WO2015186566A1 - ライン光源及び光ラインセンサユニット - Google Patents
ライン光源及び光ラインセンサユニット Download PDFInfo
- Publication number
- WO2015186566A1 WO2015186566A1 PCT/JP2015/065058 JP2015065058W WO2015186566A1 WO 2015186566 A1 WO2015186566 A1 WO 2015186566A1 JP 2015065058 W JP2015065058 W JP 2015065058W WO 2015186566 A1 WO2015186566 A1 WO 2015186566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- guide
- line
- filter
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 24
- 239000011347 resin Substances 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 238000009792 diffusion process Methods 0.000 claims description 20
- 238000002834 transmittance Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 8
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 16
- 239000010408 film Substances 0.000 description 13
- 239000011521 glass Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/121—Apparatus characterised by sensor details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
- H04N1/02815—Means for illuminating the original, not specific to a particular type of pick-up head
- H04N1/0282—Using a single or a few point light sources, e.g. a laser diode
- H04N1/02835—Using a single or a few point light sources, e.g. a laser diode in combination with a light guide, e.g. optical fibre, glass plate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
- H04N1/02815—Means for illuminating the original, not specific to a particular type of pick-up head
- H04N1/02895—Additional elements in the illumination means or cooperating with the illumination means, e.g. filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
Definitions
- the present invention relates to a line light source that emits light to paper sheets such as banknotes and securities.
- the present invention also relates to an optical line sensor unit that reads light emitted from such a line light source and transmitted or reflected by paper sheets.
- the optical line sensor unit is a device used for recognizing the color and pattern of a paper sheet for the purpose of identifying the paper sheet.
- the optical line sensor unit includes a line light source for illuminating a paper sheet, a lens array for guiding light (including fluorescence) emitted from the line light source and transmitted or reflected by the paper sheet, and the lens array. And a light receiving unit that receives the light guided by the light source.
- the light emitted from the line light source mainly includes visible light for reading the front and back patterns of the paper sheet, and ultraviolet and infrared light mainly for determining the authenticity of the paper sheet.
- a typical configuration of a line light source according to the prior art includes a light guide that extends in a longitudinal direction perpendicular to the conveyance direction of a paper sheet, a light diffusion pattern formed in a longitudinal direction on one side of the light guide, and a light guide. It has a light source part provided in the vicinity of one end face of the light body and a cover for holding the light guide (see Patent Document 1).
- the line light source According to the line light source according to this prior art, the light incident on one end of the light guide from the light source unit is diffused and refracted by the light diffusion pattern, and a part of the light is fed from one side of the light guide to the paper sheet. Irradiated towards.
- the fine shape of this light diffusion pattern it is possible to irradiate the paper sheet while suppressing variations in the amount of light along the longitudinal direction of the light irradiated to the paper sheet. Therefore, stable reading is possible, and the shape and pattern of the paper sheet can be accurately recognized.
- ultraviolet light incident on one end surface of the light guide from the light source unit that irradiates ultraviolet light may pass through the other end surface and hit the other light source unit, and secondarily emit fluorescence.
- fluorescences enter the light guide and are detected by the light receiving element, the accuracy of authenticating the authenticity of the paper sheet decreases.
- the present invention provides a line light source and an optical line sensor unit using the same that can install both a light source unit that emits visible light or infrared light and a light source unit that emits ultraviolet light. It is something to be offered.
- the present invention provides a line light source having a light source unit installed at both ends of the light guide, and a line light source that does not emit fluorescence from one side of the light guide toward the paper sheet.
- the optical line sensor unit used is to be provided.
- the present invention provides a line light source having a light source unit installed at both ends of the light guide, and does not reduce the amount of light emitted from one side of the light guide toward the paper.
- An object of the present invention is to provide a light source and an optical line sensor unit using the light source.
- the line light source according to one aspect of the present invention is formed of a resin that extends in the longitudinal direction and transmits light from ultraviolet light to visible light, or light in a wavelength range including ultraviolet light to visible light and infrared light.
- a light guide a first light source disposed on the first end face of the light guide and irradiating ultraviolet light; and a second end face of the light guide, from visible light or visible light
- a second light source unit that emits light in a wavelength range including up to infrared light, and guides light emitted from the first light source unit or light emitted from the second light source unit. The light exits from the light exit side of the body.
- the ultraviolet light incident on the light guide from the first light source unit enters the light guide through the first end surface, and enters the light guide from the second light source unit. Since light enters the light guide through the second end face, a line light source capable of installing both a light source unit that emits visible light or infrared light and a light source unit that emits ultraviolet light is provided. realizable.
- a line light source according to another aspect of the present invention is formed of a resin that extends in a longitudinal direction and transmits light from ultraviolet light to visible light, or light in a wavelength range including ultraviolet light to visible light and infrared light.
- a light guide a first light source disposed on the first end surface of the light guide and irradiating ultraviolet light, and a second light source disposed on the second end surface of the light guide.
- a second light source unit that irradiates light in a wavelength range including up to outside light, and is disposed between the first end surface of the light guide and the first light source unit, transmits ultraviolet light, visible light, or
- a first filter that blocks light in a wavelength range including visible light to infrared light, and guides light emitted from the first light source unit or light emitted from the second light source unit. The light exits from the light exit side.
- the first filter transmits ultraviolet light and reflects or absorbs light in a wavelength range including visible light or visible light to infrared light so that the fluorescence does not enter the light guide. Can be.
- a line light source is formed of a resin that extends in a longitudinal direction and transmits light from ultraviolet light to visible light, or light in a wavelength range including ultraviolet light to visible light and infrared light.
- a second light source unit that irradiates light in a wavelength range including up to outside light, and is disposed between the second end face of the light guide and the second light source unit, transmits ultraviolet light, visible light, or And a second filter that blocks light in a wavelength range including visible light to infrared light.
- the line light source which concerns on the further another situation of this invention is a structure provided with both a said 2nd filter and a said 1st filter.
- the second filter in the configuration including both the second filter and the first filter, includes visible light or visible light to infrared light.
