WO2015182493A1 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
WO2015182493A1
WO2015182493A1 PCT/JP2015/064681 JP2015064681W WO2015182493A1 WO 2015182493 A1 WO2015182493 A1 WO 2015182493A1 JP 2015064681 W JP2015064681 W JP 2015064681W WO 2015182493 A1 WO2015182493 A1 WO 2015182493A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
ray
polygon
adjustment
base
Prior art date
Application number
PCT/JP2015/064681
Other languages
English (en)
French (fr)
Inventor
昌孝 古田
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2016523459A priority Critical patent/JPWO2015182493A1/ja
Publication of WO2015182493A1 publication Critical patent/WO2015182493A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an X-ray CT apparatus, and more particularly, to a technique for providing an X-ray CT apparatus that can easily adjust the orientation of an X-ray detector.
  • An X-ray CT (Computed Tomography) device is an X-ray source that generates X-rays that irradiate a subject, an X-ray detector that detects X-rays transmitted through the subject as projection data, an X-ray source, and an X-ray source.
  • An image displayed by the X-ray CT apparatus is an image depicting the shape of an organ of the subject, for example, and these images are used for diagnosis of the subject.
  • X-ray detectors that can obtain multiple tomographic images simultaneously with a single scan have been put to practical use in X-ray CT systems, and projection data on multiple slice planes are detected simultaneously to reconstruct the image. can do.
  • Such an X-ray CT apparatus is sometimes called a multi-slice X-ray CT apparatus because it can simultaneously detect projection data of a plurality of slice planes.
  • the X-ray detector capable of simultaneously detecting projection data of a plurality of slice planes is arranged in a two-dimensional direction, for example, a channel direction parallel to the slice plane and a slice direction along the body axis direction of the subject orthogonal to the channel direction A number of X-ray detection elements.
  • the X-ray CT apparatus has been developed to further increase the number of X-ray detection elements in the X-ray detector in the slice direction. For example, 64 slices and 128 slices can be taken in one scan.
  • the above-mentioned X-ray detection element has a function of outputting an electric signal corresponding to the intensity of the X-ray incident on the detection surface.
  • a scintillator array that generates fluorescence when X-rays enter is two-dimensionally arranged on the detection surface, and further, a photodiode array is two-dimensionally arranged corresponding to the two-dimensionally arranged scintillator array. The fluorescence generated by the scintillator array is converted into an electrical signal.
  • the X-ray detection elements are arranged in a rectangular grid and mounted on the wiring board, and output an electrical signal corresponding to the intensity of the X-rays incident on the detection surface as described above.
  • X-rays are transmitted through the subject and scattered by the subject.
  • the image quality of the tomographic image of the subject is deteriorated, so a collimator is provided.
  • X-ray detection elements including a collimator are collectively referred to as an X-ray detector module.
  • the X-ray detector module is equipped with a collimator that removes scattered X-rays incident from directions other than the focal direction of the X-ray source as much as possible, and fixed so that the detection surface of the X-ray detection element faces the focal direction of the X-ray source Has been.
  • the X-ray detector module generates an electrical signal corresponding to the intensity of the incident X-ray. Since this electric signal is a weak analog current, it is amplified and further converted into a digital signal by an analog-digital converter. Amplification of analog current and analog-digital conversion are performed by a signal processing board connected to the subsequent stage of the X-ray detector module.
  • An X-ray detector of an X-ray CT apparatus is configured by arranging a plurality of pairs of the aforementioned X-ray detector module and signal processing board in a channel direction on an arc centered on the X-ray focal point. ing.
  • An example of an X-ray CT apparatus provided with an X-ray detector is described in Patent Document 1.
  • these X-ray detector modules are assembled by aligning the components with high precision.
  • the accuracy of the directivity of the collimator that removes scattered X-rays is directly linked to the image quality of tomographic images. Is an important parameter.
  • the individual X-ray detector modules themselves are made with high accuracy.
  • there are various problems in fixing the plurality of X-ray detector modules with high accuracy and as a result, much work is required for fixing the X-ray detector modules. If the mounting accuracy of the X-ray detector module is reduced, artifacts may occur in the tomographic image, and as a result, much work has to be spent on fixing the X-ray detector module.
  • An object of the present invention is to provide an X-ray CT apparatus that can easily adjust the orientation of an X-ray detector having an X-ray detector module.
  • the X-ray CT apparatus of the present invention has the following characteristics.
  • a turntable having an opening in the center, an X-ray source attached to the turntable, an X-ray detector attached to the opposite side of the X-ray source across the opening, and the turntable
  • a gantry control device that controls the rotation of the X-ray detector, and an arithmetic control device that generates an X-ray image based on the output of the X-ray detector
  • the X-ray detector further comprising a plurality of X-ray detector modules
  • an angle adjusting unit for adjusting a fixed angle of the detector polygon to the detector base.
  • the angle adjustment unit includes a connection unit that rotatably connects the detector polygon to the detector base, and a rotation angle with the connection unit as a fulcrum. And a rotation angle setting unit to be set.
  • connection portion is provided at a central portion in a longitudinal direction of the detector polygon.
  • the rotation angle setting unit is provided on an end side in a longitudinal direction of the detector polygon.
  • the rotation angle setting unit is provided on an adjustment pin having a support part and an adjustment part, and a detector base into which the support part of the adjustment pin is inserted. It is characterized by having a hole.
  • the hole provided in the detector base can be inserted with an adjustment pin having a different diameter of the adjustment unit, and the rotation angle
  • the setting unit is characterized in that the rotation angle is set by an adjustment pin having a different diameter.
  • a plurality of holes provided in the detector base into which the support portion of the adjustment pin is inserted are provided, and each hole and the connection portion are connected to each other. The distance between them is different.
  • connection unit includes a rotation support unit, and a detector base and a detector polygon are rotatably connected via the rotation support unit. It is characterized by that.
  • the angle adjustment unit fixes the adjustment pins for setting the positions of the detector polygons on both sides in the longitudinal direction of the detector polygons, and the adjustment pins. In order to do so, it has a hole provided in the detector base.
  • connection portion that rotatably connects the detector polygon to the detector base is provided at a center portion of the detector polygon.
  • a long hole in the direction of the X-ray source formed in the detector polygon, the fixed angle of the detector polygon and the distance between the X-ray source and the detector polygon can be adjusted; It is characterized by that.
  • an X-ray detector having an X-ray detector module, it is possible to provide an X-ray CT apparatus that can easily adjust the orientation.
  • Explanatory drawing explaining the structure of the X-ray CT apparatus which is one Embodiment of this invention
  • Explanatory drawing explaining the outline of the X-ray detector module mounting structure Explanatory drawing explaining the fixing structure which fixes a detector polygon to a detector base
  • Explanatory drawing explaining the cross section of a detector polygon Explanatory drawing explaining the attachment state to the detector polygon of the X-ray detector module
  • Plan view of X-ray detector module Side view of X-ray detector module
  • Explanatory drawing explaining the state in which the adjustment pin was inserted Explanatory drawing explaining an example of the structure of a connection part
  • Explanatory drawing explaining adjustment operation of detector polygon mounting angle Explanatory drawing explaining the adjustment structure of the attachment angle and attachment position of a detector polygon
  • FIG. 1 is an explanatory diagram illustrating the configuration of an X-ray CT apparatus 100 according to one embodiment.
  • the X-ray CT apparatus 100 irradiates the subject 102 with X-rays from the X-ray source 126, collects projection data of the subject 102 obtained by the X-ray irradiation, and based on the collected projection data, the subject 102 Reconstructed reconstructed images such as tomographic images and 3D images, and display the reconstructed images on the display device (not shown) of the arithmetic and control unit 200, or projection data and reconstructed on the storage device (not shown) Or memorize images.
  • the X-ray CT apparatus 100 includes a gantry 120, a calculation control apparatus 200, and a table 300 on which the subject 102 is placed.
  • the gantry 120 includes a rotating disk 124 on which the X-ray source 126 and the X-ray detector 140 are mounted, an X-ray control device 232 that controls X-ray irradiation of the X-ray source 126, and a rotational position and a rotational speed of the rotating disk 124.
  • a bed control device 236 for controlling the movement and height of the table 300 on which the subject 102 is placed.
  • a data acquisition device DAS: Data Acquisition System
  • An opening 122 is formed at the center of the turntable 124, and the subject 102 placed on the table 300 moves along the body axis in the opening 122, so that X-ray projection data in the body axis direction is obtained. Are collected.
  • the operator inputs an imaging schedule and imaging conditions for performing X-ray imaging to the arithmetic and control unit 200. Then, the X-ray control device 232 controls the X-ray source 126 based on the input imaging schedule and imaging conditions, and X-rays are emitted from the X-ray source 126.
  • a high voltage generator (not shown) is provided on the turntable 124, and an X-ray tube (not shown) and a collimator 128 are provided on the X-ray source 126.
  • a high voltage is supplied from the high voltage generator to the X-ray tube based on the control of the X-ray controller 232, and the X-ray tube generates X-rays based on the supplied high voltage.
  • the generated X-rays are collimated at a predetermined irradiation angle by the collimator 128 and irradiated onto the subject 102 placed on the table 300.
  • ⁇ in the figure is an irradiation angle in the rotation direction of the gantry, and is called a fan angle ⁇ .
  • the X-rays irradiated from the X-ray source 126 are transmitted through the subject 102, and the X-rays transmitted through the subject 102 enter the X-ray detector 140.
