WO2015186611A1 - 燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備 - Google Patents

燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備 Download PDF

Info

Publication number
WO2015186611A1
WO2015186611A1 PCT/JP2015/065463 JP2015065463W WO2015186611A1 WO 2015186611 A1 WO2015186611 A1 WO 2015186611A1 JP 2015065463 W JP2015065463 W JP 2015065463W WO 2015186611 A1 WO2015186611 A1 WO 2015186611A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
liquid fuel
nozzle
flow path
water
Prior art date
Application number
PCT/JP2015/065463
Other languages
English (en)
French (fr)
Inventor
永 中原
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020167029621A priority Critical patent/KR101852288B1/ko
Priority to CN201580021335.4A priority patent/CN106232962B/zh
Priority to US15/304,945 priority patent/US10378448B2/en
Priority to JP2016525134A priority patent/JP6175190B2/ja
Priority to DE112015002636.3T priority patent/DE112015002636B4/de
Publication of WO2015186611A1 publication Critical patent/WO2015186611A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/18Cleaning or purging devices, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00004Preventing formation of deposits on surfaces of gas turbine components, e.g. coke deposits

Definitions

  • the present invention relates to a method for purging a fuel flow path in a combustor having a nozzle for selectively injecting liquid fuel and gaseous fuel, a purge device for executing this method, and a gas turbine facility equipped with this device.
  • the gas turbine includes a compressor that compresses air, a combustor that generates combustion gas by burning fuel in the air compressed by the compressor, and a turbine that is driven by the combustion gas from the combustor. Yes.
  • Some combustors have dual-type nozzles that selectively inject oil fuel such as light oil and gaseous fuel such as natural gas.
  • oil fuel such as light oil
  • gaseous fuel such as natural gas.
  • the oil fuel is caulked in a high temperature environment. There are things to do. When the oil fuel is coked in the oil fuel flow path, the oil fuel flow path is narrowed, and it becomes difficult to flow the oil fuel at a target flow rate through the oil fuel flow path.
  • an object of the present invention is to provide a technique capable of suppressing coking of liquid fuel.
  • a fuel channel purging method as one aspect according to the invention for solving the above problems A nozzle for selectively injecting liquid fuel and gaseous fuel, the liquid fuel flowing through the liquid fuel in the nozzle, and the gas fuel flowing in the nozzle tip; In the method for purging the fuel flow path in the combustor, wherein the liquid fuel and the gaseous fuel are only supplied to the nozzle.
  • the cleaning effect in the post-switch water purge step is enhanced. Can do.
  • the third flow rate may be less than the first flow rate.
  • the post-switching water purge step is a water that continuously supplies the second flow rate of water to the liquid fuel passage from the mid-switching water purge step.
  • a replacement step and a cleaning step of supplying the third flow rate of water to the liquid fuel flow path after the water replacement step may be included.
  • the water replacement step of supplying the second flow rate water, which is a small flow rate, to the liquid fuel flow channel at the beginning of the post-switching water purge step is executed, a large amount of liquid fuel has accumulated in the liquid fuel flow channel.
  • a cleaning step is performed in which a third flow rate of water greater than the second flow rate is supplied to the liquid fuel flow channel, thereby facilitating the removal of the liquid fuel remaining in the liquid fuel flow channel. Can do.
  • the post-switching water purge step may include an intermittent purge step of intermittently supplying water to the liquid fuel channel.
  • the post-switching water purging step may include an intermittent purging step of intermittently supplying water to the liquid fuel channel after the cleaning step.
  • the third flow rate of water may be supplied to the liquid fuel channel in the intermittent purge step.
  • the liquid remaining in the corner of the liquid fuel flow path can be removed.
  • the flow rate of water supplied to the liquid fuel channel at the time of the fuel switching state becomes the second flow rate. Before reaching the fuel switching state, the flow rate of water supplied to the liquid fuel flow path may be gradually reduced.
  • an air purge step of supplying air to the liquid fuel channel may be performed after the post-switching water purge step.
  • the air purge process since the air purge process is executed after the post-switch water purge process, the water remaining in the liquid fuel flow channel drops as water droplets into a cylinder of a combustor such as a combustion cylinder. Can be avoided.
  • the air purging step includes a low pressure purging step of supplying air of a first pressure to the liquid fuel channel, and the first pressure after the low pressure purging step.
  • a high pressure purge step of supplying a higher second pressure air to the liquid fuel flow path.
  • the purge method since a low-pressure purge process is performed to supply a low-pressure first pressure air to the liquid fuel flow path at the beginning of the air purge process, a large amount of water accumulated in the liquid fuel flow path It is possible to avoid ejection into the cylinder of the combustor, and to ensure combustion stability.
  • the high-pressure purge process is performed in which air at a second pressure higher than the first pressure is supplied to the liquid fuel flow path, so that the water remaining in the liquid fuel flow path after the low-pressure purge process is effective. Can be injected into the cylinder of the combustor.
  • the combustor includes a second nozzle in addition to the first nozzle as the nozzle, and the liquid fuel is supplied to the second nozzle.
  • a liquid fuel flow path opened at the tip of the flow nozzle and a gas fuel flow path opened at the tip of the nozzle are formed, and the liquid fuel and the gaseous fuel are formed. From the liquid fuel supply state in which only the liquid fuel is supplied to the second nozzle, the liquid fuel is no longer supplied to the second nozzle, and only the gaseous fuel is supplied to the second nozzle. Further, during the execution of the post-switching water purging process for the first nozzle, an air purging process for supplying air to the liquid fuel flow path of the second nozzle may be performed.
  • the air purge process for the second nozzle is executed during the post-switch water purge process before the post-switch water purge process for the first nozzle is completed. Liquid fuel coking can be suppressed.
  • the air purge for the second nozzle after a lapse of a predetermined time from the start of the post-switching water purge step for the first nozzle. You may perform a process.
  • the combustor has a second nozzle in addition to the first nozzle as the nozzle, and the second nozzle includes A liquid fuel flow path that is opened at the nozzle tip and a liquid fuel flow path that is opened at the nozzle tip and the gas fuel flow path that is opened at the nozzle tip is formed. From the liquid fuel supply state in which only the liquid fuel is supplied to the second nozzle among the gaseous fuel, the liquid fuel is no longer supplied to the second nozzle, and only the gaseous fuel is supplied to the second nozzle.
  • an air purge process for supplying air to the liquid fuel flow path of the second nozzle is performed, and the first nozzle In accordance with the start timing of the cleaning step against it may start the air purging step for said second nozzles.
  • the flow rate of the liquid fuel injected from the first nozzle into the cylinder of the combustor such as the combustion cylinder is relatively large. If liquid fuel is also injected from the second nozzle during this water replacement step, the flow rate of liquid fuel injected into the cylinder of the combustor becomes very large, increasing the amount of combustion and impairing combustion stability. . For this reason, in the purge method, the air purge process for the second nozzle is started in accordance with the end timing of the water replacement process for the first nozzle, in other words, in synchronization with the start timing of the cleaning process for the first nozzle.
  • the air purging process on the second nozzle is performed by supplying air at a third pressure to the second nozzle.
  • the fourth pressure air higher than the third pressure is supplied to the liquid fuel flow path of the second nozzle.
  • a high-pressure purge step is performed by supplying air at a third pressure to the second nozzle.
  • the low pressure purge step of supplying the third pressure air, which is a low pressure, to the liquid fuel flow path is executed at the beginning of the air purge process for the second nozzle, the liquid fuel accumulated in the liquid fuel flow path is removed. A large amount can be avoided from being injected into a cylinder of a combustor such as a combustion cylinder, and combustion stability can be ensured.
  • the high-pressure purge process for supplying the fourth pressure air higher than the third pressure to the liquid fuel flow path is executed, so that the liquid fuel remaining in the liquid fuel flow path after the low-pressure purge process is removed. It can be effectively removed.
  • the second nozzle is a nozzle that diffuses and burns fuel injected from the second nozzle.
  • air having a pressure lower than the pressure of the air supplied to the liquid fuel flow path of the second nozzle in the first air purge step is You may perform the 2nd air purge process supplied to the said liquid fuel flow path of 2 nozzles.
  • This purge method can prevent the flame from flowing back into the liquid fuel flow path of the second nozzle.
  • a purge device for a fuel flow path as one aspect according to the invention for solving the above problems A nozzle for selectively injecting liquid fuel and gaseous fuel, the liquid fuel flowing through the liquid fuel in the nozzle, and the gas fuel flowing in the nozzle tip;
  • a purge device for the fuel flow path in the combustor in which a gas fuel flow path that is open at is formed, a water line for sending water to the liquid fuel flow path and a flow rate of the water flowing through the water line are adjusted
  • a water supply control valve that controls the opening of the water control valve, the control device that recognizes the fuel supply state to the nozzle, and the fuel supply state recognition
  • a water purge control unit that controls an opening degree of the water control valve in accordance with the fuel supply state recognized by a unit, wherein the fuel supply state recognition unit is one of the liquid fuel and the gaseous fuel.
  • a liquid fuel supply state a gas fuel supply state in which only the gas fuel of the liquid fuel and the gas fuel is supplied to the nozzle, and a liquid fuel supply state to the gas fuel supply state.
  • a fuel switching state that is a transition state, and when the fuel supply state recognition unit recognizes that the fuel supply state is in the liquid fuel supply state, the water purge control unit When the water control valve is instructed to open the pre-switching opening at which the flow rate of water is supplied, and the fuel supply state recognition unit recognizes that the fuel switch state is being established, the second flow rate is set in the liquid fuel flow path.
  • the rear opening is instructed to the water control valve.
  • the water purge control unit makes the opening during switching smaller than the opening before switching so that the second flow rate is less than the first flow rate, and at least temporarily in the gaseous fuel supply state,
  • the post-switch opening is determined so that a third flow rate of water greater than the flow rate is supplied to the liquid fuel passage.
  • the purge device since water is supplied to the liquid fuel flow path of the nozzle even in the fuel switching state, coking of the liquid fuel in the liquid fuel flow path can be suppressed during the fuel switching state. Further, during the fuel switching state, the combustion of the liquid fuel and the gaseous fuel tends to become unstable. Therefore, in the purge device, the second flow rate of water, which is a small flow rate, is supplied to the liquid fuel flow path of the nozzle, thereby ensuring combustion stability in the charge switching state and coking in the fuel switching state. Suppress.
  • the third flow rate of water which is at least temporarily larger than the second flow rate, is supplied to the liquid fuel channel, so that the cleaning of the liquid fuel channel in the gaseous fuel supply state is performed.
  • the effect can be enhanced.
  • the water purge control unit may determine the post-switching opening degree at which the third flow rate is smaller than the first flow rate.
  • any one of the fuel flow path purge devices described above when the water purge control unit recognizes that the fuel supply state recognition unit has entered the gaseous fuel supply state, Instructing the water regulating valve a water replacement opening that is the same opening as the opening during switching so that the second flow rate of water is continuously supplied to the liquid fuel flow path from the fuel switching state, After instructing the water replacement valve to the water adjustment valve, the cleaning opening is instructed to the water adjustment valve so that the third flow rate of water is supplied to the liquid fuel flow path as the post-switching opening. May be.
  • the water purge control unit may set an intermittent purge opening degree at which water is intermittently supplied to the liquid fuel passage as the post-switching opening degree. You may instruct the water control valve.
  • the water purge control unit intermittently uses the liquid fuel flow as the post-switching opening after instructing the cleaning opening to the water control valve. You may instruct
  • the flow rate when the water purge control unit supplies water to the liquid fuel flow path becomes the third flow rate.
  • the intermittent purge opening degree may be instructed to the water control valve.
  • the fuel supply state recognition unit recognizes in advance the timing of switching from the liquid fuel supply state to the fuel switching state, and the water purge control unit When the fuel supply state recognition unit recognizes the timing in advance so that the flow rate of water supplied to the liquid fuel flow channel becomes the second flow rate when the switching state is reached, the flow is supplied to the liquid fuel flow channel.
  • the opening degree before switching at which the flow rate of water to be gradually decreased may be instructed to the water control valve.
  • the control device comprises: an air line that sends air to the liquid fuel channel; and an air control valve that adjusts the pressure of the air flowing through the air line.
  • An air purge control unit that controls the opening of the air control valve, the water purge control unit instructs the water control valve to open the post-switching opening, and then instructs the valve to close,
  • the air purge control unit may instruct the air control valve of an air purge opening degree for supplying the air to the liquid fuel flow path when the water control valve is closed in the gaseous fuel supply state.
  • the air purge control unit is configured to use the air purge opening as a low pressure purge opening that supplies air at a first pressure to the liquid fuel flow path.
  • the air purge opening is defined as a high-pressure purge opening that supplies air at a second pressure higher than the first pressure to the liquid fuel passage. The control valve may be instructed.
  • the combustor has a second nozzle in addition to the first nozzle as the nozzle, and the second The nozzle is formed with a liquid fuel flow path in which the liquid fuel flows and is opened at a nozzle tip, and a gas fuel flow path in which the gaseous fuel flows and is opened at the nozzle tip.
  • the second air line that sends air to the liquid fuel flow path of the second nozzle In addition to the first air line that is the air line that sends air to the liquid fuel flow path of one nozzle, the second air line that sends air to the liquid fuel flow path of the second nozzle, and the second air line A second air regulating valve that regulates the pressure of the air flowing through the fuel supply state recognition unit, wherein only the gaseous fuel of the liquid fuel and the gaseous fuel is supplied to the second nozzle. Recognize gaseous fuel supply status In the air purge control unit, the first nozzle and the second nozzle are both in the gaseous fuel supply state and the water purge control unit is instructing the post-switching opening degree. You may instruct
  • the water purge control unit instructs the water control valve to indicate the post-switching opening degree, and the second time after a predetermined time has elapsed.
  • the air purge opening degree of the air control valve may be instructed to the second air control valve.
  • the air purge control unit sets the air pressure at the third pressure as the air purge opening degree of the second air control valve.
  • a high pressure purge opening degree at which air having a fourth pressure higher than the third pressure is supplied to the liquid fuel flow path of the second nozzle is used as the second air control valve. You may instruct.
  • the second nozzle is a nozzle that diffuses and burns fuel injected from the second nozzle, and the air purge control
  • the unit instructs the first air purge opening that is the air purge opening to the second air control valve, and then is supplied to the liquid fuel flow path of the second nozzle at the first air purge opening.
  • the gas turbine equipment as one aspect according to the invention for solving the above problems is as follows: The fuel flow purging device according to any one of the above, the combustor, and a turbine driven by combustion gas generated by the combustor.
  • coking of liquid fuel can be suppressed while ensuring stable combustion of the fuel in the process of switching from liquid fuel to gaseous fuel.
  • the gas turbine equipment of this embodiment includes a gas turbine 10 as shown in FIG.
  • the gas turbine 10 is connected to a generator (not shown).
  • the gas turbine 10 includes a compressor 20 that compresses outside air to generate compressed air, a plurality of combustors 40 that combust fuel in compressed air to generate combustion gas, and a turbine 30 that is driven by the combustion gas. I have.
  • the compressor 20 includes a compressor rotor 21 that rotates about a rotation axis Ar, and a compressor casing 25 that covers the compressor rotor 21 in a rotatable manner.
