JPH05283865A - Manufacture of multilayer flexible printed-circuit board - Google Patents

Manufacture of multilayer flexible printed-circuit board

Info

Publication number
JPH05283865A
JPH05283865A JP7675392A JP7675392A JPH05283865A JP H05283865 A JPH05283865 A JP H05283865A JP 7675392 A JP7675392 A JP 7675392A JP 7675392 A JP7675392 A JP 7675392A JP H05283865 A JPH05283865 A JP H05283865A
Authority
JP
Japan
Prior art keywords
layer
polyimide
copper
circuit pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7675392A
Other languages
Japanese (ja)
Inventor
Tomonori Matsuura
友紀 松浦
Hideji Sagara
秀次 相楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP7675392A priority Critical patent/JPH05283865A/en
Publication of JPH05283865A publication Critical patent/JPH05283865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent heat resistance, dimensional stability, thinner and flexible by curing polyimide precursor after coating an entire board formed with a circuit pattern to form a polyimide layer, and forming a conductive layer on the surface-treated polyimide layer. CONSTITUTION:A circuit pattern 7 is formed on a copper foil 1 of a copper-clad board 3 in which polyimide resin is used as a base material 2. The entire board 3 formed with the pattern 7 is coated with polyimide precursor, and cured to form a polyimide layer 8. The layer 8 is surface-treated with oxygen plasma 9, and a conductive layer made of copper is formed by electroless plating and electroplating. A circuit pattern 10 is formed on the conductive layer, and an opening 6 to become a conduction hole 5 with the other layer is formed at the layer 8 by etching. A conductive part is formed in the opening 6 by electroless plating and copper electroplating. The steps after coating of the precursor are repeated to manufacture a circuit board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンピュータや通信機
器等の各種電子機器の可動部への配線、ケーブル、コネ
クター機能を付与した複合部品や、LSI実装用の回路
モジュール等に使用される多層配線板、特に多層フレキ
シブルプリント配線板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite part having wiring, cable and connector functions for moving parts of various electronic devices such as computers and communication devices, and a multi-layer used for a circuit module for mounting LSI. The present invention relates to a wiring board, particularly a multilayer flexible printed wiring board.

【0002】[0002]

【従来の技術】フレキシブルプリント配線板は、屈曲可
能な薄いベースフィルム上に金属配線を施したもので、
実装スペースの節約や信頼性の向上に役立ち、コンピュ
ータ関連機器、オーディオ製品、通信機器等に広く利用
されている。近年の電子機器の小型化、軽量化、薄型
化、高密度化に伴い、フレキシブルプリント配線板にも
リジッドプリント配線板と同様に多層化の要求が高まっ
ている。プリント配線板の多層化は、表裏は勿論内部に
も幾層ものプリント配線を有しているため、IC、LS
I、超LSI等の集積回路との併用により、電子回路の
部品間距離の短縮、部品数と接続部分の大幅な削除を可
能にした。
2. Description of the Related Art A flexible printed wiring board is a thin flexible base film provided with metal wiring.
It is useful for saving mounting space and improving reliability, and is widely used in computer-related equipment, audio products, communication equipment, etc. As electronic devices have become smaller, lighter, thinner, and higher in density in recent years, flexible printed wiring boards are required to have multiple layers as with rigid printed wiring boards. Since the printed wiring board has multiple layers, the printed wiring board has several layers of printed wiring inside as well as on the front and back.
By using it together with integrated circuits such as I and VLSI, it has become possible to shorten the distance between electronic circuit components and to greatly reduce the number of components and connection parts.

【0003】多層フレキシブルプリント配線板は従来か
らいろいろな製造方法によって実施されているが、金属
の導電層を3層有する3層フレキシブルプリント配線板
を例に挙げ、製造工程の一例を図3に示す。
Although a multilayer flexible printed wiring board has been conventionally manufactured by various manufacturing methods, an example of the manufacturing process is shown in FIG. 3 taking a three-layer flexible printed wiring board having three metal conductive layers as an example. ..