- the ultraviolet light incident on the light guide from the first light source unit enters the light guide through the first filter, and is reflected by the second filter on the second end face. Since the light is returned into the light guide, light does not escape from the second end face.
- light incident on the light guide from the second light source unit enters the light guide through the second filter, is reflected by the first filter installed on the first end surface, and is guided. Since the light comes back into the light body, the light does not run away from the first end face. Therefore, the light quantity can be secured without reducing the quantity of light emitted from one side of the light guide toward the paper sheet.
- An optical line sensor unit for reading paper sheets guides one of the above-described line light sources for illuminating the paper sheets and light emitted from the line light source and reflected or transmitted through the paper sheets.
- a light receiving unit that receives the light converged by the lens array and converts the light into an electrical signal, and at any position from the paper sheet to the light receiving unit, visible light, or red light from visible light.
- a third filter that transmits light in a wavelength range including up to outside light and blocks ultraviolet light so that ultraviolet light does not enter the light receiving portion. According to this optical line sensor unit, when ultraviolet light is emitted from the first light source unit, the third filter blocks the ultraviolet light from directly entering the light receiving unit.
- the fluorescence from the paper sheet can be read, and when visible light or infrared light is emitted from the second light source unit, the light reflected or transmitted through the paper sheet is also transmitted through the third filter. Is incident on the light receiving portion, and the light receiving portion can read normal reflected light or transmitted light.
- FIG. 1 is a schematic cross-sectional view showing a configuration of an optical line sensor unit according to an embodiment of the present invention.
- the optical line sensor unit includes a housing 16, a line light source 10 for illuminating a paper sheet, and a lens for guiding light emitted from the line light source 10 toward the focal plane 20 and reflected from the paper sheet.
- An array 11 and a light receiving unit 12 that receives the transmitted light that is mounted on the substrate 13 and guided by the lens array 11 are provided.
- the paper sheets are conveyed in one direction (indicated by X) along the focal plane 20.
- the casing 16, the line light source 10, the light receiving unit 12, and the lens array 11 extend in the y direction, that is, the direction perpendicular to the paper surface, and FIG. 1 shows a cross section thereof.
- the line light source 10 is a unit that emits light toward a paper sheet on the focal plane 20.
- the types of emitted light are visible light and ultraviolet light, and infrared light may be emitted.
- the ultraviolet light has a wavelength peak of 300 nm to 400 nm, and the infrared light has a wavelength peak up to 1500 nm.
- at least ultraviolet light is emitted so as not to overlap with other light in time (that is, while being temporally switched). Infrared light may be emitted over time with visible light or may be emitted without overlapping over time.
- the light emitted from the line light source 10 passes through the protective glass 14 and is collected on the focal plane 20.
- the protective glass 14 is not always necessary and can be omitted. However, it is desirable to install the protective glass 14 in order to protect the line light source 10 and the lens array 11 from scattering and damage of dust in use.
- the material of the protective glass 14 may be any material as long as it transmits light emitted from the line light source 10, and may be a transparent resin such as an acrylic resin or a cycloolefin resin. However, in the embodiment of the present invention, it is preferable to use a material that transmits ultraviolet light, such as white plate glass and borosilicate glass.
- a substrate 5 for fixing the second light source unit 3 and the first light source unit 4 (see FIGS. 4 and 5) installed at both ends of the line light source 10 is installed.
- This substrate 5 is a thin insulating plate made of phenol, glass epoxy or the like, and a wiring pattern made of copper foil is formed on the back surface thereof.
- the terminals of the second light source unit 3 and the first light source unit 4 are inserted into holes formed in various places of the substrate 5 and joined to the wiring pattern with solder or the like on the back surface of the substrate 5 to thereby form the second light source unit 3.
- the first light source unit 4 can be mounted on and fixed to the substrate 5, and the second light source unit 3 and the first light source unit 4 can be fixed from a predetermined driving power source (not shown) through a wiring pattern on the back surface of the substrate. Electric power can be supplied to drive and control the light emission.
- the lens array 11 is an optical element that forms an image of the light reflected by the paper sheet on the light receiving unit 12, and a rod lens array such as a SELFOC lens array (registered trademark: manufactured by Nippon Sheet Glass) can be used.
- the magnification of the lens array 11 is set to 1 (upright).
- An ultraviolet light blocking filter film as a “third filter” that blocks ultraviolet light by reflecting or absorbing ultraviolet light so that ultraviolet light does not enter the light receiving unit 12 at any position from the focal plane 20 to the light receiving unit 12. 15 is preferably provided.
- an ultraviolet light blocking filter film 15 is attached to the surface of the lens array 11 to have a function of blocking ultraviolet light.
- blocking light means reflecting or absorbing light and not transmitting it.
- the ultraviolet light blocking filter film 15 is not particularly limited, and any material and structure can be used as long as ultraviolet light can be prevented from entering the light receiving unit 12.
- an ultraviolet light absorbing film in which an organic ultraviolet light absorber is mixed or coated on a transparent film, and a thin film of metal oxide or dielectric material having different transmittance and refractive index such as titanium oxide and silicon oxide is deposited on the glass surface in multiple layers.
- the interference wave filter (bandpass filter) obtained by the above is preferable.
- the ultraviolet light blocking filter film 15 is attached to the exit surface of the lens array 11, it may be attached to the entrance surface or intermediate portion of the lens array 11, and is used by directly depositing or coating on the inner surface of the protective glass 14. Also good. In short, it is only necessary to prevent the ultraviolet light reflected by the paper sheets from entering the light receiving unit 12.
- the light receiving unit 12 is mounted on a substrate 13 and includes a light receiving element that receives reflected light and reads an image as an electrical output by photoelectric conversion.
- the material and structure of the light receiving element are not particularly defined, and a photodiode or a phototransistor using amorphous silicon, crystalline silicon, CdS, CdSe, or the like may be disposed.
- a CCD (Charge Coupled Device) linear image sensor may be used.
