WO2015186403A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015186403A1
WO2015186403A1 PCT/JP2015/057725 JP2015057725W WO2015186403A1 WO 2015186403 A1 WO2015186403 A1 WO 2015186403A1 JP 2015057725 W JP2015057725 W JP 2015057725W WO 2015186403 A1 WO2015186403 A1 WO 2015186403A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
radiator
heat exchanger
heating capacity
refrigerant
Prior art date
Application number
PCT/JP2015/057725
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
めぐみ 重田
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to CN201580026853.5A priority Critical patent/CN106457971B/zh
Priority to DE112015002649.5T priority patent/DE112015002649T5/de
Priority to US15/315,959 priority patent/US10562375B2/en
Publication of WO2015186403A1 publication Critical patent/WO2015186403A1/ja
Priority to US16/295,960 priority patent/US11021044B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3258Cooling devices information from a variable is obtained related to temperature of the air at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3263Cooling devices information from a variable is obtained related to temperature of the refrigerant at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3283Cooling devices output of a control signal related to an evaporating unit to control the refrigerant flow

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator (condenser) that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator
  • a heating mode in which the heat dissipated in the radiator is absorbed in the outdoor heat exchanger, a dehumidification mode in which the refrigerant discharged from the compressor is dissipated in the radiator, and the refrigerant dissipated in the radiator is absorbed in the heat absorber
  • compression A refrigerant that has been radiated in an outdoor heat exchanger and is switched and executed in each cooling mode in
  • an injection circuit that diverts the refrigerant that has flowed out of the radiator, decompresses the diverted refrigerant, exchanges heat with the refrigerant that has left the radiator, and returns the refrigerant to the middle of compression.
  • the refrigerant discharged from the compressor is increased, and the heating capacity of the radiator is improved.
  • the air conditioning apparatus as described above has a problem that when the outdoor heat exchanger is frosted, heat cannot be absorbed from the outside air, so that the required heating capacity cannot be obtained.
  • This is shown in FIG.
  • the horizontal axis represents the refrigerant evaporation temperature TXO of the outdoor heat exchanger (or the suction refrigerant temperature Ts of the compressor), and the vertical axis represents the heating capacity (actual heating capacity) actually generated by the radiator.
  • TXObase in the figure is the refrigerant evaporation temperature when the outdoor heat exchanger is not frosted.
  • the present invention has been made to solve the conventional technical problems, and an object of the present invention is to accurately carry out efficient and comfortable vehicle interior heating in a so-called heat pump type vehicle air conditioner. .
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • a heat sink a heat absorber for cooling the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant, an outdoor heat exchanger provided outside the vehicle cabin for radiating or absorbing heat, and control means
  • a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • Auxiliary heating means for heating the air supplied from the air flow passage to the passenger compartment, the control means is a required heating capacity TGQ that is the required heating capacity of the radiator, and the radiator is actually generated Actual heating capacity Based on hp, the required heating capacity TGQhtr of the auxiliary heating means for complementing the shortage of the actual heating capacity Qhp to the required heating capacity TGQ is calculated, the refrigerant evaporation temperature TXO of the outdoor heat exchanger, Based on the difference ⁇ TXO from the refrigerant evaporation temperature TXObase of the outdoor heat exchanger during frosting, a decrease amount ⁇ Qhp of the actual heating capacity Qhp due to the frost formation of the outdoor heat exchanger is calculated, and the required heating capacity TGQhtr of the auxiliary heating means is calculated as described above. Heating by auxiliary heating means is executed by adding a decrease amount ⁇ Qhp.
  • the control means calculates the frost formation rate of the outdoor heat exchanger based on the difference ⁇ TXO, and the frost formation rate exceeds a predetermined value.
  • the compressor is stopped and the auxiliary heating means is controlled by the required heating capacity TGQ.
  • the control means calculates the frost formation rate of the outdoor heat exchanger based on the actual heating capacity decrease amount ⁇ Qhp, and the frost formation rate is When it becomes more than the predetermined value, the compressor is stopped and the auxiliary heating means is controlled by the required heating capacity TGQ.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the control means calculates a maximum heating capacity Qhpmax that can be generated by the radiator, and the frost formation of the outdoor heat exchanger based on the difference ⁇ TXO.
  • the control means calculates a maximum heating capacity Qhpmax that can be generated by the radiator, and the frost formation of the outdoor heat exchanger based on the difference ⁇ TXO.
  • an air conditioning apparatus for a vehicle wherein the control means calculates a maximum heating capacity Qhpmax that can be generated by the radiator and attaches the outdoor heat exchanger based on the difference ⁇ TXO.
  • a reduction amount ⁇ Qhpmax of the maximum heating capacity Qhpmax due to frost is calculated, and when the reduction amount ⁇ Qhpmax becomes a predetermined value or more, the compressor is stopped and the auxiliary heating means is controlled by the required heating capacity TGQ.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the control means stops the compressor when the actual heating capacity decrease amount ⁇ Qhp is equal to or greater than a predetermined value, and the requested heating capacity TGQ The auxiliary heating means is controlled.
  • an air conditioning apparatus for a vehicle according to each of the first and second aspects of the invention, wherein the control means has a maximum heating capacity based on the air volume Ga of the air passing through the radiator, the outside air temperature Tam, and the upper limit rotation speed Ncmax of the compressor.
  • the actual heating capacity Qhp is calculated based on the air volume Ga, the outside air temperature Tam, and the actual rotation speed Nc of the compressor.
  • the vehicle air conditioner according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to the first to sixth aspects of the present invention, wherein the control means is configured such that the difference between the air temperature THout after passing through the radiator and the intake air temperature THin of the radiator THout ⁇ THin), the specific heat Ca of the air flowing into the radiator, and the air volume Ga of the air passing through the radiator are calculated.
  • a vehicle air conditioner according to a ninth aspect of the present invention provides a vehicle air conditioner according to the seventh aspect of the present invention, wherein the auxiliary heating means is disposed upstream of the radiator with respect to the air flow in the air flow path together with the radiator.
  • the means is characterized in that the maximum heating capacity Qhpmax and the actual heating capacity Qhp are calculated in consideration of the intake air temperature THin of the radiator.
  • a vehicle air conditioner includes the heat medium-air heat exchanger, the electric heater, and the circulation means in each of the above inventions, and heats the heat medium heated by the electric heater by the circulation means.
  • a heat medium circulation circuit that circulates in the medium-air heat exchanger is provided, and auxiliary heating means is configured by the heat medium-air heat exchanger.
  • An air conditioner for a vehicle according to an eleventh aspect of the invention is characterized in that in the inventions according to the first to ninth aspects, an auxiliary heater is constituted by an electric heater.
  • a vehicle air conditioner includes a heat radiator-refrigerant heat exchanger that is provided with a radiator outside the air flow passage in the first to eighth aspects of the invention, and that exchanges heat with the radiator.
  • a heat medium-air heat exchanger provided in the air flow passage, an electric heater, and a circulation means, and the heat medium-refrigerant heat exchanger and / or the heat medium heated by the electric heater is circulated.
  • the auxiliary heating means is constituted by a heat medium circulation circuit that circulates to the heat medium-air heat exchanger.
  • a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
  • a heat absorber for cooling the refrigerant to absorb heat and supplying air from the air flow passage to the vehicle interior
  • an outdoor heat exchanger that is provided outside the vehicle and radiates or absorbs the refrigerant
  • a control means In the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by this control means, and the radiated refrigerant is depressurized and then absorbed by the outdoor heat exchanger.
  • Auxiliary heating means for heating the air supplied from the air flow passage to the vehicle interior is provided, and the control means includes a required heating capacity TGQ that is a required heating capacity of the radiator, and an actual amount actually generated by the radiator.
  • Heating capacity Based on hp the required heating capacity TGQhtr of the auxiliary heating means for complementing the shortage of the actual heating capacity Qhp with respect to the required heating capacity TGQ is calculated and the heating by the auxiliary heating means is executed, so the required heating capacity TGQ
  • the actual heating capacity Qhp of the radiator is insufficient, the air supplied to the vehicle interior can be heated by the auxiliary heating means to supplement the heating capacity, thereby realizing comfortable vehicle interior heating. It becomes possible.
  • the heating by the auxiliary heating means is executed under the condition where the heating capacity by the radiator is insufficient, it is possible to minimize the deterioration of the efficiency due to the heating by the auxiliary heating means. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
  • control means calculates the reduction amount ⁇ Qhp of the actual heating capacity Qhp due to frost formation of the outdoor heat exchanger, adds the reduction amount ⁇ Qhp to the required heating capacity TGQhtr of the auxiliary heating means, and executes heating by the auxiliary heating means.
  • the reduction amount ⁇ Qhp can be supplemented by the auxiliary heating means, and the comfort can be further improved. become able to.
  • control means determines the actual heating capacity by frosting of the outdoor heat exchanger based on the difference ⁇ TXO between the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed. Since the Qhp decrease amount ⁇ Qhp is calculated, it is possible to accurately calculate the decrease amount ⁇ Qhp and accurately control the auxiliary heating means.
  • the control means calculates the frost formation rate of the outdoor heat exchanger based on the difference ⁇ TXO, and stops the compressor when the frost formation rate exceeds a predetermined value.
  • the auxiliary heating means is controlled by the required heating capacity TGQ, the degree of progress of frost formation from the difference ⁇ TXO to the outdoor heat exchanger is grasped, and if the frost formation has progressed, the auxiliary heating means It becomes possible to switch to the vehicle interior heating only. As a result, it is possible to continue heating the vehicle interior by the auxiliary heating means while preventing further frost growth of the outdoor heat exchanger or promoting frost melting.