【0004】まず図3(a)に示すように、銅箔31を
ポリイミド等の絶縁層を基材32とする両面銅張基板
の、他の層を積層後に内層となる回路パターン33をフ
ォトエッチング法等により形成し、内層と外層とを導通
するために孔を形成した後、ポリイミド樹脂の表面を活
性化処理の後に無電解銅めっきを行い、次いで電気銅め
っき行って導通孔34を形成する。そして、図3(b)
に示すように、両面銅張基板の一方に形成した回路パタ
ーンとポリイミド等の絶縁層を基材とする片面銅張基板
35の絶縁層36側とを、エポキシあるいはアクリル系
の樹脂を含浸したガラス繊維布等からなるプリプレグ3
7を介して積層し、図3(c)に示すように、ヒートプ
レス38によって加熱下で加圧して硬化する。次に、図
3(d)に示すように、表裏導体層と内部導体層との導
通を形成するスルー孔39を設け活性化処理の後、無電
解銅めっきおよび電気銅めっきを行い、さらに図3
(e)に示すように、フォトエッチング法により表裏の
銅箔31に回路パターン形成している。
First, as shown in FIG. 3A, a circuit pattern 33, which is an inner layer after another layer is laminated, is photo-etched on a double-sided copper-clad substrate having a copper foil 31 as an insulating layer such as polyimide as a base material 32. Formed by a method or the like, and after forming a hole for conducting the inner layer and the outer layer, electroless copper plating is performed after the surface of the polyimide resin is activated, and then electrolytic copper plating is performed to form the conductive hole 34. .. And FIG. 3 (b)
As shown in FIG. 2, a glass plate in which a circuit pattern formed on one side of a double-sided copper-clad substrate and an insulating layer 36 side of a single-sided copper-clad substrate 35 having an insulating layer such as polyimide as a base material are impregnated with epoxy or acrylic resin. Prepreg 3 made of fiber cloth
Then, the layers are laminated with each other through 7, and as shown in FIG. 3C, a heat press 38 pressurizes and cures under heating. Next, as shown in FIG. 3D, through holes 39 for forming conduction between the front and back conductor layers and the inner conductor layer are provided, and after the activation treatment, electroless copper plating and electrolytic copper plating are performed, and further Three
As shown in (e), a circuit pattern is formed on the front and back copper foils 31 by a photo-etching method.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
方法では、積層時に用いるプリプレグがエポキシあるい
はアクリル系の材料を使用しているため、耐熱性、寸法
安定性に問題を生じる。また、ポリイミド等の絶縁層を
基材とする銅張基板が絶縁層の厚さ35〜50μm、導
体である銅箔の厚さが18〜35μmであるため、この
銅張基板を用いて積層すると積層後の基板総厚が厚くな
り、薄型化に反するばかりかフレキシブルプリント配線
板の特徴である可撓性が低下しかねない。また、スルー
孔により表裏導体層と内部導体層との導通を形成してい
るため、屈曲時に発生するスルーホール部への応力集中
により内壁部が断線し易くなってしまう。さらに積層ア
ライメント精度確保のために表裏及び内層のランド径が
大きくなり、表裏及び内層の導体の配線が制限され高密
度配線が困難となるとともに、設計面でも制限が大きく
なる。
However, in such a method, since the prepreg used for lamination uses an epoxy or acrylic material, heat resistance and dimensional stability are problematic. In addition, a copper-clad substrate having an insulating layer such as polyimide as a base material has an insulating layer thickness of 35 to 50 μm, and a copper foil as a conductor has a thickness of 18 to 35 μm. The total thickness of the substrates after lamination becomes thick, which not only violates thinning, but also may lower flexibility, which is a characteristic of the flexible printed wiring board. Further, since the front and back conductor layers and the inner conductor layer are electrically connected to each other by the through holes, the inner wall portion is likely to be disconnected due to the concentration of stress on the through hole portions during bending. Further, the land diameters of the front and back surfaces and the inner layer are increased in order to secure the stacking alignment accuracy, wiring of the conductors of the front and back surfaces and the inner layer is limited, and high-density wiring is difficult, and the design is also limited.

【0006】本発明は、上記課題を解決すべくなされた
ものであり、耐熱性、寸法安定性に優れ、より薄く、よ
りフレキシブルで物理的応力が緩和され、さらに高密度
配線を可能にした多層フレキシブルプリント配線板の製
造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is excellent in heat resistance and dimensional stability, thinner, more flexible, and capable of relieving physical stress. An object of the present invention is to provide a method for manufacturing a flexible printed wiring board.

【0007】[0007]

