JPH01124286A - Manufacture of printed-circuit board - Google Patents

Manufacture of printed-circuit board

Info

Publication number
JPH01124286A
JPH01124286A JP28263287A JP28263287A JPH01124286A JP H01124286 A JPH01124286 A JP H01124286A JP 28263287 A JP28263287 A JP 28263287A JP 28263287 A JP28263287 A JP 28263287A JP H01124286 A JPH01124286 A JP H01124286A
Authority
JP
Japan
Prior art keywords
metal
foil support
nickel
support body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28263287A
Other languages
Japanese (ja)
Inventor
Kazuyasu Minagawa
一泰 皆川
Akishi Nakaso
昭士 中祖
Toshiro Okamura
岡村 寿郎
Yoshiaki Tsubomatsu
良明 坪松
Akinari Kida
木田 明成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28263287A priority Critical patent/JPH01124286A/en
Publication of JPH01124286A publication Critical patent/JPH01124286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To manufacture a printed-circuit board whose thermal resistance and insulating characteristic are excellent and whose adhesion force with reference to a plated metal is high by a method wherein a nickel thin layer formed on a rough face of a metal-foil support body is laminated on an insulating organic material, the metal-foil support body is etched selectively, the nickel thin layer is left on the insulating organic material and a conductive metal is plated on this surface. CONSTITUTION:A nickel layer formed on the surface of a metal-foil support body such as copper foil or the like having a rough face of a microscopic uneven shape is formed with a uniform film thicknests along the rough face shape if the metal-foil support body. The metal-foil support body where the nickel layer has been formed and a resin are laminated; after that, a nickel thin layer together with the uneven shape of the metal-foil support body is transcribed onto the surface of a substrate where only the metal-foil support body has been etched and removed. A metal layer of a desired thickness is plated on this nickel thin layer and a circuit is formed; as a result, a printed-circuit board whose adhesion force with reference to a plated metal is high can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプリント配線板の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing a printed wiring board.

(従来の技術) プリント配線板用有機質基板とめっき金属の接着力を付
与する従来の主な方法は、有機質基板表面を物理的また
は化学的な方法で処理してその基板表面を親水化と粗面
化する方法である。これらの方法の中で実用化されてい
る代表的な方法は、化学粗化液で処理すると親水化でき
、微細な凹凸形状をもつ粗面が得られる樹脂層を基板表
面に設けた接着剤層付基板を用いる方法である。
(Prior art) The main conventional method for imparting adhesive strength between an organic substrate for printed wiring boards and plated metal is to physically or chemically treat the surface of the organic substrate to make it hydrophilic and rough. This is a way to make it more visible. The most commonly used method among these methods is to use an adhesive layer on the surface of the substrate, which can be made hydrophilic by treatment with a chemical roughening solution, resulting in a roughened surface with fine irregularities. This method uses an attached board.

(発明が解決しようとする問題点) この従来の方法では、接着剤層付基板表面を粗化するた
めに粗化液を用いなければならない、使用できる粗化液
のほとんどは酸化剤を含むものであり、毒性が強い。そ
のために作業環境が悪く、特別な廃液処理が必要である
。また、粗化液に可溶な成分は一般に電気絶縁特性が悪
い。
(Problems to be Solved by the Invention) In this conventional method, a roughening liquid must be used to roughen the surface of the substrate with an adhesive layer, and most of the roughening liquids that can be used contain an oxidizing agent. and is highly toxic. As a result, the working environment is poor and special waste liquid treatment is required. In addition, components soluble in the roughening solution generally have poor electrical insulation properties.

例えば、耐湿絶縁特性、高温での絶縁特性の劣化がある
。また、接着剤層の耐熱性が低く1寸法変化率も高いの
で、良好な寸法精度やスルーホール接続信頬性が要求さ
れる多層プリント配線板への適用は限界がある。
For example, moisture-resistant insulation properties and insulation properties deteriorate at high temperatures. Furthermore, since the adhesive layer has low heat resistance and a high rate of change in one dimension, there is a limit to its application to multilayer printed wiring boards that require good dimensional accuracy and through-hole connection reliability.