  • the control means calculates the frost formation rate of the outdoor heat exchanger based on the actual heating capacity decrease amount ⁇ Qhp, and when this frost formation rate becomes a predetermined value or more, the compressor Even if the auxiliary heating means is controlled by the required heating capacity TGQ, the degree of frost formation to the outdoor heat exchanger is grasped from the actual heating capacity reduction amount ⁇ Qhp, and the frost formation proceeds. In the event of a stagnation, it is possible to switch to vehicle interior heating using only auxiliary heating means. As a result, similarly, further growth of frost on the outdoor heat exchanger can be prevented, or the vehicle interior can be continuously heated by the auxiliary heating means while thawing the frost.
  • control means calculates the maximum heating capacity Qhpmax that can be generated by the radiator, and calculates a decrease amount ⁇ Qhpmax of the maximum heating capacity Qhpmax due to frost formation of the outdoor heat exchanger based on the difference ⁇ TXO.
  • the frost formation rate of the outdoor heat exchanger is calculated based on the reduction amount ⁇ Qhpmax of the maximum heating capacity, and when the frost formation rate exceeds a predetermined value, the compressor is stopped and the required heating capacity Even if the auxiliary heating means is controlled by TGQ, the degree of progress of frost formation to the outdoor heat exchanger is ascertained from the reduction amount ⁇ Qhpmax of the maximum heating capacity, and if the frost formation has progressed, the auxiliary heating means It becomes possible to switch to the vehicle interior heating only. As a result, similarly, further growth of frost on the outdoor heat exchanger can be prevented, or the vehicle interior can be continuously heated by the auxiliary heating means while thawing the frost.
  • the control means calculates the maximum heating capacity Qhpmax that can be generated by the radiator, and the reduction amount ⁇ Qhpmax of the maximum heating capacity Qhpmax due to frost formation of the outdoor heat exchanger based on the difference ⁇ TXO. If the amount of decrease ⁇ Qhpmax is equal to or greater than a predetermined value, the compressor is stopped and the auxiliary heating means is controlled by the required heating capacity TGQ, so that the outdoor heat directly from the decrease amount ⁇ Qhpmax of the maximum heating capacity The degree of progress of frost formation on the exchanger is judged, and when frost formation has progressed, it is possible to switch to vehicle interior heating only by the auxiliary heating means. As a result, similarly, further growth of frost on the outdoor heat exchanger can be prevented, or the vehicle interior can be continuously heated by the auxiliary heating means while thawing the frost.
  • the control means stops the compressor and controls the auxiliary heating means with the required heating capacity TGQ.
  • the degree of progress of frosting directly to the outdoor heat exchanger can be determined from the decrease amount ⁇ Qhp of the actual heating capacity, and when frosting has progressed, it can be switched to heating in the vehicle interior only by the auxiliary heating means. become.
  • further growth of frost on the outdoor heat exchanger can be prevented, or the vehicle interior can be continuously heated by the auxiliary heating means while thawing the frost.
  • the control means calculates the maximum heating capacity Qhpmax based on the air volume Ga of the air passing through the radiator, the outside air temperature Tam, and the upper limit rotation speed Ncmax of the compressor, and the air volume.
  • the control means By calculating the maximum heating capacity Qhpmax and the actual heating capacity Qhp in consideration of the air temperature THin, when the air heated by the auxiliary heating means flows into the radiator, the change in the amount of heat associated therewith is taken into account.
  • the maximum heating capacity Qhpmax and actual heating capacity Qhp of the radiator can be accurately calculated.
  • the control means has a difference (THout ⁇ THin) between the air temperature THout after passing through the radiator and the intake air temperature THin of the radiator and the specific heat of the air flowing into the radiator. Even if the actual heating capacity Qhp is calculated based on Ca and the air volume Ga of the air passing through the radiator, it is possible to accurately calculate the actual heating capacity Qhp of the radiator and control heating by the auxiliary heating means. It becomes.
  • the heat medium-air heat exchanger, the electric heater, and the circulation means are provided, and the heat medium heated by the electric heater is circulated to the heat medium-air heat exchanger by the circulation means.
  • the auxiliary heating means is constituted by an electric heater as in the invention of claim 11, the structure can be simplified.
  • a heat radiator is provided outside the air flow passage, a heat medium-refrigerant heat exchanger for exchanging heat with the heat radiator, and a heat medium-air heat exchanger provided in the air flow passage.
  • an electric heater and a circulation means and the heat medium circulation medium for circulating the heat medium-refrigerant heat exchanger and / or the heat medium heated by the electric heater to the heat medium-air heat exchanger by the circulation means.
  • the electrical safety can also be improved by configuring the auxiliary heating means from the circuit.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • a heat exchanger 9 an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9.
  • Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • reference numeral 23 denotes a heat medium circulation circuit provided in the vehicle air conditioner 1 of the embodiment.
  • the heat medium circulation circuit 23 has a circulation pump 30 constituting a circulation means, a heat medium heating electric heater (indicated by ECH in the drawing) 35, and an air downstream of the radiator 4 with respect to the air flow in the air flow passage 3.
  • a heat medium-air heat exchanger 40 (auxiliary heating means in the present invention) provided in the air flow passage 3 on the side, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
  • the heat medium circulated in the heat medium circuit 23 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
  • the circulation pump 30 When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 35 is circulated to the heat medium-air heat exchanger 40.
  • the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 becomes a so-called heater core, and complements the heating of the passenger compartment.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • 32 is a controller (ECU) as a control means constituted by a microcomputer, and an input of the controller 32 detects an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle and an outside air humidity.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, and the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air in the vehicle, the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior.
  • a discharge pressure sensor 42 for detecting the discharge refrigerant pressure of the compressor 2 for detecting the discharge refrigerant pressure of the compressor 2, a discharge temperature sensor 43 for detecting the discharge refrigerant temperature of the compressor 2, and a compression
  • a suction pressure sensor 44 that detects the suction refrigerant pressure 2
  • a radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4, or the temperature of the radiator 4 itself), and the radiator 4, a radiator pressure sensor 47 for detecting the refrigerant pressure (inside the radiator 4 or immediately after leaving the radiator 4), and the temperature of the heat absorber 9 (the temperature of air passing through the heat absorber 9, or
  • a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 itself, and a heat absorber pressure for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or just after leaving the heat absorber 9).
  • a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation in the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and switching between set temperature and operation mode.
  • An air conditioning (air conditioner) operation unit 53 for setting;
  • An outdoor heat exchanger temperature sensor 54 for detecting the temperature of the external heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself), and the outdoor heat exchanger 7
  • the outdoor heat exchanger 7 Are connected to the outputs of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after coming out of the outdoor heat exchanger 7).
  • the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35.
  • the temperature of the electric heater through the heat medium heating air heater 40 (the temperature of the air passing through the heat medium-air heat exchanger 40, Alternatively, the outputs of the heat medium-air heat exchanger temperature sensor 55 for detecting the temperature of the heat medium-air heat exchanger 40 itself are also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet damper 31, and the outdoor expansion valve. 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • the controller 32 opens the solenoid valve 21, and the solenoid valve 17, the solenoid valve 22, and the solenoid valve. 20 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the operation and action of the heat medium circulation circuit 23 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump (indicated by HP in the drawing).
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the outlet 29 through the heat medium-air heat exchanger 40, the vehicle interior is thereby heated.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47, and the temperature of the radiator 4 detected by the radiator temperature sensor 46.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and adjusts the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled.
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above.
  • refrigerant pressure of the radiator 4 Radiator pressure PCI
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)).
  • the air mix damper 28 is in a state in which no air is passed through the radiator 4 and the heat medium-air heat exchanger 40. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • Heating mode and auxiliary heating by heating medium circulation circuit in heating mode Next, control of compressor 2 and outdoor expansion valve 6 in heating mode and auxiliary heating by heating medium circulation circuit 23 in the heating mode Will be described.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 calculates a target radiator temperature TCO from the target blowing temperature TAO, and then calculates a target radiator pressure PCO based on the target radiator temperature TCO. Then, based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure) Pci of the radiator 4 detected by the radiator pressure sensor 47, the controller 32 calculates the rotation speed Nc of the compressor 2, and this rotation The compressor 2 is operated at several Nc. That is, the controller 32 controls the refrigerant pressure Pci of the radiator 4 by the rotation speed Nc of the compressor 2.
  • the controller 32 calculates the target radiator subcooling degree TGSC of the radiator 4 based on the target outlet temperature TAO.
  • the controller 32 uses the radiator pressure Pci and the temperature of the radiator 4 (radiator temperature Tci) detected by the radiator temperature sensor 46 to determine the degree of refrigerant supercooling (radiator subcooling degree SC) in the radiator 4. Is calculated.
  • the target valve opening degree of the outdoor expansion valve 6 target outdoor expansion valve opening degree TGECCV
  • the controller 32 controls the valve opening degree of the outdoor expansion valve 6 to this target outdoor expansion valve opening degree TGECCV.
  • the controller 32 performs calculation in a direction to increase the target radiator subcooling degree TGSC as the target blowout temperature TAO is higher.
  • the controller 32 is not limited to this, and the difference (capacity difference) between the required heating capacity TGQ and the maximum heating capacity Qhpmax, which will be described later, It may be calculated based on the difference (pressure difference) between the radiator pressure Pci, the target radiator pressure PCO and the radiator pressure Pci. In this case, the controller 32 decreases the target radiator subcooling degree TGSC as the capacity difference is smaller, the pressure difference is smaller, the air volume of the indoor blower 27 is smaller, or the radiator pressure Pci is smaller.