  • the incident X-ray is detected by the X-ray detector 140, converted into an electric signal corresponding to the intensity of the X-ray, and sent to the data acquisition device (DAS) 238 as transmission image data of the subject 102.
  • a data collection device (DAS) 238 collects transmission image data, converts it into a digital signal, and supplies it to the arithmetic and control unit 200.
  • the arithmetic and control unit 200 obtains projection data from the collected transmission image data of the subject 102, reconstructs a reconstructed image such as a tomographic image or a three-dimensional image of the subject 102 based on the obtained projection data, and displays the display device Or stored in a storage device as image data. Further, the projection data and image data are transmitted to an external database and stored.
  • the X-ray source 126 and the X-ray detector 140 attached to the turntable 124 are arranged so as to face each other with the subject 102 interposed therebetween.
  • the gantry control device 234 controls the rotation position and rotation speed of the turntable 124 based on the imaging schedule and imaging conditions, and projection data corresponding to the rotation position is detected by the X-ray detector 140 to obtain a data acquisition device (DAS) 238. Collected by.
  • DAS data acquisition device
  • a helical scan can be performed by moving the subject 102 placed in the opening 122 provided in the center of the rotating disk 124 in the body axis direction under the control of the bed control device 236.
  • the arithmetic and control unit 200 includes a CT control unit 212 and controls the gantry control unit 234 and the bed control unit 236 and the X-ray control unit 232 on the basis of an X-ray imaging schedule to be described later to perform the above-described helical scan.
  • the transmission image data of the subject 102 obtained by the data collection device (DAS) 238 is collected.
  • the arithmetic control device 200 obtains projection data by arithmetic processing using the image processing unit 214 and the reconstruction arithmetic unit 218 based on the transmission image data.
  • the image processing unit 214 and the reconstruction calculation unit 218 further reconstruct a reconstructed image such as a tomographic image or a three-dimensional image based on the projection data.
  • the calculation processing for the projection data and the calculation processing for reconstruction are because the amount of data to be processed is very large, and for the reconstruction of the reconstructed image in the shortest possible time, or the processing of the image processing unit 214
  • a reconstruction calculation unit 218 is provided for a dedicated calculation process for correcting transmission image data and performing image reconstruction.
  • the image data created by the reconstruction is sent to the image processing unit 214 and stored in the storage device. If necessary, the data is stored in a database (not shown) provided outside in order to comprehensively hold and manage data in a hospital or the like.
  • the X-ray source 126 has an X-ray tube that generates X-rays, and the generated X-rays are collimated by a collimator 128 provided on the irradiation side of the X-ray tube to form a fan-shaped X-ray beam having an angle ⁇ .
  • the specimen 102 is irradiated.
  • An X-ray detector 140 is disposed at a position facing the X-ray source 126 via the subject 102, and the X-ray detector 140 is disposed so as to face the focal direction of the fan-shaped X-ray beam having the angle ⁇ .
  • a number of X-ray detector modules 162 are provided.
  • the spreading direction of the angle ⁇ is called the channel direction.
  • the multiple X-ray detector modules 162 are respectively arranged in the channel direction, and pass through the subject 102 to each X-ray detector module 162 via a collimator 132 (see FIG. 4) provided on the X-ray detector side. X-rays are incident.
  • each X-ray detector module 162 passes through the subject 102 and connects the focus of the fan-shaped X-ray beam and each X-ray detector module 162.
  • X-rays scattered by the subject 102 and the like can be prevented from entering the X-ray detector 140. Can do.
  • FIG. 2 is an explanatory view for explaining the outline of the mounting structure of the X-ray detector module 162
  • FIG. 3 is an explanatory view for explaining the structure for fixing the detector polygon 146 to the detector base 142.
  • 4 is a cross-sectional view of the detector polygon 146 in a state where the X-ray detector module 162 and the collimator 132 are held, taken along AA shown in FIG.
  • the X-ray detector 140 detects the incident X-ray and outputs an electric signal, and the X-ray detector module 162 and each X-ray detector module 162 are arranged and fixed in the channel direction while maintaining a predetermined direction.
  • the X-ray detector module 162 is arranged along the longitudinal direction of the detector polygon 146 so as to detect the entire fan-shaped X-ray beam having an angle ⁇ as described by the broken lines in FIGS. 2 and 4 show only a part of the X-ray detector module 162, and the entire X-ray detector module 162 is not shown.
  • each X-ray detector module 162 fixed to the detector polygon 146 is accurately oriented in the focus direction of the fan-shaped X-ray beam.
  • a fixing portion fixing screw 151 for fixing the detector polygon 146 to the detector base 142, and an angle for accurately adjusting the fixing angle of the detector polygon 146 to the detector base 142 are provided.
  • An angle adjustment unit (consisting of a connection unit 152 and a rotation angle setting unit 153) is included.
  • the fixing screw 151 is provided with an angle adjusting function
  • the focus direction of the fan-shaped X-ray beam of the detector polygon 146 must be adjusted in the operation of fixing the detector polygon 146 to the detector base 142.
  • problems such as a decrease in the accuracy of the mounting angle and a decrease in workability are likely to occur.
  • an angle adjustment function is provided to the angle adjustment unit including the connection unit 152 and the rotation angle setting unit 153, and a fixing function of the detector polygon 146 is provided to the fixing screw 151. .
  • the adjustment of the attachment angle of the detector polygon 146 or the attachment angle of the X-ray detector module 162 will be described again below.
  • the angle adjustment function for fixing the detector polygon 146 is separated from the function for fixing the detector polygon 146, and the angle adjustment function is provided to the connection unit 152 and the rotation angle setting unit 153, so that the mounting angle can be accurately set. After that, by fixing the detector polygon 146 to the detector base 142 with the fixing screw 151, the detector polygon 146 can be fixed to the detector base 142 with high accuracy, and the workability is further improved.
  • FIG. 3 is an explanatory diagram for explaining an attachment structure for attaching the detector polygon 146 to the detector base 142.
  • FIG. 4 shows the detector polygon 146 attached with the X-ray detector module 162 and the like shown in FIG.
  • FIG. 4 is a cross-sectional view showing a state where the cross section is taken at the position of a dashed line AA shown in FIG.
  • the detector polygon 146 shown in FIG. 3 is actually provided with a number of X-ray detector modules 162 fixed in the channel direction, and each X-ray detector module 162 is provided with a collimator 132. However, these are not shown in FIG.
  • the detector polygon 146 fixed to the detector base 142 has a through hole 148 that opens toward the fan-shaped X-ray beam formed by the collimator 128, and the through hole 148 includes a collimator 132 as shown in FIG.
  • An X-ray detector module 162 is provided.
  • a fan-shaped X-ray beam having an angle ⁇ is formed by the collimator 128 provided in the X-ray source 126, and the collimator 132 is provided in the through-hole 148 of the detector polygon 146 that opens to face the fan-shaped X-ray beam.
  • X-rays incident from a direction on a straight line connecting the focal point of the beam and each X-ray detector module 162 are guided to the X-ray detector module 162, and X-rays scattered by the subject 102 and the like are removed.
  • the image quality of the tomographic image is improved.
  • An X-ray detector module 162 having an X-ray detection element is arranged and fixed in the channel direction on the surface opposite to the X-ray source 126 of the detector polygon 146.
  • a large number of fixing surfaces 158 are provided in the channel direction.
  • An X-ray detector module 162 is fixed to each fixing surface 158 as described below with reference to FIG.
  • the X-ray detection surface of the X-ray detector module 162 fixed to each fixed surface 158 is accurately X.
  • Each fixed surface 158 is processed with very high accuracy so as to face the focal direction of the radiation source 126.
  • the directionality adjustment for the opening of the through-hole 148 of the detector polygon 146 to accurately point to the focal point of the X-ray source 126 is performed by, for example, the connection unit 152, the rotation angle setting unit 153, and the rotation angle setting unit 154. In the embodiment of FIG.
  • the directionality of the through hole 148 of the detector polygon 146 is adjusted by the connecting portion 152 and the rotation angle setting portion 153, and in addition to these, the rotation angle setting portion 154 is used in the embodiment of FIG. ing.
  • the angle can be adjusted with high accuracy by either the method of FIG. 2 or the method of FIG. These methods are further described below.
  • FIG. 3 can be adjusted so that the opening of the through-hole 148 of the detector polygon 146 accurately points to the focus of the X-ray source 126 when the detector polygon 146 is fixed.
  • the detector polygon 146 can be processed with high accuracy, when the directionality of the detector polygon 146 is accurately adjusted, the direction of the detection surface of each X-ray detector module 162 fixed to the detector polygon 146 is changed. It becomes possible to set accurately. On the other hand, since the detector base 142 has a large volume and a large mass, it is very difficult to process the detector base 142 with high accuracy. Therefore, for example, by accurately adjusting the direction of the detector base 142, it is not possible to set the direction of the detection surface of each X-ray detector module 162 fixed to the detector polygon 146 correctly.
  • the method of FIG. 2 and the method of FIG. 3 can adjust the angle of the detector polygon 146 with high accuracy even if the processing accuracy of the detector base 142 is poor. Therefore, the detection surface of each X-ray detector module 162 Can be directed to the focal point of the X-ray source 126 with high accuracy.
  • FIG. 5 is an explanatory diagram for explaining a state in which the X-ray detector module 162 is attached to the detector polygon 146.
  • the detector polygon 146 is made of, for example, a metal material such as an aluminum material, and the fixing surface 158 for fixing the X-ray detector module 162 on the surface opposite to the X-ray source 126 of the through-hole 148 has high accuracy. It is processed with.