本発明は1回路金属と接着力のプリント配線の製造法を
提供するものである。
The present invention provides a method for manufacturing single circuit metal and adhesive printed wiring.

(問題を解決するための手段) 本発明は、微細な凹凸形状をもつ粗面を有する銅箔等の
金属箔支持体の粗面上にニッケルのfiltiを形成し
1次にこの面を絶縁性有機材料と積層一体化し、支持体
金属を選択的にエツチングするエツチング液と接触させ
ることによって上記基板材料から支持体金属を除去して
ニッケル薄層を基材上に残し、この表面に無電解めっき
あるいは電気めっきによって導電性金属を所望の厚さま
でめっきする工程、または無電解めっきと電気めっきを
併用することによって導電性金属を所望の厚さまでめっ
きする工程を含む回路加工を行うプリント配線板の製造
法である。
(Means for Solving the Problem) The present invention involves forming nickel filti on the rough surface of a metal foil support such as copper foil, which has a rough surface with fine irregularities, and first insulating this surface. The support metal is removed from the substrate material by contacting it with an etching solution that selectively etches the support metal, leaving a thin layer of nickel on the substrate, and electroless plating is applied to this surface. Alternatively, manufacturing printed wiring boards that involves circuit processing that involves plating a conductive metal to a desired thickness by electroplating, or plating a conductive metal to a desired thickness by using a combination of electroless plating and electroplating. It is the law.

本発明で用いる銅箔等支持金属箔表面にニッケルの薄層
を形成する方法には、蒸着、スパッタ等の乾式法および
電気めっき、無電解めっき等の湿式法等種々の方法があ
るが、■銅箔等支持金属箔表面形状に沿って均一な膜厚
で形成できる。■連続的に処理できる。■コストが安い
、という点で特に無電解ニッケルめっきが望ましい。さ
らに無電解ニッケルめっきとしては鋼上に触媒処理なし
で析出するタイプを用いるのが簡単である。
There are various methods for forming a thin layer of nickel on the surface of supporting metal foil such as copper foil used in the present invention, including dry methods such as vapor deposition and sputtering, and wet methods such as electroplating and electroless plating. It can be formed with a uniform thickness along the surface shape of supporting metal foil such as copper foil. ■Can be processed continuously. ■Electroless nickel plating is particularly desirable because of its low cost. Furthermore, it is easy to use a type of electroless nickel plating that is deposited on steel without catalytic treatment.

金属箔支持体上のニッケル薄層の厚さとしては、金属箔
支持体上の粗面形状に沿って析出し、この大部分をおお
うために0.1μm程度の膜厚が最低減必要である。こ
れ以下の膜厚の場合には、加圧加熱積層後に銅箔のみを
エツチングした場合、絶縁樹脂基板上に残ったニッケル
層は欠陥が多く、即ち基板全体に対して残留している加
圧加熱積層時のニッケル密着部の面積が少ないためにニ
ッケル層の上にめっきで金属層を形成しても金属層の十
分な密着強度は得られない。
As for the thickness of the thin nickel layer on the metal foil support, it is deposited along the rough surface shape of the metal foil support, and in order to cover most of this, a minimum thickness of about 0.1 μm is required. . If the film thickness is less than this, and if only the copper foil is etched after lamination using pressure and heat, the nickel layer remaining on the insulating resin substrate will have many defects, which means that the nickel layer remaining on the entire board will remain under pressure and heat. Since the area of the nickel adhesion part during lamination is small, sufficient adhesion strength of the metal layer cannot be obtained even if a metal layer is formed by plating on the nickel layer.