  • the circulation pump 30 of the heat medium circulation circuit 23 When the circulation pump 30 of the heat medium circulation circuit 23 is operated and the heat medium heating electric heater 35 is energized, as described above, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is the heat medium. -Since it is circulated through the air heat exchanger 40, the air passing through the radiator 4 in the air flow passage 3 is heated. Therefore, in the heating mode, the target value of the temperature of the air that exits the heat medium-air heat exchanger 40 and is blown out from the outlet 29 becomes the target radiator temperature TCO.
  • the controller 32 has a required heating capacity TGQ (kW) that is a heating capacity of the radiator 4 required by using the formula (II), the formula (III), and the formula (IV), and the maximum heating capacity that the radiator 4 can generate.
  • Qhpmax (kW) and the actual heating capacity Qhp (kW) actually generated by the radiator 4 are calculated.
  • the maximum heating capacity Qhpmax is a predicted value of the maximum heating capacity that can be generated by the radiator 4 at the outdoor temperature Tam at that time (that is, the estimated maximum heating capacity of the heat pump).
  • the actual heating capacity Qhp is a predicted value of the heating capacity actually generated by the radiator 4 at the outdoor temperature Tam at that time and the rotation speed Nc of the compressor 2.
  • TGQ (TCO ⁇ Te) ⁇ Ca ⁇ ⁇ ⁇ Qair (II)
  • Qhpmax kQhpest1 ⁇ Ga + kQhpest2 ⁇ Tam + kQhpest3 ⁇ Ncmax + kQhpest4
  • Qhp kQhpest1 ⁇ Ga + kQhpest2 ⁇ Tam + kQhpest3 ⁇ Nc + kQhpest4
  • Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48
  • Ca is the specific heat [kJ / m 3 ⁇ K] of the air flowing into the radiator 4
  • is the density of the air flowing into the radiator 4 ( Specific volume) [kg / m 3 ]
  • Qair is the amount of air passing through the radiator 4 [m 3 / h] (estimated from the blower voltage BLV etc. of the indoor fan 27)
  • Ga is the amount of air flowing through the radiator 4 ( m 3 / s)
  • Ncmax is the upper limit rotational speed of the compressor 2
  • Nc is the rotational speed (actual rotational speed) of the compressor 2.
  • kQhbest1, kQhbest2, kQhbest3, and kQhest4 in the formulas (III) and (IV) are coefficients obtained in advance from actual measurement.
  • the controller 32 calculates the difference between the required heating capacity TGQ and the maximum heating capacity Qhpmax of the radiator 4 by using the equation (V), and uses this to calculate the difference between the heat medium circulation circuit 23 (the heat medium ⁇ auxiliary heating means ⁇ An estimated value TGQhtr0 of the required heating capacity of the air heat exchanger 40. The same applies hereinafter) is calculated.
  • the controller 32 calculates a difference between the maximum heating capacity Qhpmax and the actual heating capacity Qhp of the radiator 4 using the formula (VI), and calculates a correction value TGQhthr for the required heating capacity of the heat medium circulation circuit 23.
  • TGQhtr0 TGQ ⁇ Qhpmax (V)
  • TGQhthr Qhpmax ⁇ Qhp (VI)
  • the controller 32 calculates the required heating capacity TGQhtr of the heat medium circulation circuit 23 by adding the correction value TGQhthr to the estimated value TGQhtr0 of the required heating capacity in the formula (VII).
  • TGQhtr TGQthr0 + TGQhthh (VII) Since the right side of the formula (VII) is the sum of the right side of the formula (V) and the right side of the formula (VI), the required heating capacity TGQhtr is the required heating capacity TGQ of the radiator 4 and the actual heating capacity Qhp of the radiator 4. (TGQ ⁇ Qhp).
  • the difference (TGQ ⁇ Qhp) between the required heating capacity TGQ and the actual heating capacity Qhp of the radiator 4 is an amount that the actual heating capacity Qhp is insufficient with respect to the required heating capacity TGQ of the radiator 4.
  • the required heating capacity TGQhtr of the heat medium circulation circuit 23 is calculated.
  • the controller 32 obtains the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54, and when no frost is formed on the outdoor heat exchanger 7 in a low humidity environment.
  • a decrease amount ⁇ Qhp of the actual heating capability Qhp and a decrease amount ⁇ Qhpmax of the maximum heating capability Qhpmax of the radiator 4 due to frost formation of the outdoor heat exchanger 7 are calculated.
  • the controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of non-frosting using the following formula (VIII).
  • Tam which is a parameter of the formula (VIII)
  • Nc is the rotational speed of the compressor 2
  • BLV is the blower voltage of the indoor blower 27
  • VSP is from the vehicle speed sensor 52 as described above. This is the vehicle speed to be obtained
  • k5 to k8 are coefficients, which are obtained in advance by experiments.
  • the TXObase tends to decrease as the outdoor air temperature Tam (the intake air temperature of the outdoor heat exchanger 7) decreases. Therefore, the coefficient k5 is a positive value. Moreover, TXObase tends to become low, so that the rotation speed Nc of the compressor 2 is high (the refrigerant
  • Qhph K ⁇ Q ⁇ Qhp (IX)
  • Qhpmaxh K ⁇ Q ⁇ Qhpmax (X)
  • the relationship between the difference ⁇ TXO and the coefficient K ⁇ Q is shown in FIG. Since the refrigerant evaporation temperature TXO decreases due to the progress of frost formation on the outdoor heat exchanger 7, the larger the difference ⁇ TXO, the greater the frost formation rate of the outdoor heat exchanger 7 and the lower the heating capacity of the radiator 4. become.
  • the relationship between the difference ⁇ TXO and the coefficient K ⁇ Q shown in FIG. 3 is obtained in advance by actual measurement.
  • the coefficient K ⁇ Q decreases as the difference ⁇ TXO increases, that is, as the frosting rate of the outdoor heat exchanger 7 increases. Qhph and Qhpmaxh become smaller.
  • the controller 32 adds the heating capacity decrease amount ⁇ Qhp of the radiator 4 to the required heating capacity TGQhtr of the heat medium circulation circuit 23 calculated by the above formula (VII), and the heat medium-air heat exchanger 40 (auxiliary heating).
  • the TGQhtr is corrected so that the heating capacity of the means) becomes (TGQhtr + ⁇ Qhp), and the energization of the heat medium heating electric heater 35 of the heat medium circulation circuit 23 and the operation of the circulation pump 30 are controlled.
  • the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 causes the vehicle to It becomes possible to supplement the heating capacity by heating the air supplied to the room, and to realize comfortable vehicle interior heating.
  • the heating by the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is executed under a situation where the heating capacity of the radiator 4 is insufficient, the efficiency associated with the heating by the heat medium circulation circuit 23 is also deteriorated. It can be minimized. Thereby, especially in an electric vehicle, it becomes possible to effectively suppress the disadvantage that the cruising distance decreases.
  • the controller 32 calculates a decrease amount ⁇ Qhp of the actual heating capacity Qhp due to frost formation of the outdoor heat exchanger 7, adds the decrease amount ⁇ Qhp to the required heating capacity TGQhtr of the heat medium circulation circuit 23, and heats the heat medium circulation circuit 23. Since heating by the medium-air heat exchanger 40 is executed, when the frost is generated in the outdoor heat exchanger 7 and the actual heating capacity Qhp is reduced, the reduction amount ⁇ Qhp is also supplemented by the heat medium circulation circuit 23. And the comfort can be further improved.
  • the controller 32 causes the outdoor heat exchanger 7 to be frosted based on the difference ⁇ TXO between the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when no frost is formed. Since the amount of decrease ⁇ Qhp of the actual heating capacity Qhp is calculated, the amount of decrease ⁇ Qhp can be accurately calculated and the control of the heat medium circuit 23 can be accurately executed.
  • the radiator 4 is actually based on the air volume Ga of the air passing through the radiator 4, the outside air temperature Tam, and the rotation speed (actual rotation speed) Nc of the compressor 2.
  • the actual heating capacity Qhp which is a predicted value of the heating capacity generated in the above, is calculated
  • the actual heating capacity Qhp may be calculated using the following formula (XIII).
  • THout is the air temperature (° C.) after passing through the radiator 4, and THin is the air temperature before passing through the radiator 4, that is, the intake air temperature (° C.) of the radiator 4.
  • the difference (THout ⁇ THin) is the temperature rise of the air generated by passing through the radiator 4, and the actual heating capacity Qhp of the radiator 4 is also calculated by multiplying this by the specific heat Ca and the air volume Ga. can do.
  • FIG. 4 shows the relationship between the difference ⁇ TXO and the frost rate when determining the frost rate of the outdoor heat exchanger 7 from the difference ⁇ TXO.
  • the frosting rate also decreases to 0 at a predetermined inclination angle as it decreases to ⁇ 1 (deg) (hysteresis 1 deg).
  • the controller 32 cancels the start prohibition of the compressor 2 when the frost rate falls below a predetermined value (for example, 100%), and returns to the heating mode by the radiator 4 of the refrigerant circuit R and the heat medium circulation circuit 23 again. .
  • the heating medium circulation circuit 23 is used to heat the vehicle interior while preventing further growth of frost formation in the outdoor heat exchanger 7 of the refrigerant circuit R or promoting frost melting. Can be continued.
  • FIG. 5 shows another example of the stop control of the compressor 2.
  • the frost formation rate of the outdoor heat exchanger 7 is calculated based on the difference TXO.
  • the present invention is not limited to this, and the above-described reduction amount ⁇ Qhpmax of the maximum heating capacity Qhpmax of the radiator 4 or The frost formation rate of the outdoor heat exchanger 7 is calculated based on the reduction amount ⁇ Qhp of the actual heating capacity Qhp, and the compressor 2 of the refrigerant circuit R is stopped when the frost formation rate exceeds a predetermined value. Also good.