【課題を解決するための手段】本発明は、ポリイミド樹
脂を基材とした銅張基板上の銅箔に回路パターンを形成
した後に、回路パターンを形成した基板の全面にポリイ
ミド前駆体を塗布し硬化処理しポリイミド層を形成した
後に、酸素プラズマによってポリイミド層の表面処理し
た後に、表面処理したポリイミド層上に無電解めっきお
よび電気めっきによって銅からなる導電層を形成した後
に、導電層に回路パターンを形成するとともに、ポリイ
ミド層に他層との導通孔となる開口をエッチングによっ
て形成し、開口に無電解めっきおよび電気銅めっきによ
って導通部を形成する方法であって、ポリイミド前駆体
の塗布以降の工程を必要とする多層配線板の層に相当す
る回数を繰り返すフレキシブル配線板の製造方法であ
る。
According to the present invention, after a circuit pattern is formed on a copper foil on a copper clad substrate having a polyimide resin as a base material, a polyimide precursor is applied to the entire surface of the circuit pattern-formed substrate. After forming the polyimide layer by curing treatment, after the surface treatment of the polyimide layer by oxygen plasma, after forming a conductive layer made of copper by electroless plating and electroplating on the surface-treated polyimide layer, the circuit pattern on the conductive layer Along with forming a polyimide layer by etching to form an opening to be a conduction hole with another layer, a method of forming a conductive portion in the opening by electroless plating and electrolytic copper plating, after the application of the polyimide precursor It is a method of manufacturing a flexible wiring board, which is repeated a number of times corresponding to the layers of the multilayer wiring board which requires steps.

【0008】すなわち、本発明はポリイミド樹脂を基材
とした両面銅張基板を用い、(a)前記両面銅張基板の
銅箔面に所定の開口部を設ける工程と、(b)前記開口
部より露出したポリイミド樹脂部のみを選択的に除去す
る工程と、(c)前記ポリイミド樹脂部が選択除去され
た部位にて表裏銅箔間の導通を行う目的で活性化の後、
無電解銅めっき及び電気銅めっきを行う工程と、(e)
前記所定回路の形成がなされた両面銅張基板の回路形成
面に、溶剤含有ポリイミド系ペーストを塗布し、ポリイ
ミド系ペーストが塗布された両面銅張基板を熱処理して
ポリイミド系ペーストの硬化を促進する工程と、(f)
ポリイミド系ペーストを熱硬化処理して形成されたポリ
イミド絶縁膜の表面を酸素プラズマ処理によって表面処
理する工程と、(g)前記表面処理されたポリイミド絶
縁膜を活性化処理した後、無電解めっきおよび電気銅め
っきを行い金属箔の形成を行う工程と、(h)前記金属
銅箔の所定部に開口部を設ける工程と、(i)前記開口
部より露出したポリイミド絶縁膜を選択的に除去する工
程と、(j)前記ポリイミドが選択的に除去された開口
部を通じて、前記第1の所定回路部と金属銅箔との導通
を行う目的で、活性化処理した後に、無電解銅めっき及
び電解銅めっき処理を施す工程と、(k)前記銅めっき
にて形成された金属銅箔面に第2の所定回路の形成を行
う工程により多層化を可能とし上記課題を達成したもの
である。
That is, the present invention uses a double-sided copper-clad substrate having a polyimide resin as a base material, and (a) a step of providing a predetermined opening on the copper foil surface of the double-sided copper-clad substrate, and (b) the opening. After the step of selectively removing only the more exposed polyimide resin portion, and (c) activation for the purpose of conducting electricity between the front and back copper foils at the portion where the polyimide resin portion is selectively removed,
A step of performing electroless copper plating and electrolytic copper plating, (e)
The circuit-formed surface of the double-sided copper-clad substrate on which the predetermined circuit has been formed is coated with a solvent-containing polyimide-based paste, and the double-sided copper-clad substrate coated with the polyimide-based paste is heat-treated to accelerate the curing of the polyimide-based paste. Process and (f)
A step of subjecting the surface of the polyimide insulating film formed by thermosetting a polyimide paste to an oxygen plasma treatment, and (g) activating the surface-treated polyimide insulating film, followed by electroless plating and A step of forming a metal foil by electrolytic copper plating; (h) a step of providing an opening in a predetermined portion of the metal copper foil; and (i) selectively removing the polyimide insulating film exposed from the opening. And (j) electroless copper plating and electrolysis after activation treatment for the purpose of conducting the first predetermined circuit portion and the metal copper foil through the opening where the polyimide is selectively removed. The present invention achieves the above-described object by enabling a copper plating process and (k) a step of forming a second predetermined circuit on the metal copper foil surface formed by the copper plating, thereby forming a multilayer structure.

【0009】[0009]

【作用】本発明の製造方法により、耐熱性、寸法安定性
に優れ、より薄く、よりフレキシブルで物理的応力が緩
和され、高密度配線が可能な信頼性の高い多層FPCを
提供することができる。
According to the manufacturing method of the present invention, it is possible to provide a highly reliable multilayer FPC which has excellent heat resistance and dimensional stability, is thinner, is more flexible, has less physical stress, and enables high-density wiring. ..

【0010】[0010]

【実施例】以下、図面をもとにして本発明の実施例を説
明する。図1は、本発明における多層フレキシブルプリ
ント配線板である3層フレキシブルプリント配線板の製
造工程を示したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a manufacturing process of a three-layer flexible printed wiring board which is a multilayer flexible printed wiring board in the present invention.