一方、金属箔支持体上に8μm以上のニッケル層を形成
した場合には、金属箔支持体上の初期凹凸形状が平たん
化して、投宿効果の得られない形状になったり、ニッケ
ル層の応力が太き(なる等の理由で、絶縁基板との密着
力は得にくい傾向にある。
On the other hand, when a nickel layer with a thickness of 8 μm or more is formed on a metal foil support, the initial uneven shape on the metal foil support becomes flattened, resulting in a shape that does not have a casting effect, or the stress of the nickel layer It tends to be difficult to obtain adhesion to the insulating substrate because of the large thickness of the substrate.

上記の理由から、金属箔支持体上のニッケル層の厚さは
■金属箔支持体上の粗面形状の大部分以上をおおうこと
、■金属箔支持体の粗面形状を維持できること、■応力
が小さいこと1等の条件を満たすことが重要であり。
For the above reasons, the thickness of the nickel layer on the metal foil support should be such that: ■ it should cover most of the rough surface shape on the metal foil support, ■ it could maintain the rough surface shape of the metal foil support, and ■ it should be able to withstand stress. It is important that the condition of 1st class is satisfied, that is small.

そのためには0.1〜7μm程度が良好であり。For this purpose, a thickness of about 0.1 to 7 μm is good.

特に1〜2μm程度が望ましい。In particular, about 1 to 2 μm is desirable.

使用する金属箔支持体の厚さは、技術上の面からの制限
はないが、取り扱い上、および価格の点から18〜70
μmが良好である。
The thickness of the metal foil support used is not limited from a technical standpoint, but from the viewpoint of handling and price, it is 18 to 70 mm.
μm is good.

本発明により製造した金属薄層付積層板の絶縁樹脂表面
と金属層の接着力を高めるためには、使用する金属箔支
持体の表面は予め微細な凹凸形状をもつよう粗面化され
る。この粗面化の方法には研磨、ホーニング、エツチン
グ、電解または無電解析出などがある。良好なものの1
例としてはtRffi張積層積層板用鋼箔る。
In order to enhance the adhesion between the insulating resin surface and the metal layer of the metal thin layered laminate produced according to the present invention, the surface of the metal foil support used is roughened in advance so as to have fine irregularities. Methods for roughening the surface include polishing, honing, etching, and electrolytic or electroless deposition. Good one
An example is steel foil for tRffi-strung laminates.

ニッケル層形成の前処理は特に必要としないが、ニッケ
ル層が均一に形成されるようにするために、金属箔支持
体は脱脂洗浄や、塩酸水溶液または、硫酸水溶液で処理
して使用・することが望ましい。金属箔支持体表面にニ
ッケル層を形成した後積層する絶縁性有機材料はフェノ
ール、エポキシ、変性ポリイミド。
No particular pretreatment is required for forming the nickel layer, but in order to ensure that the nickel layer is formed uniformly, the metal foil support should be degreased, washed, or treated with an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution before use. is desirable. After forming a nickel layer on the surface of the metal foil support, the insulating organic materials that are laminated are phenol, epoxy, and modified polyimide.

ポリイミドなどの熱硬化性樹脂が使用される。Thermosetting resins such as polyimide are used.

これらの樹脂は紙基材やガラス繊維布材に添布したプリ
プレグの状態でも使用される。また、ポリエチレン、テ
フロン、ポリエーテルサルフォン、ポリエーテルイミド
などの熱可塑性材料が使用される。ニッケル層を形成し
た金属箔支持体と絶縁性有機材料を加圧加熱積層化した
後、上記基板から金属箔支持体のみを除去するためには
、金属箔支持体のみをエツチングする選択エツチング液
が用いられる。このようなエツチング液の1例としては
These resins are also used in the form of prepreg attached to paper base materials or glass fiber cloth materials. Also used are thermoplastic materials such as polyethylene, Teflon, polyethersulfone, polyetherimide, and the like. After the metal foil support on which the nickel layer has been formed and the insulating organic material are laminated under pressure and heat, in order to remove only the metal foil support from the substrate, a selective etching solution that etches only the metal foil support is used. used. An example of such an etching solution is:

金属箔支持体が銅である場合は、プリント配線基板の製
造法の1つであるはんだエフチング法(はんだをエツチ
ングレジストとして銅をエツチングし2回路形成する方
法)において一般に使用されているアルカリエツチング
液(アンモニアを主剤とし、これに酸化剤としてNaC
l20t、pH緩衝剤としてNH4HCChなどが入っ
たもの)がある。
If the metal foil support is copper, use an alkaline etching solution commonly used in the solder etching method (a method of etching copper using solder as an etching resist to form two circuits), which is one of the methods for manufacturing printed wiring boards. (The main ingredient is ammonia, and NaC is used as an oxidizing agent.)
120t, which contains NH4HCCh etc. as a pH buffering agent).

金属箔支持体のみをエツチングして作成したニッケル薄
層付絶縁樹脂基板は、このままでも極薄金属箔付積層板
として使用できるが。
An insulating resin substrate with a thin nickel layer made by etching only the metal foil support can be used as it is as a laminate with an ultra-thin metal foil.

無電解めっき、電気めっきにより金属箔を所望の厚さに
して使用することもできる。この表面に、無電解めっき
あるいは電気めっきを行うための前処理は特に必要とし
ないが、■酸への浸漬による酸化層の除去、あるいは■
還元性溶液への浸漬による酸化層の金属への還元、を行
うとその後の無電解めっきあるいは電気めっきによる金
属の析出が容易になり。
The metal foil can also be made into a desired thickness by electroless plating or electroplating. This surface does not require any special pretreatment for electroless plating or electroplating;
Reduction of the oxide layer to metal by immersion in a reducing solution facilitates subsequent metal deposition by electroless plating or electroplating.

かつ、ニッケル層とめっき金属のより強い密着が得られ
る。
Moreover, stronger adhesion between the nickel layer and the plating metal can be obtained.

無電解めっきは、無電解ニッケルめっき。Electroless plating is electroless nickel plating.

無電解銅めっきなどが用いられる。一般には無電解銅め
っきが用いられる。電気めっきについても、一般には電
気銅めっきが用いられる。
Electroless copper plating is used. Generally, electroless copper plating is used. Regarding electroplating, electrolytic copper plating is also generally used.

なお、めっきの後に160℃、90分程度の熱処理を行
うと、ニッケル層とめっき金属の密着が強化し、この界
面での剥離によるめっき金属の引き剥し強度の低下を防
止できる。
Note that if heat treatment is performed at 160° C. for about 90 minutes after plating, the adhesion between the nickel layer and the plating metal will be strengthened, and a decrease in the peel strength of the plating metal due to peeling at this interface can be prevented.

(作用) 微細な凹凸形状をもつ粗面を有するw4箔等の金属箔支
持体の表面に無電解ニッケルめっき等によって形成され
るニッケル層は金属箔支持体の粗面形状に沿って均一の
膜厚で形成される。そのためニッケル層を形成した金属
箔支持体と樹脂を積層した後、金属箔支持体のみをエツ
チング除去した基板表面には金属箔支持体の凹凸形状と
同時にニッケルの薄層が転写されることになる。なお、
このニッケル薄層は、加圧加熱積層時の樹脂と金属の密
着部そのものであり、金属箔支持体をエッチソゲする際
にはこの部分を残しておくことが重要である。その理由
は、このニッケルの薄層がその後の工程の■無電解めっ
きに対しては触媒核、■電気めっきに対しては下地金属
層としての役割を果たすばかりでなく、■。
(Function) A nickel layer formed by electroless nickel plating on the surface of a metal foil support such as W4 foil, which has a rough surface with fine irregularities, forms a uniform film along the rough surface shape of the metal foil support. Formed in thickness. Therefore, after laminating the metal foil support on which the nickel layer has been formed and the resin, only the metal foil support is etched away, and a thin layer of nickel is transferred onto the surface of the substrate at the same time as the uneven shape of the metal foil support. . In addition,
This thin nickel layer is the part where the resin and metal come into close contact during pressure and heating lamination, and it is important to leave this part when etching the metal foil support. The reason for this is that this thin layer of nickel not only serves as a catalyst nucleus for the subsequent steps (1) electroless plating, (2) a base metal layer for electroplating, but also (2).