  • FIG. 5 shows the relationship between the reduction amounts ⁇ Qhpmax, ⁇ Qhp and the frost formation rate when determining the frost formation rate of the outdoor heat exchanger 7 from the reduction amounts ⁇ Qhpmax, ⁇ Qhp.
  • the controller 32 determines that the frost rate is 0 when the reduction amounts ⁇ Qhpmax and ⁇ Qhp are 0. From this state, as the reduction amounts ⁇ Qhpmax and ⁇ Qhp increase to 1000 (W), the frost formation rate increases to 100% at a predetermined inclination angle.
  • the frosting rate is also reduced to 0 at a predetermined inclination angle as it decreases to ⁇ 100 (W) (hysteresis 100 W).
  • the controller 32 cancels the start prohibition of the compressor 2 when the frost rate falls below a predetermined value (for example, 100%), and returns to the heating mode by the radiator 4 of the refrigerant circuit R and the heat medium circulation circuit 23 again. .
  • the progress of frost formation on the outdoor heat exchanger 7 is grasped from the decrease amount ⁇ Qhpmax of the maximum heating capacity Qhpmax of the radiator 4 and the decrease amount ⁇ Qhp of the actual heating capacity Qhp, and the frost formation proceeds.
  • the vehicle interior heating by only the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 further growth of frost formation of the outdoor heat exchanger 7 of the refrigerant circuit R is prevented.
  • the vehicle interior can be continuously heated by the heat medium circulation circuit 23 while promoting frost melting.
  • the present invention is not limited thereto, and the degree of frost formation of the outdoor heat exchanger 7 is directly determined from the reduction amount ⁇ Qhpmax of the maximum heating capacity Qhpmax of the radiator 4 and the reduction amount ⁇ Qhp of the actual heating capacity Qhp, and each reduction amount ⁇ Qhpmax Alternatively, when ⁇ Qhp is equal to or greater than a predetermined value, it may be determined that frosting of the outdoor heat exchanger 7 has progressed, and the compressor 2 may be stopped.
  • FIG. 6 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
  • FIG. 7 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the heat medium circulation circuit 23 of FIG. In the case of the above-described heat medium circulation circuit 23, the heat medium heating electric heater 35 is provided outside the passenger compartment outside the air flow passage 3, so that electrical safety is ensured, but the configuration is complicated.
  • FIG. 8 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the refrigerant circuit R in this embodiment is the same as that shown in FIG.
  • the heat medium-air heat exchanger 40 of the heat medium circuit 23 is disposed upstream of the radiator 4 and downstream of the air mix damper 28 with respect to the air flow in the air flow passage 3.
  • Other configurations are the same as those in FIG.
  • the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the upstream side of the radiator 4.
  • the heat medium in the heat medium circulation circuit 23 is used.
  • the problem caused by the low temperature is not caused.
  • cooperative heating with the radiator 4 is facilitated, but since the air that has passed through the heat medium-air heat exchanger 40 flows into the radiator 4, the maximum heating capacity Qhpmax of the radiator 4 described above can be obtained.
  • a value obtained by multiplying the intake air temperature THin of the radiator 4 by a predetermined coefficient kOhbest5 also a coefficient obtained in advance from actual measurement
  • the intake air temperature THin of the radiator 4 is the temperature of the air that has passed through the heat medium-air heat exchanger 40 detected by the heat medium-air heat exchanger temperature sensor 55.
  • the controller 32 when the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is disposed on the upstream side of the heat radiator 4 with respect to the air flow in the air flow passage 3 together with the heat radiator 4, the controller 32.
  • the maximum heating capacity Qhpmax and the actual heating capacity Qhp in consideration of the intake air temperature THin of the radiator 4
  • the air heated by the heat medium-air heat exchanger 40 is supplied to the radiator 4.
  • FIG. 9 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the heat medium circulation circuit 23 of FIG. The present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R employing such an electric heater 73.
  • FIG. 10 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 (auxiliary heating means) of this embodiment is basically the same as that in FIG. 1, but the radiator 4 is not provided in the air flow passage 3. , Is placed outside of it. Instead, the radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship.
  • This heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23-
  • the air heat exchanger 40 is provided in the air flow passage 3.
  • the heating medium heating electric heater 35 is energized to heat the heating medium flowing in the heating medium circuit 23A.
  • the electric heater as described above is provided in the air flow passage 3.
  • the present invention is applied to the vehicle air conditioner 1 that switches between the heating mode, the dehumidifying and heating mode, the dehumidifying and cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed. In addition, the present invention is effective.
  • the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】所謂ヒートポンプ方式の車両用空気調和装置において、効率の良い快適な車室内暖房を的確に行う。 【解決手段】空気流通路3から車室内に供給する空気を加熱する熱媒体循環回路23を備える。放熱器4の要求暖房能力TGQに対して実暖房能力Qhpが不足する分を補完する熱媒体循環回路の要求暖房能力TGQhtrを算出する。室外熱交換器7の冷媒蒸発温度TXOと無着霜時の冷媒蒸発温度TXObaseの差ΔTXOから実暖房能力Qhpの低下量ΔQhpを算出し、要求暖房能力TGQhtrに低下量ΔQhpを加えて熱媒体循環回路による加熱を実行する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 また、特許文献1では放熱器から出た冷媒を分流し、この分流した冷媒を減圧した後、当該放熱器を出た冷媒と熱交換させ、圧縮機の圧縮途中に戻すインジェクション回路を設け、それにより、圧縮機の吐出冷媒を増加させ、放熱器による暖房能力を向上させていた。
特許第3985384号公報
 しかしながら、上記のような空気調和装置では、室外熱交換器に着霜した場合、外気中から吸熱することができなくなるため、所要の暖房能力が得られなくなる問題がある。この様子を図11に示す。横軸は室外熱交換器の冷媒蒸発温度TXO(又は、圧縮機の吸込冷媒温度Ts)、縦軸は放熱器が実際に発生する暖房能力(実暖房能力)である。また、図中TXObaseは室外熱交換器に着霜していないときの冷媒蒸発温度である。