【0011】図1(a)に示すように銅箔1をポリイミ
ドの基材フイルム2の両面に積層した銅積層基板3の一
方の銅箔に、内層の電気回路となる銅箔と表層の銅箔と
を導通するためのバイア孔を設けるために、バイア孔用
に銅箔に孔4をエッチングによって形成する。図1
(b)のように、銅箔をマスクとして、基材フイルム2
に、バイア孔用の孔5を形成する。エッチング液には、
水酸化カリウムなどのアルカリ金属水酸化物を含有した
アルコール溶液を用いることができる。図1(c)に示
すように、内層導体と裏層導体とを導通させるために、
塩化パラジウム、塩化第1錫等によって基材フイルムの
表面の活性化を行った後に、無電解めっきを行い、次い
で無電解めっきで得られた銅の薄膜上に銅を電気めっき
して、バイア孔6を完成させる。図1(d)に示すよう
に、内層用の導電層上に所定の回路パターン7をエッチ
ングによって形成し、図1(e)に示すように、所定の
回路を形成した基板上に、加熱によってポリイミドフイ
ルムが得られるポリイミド系被覆剤等のポリアミド酸等
からなる被覆剤を塗布した後に、溶剤を加熱して除去し
た後に、さらに加熱を行って硬化処理してポリイミド層
8を形成した。
As shown in FIG. 1 (a), one copper foil of a copper laminated substrate 3 in which a copper foil 1 is laminated on both sides of a polyimide base film 2, a copper foil to be an inner layer of an electric circuit and a copper layer on the surface layer. Holes 4 are etched into the copper foil for the via holes to provide via holes for electrical continuity with the foil. Figure 1
As shown in (b), using the copper foil as a mask, the base film 2
Then, a hole 5 for a via hole is formed. For the etching liquid,
An alcohol solution containing an alkali metal hydroxide such as potassium hydroxide can be used. As shown in FIG. 1C, in order to electrically connect the inner layer conductor and the back layer conductor,
After activating the surface of the base film with palladium chloride, stannous chloride, etc., electroless plating is performed, and then copper is electroplated on the copper thin film obtained by electroless plating to form via holes. Complete 6. As shown in FIG. 1D, a predetermined circuit pattern 7 is formed on the conductive layer for the inner layer by etching, and as shown in FIG. 1E, the predetermined circuit is formed on the substrate by heating. After applying a coating material such as a polyamic acid or the like such as a polyimide-based coating material from which a polyimide film is obtained, the solvent is heated and removed, and then heating is further performed to perform a curing treatment to form a polyimide layer 8.

【0012】図1(f)に示すように、酸素プラズマ9
によってポリイミド層の表面を処理し、ポリイミド層上
への銅の付着力を高めた。図1(g)に示すように、ポ
リイミド層7の表面を活性化した後に銅の無電解めっき
を行い、得られた銅の薄膜上に電気めっきによって銅箔
を形成した。
As shown in FIG. 1 (f), oxygen plasma 9
The surface of the polyimide layer was treated with to improve the adhesion of copper on the polyimide layer. As shown in FIG. 1 (g), after the surface of the polyimide layer 7 was activated, electroless plating of copper was performed, and a copper foil was formed on the obtained copper thin film by electroplating.

【0013】図1(h)に示す用に、銅箔1上に、図1
(a)に示す方法と同様の方法で、多層間のバイア孔に
相当する孔4を形成し、図1(i)に示すように、図1
(b)に示す方法と同様に、図1(h)の工程で得られ
た孔を形成した銅箔をマスクにしてポリイミド層7に孔
5を形成した。さらに、図1(j)に示すように、図1
(c)に示す方法と同様に、多層間の導通を形成するバ
イア孔6を形成した。そして、図1(k)に示すよう
に、両面の銅箔をエッチングして回路パターン10を形
成した。
As shown in FIG. 1 (h), the copper foil 1 has
By a method similar to the method shown in (a), the holes 4 corresponding to the via holes between the multiple layers are formed, and as shown in FIG.
Similarly to the method shown in (b), the holes 5 were formed in the polyimide layer 7 using the copper foil having the holes obtained in the step of FIG. 1 (h) as a mask. Further, as shown in FIG.
Similar to the method shown in (c), the via hole 6 which forms the conduction between the multiple layers was formed. Then, as shown in FIG. 1K, the copper foils on both surfaces were etched to form a circuit pattern 10.