- the light receiving unit 12 a so-called multichip linear image sensor in which a plurality of ICs (Integrated Circuits) in which a photodiode, a phototransistor, a drive circuit, and an amplifier circuit are integrated can be used.
- an electric circuit such as a drive circuit or an amplifier circuit or a connector for taking out a signal to the outside can be mounted on the substrate 13.
- an A / D converter, various correction circuits, an image processing circuit, a line memory, an I / O control circuit, and the like can be simultaneously mounted on the substrate 13 and taken out as a digital signal.
- the optical line sensor unit described above was a reflective optical line sensor unit that receives light emitted from the line light source 10 toward the paper sheet and reflected from the paper sheet, but as shown in FIG.
- the transmissive type is configured to receive the light emitted from the line light source 10 toward the paper sheet and transmitted through the paper sheet by placing the line light source 10 at a position opposite to the light receiving unit 12 with respect to the focal plane 20.
- the optical line sensor unit may be used. In this case, the position of the line light source 10 is located below the focal plane 20 only in the arrangement of FIG. 1, and the structure of the line light source 10 itself is not different from that described so far. Further, both a reflection type optical line sensor unit and a transmission type optical line sensor unit may be included. ⁇ Line light source>
- FIG. 3 is a perspective view schematically showing the appearance of the line light source 10 in the optical line sensor unit shown in FIG.
- FIG. 4 is an exploded perspective view of each component of the line light source 10
- FIG. 5 is a side view of the line light source 10.
- the cover member 2 is not shown.
- the line light source 10 is provided near the transparent light guide 1 extending along the longitudinal direction L
- the second light source unit 3 provided near one end face in the longitudinal direction L
- the other end face in the longitudinal direction L and the other end face in the longitudinal direction L.
- Between the first light source unit 4 and the cover member 2 for holding the side surfaces (the bottom side surface 1a and the left and right side surfaces 1b and 1c) of the light guide 1, and the bottom side surface 1a and the left and right side surfaces 1b.
- the light guide 1 has a second filter 6 and a first filter 7 formed on the end faces 1e and 1f, respectively.
- the light guide 1 may be formed of a highly light-transmitting resin such as acrylic resin or optical glass, but in the embodiment of the present invention, the first light source unit 4 that emits ultraviolet light is used.
- a fluorine-based resin or a cycloolefin-based resin that has relatively little attenuation with respect to ultraviolet light is preferable (see Patent Document 2).
- the light guide 1 has an elongated columnar shape, and a cross section perpendicular to the longitudinal direction L has substantially the same shape and the same dimensions at any cut end in the longitudinal direction L.
- the ratio of the proportion of the light guide 1, that is, the length in the longitudinal direction L of the light guide 1 and the height H of the cross section perpendicular to the longitudinal direction L is greater than 10, preferably greater than 30.
- the height H of the cross section orthogonal to the longitudinal direction L is about 5 mm.
- the side surface of the light guide 1 is a light diffusion pattern forming surface 1g (corresponding to an oblique cut surface of the light guide 1 in FIG. 4), a bottom side surface 1a, left and right side surfaces 1b and 1c, and a light emitting side surface 1d (light guide in FIG. 4). (Corresponding to the upper surface of the body 1).
- the bottom side surface 1a and the left and right side surfaces 1b and 1c have a planar shape, and the light emitting side surface 1d is formed in a smooth convex curve outwardly so as to have a condensing effect of the lens.
- the light emission side surface 1d is not necessarily formed in a convex shape, and may be a planar shape.
- a lens for condensing light emitted from the light guide 1 may be disposed so as to face the flat surface 1d.
- the light diffusion pattern P on the light diffusion pattern forming surface 1 g extends in a straight line along the longitudinal direction L of the light guide 1 while maintaining a certain width.
- the dimension of the light diffusion pattern P along the longitudinal direction L is formed to be longer than the reading length of the image sensor (that is, the width of the reading area of the light receiving unit 12).
- This light diffusion pattern P is constituted by a plurality of V-shaped grooves engraved on the light diffusion pattern forming surface 1 g of the light guide 1.
- Each of the plurality of V-shaped grooves is formed to extend in a direction orthogonal to the longitudinal direction L of the light guide 1 and has the same length.
- the plurality of V-shaped grooves may have, for example, an isosceles triangle shape in cross section.
- this light diffusion pattern P light that is incident from the end faces 1e and 1f of the light guide 1 and propagates in the light guide 1 in the longitudinal direction L is refracted and diffused, and is substantially uniform along the longitudinal direction L. It can irradiate from the light emission side surface 1d with brightness. Thereby, the light irradiated to paper sheets can be made substantially constant in the entire longitudinal direction L of the light guide 1, and unevenness in illuminance can be eliminated.
- the V-shape of the groove of the light diffusion pattern P is an example, and can be arbitrarily changed, for example, a U-shape instead of a V-shape, as long as the illuminance unevenness is not significant.
- the width of the light diffusion pattern P need not be maintained at a constant width, and the width may change along the longitudinal direction L of the light guide 1.
- the depth of the groove and the opening width of the groove can also be changed as appropriate.
- the cover member 2 has an elongated shape along the longitudinal direction L of the light guide 1, and the light diffusion of the light guide 1 so that the bottom side surface 1a and the left and right side surfaces 1b and 1c of the light guide 1 can be covered.
- the light guide 1 has a bottom surface 2a facing the pattern forming surface 1g, a right side surface 2b facing the right side surface 1b of the light guide 1, and a left side surface 2c facing the left side surface of the light guide 1.
- These three side surfaces each form a flat surface, and a concave portion having a substantially U-shaped cross section is formed by these three inner surfaces, so that the light guide 1 can be inserted into the concave portion.
- the bottom surface 2a of the cover member 2 is in close contact with the bottom side surface 1a of the light guide 1
- the right side surface 2b of the cover member 2 is in close contact with the right side surface 1b of the light guide 1
- the left side surface 2c is guided.
- the light body 1 is in close contact with the left side surface 1c. For this reason, the light guide 1 can be protected by the cover member 2.