 この図からも明らかな如く、室外熱交換器に着霜すると冷媒蒸発温度TXOが無着霜時の冷媒蒸発温度TXObaseより低下していく(差ΔTXO=TXObase-TXO)。それに伴い、圧縮機の各回転数において、放熱器の暖房能力も低下していくことが分かる。尚、圧縮機の回転数が低下することで冷媒蒸発温度TXOは上昇する。
 また、放熱器を出た冷媒の温度は低いため、分流されて減圧された冷媒との熱交換量も少なくなる。そのため、圧縮機の圧縮途中にガスをインジェクションするためには、インジェクション回路に流す冷媒の量を増やすことに限界があり、圧縮機の吐出冷媒を十分に増加させることができず、結果として十分な暖房能力が得られなくなる欠点があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂ヒートポンプ方式の車両用空気調和装置において、効率の良い快適な車室内暖房を的確に行うことを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、空気流通路から車室内に供給する空気を加熱するための補助加熱手段を備え、制御手段は、要求される放熱器の暖房能力である要求暖房能力TGQと、当該放熱器が実際に発生する実暖房能力Qhpに基づき、要求暖房能力TGQに対して実暖房能力Qhpが不足する分を補完するための補助加熱手段の要求暖房能力TGQhtrを算出すると共に、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXOに基づいて室外熱交換器の着霜による実暖房能力Qhpの低下量ΔQhpを算出し、補助加熱手段の要求暖房能力TGQhtrに前記低下量ΔQhpを加えて補助加熱手段による加熱を実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、前記差ΔTXOに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御することを特徴とする。
 請求項3の発明の車両用空気調和装置は、請求項1の発明において制御手段は、実暖房能力の低下量ΔQhpに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御することを特徴とする。
 請求項4の発明の車両用空気調和装置は、請求項1の発明において制御手段は、放熱器が発生可能な最大暖房能力Qhpmaxを算出し、前記差ΔTXOに基づいて室外熱交換器の着霜による最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出すると共に、この最大暖房能力の低下量ΔQhpmaxに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御することを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項1の発明において制御手段は、放熱器が発生可能な最大暖房能力Qhpmaxを算出すると共に、前記差ΔTXOに基づいて室外熱交換器の着霜による最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出し、この低下量ΔQhpmaxが所定値以上となった場合、圧縮機を停止し、要求暖房能力TGQにより補助加熱手段を制御することを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項1の発明において制御手段は、実暖房能力の低下量ΔQhpが所定値以上となった場合、圧縮機を停止し、要求暖房能力TGQにより補助加熱手段を制御することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御手段は、放熱器を通過する空気の風量Gaと、外気温度Tamと、圧縮機の上限回転数Ncmaxに基づいて最大暖房能力Qhpmaxを算出すると共に、風量Gaと、外気温度Tamと、圧縮機の実回転数Ncに基づいて実暖房能力Qhpを算出することを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項1乃至請求項6の発明において制御手段は、放熱器を通過した後の空気温度THoutと当該放熱器の吸込空気温度THinとの差(THout-THin)と、放熱器に流入する空気の比熱Caと、放熱器を通過する空気の風量Gaに基づいて実暖房能力Qhpを算出することを特徴とする。
 請求項9の発明の車両用空気調和装置は、請求項7の発明において補助加熱手段が、放熱器と共に空気流通路の空気の流れに対して当該放熱器の上流側に配置される場合、制御手段は、放熱器の吸込空気温度THinを加味して最大暖房能力Qhpmax及び実暖房能力Qhpを算出することを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記各発明において熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路を備え、熱媒体-空気熱交換器により補助加熱手段を構成したことを特徴とする。
 請求項11の発明の車両用空気調和装置は、請求項1乃至請求項9の発明において電気ヒータにより補助加熱手段を構成したことを特徴とする。
 請求項12の発明の車両用空気調和装置は、請求項1乃至請求項8の発明において空気流通路外に放熱器を設けると共に、この放熱器と熱交換する熱媒体-冷媒熱交換器と、空気流通路に設けられた熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、熱媒体-冷媒熱交換器、及び/又は、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環させる熱媒体循環回路から補助加熱手段を構成したことを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、空気流通路から車室内に供給する空気を加熱するための補助加熱手段を備え、制御手段は、要求される放熱器の暖房能力である要求暖房能力TGQと、当該放熱器が実際に発生する実暖房能力Qhpに基づき、要求暖房能力TGQに対して実暖房能力Qhpが不足する分を補完するための補助加熱手段の要求暖房能力TGQhtrを算出して補助加熱手段による加熱を実行するので、要求暖房能力TGQに対して放熱器の実暖房能力Qhpが不足する場合に、補助加熱手段により車室内に供給する空気を加熱して暖房能力を補完することができるようになり、快適な車室内暖房を実現することが可能となる。
 また、放熱器による暖房能力が不足している状況下で補助加熱手段による加熱を実行するので、補助加熱手段による加熱に伴う効率の悪化も最小限に抑えることが可能となる。これにより、特に電気自動車においては航続距離が低下する不都合を効果的に抑制することが可能となる。
 特に制御手段は、室外熱交換器の着霜による実暖房能力Qhpの低下量ΔQhpを算出し、補助加熱手段の要求暖房能力TGQhtrに前記低下量ΔQhpを加えて補助加熱手段による加熱を実行するので、室外熱交換器に着霜が生じて実暖房能力Qhpが低下している場合に、その低下量ΔQhpも補助加熱手段により補完することができるようになり、快適さをより一層向上させることができるようになる。
 この場合制御手段は、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXOに基づいて室外熱交換器の着霜による実暖房能力Qhpの低下量ΔQhpを算出するので、精度良く低下量ΔQhpを算出して補助加熱手段の制御を的確に実行することが可能となるものである。
 このとき、請求項2の発明の如く制御手段が、前記差ΔTXOに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御するようにすれば、差ΔTXOから室外熱交換器への着霜の進行度合いを把握し、着霜が進行してしまった場合には補助加熱手段のみによる車室内暖房に切り換えることができるようになる。これより、室外熱交換器のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、補助加熱手段により車室内の暖房も引き続き行うことが可能となる。
 また、請求項3の発明の如く制御手段が、実暖房能力の低下量ΔQhpに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御するようにしても、実暖房能力の低下量ΔQhpから室外熱交換器への着霜の進行度合いを把握し、着霜が進行してしまった場合には補助加熱手段のみによる車室内暖房に切り換えることができるようになる。これより、同様に室外熱交換器のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、補助加熱手段により車室内の暖房も引き続き行うことが可能となる。
 また、請求項4の発明の如く制御手段が、放熱器が発生可能な最大暖房能力Qhpmaxを算出し、前記差ΔTXOに基づいて室外熱交換器の着霜による最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出すると共に、この最大暖房能力の低下量ΔQhpmaxに基づいて室外熱交換器の着霜率を算出し、この着霜率が所定値以上となった場合、圧縮機を停止すると共に、要求暖房能力TGQにより補助加熱手段を制御するようにしても、最大暖房能力の低下量ΔQhpmaxから室外熱交換器への着霜の進行度合いを把握し、着霜が進行してしまった場合には補助加熱手段のみによる車室内暖房に切り換えることができるようになる。これより、同様に室外熱交換器のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、補助加熱手段により車室内の暖房も引き続き行うことが可能となる。
 また、請求項5の発明の如く制御手段が、放熱器が発生可能な最大暖房能力Qhpmaxを算出すると共に、前記差ΔTXOに基づいて室外熱交換器の着霜による最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出し、この低下量ΔQhpmaxが所定値以上となった場合、圧縮機を停止し、要求暖房能力TGQにより補助加熱手段を制御するようにすれば、最大暖房能力の低下量ΔQhpmaxから直接室外熱交換器への着霜の進行度合いを判断し、着霜が進行してしまった場合には補助加熱手段のみによる車室内暖房に切り換えることができるようになる。これより、同様に室外熱交換器のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、補助加熱手段により車室内の暖房も引き続き行うことが可能となる。
 また、請求項6の発明の如く制御手段が、実暖房能力の低下量ΔQhpが所定値以上となった場合、圧縮機を停止し、要求暖房能力TGQにより補助加熱手段を制御するようにしても、実暖房能力の低下量ΔQhpから直接室外熱交換器への着霜の進行度合いを判断し、着霜が進行してしまった場合には補助加熱手段のみによる車室内暖房に切り換えることができるようになる。これより、同様に室外熱交換器のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、補助加熱手段により車室内の暖房も引き続き行うことが可能となる。
 この場合、請求項7の発明の如く制御手段が、放熱器を通過する空気の風量Gaと、外気温度Tamと、圧縮機の上限回転数Ncmaxに基づいて最大暖房能力Qhpmaxを算出すると共に、風量Gaと、外気温度Tamと、圧縮機の実回転数Ncに基づいて実暖房能力Qhpを算出することにより、放熱器による暖房能力の判断とそれが不足することに伴う補助加熱手段による加熱を的確に制御することが可能となる。
 このとき、請求項9の発明の如く補助加熱手段が、放熱器と共に空気流通路の空気の流れに対して当該放熱器の上流側に配置される場合には、制御手段が、放熱器の吸込空気温度THinを加味して最大暖房能力Qhpmax及び実暖房能力Qhpを算出するようにすることにより、補助加熱手段により加熱された空気が放熱器に流入する場合に、それに伴う熱量の変化分を加味して正確に放熱器の最大暖房能力Qhpmaxや実暖房能力Qhpを算出することが可能となる。
 また、請求項8の発明の如く制御手段が、放熱器を通過した後の空気温度THoutと当該放熱器の吸込空気温度THinとの差(THout-THin)と、放熱器に流入する空気の比熱Caと、放熱器を通過する空気の風量Gaに基づいて実暖房能力Qhpを算出するようにしても的確に放熱器の実暖房能力Qhpを算出し、補助加熱手段による加熱を制御することが可能となる。
 尚、請求項10の発明の如く熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環する熱媒体循環回路を設け、熱媒体-空気熱交換器により補助加熱手段を構成することにより、電気的に安全な車室内暖房を実現することができるようになる。
 一方、請求項11の発明の如く電気ヒータにより補助加熱手段を構成すれば、構造の簡素化を図ることができるようになる。
 また、請求項12の発明の如く空気流通路外に放熱器を設けると共に、この放熱器と熱交換する熱媒体-冷媒熱交換器と、空気流通路に設けられた熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、熱媒体-冷媒熱交換器、及び/又は、電気ヒータにより加熱された熱媒体を循環手段により熱媒体-空気熱交換器に循環させる熱媒体循環回路から補助加熱手段を構成することによっても電気的な安全性を向上させることができる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 ΔTXOと係数KΔQの関係を説明する図である。 ΔTXOと室外熱交換器の着霜率の関係を説明する図である。 ΔQhpmax又はΔQhpと室外熱交換器の着霜率の関係を説明する図である。 本発明を適用した他の実施例の車両用空気調和装置の構成図である。 本発明を適用したもう一つの他の実施例の車両用空気調和装置の構成図である。 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。 TXO又はTsと放熱器の暖房能力との関係を示す図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ(図面ではECHで示す)35と、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられた熱媒体-空気熱交換器40(本発明における補助加熱手段)とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等が採用される。
 そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体-空気熱交換器40に循環されるよう構成されている。即ち、この熱媒体循環回路23の熱媒体-空気熱交換器40が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上することができるようになる。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図3において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ35の温度(熱媒体加熱電気ヒータ35で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ35に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体-空気熱交換器40の温度(熱媒体-空気熱交換器40を経た空気の温度、又は、熱媒体-空気熱交換器40自体の温度)を検出する熱媒体-空気熱交換器温度センサ55の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モードの冷媒の流れ
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。尚、熱媒体循環回路23の動作及び作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプ(図面ではHPで示す)となる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は熱媒体-空気熱交換器40を経て吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 (2)除湿暖房モードの冷媒の流れ
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモードの冷媒の流れ
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁20、21も閉じる。この室外膨張弁6と電磁弁20、21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モードの冷媒の流れ
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (5)冷房モードの冷媒の流れ
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4及び熱媒体-空気熱交換器40に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。
 (6)暖房モード及び当該暖房モードでの熱媒体循環回路による補助加熱
 次に、前記暖房モードにおける圧縮機2及び室外膨張弁6の制御と、当該暖房モードでの熱媒体循環回路23による補助加熱について説明する。
 (6-1)圧縮機及び室外膨張弁の制御
 コントローラ32は下記式(I)から目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 コントローラ32はこの目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力)Pciとに基づき、コントローラ32は圧縮機2の回転数Ncを算出し、この回転数Ncにて圧縮機2を運転する。即ち、コントローラ32は圧縮機2の回転数Ncにより放熱器4の冷媒圧力Pciを制御する。
 また、コントローラ32は目標吹出温度TAOに基づき、放熱器4の目標放熱器過冷却度TGSCを算出する。一方、コントローラ32は、放熱器圧力Pciと放熱器温度センサ46が検出する放熱器4の温度(放熱器温度Tci)に基づき、放熱器4における冷媒の過冷却度(放熱器過冷却度SC)を算出する。そして、この放熱器過冷却度SCと目標放熱器過冷却度TGSCに基づき、室外膨張弁6の目標弁開度(目標室外膨張弁開度TGECCV)を算出する。そして、コントローラ32はこの目標室外膨張弁開度TGECCVに室外膨張弁6の弁開度を制御する。
 コントローラ32は目標吹出温度TAOが高い程、目標放熱器過冷却度TGSCを上げる方向に演算を行うが、それに限らず、後述する要求暖房能力TGQと最大暖房能力Qhpmaxの差(能力差)や放熱器圧力Pci、目標放熱器圧力PCOと放熱器圧力Pciの差(圧力差)に基づいて算出してもよい。その場合コントローラ32は、能力差が小さい程、圧力差が小さい程、室内送風機27の風量が小さい程、又は、放熱器圧力Pciが小さい程、目標放熱器過冷却度TGSCを下げることになる。
 (6-2)熱媒体循環回路の制御1
 また、コントローラ32は、この暖房モードにおいて放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を実行する。
 熱媒体循環回路23の循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されると、前述したように熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体-空気熱交換器40に循環されるので、空気流通路3の放熱器4を経た空気を加熱することになる。従って、暖房モードでは熱媒体-空気熱交換器40を出て吹出口29から吹き出される空気の温度の目標値が目標放熱器温度TCOとなる。
 次に、暖房モードにおける熱媒体循環回路23の制御について説明する。コントローラ32は式(II)、式(III)、式(IV)を用いて要求される放熱器4の暖房能力である要求暖房能力TGQ(kW)と、放熱器4が発生可能な最大暖房能力Qhpmax(kW)と、放熱器4が実際に発生する実暖房能力Qhp(kW)を算出する。最大暖房能力Qhpmaxは、そのときの外気温度Tamにおいて放熱器4が発生可能な最大の暖房能力の予測値である(即ち、ヒートポンプの推定最大暖房能力)。また、実暖房能力Qhpは、そのときの外気温度Tamと圧縮機2の回転数Ncで放熱器4が実際に発生する暖
房能力の予測値である。
 TGQ=(TCO-Te)×Ca×ρ×Qair  ・・(II)
 Qhpmax=kQhpest1×Ga+kQhpest2×Tam+kQhpest3×Ncmax+kQhpest4  ・・(III)
 Qhp=kQhpest1×Ga+kQhpest2×Tam+kQhpest3×Nc+kQhpest4  ・・(IV)
 尚、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Caは放熱器4に流入する空気の比熱[kJ/m3・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m3]、Qairは放熱器4を通過する風量[m3/h](室内送風機27のブロワ電圧BLV等から推定)、Gaは放熱器4を通過する空気の風量(m3/s)、Ncmaxは圧縮機2の上限回転数、Ncは圧縮機2の回転数(実回転数)である。また、式(III)、(IV)におけるkQhpest1、kQhpest2、kQhpest3、kQhpest4は、実測から予め得られた係数である。
 次に、コントローラ32は、式(V)を用いて要求暖房能力TGQと放熱器4の最大暖房能力Qhpmaxとの差を算出し、これを熱媒体循環回路23(補助加熱手段である熱媒体-空気熱交換器40を含む。以下、同じ)の要求暖房能力の推定値TGQhtr0を算出する。また、コントローラ32は、式(VI)を用いて放熱器4の最大暖房能力Qhpmaxと実暖房能力Qhpとの差を算出して熱媒体循環回路23の要求暖房能力の補正値TGQhtrhを算出する。
 TGQhtr0=TGQ-Qhpmax  ・・(V)
 TGQhtrh=Qhpmax-Qhp  ・・(VI)
 そして、コントローラ32は、式(VII)で要求暖房能力の推定値TGQhtr0に補正値TGQhtrhを加えることで、熱媒体循環回路23の要求暖房能力TGQhtrを算出する。
 TGQhtr=TGQthr0+TGQhtrh  ・・(VII)
 この式(VII)の右辺は式(V)の右辺と式(VI)の右辺の和であるので、要求暖房能力TGQhtrは、放熱器4の要求暖房能力TGQと放熱器4の実暖房能力Qhpとの差(TGQ-Qhp)ということになる。この放熱器4の要求暖房能力TGQと実暖房能力Qhpとの差(TGQ-Qhp)は、放熱器4の要求暖房能力TGQに対して実暖房能力Qhpが不足する分であり、コントローラ32これを補完する暖房能力として、先ず熱媒体循環回路23の要求暖房能力TGQhtrを算出する。
 次に、コントローラ32は室外熱交換器温度センサ54から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7の着霜による放熱器4の実暖房能力Qhpの低下量ΔQhpと最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出する。この場合のコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(VIII)を用いて決定する。
 TXObase=f(Tam、Nc、BLV、VSP)
     =k5×Tam+k6×Nc+k7×BLV+k8×VSP・・(VIII)
 ここで、式(VIII)のパラメータであるTamは前述同様に外気温度センサ33から得られる外気温度、Ncは圧縮機2の回転数、BLVは室内送風機27のブロワ電圧、VSPは車速センサ52から得られる車速であり、k5~k8は係数で、予め実験により求めておく。
 この場合、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k5は正の値となる。また、圧縮機2の回転数Ncが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k6は負の値となる。また、ブロワ電圧BLVが高い程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k7は負の値となる。また、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k8は正の値となる。
 次にコントローラ32は、式(VIII)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase-TXO)を算出し、この差ΔTXOに相関のある係数KΔQを用い、式(IX)と式(X)の如く室外熱交換器7の着霜によって低下した放熱器4の暖房能力Qhphと低下した最大暖房能力Qhpmaxhを算出する。
 Qhph=KΔQ×Qhp       ・・(IX)
 Qhpmaxh=KΔQ×Qhpmax ・・(X)
 ここで、上記差ΔTXOと係数KΔQとの関係を図3に示す。室外熱交換器7への着霜の進行により冷媒蒸発温度TXOは低下するので、差ΔTXOが大きい程、室外熱交換器7の着霜率は大きくなり、放熱器4の暖房能力は低下することになる。図3に示した差ΔTXOと係数KΔQの関係は、実測により予め求めたものであり、差ΔTXOが大きくなる程、即ち、室外熱交換器7の着霜率が大きくなる程、係数KΔQは小さくなってQhph、及び、Qhpmaxhは小さくなる。
 そして、式(XI)と式(XII)を用いて室外熱交換器7の着霜による放熱器4の実暖房能力Qhpの低下量ΔQhpと最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出する。
 ΔQhp=Qhp-Qhph          ・・(XI)
 ΔQhpmax=Qhpmax-Qhpmaxh ・・(XII)
 前述した如く、室外熱交換器7の着霜によって放熱器4の実暖房能力Qhpは低下する。従って、室外熱交換器7に着霜が生じたとき、前述したように式(VII)から得られるTGQhtr=TGQ-Qhpで熱媒体循環回路23による加熱を制御しても、上記低下量ΔQhp分の暖房能力が不足することになる。
 そこで、コントローラ32は上記式(VII)で算出された熱媒体循環回路23の要求暖房能力TGQhtrに放熱器4の暖房能力の低下量ΔQhpを加えて、熱媒体-空気熱交換器40(補助加熱手段)の暖房能力が(TGQhtr+ΔQhp)となるようにTGQhtrを補正し、熱媒体循環回路23の熱媒体加熱電気ヒータ35への通電と循環ポンプ30の運転を制御する。
 このように本発明によれば、放熱器4の要求暖房能力TGQに対して放熱器4の実暖房能力Qhpが不足する場合に、熱媒体循環回路23の熱媒体-空気熱交換器40により車室内に供給する空気を加熱して暖房能力を補完することができるようになり、快適な車室内暖房を実現することが可能となる。
 また、放熱器4による暖房能力が不足している状況下で熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を実行するので、熱媒体循環回路23による加熱に伴う効率の悪化も最小限に抑えることが可能となる。これにより、特に電気自動車においては航続距離が低下する不都合を効果的に抑制することが可能となる。