  • One X-ray detector module 162 is fixed by a fixing surface 158 on one side (for example, the upper side in FIG. 5) and a fixing surface 158 on the other side (for example, the lower side in FIG. 5) with the through-hole 148 interposed therebetween.
  • a large number of the one side fixing surface 158 and the other side fixing surface 158 are provided along the longitudinal direction of the through-hole 148 of the detector polygon 146, and the one side and the other side fixing surface 158 are X-ray detections fixed thereto.
  • the detector module 162 is processed with high accuracy so that the detection surface of the detector module 162 is accurately directed to the focus of the X-ray source 126.
  • each X-ray detector module 162 is fixed to each fixing surface 158 by a fixing screw 194 as an example, but may be fixed by other methods.
  • FIG. 6 is a plan view of the X-ray detector module 162
  • FIG. 7 is a side view of the X-ray detector module 162.
  • the arrangement of the scintillator array 182 and the photodiode array 184 is partially cut along the longitudinal direction of the scintillator array 182 as shown.
  • a scintillator array 182 in which minute scintillators are arranged in a rectangular shape and in a lattice shape is provided.
  • Each of the scintillators constituting the scintillator array 182 generates fluorescence according to the intensity of the X-ray when it enters.
  • a photodiode is provided corresponding to each scintillator, and a photodiode array 184 is configured in which the photodiodes are rectangular and arranged in a grid.
  • the scintillator array 182 and the photodiode array 184 constitute an X-ray detection element, and the X-ray detection element and the collimator 132 constitute an X-ray detector module 162.
  • Each scintillator generates fluorescence having an intensity corresponding to the intensity of the incident X-ray
  • each photodiode disposed corresponding to each scintillator has an electrical signal corresponding to the intensity of the X-ray based on the intensity of the generated fluorescence. Is generated. Accordingly, each photodiode generates an electrical signal corresponding to the intensity of the X-ray incident on each scintillator.
  • the electric signal generated by each photodiode is amplified by the electric circuit 186 and output from the connector 196.
  • An X-ray detection element including the scintillator array 182 and the photodiode array 184, an electric circuit 186, and a connector 196 are held by a substrate 192, and the substrate 192 is fixed to a fixed surface 158 of the detector polygon 146 by a fixing screw 194.
  • the above-described configuration of the X-ray detector module 162 is an example, and the application of the present invention is not particularly limited to these configurations.
  • the X-ray detector module 162 has various shapes and structures. The present invention is also applicable.
  • the rotating disk 124 controls the gantry controller 234 during X-ray imaging.
  • the X-ray source 126 and the X-ray detector 140 that are rotated based on the rotation plate 124 rotate based on the rotation of the rotation plate 124. Accordingly, centrifugal force is generated in the detector base 142 and the detector polygon 146.
  • the directionality is adjusted in units of as small a mass as possible due to the centrifugal force. It is desirable to maintain the accuracy of sexuality. Therefore, it is desirable to adjust and set the directionality with the detector polygon 146 having a smaller mass instead of adjusting the directionality with the detector base 142 as a unit.
  • the present invention is divided into an angle adjustment function for adjusting the mounting angle and a fixing function corresponding to a large centrifugal force on the basis of such a background, and in order to perform the angle adjustment function, the connecting portion 152 and the rotation angle setting portion 153 are provided. Or an angle adjustment unit including a rotation angle setting unit 154 is provided. Further, a fixing portion (fixing screw 151) is provided in order to perform a fixing function corresponding to a large centrifugal force.
  • connection part 152 a rotation angle setting part 153, or a rotation angle setting part 154 is provided. Since the strong fixing portion (fixing screw 151) corresponding to the centrifugal force is provided, the angle adjustment accuracy can be easily improved, and the angle adjustment workability is also improved.
  • the angle adjustment function and the fixing function are separated, these separations are provided with means for performing the function mainly, and for example, the connection unit 152 having the angle adjustment function, the rotation angle setting unit 153, or Although the rotation angle setting unit 154 mainly performs the function of adjusting the angle, it may have a fixed function in addition thereto. It is difficult to completely separate the above functions, and the above effects can be obtained by separating the main body of these functions.
  • FIG. 8 is an explanatory diagram for explaining the holes 1556 to 1556 into which the adjustment pins 156 functioning as the rotation angle setting unit 153 and the rotation angle setting unit 154 are inserted.
  • FIG. 9 is an explanatory diagram for explaining a state in which the adjustment pin 156 is inserted into a selected hole among the holes 1551 to 1556, for example, the hole 1551.
  • FIG. 10 is an explanatory view showing an example of the connecting portion 152
  • FIG. 11 is an explanatory view for explaining the adjustment operation of the attachment angle of the detector polygon 146.
  • the detector polygon 146 is actually in an arc shape as shown in FIG. 8 or the like, but in order to simplify the explanation of the angle adjustment operation and make it easier to understand, it is described in a rectangular shape instead of an arc shape. Yes.
  • the adjustment pin 156 inserted into the hole 1551 in FIG. 8 is inserted into the hole 1551 to adjust the angle between the support portion 1562 and the detector polygon 146 for fixing the adjustment pin 156 as a whole.
  • An adjustment unit 1564 is provided. Further, a plurality of adjustment pins having the same shape of the support portion 1562 but different diameters d of the adjustment portion 1564 are prepared.
  • the adjustment pin 156 has a diameter d1 of the adjustment portion 1564, whereas the adjustment pin 157 has d2.
  • the rotation angle of the detector polygon 146 changes with the connection portion 152 as a fulcrum depending on whether the adjustment pin 156 or the adjustment pin 157 is selected as the adjustment pin. Accordingly, by preparing a plurality of adjustment pins having different diameters d in advance, the mounting angle of the detector polygon 146 can be adjusted.
  • the angle adjustment unit of the X-ray detector described above includes a connection unit 152 that rotatably connects the detector polygon 146 to the detector base 142, and a rotation angle setting unit 153 that sets a rotation angle using the connection unit 152 as a fulcrum.
  • the rotation angle setting unit 153 includes an adjustment pin having a support portion 1562 and an adjustment portion 1564, and a hole 1551 provided in the detector base 142 into which the support portion 1562 of the adjustment pin is inserted. Further, the hole 1551 provided in the detector base 142 can be inserted with an adjustment pin with a different diameter of the adjustment unit 1564, and the rotation angle setting unit 153 sets the rotation angle with an adjustment pin with a different diameter. can do.
  • FIG. 10 An example of the structure of the connecting portion 152 that serves as a fulcrum at which the detector polygon 146 rotates for angle adjustment will be described with reference to FIG.
  • this structure is an example of structures to which the present invention can be applied, and the present invention can be applied to other structures.
  • the structure shown in FIG. 10 is an example of a structure in which the detector polygon 146 and the detector base 142 are rotatably connected. In this structure, the detector polygon 146 and the detector base 142 are respectively provided with a hole 1462 and a hole. 1422 is provided.
  • a support pin 1522 having a rotation support portion 1524 is inserted into the hole 1462 of the detector polygon 146 and the hole 1422 of the detector base 142, and the detector polygon 146 and the detector base 142 are connected by the rotation support portion 1524 of the support pin 1522.
  • the connecting portion 152 having this configuration has a rotation support portion 1524, and the detector base 142 and the detector polygon 146 are rotatably connected via the rotation support portion 1524.
  • the support pin 1522 having the rotation support portion 1524 is inserted into the hole 1462 provided in the detector polygon 146 and the hole 1422 provided in the detector base 142, but the rotation support portion is inserted into the hole 1462 or the hole 1422.
  • the detector polygon 146 and the rotation support portion 1524 may be fixed by press-fitting 1524, or the detector base 142 and the hole 1422 may be fixed.
  • the detector polygon 146 is fixed at an angle indicated by a solid line.
  • the adjustment pin 157 having the large diameter d of the adjustment unit 1564 is used instead of using the adjustment pin 156, the angle of the detector polygon 146 having the connection unit 152 as a fulcrum changes as shown by a broken line.
  • each X-ray detector module 162 fixed to the detector polygon 146 is accurately oriented to the focus of the fan-shaped X-ray beam, it is between the detector polygon 146 and the focus of the fan-shaped X-ray beam. It is important that the distance is accurately maintained, and it is important that the normal at the focus of the fan-shaped X-ray beam and the longitudinal center of the detector polygon 146 are maintained in a predetermined relationship.
  • the connecting portion 152 is provided at the central portion of the detector polygon 146 in the longitudinal direction.
  • the connecting portion 152 is connected to the distance between the detector polygon 146 and the fan X-ray beam focus and the normal line at the fan X-ray beam focus. Since the relationship with the center in the longitudinal direction of the detector polygon 146 is maintained regardless of the diameter d of the adjustment portion 1564 of the adjustment pin, in the structure of this embodiment, the above relationship is added in addition to the mounting angle of the detector polygon 146. Accurately maintained.
  • the angle and fixed position of the detector polygon 146 are accurately maintained by the connection unit 152, the rotation angle setting unit 153, or the rotation angle setting unit 154, and in this state, the detector polygon 146 is next detected by the detector base.
  • the detector polygon 146 is fixed to the detector base 142 with a strong force by a fixing portion (fixing screw 151) that mainly performs the function of fixing to the 142.
  • the angle of the detector polygon 146 is accurately determined by the connection unit 152, the rotation angle setting unit 153, or the rotation angle setting unit 154, and the connection unit 152, the rotation angle setting unit 153, or the rotation angle is determined.