- the cover member 2 is not limited to a transparent cover, and may be translucent or opaque.
- the cover member 2 is coated with a white resin molded product having a high reflectance or the white resin so that light leaking from a side surface other than the light emitting surface of the light guide 1 is reflected again into the light guide 1. It may be a molded product of the prepared resin. Or you may form the cover member 2 with metal bodies, such as stainless steel and aluminum.
- the second light source unit 3 is a light source that emits visible light or light having a wavelength ranging from visible to infrared.
- a plurality of LEDs Light Emitting Diodes that emit light having wavelengths of near infrared, red, green, and blue.
- the three colors of red, green, and blue may be lit at the same time, or a fluorescent agent is mixed in the sealant of the LED light source to generate white light by fluorescence. May be issued.
- the first light source unit 4 is a light source that emits ultraviolet light to the light guide 1, and an ultraviolet LED light source having a wavelength of 300 nm to 400 nm can be used.
- An ultraviolet light emitting diode having a peak emission wavelength in the range of 330 nm to 380 nm is preferably used.
- a terminal 31 for mounting on the substrate 5 is formed.
- the drive power supply selects the electrode terminal that applies a voltage to the second light source unit 3 and the electrode terminal that applies a voltage to the first light source unit 4, so that the second light source unit 3 and the first light source unit are selected.
- 4 has a circuit configuration capable of emitting light by switching simultaneously or temporally. It is also possible to select any LED from among the plurality of LEDs built in the second light source unit 3 and to emit light by switching simultaneously or temporally.
- light in a wavelength range including visible light or visible light to infrared light can be incident on the light guide 1 from the end surface 1e where the second light source unit 3 is installed with a compact configuration.
- the ultraviolet light can be incident on the light guide 1 from the end face 1f where the first light source unit 4 is installed.
- the light emitted from the first light source unit 4 or the light emitted from the second light source unit 3 can be emitted from the light emitting side surface 1 d of the light guide 1.
- the end surface 1e on which the second light source unit 3 of the light guide 1 is installed transmits infrared light and visible light of 420 nm or more, and cuts off by reflecting or absorbing ultraviolet light of less than 400 nm.
- a second filter 6 is provided.
- the end face 1f of the light guide 1 on which the first light source unit 4 is installed transmits the ultraviolet light of less than 400 nm, and cuts off by reflecting or absorbing the infrared light and visible light of 420 nm or more.
- the filter 7 is provided.
- the second filter 6 and the first filter 7 are not particularly limited, and any material and structure can be used as long as they block the target wavelength range.
- an interference wave filter (bandpass filter) obtained by multilayer deposition of metal oxide or dielectric thin films having different transmittances and refractive indexes on the glass surface is preferable for a reflective filter.
- an interference wave filter to be reflected for example, silicon oxide and tantalum pentoxide are adopted, and a desired band pass filter characteristic is ensured by adjusting the transmittance, refractive index, and film thickness of each layer and performing multilayer deposition. It is obtained with.
- a band-pass filter that has been conventionally produced for ordinary optical-related industries as long as it satisfies the required performance.
- the second filter 6 is a filter that absorbs ultraviolet light
- an ultraviolet light absorbing film in which an organic ultraviolet light absorbent is mixed or coated on a transparent film may be used.
- the interference wave filter uses, for example, silicon oxide, titanium oxide, etc., and adjusts the transmittance, refractive index, and film thickness of each layer to deposit multiple layers, thereby blocking ultraviolet light by both reflecting and absorbing functions. The desired wavelength characteristics may be ensured.
- the first filter 7 is a filter that absorbs visible light and infrared light
- a substance that transmits ultraviolet light and cuts visible light and infrared light may be added to the film.
- the installation method to the light guide 1 of the 2nd filter 6 and the 1st filter 7 is arbitrary, and you may coat
- a film-like or plate-like second filter 6 and a first filter 7 are prepared, and are attached in close contact with the end faces 1e and 1f of the light guide 1 or at a fixed distance from the end faces 1e and 1f. Also good.
- the second filter 6 and the first filter 7 may be provided on the second light source unit 3 and the first light source unit 4 instead of being provided on the end faces 1 e and 1 f of the light guide 1.
- the light sources 3 and 4 may be coated with the filters 6 and 7 by coating or vapor deposition, or the film or plate-like filters 6 and 7 are prepared and brought into close contact with the light sources 3 and 4. It may be attached.
- the filter 6 may be configured.
- the first light source unit 4 may be sealed by adding a material that transmits ultraviolet light and blocks visible light or light in a wavelength range including visible light to infrared light.
- the filter 7 may be configured.
- the first filter 7 is a filter that transmits ultraviolet light and reflects or absorbs infrared light and visible light, the following advantages are obtained.
- the first light source unit 4 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body.
- ultraviolet light is irradiated from the first light source unit 4
- the irradiation light hits the mounting substrate of the first light source unit 4
- fluorescence around 690 nm is secondarily irradiated and enters the light guide 1. There is a need to prevent.
- the first filter 7 is designed to reflect or absorb infrared light and visible light so that the secondary irradiated fluorescence does not enter the light guide 1, the light is guided. Unnecessary fluorescence emission from the light emission side surface 1d of the body 1 can be prevented, and the contrast of the ultraviolet fluorescence of the paper sheet can be improved.
- the aluminum oxide / ceramic sintered body that fluoresces ultraviolet light but also the case where the sealing resin fluoresces can prevent secondary irradiation.
- the second filter 6 is a filter that transmits infrared light and visible light and reflects or absorbs ultraviolet light, the following advantages are obtained.
- the second light source unit 3 employs a mounting substrate that emits fluorescence having a wavelength of about 690 nm when irradiated with ultraviolet light, such as an aluminum oxide / ceramic sintered body.
- the ultraviolet light emitted from the first light source unit 4 passes through the end face 1e of the light guide 1 and hits the second light source unit 3
- fluorescence near 690 nm is secondarily irradiated from the second light source unit 3. Since it enters the light guide 1, it is necessary to prevent this.
