、穴あけ、銅箔エッチング、パラジウム触媒
付与、めっきレジスト形成、無電解銅めっきを順次行っ
た。
Example 2 The copper foil used in Example 1 was pretreated in the same manner as in Example 1,
The oxidation treatment and the reduction treatment were sequentially performed. Then, this copper foil
Immerse in a 10 g / l aqueous solution of NH 2 C 3 H 6 Si (OC 2 H 5 ) 3 for 3 minutes,
It was dried at 110 ° C. for 30 minutes. Then, lamination, drilling, copper foil etching, palladium catalyst application, plating resist formation, and electroless copper plating were sequentially performed in the same manner as in Example 1.

【0019】実施例3 実施例1で用いた銅箔を実施例1と同じ方法で前処理、
酸化処理、還元処理を順次行った。次いで実施例1と同
じ方法で積層、穴あけ、酸化・還元処理した銅箔を溶解
除去してから、NH2C3H6Si(OC2H5)3 の5g/l 水溶液に3
分間浸漬し、110℃で30分間乾燥した。その後、実
施例1と同じ方法でパラジウム触媒の付与、めっきレジ
ストの形成、無電解銅めっきを行った。
Example 3 The copper foil used in Example 1 was pretreated in the same manner as in Example 1,
The oxidation treatment and the reduction treatment were sequentially performed. Then, the copper foil laminated, punched, and oxidized / reduced in the same manner as in Example 1 was dissolved and removed, and then 3 g was added to a 5 g / l aqueous solution of NH 2 C 3 H 6 Si (OC 2 H 5 ) 3.
It was soaked for 1 minute and dried at 110 ° C. for 30 minutes. Then, in the same manner as in Example 1, a palladium catalyst was applied, a plating resist was formed, and electroless copper plating was performed.

【0020】比較例1 実施例1で用いた銅箔を用いて、実施例1と同じ方法で
積層、穴あけ、銅箔のエッチング、パラジウム触媒の付
与、めっきレジストの形成、無電解銅めっきを順次行っ
た。
Comparative Example 1 Using the copper foil used in Example 1, lamination, drilling, etching of the copper foil, application of a palladium catalyst, formation of a plating resist, and electroless copper plating were carried out in the same manner as in Example 1. went.

【0021】比較例2 アクリロニトリルブタジエンゴム、アルキルフェノール
樹脂、エポキシ樹脂、シリカ、珪酸ジルコニウムをニー
ダ及び攪拌機を用いて酢酸セロソルブとメチルエチルケ
トンの混合溶媒に溶解させて、固形分25%の接着剤溶
液を作製し、これをガラス布基材エポキシ基板E−67
(日立化成工業株式会社製;商品名)表面に乾燥後の厚
さが約25μm となるように浸漬塗布し、170℃で6
0分間加熱硬化して接着剤付基板を作製した。実施例1
と同じ方法で穴あけ後、この接着剤層を化学粗化するた
めに、クロム酸混酸(クロム酸:55g/l 、硫酸300
ml/l)に40℃で15分間浸漬し、水洗して中和した。
その後、実施例1と同じ方法でパラジウム触媒の付与、
めっきレジストの形成、無電解銅めっきを順次行った。
Comparative Example 2 Acrylonitrile butadiene rubber, alkylphenol resin, epoxy resin, silica and zirconium silicate were dissolved in a mixed solvent of cellosolve acetate and methyl ethyl ketone using a kneader and a stirrer to prepare an adhesive solution having a solid content of 25%. , Glass cloth base epoxy board E-67
(Manufactured by Hitachi Chemical Co., Ltd .; trade name) The surface is dip-coated so that the thickness after drying is about 25 μm, and the temperature is 6 ° C at 170 ° C.
A substrate with an adhesive was prepared by heating and curing for 0 minutes. Example 1
After drilling by the same method as above, in order to chemically roughen this adhesive layer, chromic acid mixed acid (chromic acid: 55 g / l, sulfuric acid 300
(ml / l) at 40 ° C for 15 minutes and washed with water to neutralize.
After that, applying a palladium catalyst in the same manner as in Example 1,
Formation of a plating resist and electroless copper plating were sequentially performed.