  • the angle adjustment operation is easy and the angle can be set with high accuracy. Furthermore, even if a large centrifugal force acts on the detector base 142 or the detector polygon 146 during X-ray imaging, the position and angle at which the detector polygon 146 is fixed facing the centrifugal force is maintained for a long period of time. .
  • angle adjustment method When adjusting the mounting angle of the detector polygon 146, when a hole for inserting an adjustment pin, for example, the hole 1551, is used in common, it is adjusted with the connecting portion 152 as shown in FIG.
  • the distance L1 between the pin adjustment unit 1564 and the position in contact with the detector polygon 146 is substantially constant, and the angle adjustment is performed based on a change in the diameter d of the adjustment pin, that is, selection.
  • the angle at the connection portion 152 serving as a fulcrum of rotation changes.
  • connection portion 152 for rotatably connecting the detector polygon 146 and the detector base 142 is provided at the center in the longitudinal direction of the detector polygon 146.
  • the connecting portion 152 may be provided as a support pin 1522 at a position that is the other end with respect to the adjustment pin 156.
  • the distance between the support pin 1522 and the diameter d of the adjustment portion 1564 of the adjustment pin is increased from the distance L1 to the distance L8, so the angle unit can be reduced. It becomes possible.
  • the support pin 1522 has a function of maintaining the positional relationship of the detector polygon 146 with respect to the focus of the fan-shaped X-ray beam to some extent.
  • the distance between the focal point of the X-ray source 126 and the detector polygon 146 and the relationship between the center of the fan-shaped X-ray beam and the center position of the detector polygon 146 in the longitudinal direction could not be changed. .
  • This has the effect of facilitating angle adjustment and improving workability.
  • the structure described in FIG. 12 is a structure that allows not only adjustment of the fixed angle of the detector polygon 146 but also adjustment of the distance between the focal point of the X-ray source 126 and the detector polygon 146.
  • the hole 1462 provided in the detector polygon 146 and the rotation support portion 1524 are in contact with each other with no allowance.
  • the hole 1464 provided in the detector polygon 146 has a long shape in the focal direction of the X-ray source 126, and the rotation angle setting unit 153 and the rotation angle setting unit 154 include the detector polygon 146. It is provided on each end side in the longitudinal direction.
  • the connecting portion 152 has the rotation support portion 1524 shown in FIG. 10, and the inner surface in the short axis direction of the hole 1464 provided in the detector polygon 146 is in contact with the rotation support portion 1524.
  • the central axis in the longitudinal direction of the detector polygon 146 is defined by the rotation support portion 1524 and the hole 1464, and only the long axis direction of the hole 1464 can be adjusted by the rotation angle setting unit 153 and the rotation angle setting unit 154. It has a structure.
  • the rotation angle is set. Even if the selection of the unit 153 and the rotation angle setting unit 154 is changed, the central axis in the longitudinal direction of the detector polygon 146 and the central axis of the fan-shaped X-ray beam are always maintained in a fixed relationship. This brings about an effect that the adjustment work becomes very easy.
  • Each of the rotation angle setting unit 153 and the rotation angle setting unit 154 has the structure shown in FIG. 9, and the rotation angle setting unit 153 and the rotation angle setting unit 154 are respectively inserted into holes provided in the detector base 142. ing.
  • the adjustment pin By selecting the adjustment pin at the position indicated by the rotation angle setting unit 153 or the rotation angle setting unit 154 and changing the diameter d of the adjustment unit 1564 of each adjustment pin, the focus between the X-ray source 126 and the detector polygon 146 is changed. The distance can be adjusted.
  • the attachment angle of the detector polygon 146 can also be adjusted. As a result, not only the mounting angle of the detector polygon 146 but also the distance between the detector polygon 146 and the collimator 128 can be adjusted.
  • the orientation of the X-ray detector can be adjusted with high accuracy.
  • the present invention provides an X-ray CT apparatus that can easily adjust the orientation of an X-ray detector having an X-ray detector module.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線検出器モジュールを有するX線検出器において、その配向性の調整作業が容易なX線CT装置を提供するために、中央部に開口を有する回転盤と、前記回転盤に取り付けられたX線源と、前記開口を挟んで前記X線源の反対側に取り付けられたX線検出器と、前記回転盤の回転を制御するガントリ制御装置と、前記X線検出器の出力に基づいてX線画像を生成する演算制御装置と、を備え、前記X線検出器は、さらに、複数のX線検出器モジュールを有する検出器ポリゴンと、前記検出器ポリゴンを前記検出器ベースに固定する固定部と、前記検出器ベースに配置され前記検出器ポリゴンの前記検出器ベースへの固定角度を調整する角度調整部と、を有することを特徴とする。

Description

X線CT装置
 本発明はX線CT装置に関し、特に、X線検出器の配向性の調整作業が容易なX線CT装置を提供する技術に関する。