【0014】以上の工程によりプリプレグを用いた方法
のように、接着層を用いることなく、耐熱性、寸法安定
性に優れたより薄く、よりフレキシブルな、高密度配線
可能な多層フレキシブルプリント配線板FPCを製造す
ることができる。
Through the above steps, a thin and more flexible multi-layer flexible printed wiring board FPC which has excellent heat resistance and dimensional stability and does not require an adhesive layer, and which is capable of high-density wiring, is provided unlike the method using a prepreg. It can be manufactured.

【0015】また、図1(j)に示す工程の後に、図1
(d)〜図1(j)と同様の工程を繰り返すことによっ
て3層以上の多層配線基板を製造することができる。図
2には、全部で6層の導電層を有する多層配線基板の一
例を示す。
Further, after the step shown in FIG.
A multilayer wiring board having three or more layers can be manufactured by repeating the same steps as in (d) to FIG. 1 (j). FIG. 2 shows an example of a multilayer wiring board having a total of 6 conductive layers.

【0016】ポリイミドフイルム22上には、導電層2
2aが形成されており、導電層22a上には、ポリイミ
ド層23aが設けられており、さらにポリイミド層上に
は、導電層22b、ポリイミド層23b、導電層22
c、ポリイミド層23c、導電層22d、ポリイミド2
3dが設けられている。
A conductive layer 2 is formed on the polyimide film 22.
2a is formed, the polyimide layer 23a is provided on the conductive layer 22a, and the conductive layer 22b, the polyimide layer 23b, and the conductive layer 22 are further provided on the polyimide layer.
c, polyimide layer 23c, conductive layer 22d, polyimide 2
3d is provided.

【0017】そして、多層基板の両面には回路パターン
24が形成されており、各導電層間を導通させるバイア
孔25が形成されている。
A circuit pattern 24 is formed on both surfaces of the multilayer substrate, and a via hole 25 is formed for conducting each conductive layer.

【0018】実施例1 両面に厚さ18μmの銅箔を積層したポリイミド絶縁層
の厚さ35μm銅箔積層ポリイミドフイルム(新日鉄化
学(株)製、商品名:エスパネックス両面板)の片面
に、内層となる導体回路と表層となる導体回路とを導通
するためのバイア孔を設けるため、銅箔にバイア孔用の
直径300μmの孔をフォトエッチング法により形成し
た。エッチングは、42°Beの濃度の塩化第2鉄水溶
液をエッチング剤として温度40℃、スプレー圧1.0
kgf/cm2 のスプレーエッチングによって行った。
Example 1 A polyimide insulating layer having a copper foil of 18 μm thick laminated on both sides of a 35 μm thick copper foil laminated polyimide film (trade name: Espanex double-sided plate manufactured by Nippon Steel Chemical Co., Ltd.) In order to provide a via hole for electrically connecting the conductor circuit to be the conductor layer and the conductor circuit to be the surface layer, a hole having a diameter of 300 μm for the via hole was formed in the copper foil by the photoetching method. The etching is performed by using an aqueous ferric chloride solution having a concentration of 42 ° Be as an etching agent at a temperature of 40 ° C and a spray pressure of 1.0.
It was performed by spray etching of kgf / cm 2 .

【0019】ついで、孔を形成した銅箔をマスクとし
て、1Nの水酸化カリウムのエタノールと水とを8:2
の割合で混合したアルコール溶液をエッチング剤とし
て、温度70℃において、超音波の照射下においてバイ
アホール形成部分のポリイミド樹脂層を選択的にエッチ
ング除去した。
Then, using the copper foil having the holes as a mask, ethanol of 1N potassium hydroxide and water were mixed at 8: 2.
Using an alcohol solution mixed at a ratio of 1 as the etching agent, the polyimide resin layer in the via hole forming portion was selectively removed by etching at a temperature of 70 ° C. and under irradiation of ultrasonic waves.