【0022】以上のようにして無電解めっきを行った
後、基板とめっき膜の密着力を評価するために、25℃
及び150℃中でめっき膜の引き剥し強さを測定した。
めっき膜の引き剥し幅は10mm、引き剥し角度は90
゜、引き剥し速度は50mm/分で行った。その結果を表
1に示す。比較例1の場合は、基板とめっき膜の密着力
が不十分であるために、無電解銅めっき液中でめっき金
属が剥がれてしまい、めっき膜の引き剥し強さを測定す
ることはできなかった。
After performing the electroless plating as described above, in order to evaluate the adhesion between the substrate and the plated film, 25 ° C.
The peel strength of the plated film was measured at 150 ° C. and 150 ° C.
Stripping width of plating film is 10mm, stripping angle is 90
The peeling speed was 50 mm / min. The results are shown in Table 1. In the case of Comparative Example 1, since the adhesion between the substrate and the plating film was insufficient, the plating metal was peeled off in the electroless copper plating solution, and the peeling strength of the plating film could not be measured. It was

【0023】この結果より、本発明によるプリント配線
板の製造法は、めっき膜/基板間の密着力が十分に確保
されており、また接着剤層を設け、これを粗化する従来
の方法に比べ高温での密着力の低下の少ないことがわか
る。
From these results, the method for manufacturing a printed wiring board according to the present invention has a sufficient adhesion between the plating film and the substrate, and is different from the conventional method of providing an adhesive layer and roughening it. In comparison, it can be seen that there is little decrease in adhesion at high temperatures.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上のように、本発明では接着剤を用い
ずに粗面化を行っているため、接着剤に起因する特性の
低下及び接着剤の粗化に伴う取り扱いの危険性や環境の
悪化を解消し、かつ耐熱性・電気絶縁特性に優れ、めっ
き膜と絶縁基板との十分な密着性を有するプリント配線
板を製造することができる。また、粗面化を行うための
銅箔の除去は、アンモニア系アルカリ銅エッチング液で
も可能であり、その適合性が広い。
As described above, according to the present invention, since the surface is roughened without using the adhesive, the deterioration of the characteristics caused by the adhesive and the danger of handling due to the roughening of the adhesive and the environment. It is possible to manufacture a printed wiring board which eliminates the above-mentioned deterioration, has excellent heat resistance and electric insulation properties, and has sufficient adhesion between the plating film and the insulating substrate. Further, the removal of the copper foil for roughening can be performed with an ammonia-based alkaline copper etching solution, and its compatibility is wide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造法を説明するための断
面図である。
FIG. 1 is a sectional view for explaining a manufacturing method according to an embodiment of the present invention.

【図2】本発明の他の実施例の製造法を説明するための
断面図である。
FIG. 2 is a sectional view for explaining a manufacturing method of another embodiment of the present invention.

【図3】本発明のさらに他の実施例の製造法を説明する
ための断面図である。
FIG. 3 is a cross-sectional view for explaining the manufacturing method of still another embodiment of the present invention.

【図4】従来例の製造法を説明するための断面図であ
る。
FIG. 4 is a cross-sectional view for explaining a manufacturing method of a conventional example.

【図5】他の重例例の製造法を説明するための断面図で
ある。
FIG. 5 is a cross-sectional view for explaining the manufacturing method of another example.

【符号の説明】[Explanation of symbols]