 特にコントローラ32は、室外熱交換器7の着霜による実暖房能力Qhpの低下量ΔQhpを算出し、熱媒体循環回路23の要求暖房能力TGQhtrに低下量ΔQhpを加えて熱媒体循環回路23の熱媒体-空気熱交換器40による加熱を実行するので、室外熱交換器7に着霜が生じて実暖房能力Qhpが低下している場合に、その低下量ΔQhpも熱媒体循環回路23により補完することができるようになり、快適さをより一層向上させることができるようになる。
 この場合、コントローラ32は室外熱交換器7の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとの差ΔTXOに基づいて室外熱交換器7の着霜による実暖房能力Qhpの低下量ΔQhpを算出するので、精度良く低下量ΔQhpを算出して熱媒体循環回路23の制御を的確に実行することが可能となる。
 尚、上記実施例の式(IV)では、放熱器4を通過する空気の風量Gaと、外気温度Tam、及び、圧縮機2の回転数(実回転数)Ncに基づいて放熱器4が実際に発生する暖房能力の予測値である実暖房能力Qhpを算出したが、下記式(XIII)を用いて実暖房能力Qhpを算出するようにしてもよい。
 Qhp=(THout-THin)×Ca×Ga ・・(XIII)
 尚、THoutは放熱器4を通過した後の空気温度(℃)、THinは放熱器4を通過する前の空気温度、即ち、放熱器4の吸込空気温度(℃)である。これらの差(THout-THin)は、放熱器4を通過することで生じた空気の温度上昇であり、これに比熱Caと風量Gaを乗算することでも、放熱器4の実暖房能力Qhpを算出することができる。
 (6-3)熱媒体循環回路の制御2
 ここで、室外熱交換器7の着霜が増大すると、冷媒回路Rの圧縮機2を運転しても外気からの吸熱(ヒートポンプ)ができなくなると共に、運転効率も著しく低下する。そこで、コントローラ32は前述した無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase-TXO)に基づいて室外熱交換器7の着霜率を算出し、この着霜率が所定値以上となった場合に冷媒回路Rの圧縮機2を停止する。
 図4はこの差ΔTXOから室外熱交換器7の着霜率を判定するときの、差ΔTXOと着霜率の関係を示している。コントローラ32は差ΔTXOが0のときは着霜率0と判定する。この状態から差ΔTXOが10(deg)まで上昇するに従って所定の傾斜角度で着霜率は100%まで上昇する。コントローラ32は、実施例では着霜率が所定値(例えば、100%)となった場合に、圧縮機2を停止する。そして、熱媒体循環回路23の熱媒体-空気熱交換器40が要求暖房能力TGQを発生するように熱媒体加熱電気ヒータ35や循環ポンプ30を運転する(TGQhtr=TGQ)。
 そして、ΔTXOが低下して9(deg)を下回ったところで、そこから-1(deg)に低下するに従って所定の傾斜角度で着霜率も0まで低下する(ヒステリシス1deg)。コントローラ32は、着霜率が所定値(例えば、100%)を下回ったところで圧縮機2の起動禁止を解除し、再び冷媒回路Rの放熱器4と熱媒体循環回路23による暖房モードに復帰する。
 このように、室外熱交換器7への着霜の進行度合いを差ΔTXOから把握して着霜が進行してしまった場合には、熱媒体循環回路23の熱媒体-空気熱交換器40のみによる車室内暖房に切り換えるので、冷媒回路Rの室外熱交換器7のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、熱媒体循環回路23により車室内の暖房も引き続き行うことが可能となる。
 (6-4)熱媒体循環回路の制御3
 次に、図5は係る圧縮機2の停止制御の他の例を示している。上記実施例(6-3)では差TXOで室外熱交換器7の着霜率を算出するようにしたが、それに限らず、前述した放熱器4の最大暖房能力Qhpmaxの低下量ΔQhpmax、或いは、実暖房能力Qhpの低下量ΔQhpに基づいて室外熱交換器7の着霜率を算出し、この着霜率が所定値以上となった場合に冷媒回路Rの圧縮機2を停止するようにしてもよい。
 図5はこれら低下量ΔQhpmax、ΔQhpから室外熱交換器7の着霜率を判定するときの、低下量ΔQhpmax、ΔQhpと着霜率の関係を示している。コントローラ32は低下量ΔQhpmax、ΔQhpが0のときは着霜率0と判定する。この状態から低下量ΔQhpmax、ΔQhpが1000(W)まで上昇するに従って所定の傾斜角度で着霜率は100%まで上昇する。コントローラ32は、実施例では着霜率が所定値(例えば、100%)となった場合に、圧縮機2を停止する。そして、熱媒体循環回路23の熱媒体-空気熱交換器40が要求暖房能力TGQを発生するように熱媒体加熱電気ヒータ35や循環ポンプ30を運転する(TGQhtr=TGQ)。
 そして、低下量ΔQhpmax、ΔQhpが低下して900(W)を下回ったところで、そこから-100(W)に低下するに従って所定の傾斜角度で着霜率も0まで低下する(ヒステリシス100W)。コントローラ32は、着霜率が所定値(例えば、100%)を下回ったところで圧縮機2の起動禁止を解除し、再び冷媒回路Rの放熱器4と熱媒体循環回路23による暖房モードに復帰する。
 このように、室外熱交換器7への着霜の進行度合いを放熱器4の最大暖房能力Qhpmaxの低下量ΔQhpmaxや、実暖房能力Qhpの低下量ΔQhpから把握して着霜が進行してしまった場合には、熱媒体循環回路23の熱媒体-空気熱交換器40のみによる車室内暖房に切り換えるようにしても、冷媒回路Rの室外熱交換器7のそれ以上の着霜の成長を防止し、或いは、着霜の融解を促進しながら、熱媒体循環回路23により車室内の暖房も引き続き行うことが可能となる。
 (6-5)熱媒体循環回路の制御4
 尚、上記各実施例では差ΔTXOや放熱器4の最大暖房能力Qhpmaxの低下量ΔQhpmax、実暖房能力Qhpの低下量ΔQhpから室外熱交換器7の着霜率を推定して圧縮機2を停止するようにしたが、それに限らず、放熱器4の最大暖房能力Qhpmaxの低下量ΔQhpmax、実暖房能力Qhpの低下量ΔQhpから室外熱交換器7の着霜度合いを直接判断し、各低下量ΔQhpmax、又は、ΔQhpが所定値以上となった場合に、室外熱交換器7の着霜が進行してしまったものと判断して、圧縮機2を停止するようにしてもよい。
 (7)他の構成例1
 次に、図6は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (8)他の構成例2
 次に、図7は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この場合、図6の熱媒体循環回路23が電気ヒータ73に置換されている。前述した熱媒体循環回路23の場合には、熱媒体加熱電気ヒータ35を空気流通路3の外の車室外に設けられるため、電気的な安全性が確保されるが、構成が複雑化する。
 一方、この図7の如く電気ヒータ73を空気流通路3に設けるようにすれば、構成が著しく簡素化されることになる。この場合は、電気ヒータ73が補助加熱手段となってコントローラ32により前述した制御が実施されることなる。そして、このような電気ヒータ73を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (9)他の構成例3
 次に、図8は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。尚、この実施例の冷媒回路Rは図6と同様である。但し、この場合、熱媒体循環回路23の熱媒体-空気熱交換器40は、空気流通路3の空気の流れに対して放熱器4の上流側であってエアミックスダンパ28の下流側に配置されている。他の構成は図6と同様である。
 この場合には空気流通路3において熱媒体-空気熱交換器40が放熱器4の上流側に位置するため、熱媒体循環回路23の動作中、空気は熱媒体-空気熱交換器40で加熱された後、放熱器4に流入するようになる。このように熱媒体-空気熱交換器40を放熱器4の上流側に配置した車両用空気調和装置1においても本発明は有効であり、特にこの場合には熱媒体循環回路23内の熱媒体の温度が低いことによる問題は生じなくなる。これにより、放熱器4との協調暖房も容易となるが、熱媒体-空気熱交換器40を経た空気が放熱器4に流入することになるため、前述した放熱器4の最大暖房能力Qhpmaxと実暖房能力Qhpの算出式(III)、(IV)に、放熱器4の吸込空気温度THinに所定の係数kOhpest5(これも実測から予め得られた係数)を乗じた値を加える。
 この放熱器4の吸込空気温度THinは、熱媒体-空気熱交換器温度センサ55が検出する熱媒体-空気熱交換器40を経た空気の温度である。このように、熱媒体循環回路23の熱媒体-空気熱交換器40が、放熱器4と共に空気流通路3の空気の流れに対して当該放熱器4の上流側に配置される場合、コントローラ32が、放熱器4の吸込空気温度THinを加味して最大暖房能力Qhpmax及び実暖房能力Qhpを算出するようにすることにより、熱媒体-空気熱交換器40により加熱された空気が放熱器4に流入する場合に、それに伴う熱量の変化分を加味して正確に放熱器4の最大暖房能力Qhpmaxや実暖房能力Qhpを算出することが可能となる。
 (10)他の構成例4
 次に、図9は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この場合、図8の熱媒体循環回路23が電気ヒータ73に置換されている。このような電気ヒータ73を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (11)他の構成例5
 次に、図10は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23(補助加熱手段)の配管構成は図1の場合と基本的に同様であるが、放熱器4は空気流通路3には設けられておらず、その外側に配置されている。その代わりに、この放熱器4にはこの場合の熱媒体-冷媒熱交換器74が熱交換関係に配設されている。
 この熱媒体-冷媒熱交換器74は、熱媒体循環回路23の循環ポンプ30と熱媒体加熱電気ヒータ35の間の熱媒体配管23Aに接続されたもので、熱媒体循環回路23の熱媒体-空気熱交換器40は空気流通路3に設けられている。係る構成で、循環ポンプ30から吐出された熱媒体は放熱器4を流れる冷媒と熱交換し、当該冷媒により加熱され、次に、熱媒体加熱電気ヒータ35(通電されて発熱している場合)で加熱された後、熱媒体-空気熱交換器40で放熱することにより、空気流通路3から車室内に供給される空気を加熱する。
 このような構成の車両用空気調和装置1においても、放熱器4による暖房能力が不足する場合に、熱媒体加熱電気ヒータ35に通電して熱媒体回路23A内を流れる熱媒体を加熱することにより、暖房補助を行うことが可能となると共に、前述したような電気ヒータを空気流通路3に配設する場合に比して、電気的により安全な車室内暖房を実現することができるようになる。
 尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。
 また、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁
 23 熱媒体循環回路(補助加熱手段)
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 30 循環ポンプ(循環手段)
 32 コントローラ(制御手段)
 35 熱媒体加熱電気ヒータ(電気ヒータ)
 40 熱媒体-空気熱交換器(補助加熱手段)
 70、74 熱媒体-冷媒熱交換器
 73 電気ヒータ(補助加熱手段)
 R 冷媒回路

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱手段を備え、
     前記制御手段は、
     要求される前記放熱器の暖房能力である要求暖房能力TGQと、当該放熱器が実際に発生する実暖房能力Qhpに基づき、前記要求暖房能力TGQに対して前記実暖房能力Qhpが不足する分を補完するための前記補助加熱手段の要求暖房能力TGQhtrを算出すると共に、
     前記室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXOに基づいて前記室外熱交換器の着霜による前記実暖房能力Qhpの低下量ΔQhpを算出し、
     前記補助加熱手段の要求暖房能力TGQhtrに前記低下量ΔQhpを加えて前記補助加熱手段による加熱を実行することを特徴とする車両用空気調和装置。
  2.  前記制御手段は、前記差ΔTXOに基づいて前記室外熱交換器の着霜率を算出し、該着霜率が所定値以上となった場合、前記圧縮機を停止すると共に、前記要求暖房能力TGQにより前記補助加熱手段を制御することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御手段は、前記実暖房能力の低下量ΔQhpに基づいて前記室外熱交換器の着霜率を算出し、該着霜率が所定値以上となった場合、前記圧縮機を停止すると共に、前記要求暖房能力TGQにより前記補助加熱手段を制御することを特徴とする請求項1に記載の車両用空気調和装置。
  4.  前記制御手段は、前記放熱器が発生可能な最大暖房能力Qhpmaxを算出し、前記差ΔTXOに基づいて前記室外熱交換器の着霜による前記最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出すると共に、
     該最大暖房能力の低下量ΔQhpmaxに基づいて前記室外熱交換器の着霜率を算出し、該着霜率が所定値以上となった場合、前記圧縮機を停止すると共に、前記要求暖房能力TGQにより前記補助加熱手段を制御することを特徴とする請求項1に記載の車両用空気調和装置。