  • the turbine 30 includes a turbine rotor 31 that rotates about a rotation axis Ar, and a turbine casing 35 that rotatably covers the turbine rotor 31. Between the inner peripheral side of the turbine casing 35 and the outer peripheral side of the turbine rotor 31, a combustion gas flow path 39 through which the combustion gas from the combustor 40 flows is formed.
  • the compressor rotor 21 and the turbine rotor 31 are located on the same rotational axis Ar and are connected to each other to form the gas turbine rotor 11.
  • the gas turbine rotor 11 is connected to the generator rotor of the above-described generator.
  • the compressor casing 25 and the turbine casing 35 are connected to each other to form the gas turbine casing 15.
  • the plurality of combustors 40 are fixed to the turbine casing 35 at regular intervals in the circumferential direction Dc with the rotation axis Ar as the center.
  • the combustor 40 includes a cylinder 61 in which fuel burns and a fuel injector 41 that injects fuel into the cylinder 61. Both ends of the cylinder 61 are open, a part of the fuel injector 41 is inserted into one open end, and the combustion gas flow path 39 of the turbine 30 is connected to the other open end.
  • the fuel injector 41 includes a pilot burner 42 disposed on the combustor axis Ac and a plurality of main burners disposed at equal intervals in the circumferential direction around the combustor axis Ac. 52 and a nozzle base 62 fixed to the turbine casing 35.
  • the direction in which the combustor axis Ac extends is the combustor axis direction, and one side is the front end side and the other side is the base end side in the combustor axis direction.
  • the pilot burner 42 includes a pilot nozzle (second nozzle) 43 that is long in the combustor axial direction, and a cylindrical pilot air cylinder 48 that surrounds the outer periphery of the pilot nozzle 43 on the tip side.
  • the front end side of the pilot air cylinder 48 forms a pilot cone that is gradually enlarged in diameter toward the front end side.
  • the pilot nozzle 43 is fixed to the nozzle base 62 with its base end penetrating the nozzle base 62.
  • the pilot nozzle 43 includes a gas fuel flow path 44 in which a gaseous fuel Fgp such as natural gas flows and an opening 45 at the nozzle tip, and a liquid fuel in which a liquid fuel Fop such as light oil flows and an opening 47 at the nozzle tip.
  • a flow path 46 is formed.
  • a gas fuel receiving pipe 65 communicating with the gaseous fuel flow path 44 and a liquid fuel receiving pipe 66 communicating with the liquid fuel flow path 46 are connected to the base end portion of the pilot nozzle 43.
  • a pilot gas fuel branch line 278 (described later) is connected to the gaseous fuel receiving pipe 65, and a pilot liquid fuel branch line 258 (described later) is connected to the liquid fuel receiving pipe 66.
  • the main burner 52 has a main nozzle 53 that is long in the combustor axial direction, and a cylindrical main air cylinder 58 that surrounds the outer periphery of the main nozzle 53.
  • the base end of the main nozzle 53 is fixed to the nozzle base 62.
  • the main nozzle 53 is formed with a gas fuel flow path 54 in which the gaseous fuel Fgm flows and an opening 55 at the nozzle tip, and a liquid fuel flow path 56 in which the liquid fuel Fom flows and an opening 57 at the nozzle tip.
  • the nozzle base 62 is formed with a gaseous fuel passage 63 communicating with the gaseous fuel passage 54 of the main nozzle 53 and a liquid fuel passage 64 communicating with the liquid fuel passage 56 of the main nozzle 53.
  • the nozzle base 62 includes a gas fuel receiving pipe 67 communicating with the gas fuel flow path 63 formed in the nozzle base 62 and a liquid communicating with the liquid fuel flow path 64 formed in the nozzle base 62.
  • a fuel receiving pipe 68 is connected.
  • a main gas fuel branch line 279 described later is connected to the gas fuel receiving pipe 67, and a main liquid fuel branch line 259 described later is connected to the liquid fuel receiving pipe 68.
  • the inner peripheral side of the pilot air cylinder 48 forms a pilot air flow path 49 through which the compressed air from the compressor 20 flows.
  • the liquid fuel Fop or the gaseous fuel Fgp injected from the pilot nozzle 43 burns (diffuse combustion) in the compressed air that has passed through the pilot air flow path 49 to form a diffusion flame.
  • the inner peripheral side of the main air cylinder 58 forms a main air flow path 59 through which compressed air from the compressor 20 flows.
  • Liquid fuel Fom or gaseous fuel Fgm is injected into the compressed air flowing through the main air flow path 59 from a main nozzle 53 disposed in the main air flow path 59.
  • the premixed gas in which the compressed air and the liquid fuel Fom or the gaseous fuel Fgm are mixed flows in the main air flow path 59 downstream of the tip of the main nozzle 53.
  • this premixed gas flows out of the main air flow path 59, it burns (premixed combustion) to form a premixed flame.
  • the above-mentioned diffusion flame has a role of holding the premixed flame.
  • the gas turbine equipment includes a liquid fuel supply device 250 that supplies liquid fuel Fo to the plurality of combustors 40 and a gaseous fuel to the plurality of combustors 40 as shown in FIG.
  • a gas fuel supply device 270 that supplies Fg
  • a water purge device 210 that supplies water W to the liquid fuel flow path 56 in the main nozzle (first nozzle) 53 of the combustor 40, and a main nozzle (first nozzle) of the combustor 40
  • An air purge device 230 that supplies air A to the liquid fuel flow paths 56 and 46 in the nozzle 53) and the pilot nozzle (second nozzle) 43, and a control device 100 that controls them.
  • the liquid fuel supply apparatus 250 includes a liquid fuel main line 252, a pilot liquid fuel line 253, a main liquid fuel line 254, a pilot liquid fuel distributor 256, and a main liquid fuel distribution connected to the liquid fuel supply source 251. 257, a plurality of pilot liquid fuel branch lines 258, and a plurality of main liquid fuel branch lines 259.
  • the pilot liquid fuel line 253 and the main liquid fuel line 254 are both branched from the liquid fuel main line 252.
  • a pilot liquid fuel distributor 256 is connected to the pilot liquid fuel line 253.
  • the plurality of pilot liquid fuel branch lines 258 are provided for each pilot nozzle 43 of the plurality of combustors 40, and each is connected to the pilot liquid fuel distributor 256.
  • a main liquid fuel distributor 257 is connected to the main liquid fuel line 254.
  • the plurality of main liquid fuel branch lines 259 are provided for each main nozzle 53 of the plurality of combustors 40, and each is connected to the main liquid fuel distributor 257.
  • the liquid fuel main line 252 is provided with a liquid fuel main valve 262 for adjusting the flow rate of the liquid fuel Fo flowing therethrough.
  • the pilot liquid fuel line 253 is provided with a pilot liquid fuel valve 263 that adjusts the flow rate of the liquid fuel Fop flowing therethrough.
  • Each of the plurality of pilot liquid fuel branch lines 258 is provided with a pilot liquid fuel branch valve 268 that adjusts the flow rate of the liquid fuel Fop flowing therethrough.
  • the main liquid fuel line 254 is provided with a main liquid fuel valve 264 that adjusts the flow rate of the liquid fuel Fom flowing therethrough.
  • Each of the plurality of main liquid fuel branch lines 259 is provided with a main liquid fuel branch valve 269 that adjusts the flow rate of the liquid fuel Fom flowing therethrough.
  • the gaseous fuel supply device 270 includes a gaseous fuel main line 272 connected to a gaseous fuel supply source 271, a pilot gaseous fuel line 273, a main gaseous fuel line 274, a pilot gaseous fuel distributor 276, and a main gaseous fuel distribution. 277, a plurality of pilot gas fuel branch lines 278, and a plurality of main gas fuel branch lines 279.
  • the pilot gas fuel line 273 and the main gas fuel line 274 are both branched from the gas fuel main line 272.
  • a pilot gas fuel distributor 276 is connected to the pilot gas fuel line 273.
  • the plurality of pilot gas fuel branch lines 278 are provided for each pilot nozzle 43 of the plurality of combustors 40, and each is connected to the pilot gas fuel distributor 276.
  • a main gaseous fuel distributor 277 is connected to the main gaseous fuel line 274.
  • the plurality of main gas fuel branch lines 279 are provided for each main nozzle 53 of the plurality of combustors 40, and each is connected to the main gas fuel distributor 277.
  • the gaseous fuel main line 272 is provided with a gaseous fuel main valve 282 for adjusting the flow rate of the liquid fuel Fg flowing therethrough.
  • the pilot gas fuel line 273 is provided with a pilot gas fuel valve 283 that adjusts the flow rate of the gas fuel Fgp flowing therethrough.
  • Each of the plurality of pilot gas fuel branch lines 278 is provided with a pilot gas fuel branch valve 288 that adjusts the flow rate of the liquid fuel Fgp flowing therethrough.
  • the main gas fuel line 274 is provided with a main gas fuel valve 284 for adjusting the flow rate of the gas fuel Fgm flowing therethrough.
  • Each of the plurality of main gas fuel branch lines 279 is provided with a main gas fuel branch valve 289 that adjusts the flow rate of the liquid fuel Fgm flowing therethrough.
  • the water purging device 210 includes a water supply source 211, a water main line 212, a water distributor 216, and a plurality of water branch lines 218.
  • the water supply source 211 has a pump that pressurizes water and sends it to the water main line 212.
  • the water main line 212 is connected to the water supply source 211.
  • the water distributor 216 is connected to the water main line 212.
  • the plurality of water branch lines 218 are provided for each of the plurality of main liquid fuel branch lines 259, one end is connected to the main liquid fuel branch line 259, and the other end is connected to the water distributor 216.
  • the water main line 212 is provided with a water adjustment valve 213 for adjusting the flow rate of the water W flowing therethrough.
  • the air purging device 230 includes an air supply source 231, an air main line 232, a pilot air line 233, and a main air line 234.
  • the air supply source 231 has a purge compressor that boosts the air and sends it to the air main line 232.
  • the air main line 232 is connected to the air supply source 231.
  • the pilot air line 233 and the main air line 234 are both branched from the air main line 232. Pilot air line 233 is connected to pilot liquid fuel line 253.
  • the main air line 234 is connected to the water main line 212.
  • the air main line 232 is provided with an air main valve 237 for adjusting the flow rate of the air A flowing therethrough.
  • the pilot air line 233 is provided with a pilot air control valve 238 that adjusts the flow rate of the air Ap flowing therethrough.
  • the main air line 234 is provided with a main air regulating valve 239 that regulates the flow rate of the air Am flowing therethrough.
  • the control device 100 includes a gaseous fuel control unit 101 that controls the gaseous fuel Fg supplied to the combustor 40, a liquid fuel control unit 102 that controls the liquid fuel Fo supplied to the combustor 40, and the combustor 40.
  • a fuel supply state recognition unit 105 for recognizing the fuel supply state, a water purge control unit 106 for controlling the opening of the water adjustment valve 213 according to the fuel supply state, a pilot air control valve 238 and a main unit according to the fuel supply state
  • An air purge control unit 107 that controls the opening degree of the air control valve 239.
  • the control device 100 is configured by a computer.
  • the purge device of this embodiment includes a water purge device 210, an air purge device 230, a fuel supply state recognition unit 105, a water purge control unit 106, and an air purge control unit 107 of the control device 100.
  • the gas fuel control unit 101 and the liquid fuel control unit 102 of the control device 100 control the flow rate of fuel supplied to the combustor 40 of the gas turbine 10 during operation of the gas turbine 10.
  • the gaseous fuel control unit 101 first obtains the total flow rate of the gaseous fuel Fg according to the generator output detected by the output meter 111 and the load command from the host device.
  • the gaseous fuel control unit 101 controls the gaseous fuel Fg flowing in the pilot gaseous fuel line 273 and the main gaseous fuel line 274 branched from the gaseous fuel main line 272 according to the total flow rate of the gaseous fuel Fg, the inlet temperature of the turbine 30, or the like.
  • the liquid fuel control unit 102 obtains the total flow rate of the liquid fuel Fo according to the generator output detected by the output meter 111 and the load command from the host device.
  • the liquid fuel control unit 102 controls the liquid fuel Fo flowing through the pilot liquid fuel line 253 and the main liquid fuel line 254 branched from the liquid fuel main line 252 according to the total flow rate of the liquid fuel Fo or the inlet temperature of the turbine 30. Obtain the flow rate ratio.
  • the gaseous fuel control unit 101 sends an opening degree command to the gaseous fuel main valve 282, the pilot gaseous fuel valve 283, and the main gaseous fuel valve 284.
  • the gaseous fuel control unit 101 receives a fuel switching command indicating the burning of gaseous fuel from the host device, the gaseous fuel control unit 101 sends an opening degree command according to the total flow rate of the gaseous fuel Fg to the gaseous fuel main valve 282. Further, the gaseous fuel control unit 101 sends an opening degree command to the gaseous fuel valves 283 and 284 according to the flow rate of the gaseous fuel lines 273 and 274 determined by the total flow rate of the gaseous fuel Fg and the aforementioned flow rate ratio.
  • the gaseous fuel Fg having a predetermined flow rate flows through each of the pilot gaseous fuel line 273 and the main gaseous fuel line 274.
  • the gaseous fuel Fgp flowing through the pilot gaseous fuel line 273 flows into the gaseous fuel flow path 44 of the pilot nozzle 43 of each combustor 40 via the pilot gaseous fuel distributor 276 and the pilot gaseous fuel branch line 278, and from the pilot nozzle 43. It is injected into the cylinder 61.
  • the gaseous fuel Fgm flowing through the main gaseous fuel line 274 flows into the gaseous fuel flow path 54 of the main nozzle 53 of each combustor 40 via the main gaseous fuel distributor 277 and the main gaseous fuel branch line 279, and from the main nozzle 53. It is injected into the cylinder 61.
  • the liquid fuel control unit 102 receives a fuel switching command indicating gas fuel burning from the host device, the opening degree “0” with respect to the liquid fuel main valve 262, the pilot liquid fuel valve 263, and the main liquid fuel valve 264. ", That is, a valve closing command is sent. As a result, the liquid fuel Fo is not injected from the pilot nozzle 43 and the main nozzle 53 of each combustor 40.
  • the liquid fuel control unit 102 When the liquid fuel control unit 102 receives a fuel switching command indicating liquid fuel burning from the host device, the liquid fuel control unit 102 sends an opening degree command according to the total flow rate of the liquid fuel Fo to the liquid fuel main valve 262. Further, the liquid fuel control unit 102 sends an opening degree command corresponding to the flow rates of the liquid fuel lines 253 and 254 determined by the total flow rate of the liquid fuel Fg and the above-described flow rate ratio to the gas fuel valves 263 and 264. As a result, the liquid fuel Fo having a predetermined flow rate flows through each of the pilot liquid fuel line 253 and the main liquid fuel line 254.
  • the gaseous fuel Fop that has flowed through the pilot liquid fuel line 253 flows into the liquid fuel flow path 46 of the pilot nozzle 43 of each combustor 40 via the pilot liquid fuel distributor 256 and the pilot liquid fuel branch line 258, and from the pilot nozzle 43. It is injected into the cylinder 61.
  • the liquid fuel Fom that has flowed through the main liquid fuel line 254 flows into the liquid fuel flow path 56 of the main nozzle 53 of each combustor 40 via the main liquid fuel distributor 257 and the main liquid fuel branch line 259, and from the main nozzle 53. It is injected into the cylinder 61.
  • the gas fuel control unit 101 when the gas fuel control unit 101 receives a fuel switching command indicating liquid fuel burning from the host device, the gas fuel control unit 101 opens the opening “0” with respect to the gas fuel main valve 282, the pilot gas fuel valve 283, and the main gas fuel valve 284. ", That is, a valve closing command is sent. As a result, the gaseous fuel Fg is not injected from the pilot nozzle 43 and the main nozzle 53 of each combustor 40.
  • the fuel supply state recognition unit 105 includes a liquid fuel supply state Mo in which only the liquid fuel Fo is supplied to the main nozzle 53 among the gaseous fuel Fg and the liquid fuel Fo, and only the gaseous fuel Fg is supplied to the main nozzle 53. And the fuel switching state Mc that is a transition state from the liquid fuel supplying state Mo to the gaseous fuel supplying state Mg. Further, the fuel supply state recognition unit 105 supplies only the liquid fuel Fo to the pilot nozzle 43 from the gaseous fuel Fg and the liquid fuel Fo, and supplies only the gaseous fuel Fg to the pilot nozzle 43. It recognizes the gas fuel supply state Pg that has been changed and the fuel switching state Pc that is a transition state from the liquid fuel supply state Po to the gas fuel supply state Pg. The fuel supply state recognition unit 105 recognizes these states in response to commands output from the gaseous fuel control unit 101 and the liquid fuel control unit 102.
  • the water purge control unit 106 supplies water W at the first flow rate w1 to the liquid fuel flow path 56 of the main nozzle 53.
  • the opening degree before switching is instructed to the water control valve 213.
  • the water W from the water supply source 211 flows into the main liquid fuel branch line 259 via the water main line 212, the water distributor 216, and the water branch line 218.
  • the water W flowing into the main liquid fuel branch line 259 flows into the liquid fuel flow path 56 of the main nozzle 53 of each combustor 40 together with the liquid fuel Fom flowing through the main liquid fuel branch line 259 and is injected into the cylinder 61 from the main nozzle 53.
  • water W injected into the cylinder 61 from the liquid fuel flow path 56 of the main nozzle 53 is also injected into the cylinder 61 from the liquid fuel flow path 56 of the main nozzle 53.