■のようなめっきにより形成された金属層と樹脂の密着
を加熱加圧積層時のそれに匹適する強度を与える一種の
接着層として働くためである。
This is because the close contact between the metal layer formed by plating and the resin as in (2) acts as a kind of adhesive layer that provides a strength comparable to that during heat-pressure lamination.

このため、このニッケル薄層上に無電解めっきあるいは
電気めっきあるいはこれらの併用によって金属層を所望
の厚さまでめっきし回路を形成すれば、めっき金属と接
着力の高いプリント配線板が得られる。
Therefore, if a circuit is formed by plating a metal layer to a desired thickness on this thin nickel layer by electroless plating, electroplating, or a combination thereof, a printed wiring board with high adhesion to the plated metal can be obtained.

実施例 日本電解製の銅箔張積層板用18μmw4箔を用いて、
その銅箔の表面にニッケル層を形成した。ニッケル層形
成処理条件は1次の通りである。
Example Using 18 μm w4 foil for copper foil-clad laminates made by Nippon Denki,
A nickel layer was formed on the surface of the copper foil. The nickel layer forming treatment conditions are as follows.

無電解ニッケルめっき液・・・・・・日本カニゼン製シ
ューマー5B−55−1 浴温 ・・・・・・80〜85℃ 時 間   ・・・・・・10分(約1μm)ニッケル
層形成の前処理として銅箔は、シソプレイ社製の脱脂液
であるニュートラルクリーンに5分間浸漬し、流水洗し
、更に10%硫酸水に2分間浸漬し、流水洗した。ニッ
ケル層形成後、流水で洗浄し、80℃で30分間乾燥し
た。次にガラス有人エポキシプリプレグ(日立化成工業
製プリプレグE−67)と加圧加熱積層した。積層条件
は成形圧力が80kg/aa、 温度が177℃で70
分間である。
Electroless nickel plating solution: Schumer 5B-55-1 manufactured by Nippon Kanigen Bath temperature: 80 to 85°C Time: 10 minutes (approximately 1 μm) for nickel layer formation As a pretreatment, the copper foil was immersed in Neutral Clean, a degreasing liquid manufactured by Sisoplay Co., Ltd., for 5 minutes, rinsed with running water, further immersed in 10% sulfuric acid water for 2 minutes, and rinsed with running water. After forming the nickel layer, it was washed with running water and dried at 80° C. for 30 minutes. Next, it was laminated with a glass-containing epoxy prepreg (Prepreg E-67 manufactured by Hitachi Chemical Co., Ltd.) under pressure and heat. The lamination conditions are a molding pressure of 80 kg/aa and a temperature of 177°C.
It is a minute.

次にアルエリエツチング液を用いて銅のみをエツチング
除去した。
Next, only the copper was removed by etching using an alkaline etching solution.

エツチング条件は以下の通りである。The etching conditions are as follows.

アルカリエツチング液・・・・・・多価アンモニウム系 液温 ・・・・・・R,T。Alkaline etching liquid: Polyvalent ammonium type Liquid temperature...R,T.

時間 ・・・・・・20〜30分 水洗した後、無電解めっき反応を容易に開始させるため
に、ニッケル表面の酸化層の還元処理を下記の条件で行
った。
Time: After washing with water for 20 to 30 minutes, the oxide layer on the nickel surface was reduced under the following conditions in order to easily start the electroless plating reaction.