- the second filter 6 is designed so as to reflect or absorb ultraviolet light so that the ultraviolet light does not come out from the end face 1e of the light guide 1, it will strike the second light source section 3. There is no. Therefore, unnecessary fluorescence emission from the light emission side surface 1d of the light guide 1 can be prevented. As a result, the contrast of the ultraviolet fluorescence of the paper sheet can be improved.
- the second filter 6 is preferably a filter that transmits infrared light and visible light and reflects ultraviolet light, and has the following advantages. Since the amount of ultraviolet light that enters the light guide 1 from the first light source unit 4 and is reflected by the second filter 6 and returns to the light guide 1 increases, as a result, from the light emission side surface 1d of the light guide 1 The effect of increasing the amount of emitted ultraviolet light is obtained. In this case, since the second filter 6 transmits infrared light and visible light emitted from the second light source unit 3, the infrared light and visible light from the second light source unit 3 enter the light guide 1. There is no hindrance.
- the first filter 7 is a filter that transmits ultraviolet light and reflects visible light and infrared light
- the first filter 7 is irradiated from the second light source unit 3 and incident on the light guide 1.
- the amount of visible light and infrared light reflected and returned to the light guide 1 is increased, and as a result, the amount of visible light and infrared light emitted from the light exit side surface 1d of the light guide 1 is increased. can get.
- the first filter 7 transmits the ultraviolet light emitted from the first light source unit 4, the ultraviolet light can be emitted from the light emitting side surface 1 d of the light guide 1.
- the second light source unit 3 is a light source that emits visible light or light having a wavelength ranging from visible to infrared, but may be a light source that emits only visible light.
- the surface on which the light diffusion pattern P is formed can be arranged on any surface except the light exit surface 1 d of the light guide 1.
- a light diffusion pattern may be formed on the bottom side surface 1a, and this may be used as a surface on which the light diffusion pattern P is formed (in this case, it is not necessary to form a diagonal surface between the bottom side surface 1a and the left and right side surfaces 1b).
- Other various modifications can be made within the scope of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Planar Illumination Modules (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
先行技術にかかるライン光源の典型的な構成は、紙葉類の搬送方向に直角に長手状に延びる導光体と、導光体の一側面に長手方向に形成された光拡散パターンと、導光体の一方の端面付近に設けられた光源部と、導光体を保持するためのカバーとを有している(特許文献1参照)。
また、紫外光を照射する光源部から紫外光が照射された場合、照射された紫外光が該光源部を構成する基体に当たって二次的に蛍光を発することがある。また紫外光を照射する光源部から導光体の一端面に入射された紫外光が、他端面を透過して他方の光源部に当たってそこからも二次的に蛍光が出ることがある。これらの蛍光が導光体に入射し、受光素子に検出されると、紙葉類の真偽判別の精度が低下する。
本発明は、かかる実情に鑑み、可視光又は赤外光を照射する光源部と、紫外光を照射する光源部とを両方設置することのできる、ライン光源及びそれを用いた光ラインセンサユニットを提供しようとするものである。
また本発明は、導光体の両端部に光源部を設置した構成のライン光源において、導光体の一側面から紙葉類に向けて照射される光の光量を低下させることのない、ライン光源及びそれを用いた光ラインセンサユニットを提供しようとするものである。
本発明の他の局面に係るライン光源は、長手方向に延びる、紫外光から可視光までの光、又は紫外光から可視光、赤外光までを含む波長範囲の光を透過する樹脂で形成された導光体と、導光体の第1の端面に配置され、紫外光を照射する第1の光源部と、導光体の第2の端面に配置され、可視光、又は可視光から赤外光までを含む波長範囲の光を照射する第2の光源部と、導光体の第1の端面と第1の光源部との間に配置され、紫外光を透過させ、可視光、又は可視光から赤外光までを含む波長範囲の光を遮断する第1のフィルタとを備え、第1の光源部から発光される光、又は第2の光源部から発光される光を導光体の光出射側面から出射する。
また本発明のさらに他の局面に係るライン光源は、前記第2のフィルタと、前記第1のフィルタとの両方を備える構成である。
この光ラインセンサユニットによれば、第1の光源部から紫外光が出射された場合、第3のフィルタにより該紫外光が直接受光部に入ることが遮断される。よって、紙葉類からの蛍光のみを読み取ることができ、第2の光源部から可視光または赤外光が出射された場合、紙葉類を反射もしくは透過した光は第3のフィルタも透過して受光部に入射され、受光部は、通常の反射光もしくは透過光を読み取ることができる。