  • Spread Fom Further, the water W lowers the temperature of the premixed flame formed by the combustion of the liquid fuel Fom injected from the main nozzle 53, thereby contributing to the reduction of the metal temperature of the cylinder 61 and the reduction of thermal NOx. Furthermore, since this water W turns into steam and flows into the combustion gas passage 39 of the turbine 30, it contributes to the improvement of the gas turbine output.
  • the main liquid fuel valve 264 and the pilot liquid fuel valve 263 are each opened at an opening degree according to an instruction from the liquid fuel control unit 102. For this reason, the liquid fuel Fo is injected from the main nozzle 53 and the pilot nozzle 43 of each combustor 40.
  • the main gaseous fuel valve 284 and the pilot gaseous fuel valve 283 are closed. For this reason, the gaseous fuel Fg is not injected from the main nozzle 53 and the pilot nozzle 43 of each combustor 40. That is, the main nozzle 53 and the pilot nozzle 43 are both in the liquid fuel supply state Mo, Po.
  • the water control valve 213 of the water purging device 210 has a pre-switching opening at which the water W at the first flow rate w1 is supplied to the liquid fuel flow path 56 of the main nozzle 53 as described above (S1: Water supply step). For this reason, when the main nozzle 53 is in the liquid fuel supply state Mo, the water W from the water supply source 211 flows into the main liquid fuel branch line 259 via the water main line 212 and the water distributor 216. The water that flows into the main liquid fuel branch line 259 flows into the liquid fuel flow path 56 of each main nozzle 53 and is injected into the cylinder 61 from the main nozzle 53.
  • the first flow rate w ⁇ b> 1 is a flow rate having a constant ratio with respect to the flow rate of the liquid fuel Fom supplied to the liquid fuel flow path 56 of the main nozzle 53. For this reason, when the load command is changed and the flow rate of the liquid fuel Fom supplied to the liquid fuel channel 56 of the main nozzle 53 is changed, the first flow rate w1 is also changed along with this change.
  • the first flow rate w1 may be a constant flow rate during the water supply step (S1).
  • the pilot liquid fuel valve 263 starts to close by an instruction from the liquid fuel control unit 102, while a pilot gas fuel valve 283 is received by an instruction from the gas fuel control unit 101. Begins to open. For this reason, while the liquid fuel Fop injected from the pilot nozzle 43 starts to decrease, the gaseous fuel Fgp starts to be injected from the pilot nozzle 43. That is, the pilot nozzle 43 of each combustor 40 changes from the liquid fuel supply state Po to the fuel switching state Pc.
  • the main liquid fuel valve 264 starts to close according to the instruction from the liquid fuel control unit 102, while the main liquid fuel valve 264 starts to close according to the instruction from the gaseous fuel control unit 101.
  • the gaseous fuel valve 284 begins to open. For this reason, while the liquid fuel Fom injected from the main nozzle 53 starts to decrease, the gaseous fuel Fgm starts to be injected from the main nozzle 53. That is, the main nozzle 53 of each combustor 40 changes from the liquid fuel supply state Mo to the fuel switching state Mc.
  • the fuel supply state recognition unit 105 of the control device 100 recognizes in advance the timing (t3) at which the main nozzle 53 switches to the fuel switching state Mc, and at the time (t3) when the main nozzle 53 enters the fuel switching state Mc.
  • the pre-switching opening degree is instructed to the water adjustment valve 213 so that the water of the second flow rate w2 flows through the liquid fuel flow path 56 of the nozzle 53. That is, from the time point (t2) before the time point (t3) when the main nozzle 53 enters the fuel switching state Mc, the opening degree before switching is the opening at which the water W of the first flow rate w1 flows through the liquid fuel flow path 56 of the main nozzle 53. Gradually changes to an opening through which the water W of the second flow rate w2 flows.
  • the fuel supply state recognition unit 105 holds in advance the time until the main nozzle 53 switches to the fuel switching state Mc after receiving a fuel switching command from the outside (t1), whereby the main nozzle 53 switches the fuel.
  • the timing (t3) for switching to the state Mc is recognized in advance.
  • the water purge control unit 106 sets the second flow rate w2 in the liquid fuel flow path 56 of the main nozzle 53.
  • the switching opening during which water flows is instructed to the water control valve 213 (S2: switching water purge step).
  • the second flow rate w2 is constant while the main nozzle 53 is in the fuel switching state Mc.
  • the first flow path w1 described above varies depending on the flow rate of the liquid fuel Fom, but in any case, the first flow path w1 is larger than the second flow rate w2. In other words, the second flow rate w2 is less than the first flow rate w1.
  • the water purge control unit 106 instructs the opening degree after switching to the water adjustment valve 213 (S3: switching). Post-water purge step).
  • the water control valve 213 has a second flow rate w2 in the liquid fuel flow path 56 of the main nozzle 53 for a predetermined time (t4) after the main nozzle 53 is recognized as being in the gaseous fuel supply state Mg as an opening after switching.
  • the water replacement opening that is the same as the opening through which the water W flows, that is, the opening during switching is instructed (S4: water replacement step).
  • the water adjustment valve 213 has a cleaning opening that is an opening through which the water W of the third flow rate w3 flows in the liquid fuel flow path 56 of the main nozzle 53 as the opening after switching. Instructed for a predetermined time (S5: cleaning process).
  • the third flow rate w3 is constant during this predetermined time.
  • the first flow path w1 described above varies depending on the flow rate of the liquid fuel Fom, but in any case, the first flow path w1 is larger than the third flow rate w3.
  • the third flow rate w3 is greater than the second flow rate w2, and therefore the third flow rate w3 is less than the one flow rate w1 and greater than the second flow rate w2.
  • the water adjustment valve 213 is instructed by a cleaning opening degree at which the water W of the third flow rate w3 flows into the liquid fuel flow path 56 of the main nozzle 53 for a predetermined time (t8), and then the opening degree “0” is set as the opening degree after switching. After that (t10), the opening degree after which the water W of the third flow rate w3 flows into the liquid fuel flow path 56 of the main nozzle 53 is instructed as the opening degree after switching for a predetermined time. Thereafter, as the post-switching opening, the intermittent purge opening where the opening “0” and the opening at which the water W at the third flow rate w3 flows through the liquid fuel flow path 56 of the main nozzle 53 is repeated. Instructed. Therefore, the water W at the third flow rate w3 is intermittently supplied to the liquid fuel flow path 56 of the main nozzle 53 (S6: intermittent purge step).
  • the post-switching water purge step (S3) is completed.
  • the water purge control unit 106 notifies the air purge control unit 107 to that effect.
  • the air purge control unit 107 instructs the main air control valve 239 about the air purge opening degree through which the air A flows into the liquid fuel flow path 56 of the main nozzle 53 (S7: air purge step) ).
  • the air A from the air supply source 231 flows from the main air line 234 into the water main line 212.
  • the air A that has flowed into the water main line 212 flows into the liquid fuel flow paths 56 of the main nozzles 53 via the water distributor 216 and the main liquid fuel branch line 259, and is injected into the cylinder 61 from the main nozzles 53.
  • the main air control valve 239 is first instructed as a low pressure purge opening degree at which the air A having the first pressure a1 is supplied to the liquid fuel flow path 56 of the main nozzle 53 (S8: low pressure purge). Process). Then, after a predetermined time has elapsed (t14), air A having a second pressure a2, which is higher than the first pressure a1, is supplied to the liquid fuel flow path 56 of the main nozzle 53 as the air purge opening degree.
  • the high pressure purge opening to be performed is instructed for a predetermined time (S9: high pressure purge step).
  • the air purge control unit 107 is configured such that the air A flows through the liquid fuel flow path 46 of the pilot nozzle 43 after a predetermined time has elapsed after the pilot nozzle 43 and the main nozzle 53 are in the gaseous fuel supply state Pg, Mg (t4).
  • the purge opening degree is instructed to the pilot air control valve 238 (t5).
  • the air purge control unit 107 indicates the first air purge opening degree to the pilot air control valve 238 after a predetermined time has elapsed after the post-switching water purge step (S3) for the main nozzle 53 is started (t4). (T5).
  • S3 post-switching water purge step
  • T5 the air A from the air supply source 231 flows from the pilot air line 233 into the pilot liquid fuel line 253.
  • the air A flowing into the pilot liquid fuel line 253 flows into the liquid fuel flow path 46 of each pilot nozzle 43 via the pilot liquid fuel distributor 256 and the pilot liquid fuel branch line 258, and enters the cylinder 61 from the pilot nozzle 43. Injected (S11: first air purge step).
  • the pilot air control valve 238 is first instructed as the first air purge opening degree, the low pressure purge opening degree at which the air A at the third pressure a3 is supplied to the liquid fuel flow path 46 of the pilot nozzle 43 (S12: Low pressure purge process). Then, after a predetermined time has elapsed (t6), air A having a fourth pressure a4 higher than the third pressure a3 is supplied to the pilot air control valve 238 as the first air purge opening degree.
  • the high pressure purge opening degree supplied to is instructed for a predetermined time (S13: high pressure purge step).
  • the time (t5) at which the air A at the third pressure a3 is supplied to the liquid fuel flow path 46 of the pilot nozzle 43 coincides with the time at which the cleaning process (S5) is started for the main nozzle 53.
  • the high pressure purge process (S13) for the pilot nozzle 43 ends (t7) before the time (t8) when the cleaning process (S5) for the main nozzle 53 ends.
  • the first air purge step (S11) is completed.
  • the air purge control unit 107 instructs the pilot air control valve 238 to set the second air purge opening degree (S14: second air purge step).
  • the air purge control unit 107 has a time point (t11) after the time point (t11) when the intermittent purge step (S6) for the main nozzle 53 is completed and before the time point (t13) when the air purge step (S7) for the main nozzle 53 starts ( At t12), the opening degree “0” is instructed to the pilot air control valve 238, and the second air purge step (S14) is ended.
  • the second air purge opening is constant during the second air purge step (S14) and is smaller than the opening at any point in time of the first air purge opening.
  • the pressure of the air supplied to the liquid fuel flow path 46 of the pilot nozzle 43 is greater than the third pressure a3 and the fourth pressure a4 during the first air purge step (S11). Is also low.
  • the air purge control unit 107 again instructs the pilot air control valve 238 to set the second air purge opening. (S15: Second air purge step). Thereafter, while the pilot nozzle 43 is in the gaseous fuel supply state Pg, the pilot air control valve 238 maintains the second air purge opening.
  • the used fuel is switched from the liquid fuel Fo to the gaseous fuel Fg. After that, if the liquid fuel Fo remains in the liquid fuel flow paths 46 and 56 of the nozzles 43 and 53, the liquid fuel Fo may be caulked in a high temperature environment.
  • a post-switching water purge step (S3) is performed, and the liquid fuel flow path 56 of the main nozzle 53 is filled with water. Wash.
  • the cleaning step (S5) of the post-switch water purge step (S3) even when water W is injected from the main nozzle 53 in the gaseous fuel supply state Mg, the combustion stability of the gaseous fuel Fg is not impaired.
  • the water at the third flow rate w3 close to the maximum flow rate or at the maximum flow rate is supplied to the liquid fuel flow channel 56 of the main nozzle 53, and the cleanability in the liquid fuel flow channel 56 of the main nozzle 53 is improved.
  • the liquid fuel Fom in the liquid fuel flow path 56 of the main nozzle 53 is sufficiently removed even after the cleaning process (S5) is performed on the main nozzle 53.
  • the cleaning process (S5) is performed on the main nozzle 53.
  • an intermittent purge process (S6) is performed in which the water W at the third flow rate w3 is intermittently passed through the liquid fuel flow path 56.
  • the liquid fuel Fom from an acute angle portion, a gap, or the like of the liquid fuel flow path 56 while water does not flow through the liquid fuel flow path 56. Flows out, and thereafter, the liquid fuel Fom is removed by the water supplied to the liquid fuel flow path 56.
  • the number of times the water W is intermittently flowed is, for example, about 5 times.
  • the number of times may be set to ten.
  • the number of times the water W is intermittently flown is less than 5 times, it may be less than 5 times when the liquid fuel Fom in the liquid fuel channel 56 of the main nozzle 53 can be sufficiently removed.
  • the intermittent purge step (S6) may be omitted.
  • the water W remains in the liquid fuel flow path 56 of the main nozzle 53.
  • the tube 61 may be damaged.
  • air A is supplied to the liquid fuel flow path 56 of the main nozzle 53, and the water W is supplied from the liquid fuel flow path 56 of the main nozzle 53 into the cylinder 61.
  • air A is injected (S7: air purge step).
  • the low-pressure first pressure is supplied for a predetermined time until the supply of air A in an amount capable of replacing the water W accumulated in the liquid fuel flow path 56 of the main liquid fuel branch line 259 or the main nozzle 53 is completed.
  • Air A at a pressure a1 is supplied into the liquid fuel flow path 56 of the main nozzle 53 (S8: low pressure purge step). Thereafter, in order to inject the water W slightly remaining in the liquid fuel flow path 56 of the main nozzle 53 into the cylinder 61, the air A having the high second pressure a2 is supplied to the liquid fuel flow path of the main nozzle 53. 56 (S9: high pressure purge process).
  • the cleaning step (S5) is performed after the water replacement step (S4) is performed, so that the combustion stability of the gaseous fuel Fg is secured.
  • the cleaning performance of the liquid fuel flow path 56 of the main nozzle 53 can be improved.
  • the intermittent purge process (S7) is performed after the cleaning process (S5), the cleaning performance of the liquid fuel flow path 56 of the main nozzle 53 can be further improved.
  • the flow rate of the liquid fuel Fom flowing through the liquid fuel channel 56 of the main nozzle 53 gradually decreases, so that the liquid fuel Fom flowing through the liquid fuel channel 56 is reduced.
  • the flow rate gradually decreases.
  • the fuel switching state Mc approaches the gaseous fuel supply state Mg
  • the flow rate of the liquid fuel Fom flowing through the liquid fuel flow path 56 is significantly reduced. For this reason, the liquid fuel Fom may coke in the liquid fuel flow path 56 even in the fuel switching state Mc.
  • the main liquid fuel branch line 259 is reached when the gaseous fuel supply state Mg is reached (t4).
  • the liquid fuel Fom in the liquid fuel flow path 56 of the main nozzle 53 is replaced with water W to some extent.
  • the water replacement process (S4) after becoming the post-gas fuel supply state Mg can be completed in a short time.
  • the flow rate of water W supplied in the switching water purge step (S2) and the flow rate of water supplied in the replacement step (S4) are the second flow rate w2, but these flow rates are the same. There is no need for a flow rate.
  • the control of the water control valve 213 can be simplified by setting the flow rate of the water W supplied in the switching water purge step (S2) and the flow rate of the water supplied in the replacement step (S4) to the same flow rate. it can.
  • the flow rate of the liquid fuel Fom injected from the main nozzle 53 into the cylinder 61 is relatively large. If the liquid fuel Fop is injected also from the pilot nozzle 43 during this water replacement step (S4), the flow rate of the liquid fuel Fo injected into the cylinder 61 becomes very large, and the combustion amount increases and combustion stability is increased. Is damaged. Therefore, in this embodiment, the pilot nozzle 43 changes from the liquid fuel supply state Po to the gaseous fuel supply state Pg, and the pilot nozzle 43 is switched to the pilot nozzle 43 in synchronization with the end timing of the water replacement step (S4) for the main nozzle 53. One air purge process (S11) is started.
  • the air A having a high fourth pressure a 4 is supplied to the liquid fuel flow of the pilot nozzle 43. It supplies in the path
  • the second air purge step (S14, 15) described above is executed.
  • the pilot nozzle 43 diffuses and burns the ejected gaseous fuel Fgp. For this reason, a diffusion flame is formed near the tip of the pilot nozzle 43. Thus, in the state where the diffusion flame is formed in the vicinity of the tip of the pilot nozzle 43, this flame may flow back to the liquid fuel flow path 46. Therefore, in the present embodiment, in order to prevent the reverse flow of the flame, the low-pressure air A is supplied to the liquid fuel flow path 46 in the second air purge step (S14, 15).
  • the second air purge step (S14, 15) for the pilot nozzle 43 is not executed while the air purge step (S7) for the main nozzle 53 is being executed.
  • the air supply source 231 of the present embodiment has the capability of simultaneously executing the air purge step (S7) for the main nozzle 53 and the second air purge step (S14, 15) for the pilot nozzle 43. Because there is no. In other words, the air supply source 231 having the minimum capacity can be efficiently used by shifting the use timing of the air supply source 231 between the pilot nozzle 43 and the main nozzle 53 as in the present embodiment.
  • the second air purge process (S14, 15) for the pilot nozzle 43 may be performed while the air purge process (S7) for the main nozzle 53 is being performed. . Further, the second air purge step of S14 and the second air purge step of S15 may be performed continuously.
  • coking of liquid fuel can be suppressed while ensuring stable combustion of the fuel in the process of switching from liquid fuel to gaseous fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