DMAB  ・・・・・・5g/β NaOH−5g/l 液温 ・・・・・・55℃ 時間 ・・・・・・2分 次に下記組成および条件の無電解銅めっきを行った。DMAB ・・・・・・5g/β NaOH-5g/l Liquid temperature: 55℃ Time: 2 minutes Next, electroless copper plating was performed using the following composition and conditions.

Cu5Oa・5Hz○−=40g/ ItEDTA・4
Na   ・・−・−40g#p)l        
 ・・・・・・12.337%CH2O・・・・・・3
/1 めっき液添加剤  ・・・・・・少量 めっき液温度   ・・・・・・70℃この無電解銅め
っきの膜厚が35μmになるまでめっきを行った。また
、電気銅めっきによっても35μmになるまでめっきを
行った。
Cu5Oa・5Hz○−=40g/ItEDTA・4
Na...--40g#p)l
・・・・・・12.337%CH2O・・・・・・3
/1 Plating solution additive: Small amount Plating solution temperature: 70°C Plating was carried out until the electroless copper plating had a film thickness of 35 μm. Further, electrolytic copper plating was also performed to a thickness of 35 μm.

この後160℃、90分の熱処理を行いその前後のw4
箔引き剥し強度を調べた結果、熱処理前は1.5 k 
g / c mであったのが、熱処理後は2.3kg/
cmとなったす銅箔引き剥し幅は10fi、引き剥し速
度は50鰭/分で行った。
After this, heat treatment was performed at 160℃ for 90 minutes, and w4 was applied before and after that.
As a result of examining the foil peel strength, it was 1.5 k before heat treatment.
g/cm, but after heat treatment it decreased to 2.3 kg/cm.
The stripping width of the copper foil was 10 cm, and the stripping speed was 50 fins/min.

銅箔引剥し強度に差があるのは、熱処理前のものは、ニ
ッケル層とめっき銅の界面で剥離してしまうのに対して
、熱処理後のものは。
The reason why there is a difference in peel strength of copper foil is that the one before heat treatment peels off at the interface between the nickel layer and the plated copper, while the one after heat treatment peels off.

ニッケル層と樹脂の界面で剥離するためである。即ち熱
処理によってホキシンニッケル層とめっき銅の密着が強
化したためである。
This is because the nickel layer and resin peel off at the interface. That is, this is because the heat treatment strengthened the adhesion between the hoxin nickel layer and the plated copper.

比較例 実施例で用いた日本電解製銅箔を実施例で用いたプリプ
レグを用い、実施例と同じ積層条件で積層した。実施例
と同じ組成の無電解銅めっき液でめっき膜厚が35μm
になるまでめっきを行った。この場合、接着力が低いた
めに、めっき時間中にめっき銅箔が基板からはがれてし
まい9w4箔引き剥し強度が測定できなかった。
Comparative Example The copper foil manufactured by Nippon Denki Co., Ltd. used in the example was laminated using the prepreg used in the example under the same lamination conditions as in the example. The plating film thickness was 35 μm using an electroless copper plating solution with the same composition as in the example.
Plating was performed until . In this case, due to the low adhesive strength, the plated copper foil peeled off from the substrate during the plating time, making it impossible to measure the 9w4 foil peel strength.

(発明の効果) 本発明によれば、耐熱型、絶縁特性が優れ。(Effect of the invention) According to the present invention, it is heat resistant and has excellent insulation properties.

めっき金属と接着力の高いプリント配線板が、  製造
できる。
Printed wiring boards with high adhesion to plated metal can be manufactured.