 X線CT(Computed Tomography)装置とは、被検体に照射するX線を発生するX線源と、被検体を透過したX線を投影データとして検出するX線検出器と、X線源とX線検出器とを被検体の周囲で回転させることにより得られる複数角度からの投影データを用いて被検体の断層画像を再構成し、再構成された断層画像を表示する装置である。X線CT装置で表示される画像は、例えば被検体の臓器などの形状を描写する画像であり、これらの画像は被検体の診断に使用される。
 近年X線CT装置では、1回のスキャンで同時に複数枚の断層画像を得ることができるX線検出器が実用化されていて、複数のスライス面の投影データを同時に検出して画像を再構成することができる。複数のスライス面の投影データを同時に検出できることからこのようなX線CT装置はマルチスライス型X線CT装置と呼ばれる場合がある。複数のスライス面の投影データを同時に検出できる上記X線検出器は例えば、スライス面と並行するチャンネル方向と、これと直交する被検体の体軸方向に沿うスライス方向との、2次元方向に配列された多数のX線検出素子を備えている。
 このようにX線CT装置では、1回のスキャンで更により多くの断層画像を得られるようにするため、X線検出器のX線検出素子をスライス方向へ更に増大させる開発等が行われており、例えば1回のスキャンで64スライスや128スライスの撮影が可能になりつつある。
 上述のX線検出素子は検出面に入射したX線の強度に応じた電気信号を出力する機能を有している。上述のX線検出素子では、例えば、X線が入射すると蛍光を発生するシンチレータアレイが検出面に2次元配列され、さらに、2次元配列されたシンチレータアレイに対応してフォトダイオードアレイが2次元配列されており、シンチレータアレイにより発生した蛍光が電気信号に変換される。X線検出素子は長方形の格子状に配列して配線基板に実装され、上述のように検出面に入射したX線の強度に応じた電気信号を出力する。
 X線は被検体を透過すると共に被検体により散乱する。散乱したX線がX線検出素子により検出されると被検体の断層画像の画質を低下させることになるため、コリメータが設けられている。本明細書では、コリメータを備えたX線検出素子を総称してX線検出器モジュールと呼ぶ。X線検出器モジュールは、X線源の焦点方向以外の方向から入射した散乱X線をできるだけ除去するコリメータを備えると共に、X線検出素子の検出面がX線源の焦点方向を向くように固定されている。
 上述のようにX線検出器モジュールは、入射したX線の強度に応じた電気信号を発生する。この電気信号は微弱なアナログ電流であるため、増幅され、さらにアナログ-デジタル変換器によりデジタル信号に変換される。アナログ電流の増幅や、アナログ-デジタル変換は、X線検出器モジュールの後段に接続された信号処理基板により行われる。前述のX線検出器モジュールと信号処理基板とを対にしたものをチャンネル方向へ、X線焦点を中心とした円弧上に複数個配列することによってX線CT装置のX線検出器が構成されている。X線検出器を備えたX線CT装置の一例が特許文献1に記載されている。
特開2012-100900号公報
 従来のX線CT装置では、これらX線検出器モジュールは構成部品を高精度に位置合わせして組み立てられており、特に散乱X線を除去するコリメータの指向性の精度は断層画像の画質に直結する重要なパラメータである。このため、個々のX線検出器モジュール自身は高い精度で作られる。さらに、上記複数のX線検出器モジュールをそれぞれ高い精度で取り付けることが必要となる。しかし、上記複数のX線検出器モジュールを高い精度で固定することに色々な問題を抱え、結果的にX線検出器モジュールの固定作業に多くの労力を費やしていた。X線検出器モジュールの取り付け精度が低下すると断層画像にアーチファクトの発生を招く恐れがあるため、結果としてX線検出器モジュールの固定作業に多くの労力を費やさざるを得なかった。
 本発明の目的は、X線検出器モジュールを有するX線検出器の配向性の調整作業が容易なX線CT装置を提供することである。
 上記目的を達成するために、本発明のX線CT装置は、下記に示すような特徴を有する。
 (1) 中央部に開口を有する回転盤と、前記回転盤に取り付けられたX線源と、前記開口を挟んで前記X線源の反対側に取り付けられたX線検出器と、前記回転盤の回転を制御するガントリ制御装置と、前記X線検出器の出力に基づいてX線画像を生成する演算制御装置と、を備え、前記X線検出器は、さらに、複数のX線検出器モジュールを有する検出器ポリゴンと、前記検出器ポリゴンを前記回転盤に固定するための検出器ベースと、前記検出器ポリゴンを前記検出器ベースに固定する固定部と、前記検出器ベースに配置され前記検出器ポリゴンの前記検出器ベースへの固定角度を調整する角度調整部と、を有する、ことを特徴とする。
 (2) 前記(1)に記載のX線CT装置において、前記角度調整部は、前記検出器ポリゴンを前記検出器ベースに回転可能に接続する接続部と、前記接続部を支点として回転角を設定する回転角設定部とを備える、ことを特徴とする。
 (3) 前記(2)に記載のX線CT装置において、前記接続部は、前記検出器ポリゴンの長手方向における中央部に設けられている、ことを特徴とする。
 (4) 前記(2)に記載のX線CT装置において、前記回転角設定部は、前記検出器ポリゴンの長手方向における端部側に設けられている、ことを特徴とする。
 (5) 前記(2)に記載のX線CT装置において、前記回転角設定部は、支持部と調整部を有する調整ピンと、前記調整ピンの前記支持部が挿入される検出器ベースに設けられた穴を備えている、ことを特徴とする。
 (6) 前記(5)に記載のX線CT装置において、前記検出器ベースに設けられた穴は前記調整部の直径が異なる調整ピンを挿入することができるようになっており、前記回転角設定部は前記直径が異なる調整ピンにより前記回転角を設定する、ことを特徴とする。
 (7) 前記(5)に記載のX線CT装置において、前記調整ピンの前記支持部が挿入される検出器ベースに設けられた穴が複数個設けられ、それぞれの穴と前記接続部との間の距離が異なる、ことを特徴とする。
 (8) 前記(2)に記載のX線CT装置において、前記接続部は、回転支持部を有し、検出器ベースと検出器ポリゴンとが前記回転支持部を介して回転可能に接続されている、ことを特徴とする。
 (9) 前記(1)に記載のX線CT装置において、前記角度調整部は、前記検出器ポリゴンの長手方向の両側に前記検出器ポリゴンの位置を設定する調整ピンと、前記各調整ピンを固定するために前記検出器ベースに設けられた穴を有している、ことを特徴とする。
 (10) 前記(9)に記載のX線CT装置において、前記検出器ポリゴンの中央部に前記検出器ポリゴンを前記検出器ベースに回転可能に接続する接続部が設けられ、前記接続部は前記検出器ポリゴンに形成された前記X線源の方向に長い形状の穴を有し、前記検出器ポリゴンの固定角度および前記X線源と前記検出器ポリゴンとの間の距離を調整可能とする、ことを特徴とする。
 (11) 前記(9)に記載のX線CT装置において、前記各調整ピンの調整部は直径が異なる、ことを特徴とする。
 (12) 前記(2)に記載のX線CT装置において、前記回転角設定部が前記検出器ポリゴンにおける前記X線源に対して反対の側に設けられている、ことを特徴とする。
 本発明によれば、X線検出器モジュールを有するX線検出器において、その配向性の調整作業が容易なX線CT装置を提供することができる。
本発明の一実施形態であるX線CT装置の構成を説明する説明図 X線検出器モジュールの取り付け構造の概要を説明する説明図 検出器ポリゴンを検出器ベースに固定する固定構造を説明する説明図 検出器ポリゴンの断面を説明する説明図 X線検出器モジュールの検出器ポリゴンへの取り付け状態を説明する説明図 X線検出器モジュールの平面図 X線検出器モジュールの側面図 調整ピンを挿入する穴の配置関係を説明する説明図 調整ピンが挿入された状態を説明する説明図 接続部の構造の一例を説明する説明図 検出器ポリゴンの取り付け角度の調整動作を説明する説明図 検出器ポリゴンの取り付け角度および取り付け位置の調整構造を説明する説明図
 以下、発明を実施するための一形態(以下「実施例」と記す)を、図面を用いて説明する。なお、実施例を説明するための全図において、同一機能を有するものは同一符合を付け、その繰り返しの説明を省略する。
 1.X線CT装置の概要
 図1は一実施例であるX線CT装置100の構成を説明する説明図である。X線CT装置100は、X線源126から被検体102へX線を照射し、該X線照射により得られた被検体102の投影データを収集し、収集した投影データに基づいて被検体102の断層画像や3次元画像などの再構成画像を再構成し、演算制御装置200が有する表示装置(図示しない)に再構成画像を表示したり、記憶装置(図示しない)に投影データや再構成画像を記憶したりする。
 X線CT装置100は、ガントリ120と、演算制御装置200と、被検体102を載置するテーブル300と、を有している。ガントリ120は、X線源126やX線検出器140等を搭載する回転盤124と、X線源126のX線照射を制御するX線制御装置232と、回転盤124の回転位置や回転速度を制御するガントリ制御装置234と、被検体102を載置するテーブル300の移動や高さを制御する寝台制御装置236と、X線検出器140で検出された大量の投影データを収集するためのデータ収集装置(DAS:Data Acquisition System)238と、を有している。回転盤124の中央部に開口部122が形成され、開口部122の内部をテーブル300に載置された被検体102が体軸に沿って移動することにより、体軸方向におけるX線の投影データが収集される。
 2.X線の照射、透過X線の検出および再構成
 引き続き図1を用い、X線の照射、透過X線の検出および再構成について説明する。
 操作者は、演算制御装置200に、X線撮影を行うための撮影スケジュールおよび撮影条件を入力する。すると、X線制御装置232は、入力された撮影スケジュールおよび撮影条件に基づいてX線源126を制御し、X線源126からX線が照射される。高電圧発生装置(図示しない)が回転盤124に設けられており、またX線管(図示しない)やコリメータ128がX線源126に備えられている。X線制御装置232の制御に基づいて高電圧発生装置からX線管に高電圧が供給され、供給された高電圧に基づきX線管はX線を発生する。発生したX線はコリメータ128により所定の照射角にコリメートされ、テーブル300に載置された被検体102に照射される。図のαは、ガントリの回転方向に於ける照射角であり、ファン角αと呼ばれる。
 X線源126から照射されたX線は被検体102を透過し、X線検出器140に被検体102を透過したX線が入射する。入射したX線はX線検出器140で検出され、X線の強度に応じた電気信号に変換されて、被検体102の透過画像データとしてデータ収集装置(DAS)238へ送られる。データ収集装置(DAS)238は透過画像データを収集し、デジタル信号に変換して演算制御装置200に供給する。
 演算制御装置200は、収集した被検体102の透過画像データから投影データを求め、求めた投影データに基づいて被検体102の断層画像や3次元画像などの再構成画像を再構成し、表示装置に表示したり、画像データとして記憶装置に保存したりする。さらに前記投影データや画像データは外部のデータベースに送信され、保持される。
 図1において、回転盤124に取り付けられたX線源126とX線検出器140は、被検体102を挟んで対向するように配置されている。ガントリ制御装置234により回転盤124の回転位置や回転速度が撮影スケジュールや撮影条件に基づいて制御され、回転位置に応じた投影データがX線検出器140により検出されてデータ収集装置(DAS)238により収集される。さらに回転盤124の中央部に設けられた開口部122に載置された被検体102を寝台制御装置236の制御により体軸方向に移動することにより、ヘリカルスキャンを行うことができる。