 液体燃料のみがノズルに供給されている液体燃料供給状態(Mo)のときに、ノズルの液体燃料流路に水を供給する水供給工程(S1)と、気体燃料のみがノズルに供給されている気体燃料供給状態(Mg)のときに、ノズルの液体燃料流路に水を供給する切替後水パージ工程(S3)と、液体燃料供給状態(Mo)から液体燃料供給状態(Mg)への遷移状態である燃料切替状態(Mc)のときに、ノズルの液体燃料流路に水を供給する切替中水パージ工程(S2)とを実行する。切替中水パージ工程(S2)で供給する水の第二流量(w2)は、水供給工程(S1)で供給する水の第一流量(w1)よりも少ない。切替後水パージ工程(S3)では、一時的に第二流量(w2)よりも多い第三流量(w3)の水を供給する。

Description

燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備
 本発明は、液体燃料と気体燃料とを選択的に噴射するノズルを有する燃焼器における燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備に関する。本願は、2014年6月3日に、日本国に出願された特願2014-114737号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンは、空気を圧縮する圧縮機と、圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、燃焼器からの燃焼ガスで駆動するタービンと、を備えている。
 燃焼器としては、軽油等の油燃料と天然ガス等の気体燃料とを選択的に噴射するデュアル方式のノズルを有するものがある。このようなデュアル方式のノズルを有する燃焼器では、使用燃料を油燃料から気体燃料に切り替えた後、ノズルの油燃料流路に油燃料が残っていると、この油燃料が高温環境下でコーキングすることがある。油燃料が油燃料流路内でコーキングすると、油燃料流路が狭まり、この油燃料流路に目的の流量の油燃料を流すことが困難になる。
 そこで、以下の特許文献1に記載の技術では、油燃料から気体燃料への切替が完了した後、油燃料流路に水を間欠的に複数回供給し、その後、この油燃料流路に空気を供給して、油燃料流路中に残っていた油燃料を除去し、油燃料流路内での油燃料のコーキングを抑えている。
特開2013-231415号公報
 上記特許文献1に記載の技術では、油燃料から気体燃料への切替が完了した後に油燃料流路に水を供給する。このため、上記特許文献1に記載の技術では、油燃料から気体燃料への切替過程で、油燃料流路に流れる油燃料の流量が少なくなり、油燃料流路を流れる油燃料の流速が落ちた際に、油燃料がコーキングするおそれがある、という問題点がある。
 そこで、本発明は、液体燃料のコーキングを抑えることができる技術を提供することを目的とする。
 上記問題点を解決するための発明に係る一態様としての燃料流路のパージ方法は、
 液体燃料と気体燃料とを選択的に噴射するノズルを有し、前記ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されている、燃焼器における燃料流路のパージ方法において、前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記ノズルに供給されている液体燃料供給状態のときに、前記液体燃料流路に水を供給する水供給工程と、前記液体燃料供給状態から、前記ノズルの前記液体燃料流路に供給される前記液体燃料が少なくなる一方で、前記ノズルの前記気体燃料流路に前記気体燃料が供給され始め、前記気体燃料流路に供給される前記気体燃料が多くなる燃料切替状態のときに、前記液体燃料流路に水を供給する切替中水パージ工程と、前記液体燃料が前記液体燃料流路に供給されなくなって前記燃料切替状態が終了し、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記ノズルに供給され始めてから、前記液体燃料流路に水を供給する切替後水パージ工程と、を実行し、前記切替中水パージ工程では、前記水供給工程で前記液体燃料流路に供給する水の流量である第一流量よりも少ない第二流量の水を前記液体燃料流路に供給し、前記切替後水パージ工程では、少なくとも一時的に前記第二流量よりも多い第三流量の水を前記液体燃料流路に供給する。
 当該パージ方法では、燃料切替状態中でも、ノズルの液体燃料流路に水を供給するので、燃料切替状態中、液体燃料流路内での液体燃料のコーキングを抑えることができる。また、燃料切替状態中、液体燃料及び気体燃料の燃焼が不安定になり易い。そこで、当該パージ方法では、少ない流量である第二流量の水をノズルの液体燃料流路に水を供給することで、燃料切替状態での燃焼安定性を確保しつつ、燃料切替状態でのコーキングを抑える。また、当該パージ方法では、切替後水パージ工程で、少なくとも一時的に第二流量よりも多い第三流量の水を液体燃料流路に供給するので、切替後水パージ工程における洗浄効果を高めることができる。
 ここで、前記燃料流路のパージ方法において、前記第三流量は、前記第一流量よりも少なくてもよい。
 また、以上のいずれかの前記燃料流路のパージ方法において、前記切替後水パージ工程は、前記切替中水パージ工程から連続して前記第二流量の水を前記液体燃料流路に供給する水置換工程と、前記水置換工程後に前記第三流量の水を前記液体燃料流路に供給するクリーニング工程と、を含んでもよい。
 当該パージ方法では、切替後水パージ工程の最初に少ない流量である第二流量の水を液体燃料流路に供給する水置換工程を実行するので、液体燃料流路に溜まっていた液体燃料が大量に燃焼筒等の燃焼器の筒内に噴出することを避けることができ、燃焼安定性を確保することができる。また、水置換工程後に、第二流量よりも多い第三流量の水を液体燃料流路に供給するクリーニング工程を実行するので、液体燃料流路中に残っている液体燃料の除去を促進することができる。
 また、以上のいずれかの前記燃料流路のパージ方法において、前記切替後水パージ工程は、水を間欠的に前記液体燃料流路に供給する間欠パージ工程を含んでもよい。
 前記クリーニング工程を実行する前記燃料流路のパージ方法において、前記切替後水パージ工程は、前記クリーニング工程後に、水を間欠的に前記液体燃料流路に供給する間欠パージ工程を含んでもよい。
 前記間欠パージ工程を実行する、いずれかの前記燃料流路のパージ方法において、前記間欠パージ工程では、前記第三流量の水を前記液体燃料流路に供給してもよい。
 間欠水パージ工程を実行するパージ方法では、例えば、液体燃料流路の隅等に残っている液体を除去することができる。
 以上のいずれかの前記燃料流路のパージ方法において、前記水供給工程では、前記燃料切替状態になった時点で前記液体燃料流路に供給される水の流量が前記第二流量になるよう、前記燃料切替状態に至る前から、前記液体燃料流路に供給する水流量を徐々に少なくしてもよい。
 以上のいずれかの前記燃料流路のパージ方法において、前記切替後水パージ工程の終了後、空気を前記液体燃料流路に供給する空気パージ工程を実行してもよい。
 当該パージ方法では、切替後水パージ工程後に、空気パージ工程を実行するので、液体燃料流路内に残っている水が水滴として、高温を燃焼筒等の燃焼器の筒内に滴下してしまうのを回避することができる。
 前記空気パージ工程を実行する前記燃料流路のパージ方法において、前記空気パージ工程は、第一圧力の空気を前記液体燃料流路に供給する低圧パージ工程と、前記低圧パージ工程後に前記第一圧力よりも高い第二圧力の空気を前記液体燃料流路に供給する高圧パージ工程と、を含んでもよい。
 当該パージ方法では、空気パージ工程の最初に低圧である第一圧力の空気を液体燃料流路に供給する低圧パージ工程を実行するので、液体燃料流路に溜まっていた水が大量に燃焼筒等の燃焼器の筒内に噴出することを避けることができ、燃焼安定性を確保することができる。また、低圧パージ工程後に、第一圧力よりも高い第二圧力の空気を液体燃料流路に供給する高圧パージ工程を実行するので、低圧パージ工程後に液体燃料流路中に残っている水を効果的に燃焼器の筒内に噴射させることができる。
 以上のいずれかの前記燃料流路のパージ方法において、前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記第二ノズルに供給されている液体燃料供給状態から、前記液体燃料が前記第二ノズルに供給されなくなり、前記気体燃料のみが前記第二ノズルに供給されているときで、且つ前記第一ノズルに対する前記切替後水パージ工程の実行中に、前記第二ノズルの前記液体燃料流路に空気を供給する空気パージ工程を実行してもよい。
 当該パージ方法では、第一ノズルに対する切替後水パージ工程が終了する前である切替後水パージ工程中に、第二ノズルに対する空気パージ工程を実行するので、第二ノズルの液体燃料流路内における液体燃料のコーキングを抑制することができる。
 前記第二ノズルに対する前記空気パージ工程を実行する前記燃料流路のパージ方法において、前記第一ノズルに対する前記切替後水パージ工程が開始されてから、所定時間経過後に前記第二ノズルに対する前記空気パージ工程を実行してもよい。
 前記クリーニング工程を実行する、いずれかの前記燃料流路のパージ方法において、前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記第二ノズルに供給されている液体燃料供給状態から、前記液体燃料が前記第二ノズルに供給されなくなり、前記気体燃料のみが前記第二ノズルに供給されているときで、且つ前記第一ノズルに対する前記切替後水パージ工程の実行中に、前記第二ノズルの前記液体燃料流路に空気を供給する空気パージ工程を実行し、前記第一ノズルに対する前記クリーニング工程の開始タイミングに合わせて、前記第二ノズルに対する前記空気パージ工程を開始してもよい。
 第一ノズルに対する水置換工程中、第一ノズルから燃焼筒等の燃焼器の筒内に噴射される液体燃料の流量が比較的多い。この水置換工程中に、第二ノズルからも液体燃料を噴射すると、燃焼器の筒内に噴射される液体燃料の流量が非常に多くなり、燃焼量が増加する上に燃焼安定性が損なわれる。このため、当該パージ方法では、第一ノズルに対する水置換工程の終了タイミングに合わせて、言い換えると、第一ノズルに対するクリーニング工程の開始タイミングに合わせて、この第二ノズルに対する空気パージ工程を開始する。
 また、第二ノズルに対して空気パージ工程を実行する、以上のいずれかの前記燃料流路のパージ方法において、前記第二ノズルに対する前記空気パージ工程は、第三圧力の空気を前記第二ノズルの前記液体燃料流路に供給する低圧パージ工程と、前記第二ノズルに対する前記低圧パージ工程後に前記第三圧力よりも高い第四圧力の空気を前記第二ノズルの前記液体燃料流路に供給する高圧パージ工程と、を含んでもよい。
 当該パージ方法では、第二ノズルに対する空気パージ工程の最初に低圧である第三圧力の空気を液体燃料流路に供給する低圧パージ工程を実行するので、液体燃料流路に溜まっていた液体燃料が大量に燃焼筒等の燃焼器の筒内に噴出することを避けることができ、燃焼安定性を確保することができる。また、低圧パージ工程後に、第三圧力よりも高い第四圧力の空気を液体燃料流路に供給する高圧パージ工程を実行するので、低圧パージ工程後に液体燃料流路中に残っている液体燃料を効果的に除去することができる。
 また、第二ノズルに対して空気パージ工程を実行する、以上のいずれかの前記燃料流路のパージ方法において、前記第二ノズルは、前記第二ノズルから噴射した燃料を拡散燃焼させるノズルであり、前記第二ノズルに対する前記空気パージ工程である第一空気パージ工程後に、前記第一空気パージ工程で前記第二ノズルの前記液体燃料流路に供給する空気の圧力より低い圧力の空気を前記第二ノズルの前記液体燃料流路に供給する第二空気パージ工程を実行してもよい。
 当該パージ方法では、第二ノズルの液体燃料流路内に火炎が逆流するのを防ぐことができる。
 上記問題点を解決するための発明に係る一態様としての燃料流路のパージ装置は、
 液体燃料と気体燃料とを選択的に噴射するノズルを有し、前記ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されている、燃焼器における燃料流路のパージ装置において、前記液体燃料流路に水を送る水ラインと、前記水ラインを流れる水の流量を調節する水調節弁と、前記水調節弁の開度を制御する制御装置と、を備え、前記制御装置は、前記ノズルへの燃料供給状態を認識する燃料供給状態認識部と、前記燃料供給状態認識部で認識された前記燃料供給状態に応じて前記水調節弁の開度を制御する水パージ制御部と、を有し、前記燃料供給状態認識部は、前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記ノズルに供給されている液体燃料供給状態と、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記ノズルに供給されている気体燃料供給状態と、前記液体燃料供給状態から前記気体燃料供給状態への遷移状態である燃料切替状態と、を認識し、前記水パージ制御部は、前記燃料供給状態認識部が前記液体燃料供給状態であると認識しているときに、前記液体燃料流路に第一流量の水が供給される切替前開度を前記水調節弁に指示し、前記燃料供給状態認識部が前記燃料切替状態であると認識しているときに、前記液体燃料流路に第二流量の水が供給される切替中開度を前記水調節弁に指示し、前記燃料供給状態認識部が前記気体燃料供給状態になったと認識したときに、前記液体燃料流路に水が供給される切替後開度を前記水調節弁に指示し、前記水パージ制御部は、前記第二流量が前記第一流量よりも少なくなるよう、前記切替前開度よりも前記切替中開度を小さくし、前記気体燃料供給状態で少なくとも一時的に前記第二流量よりも多い第三流量の水が前記液体燃料流路に供給されるよう前記切替後開度を定める。
 当該パージ装置では、燃料切替状態中でも、ノズルの液体燃料流路に水を供給するので、燃料切替状態中、液体燃料流路内での液体燃料のコーキングを抑えることができる。また、燃料切替状態中、液体燃料及び気体燃料の燃焼が不安定になり易い。そこで、当該パージ装置では、少ない流量である第二流量の水をノズルの液体燃料流路に水を供給することで、料切替状態での燃焼安定性を確保しつつ、燃料切替状態でのコーキングを抑える。また、当該パージ装置では、気体燃料供給状態で、少なくとも一時的に第二流量よりも多い第三流量の水を液体燃料流路に供給するので、気体燃料供給状態での液体燃料流路の洗浄効果を高めることができる。
 ここで、前記燃料流路のパージ装置において、前記水パージ制御部は、前記第三流量が前記第一流量よりも少なくなる前記切替後開度を定めてもよい。
 また、以上のいずれかの前記燃料流路のパージ装置において、前記水パージ制御部は、前記燃料供給状態認識部が前記気体燃料供給状態になったと認識したときに、前記切替後開度として、前記燃料切替状態から連続して前記第二流量の水が前記液体燃料流路に供給されるよう、前記切替中開度と同じ開度である水置換開度を前記水調節弁に指示し、前記水置換開度を前記水調節弁に指示した後、前記切替後開度として、前記第三流量の水が前記液体燃料流路に供給されるようクリーニング開度を前記水調節弁に指示してもよい。
 また、以上のいずれかの前記燃料流路のパージ装置において、前記水パージ制御部は、前記切替後開度として、間欠的に前記液体燃料流路に水が供給される間欠パージ開度を前記水調節弁に指示してもよい。
 前記クリーニング開度を定める前記燃料流路のパージ装置において、前記水パージ制御部は、前記クリーニング開度を前記水調節弁に指示した後、前記切替後開度として、間欠的に前記液体燃料流路に水が供給される間欠パージ開度を前記水調節弁に指示してもよい。
 前記クリーニング開度を定める、以上のいずれかの前記燃料流路のパージ装置において、前記水パージ制御部は、前記液体燃料流路に水を供給している際の流量が前記第三流量になる前記間欠パージ開度を前記水調節弁に指示してもよい。
 以上のいずれかの前記燃料流路のパージ装置において、前記燃料供給状態認識部は、前記液体燃料供給状態から前記燃料切替状態に切り替わるタイミングを事前に認識し、前記水パージ制御部は、前記燃料切替状態になった時点で前記液体燃料流路に供給される水の流量が前記第二流量になるよう、前記燃料供給状態認識部が前記タイミングを事前に認識すると、前記液体燃料流路に供給する水の流量が徐々に少なくなる前記切替前開度を前記水調節弁に指示してもよい。
 以上のいずれかの前記燃料流路のパージ装置において、前記液体燃料流路に空気を送る空気ラインと、前記空気ラインを流れる空気の圧力を調節する空気調節弁と、を備え、前記制御装置は、前記空気調節弁の開度を制御する空気パージ制御部を有し、前記水パージ制御部は、前記水調節弁に対して前記切替後開度を指示した後、弁閉を指示し、前記空気パージ制御部は、前記気体燃料供給状態で前記水調節弁が閉状態のとき、前記空気を前記液体燃料流路に供給する空気パージ開度を前記空気調節弁に指示してもよい。
 前記空気パージ制御部を有する前記燃料流路のパージ装置において、前記空気パージ制御部は、第一圧力の空気を前記液体燃料流路に供給する低圧パージ開度を前記空気パージ開度として前記空気調節弁に指示し、前記低圧パージ開度を指示した後に、前記第一圧力よりも高い第二圧力の空気を前記液体燃料流路に供給する高圧パージ開度を前記空気パージ開度として前記空気調節弁に指示してもよい。
 前記空気パージ制御部を有する、以上のいずれかの前記燃料流路のパージ装置において、前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、前記第一ノズルの前記液体燃料流路に空気を送る前記空気ラインである第一空気ラインの他に、前記第二ノズルの前記液体燃料流路に空気を送る第二空気ラインと、前記第二空気ラインを流れる空気の圧力を調節する第二空気調節弁と、を備え、前記燃料供給状態認識部は、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記第二ノズルに供給されている気体燃料供給状態を認識し、前記空気パージ制御部は、前記第一ノズル及び前記第二ノズルがいずれも前記気体燃料供給状態であり、前記水パージ制御部が前記切替後開度を指示している最中に、前記第二ノズルの前記液体燃料流路に空気が供給される空気パージ開度を前記第二空気調節弁に指示してもよい。
 前記第二ノズルを有する燃焼器における、前記燃料流路のパージ装置において、前記水パージ制御部が前記水調節弁に対して前記切替後開度を指示してから、所定時間経過後に前記第二空気調節弁の前記空気パージ開度を前記第二空気調節弁に指示してもよい。
 前記第二ノズルを有する燃焼器における、以上のいずれかの前記燃料流路のパージ装置において、前記空気パージ制御部は、前記第二空気調節弁の前記空気パージ開度として、第三圧力の空気が前記第二ノズルの前記液体燃料流路に供給される低圧パージ開度を前記第二空気調節弁に指示し、前記第二空気調節弁に前記低圧パージ開度を指示した後、前記第二空気調節弁の前記空気パージ開度として、前記第三圧力よりも高い第四圧力の空気が前記第二ノズルの前記液体燃料流路に供給される高圧パージ開度を前記第二空気調節弁に指示してもよい。
 前記第二ノズルを有する燃焼器における、以上のいずれかの前記燃料流路のパージ装置において、前記第二ノズルは、前記第二ノズルから噴射した燃料を拡散燃焼させるノズルであり、前記空気パージ制御部は、前記空気パージ開度である第一空気パージ開度を前記第二空気調節弁に指示した後、前記第一空気パージ開度で前記第二ノズルの前記液体燃料流路に供給される空気の圧力より低い圧力の空気が前記第二ノズルの前記液体燃料流路に供給される第二空気パージ開度を指示してもよい。
 上記問題点を解決するための発明に係る一態様としてのガスタービン設備は、
 以上のいずれかの前記燃料流路のパージ装置と、前記燃焼器と、前記燃焼器で生成された燃焼ガスにより駆動するタービンと、を備える。
 本願の発明に係る一態様では、液体燃料から気体燃料への切替過程における燃料の安定燃焼を確保しつつ、液体燃料のコーキングを抑えることができる。
本発明に係る一実施形態におけるガスタービンの要部を切り欠いた全体側面図である。 本発明に係る一実施形態における燃料噴射器の断面図である。 本発明に係る一実施形態におけるパージ装置の構成を示す説明図である。 本発明に係る一実施形態における各弁の動作タイミングを示すタイミングチャートである。
 以下、本発明に係るガスタービン設備の一実施形態について、図面を参照して詳細に説明する。