代理人 弁理人  廣 瀬   章 ぐAgent Patent Attorney Akira Hirose ingredient

Claims (1)

【特許請求の範囲】[Claims] 1.粗面を有する金属箔支持体の粗面上に ニッケル薄層を形成し、ニッケル薄層面を絶縁性有機材
料と積層一体化し、金属箔支持体を選択的にエッチング
するエッチング液と接触させることによって金属箔支持
体を除去してニッケル薄層を絶縁性有機材料上に残し、
この表面に導電性金属を所望の厚さまでめっきする工程
を含む回路加工を行うことを特徴とするプリント配線板
の製造法。
1. By forming a thin nickel layer on the rough surface of a metal foil support having a rough surface, integrating the nickel thin layer surface with an insulating organic material, and bringing it into contact with an etching solution that selectively etches the metal foil support. removing the metal foil support leaving a thin layer of nickel on the insulating organic material;
A method for manufacturing a printed wiring board, characterized by performing circuit processing including a step of plating conductive metal on the surface to a desired thickness.
JP28263287A 1987-11-09 1987-11-09 Manufacture of printed-circuit board Pending JPH01124286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28263287A JPH01124286A (en) 1987-11-09 1987-11-09 Manufacture of printed-circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28263287A JPH01124286A (en) 1987-11-09 1987-11-09 Manufacture of printed-circuit board

Publications (1)

Publication Number Publication Date
JPH01124286A true JPH01124286A (en) 1989-05-17

Family

ID=17655044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28263287A Pending JPH01124286A (en) 1987-11-09 1987-11-09 Manufacture of printed-circuit board

Country Status (1)

Country Link
JP (1) JPH01124286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041713A1 (en) * 1996-05-01 1997-11-06 Alliedsignal Inc. New method of forming fine circuit lines
WO2000003568A1 (en) * 1998-07-09 2000-01-20 Oak-Mitsui, Inc. Improved method for forming conductive traces and printed circuits made thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041713A1 (en) * 1996-05-01 1997-11-06 Alliedsignal Inc. New method of forming fine circuit lines
US6117300A (en) * 1996-05-01 2000-09-12 Honeywell International Inc. Method for forming conductive traces and printed circuits made thereby
WO2000003568A1 (en) * 1998-07-09 2000-01-20 Oak-Mitsui, Inc. Improved method for forming conductive traces and printed circuits made thereby
JP2002520195A (en) * 1998-07-09 2002-07-09 オーク‐ミツイ、インコーポレーテッド Improved method of forming conductive traces and printed circuits produced thereby
JP4959052B2 (en) * 1998-07-09 2012-06-20 オーク‐ミツイ、インコーポレーテッド Improved method of forming conductive traces and printed circuit manufactured thereby

Similar Documents

Publication Publication Date Title
US4868071A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
US4725504A (en) Metal coated laminate products made from textured polyimide film
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
KR101522031B1 (en) Conductive layers, laminate using the same and method for producing the same
US4832799A (en) Process for coating at least one surface of a polyimide sheet with copper
EP0281312A2 (en) Textured polyimide film
JP3605520B2 (en) Method of manufacturing multilayer printed circuit board
US4894124A (en) Thermally stable dual metal coated laminate products made from textured polyimide film
JPH03204992A (en) Swelling agent for pretreatment of syntheticresin before electroless metal, manufacture of wholly metallized substrate, wholly metallized substrate, and manufacture of printed wiring board, chip supporter, hybrid circuit, multilyered laminate semi-finished product, and electromagnetic shield semi-finished product
JPS63168077A (en) Manufacture of printed wiring board
JPH05259611A (en) Production of printed wiring board
JPH01124286A (en) Manufacture of printed-circuit board
JP4572363B2 (en) Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid
JPH0217953B2 (en)
JP4734875B2 (en) Insulator for additive plating, substrate with additive plating metal film
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JPH01169990A (en) Substrate for mounting surface
JPH04122087A (en) Ceramic composite wiring board with nickel thin layer
JPH01297883A (en) Manufacture of printed wiring board
JPH01124292A (en) Manufacture of insulating substrate having metal thin layer
JPH04155993A (en) Manufacture of multilayer printed wiring board
JPH10126057A (en) Manufacture of multilayer interconnection board
JPS63188992A (en) Manufacture of printed wiring board
JPH01124287A (en) Manufacture of printed-circuit board
JPH03254180A (en) Manufacture of printed wiring board fitted with resistance layer