本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
<光ラインセンサユニット>
図1は、本発明の実施の形態における光ラインセンサユニットの構成を示す概略断面図である。
これらの筐体16、ライン光源10、受光部12、レンズアレイ11は、y方向、すなわち紙面の垂直な方向に延びていて、図1はその断面を示している。
この紫外光は波長ピークが300nm~400nmを有するもので、赤外光は波長ピークが1500nmまで有するものである。
これらの光のうち少なくとも紫外光は、他の光と時間的に重ならないようにして(すなわち時間的にスイッチングされながら)発光される。赤外光は、可視光と時間的に重なって発光されることもあり、時間的に重ならないようにして発光されることもある。
保護ガラス14の材質はライン光源10から出射される光を透過させるものであれば良く、例えばアクリル樹脂やシクロオレフィン系樹脂などといった透明の樹脂であってもよい。ただ、本発明の実施の形態では、白板ガラス、ホウケイ酸ガラスなど特に紫外光を透過させるものを使用するのが好ましい。
焦点面20から受光部12までの任意の位置に、受光部12に紫外光が入らないように、紫外光を反射又は吸収することにより遮断する「第3のフィルタ」としての紫外光遮断フィルタ膜15を設けることが好ましい。本発明の実施の形態では、レンズアレイ11の表面に紫外光遮断フィルタ膜15を取り付け、紫外光を遮断する機能を持たせている。本明細書で「光を遮断する」とは、光を反射又は吸収して、透過させないことをいう。
受光部12は基板13に実装され、反射光を受けて光電変換により電気出力として画像を読み取る受光素子を含んで構成されている。受光素子の材質・構造は特に規定されるものではなく、アモルファスシリコン、結晶シリコン、CdS、CdSeなどを用いたフォトダイオードやフォトトランジスタを配置したものであってもよい。またCCD(Charge Coupled Device)リニアイメージセンサであってもよい。さらに受光部12として、フォトダイオードやフォトトランジスタ、駆動回路及び増幅回路を一体としたIC(Integrated Circuit)を複数個並べた、いわゆるマルチチップ方式のリニアイメージセンサを用いることもできる。また、必要に応じて基板13上に駆動回路、増幅回路などの電気回路、あるいは信号を外部に取り出すためのコネクタなどを実装することもできる。さらに基板13上にA/Dコンバータ、各種補正回路、画像処理回路、ラインメモリ、I/O制御回路などを同時に実装してデジタル信号として外部に取り出すこともできる。
<ライン光源>
ライン光源10は、長手方向Lに沿って延びる透明な導光体1と、長手方向Lの一方の端面付近に設けられた第2の光源部3と、長手方向Lの他方の端面付近に設けられた第1の光源部4と、導光体1の各側面(底側面1a及び左右側面1b,1c)を保持するためのカバー部材2と、底側面1aと左右側面1bとの間に斜めに形成された光拡散パターン形成面1gに形成され、第2の光源部3及び第1の光源部4から導光体1の端面1e,1fに入射され導光体1の中を進む光を拡散・屈折させて、導光体1の光出射側面1dから出射させるための光拡散パターンPとを有している。また好ましくは、導光体1の端面1e,1fにそれぞれ形成された第2のフィルタ6、第1のフィルタ7を有している。
導光体1は、細長い柱状であり、その長手方向Lに直交する断面は、長手方向Lのどの切り口においても、実質的に同じ形状、同じ寸法をしている。また導光体1のプロポーション、すなわち導光体1の長手方向Lの長さと、その長手方向Lに直交する断面の高さHとの比率は10よりも大きく、好ましくは30よりも大きい。例えば導光体1の長さが200mmであれば、その長手方向Lに直交する断面の高さHは5mm程度である。
この光拡散パターンPは、導光体1の光拡散パターン形成面1gに彫刻された複数のV字状の溝により構成されている。この複数のV字状の溝の各々は、導光体1の長手方向Lに直交する方向に延びるよう形成されており、互いに同じ長さを有している。複数のV字状の溝は、断面が例えば二等辺三角形状を有していてもよい。
カバー部材2は、導光体1の長手方向Lに沿った細長い形状であり、導光体1の底側面1a及び左右側面1b,1cを覆うことができるように、導光体1の光拡散パターン形成面1gに対向する底面2a、導光体1の右側面1bに対向する右側面2b、及び導光体1の左側面に対向する左側面2cを有している。これらの3つの側面はそれぞれ平面をなしており、これらの3つの内面で断面がほぼU字状の凹部を形成するので、導光体1をこの凹部の中に挿入することができる。この覆った状態で、カバー部材2の底面2aが導光体1の底側面1aに密着し、カバー部材2の右側面2bが導光体1の右側面1bに密着し、左側面2cが導光体1の左側面1cに密着する。このため、カバー部材2で導光体1を保護することができる。
第1の光源部4は、導光体1に対して紫外光を発光する光源であり、300nm~400nmの紫外光LED光源等が使用可能である。好ましくは330nm~380nmの範囲にピーク発光波長を有する紫外発光ダイオードが用いられる。
反射させる干渉波フィルタとしては、例えば、酸化珪素と五酸化タンタルなどを採用し、それぞれの透過率や屈折率及び膜厚を調整して多層蒸着することにより所望のバンドパスフィルタ特性を確保することで得られる。なお、当然ながら通常の光学関連産業用に従来から生産されているバンドパスフィルタで、要求性能を満足するものであれば採用に際して特に制限はない。
第2のフィルタ6が紫外光を吸収するフィルタであれば、有機系の紫外光吸収剤を透明フィルムに混入あるいはコーティングした紫外光吸収フィルムであってもよい。また、干渉波フィルタで、例えば、酸化珪素と酸化チタンなどを採用し、それぞれの透過率や屈折率及び膜厚を調整して多層蒸着することにより紫外光を反射、吸収両機能により遮断することで所望波長特性を確保してもよい。
なお、第2のフィルタ6、第1のフィルタ7の導光体1への設置方法は任意であり、導光体1の端面1e,1fに塗布又は蒸着により被覆してもよい。またフィルム状もしくは板状の第2のフィルタ6、第1のフィルタ7を用意し、導光体1の端面1e,1fに密着させて、もしくは端面1e,1fから一定の距離をおいて取り付けてもよい。
また、第2のフィルタ6、第1のフィルタ7を導光体1の端面1e,1fに設けるのではなく、第2の光源部3、第1の光源部4に設けることも可能である。この場合、各光源部3,4にフィルタ6,7を塗布又は蒸着により被覆してもよいし、フィルム状もしくは板状のフィルタ6,7を用意し、各光源部3,4に密着させて取り付けてもよい。あるいは、第2の光源部3の封止剤に、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、紫外光を遮断する物質を添加することにより、第2のフィルタ6を構成してもよい。同様に、第1の光源部4の封止剤に、紫外光を透過させ、可視光、又は可視光から赤外光までを含む波長範囲の光を遮断する物質を添加することにより、第1のフィルタ7を構成してもよい。
1d 光出射側面
1e 第2の端面
1f 第1の端面
1g 導光体1の光拡散パターン形成面
3 第2の光源部
4 第1の光源部
6 第2のフィルタ
7 第1のフィルタ
10 ライン光源
11 レンズアレイ
12 受光部
15 第3のフィルタ
Claims (10)
- 紙葉類を読み取る光ラインセンサユニットの照明光源として用いられるライン光源であって、
長手方向に延びる、紫外光から可視光までの光、又は紫外光から可視光、赤外光までを含む波長範囲の光を透過する樹脂で形成された導光体と、
前記導光体の第1の端面に配置され、紫外光を照射する第1の光源部と、
前記導光体の第2の端面に配置され、可視光、又は可視光から赤外光までを含む波長範囲の光を照射する第2の光源部とを備え、
前記第1の光源部から発光される光、又は前記第2の光源部から発光される光を前記導光体の光出射側面から出射する、ライン光源。 - 前記導光体の第1の端面と前記第1の光源部との間に配置され、紫外光を透過させ、可視光、又は可視光から赤外光までを含む波長範囲の光を遮断する第1のフィルタを備える、請求項1に記載のライン光源。