 本実施形態のガスタービン設備は、図1に示すように、ガスタービン10を備えている。このガスタービン10には、図示されていない発電機が接続されている。
 ガスタービン10は、外気を圧縮して圧縮空気を生成する圧縮機20と、燃料を圧縮空気中で燃焼させ燃焼ガスを生成する複数の燃焼器40と、燃焼ガスにより駆動するタービン30と、を備えている。
 圧縮機20は、回転軸線Arを中心として回転する圧縮機ロータ21と、圧縮機ロータ21を回転可能に覆う圧縮機ケーシング25と、を有する。タービン30は、回転軸線Arを中心として回転するタービンロータ31と、タービンロータ31を回転可能に覆うタービンケーシング35と、を有する。タービンケーシング35の内周側とタービンロータ31の外周側との間は、燃焼器40からの燃焼ガスが流れる燃焼ガス流路39を形成する。圧縮機ロータ21とタービンロータ31とは、同一回転軸線Ar上に位置し、互いに連結されてガスタービンロータ11を成している。このガスタービンロータ11には、前述した発電機の発電機ロータが連結されている。圧縮機ケーシング25とタービンケーシング35とは、互いに連結されてガスタービンケーシング15を成す。
 複数の燃焼器40は、回転軸線Arを中心として周方向Dcに等間隔に並んでタービンケーシング35に固定されている。燃焼器40は、燃料が燃焼する筒61と、この筒61内に燃料を噴射する燃料噴射器41と、を有する。筒61は、両端が開口しており、一方の開口端に燃料噴射器41の一部が挿入され、他方の開口端にタービン30の燃焼ガス流路39が接続されている。
 燃料噴射器41は、図2に示すように、燃焼器軸線Ac上に配置されているパイロットバーナ42と、燃焼器軸線Acを中心とする周方向に等間隔で配置されている複数のメインバーナ52と、タービンケーシング35に固定されているノズル基台62と、を有する。なお、以下の説明の都合上、燃焼器軸線Acが延びる方向を燃焼器軸線方向とし、この燃焼器軸線方向で、一方側を先端側、他方側を基端側とする。
 パイロットバーナ42は、燃焼器軸線方向に長いパイロットノズル(第二ノズル)43と、パイロットノズル43の先端側の外周を囲む筒状のパイロット空気用筒48と、を有する。パイロット空気用筒48の先端側は、先端側に向かうに連れて次第に拡径されたパイロットコーンを成している。パイロットノズル43は、その基端側がノズル基台62を貫通した状態でノズル基台62に固定されている。パイロットノズル43には、天然ガス等の気体燃料Fgpが流れノズル先端部で開口45している気体燃料流路44と、軽油等の液体燃料Fopが流れノズル先端部で開口47している液体燃料流路46とが形成されている。パイロットノズル43の基端部には、気体燃料流路44と連通する気体燃料受入管65と、液体燃料流路46と連通する液体燃料受入管66とが接続されている。気体燃料受入管65には、後述のパイロット気体燃料分岐ライン278が接続され、液体燃料受入管66には、後述のパイロット液体燃料分岐ライン258が接続されている。
 メインバーナ52は、燃焼器軸線方向に長いメインノズル53と、メインノズル53の外周を囲む筒状のメイン空気用筒58と、を有する。メインノズル53は、その基端がノズル基台62に固定されている。メインノズル53には、気体燃料Fgmが流れノズル先端部で開口55している気体燃料流路54と、液体燃料Fomが流れノズル先端部で開口57している液体燃料流路56とが形成されている。ノズル基台62には、メインノズル53の気体燃料流路54と連通する気体燃料流路63と、メインノズル53の液体燃料流路56と連通する液体燃料流路64とが形成されている。このノズル基台62には、ノズル基台62に形成されている気体燃料流路63と連通する気体燃料受入管67と、ノズル基台62に形成されている液体燃料流路64と連通する液体燃料受入管68とが接続されている。気体燃料受入管67には、後述のメイン気体燃料分岐ライン279が接続され、液体燃料受入管68には、後述のメイン液体燃料分岐ライン259が接続されている。
 パイロット空気用筒48の内周側は、圧縮機20からの圧縮空気が流れるパイロット空気流路49を成している。パイロットノズル43から噴射された液体燃料Fop又は気体燃料Fgpは、このパイロット空気流路49を通過した圧縮空気中で燃焼(拡散燃焼)して、拡散火炎を形成する。
 メイン空気用筒58の内周側は、圧縮機20からの圧縮空気が流れるメイン空気流路59を成している。このメイン空気流路59を流れる圧縮空気には、このメイン空気流路59内に配置されているメインノズル53から液体燃料Fom又は気体燃料Fgmが噴射される。このため、メイン空気流路59内でメインノズル53の先端部よりも下流側には、圧縮空気と液体燃料Fom又は気体燃料Fgmとが混ざり合った予混合気体が流れる。この予混合気体は、メイン空気流路59から流出すると燃焼(予混合燃焼)して、予混合火炎を形成する。前述の拡散火炎は、この予混合火炎を保炎する役目を担っている。
 ガスタービン設備は、以上で説明したガスタービン10の他に、図3に示すように、複数の燃焼器40に液体燃料Foを供給する液体燃料供給装置250と、複数の燃焼器40に気体燃料Fgを供給する気体燃料供給装置270と、燃焼器40のメインノズル(第一ノズル)53における液体燃料流路56に水Wを供給する水パージ装置210と、燃焼器40のメインノズル(第一ノズル)53及びパイロットノズル(第二ノズル)43における液体燃料流路56,46に空気Aを供給する空気パージ装置230と、これらを制御する制御装置100と、を備えている。
 液体燃料供給装置250は、液体燃料供給源251に接続されている液体燃料メインライン252と、パイロット液体燃料ライン253と、メイン液体燃料ライン254と、パイロット液体燃料分配器256と、メイン液体燃料分配器257と、複数のパイロット液体燃料分岐ライン258と、複数のメイン液体燃料分岐ライン259と、を有する。パイロット液体燃料ライン253及びメイン液体燃料ライン254は、いずれも、液体燃料メインライン252から分岐したラインである。パイロット液体燃料ライン253には、パイロット液体燃料分配器256が接続されている。複数のパイロット液体燃料分岐ライン258は、複数の燃焼器40のパイロットノズル43毎に設けられ、それぞれがパイロット液体燃料分配器256に接続されている。メイン液体燃料ライン254には、メイン液体燃料分配器257が接続されている。複数のメイン液体燃料分岐ライン259は、複数の燃焼器40のメインノズル53毎に設けられ、それぞれがメイン液体燃料分配器257に接続されている。
 液体燃料メインライン252には、ここを流れる液体燃料Foの流量を調節する液体燃料メイン弁262が設けられている。パイロット液体燃料ライン253には、ここを流れる液体燃料Fopの流量を調節するパイロット液体燃料弁263が設けられている。複数のパイロット液体燃料分岐ライン258には、それぞれ、ここを流れる液体燃料Fopの流量を調節するパイロット液体燃料分岐弁268が設けられている。メイン液体燃料ライン254には、ここを流れる液体燃料Fomの流量を調節するメイン液体燃料弁264が設けられている。複数のメイン液体燃料分岐ライン259には、それぞれ、ここを流れる液体燃料Fomの流量を調節するメイン液体燃料分岐弁269が設けられている。
 気体燃料供給装置270は、気体燃料供給源271に接続されている気体燃料メインライン272と、パイロット気体燃料ライン273と、メイン気体燃料ライン274と、パイロット気体燃料分配器276と、メイン気体燃料分配器277と、複数のパイロット気体燃料分岐ライン278と、複数のメイン気体燃料分岐ライン279と、を有する。パイロット気体燃料ライン273及びメイン気体燃料ライン274は、いずれも、気体燃料メインライン272から分岐したラインである。パイロット気体燃料ライン273には、パイロット気体燃料分配器276が接続されている。複数のパイロット気体燃料分岐ライン278は、複数の燃焼器40のパイロットノズル43毎に設けられ、それぞれがパイロット気体燃料分配器276に接続されている。メイン気体燃料ライン274には、メイン気体燃料分配器277が接続されている。複数のメイン気体燃料分岐ライン279は、複数の燃焼器40のメインノズル53毎に設けられ、それぞれがメイン気体燃料分配器277に接続されている。
 気体燃料メインライン272には、ここを流れる液体燃料Fgの流量を調節する気体燃料メイン弁282が設けられている。パイロット気体燃料ライン273には、ここを流れる気体燃料Fgpの流量を調節するパイロット気体燃料弁283が設けられている。複数のパイロット気体燃料分岐ライン278には、それぞれ、ここを流れる液体燃料Fgpの流量を調節するパイロット気体燃料分岐弁288が設けられている。メイン気体燃料ライン274には、ここを流れる気体燃料Fgmの流量を調節するメイン気体燃料弁284が設けられている。複数のメイン気体燃料分岐ライン279には、それぞれ、ここを流れる液体燃料Fgmの流量を調節するメイン気体燃料分岐弁289が設けられている。
 水パージ装置210は、水供給源211と、水メインライン212と、水分配器216と、複数の水分岐ライン218と、を有する。水供給源211は、水を昇圧して水メインライン212に送り込むポンプを有する。水メインライン212は、この水供給源211に接続されている。水分配器216は、水メインライン212に接続されている。複数の水分岐ライン218は、複数のメイン液体燃料分岐ライン259毎に設けられ、一端がメイン液体燃料分岐ライン259に接続され、他端が水分配器216に接続されている。水メインライン212には、ここを流れる水Wの流量を調節する水調節弁213が設けられている。
 空気パージ装置230は、空気供給源231と、空気メインライン232と、パイロット空気ライン233と、メイン空気ライン234と、を有する。空気供給源231は、空気を昇圧して空気メインライン232に送り込むパージ用コンプレッサを有する。空気メインライン232は、この空気供給源231に接続されている。パイロット空気ライン233及びメイン空気ライン234は、いずれも、空気メインライン232から分岐したラインである。パイロット空気ライン233は、パイロット液体燃料ライン253に接続されている。メイン空気ライン234は、水メインライン212に接続されている。空気メインライン232には、ここを流れる空気Aの流量を調節する空気メイン弁237が設けられている。パイロット空気ライン233には、ここを流れる空気Apの流量を調節するパイロット空気調節弁238が設けられている。メイン空気ライン234には、ここを流れる空気Amの流量を調節するメイン空気調節弁239が設けられている。
 制御装置100は、燃焼器40に供給される気体燃料Fgを制御する気体燃料制御部101と、燃焼器40に供給される液体燃料Foを制御する液体燃料制御部102と、燃焼器40への燃料供給状態を認識する燃料供給状態認識部105と、燃料供給状態に応じて水調節弁213の開度を制御する水パージ制御部106と、燃料供給状態に応じてパイロット空気調節弁238及びメイン空気調節弁239の開度を制御する空気パージ制御部107と、を有する。なお、この制御装置100は、コンピュータで構成されている。
 本実施形態のパージ装置は、水パージ装置210と、空気パージ装置230と、制御装置100の燃料供給状態認識部105、水パージ制御部106及び空気パージ制御部107と、を有して構成される。
 次に、制御装置100の動作について説明しつつ、この制御装置100の動作に応じた各種装置等の動作について説明する。
 制御装置100の気体燃料制御部101及び液体燃料制御部102は、ガスタービン10の運転中、ガスタービン10の燃焼器40に供給する燃料の流量等を制御する。
 具体的に、気体燃料制御部101は、まず、出力計111で検知された発電機出力と上位装置からの負荷指令等とに応じて、気体燃料Fgの総流量を求める。気体燃料制御部101は、気体燃料Fgの総流量又はタービン30の入口温度等に応じて、気体燃料メインライン272から分岐しているパイロット気体燃料ライン273、メイン気体燃料ライン274を流れる気体燃料Fgの流量比を求める。また、液体燃料制御部102は、出力計111で検知された発電機出力と上位装置からの負荷指令等とに応じて、液体燃料Foの総流量を求める。液体燃料制御部102は、液体燃料Foの総流量又はタービン30の入口温度等に応じて、液体燃料メインライン252から分岐しているパイロット液体燃料ライン253、メイン液体燃料ライン254を流れる液体燃料Foの流量比を求める。
 気体燃料制御部101は、気体燃料メイン弁282、パイロット気体燃料弁283、メイン気体燃料弁284に対して、開度指令を送る。気体燃料制御部101は、上位装置からの気体燃料焚きを示す燃料切替指令を受けると、気体燃料Fgの総流量に応じた開度指令を気体燃料メイン弁282に送る。さらに、気体燃料制御部101は、気体燃料Fgの総流量及び前述の流量比で定まる各気体燃料ライン273,274の流量に応じた開度指令を各気体燃料弁283,284に送る。この結果、パイロット気体燃料ライン273及びメイン気体燃料ライン274のそれぞれに、所定の流量の気体燃料Fgが流れる。パイロット気体燃料ライン273を流れた気体燃料Fgpは、パイロット気体燃料分配器276、パイロット気体燃料分岐ライン278を経て、各燃焼器40のパイロットノズル43の気体燃料流路44に流れ込み、パイロットノズル43から筒61内に噴射される。メイン気体燃料ライン274を流れた気体燃料Fgmは、メイン気体燃料分配器277、メイン気体燃料分岐ライン279を経て、各燃焼器40のメインノズル53の気体燃料流路54に流れ込み、メインノズル53から筒61内に噴射される。
 一方、液体燃料制御部102は、上位装置からの気体燃料焚きを示す燃料切替指令を受けると、液体燃料メイン弁262、パイロット液体燃料弁263、メイン液体燃料弁264に対して、開度「0」を示す開度指令、つまり弁閉指令を送る。この結果、各燃焼器40のパイロットノズル43及びメインノズル53から液体燃料Foが噴射されなくなる。
 液体燃料制御部102は、上位装置からの液体燃料焚きを示す燃料切替指令を受けると、液体燃料Foの総流量に応じた開度指令を液体燃料メイン弁262に送る。さらに、液体燃料制御部102は、液体燃料Fgの総流量及び前述の流量比で定まる各液体燃料ライン253,254の流量に応じた開度指令を各気体燃料弁263,264に送る。この結果、パイロット液体燃料ライン253及びメイン液体燃料ライン254のそれぞれに、所定の流量の液体燃料Foが流れる。パイロット液体燃料ライン253を流れた気体燃料Fopは、パイロット液体燃料分配器256、パイロット液体燃料分岐ライン258を経て、各燃焼器40のパイロットノズル43の液体燃料流路46に流れ込み、パイロットノズル43から筒61内に噴射される。メイン液体燃料ライン254を流れた液体燃料Fomは、メイン液体燃料分配器257、メイン液体燃料分岐ライン259を経て、各燃焼器40のメインノズル53の液体燃料流路56に流れ込み、メインノズル53から筒61内に噴射される。
 一方、気体燃料制御部101は、上位装置からの液体燃料焚きを示す燃料切替指令を受けると、気体燃料メイン弁282、パイロット気体燃料弁283、メイン気体燃料弁284に対して、開度「0」を示す開度指令、つまり弁閉指令を送る。この結果、各燃焼器40のパイロットノズル43及びメインノズル53から気体燃料Fgが噴射されなくなる。
 燃料供給状態認識部105は、気体燃料Fgと液体燃料Foとのうち液体燃料Foのみがメインノズル53に供給されている液体燃料供給状態Moと、気体燃料Fgのみがメインノズル53に供給されている気体燃料供給状態Mgと、液体燃料供給状態Moから気体燃料供給状態Mgへの遷移状態である燃料切替状態Mcと、を認識する。さらに、燃料供給状態認識部105は、気体燃料Fgと液体燃料Foとのうち液体燃料Foのみがパイロットノズル43に供給されている液体燃料供給状態Poと、気体燃料Fgのみがパイロットノズル43に供給されている気体燃料供給状態Pgと、液体燃料供給状態Poから気体燃料供給状態Pgへの遷移状態である燃料切替状態Pcと、を認識する。燃料供給状態認識部105は、気体燃料制御部101及び液体燃料制御部102から出力される指令等に応じて、これらの状態を認識する。
 水パージ制御部106は、燃料供給状態認識部105により燃料供給状態が液体燃料供給状態Moであると認識されると、メインノズル53の液体燃料流路56に第一流量w1の水Wが供給される切替前開度を水調節弁213に指示する。この結果、水供給源211からの水Wが、水メインライン212、水分配器216及び水分岐ライン218を介して、メイン液体燃料分岐ライン259に流れ込む。メイン液体燃料分岐ライン259に流れ込んだ水Wは、ここを流れる液体燃料Fomと共に、各燃焼器40のメインノズル53の液体燃料流路56に流れ込み、メインノズル53から筒61内に噴射される。
 液体燃料供給状態Moの際に、メインノズル53の液体燃料流路56から筒61内に噴射される水Wは、同じくメインノズル53の液体燃料流路56から筒61内に噴射される液体燃料Fomを拡散させる。また、この水Wは、メインノズル53から噴射された液体燃料Fomの燃焼で形成される予混合火炎の温度を低下させて、筒61のメタル温度の低減、及びサーマルNOxの低減に寄与する。さらに、この水Wは、蒸気になってタービン30の燃焼ガス流路39に流れ込むため、ガスタービン出力の向上にも寄与する。
 次に、図4に示すタイミングチャートに従って、液体燃料焚きから気体燃料焚きへの燃料切替過程の各弁の動作について説明する。
 液体燃料焚きの際、メイン液体燃料弁264及びパイロット液体燃料弁263は、それぞれ、液体燃料制御部102からの指示に応じた開度で開いている。このため、各燃焼器40のメインノズル53及びパイロットノズル43からは、液体燃料Foが噴射されている。一方、メイン気体燃料弁284は及びパイロット気体燃料弁283は、それぞれ、閉じている。このため、各燃焼器40のメインノズル53及びパイロットノズル43から、気体燃料Fgは噴射されない。すなわち、メインノズル53及びパイロットノズル43は、いずれも、液体燃料供給状態Mo,Poになっている。
 この際、水パージ装置210の水調節弁213は、前述したように、メインノズル53の液体燃料流路56に第一流量w1の水Wが供給される切替前開度になっている(S1:水供給工程)。このため、メインノズル53が液体燃料供給状態Moの際、水供給源211からの水Wが、水メインライン212、水分配器216を介して、メイン液体燃料分岐ライン259に流れ込む。メイン液体燃料分岐ライン259に流れ込んだ水は、各メインノズル53の液体燃料流路56に流れ込み、メインノズル53から筒61内に噴射される。本実施形態において、第一流量w1は、このメインノズル53の液体燃料流路56に供給される液体燃料Fomの流量に対して一定の割合の流量である。このため、負荷指令が変化して、メインノズル53の液体燃料流路56に供給される液体燃料Fomの流量が変化すると、この変化に伴って、第一流量w1も変化する。なお、水供給工程(S1)中、この第一流量w1は一定の流量であってもよい。
 外部から制御装置100に燃料切替指令が入力すると(t1)、液体燃料制御部102からの指示によりパイロット液体燃料弁263が閉じ始める一方で、気体燃料制御部101からの指示によりパイロット気体燃料弁283が開き始める。このため、パイロットノズル43から噴射される液体燃料Fopが減少し始める一方で、パイロットノズル43から気体燃料Fgpが噴射され始める。すなわち、各燃焼器40のパイロットノズル43は、液体燃料供給状態Poから燃料切替状態Pcになる。
 その後(t3)、パイロット液体燃料弁263が完全に閉となり、パイロット気体燃料弁283が気体燃料制御部101からの指示応じた開度になると、パイロットノズル43から液体燃料Fopが噴射されなくなる一方で、パイロットノズル43から気体燃料Fgpが所定の流量で噴射されるようになる。すなわち、各燃焼器40のパイロットノズル43は、燃料切替状態Pcから気体燃料供給状態Pgになる。
 各燃焼器40のパイロットノズル43が気体燃料供給状態Pgになると(t3)、液体燃料制御部102からの指示によりメイン液体燃料弁264が閉じ始める一方で、気体燃料制御部101からの指示によりメイン気体燃料弁284が開き始める。このため、メインノズル53から噴射される液体燃料Fomが減少し始める一方で、メインノズル53から気体燃料Fgmが噴射され始める。すなわち、各燃焼器40のメインノズル53は、液体燃料供給状態Moから燃料切替状態Mcになる。