 演算制御装置200はCT制御部212を備え、後述するX線の撮影スケジュールに基づき、ガントリ制御装置234や寝台制御装置236を制御すると共にX線制御装置232を制御して、上述したヘリカルスキャンを行い、データ収集装置(DAS)238で得られた被検体102の透過画像データを収集する。演算制御装置200は透過画像データを基に、画像処理部214や再構成演算部218を用いた演算処理により投影データを求める。
 画像処理部214や再構成演算部218はさらに、投影データに基づいて、断層画像や3次元画像などの再構成画像を再構成する。これら投影データの演算処理や再構成のための演算処理は、処理するデータ量が非常に大量であるため、またできるだけ短い時間に前記再構成画像を再構成するため、あるいは画像処理部214の処理量を低減するために、透過画像データの補正および画像再構成を行うための専用の演算処理のために再構成演算部218を備えている。再構成によって作成された画像データは画像処理部214に送られ、記憶装置に保存される。また必要に応じ、病院などにおいて、総合的にデータを保持管理するために外部に設けられたデータベース(図示しない)に保存される。
 X線源126はX線を発生するX線管を有し、発生したX線はX線管の照射側に設けられたコリメータ128によりコリメートされて角度αの扇状X線ビームが形成され、被検体102に照射される。X線源126に対して被検体102を介して対向する位置にX線検出器140が配置され、X線検出器140には上記角度αの扇状X線ビームの焦点方向を向くようにそれぞれ配置された多数のX線検出器モジュール162(図2他参照)が設けられている。角度αの広がり方向はチャンネル方向と呼ばれる。上記多数のX線検出器モジュール162はチャンネル方向にそれぞれ配列され、X線検出器側に設けられたコリメータ132(図4参照)を介して各X線検出器モジュール162に被検体102を透過したX線が入射する。
 扇状X線ビームの焦点から被検体102にX線が照射されるが、各X線検出器モジュール162は被検体102を透過し扇状X線ビームの焦点と各X線検出器モジュール162とを結ぶ直線上の方向から入射したX線のみを検出し、被検体102等により散乱したX線がX線検出器140で検出されないことが断層画像の画質を向上する上で望ましい。X線源126側にコリメータ128を、X線検出器モジュール162側にコリメータ132を、それぞれ設けることにより、被検体102等により散乱したX線がX線検出器140に入射するのを防止することができる。また高い画質を得るには扇状X線ビームの焦点と各X線検出器モジュール162とを結ぶ直線上の方向から正確に入射したX線を検出することが望ましく、各X線検出器モジュール162が正しく扇状X線ビームの焦点方向を向くように取り付けられていることが望ましい。
 3.X線検出器140の構造
 X線検出器140の基本構成について、図2乃至図4を用い説明する。図2はX線検出器モジュール162の取り付け構造の概要を説明する説明図であり、図3は検出器ポリゴン146を検出器ベース142に固定する構造を説明する説明図である。また図4はX線検出器モジュール162やコリメータ132を保持した状態の検出器ポリゴン146を図3に示すA-Aで断面した断面図である。X線検出器140は、入射したX線を検出して電気信号を出力するX線検出器モジュール162や、各X線検出器モジュール162を所定の方向性を保ってチャンネル方向に配置して固定するための検出器ポリゴン146や、検出器ポリゴン146を回転盤124に固定するための検出器ベース142を備えている。実際にはX線検出器モジュール162は検出器ポリゴン146の長手方向に沿って図2,図4の破線で記載の如く角度αの扇状X線ビーム全体を検出できるように配置されているが、図2,図4はX線検出器モジュール162の一部のみを記載し、X線検出器モジュール162の全体の図示は省略する。
 上述したように、検出器ポリゴン146に固定された各X線検出器モジュール162が正確に扇状X線ビームの焦点方向を向くことが画質向上の上から重要である。図2の実施例では、検出器ポリゴン146を検出器ベース142に固定するための固定部(固定螺子151)と、検出器ポリゴン146の検出器ベース142への固定角度を正確に調整するための角度調整部(接続部152と回転角設定部153とから構成される)を有している。
 例えば固定螺子151に角度調整機能を持たせると、検出器ポリゴン146を検出器ベース142に固定する作業において検出器ポリゴン146の扇状X線ビームの焦点方向の調整を行わなければならず、結果的に取り付け角度の精度が低下したり作業性が低下したりするなどの問題が起こり易い。図2に記載の実施例では、角度調整機能を接続部152と回転角設定部153とから構成される角度調整部に持たせ、検出器ポリゴン146の固定機能を固定螺子151に持たせている。なお検出器ポリゴン146の取り付け角度あるいはX線検出器モジュール162の取り付け角度の調整については以下で再度説明する。
 このように検出器ポリゴン146を固定する際の角度調整機能と検出器ポリゴン146の固定機能とを分け、角度調整機能を接続部152と回転角設定部153に持たせることにより、正確に取り付け角度の設定を行い、その後固定螺子151で検出器ポリゴン146を検出器ベース142に固定することにより、高い精度で検出器ポリゴン146を検出器ベース142に固定でき、さらに作業性も向上する。
 図3は検出器ポリゴン146を検出器ベース142に取り付ける取り付け構造を説明するための説明図であり、図4は、図2に記載したX線検出器モジュール162などを取り付けた検出器ポリゴン146を図3に示す一点鎖線A-Aの位置で断面した状態を示す断面図である。なお上述したように、実際は図3に記載の検出器ポリゴン146にはチャンネル方向に多数のX線検出器モジュール162が固定されており、さらに各X線検出器モジュール162にはコリメータ132が設けられているが、図3ではこれらに関する図示を省略している。
 検出器ベース142に固定された検出器ポリゴン146はコリメータ128により形成された扇状X線ビームに向かって開口する貫通孔148を有し、貫通孔148には図4に記載の如くコリメータ132を備えたX線検出器モジュール162が設けられている。X線源126に設けられたコリメータ128により角度αの扇状X線ビームが形成され、扇状X線ビームに対向して開口する検出器ポリゴン146の貫通孔148にコリメータ132が設けられることにより扇状X線ビームの焦点と各X線検出器モジュール162とを結ぶ直線上の方向から入射したX線がX線検出器モジュール162に導かれ、被検体102等により散乱したX線は除去される。こうして散乱X線が除去されることにより、断層画像の画質が向上する。
 検出器ポリゴン146のX線源126とは逆の面にはX線検出素子を備えたX線検出器モジュール162がチャンネル方向に配列されて固定される。各X線検出器モジュール162を固定するためにチャンネル方向に固定面158が多数設けられている。各固定面158には以下で図5を用いて説明する如く、X線検出器モジュール162が固定される。
 検出器ポリゴン146がX線源126に対して正確な角度で検出器ベース142に固定された場合に、各固定面158に固定されたX線検出器モジュール162のX線検出面が正確にX線源126の焦点方向を向くように各固定面158は非常に高い精度で加工されている。検出器ポリゴン146の貫通孔148の開口が正確にX線源126の焦点を向くための方向性の調整は、例えば接続部152や回転角設定部153や回転角設定部154によって行われる。図2の実施例では、検出器ポリゴン146の貫通孔148の方向性の調整を接続部152や回転角設定部153によって行い、図3の実施例ではこれらに加え回転角設定部154を使用している。図2の方法でも図3の方法でも角度を高い精度で調整できる。これらの方法についてはさらに以下で説明する。
 図2の方法や図3の方法では検出器ポリゴン146の固定の際に検出器ポリゴン146の貫通孔148の開口がX線源126の焦点を正確に向くように調整することができる。
 検出器ポリゴン146は高精度で加工することが可能なため、検出器ポリゴン146の方向性を正確に調整すると、検出器ポリゴン146に固定される各X線検出器モジュール162の検出面の方向を正確に設定することが可能となる。一方、検出器ベース142は体積が大きく、質量も大きいので検出器ベース142を高精度に加工することは非常に難しい。従って例えば検出器ベース142の方向性を正確に調整することにより検出器ポリゴン146に固定した各X線検出器モジュール162の検出面の方向を正確に設定しようとしてもうまくいかない。図2の方法や図3の方法は、検出器ベース142の加工精度が悪くても、検出器ポリゴン146の角度調整を高い精度で行うことができるので、各X線検出器モジュール162の検出面を正確に高い精度でX線源126の焦点に向けることが可能となる効果を有している。
 4.X線検出器モジュール162の構造
 次に図5を用い、X線検出器モジュール162の構造の一例を説明する。ただしX線検出器モジュール162の構造がどのような構造であっても本発明の適用は可能であり、以下に説明する構造は一例であり、これに限定されるものではない。
 図5はX線検出器モジュール162の検出器ポリゴン146への取り付け状態を説明する説明図である。検出器ポリゴン146は例えばアルミ材などの金属材料で作られており、貫通孔148のX線源126に対して反対の面にX線検出器モジュール162を固定するための固定面158が高い精度で加工されている。貫通孔148を挟んで一方側(例えば図5の上側)の固定面158と他方側(例えば図5の下側)の固定面158とで1つのX線検出器モジュール162を固定する。一方側固定面158と他方側固定面158は、検出器ポリゴン146の貫通孔148の長手方向に沿って多数設けられており、一方側と他方側固定面158はそこに固定されるX線検出器モジュール162の検出面が正確にX線源126の焦点を向くように高い精度で加工されている。図5で各X線検出器モジュール162は一例として固定螺子194により各固定面158にそれぞれ固定されるが、他の方法で固定しても良い。
 図6はX線検出器モジュール162の平面図であり、図7はX線検出器モジュール162の側面図である。なお図7ではシンチレータアレイ182やフォトダイオードアレイ184の配置が図示されるように部分的にシンチレータアレイ182の長手方向に沿って断面している。各X線検出器モジュール162のX線検出面の表面側には、微小なシンチレータを長方形でさらに格子状に配列したシンチレータアレイ182が設けられている。シンチレータアレイ182を構成する各シンチレータはX線が入射するとそのX線の強度に応じた蛍光を発生する。各シンチレータに対応してフォトダイオードがそれぞれ設けられ、フォトダイオードが長方形でさらに格子状に配列したフォトダイオードアレイ184を構成する。シンチレータアレイ182とフォトダイオードアレイ184でX線検出素子を構成し、X線検出素子とコリメータ132でX線検出器モジュール162を構成する。
 各シンチレータは入射したX線の強度に対応した強度の蛍光を発生し、各シンチレータに対応して配置された各フォトダイオードは発生した蛍光の強度に基づいて、X線の強度に対応した電気信号を発生する。従って、各フォトダイオードは、各シンチレータに入射したX線の強度に対応した電気信号を発生する。各フォトダイオードが発生する電気信号は電気回路186で増幅され、コネクタ196から出力される。シンチレータアレイ182やフォトダイオードアレイ184を備えるX線検出素子や、電気回路186、コネクタ196は基板192により保持され、基板192は固定螺子194により検出器ポリゴン146の固定面158に固定される。