- 前記導光体の第2の端面と前記第2の光源部との間に配置され、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、紫外光を遮断する第2のフィルタとを備え、る、請求項1に記載のライン光源。
- 前記導光体の第2の端面と前記第2の光源部との間に配置され、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、紫外光を遮断する第2のフィルタをさらに備える、請求項2に記載のライン光源。
- 前記導光体の第1の端面と前記第1の光源部との間に配置され、紫外光を透過させ、可視光、又は可視光から赤外光までを含む波長範囲の光を反射する第1のフィルタと、
前記導光体の第2の端面と前記第2の光源部との間に配置され、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、紫外光を反射する第2のフィルタとを備える、請求項1に記載のライン光源。 - 前記第2のフィルタと前記第1のフィルタは、光透過率及び/又は屈折率の異なる誘電体の薄膜もしくは金属酸化物を多層に蒸着して構成されたものである、請求項1から請求項5の何れかに記載のライン光源。
- 前記第2の光源部は紫外LEDと蛍光剤を用いた白色光源である、請求項1から請求項6の何れかに記載のライン光源。
- 前記第2の光源部は青色LEDと蛍光剤を用いた白色光源である、請求項1から請求項6の何れかに記載のライン光源。
- 前記導光体の側面に光拡散パターンが形成されている、請求項1から請求項8の何れかに記載のライン光源。
- 請求項1から請求項9の何れかに記載のライン光源と、そのライン光源から出射され前記紙葉類を反射又は透過した光を導くためのレンズアレイと、
前記レンズアレイにより収束された光を受光し、電気信号に変換する受光部と、を備える光ラインセンサユニットであって、
前記紙葉類から受光部までの任意の位置に、可視光、又は可視光から赤外光までを含む波長範囲の光を透過させ、受光部に紫外光が入らないように、紫外光を遮断する第3のフィルタが設けられている、光ラインセンサユニット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580029441.7A CN106575456B (zh) | 2014-06-02 | 2015-05-26 | 线光源及光线传感器单元 |
EP15803420.7A EP3151204B1 (en) | 2014-06-02 | 2015-05-26 | Line light source and optical line sensor unit |
JP2016525780A JP6246351B2 (ja) | 2014-06-02 | 2015-05-26 | ライン光源及び光ラインセンサユニット |
KR1020167026491A KR101742452B1 (ko) | 2014-06-02 | 2015-05-26 | 라인 광원 및 광라인 센서 유닛 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-114256 | 2014-06-02 | ||
JP2014114256 | 2014-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186566A1 true WO2015186566A1 (ja) | 2015-12-10 |
Family
ID=54766639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065058 WO2015186566A1 (ja) | 2014-06-02 | 2015-05-26 | ライン光源及び光ラインセンサユニット |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3151204B1 (ja) |
JP (1) | JP6246351B2 (ja) |
KR (1) | KR101742452B1 (ja) |
CN (1) | CN106575456B (ja) |
WO (1) | WO2015186566A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018124726A (ja) * | 2017-01-31 | 2018-08-09 | 株式会社沖データ | 光源装置および自動取引装置 |
WO2019234964A1 (ja) * | 2018-06-08 | 2019-12-12 | 株式会社ヴィーネックス | 導光体及びそれを用いた光学ラインセンサ、並びに、導光体の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10180248B2 (en) | 2015-09-02 | 2019-01-15 | ProPhotonix Limited | LED lamp with sensing capabilities |
CN107481394B (zh) * | 2017-07-03 | 2019-10-11 | 深圳怡化电脑股份有限公司 | 纸币的识别方法、识别装置及终端设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046726A (ja) * | 2001-07-30 | 2003-02-14 | Kanegafuchi Chem Ind Co Ltd | 紙葉類の印刷パターン読取装置 |
JP2009290167A (ja) * | 2008-06-02 | 2009-12-10 | Mitsui Mining & Smelting Co Ltd | 発光モジュール |
JP2010266931A (ja) * | 2009-05-12 | 2010-11-25 | Kaneka Corp | ライン光源ユニット及び紙葉類の読取装置 |
JP2011223389A (ja) * | 2010-04-12 | 2011-11-04 | Mitsubishi Electric Corp | 照明装置および画像読取装置 |
JP2012253747A (ja) * | 2011-05-11 | 2012-12-20 | Canon Components Inc | イメージセンサユニットおよびそれを用いた画像読取装置、画像形成装置 |
JP2013083528A (ja) * | 2011-10-07 | 2013-05-09 | Vienex Corp | 密着型光学ラインセンサ装置及び有価紙面の鑑別方法 |
JP2013222346A (ja) * | 2012-04-17 | 2013-10-28 | Vienex Corp | 紫外光照射ユニット及びその実装方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594444B1 (en) * | 1992-10-23 | 1999-02-17 | Canon Kabushiki Kaisha | Image reading apparatus and method for discriminating specific originals |
US5724152A (en) * | 1993-01-01 | 1998-03-03 | Canon Kabushiki Kaisha | Image reading apparatus and image processing apparatus for reading optical information of visible and non-visible light |
JP4420151B2 (ja) | 2000-02-18 | 2010-02-24 | 株式会社カネカ | Uvライン光源ユニット |
JP2003049726A (ja) * | 2001-08-06 | 2003-02-21 | Fuji Heavy Ind Ltd | エンジンの吸気装置 |
US7449666B2 (en) * | 2004-03-16 | 2008-11-11 | Canon Components, Inc. | Color image sensor unit and image reading apparatus using the sensor unit and control method therefor |