 その後(t4)、メイン液体燃料弁264が完全に閉となり、メイン気体燃料弁284が気体燃料制御部101からの指示応じた開度になると、メインノズル53から液体燃料Fomが噴射されなくなる一方で、メインノズル53から気体燃料Fgmが所定の流量で噴射されるようになる。すなわち、各燃焼器40のメインノズル53は、燃料切替状態Mcから気体燃料供給状態Mgになる。
 制御装置100の燃料供給状態認識部105は、メインノズル53が燃料切替状態Mcに切り替わるタイミング(t3)を事前に認識し、メインノズル53が燃料切替状態Mcになった時点(t3)で、メインノズル53の液体燃料流路56に第二流量w2の水が流れるよう、切替前開度を水調節弁213に指示する。すなわち、メインノズル53が燃料切替状態Mcになる時点(t3)より前の時点(t2)から、切替前開度は、メインノズル53の液体燃料流路56に第一流量w1の水Wが流れる開度から、第二流量w2の水Wが流れる開度に徐々に変化する。燃料供給状態認識部105は、外部から燃料切替指令を受けてから(t1)、メインノズル53が燃料切替状態Mcに切り替わるまでの時間を予め保持しており、これにより、メインノズル53が燃料切替状態Mcに切り替わるタイミング(t3)を事前に認識する。
 水パージ制御部106は、燃料供給状態認識部105によりメインノズル53が燃料切替状態Mcであると認識されると(t3)、メインノズル53の液体燃料流路56に前述の第二流量w2の水が流れる切替中開度を水調節弁213に指示する(S2:切替中水パージ工程)。この第二流量w2は、メインノズル53が燃料切替状態Mc中、一定である。前述の第一流路w1は、前述したように、液体燃料Fomの流量に応じて変動するが、いずれの場合でも、第二流量w2より多い。言い換えると、第二流量w2は、第一流量w1よりも少ない。
 水パージ制御部106は、燃料供給状態認識部105によりメインノズル53が気体燃料供給状態Mgであると認識されると(t4)、切替後開度を水調節弁213に指示する(S3:切替後水パージ工程)。水調節弁213には、切替後開度として、メインノズル53が気体燃料供給状態Mgであると認識されてから(t4)の所定時間、メインノズル53の液体燃料流路56に第二流量w2の水Wが流れる開度、つまり切替中開度と同じ開度である水置換開度が指示される(S4:水置換工程)。そして、所定時間経過後(t5)、水調節弁213には、切替後開度として、メインノズル53の液体燃料流路56に第三流量w3の水Wが流れる開度であるクリーニング開度が所定時間指示される(S5:クリーニング工程)。この第三流量w3は、この所定時間中一定である。前述の第一流路w1は、前述したように、液体燃料Fomの流量に応じて変動するが、いずれの場合でも、第三流量w3より多い。また、第三流量w3は、第二流量w2よりも多い、よって、第三流量w3は、一流量w1よりも少なく、第二流量w2よりも多い。
 水調節弁213には、メインノズル53の液体燃料流路56に第三流量w3の水Wが流れるクリーニング開度が所定時間指示された後(t8)、切替後開度として、開度「0」が指示され、その後(t10)、切替後開度として、メインノズル53の液体燃料流路56に第三流量w3の水Wが流れる開度が所定時間指示される。以降、切替後開度として、開度「0」と、メインノズル53の液体燃料流路56に第三流量w3の水Wが流れる開度とが繰り返される間欠パージ開度が、水調節弁213に指示される。よって、メインノズル53の液体燃料流路56には、第三流量w3の水Wが間欠的に供給される(S6:間欠パージ工程)。
 以上で、切替後水パージ工程(S3)が終了する。この切替後水パージ工程(S3)が終了すると、その旨が水パージ制御部106から空気パージ制御部107に通知される。空気パージ制御部107は、この通知を受けた後(t13)、メインノズル53の液体燃料流路56に空気Aが流れる空気パージ開度をメイン空気調節弁239に指示する(S7:空気パージ工程)。この結果、空気供給源231からの空気Aがメイン空気ライン234から水メインライン212に流れ込む。水メインライン212に流れ込んだ空気Aは、水分配器216、メイン液体燃料分岐ライン259を介して、各メインノズル53の液体燃料流路56に流れ込み、メインノズル53から筒61内に噴射される。
 メイン空気調節弁239には、空気パージ開度として、まず、第一圧力a1の空気Aがメインノズル53の液体燃料流路56に供給される低圧パージ開度が指示される(S8:低圧パージ工程)。そして、所定時間経過後(t14)、メイン空気調節弁239には、空気パージ開度として、第一圧力a1よりも高い第二圧力a2の空気Aがメインノズル53の液体燃料流路56に供給される高圧パージ開度が所定時間指示される(S9:高圧パージ工程)。
 以上で、メインノズル53の液体燃料流路56に対するパージ処理が終了する。
 空気パージ制御部107は、パイロットノズル43及びメインノズル53が気体燃料供給状態Pg,Mgになってから(t4)、所定時間経過後、パイロットノズル43の液体燃料流路46に空気Aが流れる空気パージ開度をパイロット空気調節弁238に指示する(t5)。言い換えると、空気パージ制御部107は、メインノズル53に対する切替後水パージ工程(S3)が開始されてから(t4)、所定時間経過後、第一空気パージ開度をパイロット空気調節弁238に指示する(t5)。この結果、空気供給源231からの空気Aがパイロット空気ライン233からパイロット液体燃料ライン253に流れ込む。パイロット液体燃料ライン253に流れ込んだ空気Aは、パイロット液体燃料分配器256、パイロット液体燃料分岐ライン258を介して、各パイロットノズル43の液体燃料流路46に流れ込み、パイロットノズル43から筒61内に噴射される(S11:第一空気パージ工程)。
 パイロット空気調節弁238には、第一空気パージ開度として、まず、第三圧力a3の空気Aがパイロットノズル43の液体燃料流路46に供給される低圧パージ開度が指示される(S12:低圧パージ工程)。そして、所定時間経過後(t6)、パイロット空気調節弁238には、第一空気パージ開度として、第三圧力a3よりも高い第四圧力a4の空気Aがパイロットノズル43の液体燃料流路46に供給される高圧パージ開度が所定時間指示される(S13:高圧パージ工程)。
 第三圧力a3の空気Aがパイロットノズル43の液体燃料流路46に供給される時点(t5)は、メインノズル53に対してクリーニング工程(S5)が開始される時点と一致する。また、パイロットノズル43に対する高圧パージ工程(S13)は、メインノズル53に対するクリーニング工程(S5)が終了する時点(t8)より前に、終了する(t7)。以上で、第一空気パージ工程(S11)が終了する。
 メインノズル53に対するクリーニング工程(S5)が終了した時点(t8)の後で、メインノズル53に対する間欠パージ工程(S6)における最初の水供給が開始する時点(t10)の前の時点(t9)になると、空気パージ制御部107は、第二空気パージ開度をパイロット空気調節弁238に指示する(S14:第二空気パージ工程)。空気パージ制御部107は、メインノズル53に対する間欠パージ工程(S6)が終了した時点(t11)の後で、メインノズル53に対する空気パージ工程(S7)が開始する時点(t13)の前の時点(t12)になると、開度「0」をパイロット空気調節弁238に指示し、第二空気パージ工程(S14)を終了させる。第二空気パージ開度は、第二空気パージ工程(S14)中、一定で、第一空気パージ開度のいずれの時点の開度よりも小さい。よって、第二空気パージ工程(S14)中、パイロットノズル43の液体燃料流路46に供給される空気の圧力は、第一空気パージ工程(S11)中の第三圧力a3及び第四圧力a4よりも低い。
 空気パージ制御部107は、メインノズル53に対する空気パージ工程(S7)が終了した時点(t15)の後の時点(t16)になると、再び、パイロット空気調節弁238に第二空気パージ開度を指示する(S15:第二空気パージ工程)。以降、パイロットノズル43が気体燃料供給状態Pg中、パイロット空気調節弁238は、第二空気パージ開度を維持する。
 本実施形態のように、軽油等の液体燃料Foと天然ガス等の気体燃料Fgを選択的に噴射するノズル43,53を有する燃焼器40では、使用燃料を液体燃料Foから気体燃料Fgに切り替えた後、ノズル43,53の液体燃料流路46,56に液体燃料Foが残っていると、この液体燃料Foが高温環境下でコーキングすることがある。
 そこで、本実施形態では、メインノズル53が液体燃料供給状態Moから気体燃料供給状態Mgになると、切替後水パージ工程(S3)を実行し、メインノズル53の液体燃料流路56内を水で洗浄する。切替後水パージ工程(S3)のクリーニング工程(S5)では、気体燃料供給状態Mgの際に、メインノズル53から水Wを噴射しても、気体燃料Fgの燃焼安定性が損なわれない範囲内での最大流量若しくは最大流量に近い第三流量w3の水をメインノズル53の液体燃料流路56に供給し、メインノズル53の液体燃料流路56内の洗浄性を高める。
 しかしながら、気体燃料供給状態Mgになった直後(t4)から、メインノズル53の液体燃料流路56内に多くの流量の水を供給すると、メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内に溜まっていた液体燃料Fomが大量にメインノズル53から噴射する。このため、筒61内で燃焼する燃料の量が急激に増加し、燃焼量が急激に増加する上に燃焼安定性が損なわれる。そこで、本実施形態では、気体燃料供給状態Mgになった直後(t4)から、メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内に溜まっていた液体燃料Fomを置換し得る量の水を供給し終わるまでの所定時間、第三流量w3よりも少ない第二流量w2の水Wをメインノズル53の液体燃料流路56内に供給する(S4:水置換工程)。
 メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内に溜まっていた液体燃料Fomがほぼ水Wに置換されると、前述したように、第二流量よりも多い第三流量の水をメインノズル53の液体燃料流路56に供給し、ここに僅かに残っている液体燃料Fomの除去を促進する。
 メインノズル53の液体燃料流路56の形状によっては、このメインノズル53に対してクリーニング工程(S5)を実行した後も、メインノズル53の液体燃料流路56内の液体燃料Fomを十分に除去できない場合がある。例えば、メインノズル53の液体燃料流路56に鋭角な部分が存在する場合や、なんらかの隙間等が存在する場合、メインノズル53に対してクリーニング工程(S5)を実行した後も、メインノズル53の液体燃料流路56内の液体燃料Fomを十分に除去できないことが多い。そこで、本実施形態では、クリーニング工程(S5)後、第三流量w3の水Wを間欠的に液体燃料流路56に流す間欠パージ工程(S6)を実行する。このように、水Wを間欠的に液体燃料流路56に流すことで、液体燃料流路56に水が流れていない間に、液体燃料流路56の鋭角な部分や隙間等から液体燃料Fomが流れ出し、その後に、液体燃料流路56に供給される水により、この液体燃料Fomが除去される。
 この間欠パージ工程(S6)で、水Wを間欠的に流す回数は、例えば、5回程度である。なお、水Wを間欠的に流す回数が5回では、メインノズル53の液体燃料流路56内の液体燃料Fomを十分に除去できない場合には、例えば、この回数を10回にしてもよい。また、水Wを間欠的に流す回数が5回未満でも、メインノズル53の液体燃料流路56内の液体燃料Fomを十分に除去できる場合には、5回未満でもよい。さらに、クリーニング工程(S5)の実行で、メインノズル53の液体燃料流路56内の液体燃料Fomを十分に除去できる場合には、間欠パージ工程(S6)を省略してもよい。
 メインノズル53の液体燃料流路56内に水Wが残り、例えば、これが水滴として、高温を筒61に滴下すると、筒61が損傷するおそれがある。このため、本実施形態では、切替後水パージ工程(S3)後、メインノズル53の液体燃料流路56に空気Aを供給し、メインノズル53の液体燃料流路56から筒61内に水Wと共に空気Aを噴射する(S7:空気パージ工程)。
 空気パージ工程(S7)の開始時から高い圧力の空気Aを液体燃料流路56に供給すると、メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内に溜まっていた水Wが大量にメインノズル53から噴射する。このため、筒61内で噴射される水Wの量が急激に増加し、気体燃料Fgの燃焼安定性が損なわれる。そこで、本実施形態では、メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内に溜まっていた水Wを置換し得る量の空気Aを供給し終わるまでの所定時間、低圧の第一圧力a1の空気Aをメインノズル53の液体燃料流路56内に供給する(S8:低圧パージ工程)。その後、メインノズル53の液体燃料流路56内に僅かに残っている水Wを筒61内に噴射させてしまうために、高圧の第二圧力a2の空気Aをメインノズル53の液体燃料流路56内に供給する(S9:高圧パージ工程)。
 以上、本実施形態では、気体燃料供給状態Mgになると(t4)、水置換工程(S4)を実行してからクリーニング工程(S5)を実行するので、気体燃料Fgの燃焼安定性を確保しつつ、メインノズル53の液体燃料流路56の洗浄性を高めることができる。さらに、本実施形態では、クリーニング工程(S5)後に、間欠パージ工程(S7)を実行するので、メインノズル53の液体燃料流路56の洗浄性をより高めることができる。
 ところで、液体燃料Fomから気体燃料Fgmへの燃料切替状態Mcでは、メインノズル53の液体燃料流路56に流れる液体燃料Fomの流量が次第に少なくなるので、液体燃料流路56を流れる液体燃料Fomの流速が次第に低下する。特に、燃料切替状態Mcが気体燃料供給状態Mgに近づくと、液体燃料流路56を流れる液体燃料Fomの流速が著しく低くなる。このため、燃料切替状態Mcでも、液体燃料Fomが液体燃料流路56内でコーキングするおそれがある。
 本実施形態では、燃料切替状態Mcにおける液体燃料Fomのコーキングを抑制するため、この燃料切替状態Mcでも、メインノズル53の液体燃料流路56に水Wを供給する(S2:切替中水パージ工程)。燃料切替状態Mcでは、液体燃料Fo及び気体燃料Fgの燃焼が不安定になり易い。このため、この切替中水パージ工程(S2)では、液体燃料供給状態Moでの第一流量w1及びクリーニング工程(S5)での第三流量w3よりも少ない第二流量w2の水Wをメインノズル53の液体燃料流路56に供給する。
 従って、本実施形態では、燃料切替状態Mcでの液体燃料Fo及び気体燃料Fgの燃焼安定性を確保しつつ、燃料切替状態Mcでのコーキングを抑えることができる。
 また、本実施形態では、燃料切替状態Mcでも、メインノズル53の液体燃料流路56に水Wを供給するため、気体燃料供給状態Mgになった時点(t4)で、メイン液体燃料分岐ライン259やメインノズル53の液体燃料流路56内の液体燃料Fomがある程度水Wに置換している。このため、本実施形態では、後気体燃料供給状態Mgになった後の水置換工程(S4)を短時間で終わらせることができる。
 なお、本実施形態では、切替中水パージ工程(S2)で供給する水Wの流量も、置換工程(S4)で供給する水の流量も、第二流量w2であるが、これらの流量は同じ流量である必要性はない。但し、切替中水パージ工程(S2)で供給する水Wの流量と置換工程(S4)で供給する水の流量とを同じ流量にすることで、水調節弁213の制御を簡素化することができる。
 メインノズル53に対する水置換工程(S4)中、メインノズル53から筒61内に噴射される液体燃料Fomの流量が比較的多い。この水置換工程(S4)中に、パイロットノズル43からも液体燃料Fopを噴射すると、筒61内に噴射される液体燃料Foの流量が非常に多くなり、燃焼量が増加する上に燃焼安定性が損なわれる。このため、本実施形態では、パイロットノズル43が液体燃料供給状態Poから気体燃料供給状態Pgになり、且つメインノズル53に対する水置換工程(S4)の終了タイミングに合わせて、このパイロットノズル43に対する第一空気パージ工程(S11)を開始する。
 この第一空気パージ工程(S11)の開始時から高い圧力の空気Aをパイロットノズル43の液体燃料流路46に供給すると、パイロット液体燃料分岐ライン258やパイロットノズル43の液体燃料流路46内に溜まっていた液体燃料Fopが大量にパイロットノズル43から噴射する。そこで、本実施形態では、パイロット液体燃料分岐ライン258やパイロットノズル43の液体燃料流路46内に溜まっていた液体燃料Fopを置換し得る量の空気Aを供給し終わるまでの所定時間、低圧の第三圧力a3の空気Aをパイロットノズル43の液体燃料流路46内に供給する(S12:低圧パージ工程)。その後、パイロットノズル43の液体燃料流路46内に僅かに残っている液体燃料Fopを筒61内に噴射させてしまうために、高圧の第四圧力a4の空気Aをパイロットノズル43の液体燃料流路46内に供給する(S13:高圧パージ工程)。
 本実施形態では、この第一空気パージ工程(S11)が終了した後、前述の第二空気パージ工程(S14,15)を実行する。パイロットノズル43は、噴出した気体燃料Fgpを拡散燃焼させる。このため、パイロットノズル43の先端近傍に拡散火炎が形成される。このように、パイロットノズル43の先端近傍に拡散火炎が形成される状態では、この火炎が液体燃料流路46に逆流する可能性がある。そこで、本実施形態では、火炎の逆流を防ぐために、第二空気パージ工程(S14,15)で低圧の空気Aを液体燃料流路46に供給する。但し、本実施形態では、メインノズル53に対する空気パージ工程(S7)の実行中、パイロットノズル43に対する第二空気パージ工程(S14,15)を実行しない。これは、メインノズル53に対する空気パージ工程(S7)と、パイロットノズル43に対する第二空気パージ工程(S14,15)とを同時実行するだけの能力が、本実施形態の空気供給源231に備わっていないからである。言い換えると、本実施形態のように、パイロットノズル43とメインノズル53とで空気供給源231の使用タイミングをずらすことで、最小限の能力の空気供給源231を効率よく利用することができる。一方、空気供給源231の能力に余裕がある場合には、メインノズル53に対する空気パージ工程(S7)の実行中、パイロットノズル43に対する第二空気パージ工程(S14,15)を実行してもよい。さらに、S14の第二空気パージ工程とS15の第二空気パージ工程とを連続して行ってもよい。
 以上、本実施形態では、メインノズル53に対する切替後水パージ工程(S3)が終了する前、つまり、メインノズル53に対する切替後水パージ工程(S3)中に、パイロットノズル43に対する第一空気パージ工程(S11)を実行する。このため、本実施形態では、パイロットノズル43の液体燃料流路46内における液体燃料Fopのコーキングを抑制することができる。
 本発明に係る一態様によれば、液体燃料から気体燃料への切替過程における燃料の安定燃焼を確保しつつ、液体燃料のコーキングを抑えることができる。
 10:ガスタービン、11:ガスタービンロータ、15:ガスタービンケーシング、20:圧縮機、21:圧縮機ロータ、25:圧縮機ケーシング、30:タービン、31:タービンロータ、35:タービンケーシング、40:燃焼器、41:燃料噴射器、42:パイロットバーナ、43:パイロットノズル(第二ノズル)、44:気体燃料流路、46:液体燃料流路、52:メインバーナ、53:メインノズル(第一ノズル又は単にノズル)、54:気体燃料流路、56:液体燃料流路、61:筒、100:制御装置、101:気体燃料制御部、102:液体燃料制御部、105:燃料供給状態認識部、106:水パージ制御部、107:空気パージ制御部、210:水パージ装置、211:水供給源、212:水メインライン、213:水調節弁、230:空気パージ装置、231:空気供給源、232:空気メインライン、237:空気メイン弁、233:パイロット空気ライン、234:メイン空気ライン、238:パイロット空気調節弁、239:メイン空気調節弁、250:液体燃料供給装置、251:液体燃料供給源、252:液体燃料メインライン、253:パイロット液体燃料ライン、254:メイン液体燃料ライン、262:液体燃料メイン弁、263:パイロット液体燃料弁、264:メイン液体燃料弁、270:気体燃料供給装置、271:気体燃料供給源、272:気体燃料メインライン、273:パイロット気体燃料ライン、274:メイン気体燃料ライン、283:パイロット気体燃料弁、284:メイン気体燃料弁