【0020】次に、バイア孔内部に導電層の形成を行っ
た。まず、塩化パラジウム(PdCl2 ):0.2g/
l、塩化第1錫(SnCl2 ・2H2 O):20g/
l、塩酸(HCl,35%):200ml/lを純水で
全体を1000mlとした液温度:40℃の活性化液
に、浸漬時間:2分浸漬し、ポリイミド樹脂の表面を活
性化し、硫酸銅(CuSO4 ・5H2 O):5g/l、
ロッセル塩(KNaC4 4 6 ):25g/l、ホル
マリン(HCHO):10ml/l、水酸化ナトリウム
(NaOH):7g/l、純水で全体を1000mlと
した液を使用して、液温度:20℃で無電解めっきを行
った。続いて、硫酸銅(CuSO4 ・5H2 O):24
0g/l、硫酸(H2 SO4 ,比重1.83):50g
/l、陰極電流密度:3A/dm2 、陰極:陽極=1:
1、陽極:電気銅、浴電圧:3V、液温度:30℃の条
件で銅を電気めっきした。
Next, a conductive layer was formed inside the via hole. First, palladium chloride (PdCl 2 ): 0.2 g /
1, stannous chloride (SnCl 2 · 2H 2 O): 20 g /
1, hydrochloric acid (HCl, 35%): 200 ml / l of pure water to make 1000 ml, and immersed in an activating liquid at a liquid temperature of 40 ° C. for a dipping time of 2 minutes to activate the surface of the polyimide resin and sulfuric acid. Copper (CuSO 4 .5H 2 O): 5 g / l,
Rochelle salt (KNaC 4 H 4 O 6 ): 25 g / l, formalin (HCHO): 10 ml / l, sodium hydroxide (NaOH): 7 g / l Electroless plating was performed at a temperature of 20 ° C. Subsequently, copper sulfate (CuSO 4 .5H 2 O): 24
0 g / l, sulfuric acid (H 2 SO 4 , specific gravity 1.83): 50 g
/ L, cathode current density: 3 A / dm 2 , cathode: anode = 1:
Copper was electroplated under the conditions of 1, anode: electrolytic copper, bath voltage: 3 V, and liquid temperature: 30 ° C.

【0021】ついで、42°Beの塩化第2鉄水溶液を
エッチング液として、温度40℃、スプレー圧1.0k
g/cm2 のスプレーエッチングにより、内層となる銅
箔に所定の回路を形成した後、内層の導体を形成した側
に、ポリイミド前駆体(新日鉄化学(株)製商品名、ポ
リイミドペーストSPI−200N)を、150メッシ
ュの版を用いてスクリーン印刷法により24μmの均一
な厚さに塗布し絶縁層を形成した。その後、コンベア式
の遠赤外線炉で130℃、10分間加熱して溶剤成分で
あるNMP(N−メチル−2−ピロリドン)を蒸発さ
せ、270℃、2分間の加熱によってポリイミドペース
トを完全に硬化させてポリイミド層を形成した。得られ
たポリイミド層の表面を、酸素プラズマによって表面処
理した。酸素プラズマによる処理は、ドライテック社製
MATRIX−102で酸素ガス圧1.2Torr、酸
素ガス流量150ml/分、処理時間120秒間の条件
で行った。
Then, using a ferric chloride aqueous solution of 42 ° Be as an etching solution, the temperature is 40 ° C. and the spray pressure is 1.0 k.
After a predetermined circuit was formed on the copper foil as the inner layer by spray etching of g / cm 2 , a polyimide precursor (trade name, manufactured by Nippon Steel Chemical Co., Ltd., polyimide paste SPI-200N) was provided on the side where the conductor of the inner layer was formed. Was applied to a uniform thickness of 24 μm by a screen printing method using a 150 mesh plate to form an insulating layer. After that, NMP (N-methyl-2-pyrrolidone) which is a solvent component is evaporated by heating at 130 ° C for 10 minutes in a conveyor type far infrared furnace, and the polyimide paste is completely cured by heating at 270 ° C for 2 minutes. To form a polyimide layer. The surface of the obtained polyimide layer was surface-treated with oxygen plasma. The treatment with oxygen plasma was carried out using MATRIX-102 manufactured by Drytech Co., Ltd. under the conditions of an oxygen gas pressure of 1.2 Torr, an oxygen gas flow rate of 150 ml / min, and a treatment time of 120 seconds.

【0022】次に、上記したバイア孔の表面に導通を得
るために銅を形成した方法と同一の方法によって、ポリ
イミド層の表面を活性化処理した後に、無電解銅めっき
と電気銅めっきを行ってポリイミド層上に銅箔を積層し
た。表裏の銅箔を所定のパターンによって同時にエッチ
ングすることによって3層の導体層を有する多層配線基
板を得た。得られた多層配線基板は接着剤を使用してお
らず、耐熱性、寸法安定性に優れ、薄く、またフレキシ
ブルであった。
Next, the surface of the polyimide layer is activated by the same method as the method of forming copper for obtaining conductivity on the surface of the via hole, and then electroless copper plating and electrolytic copper plating are performed. Copper foil was laminated on the polyimide layer. By simultaneously etching the front and back copper foils in a predetermined pattern, a multilayer wiring board having three conductor layers was obtained. The obtained multilayer wiring board did not use an adhesive, was excellent in heat resistance and dimensional stability, and was thin and flexible.