JP4684588B2 (ja) | 2004-07-28 | 2011-05-18 | 株式会社ヴィーネックス | 紙葉類の認識装置 |
JP4320656B2 (ja) * | 2005-12-13 | 2009-08-26 | 三菱電機株式会社 | 画像読取装置 |
JP4424336B2 (ja) * | 2006-07-20 | 2010-03-03 | 三菱電機株式会社 | イメージセンサ |
JP2008244985A (ja) * | 2007-03-28 | 2008-10-09 | Mitsubishi Electric Corp | ライン照明装置及びこれを用いた画像入力装置 |
JP2011216945A (ja) * | 2010-03-31 | 2011-10-27 | Ushio Inc | 線状光源装置 |
JP5384471B2 (ja) * | 2010-12-28 | 2014-01-08 | キヤノン・コンポーネンツ株式会社 | イメージセンサユニット、及び、画像読取装置 |
JP2013078102A (ja) * | 2011-06-17 | 2013-04-25 | Rohm Co Ltd | イメージセンサモジュール |
JP5903950B2 (ja) | 2012-03-14 | 2016-04-13 | 三菱電機株式会社 | 画像読み取り用ライン光源 |
JP5974581B2 (ja) * | 2012-03-29 | 2016-08-23 | 富士ゼロックス株式会社 | 画像読取装置および画像形成装置 |
-
2015
- 2015-05-26 CN CN201580029441.7A patent/CN106575456B/zh active Active
- 2015-05-26 KR KR1020167026491A patent/KR101742452B1/ko active IP Right Grant
- 2015-05-26 EP EP15803420.7A patent/EP3151204B1/en active Active
- 2015-05-26 JP JP2016525780A patent/JP6246351B2/ja active Active
- 2015-05-26 WO PCT/JP2015/065058 patent/WO2015186566A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046726A (ja) * | 2001-07-30 | 2003-02-14 | Kanegafuchi Chem Ind Co Ltd | 紙葉類の印刷パターン読取装置 |
JP2009290167A (ja) * | 2008-06-02 | 2009-12-10 | Mitsui Mining & Smelting Co Ltd | 発光モジュール |
JP2010266931A (ja) * | 2009-05-12 | 2010-11-25 | Kaneka Corp | ライン光源ユニット及び紙葉類の読取装置 |
JP2011223389A (ja) * | 2010-04-12 | 2011-11-04 | Mitsubishi Electric Corp | 照明装置および画像読取装置 |
JP2012253747A (ja) * | 2011-05-11 | 2012-12-20 | Canon Components Inc | イメージセンサユニットおよびそれを用いた画像読取装置、画像形成装置 |
JP2013083528A (ja) * | 2011-10-07 | 2013-05-09 | Vienex Corp | 密着型光学ラインセンサ装置及び有価紙面の鑑別方法 |
JP2013222346A (ja) * | 2012-04-17 | 2013-10-28 | Vienex Corp | 紫外光照射ユニット及びその実装方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3151204A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018124726A (ja) * | 2017-01-31 | 2018-08-09 | 株式会社沖データ | 光源装置および自動取引装置 |
WO2019234964A1 (ja) * | 2018-06-08 | 2019-12-12 | 株式会社ヴィーネックス | 導光体及びそれを用いた光学ラインセンサ、並びに、導光体の製造方法 |
JP2019211716A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社ヴィーネックス | 導光体及びそれを用いた光学ラインセンサ、並びに、導光体の製造方法 |
JP7185423B2 (ja) | 2018-06-08 | 2022-12-07 | 株式会社ヴィーネックス | 導光体及びそれを用いた光学ラインセンサ、並びに、導光体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3151204A4 (en) | 2017-07-12 |
CN106575456A (zh) | 2017-04-19 |
CN106575456B (zh) | 2019-04-05 |
KR20160127080A (ko) | 2016-11-02 |
KR101742452B1 (ko) | 2017-05-31 |
EP3151204B1 (en) | 2020-10-14 |
EP3151204A1 (en) | 2017-04-05 |
JPWO2015186566A1 (ja) | 2017-04-20 |
JP6246351B2 (ja) | 2017-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5203289B2 (ja) | ライン光源ユニット及び紙葉類の読取装置 | |
JP6235765B1 (ja) | 紫外線蛍光色検出装置及び紫外線蛍光色検出方法 | |
JP6246351B2 (ja) | ライン光源及び光ラインセンサユニット | |
TWI496451B (zh) | Light source device | |
JP6463912B2 (ja) | ライン光源及びイメージセンサユニット | |
WO2019003480A1 (ja) | 導光体及び画像読取装置 | |
JP2016005093A (ja) | イメージセンサユニット | |
JP6207359B2 (ja) | 照明装置、イメージセンサユニットおよび紙葉類識別装置 | |
JP6867270B2 (ja) | 光ラインセンサユニット | |
JP7049094B2 (ja) | ライン光源及びこれを備えた光ラインセンサユニット | |
JP7076309B2 (ja) | 光ラインセンサユニット | |
JP2014068338A (ja) | 照明装置、イメージセンサユニットおよび紙葉類識別装置 | |
JP7041485B2 (ja) | ライン光源及びこれを備えた光ラインセンサユニット | |
JP7265370B2 (ja) | ライン照明光源 | |
JP2016015031A (ja) | 光学ラインセンサ装置 | |
JP2010114044A (ja) | 線状照明装置 | |
CN216386744U (zh) | 光源装置 | |
CN215492063U (zh) | 光源装置 | |
JP7041539B2 (ja) | 光ラインセンサユニットの受光出力補正方法及び受光出力補正システム、並びに、これに用いられる光ラインセンサユニット | |
JP2011018480A (ja) | 線状照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016525780 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015803420 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015803420 Country of ref document: EP |