1.銅箔 2.酸化銅 3.酸化・還元銅 4.樹脂基板 5.スルーホール 6.パラジウム触
媒 7.めっきレジスト 8.無電解めっき 9.シランカップリング剤 10.接着剤(粗
化前) 11.接着剤(粗化後) 12.酸化処理銅
箔 13.酸化・還元処理銅箔
1. Copper foil 2. Copper oxide 3. Oxidized / reduced copper 4. Resin substrate 5. Through hole 6. Palladium catalyst 7. Plating resist 8. Electroless plating 9. Silane coupling agent 10. Adhesive (before roughening) 11. Adhesive (after roughening) 12. Oxidized copper foil 13. Oxidation / reduction treatment copper foil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 順雄 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Juno Iwasaki 1500 Ogawa, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】銅箔を酸化処理して銅箔表面に微細形状を
有する酸化銅を形成し、次いで還元処理して銅箔表面の
酸化銅を金属銅または低酸化状態の還元銅とし、この銅
箔処理面を介して樹脂層と積層後、少なくとも配線形成
予定位置の樹脂基板から前記還元処理した銅箔を除去
し、樹脂基板に無電解めっきを含む配線加工を行い、回
路を形成することを特徴とするプリント配線板の製造方
法。
1. A copper foil is subjected to an oxidation treatment to form copper oxide having a fine shape on the surface of the copper foil, and then subjected to a reduction treatment to convert the copper oxide on the surface of the copper foil to metallic copper or reduced copper in a low oxidation state. After laminating with the resin layer through the copper foil treated surface, at least the reduction-treated copper foil is removed from the resin substrate at the wiring formation planned position, and wiring processing including electroless plating is performed on the resin substrate to form a circuit. And a method for manufacturing a printed wiring board.
【請求項2】前記還元処理した銅箔と積層した後、その
銅箔を除去した樹脂基板に、シランカップリング剤を塗
布することを特徴とする請求項1に記載のプリント配線
板の製造方法。
2. The method for producing a printed wiring board according to claim 1, wherein after the copper foil having been subjected to the reduction treatment is laminated, the resin substrate from which the copper foil has been removed is coated with a silane coupling agent. ..
【請求項3】前記シランカップリング剤を塗布した銅箔
と積層する樹脂層が、次の絶縁材料のいずれかであるこ
とを特徴とする請求項2に記載のプリント配線板の製造
方法。 (a)プリプレグ (b)接着フィルム (c)ワニス
3. The method of manufacturing a printed wiring board according to claim 2, wherein the resin layer laminated on the copper foil coated with the silane coupling agent is any of the following insulating materials. (A) prepreg (b) adhesive film (c) varnish
【請求項4】前記銅箔を酸化処理する方法が、以下のい
ずれかもしくはその併用であることを特徴とする請求項
1〜3のうちいずれかに記載のプリント配線板の製造方
法。 (a)銅箔を酸化剤含有の処理液と接触させる方法 (b)銅箔の電解による陽極酸化
4. The method for manufacturing a printed wiring board according to claim 1, wherein the method for oxidizing the copper foil is any one of the following or a combination thereof. (A) Method of contacting copper foil with a treatment liquid containing an oxidant (b) Anodization of copper foil by electrolysis
【請求項5】前記酸化銅の還元方法が、以下のいずれか
もしくはその併用であることを特徴とする請求項1〜4
のうちいずれかに記載のプリント配線板の製造方法。 (a)酸化銅を形成した銅箔を還元剤含有の処理液と接
触させる方法 (b)酸化銅を形成した銅箔の電解による陰極還元 (c)酸化銅を形成した銅箔を銅よりも酸化還元電位の
低い金属と接触または近接させる方法
5. The method for reducing copper oxide according to any one of the following or a combination thereof.
A method for manufacturing a printed wiring board according to any one of 1. (A) Method of contacting a copper foil on which copper oxide is formed with a treatment liquid containing a reducing agent (b) Cathodic reduction by electrolysis of copper foil on which copper oxide is formed (c) Copper foil on which copper oxide is formed rather than copper Method of contacting or approaching a metal with low redox potential
JP5351792A 1992-03-12 1992-03-12 Production of printed wiring board Pending JPH05259611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5351792A JPH05259611A (en) 1992-03-12 1992-03-12 Production of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5351792A JPH05259611A (en) 1992-03-12 1992-03-12 Production of printed wiring board

Publications (1)

Publication Number Publication Date
JPH05259611A true JPH05259611A (en) 1993-10-08

Family

ID=12945019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5351792A Pending JPH05259611A (en) 1992-03-12 1992-03-12 Production of printed wiring board