【0023】[0023]

【発明の効果】以上のように本発明の多層FPCの製造
方法によれば、無接着剤タイプの多層FPCの製造が可
能であるため耐熱性に優れる。また、ポリイミド絶縁
層、導体層の厚さを任意に変えられるため、より薄く、
よりフレキシブルなフレキシブルプリント配線板を提供
することができる。さらに、ドリル加工法によるスルー
ホールをいっさい形成せずに表裏導通が可能であり、フ
ォトリソグラフィー法による精度の向上が図れることに
加え、バイア孔数によらず一括形成が可能であるため、
より高密度の多層フレキシブルプリント配線板を容易に
提供することが可能となる。
As described above, according to the method for producing a multi-layer FPC of the present invention, it is possible to produce a non-adhesive type multi-layer FPC, so that the heat resistance is excellent. In addition, the thickness of the polyimide insulation layer and the conductor layer can be changed arbitrarily, making it thinner.
A more flexible flexible printed wiring board can be provided. Furthermore, since front and back conduction is possible without forming any through holes by the drilling method, accuracy can be improved by the photolithography method, and batch formation is possible regardless of the number of via holes.
It is possible to easily provide a higher density multilayer flexible printed wiring board.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層フレキシブル配線板の製造方法の
一実施例を説明する図。
FIG. 1 is a diagram illustrating an embodiment of a method for manufacturing a multilayer flexible wiring board according to the present invention.

【図2】本発明の方法によって製造した導電層が6層の
多層フレキシブル配線板の一実施例を説明する図。
FIG. 2 is a diagram illustrating an example of a multilayer flexible wiring board having six conductive layers manufactured by the method of the present invention.

【図3】従来の多層FPCの製造方法を説明する図。FIG. 3 is a diagram illustrating a conventional method for manufacturing a multi-layer FPC.

【符号の説明】[Explanation of symbols]

1…銅箔、2…基材フイルム、3…銅積層基板、4…孔
(銅箔)、5…孔(基材フイルム)、6…バイア孔、7
…回路パターン、8…ポリイミド層、9…酸素プラズ
マ、10…回路パターン、21…ポリイミドフイルム、
22a、22b、22c、22d…導電層、23a、2
3b、23c、23d…ポリイミド層、24…回路パタ
ーン、25…バイア孔、31…銅箔、32…基材、33
…回路パターン、34…導通孔、35…片面銅張基板、
36…絶縁層、37…プリプレグ、38…ヒートプレ
ス、39…スルー孔
1 ... Copper foil, 2 ... Base film, 3 ... Copper laminated substrate, 4 ... Hole (copper foil), 5 ... Hole (base film), 6 ... Via hole, 7
... Circuit pattern, 8 ... Polyimide layer, 9 ... Oxygen plasma, 10 ... Circuit pattern, 21 ... Polyimide film,
22a, 22b, 22c, 22d ... Conductive layers, 23a, 2
3b, 23c, 23d ... Polyimide layer, 24 ... Circuit pattern, 25 ... Via hole, 31 ... Copper foil, 32 ... Base material, 33
... Circuit pattern, 34 ... Conductive hole, 35 ... Single-sided copper clad board
36 ... Insulating layer, 37 ... Prepreg, 38 ... Heat press, 39 ... Through hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド樹脂を基材とした銅張基板上
の銅箔に回路パターンを形成した後に、回路パターンを
形成した基板の全面にポリイミド前駆体を塗布の後に硬
化処理しポリイミド層を形成した後に、酸素プラズマに
よってポリイミド層の表面処理し、表面処理したポリイ
ミド層上に無電解めっきおよび電気めっきによって銅か
らなる導電層を形成した後に、導電層に回路パターンを
形成するとともに、ポリイミド層に他層との導通孔とな
る開口をエッチングによって形成し、開口に無電解めっ
きおよび電気銅めっきによって導通部を形成する方法で
あって、ポリイミド前駆体の塗布以降の工程を必要とす
る層に相当する回数を繰り返すことを特徴とする多層フ
レキシブル配線板の製造方法。
1. A circuit pattern is formed on a copper foil on a copper-clad substrate using a polyimide resin as a base material, and a polyimide precursor is applied to the entire surface of the circuit pattern-formed substrate and then cured to form a polyimide layer. After that, the surface treatment of the polyimide layer by oxygen plasma, after forming a conductive layer made of copper by electroless plating and electroplating on the surface-treated polyimide layer, together with forming a circuit pattern in the conductive layer, the polyimide layer A method of forming an opening that becomes a conduction hole with another layer by etching, and forming a conduction portion in the opening by electroless plating and electrolytic copper plating, which corresponds to a layer that requires a step after the application of the polyimide precursor. A method for manufacturing a multilayer flexible wiring board, characterized in that the number of times of repeating is repeated.
JP7675392A 1992-03-31 1992-03-31 Manufacture of multilayer flexible printed-circuit board Pending JPH05283865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7675392A JPH05283865A (en) 1992-03-31 1992-03-31 Manufacture of multilayer flexible printed-circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7675392A JPH05283865A (en) 1992-03-31 1992-03-31 Manufacture of multilayer flexible printed-circuit board