 なお上述のX線検出器モジュール162の構成は一例であって本願発明の適用においては、これらの構成に特に限定されるものではなく、X線検出器モジュール162が色々な形状や構造であっても本発明が適用可能である。
 5.検出器ポリゴン146の取り付け角度の調整
 5.1 検出器ポリゴン146の取り付け角度調整の課題と対応策
 図1を用いて説明した如く、X線撮影中は回転盤124がガントリ制御装置234の制御に基づいて回転し、回転盤124に固定されたX線源126やX線検出器140は回転盤124の回転に基づいて回転する。従って検出器ベース142や検出器ポリゴン146には遠心力が発生する。検出器ポリゴン146に固定された多数のX線検出器モジュール162の方向性を長期間にわたり正確に維持するためには、遠心力の関係からできるだけ質量の小さい単位で方向性の調整を行い、方向性の精度の維持を図ることが望ましい。従って検出器ベース142を単位として方向性の調整を行うのではなく、さらに質量の小さい検出器ポリゴン146で方向性の調整や設定を行うことが望ましい。
 また大きな遠心力に対抗するためには大きな力に耐えられる固定方法が必要となる。しかし大きな力に耐えられる固定方法は取り付け角度の調整などが難しくなる欠点を有する。X線CT装置においては上述のように一般の固定方法や角度調整方法では考える必要の無い、大きな遠心力を考慮しなければならない。
 本発明はこのような背景の基に、取り付け角度を調整する角度調整機能と、大きな遠心力に対応する固定機能とに分け、角度調整機能を果たすために、接続部152と回転角設定部153とから、あるいはそれらに加え回転角設定部154とから構成される角度調整部を設ける。また大きな遠心力に対応する固定機能を果たすために固定部(固定螺子151)を設けている。
 このように角度調整機能と大きな遠心力に対応する固定機能とに分け、これらの機能を主体的に果たすために接続部152や回転角設定部153、あるいは回転角設定部154を設け、また別に遠心力に対応する強力な固定部(固定螺子151)を設けているので、角度調整精度の向上が容易であり、角度調整の作業性も向上する。なお角度調整機能と固定機能とを分けると説明したが、これらの分離は機能を主体的に行う手段を設けるものであって、例えば角度調整機能を有する接続部152や回転角設定部153、あるいは回転角設定部154が角度調整の機能を主体的に行うがそれに加えて固定の機能を備えていても良い。上記機能を完全に分離することはかえって難しい面があり、これらの機能の主体を分離すれば上記の効果が得られる。
 5.2 角度調整方法の一例
 以下、図8乃至図11を用い、検出器ポリゴン146の取り付け角度の調整方法の一例を説明する。図8は回転角設定部153や回転角設定部154として機能する調整ピン156を挿入する穴1551から穴1556の説明を行う説明図である。図9は、穴1551から穴1556の内の選択された穴、例えば穴1551に調整ピン156が挿入された状態を説明する説明図である。また、図10は接続部152の一例を示す説明図であり、図11は検出器ポリゴン146の取り付け角度の調整動作を説明する説明図である。なお、検出器ポリゴン146は、実際は図8などに記載の如く円弧形状であるが、角度調整の動作の説明を簡単にし、理解し易くするために、円弧状ではなく長方形の形状で記載している。
 図8の穴1551に挿入する調整ピン156は、図9に記載のごとく、穴1551に挿入して調整ピン156全体を固定するための支持部1562と検出器ポリゴン146の角度を調整するための調整部1564を有している。さらに支持部1562の形状は同じであるが調整部1564の直径dが異なる調整ピンが複数個用意されている。調整ピン156は調整部1564の直径がd1であるのに対し、調整ピン157はd2となっている。図11に記載の如く、調整ピンとして調整ピン156を選択するか調整ピン157を選択するかによって、接続部152を支点として検出器ポリゴン146の回転角が変わる。このことにより直径dが異なる調整ピンを予め複数個用意しておくことにより、検出器ポリゴン146の取り付け角度を調整することができる。
 上述のX線検出器の角度調整部は、検出器ポリゴン146を検出器ベース142に回転可能に接続する接続部152と、接続部152を支点として回転角を設定する回転角設定部153とを備える。そして、回転角設定部153は、支持部1562と調整部1564を有する調整ピンと、調整ピンの支持部1562が挿入される検出器ベース142に設けられた穴1551を備えている。さらに、検出器ベース142に設けられた穴1551は調整部1564の直径が異なる調整ピンを挿入することができるようになっており、回転角設定部153は直径が異なる調整ピンにより回転角を設定することができる。
 検出器ポリゴン146が角度調整のための回転を行う支点となる接続部152の構造の一例を、図10を用いて説明する。ただしこの構造は本発明が適用可能な構造の内の一例であり、他の構造であっても本発明の適用が可能である。図10に示す構造は、検出器ポリゴン146と検出器ベース142が回転自在に接続されるための一例の構造であり、この構造では検出器ポリゴン146と検出器ベース142とにそれぞれ穴1462と穴1422とが設けられている。回転支持部1524を有する支持ピン1522が検出器ポリゴン146の穴1462と検出器ベース142の穴1422とに挿入され、支持ピン1522の回転支持部1524により検出器ポリゴン146と検出器ベース142とが回転可能に接続される。すなわち、この構成の接続部152は、回転支持部1524を有し、検出器ベース142と検出器ポリゴン146とが回転支持部1524を介して回転可能に接続されている。
 この実施例では検出器ポリゴン146に設けた穴1462と検出器ベース142設けた穴1422とに、回転支持部1524を有する支持ピン1522を挿入しているが、穴1462あるいは穴1422に回転支持部1524を圧入して検出器ポリゴン146と回転支持部1524とを固定する、あるいは検出器ベース142と穴1422とを固定するようにしても良い。
 図11に記載のように、直径d1の調整部1564を備えた調整ピン156を使用すると、検出器ポリゴン146は実線で示す角度で固定される。一方調整ピン156を使用する代わりに調整部1564の直径dが大きい調整ピン157を使用すると、接続部152を支点とする検出器ポリゴン146の角度が破線のように変わる。このように穴1551に挿入される調整ピン156を選択することにより、調整ピンの調整部1564の直径dを調整することができ、検出器ポリゴン146の角度を調整することができる。
 検出器ポリゴン146に固定された各X線検出器モジュール162の検出面が正確に扇状X線ビームの焦点を向くようにするには、検出器ポリゴン146と扇状X線ビームの焦点との間の距離が正確に保たれることが重要であり、また扇状X線ビームの焦点における法線と検出器ポリゴン146の長手方向の中心とが所定の関係で維持されることが重要である。この実施例では、接続部152は検出器ポリゴン146の長手方向における中央部に設けられる。接続部152は回転可能に検出器ベース142と検出器ポリゴン146とを接続するために、検出器ポリゴン146と扇状X線ビームの焦点との間の距離や扇状X線ビームの焦点における法線と検出器ポリゴン146の長手方向の中心との関係が、調整ピンの調整部1564の直径dに関係なく維持されるので、この実施例の構造では、検出器ポリゴン146の取り付け角に加え上記関係が正確に維持される。
 このようにして検出器ポリゴン146の角度や固定位置が接続部152や回転角設定部153、あるいは回転角設定部154により、正確に維持され、この状態で次に検出器ポリゴン146を検出器ベース142に固定する機能を主体的に果たす固定部(固定螺子151)により、検出器ポリゴン146が強い力で検出器ベース142に固定される。このように本実施例は接続部152や回転角設定部153、あるいは回転角設定部154により、検出器ポリゴン146の角度を正確に決定し、接続部152や回転角設定部153、あるいは回転角設定部154とは異なる固定螺子151により検出器ポリゴン146を強力に検出器ベース142に固定する構造であるので、角度調整作業が容易であり、高い精度で角度を設定することができる。さらにX線撮影中に大きな遠心力が検出器ベース142や検出器ポリゴン146に働いても、この遠心力に対向して検出器ポリゴン146の固定位置や固定角度が高い精度を長期間維持される。
 5.3 角度調整方法の他の一例
 検出器ポリゴン146の取り付け角度の調整において、調整ピンを挿入する穴、例えば穴1551を共通に使用する場合、図11に記載のように接続部152と調整ピンの調整部1564が検出器ポリゴン146に接する位置との間の距離L1が略一定と成り、角度調整は、調整ピンの直径dの変化すなわち選択に基づいて行われる。調整ピンの調整部1564の直径dを変えることにより、回転の支点となる接続部152における角度が変化する。
 また図11に記載において、距離L1を変えると同じ調整ピンの直径dに対して検出器ポリゴン146の角度を変えることが可能となる。このように調整ピンの支持部が挿入される検出器ベースに設けられた穴が複数個設けられ、それぞれの穴と接続部との間の距離が異なると、接続部152に対する距離L1を選択することにより、調整ピンの種類を増やしたのと同様の効果を奏することができる。図8では、接続部152の両サイドに接続部152の縁に沿って距離L1~距離L6までの異なる距離の関係を有する穴1551から穴1556が設けられている。調整ピンの種類を増やすのに加え、異なる距離L1~L6に設けられた調整ピンを挿入する穴の数を増やすことでさらに細かい角度調整が可能となる。
 5.4 角度調整方法のさらに他の例
 図11では検出器ポリゴン146と検出器ベース142とを回転自在に接続するための接続部152を検出器ポリゴン146の長手方向の中央に設けているが、接続部152を調整ピン156に対して他の端部となる位置に支持ピン1522として示すように設けても良い。この支持ピン1522を使用する実施例では、調整ピンの調整部1564の直径dに対して、支持ピン1522との間の距離が距離L1から距離L8と長くなるので角度の単位を小さくすることが可能となる。また支持ピン1522は、扇状X線ビームの焦点に対する検出器ポリゴン146位置関係をある程度維持する機能を備えている。
 上述した実施例では、X線源126の焦点と検出器ポリゴン146との間の距離および扇状X線ビームの中心と検出器ポリゴン146の長手方向における中心位置との関係を変えることができなかった。このことは逆に角度調整を容易にし、作業性を向上する効果があった。しかし、X線源126の焦点と検出器ポリゴン146との間の距離を調整したい場合が生じる。図12に記載の構造は、検出器ポリゴン146の固定角度の調整だけでなくX線源126の焦点と検出器ポリゴン146との間の距離の調整を可能とする構造である。
 図10に記載の実施例では検出器ポリゴン146に設けられた穴1462と回転支持部1524とは余裕が無く接する構造である。一方図12の構造では検出器ポリゴン146に設けられた穴1464は、X線源126の焦点方向に長い形状を成し、さらに回転角設定部153や回転角設定部154が検出器ポリゴン146の長手方向の端部側にそれぞれ設けられている。接続部152は図10に記載の回転支持部1524を有しており、検出器ポリゴン146に設けられた穴1464の短軸方向の内面はそれぞれ回転支持部1524と接している。このことにより、検出器ポリゴン146の長手方向の中心軸が回転支持部1524と穴1464とにより規定され、穴1464の長軸方向のみが回転角設定部153や回転角設定部154により調整可能な構造となっている。