  5.  前記制御手段は、前記放熱器が発生可能な最大暖房能力Qhpmaxを算出すると共に、前記差ΔTXOに基づいて前記室外熱交換器の着霜による前記最大暖房能力Qhpmaxの低下量ΔQhpmaxを算出し、
     該低下量ΔQhpmaxが所定値以上となった場合、前記圧縮機を停止し、前記要求暖房能力TGQにより前記補助加熱手段を制御することを特徴とする請求項1に記載の車両用空気調和装置。
  6.  前記制御手段は、前記実暖房能力の低下量ΔQhpが所定値以上となった場合、前記圧縮機を停止し、前記要求暖房能力TGQにより前記補助加熱手段を制御することを特徴とする請求項1に記載の車両用空気調和装置。
  7.  前記制御手段は、前記放熱器を通過する空気の風量Gaと、外気温度Tamと、前記圧縮機の上限回転数Ncmaxに基づいて前記最大暖房能力Qhpmaxを算出すると共に、
     前記風量Gaと、前記外気温度Tamと、前記圧縮機の実回転数Ncに基づいて前記実暖房能力Qhpを算出することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  前記制御手段は、前記放熱器を通過した後の空気温度THoutと当該放熱器の吸込空気温度THinとの差(THout-THin)と、前記放熱器に流入する空気の比熱Caと、前記放熱器を通過する空気の風量Gaに基づいて前記実暖房能力Qhpを算出することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  9.  前記補助加熱手段が、前記放熱器と共に前記空気流通路の空気の流れに対して当該放熱器の上流側に配置される場合、前記制御手段は、前記放熱器の吸込空気温度THinを加味して前記最大暖房能力Qhpmax及び前記実暖房能力Qhpを算出することを特徴とする請求項7に記載の車両用空気調和装置。
  10.  熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、前記電気ヒータにより加熱された熱媒体を前記循環手段により前記熱媒体-空気熱交換器に循環する熱媒体循環回路を備え、前記熱媒体-空気熱交換器により前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
  11.  電気ヒータにより前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
  12.  前記空気流通路外に前記放熱器を設けると共に、
     該放熱器と熱交換する熱媒体-冷媒熱交換器と、前記空気流通路に設けられた熱媒体-空気熱交換器と、電気ヒータと、循環手段とを有し、前記熱媒体-冷媒熱交換器、及び/又は、前記電気ヒータにより加熱された熱媒体を前記循環手段により前記熱媒体-空気熱交換器に循環させる熱媒体循環回路から前記補助加熱手段を構成したことを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
PCT/JP2015/057725 2014-06-03 2015-03-16 車両用空気調和装置 WO2015186403A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580026853.5A CN106457971B (zh) 2014-06-03 2015-03-16 车用空调装置
DE112015002649.5T DE112015002649T5 (de) 2014-06-03 2015-03-16 Fahrzeugklimaanlageneinrichtung
US15/315,959 US10562375B2 (en) 2014-06-03 2015-03-16 Vehicle air conditioner device
US16/295,960 US11021044B2 (en) 2014-06-03 2019-03-07 Vehicle air conditioner device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114965 2014-06-03
JP2014114965A JP6339419B2 (ja) 2014-06-03 2014-06-03 車両用空気調和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/315,959 A-371-Of-International US10562375B2 (en) 2014-06-03 2015-03-16 Vehicle air conditioner device
US16/295,960 Division US11021044B2 (en) 2014-06-03 2019-03-07 Vehicle air conditioner device

Publications (1)

Publication Number Publication Date
WO2015186403A1 true WO2015186403A1 (ja) 2015-12-10

Family

ID=54766484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057725 WO2015186403A1 (ja) 2014-06-03 2015-03-16 車両用空気調和装置

Country Status (5)

Country Link
US (2) US10562375B2 (ja)
JP (1) JP6339419B2 (ja)
CN (1) CN106457971B (ja)
DE (1) DE112015002649T5 (ja)
WO (1) WO2015186403A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657613B2 (ja) * 2015-06-18 2020-03-04 ダイキン工業株式会社 空気調和装置
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6702147B2 (ja) * 2016-11-11 2020-05-27 株式会社デンソー 冷凍サイクル装置
JP2018103879A (ja) * 2016-12-27 2018-07-05 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US10479168B2 (en) * 2017-04-18 2019-11-19 GM Global Technology Operations LLC System and method for controlling coolant flow through a heater core of a vehicle to increase an engine auto-stop period
JP6884028B2 (ja) * 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN109228962B (zh) * 2017-06-27 2021-04-09 杭州三花研究院有限公司 热管理系统
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7036489B2 (ja) * 2018-01-31 2022-03-15 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
JP7392296B2 (ja) * 2019-06-10 2023-12-06 株式会社デンソー 冷凍サイクル装置
JP7280770B2 (ja) * 2019-07-29 2023-05-24 サンデン株式会社 車両用空気調和装置
US11731490B2 (en) * 2021-07-14 2023-08-22 GM Global Technology Operations LLC Refrigerant system diagnostics
FR3129326A1 (fr) * 2021-11-25 2023-05-26 Valeo Systemes Thermiques Procédé de déshumidification d’un habitacle d’un véhicule

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661524U (ja) * 1993-02-15 1994-08-30 株式会社日本クライメイトシステムズ 車両用空調装置
JPH06344764A (ja) * 1993-06-14 1994-12-20 Nippondenso Co Ltd 車両用空気調和装置
JP2011017474A (ja) * 2009-07-08 2011-01-27 Denso Corp 車両用空調装置
JP2012144177A (ja) * 2011-01-13 2012-08-02 Sanden Corp 車両用空気調和装置
JP2014058209A (ja) * 2012-09-18 2014-04-03 Denso Corp 車両用空調装置
JP2014094676A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430951B1 (en) * 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP4147942B2 (ja) * 2003-01-09 2008-09-10 株式会社デンソー 冷凍装置の凍結防止装置
JP2005132176A (ja) * 2003-10-29 2005-05-26 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2011005982A (ja) * 2009-06-26 2011-01-13 Denso Corp 車両用空調装置
JP5468982B2 (ja) * 2010-05-14 2014-04-09 カルソニックカンセイ株式会社 車両用空気調和装置
JP5751028B2 (ja) * 2010-06-10 2015-07-22 株式会社デンソー ヒートポンプサイクル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661524U (ja) * 1993-02-15 1994-08-30 株式会社日本クライメイトシステムズ 車両用空調装置
JPH06344764A (ja) * 1993-06-14 1994-12-20 Nippondenso Co Ltd 車両用空気調和装置
JP2011017474A (ja) * 2009-07-08 2011-01-27 Denso Corp 車両用空調装置
JP2012144177A (ja) * 2011-01-13 2012-08-02 Sanden Corp 車両用空気調和装置
JP2014058209A (ja) * 2012-09-18 2014-04-03 Denso Corp 車両用空調装置
JP2014094676A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Also Published As

Publication number Publication date
JP6339419B2 (ja) 2018-06-06
JP2015229370A (ja) 2015-12-21
US20170217288A1 (en) 2017-08-03
CN106457971A (zh) 2017-02-22
DE112015002649T5 (de) 2017-02-23
US20190210429A1 (en) 2019-07-11
CN106457971B (zh) 2018-12-25
US10562375B2 (en) 2020-02-18
US11021044B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6339419B2 (ja) 車両用空気調和装置
JP6125312B2 (ja) 車両用空気調和装置
JP6040099B2 (ja) 車両用空気調和装置
JP6125330B2 (ja) 車両用空気調和装置
JP6192434B2 (ja) 車両用空気調和装置
JP6125325B2 (ja) 車両用空気調和装置
JP6073652B2 (ja) 車両用空気調和装置
JP6590551B2 (ja) 車両用空気調和装置
JP6241595B2 (ja) 車両用空気調和装置
JP6073651B2 (ja) 車両用空気調和装置
JP6207958B2 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2015041209A1 (ja) 車両用空気調和装置
WO2014073690A1 (ja) 車両用空気調和装置
JP6571430B2 (ja) 車両用空気調和装置
WO2018147039A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
JP6047387B2 (ja) 車両用空気調和装置
CN109661317B (zh) 车用空调装置
WO2018123636A1 (ja) 車両用空気調和装置
JP6047388B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15315959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002649

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803796

Country of ref document: EP

Kind code of ref document: A1