Publications (1)

Publication Number Publication Date
JPH05283865A true JPH05283865A (en) 1993-10-29

Family

ID=13614353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7675392A Pending JPH05283865A (en) 1992-03-31 1992-03-31 Manufacture of multilayer flexible printed-circuit board

Country Status (1)

Country Link
JP (1) JPH05283865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523881A (en) * 1998-08-17 2002-07-30 インフィネオン テクノロジース アクチエンゲゼルシャフト Connection device for connecting electrical components on circuit carrier and method of manufacturing the same
WO2002071818A1 (en) * 2001-02-23 2002-09-12 Sony Chemicals Corp. Method for producing flexible wiring board
WO2005034292A1 (en) * 2003-09-30 2005-04-14 J. S. T. Mfg. Co., Ltd. Fast transmission-use connector
JP2006299209A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Bonding sheet and multilayer flexible printed wiring board using the same
JP2007084463A (en) * 2005-09-21 2007-04-05 Shinko Electric Ind Co Ltd S-alkyl-substituted triazinethiol derivative, electroless plating pretreatment agent consisting of the derivative, and electroless plating method using the pretreatment agent
WO2008004720A1 (en) * 2006-07-04 2008-01-10 Jesagi Hankook Ltd. Plasma semi-additive process method for manufacturing pcb
US20080172867A1 (en) * 2006-09-07 2008-07-24 Fujikura Ltd. Method of manufacturing multi-layered flexible printed circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523881A (en) * 1998-08-17 2002-07-30 インフィネオン テクノロジース アクチエンゲゼルシャフト Connection device for connecting electrical components on circuit carrier and method of manufacturing the same
US6948242B2 (en) 1998-08-17 2005-09-27 Infineon Technologies Ag Process for producing a contact-making device
WO2002071818A1 (en) * 2001-02-23 2002-09-12 Sony Chemicals Corp. Method for producing flexible wiring board
US6912779B2 (en) 2001-02-23 2005-07-05 Sony Chemicals Corp. Method of manufacturing flexible wiring board
WO2005034292A1 (en) * 2003-09-30 2005-04-14 J. S. T. Mfg. Co., Ltd. Fast transmission-use connector
US7175457B2 (en) 2003-09-30 2007-02-13 J.S.T. Mfg. Co., Ltd. Fast transmission-use connector
JP2006299209A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Bonding sheet and multilayer flexible printed wiring board using the same
JP2007084463A (en) * 2005-09-21 2007-04-05 Shinko Electric Ind Co Ltd S-alkyl-substituted triazinethiol derivative, electroless plating pretreatment agent consisting of the derivative, and electroless plating method using the pretreatment agent
WO2008004720A1 (en) * 2006-07-04 2008-01-10 Jesagi Hankook Ltd. Plasma semi-additive process method for manufacturing pcb
US20080172867A1 (en) * 2006-09-07 2008-07-24 Fujikura Ltd. Method of manufacturing multi-layered flexible printed circuit board

Similar Documents

Publication Publication Date Title
US6772515B2 (en) Method of producing multilayer printed wiring board
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
KR20030063140A (en) Printed circuit board and manufacturing method therefor
JP4212006B2 (en) Manufacturing method of multilayer printed wiring board
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
KR100522377B1 (en) Multilayer circuit board, process of manufacturing same, board for multilayer circuitry, and electronic apparatus
JPH05283865A (en) Manufacture of multilayer flexible printed-circuit board
JPH06275950A (en) Manufacture of wiring board
JP3407172B2 (en) Manufacturing method of printed wiring board
JP2003101194A (en) Production method for printed wiring board
JPH05327224A (en) Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture
JPH05259611A (en) Production of printed wiring board
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JPH08148810A (en) Manufacture of printed wiring board
JPS63137498A (en) Manufacture of through-hole printed board
JP2005251894A (en) Method of manufacturing printed circuit board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JPH06260757A (en) Manufacture of printed circuit board
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2003101218A (en) Method for manufacturing printed circuit board
JPH11121926A (en) Multilayer printed wiring board and its manufacture
JPH1168291A (en) Printed wiring board and production thereof
JPH02238696A (en) Method of improving adhesion between copper foil and resin
JP2001189536A (en) Wiring substrate