Claims (20)

  1.  液体燃料と気体燃料とを選択的に噴射するノズルを有し、前記ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されている、燃焼器における燃料流路のパージ方法において、
     前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記ノズルに供給されている液体燃料供給状態のときに、前記液体燃料流路に水を供給する水供給工程と、
     前記液体燃料供給状態から、前記ノズルの前記液体燃料流路に供給される前記液体燃料が少なくなる一方で、前記ノズルの前記気体燃料流路に前記気体燃料が供給され始め、前記気体燃料流路に供給される前記気体燃料が多くなる燃料切替状態のときに、前記液体燃料流路に水を供給する切替中水パージ工程と、
     前記液体燃料が前記液体燃料流路に供給されなくなって前記燃料切替状態が終了し、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記ノズルに供給され始めてから、前記液体燃料流路に水を供給する切替後水パージ工程と、
     を実行し、
     前記切替中水パージ工程では、前記水供給工程で前記液体燃料流路に供給する水の流量である第一流量よりも少ない第二流量の水を前記液体燃料流路に供給し、前記切替後水パージ工程では、少なくとも一時的に前記第二流量よりも多い第三流量の水を前記液体燃料流路に供給する、
     燃料流路のパージ方法。
  2.  請求項1に記載の燃料流路のパージ方法において、
     前記第三流量は、前記第一流量よりも少ない、
     燃料流路のパージ方法。
  3.  請求項1又は2に記載の燃料流路のパージ方法において、
     前記切替後水パージ工程は、
     前記切替中水パージ工程から連続して前記第二流量の水を前記液体燃料流路に供給する水置換工程と、
     前記水置換工程後に前記第三流量の水を前記液体燃料流路に供給するクリーニング工程と、
     を含む、
     燃料流路のパージ方法。
  4.  請求項3に記載の燃料流路のパージ方法において、
     前記切替後水パージ工程は、前記クリーニング工程後に、水を間欠的に前記液体燃料流路に供給する間欠パージ工程を含み、
     前記間欠パージ工程では、前記第三流量の水を前記液体燃料流路に供給する、
     燃料流路のパージ方法。
  5.  請求項1から4のいずれか一項に記載の燃料流路のパージ方法において、
     前記水供給工程では、前記燃料切替状態になった時点で前記液体燃料流路に供給される水の流量が前記第二流量になるよう、前記燃料切替状態に至る前から、前記液体燃料流路に供給する水流量を徐々に少なくする、
     燃料流路のパージ方法。
  6.  請求項1から5のいずれか一項に記載の燃料流路のパージ方法において、
     前記切替後水パージ工程の終了後、空気を前記液体燃料流路に供給する空気パージ工程を実行し、
     前記空気パージ工程は、
     第一圧力の空気を前記液体燃料流路に供給する低圧パージ工程と、
     前記低圧パージ工程後に前記第一圧力よりも高い第二圧力の空気を前記液体燃料流路に供給する高圧パージ工程と、
     を含む、
     燃料流路のパージ方法。
  7.  請求項1から6のいずれか一項に記載の燃料流路のパージ方法において、
     前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、
     前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記第二ノズルに供給されている液体燃料供給状態から、前記液体燃料が前記第二ノズルに供給されなくなり、前記気体燃料のみが前記第二ノズルに供給されているときで、且つ前記第一ノズルに対する前記切替後水パージ工程の実行中に、前記第二ノズルの前記液体燃料流路に空気を供給する空気パージ工程を実行する、
     燃料流路のパージ方法。
  8.  請求項3又は4に記載の燃料流路のパージ方法において、
     前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、
     前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記第二ノズルに供給されている液体燃料供給状態から、前記液体燃料が前記第二ノズルに供給されなくなり、前記気体燃料のみが前記第二ノズルに供給されているときで、且つ前記第一ノズルに対する前記切替後水パージ工程の実行中に、前記第二ノズルの前記液体燃料流路に空気を供給する空気パージ工程を実行し、
     前記第一ノズルに対する前記クリーニング工程の開始タイミングに合わせて、前記第二ノズルに対する前記空気パージ工程を開始する、
     燃料流路のパージ方法。
  9.  請求項7又は8に記載の燃料流路のパージ方法において、
     前記第二ノズルに対する前記空気パージ工程は、
     第三圧力の空気を前記第二ノズルの前記液体燃料流路に供給する低圧パージ工程と、
     前記第二ノズルに対する前記低圧パージ工程後に前記第三圧力よりも高い第四圧力の空気を前記第二ノズルの前記液体燃料流路に供給する高圧パージ工程と、
     を含む、
     燃料流路のパージ方法。
  10.  請求項7から9のいずれか一項に記載の燃料流路のパージ方法において、
     前記第二ノズルは、前記第二ノズルから噴射した燃料を拡散燃焼させるノズルであり、
     前記第二ノズルに対する前記空気パージ工程である第一空気パージ工程後に、前記第一空気パージ工程で前記第二ノズルの前記液体燃料流路に供給する空気の圧力より低い圧力の空気を前記第二ノズルの前記液体燃料流路に供給する第二空気パージ工程を実行する、
     燃料流路のパージ方法。
  11.  液体燃料と気体燃料とを選択的に噴射するノズルを有し、前記ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されている、燃焼器における燃料流路のパージ装置において、
     前記液体燃料流路に水を送る水ラインと、
     前記水ラインを流れる水の流量を調節する水調節弁と、
     前記水調節弁の開度を制御する制御装置と、
     を備え、
     前記制御装置は、前記ノズルへの燃料供給状態を認識する燃料供給状態認識部と、前記燃料供給状態認識部で認識された前記燃料供給状態に応じて前記水調節弁の開度を制御する水パージ制御部と、を有し、
     前記燃料供給状態認識部は、前記液体燃料と前記気体燃料とのうち前記液体燃料のみが前記ノズルに供給されている液体燃料供給状態と、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記ノズルに供給されている気体燃料供給状態と、前記液体燃料供給状態から前記気体燃料供給状態への遷移状態である燃料切替状態と、を認識し、
     前記水パージ制御部は、前記燃料供給状態認識部が前記液体燃料供給状態であると認識しているときに、前記液体燃料流路に第一流量の水が供給される切替前開度を前記水調節弁に指示し、前記燃料供給状態認識部が前記燃料切替状態であると認識しているときに、前記液体燃料流路に第二流量の水が供給される切替中開度を前記水調節弁に指示し、前記燃料供給状態認識部が前記気体燃料供給状態になったと認識したときに、前記液体燃料流路に水が供給される切替後開度を前記水調節弁に指示し、
     前記水パージ制御部は、前記第二流量が前記第一流量よりも少なくなるよう、前記切替前開度よりも前記切替中開度を小さくし、前記気体燃料供給状態で少なくとも一時的に前記第二流量よりも多い第三流量の水が前記液体燃料流路に供給されるよう前記切替後開度を定める、
     燃料流路のパージ装置。
  12.  請求項11に記載の燃料流路のパージ装置において、
     前記水パージ制御部は、前記第三流量が前記第一流量よりも少なくなる前記切替後開度を定める、
     燃料流路のパージ装置。
  13.  請求項11又は12に記載の燃料流路のパージ装置において、
     前記水パージ制御部は、
     前記燃料供給状態認識部が前記気体燃料供給状態になったと認識したときに、前記切替後開度として、前記燃料切替状態から連続して前記第二流量の水が前記液体燃料流路に供給されるよう、前記切替中開度と同じ開度である水置換開度を前記水調節弁に指示し、
     前記水置換開度を前記水調節弁に指示した後、前記切替後開度として、前記第三流量の水が前記液体燃料流路に供給されるようクリーニング開度を前記水調節弁に指示する、
     燃料流路のパージ装置。
  14.  請求項13に記載の燃料流路のパージ装置において、
     前記水パージ制御部は、前記クリーニング開度を前記水調節弁に指示した後、前記切替後開度として、間欠的に前記液体燃料流路に前記第三流量の水が供給される間欠パージ開度を前記水調節弁に指示する、
     燃料流路のパージ装置。
  15.  請求項11から14のいずれか一項に記載の燃料流路のパージ装置において、
     前記燃料供給状態認識部は、前記液体燃料供給状態から前記燃料切替状態に切り替わるタイミングを事前に認識し、
     前記水パージ制御部は、前記燃料切替状態になった時点で前記液体燃料流路に供給される水の流量が前記第二流量になるよう、前記燃料供給状態認識部が前記タイミングを事前に認識すると、前記液体燃料流路に供給する水の流量が徐々に少なくなる前記切替前開度を前記水調節弁に指示する、
     燃料流路のパージ装置。
  16.  請求項11から15のいずれか一項に記載の燃料流路のパージ装置において、
     前記液体燃料流路に空気を送る空気ラインと、
     前記空気ラインを流れる空気の圧力を調節する空気調節弁と、
     を備え、
     前記制御装置は、前記空気調節弁の開度を制御する空気パージ制御部を有し、
     前記水パージ制御部は、前記水調節弁に対して前記切替後開度を指示した後、弁閉を指示し、
     前記空気パージ制御部は、前記気体燃料供給状態で前記水調節弁が閉状態のとき、前記空気を前記液体燃料流路に供給する空気パージ開度を前記空気調節弁に指示する、
     燃料流路のパージ装置。
  17.  請求項16に記載の燃料流路のパージ装置において、
     前記空気パージ制御部は、
     第一圧力の空気を前記液体燃料流路に供給する低圧パージ開度を前記空気パージ開度として前記空気調節弁に指示し、
     前記低圧パージ開度を指示した後に、前記第一圧力よりも高い第二圧力の空気を前記液体燃料流路に供給する高圧パージ開度を前記空気パージ開度として前記空気調節弁に指示する、
     燃料流路のパージ装置。
  18.  請求項16又は17に記載の燃料流路のパージ装置において、
     前記燃焼器は、前記ノズルとしての第一ノズルの他に、第二ノズルを有しており、前記第二ノズルには、前記液体燃料が流れノズル先端部で開口している液体燃料流路と、前記気体燃料が流れ前記ノズル先端部で開口している気体燃料流路とが形成されており、
     前記第一ノズルの前記液体燃料流路に空気を送る前記空気ラインである第一空気ラインの他に、前記第二ノズルの前記液体燃料流路に空気を送る第二空気ラインと、
     前記第二空気ラインを流れる空気の圧力を調節する第二空気調節弁と、
     を備え、
     前記燃料供給状態認識部は、前記液体燃料と前記気体燃料とのうち前記気体燃料のみが前記第二ノズルに供給されている気体燃料供給状態を認識し、
     前記空気パージ制御部は、前記第一ノズル及び前記第二ノズルがいずれも前記気体燃料供給状態であり、前記水パージ制御部が前記切替後開度を指示している最中に、前記第二ノズルの前記液体燃料流路に空気が供給される空気パージ開度を前記第二空気調節弁に指示する、
     燃料流路のパージ装置。
  19.  請求項18に記載の燃料流路のパージ装置において、
     前記第二ノズルは、前記第二ノズルから噴射した燃料を拡散燃焼させるノズルであり、
     前記空気パージ制御部は、
     前記第二空気調節弁の前記空気パージ開度として、第三圧力の空気が前記第二ノズルの前記液体燃料流路に供給される低圧パージ開度を前記第二空気調節弁に指示し、
     前記第二空気調節弁に前記低圧パージ開度を指示した後、前記第二空気調節弁の前記空気パージ開度として、前記第三圧力よりも高い第四圧力の空気が前記第二ノズルの前記液体燃料流路に供給される高圧パージ開度を前記第二空気調節弁に指示し、
     前記空気パージ開度である第一空気パージ開度を前記第二空気調節弁に指示した後、前記第一空気パージ開度で前記第二ノズルの前記液体燃料流路に供給される空気の圧力より低い圧力の空気が前記第二ノズルの前記液体燃料流路に供給される第二空気パージ開度を指示する、
     燃料流路のパージ装置。
  20.  請求項11から19のいずれか一項に記載の燃料流路のパージ装置と、
     前記燃焼器と、
     前記燃焼器で生成された燃焼ガスにより駆動するタービンと、
     を備えているガスタービン設備。
PCT/JP2015/065463 2014-06-03 2015-05-28 燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備 WO2015186611A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167029621A KR101852288B1 (ko) 2014-06-03 2015-05-28 연료 유로의 퍼지방법, 이 방법을 실행하는 퍼지장치, 이 장치를 구비하는 가스터빈 설비
CN201580021335.4A CN106232962B (zh) 2014-06-03 2015-05-28 燃料流路的吹扫方法、执行该方法的吹扫装置、具备该装置的燃气涡轮机设备
US15/304,945 US10378448B2 (en) 2014-06-03 2015-05-28 Method for purging fuel channel, purging device for executing said method, and gas turbine installation provided with said device
JP2016525134A JP6175190B2 (ja) 2014-06-03 2015-05-28 燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備
DE112015002636.3T DE112015002636B4 (de) 2014-06-03 2015-05-28 Verfahren zum Spülen eines Kraftstoffkanals, Spülvorrichtung zur Ausführung des Verfahrens und Gasturbineninstallation mit der Spülvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014114737 2014-06-03
JP2014-114737 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186611A1 true WO2015186611A1 (ja) 2015-12-10