Country Status (1)

Country Link
JP (1) JPH05259611A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221443A (en) * 1994-01-24 1995-08-18 Internatl Business Mach Corp <Ibm> Sticking to substrate of conductive metal
JPH10296942A (en) * 1997-04-23 1998-11-10 Matsushita Electric Works Ltd Manufacture of laminate
JP2000068642A (en) * 1998-08-25 2000-03-03 Fujitsu Ltd Manufacture of multilayer circuit board
JP2007049116A (en) * 2005-07-11 2007-02-22 Fujitsu Ltd Multilayer wiring board and manufacturing method thereof
WO2009113396A1 (en) * 2008-03-10 2009-09-17 日立ビアメカニクス株式会社 Method of treating surface of copper and method of treating surface of printed wiring board
JP2012039111A (en) * 2010-08-03 2012-02-23 Samsung Electro-Mechanics Co Ltd Forming method of plated layer and manufacturing method of circuit board using the same
JP2012241238A (en) * 2011-05-20 2012-12-10 Toyota Central R&D Labs Inc Metal member and method for manufacturing the same
CN113412348A (en) * 2019-05-09 2021-09-17 纳美仕有限公司 Processing device for copper surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221443A (en) * 1994-01-24 1995-08-18 Internatl Business Mach Corp <Ibm> Sticking to substrate of conductive metal
JPH10296942A (en) * 1997-04-23 1998-11-10 Matsushita Electric Works Ltd Manufacture of laminate
JP2000068642A (en) * 1998-08-25 2000-03-03 Fujitsu Ltd Manufacture of multilayer circuit board
JP2007049116A (en) * 2005-07-11 2007-02-22 Fujitsu Ltd Multilayer wiring board and manufacturing method thereof
WO2009113396A1 (en) * 2008-03-10 2009-09-17 日立ビアメカニクス株式会社 Method of treating surface of copper and method of treating surface of printed wiring board
JP2012039111A (en) * 2010-08-03 2012-02-23 Samsung Electro-Mechanics Co Ltd Forming method of plated layer and manufacturing method of circuit board using the same
JP2012241238A (en) * 2011-05-20 2012-12-10 Toyota Central R&D Labs Inc Metal member and method for manufacturing the same
CN113412348A (en) * 2019-05-09 2021-09-17 纳美仕有限公司 Processing device for copper surface

Similar Documents

Publication Publication Date Title
WO2005080633A2 (en) Method for zinc coating aluminum
JPH11186716A (en) Method of forming metal layer
JPH05259611A (en) Production of printed wiring board
JPH07123181B2 (en) Manufacturing method of printed wiring board
US4976808A (en) Process for removing a polyimide resin by dissolution
JP2000169998A (en) Electroplating pretreating liquid, electroplating method and production of multilayered printed circuit board
JP2000151096A (en) Manufacture of printed wiring board
JPH05283865A (en) Manufacture of multilayer flexible printed-circuit board
JPH06260759A (en) Manufacture of printed circuit board
JPH05167248A (en) Method of manufacturing printed wiring board
JPH06260757A (en) Manufacture of printed circuit board
JP2624068B2 (en) Manufacturing method of printed wiring board
JPH08148810A (en) Manufacture of printed wiring board
JP4734875B2 (en) Insulator for additive plating, substrate with additive plating metal film
JP2001203464A (en) Buildup multilayer printed wiring board and its manufacturing method
JPH07114312B2 (en) Manufacturing method of printed wiring board
JP2571867B2 (en) Manufacturing method of printed wiring board
JPH01297883A (en) Manufacture of printed wiring board
JPH08148808A (en) Manufacture of printed wiring board
JPH0724333B2 (en) Manufacturing method of insulating substrate with thin metal layer
JPS61163693A (en) Manufacture of printed wiring board
JPS5950239B2 (en) Manufacturing method of printed wiring board
JPH06260758A (en) Manufacture of printed circuit board
JPH01124286A (en) Manufacture of printed-circuit board
JPH04155993A (en) Manufacture of multilayer printed wiring board