 検出器ポリゴン146の長手方向における中心軸とコリメータ128で形成される扇状X線ビームの中心軸とが穴1464の短軸方向内面と回転支持部1524とにより常に規定されているので、回転角設定部153や回転角設定部154の選択を変えても、検出器ポリゴン146の長手方向における中心軸と扇状X線ビームの中心軸とが常に一定の関係に維持される。このことにより調整作業が非常に行い易くなる効果を奏する。
 回転角設定部153や回転角設定部154はそれぞれ図9に記載の構造を有しており、回転角設定部153や回転角設定部154は検出器ベース142に設けられた穴にそれぞれ挿入されている。回転角設定部153や回転角設定部154で示す位置の調整ピンを選択して、各調整ピンの調整部1564の直径dを変えることによりX線源126の焦点と検出器ポリゴン146との間の距離を調整することができる。もちろん検出器ポリゴン146の取り付け角度も調整することが可能となる。このことにより、検出器ポリゴン146の取り付け角度だけでなく検出器ポリゴン146とコリメータ128との間の距離の調整も可能となる。
 上述した実施例によれば、X線検出器の配向性の調整を精度良く行うことができる。その結果、アーチファクトなどの少ない鮮明な断層画像が容易に得られるX線CT装置を提供することができる。
 本発明は、X線検出器モジュールを有するX線検出器において、その配向性の調整作業が容易なX線CT装置を提供する。
 100 X線CT装置、102 被検体、120 ガントリ、122 開口部、124 回転盤、126 X線源、128 コリメータ、132 コリメータ、140 X線検出器、142 検出器ベース、146 検出器ポリゴン、148 貫通孔、151 固定螺子、152 接続部、153 回転角設定部、154 回転角設定部、156 調整ピン、157 調整ピン、158 固定面、162 X線検出器モジュール、182 シンチレータアレイ、184 フォトダイオードアレイ、186 電気回路、192 基板、194 固定螺子、196 コネクタ、200 演算制御装置、212 CT制御部、214 画像処理部、218 再構成演算部、232 X線制御装置、234 ガントリ制御装置、236 寝台制御装置、238 データ収集装置(DAS)、300 テーブル、1422 穴、1462 穴、1464 穴、1522 支持ピン、1524 回転支持部、1551 穴、1552 穴、1553 穴、1554 穴、1555 穴、1556 穴、1564 調整部

Claims (12)

  1.  中央部に開口を有する回転盤と、
     前記回転盤に取り付けられたX線源と、
     前記開口を挟んで前記X線源の反対側に取り付けられたX線検出器と、
     前記回転盤の回転を制御するガントリ制御装置と、
     前記X線検出器の出力に基づいてX線画像を生成する演算制御装置と、を備え、
     前記X線検出器は、
     複数のX線検出器モジュールを有する検出器ポリゴンと、
     前記検出器ポリゴンを前記回転盤に固定するための検出器ベースと、
     前記検出器ポリゴンを前記検出器ベースに固定する固定部と、
     前記検出器ベースに配置され前記検出器ポリゴンの前記検出器ベースへの固定角度を調整する角度調整部と、を有する、ことを特徴とするX線CT装置。
  2.  請求項1に記載のX線CT装置において、前記角度調整部は、前記検出器ポリゴンを前記検出器ベースに回転可能に接続する接続部と、前記接続部を支点として回転角を設定する回転角設定部とを備える、ことを特徴とするX線CT装置。
  3.  請求項2に記載のX線CT装置において、前記接続部は、前記検出器ポリゴンの長手方向における中央部に設けられている、ことを特徴とするX線CT装置。
  4.  請求項2に記載のX線CT装置において、前記回転角設定部は、前記検出器ポリゴンの長手方向における端部側に設けられている、ことを特徴とするX線CT装置。
  5.  請求項2に記載のX線CT装置において、前記回転角設定部は、支持部と調整部を有する調整ピンと、前記調整ピンの前記支持部が挿入される検出器ベースに設けられた穴を備えている、ことを特徴とするX線CT装置。
  6.  請求項5に記載のX線CT装置において、前記検出器ベースに設けられた穴は前記調整部の直径が異なる調整ピンを挿入することができるようになっており、前記回転角設定部は前記直径が異なる調整ピンにより前記回転角を設定する、ことを特徴とするX線CT装置。
  7.  請求項5に記載のX線CT装置において、前記調整ピンの前記支持部が挿入される検出器ベースに設けられた穴が複数個設けられ、それぞれの穴と前記接続部との間の距離が異なる、ことを特徴とするX線CT装置。
  8.  請求項2に記載のX線CT装置において、前記接続部は、回転支持部を有し、検出器ベースと検出器ポリゴンとが前記回転支持部を介して回転可能に接続されている、ことを特徴とするX線CT装置。
  9.  請求項1に記載のX線CT装置において、前記角度調整部は、前記検出器ポリゴンの長手方向の両側に前記検出器ポリゴンの位置を設定する調整ピンと、前記各調整ピンを固定するために前記検出器ベースに設けられた穴を有している、ことを特徴とするX線CT装置。
  10.  請求項9に記載のX線CT装置において、前記検出器ポリゴンの中央部に前記検出器ポリゴンを前記検出器ベースに回転可能に接続する接続部が設けられ、前記接続部は前記検出器ポリゴンに形成された前記X線源の方向に長い形状の穴を有し、前記検出器ポリゴンの固定角度および前記X線源と前記検出器ポリゴンとの間の距離を調整可能とする、ことを特徴とするX線CT装置。
  11.  請求項9に記載のX線CT装置において、前記各調整ピンの調整部は直径が異なる、ことを特徴とするX線CT装置。
  12.  請求項2に記載のX線CT装置において、前記回転角設定部が前記検出器ポリゴンにおける前記X線源に対して反対の側に設けられている、ことを特徴とするX線CT装置。
PCT/JP2015/064681 2014-05-26 2015-05-22 X線ct装置 WO2015182493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523459A JPWO2015182493A1 (ja) 2014-05-26 2015-05-22 X線ct装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014108436 2014-05-26
JP2014-108436 2014-05-26

Publications (1)

Publication Number Publication Date
WO2015182493A1 true WO2015182493A1 (ja) 2015-12-03

Family

ID=54698827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064681 WO2015182493A1 (ja) 2014-05-26 2015-05-22 X線ct装置

Country Status (2)

Country Link
JP (1) JPWO2015182493A1 (ja)
WO (1) WO2015182493A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220047A (ja) * 1984-04-16 1985-11-02 株式会社 日立メデイコ Ctスキヤナの放射線検出器位置調整装置
JPS6161487U (ja) * 1984-09-28 1986-04-25
JPS631048B2 (ja) * 1979-09-25 1988-01-11 Tokyo Shibaura Electric Co
JPH03173540A (ja) * 1989-12-01 1991-07-26 Toshiba Corp X線ct装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631048B2 (ja) * 1979-09-25 1988-01-11 Tokyo Shibaura Electric Co
JPS60220047A (ja) * 1984-04-16 1985-11-02 株式会社 日立メデイコ Ctスキヤナの放射線検出器位置調整装置
JPS6161487U (ja) * 1984-09-28 1986-04-25
JPH03173540A (ja) * 1989-12-01 1991-07-26 Toshiba Corp X線ct装置

Also Published As

Publication number Publication date
JPWO2015182493A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP2007000406A (ja) X線ct撮影方法およびx線ct装置
US8942341B2 (en) Method of dose reduction for CT imaging and apparatus for implementing same
JP2009507544A (ja) Ct用の直接の測定及び散乱補正
US6876718B2 (en) Scatter correction methods and apparatus
JP5727277B2 (ja) X線ct装置
US20160249872A1 (en) X-ray system, in particular a tomosynthesis system and a method for acquiring an image of an object
KR102057033B1 (ko) 이미징 시스템을 위한 소스측 모니터링 디바이스
JP2009006133A (ja) X線ct装置及びその制御方法
US9417194B2 (en) Assessment of focal spot characteristics
JP6395703B2 (ja) 放射線検出器とそれを備えたx線ct装置
JP7224829B2 (ja) 医用画像処理装置および方法
JP7106392B2 (ja) 感度補正方法及び光子計数型検出器
JP6818592B2 (ja) コリメータ、放射線検出器、及び放射線検査装置
JP2014236922A (ja) X線ct装置、医用画像診断装置及びファントム
JP3774518B2 (ja) X線ctスキャナ
WO2015182493A1 (ja) X線ct装置
JP6523451B2 (ja) 放射線検出器とそれを備えたx線ct装置
JP6548488B2 (ja) X線コンピュータ断層撮影装置及びx線検出器
JP2007282740A (ja) X線ct装置
JP7166833B2 (ja) 放射線検出器及び放射線検出器モジュール
JP2017113083A (ja) 医用画像診断装置
JP2007167261A (ja) X線ct装置および部分散乱係数テーブル取得方法
JP2009028110A (ja) X線ct装置及びそれに使用するフィルタ板
JP7114332B2 (ja) X線ct装置
JP6506583B2 (ja) 放射線断層撮影装置及び画像生成装置並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799681

Country of ref document: EP

Kind code of ref document: A1