Family

ID=54766684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065463 WO2015186611A1 (ja) 2014-06-03 2015-05-28 燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備

Country Status (6)

Country Link
US (1) US10378448B2 (ja)
JP (1) JP6175190B2 (ja)
KR (1) KR101852288B1 (ja)
CN (1) CN106232962B (ja)
DE (1) DE112015002636B4 (ja)
WO (1) WO2015186611A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118466A1 (en) * 2016-12-22 2018-06-28 Siemens Aktiengesellschaft Fuel manifold in a combustor for a gas turbine engine
WO2019181188A1 (ja) * 2018-03-22 2019-09-26 三菱重工業株式会社 ガスタービンの燃料ノズル及び燃焼器並びにガスタービン
WO2022172955A1 (ja) * 2021-02-15 2022-08-18 三菱パワー株式会社 燃料供給方法、燃料供給設備、この燃料供給設備を備える燃料燃焼設備、及びガスタービンプラント
JP7480409B2 (ja) 2021-09-30 2024-05-09 三菱重工業株式会社 発電設備

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327826B2 (ja) * 2013-10-11 2018-05-23 川崎重工業株式会社 ガスタービンの燃料噴射装置
US10012148B2 (en) * 2014-05-23 2018-07-03 General Electric Company Method of purging a combustor
JP6325930B2 (ja) * 2014-07-24 2018-05-16 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
CN107076411B (zh) * 2014-10-23 2020-06-23 西门子公司 用于涡轮发动机的灵活燃料燃烧系统
US10371048B2 (en) * 2016-02-22 2019-08-06 Mitsubishi Hitachi Power Systems, Ltd. Combustor and gas turbine
JP6779097B2 (ja) * 2016-10-24 2020-11-04 三菱パワー株式会社 ガスタービン燃焼器及びその運転方法
US10634344B2 (en) * 2016-12-20 2020-04-28 General Electric Company Fuel nozzle assembly with fuel purge
CN108844062A (zh) * 2018-08-24 2018-11-20 深圳市迈拓铝设备技术有限公司 一种燃烧器
JP6518830B1 (ja) * 2018-08-31 2019-05-22 Primetals Technologies Japan株式会社 燃焼設備の制御装置及びこれを備えた燃焼設備システム並びに燃焼設備の運転方法
MX2021014655A (es) * 2019-05-30 2022-01-06 Siemens Energy Global Gmbh & Co Kg Inyeccion de agua de turbina de gas para reduccion de emisiones.
US10968837B1 (en) * 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11306661B1 (en) * 2020-12-04 2022-04-19 General Electric Company Methods and apparatus to operate a gas turbine engine with hydrogen gas
CN112727604A (zh) * 2020-12-23 2021-04-30 大连欧谱纳透平动力科技有限公司 用于燃气轮机的液体/气体双燃料供应系统
CN112879160A (zh) * 2021-03-23 2021-06-01 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统、吹扫方法和涡轮压裂车组
US11808219B2 (en) 2021-04-12 2023-11-07 Pratt & Whitney Canada Corp. Fuel systems and methods for purging
CN113187608B (zh) * 2021-06-02 2024-08-16 烟台杰瑞石油装备技术有限公司 涡轮压裂系统及其控制方法、控制设备和存储介质
CN114508427B (zh) * 2022-02-09 2024-06-11 烟台杰瑞石油装备技术有限公司 用于燃气轮机的多燃料切换装置、方法及燃气轮机
US20240175396A1 (en) * 2022-02-15 2024-05-30 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Dual-Fuel Power System and Air Supply and Purging Method Thereof
CN114837823B (zh) * 2022-04-25 2023-10-03 中国船舶重工集团公司第七0三研究所 一种基于双燃料控制系统的燃气轮机启动逻辑方法
US20240077038A1 (en) * 2022-09-06 2024-03-07 Vericor Power Systems Llc Purge System for Dual-Fuel Gas Turbine Engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324715A (ja) * 1998-04-09 1999-11-26 General Electric Co <Ge> ガスタ―ビン用の液体燃料および水噴射パ―ジシステム
JP2001059427A (ja) * 1999-06-15 2001-03-06 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器の油ノズルパージ方法
JP2007327338A (ja) * 2006-06-06 2007-12-20 Ihi Corp ガスタービンの燃料切替装置及び方法
JP2013504004A (ja) * 2009-09-07 2013-02-04 アルストム テクノロジー リミテッド ガスタービン燃焼器の動作を液体燃料から気体燃料へとおよびその逆へと切り替えるための方法
JP2013231415A (ja) * 2012-05-02 2013-11-14 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器のパージ方法及びパージ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2667430C (en) * 2006-10-26 2014-12-16 Rolls-Royce Power Engineering Plc Method and apparatus for isolating inactive fuel passages
JP2012017957A (ja) 2010-07-09 2012-01-26 Kawasaki Heavy Ind Ltd 燃料ノズルパージ方法及び燃料ノズルパージ装置
US20130199576A1 (en) 2012-02-06 2013-08-08 General Electric Company System and method to clear a liquid fuel supply line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324715A (ja) * 1998-04-09 1999-11-26 General Electric Co <Ge> ガスタ―ビン用の液体燃料および水噴射パ―ジシステム
JP2001059427A (ja) * 1999-06-15 2001-03-06 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器の油ノズルパージ方法
JP2007327338A (ja) * 2006-06-06 2007-12-20 Ihi Corp ガスタービンの燃料切替装置及び方法
JP2013504004A (ja) * 2009-09-07 2013-02-04 アルストム テクノロジー リミテッド ガスタービン燃焼器の動作を液体燃料から気体燃料へとおよびその逆へと切り替えるための方法
JP2013231415A (ja) * 2012-05-02 2013-11-14 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器のパージ方法及びパージ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118466A1 (en) * 2016-12-22 2018-06-28 Siemens Aktiengesellschaft Fuel manifold in a combustor for a gas turbine engine
WO2019181188A1 (ja) * 2018-03-22 2019-09-26 三菱重工業株式会社 ガスタービンの燃料ノズル及び燃焼器並びにガスタービン
WO2022172955A1 (ja) * 2021-02-15 2022-08-18 三菱パワー株式会社 燃料供給方法、燃料供給設備、この燃料供給設備を備える燃料燃焼設備、及びガスタービンプラント
TWI839681B (zh) * 2021-02-15 2024-04-21 日商三菱重工業股份有限公司 燃料供給方法、燃料供給設備、具備該燃料供給設備的燃料燃燒設備,以及燃氣渦輪機動力廠
JP7480409B2 (ja) 2021-09-30 2024-05-09 三菱重工業株式会社 発電設備

Also Published As

Publication number Publication date
KR101852288B1 (ko) 2018-04-25
JP6175190B2 (ja) 2017-08-02
DE112015002636B4 (de) 2022-06-15
DE112015002636T5 (de) 2017-03-09
US10378448B2 (en) 2019-08-13
JPWO2015186611A1 (ja) 2017-04-20
CN106232962B (zh) 2018-04-10
CN106232962A (zh) 2016-12-14
KR20160136428A (ko) 2016-11-29
US20170138268A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6175190B2 (ja) 燃料流路のパージ方法、この方法を実行するパージ装置、この装置を備えるガスタービン設備
JP5113505B2 (ja) ガスタービン用の非線形燃料移送
JP4024520B2 (ja) 段階式の燃料噴霧装置を備えたバーナシステム及びこのバーナシステムを運転するための方法
US8340886B2 (en) System and method for transitioning between fuel supplies for a combustion system
EP3312507A1 (en) Gas turbine combustor and method of operating the same
US9163560B2 (en) Method for switching over a gas turbine burner operation from liquid to gas fuel and vice-versa
WO2018216331A1 (ja) 水素燃焼ボイラ
RU2539932C2 (ru) Способ переключения подачи топлива в камеру сгорания
RU2654809C1 (ru) Способ и устройство для управления разделением топлива в камере сгорания
CN109072782B (zh) 燃烧器及燃气轮机
JP4143401B2 (ja) 予混合バーナーの燃料供給方法と装置
JP4206908B2 (ja) ガスタービン燃焼器
JP2010054087A (ja) ガスタービン燃焼器およびガスタービン燃焼器の運転方法
JP2006152818A (ja) ガスタービンの燃料制御方法及び装置
JP2011191053A (ja) バーナユニット
JP2019056496A (ja) 燃焼装置
JP7035828B2 (ja) 燃焼装置
JP7046459B2 (ja) バーナー装置及び加熱処理設備
JP2004510122A (ja) 予混合バーナーへの燃料供給方法
JP6495644B2 (ja) ガス焚きバーナの運転方法及びガス焚きバーナ
JP2006132900A (ja) ガンタイプオイルバーナ装置
JP7070090B2 (ja) ボイラ
KR101500629B1 (ko) 기름 버너 착화 압력 감소 장치
JP2006038417A (ja) パイロットバーナを持った燃焼装置
JP2019515243A (ja) 排気を減らすための選択的燃焼器制御の方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525134

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15304945

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167029621

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015002636

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803425

Country of ref document: EP

Kind code of ref document: A1